1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls
, "Number of tail calls");
86 LargeGOT("mxgot", cl::Hidden
,
87 cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
90 NoZeroDivCheck("mno-check-zero-division", cl::Hidden
,
91 cl::desc("MIPS: Don't trap on integer division by zero."),
94 extern cl::opt
<bool> EmitJalrReloc
;
96 static const MCPhysReg Mips64DPRegs
[8] = {
97 Mips::D12_64
, Mips::D13_64
, Mips::D14_64
, Mips::D15_64
,
98 Mips::D16_64
, Mips::D17_64
, Mips::D18_64
, Mips::D19_64
101 // If I is a shifted mask, set the size (Size) and the first bit of the
102 // mask (Pos), and return true.
103 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
104 static bool isShiftedMask(uint64_t I
, uint64_t &Pos
, uint64_t &Size
) {
105 if (!isShiftedMask_64(I
))
108 Size
= countPopulation(I
);
109 Pos
= countTrailingZeros(I
);
113 // The MIPS MSA ABI passes vector arguments in the integer register set.
114 // The number of integer registers used is dependant on the ABI used.
115 MVT
MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext
&Context
,
119 if (Subtarget
.isABI_O32()) {
122 return (VT
.getSizeInBits() == 32) ? MVT::i32
: MVT::i64
;
125 return MipsTargetLowering::getRegisterType(Context
, VT
);
128 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext
&Context
,
132 return std::max((VT
.getSizeInBits() / (Subtarget
.isABI_O32() ? 32 : 64)),
134 return MipsTargetLowering::getNumRegisters(Context
, VT
);
137 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
138 LLVMContext
&Context
, CallingConv::ID CC
, EVT VT
, EVT
&IntermediateVT
,
139 unsigned &NumIntermediates
, MVT
&RegisterVT
) const {
140 // Break down vector types to either 2 i64s or 4 i32s.
141 RegisterVT
= getRegisterTypeForCallingConv(Context
, CC
, VT
);
142 IntermediateVT
= RegisterVT
;
143 NumIntermediates
= VT
.getSizeInBits() < RegisterVT
.getSizeInBits()
144 ? VT
.getVectorNumElements()
145 : VT
.getSizeInBits() / RegisterVT
.getSizeInBits();
147 return NumIntermediates
;
150 SDValue
MipsTargetLowering::getGlobalReg(SelectionDAG
&DAG
, EVT Ty
) const {
151 MipsFunctionInfo
*FI
= DAG
.getMachineFunction().getInfo
<MipsFunctionInfo
>();
152 return DAG
.getRegister(FI
->getGlobalBaseReg(), Ty
);
155 SDValue
MipsTargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
157 unsigned Flag
) const {
158 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
, 0, Flag
);
161 SDValue
MipsTargetLowering::getTargetNode(ExternalSymbolSDNode
*N
, EVT Ty
,
163 unsigned Flag
) const {
164 return DAG
.getTargetExternalSymbol(N
->getSymbol(), Ty
, Flag
);
167 SDValue
MipsTargetLowering::getTargetNode(BlockAddressSDNode
*N
, EVT Ty
,
169 unsigned Flag
) const {
170 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
173 SDValue
MipsTargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
175 unsigned Flag
) const {
176 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
179 SDValue
MipsTargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
181 unsigned Flag
) const {
182 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlignment(),
183 N
->getOffset(), Flag
);
186 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode
) const {
187 switch ((MipsISD::NodeType
)Opcode
) {
188 case MipsISD::FIRST_NUMBER
: break;
189 case MipsISD::JmpLink
: return "MipsISD::JmpLink";
190 case MipsISD::TailCall
: return "MipsISD::TailCall";
191 case MipsISD::Highest
: return "MipsISD::Highest";
192 case MipsISD::Higher
: return "MipsISD::Higher";
193 case MipsISD::Hi
: return "MipsISD::Hi";
194 case MipsISD::Lo
: return "MipsISD::Lo";
195 case MipsISD::GotHi
: return "MipsISD::GotHi";
196 case MipsISD::TlsHi
: return "MipsISD::TlsHi";
197 case MipsISD::GPRel
: return "MipsISD::GPRel";
198 case MipsISD::ThreadPointer
: return "MipsISD::ThreadPointer";
199 case MipsISD::Ret
: return "MipsISD::Ret";
200 case MipsISD::ERet
: return "MipsISD::ERet";
201 case MipsISD::EH_RETURN
: return "MipsISD::EH_RETURN";
202 case MipsISD::FMS
: return "MipsISD::FMS";
203 case MipsISD::FPBrcond
: return "MipsISD::FPBrcond";
204 case MipsISD::FPCmp
: return "MipsISD::FPCmp";
205 case MipsISD::FSELECT
: return "MipsISD::FSELECT";
206 case MipsISD::MTC1_D64
: return "MipsISD::MTC1_D64";
207 case MipsISD::CMovFP_T
: return "MipsISD::CMovFP_T";
208 case MipsISD::CMovFP_F
: return "MipsISD::CMovFP_F";
209 case MipsISD::TruncIntFP
: return "MipsISD::TruncIntFP";
210 case MipsISD::MFHI
: return "MipsISD::MFHI";
211 case MipsISD::MFLO
: return "MipsISD::MFLO";
212 case MipsISD::MTLOHI
: return "MipsISD::MTLOHI";
213 case MipsISD::Mult
: return "MipsISD::Mult";
214 case MipsISD::Multu
: return "MipsISD::Multu";
215 case MipsISD::MAdd
: return "MipsISD::MAdd";
216 case MipsISD::MAddu
: return "MipsISD::MAddu";
217 case MipsISD::MSub
: return "MipsISD::MSub";
218 case MipsISD::MSubu
: return "MipsISD::MSubu";
219 case MipsISD::DivRem
: return "MipsISD::DivRem";
220 case MipsISD::DivRemU
: return "MipsISD::DivRemU";
221 case MipsISD::DivRem16
: return "MipsISD::DivRem16";
222 case MipsISD::DivRemU16
: return "MipsISD::DivRemU16";
223 case MipsISD::BuildPairF64
: return "MipsISD::BuildPairF64";
224 case MipsISD::ExtractElementF64
: return "MipsISD::ExtractElementF64";
225 case MipsISD::Wrapper
: return "MipsISD::Wrapper";
226 case MipsISD::DynAlloc
: return "MipsISD::DynAlloc";
227 case MipsISD::Sync
: return "MipsISD::Sync";
228 case MipsISD::Ext
: return "MipsISD::Ext";
229 case MipsISD::Ins
: return "MipsISD::Ins";
230 case MipsISD::CIns
: return "MipsISD::CIns";
231 case MipsISD::LWL
: return "MipsISD::LWL";
232 case MipsISD::LWR
: return "MipsISD::LWR";
233 case MipsISD::SWL
: return "MipsISD::SWL";
234 case MipsISD::SWR
: return "MipsISD::SWR";
235 case MipsISD::LDL
: return "MipsISD::LDL";
236 case MipsISD::LDR
: return "MipsISD::LDR";
237 case MipsISD::SDL
: return "MipsISD::SDL";
238 case MipsISD::SDR
: return "MipsISD::SDR";
239 case MipsISD::EXTP
: return "MipsISD::EXTP";
240 case MipsISD::EXTPDP
: return "MipsISD::EXTPDP";
241 case MipsISD::EXTR_S_H
: return "MipsISD::EXTR_S_H";
242 case MipsISD::EXTR_W
: return "MipsISD::EXTR_W";
243 case MipsISD::EXTR_R_W
: return "MipsISD::EXTR_R_W";
244 case MipsISD::EXTR_RS_W
: return "MipsISD::EXTR_RS_W";
245 case MipsISD::SHILO
: return "MipsISD::SHILO";
246 case MipsISD::MTHLIP
: return "MipsISD::MTHLIP";
247 case MipsISD::MULSAQ_S_W_PH
: return "MipsISD::MULSAQ_S_W_PH";
248 case MipsISD::MAQ_S_W_PHL
: return "MipsISD::MAQ_S_W_PHL";
249 case MipsISD::MAQ_S_W_PHR
: return "MipsISD::MAQ_S_W_PHR";
250 case MipsISD::MAQ_SA_W_PHL
: return "MipsISD::MAQ_SA_W_PHL";
251 case MipsISD::MAQ_SA_W_PHR
: return "MipsISD::MAQ_SA_W_PHR";
252 case MipsISD::DPAU_H_QBL
: return "MipsISD::DPAU_H_QBL";
253 case MipsISD::DPAU_H_QBR
: return "MipsISD::DPAU_H_QBR";
254 case MipsISD::DPSU_H_QBL
: return "MipsISD::DPSU_H_QBL";
255 case MipsISD::DPSU_H_QBR
: return "MipsISD::DPSU_H_QBR";
256 case MipsISD::DPAQ_S_W_PH
: return "MipsISD::DPAQ_S_W_PH";
257 case MipsISD::DPSQ_S_W_PH
: return "MipsISD::DPSQ_S_W_PH";
258 case MipsISD::DPAQ_SA_L_W
: return "MipsISD::DPAQ_SA_L_W";
259 case MipsISD::DPSQ_SA_L_W
: return "MipsISD::DPSQ_SA_L_W";
260 case MipsISD::DPA_W_PH
: return "MipsISD::DPA_W_PH";
261 case MipsISD::DPS_W_PH
: return "MipsISD::DPS_W_PH";
262 case MipsISD::DPAQX_S_W_PH
: return "MipsISD::DPAQX_S_W_PH";
263 case MipsISD::DPAQX_SA_W_PH
: return "MipsISD::DPAQX_SA_W_PH";
264 case MipsISD::DPAX_W_PH
: return "MipsISD::DPAX_W_PH";
265 case MipsISD::DPSX_W_PH
: return "MipsISD::DPSX_W_PH";
266 case MipsISD::DPSQX_S_W_PH
: return "MipsISD::DPSQX_S_W_PH";
267 case MipsISD::DPSQX_SA_W_PH
: return "MipsISD::DPSQX_SA_W_PH";
268 case MipsISD::MULSA_W_PH
: return "MipsISD::MULSA_W_PH";
269 case MipsISD::MULT
: return "MipsISD::MULT";
270 case MipsISD::MULTU
: return "MipsISD::MULTU";
271 case MipsISD::MADD_DSP
: return "MipsISD::MADD_DSP";
272 case MipsISD::MADDU_DSP
: return "MipsISD::MADDU_DSP";
273 case MipsISD::MSUB_DSP
: return "MipsISD::MSUB_DSP";
274 case MipsISD::MSUBU_DSP
: return "MipsISD::MSUBU_DSP";
275 case MipsISD::SHLL_DSP
: return "MipsISD::SHLL_DSP";
276 case MipsISD::SHRA_DSP
: return "MipsISD::SHRA_DSP";
277 case MipsISD::SHRL_DSP
: return "MipsISD::SHRL_DSP";
278 case MipsISD::SETCC_DSP
: return "MipsISD::SETCC_DSP";
279 case MipsISD::SELECT_CC_DSP
: return "MipsISD::SELECT_CC_DSP";
280 case MipsISD::VALL_ZERO
: return "MipsISD::VALL_ZERO";
281 case MipsISD::VANY_ZERO
: return "MipsISD::VANY_ZERO";
282 case MipsISD::VALL_NONZERO
: return "MipsISD::VALL_NONZERO";
283 case MipsISD::VANY_NONZERO
: return "MipsISD::VANY_NONZERO";
284 case MipsISD::VCEQ
: return "MipsISD::VCEQ";
285 case MipsISD::VCLE_S
: return "MipsISD::VCLE_S";
286 case MipsISD::VCLE_U
: return "MipsISD::VCLE_U";
287 case MipsISD::VCLT_S
: return "MipsISD::VCLT_S";
288 case MipsISD::VCLT_U
: return "MipsISD::VCLT_U";
289 case MipsISD::VEXTRACT_SEXT_ELT
: return "MipsISD::VEXTRACT_SEXT_ELT";
290 case MipsISD::VEXTRACT_ZEXT_ELT
: return "MipsISD::VEXTRACT_ZEXT_ELT";
291 case MipsISD::VNOR
: return "MipsISD::VNOR";
292 case MipsISD::VSHF
: return "MipsISD::VSHF";
293 case MipsISD::SHF
: return "MipsISD::SHF";
294 case MipsISD::ILVEV
: return "MipsISD::ILVEV";
295 case MipsISD::ILVOD
: return "MipsISD::ILVOD";
296 case MipsISD::ILVL
: return "MipsISD::ILVL";
297 case MipsISD::ILVR
: return "MipsISD::ILVR";
298 case MipsISD::PCKEV
: return "MipsISD::PCKEV";
299 case MipsISD::PCKOD
: return "MipsISD::PCKOD";
300 case MipsISD::INSVE
: return "MipsISD::INSVE";
305 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine
&TM
,
306 const MipsSubtarget
&STI
)
307 : TargetLowering(TM
), Subtarget(STI
), ABI(TM
.getABI()) {
308 // Mips does not have i1 type, so use i32 for
309 // setcc operations results (slt, sgt, ...).
310 setBooleanContents(ZeroOrOneBooleanContent
);
311 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
312 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
313 // does. Integer booleans still use 0 and 1.
314 if (Subtarget
.hasMips32r6())
315 setBooleanContents(ZeroOrOneBooleanContent
,
316 ZeroOrNegativeOneBooleanContent
);
318 // Load extented operations for i1 types must be promoted
319 for (MVT VT
: MVT::integer_valuetypes()) {
320 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
321 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
322 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
325 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
327 for (MVT VT
: MVT::fp_valuetypes()) {
328 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
329 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
332 // Set LoadExtAction for f16 vectors to Expand
333 for (MVT VT
: MVT::fp_vector_valuetypes()) {
334 MVT F16VT
= MVT::getVectorVT(MVT::f16
, VT
.getVectorNumElements());
336 setLoadExtAction(ISD::EXTLOAD
, VT
, F16VT
, Expand
);
339 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
340 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
342 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
344 // Used by legalize types to correctly generate the setcc result.
345 // Without this, every float setcc comes with a AND/OR with the result,
346 // we don't want this, since the fpcmp result goes to a flag register,
347 // which is used implicitly by brcond and select operations.
348 AddPromotedToType(ISD::SETCC
, MVT::i1
, MVT::i32
);
350 // Mips Custom Operations
351 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
352 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
353 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
354 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
355 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
356 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
357 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
358 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
359 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
360 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
361 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
362 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
363 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
364 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
365 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
367 if (!(TM
.Options
.NoNaNsFPMath
|| Subtarget
.inAbs2008Mode())) {
368 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
369 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
372 if (Subtarget
.isGP64bit()) {
373 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
374 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
375 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
376 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
377 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
378 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
379 setOperationAction(ISD::LOAD
, MVT::i64
, Custom
);
380 setOperationAction(ISD::STORE
, MVT::i64
, Custom
);
381 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
382 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
383 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
384 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
387 if (!Subtarget
.isGP64bit()) {
388 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
389 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
390 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
393 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i32
, Custom
);
394 if (Subtarget
.isGP64bit())
395 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i64
, Custom
);
397 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
398 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
399 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
400 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
401 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
402 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
403 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
404 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
406 // Operations not directly supported by Mips.
407 setOperationAction(ISD::BR_CC
, MVT::f32
, Expand
);
408 setOperationAction(ISD::BR_CC
, MVT::f64
, Expand
);
409 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
410 setOperationAction(ISD::BR_CC
, MVT::i64
, Expand
);
411 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Expand
);
412 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
413 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Expand
);
414 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Expand
);
415 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
416 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
417 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
418 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
419 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
420 if (Subtarget
.hasCnMips()) {
421 setOperationAction(ISD::CTPOP
, MVT::i32
, Legal
);
422 setOperationAction(ISD::CTPOP
, MVT::i64
, Legal
);
424 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
425 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
427 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
428 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
429 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
430 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
431 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
432 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
434 if (!Subtarget
.hasMips32r2())
435 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
437 if (!Subtarget
.hasMips64r2())
438 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
440 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
441 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
442 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
443 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
444 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
445 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
446 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
447 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
448 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
449 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
450 setOperationAction(ISD::FLOG10
, MVT::f32
, Expand
);
451 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
452 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
453 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
454 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
455 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
457 // Lower f16 conversion operations into library calls
458 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
459 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
460 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
461 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
463 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
465 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
466 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
467 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
468 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
470 // Use the default for now
471 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
472 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
474 if (!Subtarget
.isGP64bit()) {
475 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i64
, Expand
);
476 setOperationAction(ISD::ATOMIC_STORE
, MVT::i64
, Expand
);
479 if (!Subtarget
.hasMips32r2()) {
480 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
481 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
484 // MIPS16 lacks MIPS32's clz and clo instructions.
485 if (!Subtarget
.hasMips32() || Subtarget
.inMips16Mode())
486 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
487 if (!Subtarget
.hasMips64())
488 setOperationAction(ISD::CTLZ
, MVT::i64
, Expand
);
490 if (!Subtarget
.hasMips32r2())
491 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
492 if (!Subtarget
.hasMips64r2())
493 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
495 if (Subtarget
.isGP64bit()) {
496 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
497 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
498 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
499 setTruncStoreAction(MVT::i64
, MVT::i32
, Custom
);
502 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
504 setTargetDAGCombine(ISD::SDIVREM
);
505 setTargetDAGCombine(ISD::UDIVREM
);
506 setTargetDAGCombine(ISD::SELECT
);
507 setTargetDAGCombine(ISD::AND
);
508 setTargetDAGCombine(ISD::OR
);
509 setTargetDAGCombine(ISD::ADD
);
510 setTargetDAGCombine(ISD::SUB
);
511 setTargetDAGCombine(ISD::AssertZext
);
512 setTargetDAGCombine(ISD::SHL
);
515 // These libcalls are not available in 32-bit.
516 setLibcallName(RTLIB::SHL_I128
, nullptr);
517 setLibcallName(RTLIB::SRL_I128
, nullptr);
518 setLibcallName(RTLIB::SRA_I128
, nullptr);
521 setMinFunctionAlignment(Subtarget
.isGP64bit() ? llvm::Align(8)
524 // The arguments on the stack are defined in terms of 4-byte slots on O32
525 // and 8-byte slots on N32/N64.
526 setMinStackArgumentAlignment((ABI
.IsN32() || ABI
.IsN64()) ? llvm::Align(8)
529 setStackPointerRegisterToSaveRestore(ABI
.IsN64() ? Mips::SP_64
: Mips::SP
);
531 MaxStoresPerMemcpy
= 16;
533 isMicroMips
= Subtarget
.inMicroMipsMode();
536 const MipsTargetLowering
*MipsTargetLowering::create(const MipsTargetMachine
&TM
,
537 const MipsSubtarget
&STI
) {
538 if (STI
.inMips16Mode())
539 return createMips16TargetLowering(TM
, STI
);
541 return createMipsSETargetLowering(TM
, STI
);
544 // Create a fast isel object.
546 MipsTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
547 const TargetLibraryInfo
*libInfo
) const {
548 const MipsTargetMachine
&TM
=
549 static_cast<const MipsTargetMachine
&>(funcInfo
.MF
->getTarget());
551 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
552 bool UseFastISel
= TM
.Options
.EnableFastISel
&& Subtarget
.hasMips32() &&
553 !Subtarget
.hasMips32r6() && !Subtarget
.inMips16Mode() &&
554 !Subtarget
.inMicroMipsMode();
556 // Disable if either of the following is true:
557 // We do not generate PIC, the ABI is not O32, LargeGOT is being used.
558 if (!TM
.isPositionIndependent() || !TM
.getABI().IsO32() || LargeGOT
)
561 return UseFastISel
? Mips::createFastISel(funcInfo
, libInfo
) : nullptr;
564 EVT
MipsTargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
568 return VT
.changeVectorElementTypeToInteger();
571 static SDValue
performDivRemCombine(SDNode
*N
, SelectionDAG
&DAG
,
572 TargetLowering::DAGCombinerInfo
&DCI
,
573 const MipsSubtarget
&Subtarget
) {
574 if (DCI
.isBeforeLegalizeOps())
577 EVT Ty
= N
->getValueType(0);
578 unsigned LO
= (Ty
== MVT::i32
) ? Mips::LO0
: Mips::LO0_64
;
579 unsigned HI
= (Ty
== MVT::i32
) ? Mips::HI0
: Mips::HI0_64
;
580 unsigned Opc
= N
->getOpcode() == ISD::SDIVREM
? MipsISD::DivRem16
:
584 SDValue DivRem
= DAG
.getNode(Opc
, DL
, MVT::Glue
,
585 N
->getOperand(0), N
->getOperand(1));
586 SDValue InChain
= DAG
.getEntryNode();
587 SDValue InGlue
= DivRem
;
590 if (N
->hasAnyUseOfValue(0)) {
591 SDValue CopyFromLo
= DAG
.getCopyFromReg(InChain
, DL
, LO
, Ty
,
593 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), CopyFromLo
);
594 InChain
= CopyFromLo
.getValue(1);
595 InGlue
= CopyFromLo
.getValue(2);
599 if (N
->hasAnyUseOfValue(1)) {
600 SDValue CopyFromHi
= DAG
.getCopyFromReg(InChain
, DL
,
602 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), CopyFromHi
);
608 static Mips::CondCode
condCodeToFCC(ISD::CondCode CC
) {
610 default: llvm_unreachable("Unknown fp condition code!");
612 case ISD::SETOEQ
: return Mips::FCOND_OEQ
;
613 case ISD::SETUNE
: return Mips::FCOND_UNE
;
615 case ISD::SETOLT
: return Mips::FCOND_OLT
;
617 case ISD::SETOGT
: return Mips::FCOND_OGT
;
619 case ISD::SETOLE
: return Mips::FCOND_OLE
;
621 case ISD::SETOGE
: return Mips::FCOND_OGE
;
622 case ISD::SETULT
: return Mips::FCOND_ULT
;
623 case ISD::SETULE
: return Mips::FCOND_ULE
;
624 case ISD::SETUGT
: return Mips::FCOND_UGT
;
625 case ISD::SETUGE
: return Mips::FCOND_UGE
;
626 case ISD::SETUO
: return Mips::FCOND_UN
;
627 case ISD::SETO
: return Mips::FCOND_OR
;
629 case ISD::SETONE
: return Mips::FCOND_ONE
;
630 case ISD::SETUEQ
: return Mips::FCOND_UEQ
;
634 /// This function returns true if the floating point conditional branches and
635 /// conditional moves which use condition code CC should be inverted.
636 static bool invertFPCondCodeUser(Mips::CondCode CC
) {
637 if (CC
>= Mips::FCOND_F
&& CC
<= Mips::FCOND_NGT
)
640 assert((CC
>= Mips::FCOND_T
&& CC
<= Mips::FCOND_GT
) &&
641 "Illegal Condition Code");
646 // Creates and returns an FPCmp node from a setcc node.
647 // Returns Op if setcc is not a floating point comparison.
648 static SDValue
createFPCmp(SelectionDAG
&DAG
, const SDValue
&Op
) {
649 // must be a SETCC node
650 if (Op
.getOpcode() != ISD::SETCC
)
653 SDValue LHS
= Op
.getOperand(0);
655 if (!LHS
.getValueType().isFloatingPoint())
658 SDValue RHS
= Op
.getOperand(1);
661 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
662 // node if necessary.
663 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
665 return DAG
.getNode(MipsISD::FPCmp
, DL
, MVT::Glue
, LHS
, RHS
,
666 DAG
.getConstant(condCodeToFCC(CC
), DL
, MVT::i32
));
669 // Creates and returns a CMovFPT/F node.
670 static SDValue
createCMovFP(SelectionDAG
&DAG
, SDValue Cond
, SDValue True
,
671 SDValue False
, const SDLoc
&DL
) {
672 ConstantSDNode
*CC
= cast
<ConstantSDNode
>(Cond
.getOperand(2));
673 bool invert
= invertFPCondCodeUser((Mips::CondCode
)CC
->getSExtValue());
674 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
676 return DAG
.getNode((invert
? MipsISD::CMovFP_F
: MipsISD::CMovFP_T
), DL
,
677 True
.getValueType(), True
, FCC0
, False
, Cond
);
680 static SDValue
performSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
681 TargetLowering::DAGCombinerInfo
&DCI
,
682 const MipsSubtarget
&Subtarget
) {
683 if (DCI
.isBeforeLegalizeOps())
686 SDValue SetCC
= N
->getOperand(0);
688 if ((SetCC
.getOpcode() != ISD::SETCC
) ||
689 !SetCC
.getOperand(0).getValueType().isInteger())
692 SDValue False
= N
->getOperand(2);
693 EVT FalseTy
= False
.getValueType();
695 if (!FalseTy
.isInteger())
698 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(False
);
700 // If the RHS (False) is 0, we swap the order of the operands
701 // of ISD::SELECT (obviously also inverting the condition) so that we can
702 // take advantage of conditional moves using the $0 register.
704 // return (a != 0) ? x : 0;
712 if (!FalseC
->getZExtValue()) {
713 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
714 SDValue True
= N
->getOperand(1);
716 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
717 SetCC
.getOperand(1), ISD::getSetCCInverse(CC
, true));
719 return DAG
.getNode(ISD::SELECT
, DL
, FalseTy
, SetCC
, False
, True
);
722 // If both operands are integer constants there's a possibility that we
723 // can do some interesting optimizations.
724 SDValue True
= N
->getOperand(1);
725 ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(True
);
727 if (!TrueC
|| !True
.getValueType().isInteger())
730 // We'll also ignore MVT::i64 operands as this optimizations proves
731 // to be ineffective because of the required sign extensions as the result
732 // of a SETCC operator is always MVT::i32 for non-vector types.
733 if (True
.getValueType() == MVT::i64
)
736 int64_t Diff
= TrueC
->getSExtValue() - FalseC
->getSExtValue();
738 // 1) (a < x) ? y : y-1
740 // addiu $reg2, $reg1, y-1
742 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, False
);
744 // 2) (a < x) ? y-1 : y
746 // xor $reg1, $reg1, 1
747 // addiu $reg2, $reg1, y-1
749 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
750 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
751 SetCC
.getOperand(1), ISD::getSetCCInverse(CC
, true));
752 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, True
);
755 // Could not optimize.
759 static SDValue
performCMovFPCombine(SDNode
*N
, SelectionDAG
&DAG
,
760 TargetLowering::DAGCombinerInfo
&DCI
,
761 const MipsSubtarget
&Subtarget
) {
762 if (DCI
.isBeforeLegalizeOps())
765 SDValue ValueIfTrue
= N
->getOperand(0), ValueIfFalse
= N
->getOperand(2);
767 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(ValueIfFalse
);
768 if (!FalseC
|| FalseC
->getZExtValue())
771 // Since RHS (False) is 0, we swap the order of the True/False operands
772 // (obviously also inverting the condition) so that we can
773 // take advantage of conditional moves using the $0 register.
775 // return (a != 0) ? x : 0;
778 unsigned Opc
= (N
->getOpcode() == MipsISD::CMovFP_T
) ? MipsISD::CMovFP_F
:
781 SDValue FCC
= N
->getOperand(1), Glue
= N
->getOperand(3);
782 return DAG
.getNode(Opc
, SDLoc(N
), ValueIfFalse
.getValueType(),
783 ValueIfFalse
, FCC
, ValueIfTrue
, Glue
);
786 static SDValue
performANDCombine(SDNode
*N
, SelectionDAG
&DAG
,
787 TargetLowering::DAGCombinerInfo
&DCI
,
788 const MipsSubtarget
&Subtarget
) {
789 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
792 SDValue FirstOperand
= N
->getOperand(0);
793 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
794 SDValue Mask
= N
->getOperand(1);
795 EVT ValTy
= N
->getValueType(0);
798 uint64_t Pos
= 0, SMPos
, SMSize
;
803 // Op's second operand must be a shifted mask.
804 if (!(CN
= dyn_cast
<ConstantSDNode
>(Mask
)) ||
805 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
808 if (FirstOperandOpc
== ISD::SRA
|| FirstOperandOpc
== ISD::SRL
) {
809 // Pattern match EXT.
810 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
811 // => ext $dst, $src, pos, size
813 // The second operand of the shift must be an immediate.
814 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
817 Pos
= CN
->getZExtValue();
819 // Return if the shifted mask does not start at bit 0 or the sum of its size
820 // and Pos exceeds the word's size.
821 if (SMPos
!= 0 || Pos
+ SMSize
> ValTy
.getSizeInBits())
825 NewOperand
= FirstOperand
.getOperand(0);
826 } else if (FirstOperandOpc
== ISD::SHL
&& Subtarget
.hasCnMips()) {
827 // Pattern match CINS.
828 // $dst = and (shl $src , pos), mask
829 // => cins $dst, $src, pos, size
830 // mask is a shifted mask with consecutive 1's, pos = shift amount,
831 // size = population count.
833 // The second operand of the shift must be an immediate.
834 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
837 Pos
= CN
->getZExtValue();
839 if (SMPos
!= Pos
|| Pos
>= ValTy
.getSizeInBits() || SMSize
>= 32 ||
840 Pos
+ SMSize
> ValTy
.getSizeInBits())
843 NewOperand
= FirstOperand
.getOperand(0);
844 // SMSize is 'location' (position) in this case, not size.
848 // Pattern match EXT.
849 // $dst = and $src, (2**size - 1) , if size > 16
850 // => ext $dst, $src, pos, size , pos = 0
852 // If the mask is <= 0xffff, andi can be used instead.
853 if (CN
->getZExtValue() <= 0xffff)
856 // Return if the mask doesn't start at position 0.
861 NewOperand
= FirstOperand
;
863 return DAG
.getNode(Opc
, DL
, ValTy
, NewOperand
,
864 DAG
.getConstant(Pos
, DL
, MVT::i32
),
865 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
868 static SDValue
performORCombine(SDNode
*N
, SelectionDAG
&DAG
,
869 TargetLowering::DAGCombinerInfo
&DCI
,
870 const MipsSubtarget
&Subtarget
) {
871 // Pattern match INS.
872 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
873 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
874 // => ins $dst, $src, size, pos, $src1
875 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
878 SDValue And0
= N
->getOperand(0), And1
= N
->getOperand(1);
879 uint64_t SMPos0
, SMSize0
, SMPos1
, SMSize1
;
880 ConstantSDNode
*CN
, *CN1
;
882 // See if Op's first operand matches (and $src1 , mask0).
883 if (And0
.getOpcode() != ISD::AND
)
886 if (!(CN
= dyn_cast
<ConstantSDNode
>(And0
.getOperand(1))) ||
887 !isShiftedMask(~CN
->getSExtValue(), SMPos0
, SMSize0
))
890 // See if Op's second operand matches (and (shl $src, pos), mask1).
891 if (And1
.getOpcode() == ISD::AND
&&
892 And1
.getOperand(0).getOpcode() == ISD::SHL
) {
894 if (!(CN
= dyn_cast
<ConstantSDNode
>(And1
.getOperand(1))) ||
895 !isShiftedMask(CN
->getZExtValue(), SMPos1
, SMSize1
))
898 // The shift masks must have the same position and size.
899 if (SMPos0
!= SMPos1
|| SMSize0
!= SMSize1
)
902 SDValue Shl
= And1
.getOperand(0);
904 if (!(CN
= dyn_cast
<ConstantSDNode
>(Shl
.getOperand(1))))
907 unsigned Shamt
= CN
->getZExtValue();
909 // Return if the shift amount and the first bit position of mask are not the
911 EVT ValTy
= N
->getValueType(0);
912 if ((Shamt
!= SMPos0
) || (SMPos0
+ SMSize0
> ValTy
.getSizeInBits()))
916 return DAG
.getNode(MipsISD::Ins
, DL
, ValTy
, Shl
.getOperand(0),
917 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
918 DAG
.getConstant(SMSize0
, DL
, MVT::i32
),
921 // Pattern match DINS.
922 // $dst = or (and $src, mask0), mask1
923 // where mask0 = ((1 << SMSize0) -1) << SMPos0
924 // => dins $dst, $src, pos, size
925 if (~CN
->getSExtValue() == ((((int64_t)1 << SMSize0
) - 1) << SMPos0
) &&
926 ((SMSize0
+ SMPos0
<= 64 && Subtarget
.hasMips64r2()) ||
927 (SMSize0
+ SMPos0
<= 32))) {
928 // Check if AND instruction has constant as argument
929 bool isConstCase
= And1
.getOpcode() != ISD::AND
;
930 if (And1
.getOpcode() == ISD::AND
) {
931 if (!(CN1
= dyn_cast
<ConstantSDNode
>(And1
->getOperand(1))))
934 if (!(CN1
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))))
937 // Don't generate INS if constant OR operand doesn't fit into bits
938 // cleared by constant AND operand.
939 if (CN
->getSExtValue() & CN1
->getSExtValue())
943 EVT ValTy
= N
->getOperand(0)->getValueType(0);
947 Const1
= DAG
.getConstant(SMPos0
, DL
, MVT::i32
);
948 SrlX
= DAG
.getNode(ISD::SRL
, DL
, And1
->getValueType(0), And1
, Const1
);
951 MipsISD::Ins
, DL
, N
->getValueType(0),
953 ? DAG
.getConstant(CN1
->getSExtValue() >> SMPos0
, DL
, ValTy
)
955 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
956 DAG
.getConstant(ValTy
.getSizeInBits() / 8 < 8 ? SMSize0
& 31
959 And0
->getOperand(0));
966 static SDValue
performMADD_MSUBCombine(SDNode
*ROOTNode
, SelectionDAG
&CurDAG
,
967 const MipsSubtarget
&Subtarget
) {
968 // ROOTNode must have a multiplication as an operand for the match to be
970 if (ROOTNode
->getOperand(0).getOpcode() != ISD::MUL
&&
971 ROOTNode
->getOperand(1).getOpcode() != ISD::MUL
)
974 // We don't handle vector types here.
975 if (ROOTNode
->getValueType(0).isVector())
978 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
980 // (add (mul a b) c) =>
981 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
982 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
984 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
986 // The overhead of setting up the Hi/Lo registers and reassembling the
987 // result makes this a dubious optimzation for MIPS64. The core of the
988 // problem is that Hi/Lo contain the upper and lower 32 bits of the
989 // operand and result.
991 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
992 // density than doing it naively, 5 for MIPS64. Additionally, using
993 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
994 // extended operands, not true 64 bit values.
996 // FIXME: For the moment, disable this completely for MIPS64.
997 if (Subtarget
.hasMips64())
1000 SDValue Mult
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1001 ? ROOTNode
->getOperand(0)
1002 : ROOTNode
->getOperand(1);
1004 SDValue AddOperand
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1005 ? ROOTNode
->getOperand(1)
1006 : ROOTNode
->getOperand(0);
1008 // Transform this to a MADD only if the user of this node is the add.
1009 // If there are other users of the mul, this function returns here.
1010 if (!Mult
.hasOneUse())
1013 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1014 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1015 // of the multiply must have 32 or more sign bits, otherwise we cannot
1016 // perform this optimization. We have to check this here as we're performing
1017 // this optimization pre-legalization.
1018 SDValue MultLHS
= Mult
->getOperand(0);
1019 SDValue MultRHS
= Mult
->getOperand(1);
1021 bool IsSigned
= MultLHS
->getOpcode() == ISD::SIGN_EXTEND
&&
1022 MultRHS
->getOpcode() == ISD::SIGN_EXTEND
;
1023 bool IsUnsigned
= MultLHS
->getOpcode() == ISD::ZERO_EXTEND
&&
1024 MultRHS
->getOpcode() == ISD::ZERO_EXTEND
;
1026 if (!IsSigned
&& !IsUnsigned
)
1029 // Initialize accumulator.
1033 BottomHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1034 CurDAG
.getIntPtrConstant(0, DL
));
1036 TopHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1037 CurDAG
.getIntPtrConstant(1, DL
));
1038 SDValue ACCIn
= CurDAG
.getNode(MipsISD::MTLOHI
, DL
, MVT::Untyped
,
1042 // Create MipsMAdd(u) / MipsMSub(u) node.
1043 bool IsAdd
= ROOTNode
->getOpcode() == ISD::ADD
;
1044 unsigned Opcode
= IsAdd
? (IsUnsigned
? MipsISD::MAddu
: MipsISD::MAdd
)
1045 : (IsUnsigned
? MipsISD::MSubu
: MipsISD::MSub
);
1046 SDValue MAddOps
[3] = {
1047 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(0)),
1048 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(1)), ACCIn
};
1049 EVT VTs
[2] = {MVT::i32
, MVT::i32
};
1050 SDValue MAdd
= CurDAG
.getNode(Opcode
, DL
, VTs
, MAddOps
);
1052 SDValue ResLo
= CurDAG
.getNode(MipsISD::MFLO
, DL
, MVT::i32
, MAdd
);
1053 SDValue ResHi
= CurDAG
.getNode(MipsISD::MFHI
, DL
, MVT::i32
, MAdd
);
1055 CurDAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, ResLo
, ResHi
);
1059 static SDValue
performSUBCombine(SDNode
*N
, SelectionDAG
&DAG
,
1060 TargetLowering::DAGCombinerInfo
&DCI
,
1061 const MipsSubtarget
&Subtarget
) {
1062 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1063 if (DCI
.isBeforeLegalizeOps()) {
1064 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1065 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1066 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1074 static SDValue
performADDCombine(SDNode
*N
, SelectionDAG
&DAG
,
1075 TargetLowering::DAGCombinerInfo
&DCI
,
1076 const MipsSubtarget
&Subtarget
) {
1077 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1078 if (DCI
.isBeforeLegalizeOps()) {
1079 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1080 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1081 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1086 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1087 SDValue Add
= N
->getOperand(1);
1089 if (Add
.getOpcode() != ISD::ADD
)
1092 SDValue Lo
= Add
.getOperand(1);
1094 if ((Lo
.getOpcode() != MipsISD::Lo
) ||
1095 (Lo
.getOperand(0).getOpcode() != ISD::TargetJumpTable
))
1098 EVT ValTy
= N
->getValueType(0);
1101 SDValue Add1
= DAG
.getNode(ISD::ADD
, DL
, ValTy
, N
->getOperand(0),
1103 return DAG
.getNode(ISD::ADD
, DL
, ValTy
, Add1
, Lo
);
1106 static SDValue
performSHLCombine(SDNode
*N
, SelectionDAG
&DAG
,
1107 TargetLowering::DAGCombinerInfo
&DCI
,
1108 const MipsSubtarget
&Subtarget
) {
1109 // Pattern match CINS.
1110 // $dst = shl (and $src , imm), pos
1111 // => cins $dst, $src, pos, size
1113 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasCnMips())
1116 SDValue FirstOperand
= N
->getOperand(0);
1117 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
1118 SDValue SecondOperand
= N
->getOperand(1);
1119 EVT ValTy
= N
->getValueType(0);
1122 uint64_t Pos
= 0, SMPos
, SMSize
;
1126 // The second operand of the shift must be an immediate.
1127 if (!(CN
= dyn_cast
<ConstantSDNode
>(SecondOperand
)))
1130 Pos
= CN
->getZExtValue();
1132 if (Pos
>= ValTy
.getSizeInBits())
1135 if (FirstOperandOpc
!= ISD::AND
)
1138 // AND's second operand must be a shifted mask.
1139 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))) ||
1140 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
1143 // Return if the shifted mask does not start at bit 0 or the sum of its size
1144 // and Pos exceeds the word's size.
1145 if (SMPos
!= 0 || SMSize
> 32 || Pos
+ SMSize
> ValTy
.getSizeInBits())
1148 NewOperand
= FirstOperand
.getOperand(0);
1149 // SMSize is 'location' (position) in this case, not size.
1152 return DAG
.getNode(MipsISD::CIns
, DL
, ValTy
, NewOperand
,
1153 DAG
.getConstant(Pos
, DL
, MVT::i32
),
1154 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
1157 SDValue
MipsTargetLowering::PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
)
1159 SelectionDAG
&DAG
= DCI
.DAG
;
1160 unsigned Opc
= N
->getOpcode();
1166 return performDivRemCombine(N
, DAG
, DCI
, Subtarget
);
1168 return performSELECTCombine(N
, DAG
, DCI
, Subtarget
);
1169 case MipsISD::CMovFP_F
:
1170 case MipsISD::CMovFP_T
:
1171 return performCMovFPCombine(N
, DAG
, DCI
, Subtarget
);
1173 return performANDCombine(N
, DAG
, DCI
, Subtarget
);
1175 return performORCombine(N
, DAG
, DCI
, Subtarget
);
1177 return performADDCombine(N
, DAG
, DCI
, Subtarget
);
1179 return performSHLCombine(N
, DAG
, DCI
, Subtarget
);
1181 return performSUBCombine(N
, DAG
, DCI
, Subtarget
);
1187 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1188 return Subtarget
.hasMips32();
1191 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1192 return Subtarget
.hasMips32();
1195 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1196 const SDNode
*N
, CombineLevel Level
) const {
1197 if (N
->getOperand(0).getValueType().isVector())
1203 MipsTargetLowering::LowerOperationWrapper(SDNode
*N
,
1204 SmallVectorImpl
<SDValue
> &Results
,
1205 SelectionDAG
&DAG
) const {
1206 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
1209 for (unsigned I
= 0, E
= Res
->getNumValues(); I
!= E
; ++I
)
1210 Results
.push_back(Res
.getValue(I
));
1214 MipsTargetLowering::ReplaceNodeResults(SDNode
*N
,
1215 SmallVectorImpl
<SDValue
> &Results
,
1216 SelectionDAG
&DAG
) const {
1217 return LowerOperationWrapper(N
, Results
, DAG
);
1220 SDValue
MipsTargetLowering::
1221 LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const
1223 switch (Op
.getOpcode())
1225 case ISD::BRCOND
: return lowerBRCOND(Op
, DAG
);
1226 case ISD::ConstantPool
: return lowerConstantPool(Op
, DAG
);
1227 case ISD::GlobalAddress
: return lowerGlobalAddress(Op
, DAG
);
1228 case ISD::BlockAddress
: return lowerBlockAddress(Op
, DAG
);
1229 case ISD::GlobalTLSAddress
: return lowerGlobalTLSAddress(Op
, DAG
);
1230 case ISD::JumpTable
: return lowerJumpTable(Op
, DAG
);
1231 case ISD::SELECT
: return lowerSELECT(Op
, DAG
);
1232 case ISD::SETCC
: return lowerSETCC(Op
, DAG
);
1233 case ISD::VASTART
: return lowerVASTART(Op
, DAG
);
1234 case ISD::VAARG
: return lowerVAARG(Op
, DAG
);
1235 case ISD::FCOPYSIGN
: return lowerFCOPYSIGN(Op
, DAG
);
1236 case ISD::FABS
: return lowerFABS(Op
, DAG
);
1237 case ISD::FRAMEADDR
: return lowerFRAMEADDR(Op
, DAG
);
1238 case ISD::RETURNADDR
: return lowerRETURNADDR(Op
, DAG
);
1239 case ISD::EH_RETURN
: return lowerEH_RETURN(Op
, DAG
);
1240 case ISD::ATOMIC_FENCE
: return lowerATOMIC_FENCE(Op
, DAG
);
1241 case ISD::SHL_PARTS
: return lowerShiftLeftParts(Op
, DAG
);
1242 case ISD::SRA_PARTS
: return lowerShiftRightParts(Op
, DAG
, true);
1243 case ISD::SRL_PARTS
: return lowerShiftRightParts(Op
, DAG
, false);
1244 case ISD::LOAD
: return lowerLOAD(Op
, DAG
);
1245 case ISD::STORE
: return lowerSTORE(Op
, DAG
);
1246 case ISD::EH_DWARF_CFA
: return lowerEH_DWARF_CFA(Op
, DAG
);
1247 case ISD::FP_TO_SINT
: return lowerFP_TO_SINT(Op
, DAG
);
1252 //===----------------------------------------------------------------------===//
1253 // Lower helper functions
1254 //===----------------------------------------------------------------------===//
1256 // addLiveIn - This helper function adds the specified physical register to the
1257 // MachineFunction as a live in value. It also creates a corresponding
1258 // virtual register for it.
1260 addLiveIn(MachineFunction
&MF
, unsigned PReg
, const TargetRegisterClass
*RC
)
1262 Register VReg
= MF
.getRegInfo().createVirtualRegister(RC
);
1263 MF
.getRegInfo().addLiveIn(PReg
, VReg
);
1267 static MachineBasicBlock
*insertDivByZeroTrap(MachineInstr
&MI
,
1268 MachineBasicBlock
&MBB
,
1269 const TargetInstrInfo
&TII
,
1270 bool Is64Bit
, bool IsMicroMips
) {
1274 // Insert instruction "teq $divisor_reg, $zero, 7".
1275 MachineBasicBlock::iterator
I(MI
);
1276 MachineInstrBuilder MIB
;
1277 MachineOperand
&Divisor
= MI
.getOperand(2);
1278 MIB
= BuildMI(MBB
, std::next(I
), MI
.getDebugLoc(),
1279 TII
.get(IsMicroMips
? Mips::TEQ_MM
: Mips::TEQ
))
1280 .addReg(Divisor
.getReg(), getKillRegState(Divisor
.isKill()))
1284 // Use the 32-bit sub-register if this is a 64-bit division.
1286 MIB
->getOperand(0).setSubReg(Mips::sub_32
);
1288 // Clear Divisor's kill flag.
1289 Divisor
.setIsKill(false);
1291 // We would normally delete the original instruction here but in this case
1292 // we only needed to inject an additional instruction rather than replace it.
1298 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1299 MachineBasicBlock
*BB
) const {
1300 switch (MI
.getOpcode()) {
1302 llvm_unreachable("Unexpected instr type to insert");
1303 case Mips::ATOMIC_LOAD_ADD_I8
:
1304 return emitAtomicBinaryPartword(MI
, BB
, 1);
1305 case Mips::ATOMIC_LOAD_ADD_I16
:
1306 return emitAtomicBinaryPartword(MI
, BB
, 2);
1307 case Mips::ATOMIC_LOAD_ADD_I32
:
1308 return emitAtomicBinary(MI
, BB
);
1309 case Mips::ATOMIC_LOAD_ADD_I64
:
1310 return emitAtomicBinary(MI
, BB
);
1312 case Mips::ATOMIC_LOAD_AND_I8
:
1313 return emitAtomicBinaryPartword(MI
, BB
, 1);
1314 case Mips::ATOMIC_LOAD_AND_I16
:
1315 return emitAtomicBinaryPartword(MI
, BB
, 2);
1316 case Mips::ATOMIC_LOAD_AND_I32
:
1317 return emitAtomicBinary(MI
, BB
);
1318 case Mips::ATOMIC_LOAD_AND_I64
:
1319 return emitAtomicBinary(MI
, BB
);
1321 case Mips::ATOMIC_LOAD_OR_I8
:
1322 return emitAtomicBinaryPartword(MI
, BB
, 1);
1323 case Mips::ATOMIC_LOAD_OR_I16
:
1324 return emitAtomicBinaryPartword(MI
, BB
, 2);
1325 case Mips::ATOMIC_LOAD_OR_I32
:
1326 return emitAtomicBinary(MI
, BB
);
1327 case Mips::ATOMIC_LOAD_OR_I64
:
1328 return emitAtomicBinary(MI
, BB
);
1330 case Mips::ATOMIC_LOAD_XOR_I8
:
1331 return emitAtomicBinaryPartword(MI
, BB
, 1);
1332 case Mips::ATOMIC_LOAD_XOR_I16
:
1333 return emitAtomicBinaryPartword(MI
, BB
, 2);
1334 case Mips::ATOMIC_LOAD_XOR_I32
:
1335 return emitAtomicBinary(MI
, BB
);
1336 case Mips::ATOMIC_LOAD_XOR_I64
:
1337 return emitAtomicBinary(MI
, BB
);
1339 case Mips::ATOMIC_LOAD_NAND_I8
:
1340 return emitAtomicBinaryPartword(MI
, BB
, 1);
1341 case Mips::ATOMIC_LOAD_NAND_I16
:
1342 return emitAtomicBinaryPartword(MI
, BB
, 2);
1343 case Mips::ATOMIC_LOAD_NAND_I32
:
1344 return emitAtomicBinary(MI
, BB
);
1345 case Mips::ATOMIC_LOAD_NAND_I64
:
1346 return emitAtomicBinary(MI
, BB
);
1348 case Mips::ATOMIC_LOAD_SUB_I8
:
1349 return emitAtomicBinaryPartword(MI
, BB
, 1);
1350 case Mips::ATOMIC_LOAD_SUB_I16
:
1351 return emitAtomicBinaryPartword(MI
, BB
, 2);
1352 case Mips::ATOMIC_LOAD_SUB_I32
:
1353 return emitAtomicBinary(MI
, BB
);
1354 case Mips::ATOMIC_LOAD_SUB_I64
:
1355 return emitAtomicBinary(MI
, BB
);
1357 case Mips::ATOMIC_SWAP_I8
:
1358 return emitAtomicBinaryPartword(MI
, BB
, 1);
1359 case Mips::ATOMIC_SWAP_I16
:
1360 return emitAtomicBinaryPartword(MI
, BB
, 2);
1361 case Mips::ATOMIC_SWAP_I32
:
1362 return emitAtomicBinary(MI
, BB
);
1363 case Mips::ATOMIC_SWAP_I64
:
1364 return emitAtomicBinary(MI
, BB
);
1366 case Mips::ATOMIC_CMP_SWAP_I8
:
1367 return emitAtomicCmpSwapPartword(MI
, BB
, 1);
1368 case Mips::ATOMIC_CMP_SWAP_I16
:
1369 return emitAtomicCmpSwapPartword(MI
, BB
, 2);
1370 case Mips::ATOMIC_CMP_SWAP_I32
:
1371 return emitAtomicCmpSwap(MI
, BB
);
1372 case Mips::ATOMIC_CMP_SWAP_I64
:
1373 return emitAtomicCmpSwap(MI
, BB
);
1374 case Mips::PseudoSDIV
:
1375 case Mips::PseudoUDIV
:
1380 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false,
1382 case Mips::SDIV_MM_Pseudo
:
1383 case Mips::UDIV_MM_Pseudo
:
1386 case Mips::DIV_MMR6
:
1387 case Mips::DIVU_MMR6
:
1388 case Mips::MOD_MMR6
:
1389 case Mips::MODU_MMR6
:
1390 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false, true);
1391 case Mips::PseudoDSDIV
:
1392 case Mips::PseudoDUDIV
:
1397 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), true, false);
1399 case Mips::PseudoSELECT_I
:
1400 case Mips::PseudoSELECT_I64
:
1401 case Mips::PseudoSELECT_S
:
1402 case Mips::PseudoSELECT_D32
:
1403 case Mips::PseudoSELECT_D64
:
1404 return emitPseudoSELECT(MI
, BB
, false, Mips::BNE
);
1405 case Mips::PseudoSELECTFP_F_I
:
1406 case Mips::PseudoSELECTFP_F_I64
:
1407 case Mips::PseudoSELECTFP_F_S
:
1408 case Mips::PseudoSELECTFP_F_D32
:
1409 case Mips::PseudoSELECTFP_F_D64
:
1410 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1F
);
1411 case Mips::PseudoSELECTFP_T_I
:
1412 case Mips::PseudoSELECTFP_T_I64
:
1413 case Mips::PseudoSELECTFP_T_S
:
1414 case Mips::PseudoSELECTFP_T_D32
:
1415 case Mips::PseudoSELECTFP_T_D64
:
1416 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1T
);
1417 case Mips::PseudoD_SELECT_I
:
1418 case Mips::PseudoD_SELECT_I64
:
1419 return emitPseudoD_SELECT(MI
, BB
);
1423 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1424 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1426 MipsTargetLowering::emitAtomicBinary(MachineInstr
&MI
,
1427 MachineBasicBlock
*BB
) const {
1429 MachineFunction
*MF
= BB
->getParent();
1430 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1431 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1432 DebugLoc DL
= MI
.getDebugLoc();
1435 switch (MI
.getOpcode()) {
1436 case Mips::ATOMIC_LOAD_ADD_I32
:
1437 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I32_POSTRA
;
1439 case Mips::ATOMIC_LOAD_SUB_I32
:
1440 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I32_POSTRA
;
1442 case Mips::ATOMIC_LOAD_AND_I32
:
1443 AtomicOp
= Mips::ATOMIC_LOAD_AND_I32_POSTRA
;
1445 case Mips::ATOMIC_LOAD_OR_I32
:
1446 AtomicOp
= Mips::ATOMIC_LOAD_OR_I32_POSTRA
;
1448 case Mips::ATOMIC_LOAD_XOR_I32
:
1449 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I32_POSTRA
;
1451 case Mips::ATOMIC_LOAD_NAND_I32
:
1452 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I32_POSTRA
;
1454 case Mips::ATOMIC_SWAP_I32
:
1455 AtomicOp
= Mips::ATOMIC_SWAP_I32_POSTRA
;
1457 case Mips::ATOMIC_LOAD_ADD_I64
:
1458 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I64_POSTRA
;
1460 case Mips::ATOMIC_LOAD_SUB_I64
:
1461 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I64_POSTRA
;
1463 case Mips::ATOMIC_LOAD_AND_I64
:
1464 AtomicOp
= Mips::ATOMIC_LOAD_AND_I64_POSTRA
;
1466 case Mips::ATOMIC_LOAD_OR_I64
:
1467 AtomicOp
= Mips::ATOMIC_LOAD_OR_I64_POSTRA
;
1469 case Mips::ATOMIC_LOAD_XOR_I64
:
1470 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I64_POSTRA
;
1472 case Mips::ATOMIC_LOAD_NAND_I64
:
1473 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I64_POSTRA
;
1475 case Mips::ATOMIC_SWAP_I64
:
1476 AtomicOp
= Mips::ATOMIC_SWAP_I64_POSTRA
;
1479 llvm_unreachable("Unknown pseudo atomic for replacement!");
1482 Register OldVal
= MI
.getOperand(0).getReg();
1483 Register Ptr
= MI
.getOperand(1).getReg();
1484 Register Incr
= MI
.getOperand(2).getReg();
1485 Register Scratch
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1487 MachineBasicBlock::iterator
II(MI
);
1489 // The scratch registers here with the EarlyClobber | Define | Implicit
1490 // flags is used to persuade the register allocator and the machine
1491 // verifier to accept the usage of this register. This has to be a real
1492 // register which has an UNDEF value but is dead after the instruction which
1493 // is unique among the registers chosen for the instruction.
1495 // The EarlyClobber flag has the semantic properties that the operand it is
1496 // attached to is clobbered before the rest of the inputs are read. Hence it
1497 // must be unique among the operands to the instruction.
1498 // The Define flag is needed to coerce the machine verifier that an Undef
1499 // value isn't a problem.
1500 // The Dead flag is needed as the value in scratch isn't used by any other
1501 // instruction. Kill isn't used as Dead is more precise.
1502 // The implicit flag is here due to the interaction between the other flags
1503 // and the machine verifier.
1505 // For correctness purpose, a new pseudo is introduced here. We need this
1506 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1507 // that is spread over >1 basic blocks. A register allocator which
1508 // introduces (or any codegen infact) a store, can violate the expectations
1511 // An atomic read-modify-write sequence starts with a linked load
1512 // instruction and ends with a store conditional instruction. The atomic
1513 // read-modify-write sequence fails if any of the following conditions
1514 // occur between the execution of ll and sc:
1515 // * A coherent store is completed by another process or coherent I/O
1516 // module into the block of synchronizable physical memory containing
1517 // the word. The size and alignment of the block is
1518 // implementation-dependent.
1519 // * A coherent store is executed between an LL and SC sequence on the
1520 // same processor to the block of synchornizable physical memory
1521 // containing the word.
1524 Register PtrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Ptr
));
1525 Register IncrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Incr
));
1527 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), IncrCopy
).addReg(Incr
);
1528 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1530 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1531 .addReg(OldVal
, RegState::Define
| RegState::EarlyClobber
)
1534 .addReg(Scratch
, RegState::Define
| RegState::EarlyClobber
|
1535 RegState::Implicit
| RegState::Dead
);
1537 MI
.eraseFromParent();
1542 MachineBasicBlock
*MipsTargetLowering::emitSignExtendToI32InReg(
1543 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
, unsigned DstReg
,
1544 unsigned SrcReg
) const {
1545 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1546 const DebugLoc
&DL
= MI
.getDebugLoc();
1548 if (Subtarget
.hasMips32r2() && Size
== 1) {
1549 BuildMI(BB
, DL
, TII
->get(Mips::SEB
), DstReg
).addReg(SrcReg
);
1553 if (Subtarget
.hasMips32r2() && Size
== 2) {
1554 BuildMI(BB
, DL
, TII
->get(Mips::SEH
), DstReg
).addReg(SrcReg
);
1558 MachineFunction
*MF
= BB
->getParent();
1559 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1560 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1561 Register ScrReg
= RegInfo
.createVirtualRegister(RC
);
1564 int64_t ShiftImm
= 32 - (Size
* 8);
1566 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ScrReg
).addReg(SrcReg
).addImm(ShiftImm
);
1567 BuildMI(BB
, DL
, TII
->get(Mips::SRA
), DstReg
).addReg(ScrReg
).addImm(ShiftImm
);
1572 MachineBasicBlock
*MipsTargetLowering::emitAtomicBinaryPartword(
1573 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1574 assert((Size
== 1 || Size
== 2) &&
1575 "Unsupported size for EmitAtomicBinaryPartial.");
1577 MachineFunction
*MF
= BB
->getParent();
1578 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1579 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1580 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1581 const TargetRegisterClass
*RCp
=
1582 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1583 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1584 DebugLoc DL
= MI
.getDebugLoc();
1586 Register Dest
= MI
.getOperand(0).getReg();
1587 Register Ptr
= MI
.getOperand(1).getReg();
1588 Register Incr
= MI
.getOperand(2).getReg();
1590 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1591 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1592 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1593 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1594 Register Incr2
= RegInfo
.createVirtualRegister(RC
);
1595 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1596 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1597 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1598 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1599 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1600 Register Scratch3
= RegInfo
.createVirtualRegister(RC
);
1602 unsigned AtomicOp
= 0;
1603 switch (MI
.getOpcode()) {
1604 case Mips::ATOMIC_LOAD_NAND_I8
:
1605 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I8_POSTRA
;
1607 case Mips::ATOMIC_LOAD_NAND_I16
:
1608 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I16_POSTRA
;
1610 case Mips::ATOMIC_SWAP_I8
:
1611 AtomicOp
= Mips::ATOMIC_SWAP_I8_POSTRA
;
1613 case Mips::ATOMIC_SWAP_I16
:
1614 AtomicOp
= Mips::ATOMIC_SWAP_I16_POSTRA
;
1616 case Mips::ATOMIC_LOAD_ADD_I8
:
1617 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I8_POSTRA
;
1619 case Mips::ATOMIC_LOAD_ADD_I16
:
1620 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I16_POSTRA
;
1622 case Mips::ATOMIC_LOAD_SUB_I8
:
1623 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I8_POSTRA
;
1625 case Mips::ATOMIC_LOAD_SUB_I16
:
1626 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I16_POSTRA
;
1628 case Mips::ATOMIC_LOAD_AND_I8
:
1629 AtomicOp
= Mips::ATOMIC_LOAD_AND_I8_POSTRA
;
1631 case Mips::ATOMIC_LOAD_AND_I16
:
1632 AtomicOp
= Mips::ATOMIC_LOAD_AND_I16_POSTRA
;
1634 case Mips::ATOMIC_LOAD_OR_I8
:
1635 AtomicOp
= Mips::ATOMIC_LOAD_OR_I8_POSTRA
;
1637 case Mips::ATOMIC_LOAD_OR_I16
:
1638 AtomicOp
= Mips::ATOMIC_LOAD_OR_I16_POSTRA
;
1640 case Mips::ATOMIC_LOAD_XOR_I8
:
1641 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I8_POSTRA
;
1643 case Mips::ATOMIC_LOAD_XOR_I16
:
1644 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I16_POSTRA
;
1647 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1650 // insert new blocks after the current block
1651 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1652 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1653 MachineFunction::iterator It
= ++BB
->getIterator();
1654 MF
->insert(It
, exitMBB
);
1656 // Transfer the remainder of BB and its successor edges to exitMBB.
1657 exitMBB
->splice(exitMBB
->begin(), BB
,
1658 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1659 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1661 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1664 // addiu masklsb2,$0,-4 # 0xfffffffc
1665 // and alignedaddr,ptr,masklsb2
1666 // andi ptrlsb2,ptr,3
1667 // sll shiftamt,ptrlsb2,3
1668 // ori maskupper,$0,255 # 0xff
1669 // sll mask,maskupper,shiftamt
1670 // nor mask2,$0,mask
1671 // sll incr2,incr,shiftamt
1673 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1674 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAddiuOp()), MaskLSB2
)
1675 .addReg(ABI
.GetNullPtr()).addImm(-4);
1676 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAndOp()), AlignedAddr
)
1677 .addReg(Ptr
).addReg(MaskLSB2
);
1678 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1679 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1680 if (Subtarget
.isLittle()) {
1681 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1683 Register Off
= RegInfo
.createVirtualRegister(RC
);
1684 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1685 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1686 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1688 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1689 .addReg(Mips::ZERO
).addImm(MaskImm
);
1690 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1691 .addReg(MaskUpper
).addReg(ShiftAmt
);
1692 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1693 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Incr2
).addReg(Incr
).addReg(ShiftAmt
);
1696 // The purposes of the flags on the scratch registers is explained in
1697 // emitAtomicBinary. In summary, we need a scratch register which is going to
1698 // be undef, that is unique among registers chosen for the instruction.
1700 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1701 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1702 .addReg(AlignedAddr
)
1707 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1708 RegState::Dead
| RegState::Implicit
)
1709 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1710 RegState::Dead
| RegState::Implicit
)
1711 .addReg(Scratch3
, RegState::EarlyClobber
| RegState::Define
|
1712 RegState::Dead
| RegState::Implicit
);
1714 MI
.eraseFromParent(); // The instruction is gone now.
1719 // Lower atomic compare and swap to a pseudo instruction, taking care to
1720 // define a scratch register for the pseudo instruction's expansion. The
1721 // instruction is expanded after the register allocator as to prevent
1722 // the insertion of stores between the linked load and the store conditional.
1725 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr
&MI
,
1726 MachineBasicBlock
*BB
) const {
1728 assert((MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
||
1729 MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64
) &&
1730 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1732 const unsigned Size
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
? 4 : 8;
1734 MachineFunction
*MF
= BB
->getParent();
1735 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1736 const TargetRegisterClass
*RC
= getRegClassFor(MVT::getIntegerVT(Size
* 8));
1737 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1738 DebugLoc DL
= MI
.getDebugLoc();
1740 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1741 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1742 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA
;
1743 Register Dest
= MI
.getOperand(0).getReg();
1744 Register Ptr
= MI
.getOperand(1).getReg();
1745 Register OldVal
= MI
.getOperand(2).getReg();
1746 Register NewVal
= MI
.getOperand(3).getReg();
1748 Register Scratch
= MRI
.createVirtualRegister(RC
);
1749 MachineBasicBlock::iterator
II(MI
);
1751 // We need to create copies of the various registers and kill them at the
1752 // atomic pseudo. If the copies are not made, when the atomic is expanded
1753 // after fast register allocation, the spills will end up outside of the
1754 // blocks that their values are defined in, causing livein errors.
1756 Register PtrCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(Ptr
));
1757 Register OldValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(OldVal
));
1758 Register NewValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(NewVal
));
1760 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1761 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), OldValCopy
).addReg(OldVal
);
1762 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), NewValCopy
).addReg(NewVal
);
1764 // The purposes of the flags on the scratch registers is explained in
1765 // emitAtomicBinary. In summary, we need a scratch register which is going to
1766 // be undef, that is unique among registers chosen for the instruction.
1768 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1769 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1770 .addReg(PtrCopy
, RegState::Kill
)
1771 .addReg(OldValCopy
, RegState::Kill
)
1772 .addReg(NewValCopy
, RegState::Kill
)
1773 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1774 RegState::Dead
| RegState::Implicit
);
1776 MI
.eraseFromParent(); // The instruction is gone now.
1781 MachineBasicBlock
*MipsTargetLowering::emitAtomicCmpSwapPartword(
1782 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1783 assert((Size
== 1 || Size
== 2) &&
1784 "Unsupported size for EmitAtomicCmpSwapPartial.");
1786 MachineFunction
*MF
= BB
->getParent();
1787 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1788 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1789 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1790 const TargetRegisterClass
*RCp
=
1791 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1792 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1793 DebugLoc DL
= MI
.getDebugLoc();
1795 Register Dest
= MI
.getOperand(0).getReg();
1796 Register Ptr
= MI
.getOperand(1).getReg();
1797 Register CmpVal
= MI
.getOperand(2).getReg();
1798 Register NewVal
= MI
.getOperand(3).getReg();
1800 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1801 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1802 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1803 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1804 Register ShiftedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1805 Register ShiftedNewVal
= RegInfo
.createVirtualRegister(RC
);
1806 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1807 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1808 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1809 Register MaskedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1810 Register MaskedNewVal
= RegInfo
.createVirtualRegister(RC
);
1811 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1812 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1813 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA
;
1815 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1816 // flags are used to coerce the register allocator and the machine verifier to
1817 // accept the usage of these registers.
1818 // The EarlyClobber flag has the semantic properties that the operand it is
1819 // attached to is clobbered before the rest of the inputs are read. Hence it
1820 // must be unique among the operands to the instruction.
1821 // The Define flag is needed to coerce the machine verifier that an Undef
1822 // value isn't a problem.
1823 // The Dead flag is needed as the value in scratch isn't used by any other
1824 // instruction. Kill isn't used as Dead is more precise.
1825 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1826 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1828 // insert new blocks after the current block
1829 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1830 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1831 MachineFunction::iterator It
= ++BB
->getIterator();
1832 MF
->insert(It
, exitMBB
);
1834 // Transfer the remainder of BB and its successor edges to exitMBB.
1835 exitMBB
->splice(exitMBB
->begin(), BB
,
1836 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1837 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1839 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1842 // addiu masklsb2,$0,-4 # 0xfffffffc
1843 // and alignedaddr,ptr,masklsb2
1844 // andi ptrlsb2,ptr,3
1845 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1846 // sll shiftamt,ptrlsb2,3
1847 // ori maskupper,$0,255 # 0xff
1848 // sll mask,maskupper,shiftamt
1849 // nor mask2,$0,mask
1850 // andi maskedcmpval,cmpval,255
1851 // sll shiftedcmpval,maskedcmpval,shiftamt
1852 // andi maskednewval,newval,255
1853 // sll shiftednewval,maskednewval,shiftamt
1854 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1855 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::DADDiu
: Mips::ADDiu
), MaskLSB2
)
1856 .addReg(ABI
.GetNullPtr()).addImm(-4);
1857 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::AND64
: Mips::AND
), AlignedAddr
)
1858 .addReg(Ptr
).addReg(MaskLSB2
);
1859 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1860 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1861 if (Subtarget
.isLittle()) {
1862 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1864 Register Off
= RegInfo
.createVirtualRegister(RC
);
1865 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1866 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1867 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1869 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1870 .addReg(Mips::ZERO
).addImm(MaskImm
);
1871 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1872 .addReg(MaskUpper
).addReg(ShiftAmt
);
1873 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1874 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedCmpVal
)
1875 .addReg(CmpVal
).addImm(MaskImm
);
1876 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedCmpVal
)
1877 .addReg(MaskedCmpVal
).addReg(ShiftAmt
);
1878 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedNewVal
)
1879 .addReg(NewVal
).addImm(MaskImm
);
1880 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedNewVal
)
1881 .addReg(MaskedNewVal
).addReg(ShiftAmt
);
1883 // The purposes of the flags on the scratch registers are explained in
1884 // emitAtomicBinary. In summary, we need a scratch register which is going to
1885 // be undef, that is unique among the register chosen for the instruction.
1887 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1888 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1889 .addReg(AlignedAddr
)
1891 .addReg(ShiftedCmpVal
)
1893 .addReg(ShiftedNewVal
)
1895 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1896 RegState::Dead
| RegState::Implicit
)
1897 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1898 RegState::Dead
| RegState::Implicit
);
1900 MI
.eraseFromParent(); // The instruction is gone now.
1905 SDValue
MipsTargetLowering::lowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
1906 // The first operand is the chain, the second is the condition, the third is
1907 // the block to branch to if the condition is true.
1908 SDValue Chain
= Op
.getOperand(0);
1909 SDValue Dest
= Op
.getOperand(2);
1912 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1913 SDValue CondRes
= createFPCmp(DAG
, Op
.getOperand(1));
1915 // Return if flag is not set by a floating point comparison.
1916 if (CondRes
.getOpcode() != MipsISD::FPCmp
)
1919 SDValue CCNode
= CondRes
.getOperand(2);
1921 (Mips::CondCode
)cast
<ConstantSDNode
>(CCNode
)->getZExtValue();
1922 unsigned Opc
= invertFPCondCodeUser(CC
) ? Mips::BRANCH_F
: Mips::BRANCH_T
;
1923 SDValue BrCode
= DAG
.getConstant(Opc
, DL
, MVT::i32
);
1924 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
1925 return DAG
.getNode(MipsISD::FPBrcond
, DL
, Op
.getValueType(), Chain
, BrCode
,
1926 FCC0
, Dest
, CondRes
);
1929 SDValue
MipsTargetLowering::
1930 lowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const
1932 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1933 SDValue Cond
= createFPCmp(DAG
, Op
.getOperand(0));
1935 // Return if flag is not set by a floating point comparison.
1936 if (Cond
.getOpcode() != MipsISD::FPCmp
)
1939 return createCMovFP(DAG
, Cond
, Op
.getOperand(1), Op
.getOperand(2),
1943 SDValue
MipsTargetLowering::lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
1944 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1945 SDValue Cond
= createFPCmp(DAG
, Op
);
1947 assert(Cond
.getOpcode() == MipsISD::FPCmp
&&
1948 "Floating point operand expected.");
1951 SDValue True
= DAG
.getConstant(1, DL
, MVT::i32
);
1952 SDValue False
= DAG
.getConstant(0, DL
, MVT::i32
);
1954 return createCMovFP(DAG
, Cond
, True
, False
, DL
);
1957 SDValue
MipsTargetLowering::lowerGlobalAddress(SDValue Op
,
1958 SelectionDAG
&DAG
) const {
1959 EVT Ty
= Op
.getValueType();
1960 GlobalAddressSDNode
*N
= cast
<GlobalAddressSDNode
>(Op
);
1961 const GlobalValue
*GV
= N
->getGlobal();
1963 if (!isPositionIndependent()) {
1964 const MipsTargetObjectFile
*TLOF
=
1965 static_cast<const MipsTargetObjectFile
*>(
1966 getTargetMachine().getObjFileLowering());
1967 const GlobalObject
*GO
= GV
->getBaseObject();
1968 if (GO
&& TLOF
->IsGlobalInSmallSection(GO
, getTargetMachine()))
1969 // %gp_rel relocation
1970 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
1972 // %hi/%lo relocation
1973 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
1974 // %highest/%higher/%hi/%lo relocation
1975 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
1978 // Every other architecture would use shouldAssumeDSOLocal in here, but
1980 // * In PIC code mips requires got loads even for local statics!
1981 // * To save on got entries, for local statics the got entry contains the
1982 // page and an additional add instruction takes care of the low bits.
1983 // * It is legal to access a hidden symbol with a non hidden undefined,
1984 // so one cannot guarantee that all access to a hidden symbol will know
1986 // * Mips linkers don't support creating a page and a full got entry for
1988 // * Given all that, we have to use a full got entry for hidden symbols :-(
1989 if (GV
->hasLocalLinkage())
1990 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
1993 return getAddrGlobalLargeGOT(
1994 N
, SDLoc(N
), Ty
, DAG
, MipsII::MO_GOT_HI16
, MipsII::MO_GOT_LO16
,
1996 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
1998 return getAddrGlobal(
1999 N
, SDLoc(N
), Ty
, DAG
,
2000 (ABI
.IsN32() || ABI
.IsN64()) ? MipsII::MO_GOT_DISP
: MipsII::MO_GOT
,
2001 DAG
.getEntryNode(), MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2004 SDValue
MipsTargetLowering::lowerBlockAddress(SDValue Op
,
2005 SelectionDAG
&DAG
) const {
2006 BlockAddressSDNode
*N
= cast
<BlockAddressSDNode
>(Op
);
2007 EVT Ty
= Op
.getValueType();
2009 if (!isPositionIndependent())
2010 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2011 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2013 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2016 SDValue
MipsTargetLowering::
2017 lowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const
2019 // If the relocation model is PIC, use the General Dynamic TLS Model or
2020 // Local Dynamic TLS model, otherwise use the Initial Exec or
2021 // Local Exec TLS Model.
2023 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
2024 if (DAG
.getTarget().useEmulatedTLS())
2025 return LowerToTLSEmulatedModel(GA
, DAG
);
2028 const GlobalValue
*GV
= GA
->getGlobal();
2029 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2031 TLSModel::Model model
= getTargetMachine().getTLSModel(GV
);
2033 if (model
== TLSModel::GeneralDynamic
|| model
== TLSModel::LocalDynamic
) {
2034 // General Dynamic and Local Dynamic TLS Model.
2035 unsigned Flag
= (model
== TLSModel::LocalDynamic
) ? MipsII::MO_TLSLDM
2038 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, Flag
);
2039 SDValue Argument
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
,
2040 getGlobalReg(DAG
, PtrVT
), TGA
);
2041 unsigned PtrSize
= PtrVT
.getSizeInBits();
2042 IntegerType
*PtrTy
= Type::getIntNTy(*DAG
.getContext(), PtrSize
);
2044 SDValue TlsGetAddr
= DAG
.getExternalSymbol("__tls_get_addr", PtrVT
);
2048 Entry
.Node
= Argument
;
2050 Args
.push_back(Entry
);
2052 TargetLowering::CallLoweringInfo
CLI(DAG
);
2054 .setChain(DAG
.getEntryNode())
2055 .setLibCallee(CallingConv::C
, PtrTy
, TlsGetAddr
, std::move(Args
));
2056 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2058 SDValue Ret
= CallResult
.first
;
2060 if (model
!= TLSModel::LocalDynamic
)
2063 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2064 MipsII::MO_DTPREL_HI
);
2065 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2066 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2067 MipsII::MO_DTPREL_LO
);
2068 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2069 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Ret
);
2070 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Add
, Lo
);
2074 if (model
== TLSModel::InitialExec
) {
2075 // Initial Exec TLS Model
2076 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2077 MipsII::MO_GOTTPREL
);
2078 TGA
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
, getGlobalReg(DAG
, PtrVT
),
2081 DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), TGA
, MachinePointerInfo());
2083 // Local Exec TLS Model
2084 assert(model
== TLSModel::LocalExec
);
2085 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2086 MipsII::MO_TPREL_HI
);
2087 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2088 MipsII::MO_TPREL_LO
);
2089 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2090 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2091 Offset
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
2094 SDValue ThreadPointer
= DAG
.getNode(MipsISD::ThreadPointer
, DL
, PtrVT
);
2095 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadPointer
, Offset
);
2098 SDValue
MipsTargetLowering::
2099 lowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const
2101 JumpTableSDNode
*N
= cast
<JumpTableSDNode
>(Op
);
2102 EVT Ty
= Op
.getValueType();
2104 if (!isPositionIndependent())
2105 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2106 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2108 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2111 SDValue
MipsTargetLowering::
2112 lowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const
2114 ConstantPoolSDNode
*N
= cast
<ConstantPoolSDNode
>(Op
);
2115 EVT Ty
= Op
.getValueType();
2117 if (!isPositionIndependent()) {
2118 const MipsTargetObjectFile
*TLOF
=
2119 static_cast<const MipsTargetObjectFile
*>(
2120 getTargetMachine().getObjFileLowering());
2122 if (TLOF
->IsConstantInSmallSection(DAG
.getDataLayout(), N
->getConstVal(),
2123 getTargetMachine()))
2124 // %gp_rel relocation
2125 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2127 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2128 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2131 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2134 SDValue
MipsTargetLowering::lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
2135 MachineFunction
&MF
= DAG
.getMachineFunction();
2136 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
2139 SDValue FI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
2140 getPointerTy(MF
.getDataLayout()));
2142 // vastart just stores the address of the VarArgsFrameIndex slot into the
2143 // memory location argument.
2144 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
2145 return DAG
.getStore(Op
.getOperand(0), DL
, FI
, Op
.getOperand(1),
2146 MachinePointerInfo(SV
));
2149 SDValue
MipsTargetLowering::lowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
2150 SDNode
*Node
= Op
.getNode();
2151 EVT VT
= Node
->getValueType(0);
2152 SDValue Chain
= Node
->getOperand(0);
2153 SDValue VAListPtr
= Node
->getOperand(1);
2154 const llvm::Align Align
=
2155 llvm::MaybeAlign(Node
->getConstantOperandVal(3)).valueOrOne();
2156 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2158 unsigned ArgSlotSizeInBytes
= (ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4;
2160 SDValue VAListLoad
= DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), DL
, Chain
,
2161 VAListPtr
, MachinePointerInfo(SV
));
2162 SDValue VAList
= VAListLoad
;
2164 // Re-align the pointer if necessary.
2165 // It should only ever be necessary for 64-bit types on O32 since the minimum
2166 // argument alignment is the same as the maximum type alignment for N32/N64.
2168 // FIXME: We currently align too often. The code generator doesn't notice
2169 // when the pointer is still aligned from the last va_arg (or pair of
2170 // va_args for the i64 on O32 case).
2171 if (Align
> getMinStackArgumentAlignment()) {
2172 VAList
= DAG
.getNode(
2173 ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2174 DAG
.getConstant(Align
.value() - 1, DL
, VAList
.getValueType()));
2176 VAList
= DAG
.getNode(
2177 ISD::AND
, DL
, VAList
.getValueType(), VAList
,
2178 DAG
.getConstant(-(int64_t)Align
.value(), DL
, VAList
.getValueType()));
2181 // Increment the pointer, VAList, to the next vaarg.
2182 auto &TD
= DAG
.getDataLayout();
2183 unsigned ArgSizeInBytes
=
2184 TD
.getTypeAllocSize(VT
.getTypeForEVT(*DAG
.getContext()));
2186 DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2187 DAG
.getConstant(alignTo(ArgSizeInBytes
, ArgSlotSizeInBytes
),
2188 DL
, VAList
.getValueType()));
2189 // Store the incremented VAList to the legalized pointer
2190 Chain
= DAG
.getStore(VAListLoad
.getValue(1), DL
, Tmp3
, VAListPtr
,
2191 MachinePointerInfo(SV
));
2193 // In big-endian mode we must adjust the pointer when the load size is smaller
2194 // than the argument slot size. We must also reduce the known alignment to
2195 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2196 // the correct half of the slot, and reduce the alignment from 8 (slot
2197 // alignment) down to 4 (type alignment).
2198 if (!Subtarget
.isLittle() && ArgSizeInBytes
< ArgSlotSizeInBytes
) {
2199 unsigned Adjustment
= ArgSlotSizeInBytes
- ArgSizeInBytes
;
2200 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAListPtr
.getValueType(), VAList
,
2201 DAG
.getIntPtrConstant(Adjustment
, DL
));
2203 // Load the actual argument out of the pointer VAList
2204 return DAG
.getLoad(VT
, DL
, Chain
, VAList
, MachinePointerInfo());
2207 static SDValue
lowerFCOPYSIGN32(SDValue Op
, SelectionDAG
&DAG
,
2208 bool HasExtractInsert
) {
2209 EVT TyX
= Op
.getOperand(0).getValueType();
2210 EVT TyY
= Op
.getOperand(1).getValueType();
2212 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2213 SDValue Const31
= DAG
.getConstant(31, DL
, MVT::i32
);
2216 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2218 SDValue X
= (TyX
== MVT::f32
) ?
2219 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0)) :
2220 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2222 SDValue Y
= (TyY
== MVT::f32
) ?
2223 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(1)) :
2224 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(1),
2227 if (HasExtractInsert
) {
2228 // ext E, Y, 31, 1 ; extract bit31 of Y
2229 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2230 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, MVT::i32
, Y
, Const31
, Const1
);
2231 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
, E
, Const31
, Const1
, X
);
2234 // srl SrlX, SllX, 1
2236 // sll SllY, SrlX, 31
2237 // or Or, SrlX, SllY
2238 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2239 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2240 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Y
, Const31
);
2241 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SrlY
, Const31
);
2242 Res
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, SrlX
, SllY
);
2245 if (TyX
== MVT::f32
)
2246 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Res
);
2248 SDValue LowX
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2250 DAG
.getConstant(0, DL
, MVT::i32
));
2251 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2254 static SDValue
lowerFCOPYSIGN64(SDValue Op
, SelectionDAG
&DAG
,
2255 bool HasExtractInsert
) {
2256 unsigned WidthX
= Op
.getOperand(0).getValueSizeInBits();
2257 unsigned WidthY
= Op
.getOperand(1).getValueSizeInBits();
2258 EVT TyX
= MVT::getIntegerVT(WidthX
), TyY
= MVT::getIntegerVT(WidthY
);
2260 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2262 // Bitcast to integer nodes.
2263 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, TyX
, Op
.getOperand(0));
2264 SDValue Y
= DAG
.getNode(ISD::BITCAST
, DL
, TyY
, Op
.getOperand(1));
2266 if (HasExtractInsert
) {
2267 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2268 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2269 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, TyY
, Y
,
2270 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
), Const1
);
2272 if (WidthX
> WidthY
)
2273 E
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, E
);
2274 else if (WidthY
> WidthX
)
2275 E
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, E
);
2277 SDValue I
= DAG
.getNode(MipsISD::Ins
, DL
, TyX
, E
,
2278 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
), Const1
,
2280 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), I
);
2283 // (d)sll SllX, X, 1
2284 // (d)srl SrlX, SllX, 1
2285 // (d)srl SrlY, Y, width(Y)-1
2286 // (d)sll SllY, SrlX, width(Y)-1
2287 // or Or, SrlX, SllY
2288 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, TyX
, X
, Const1
);
2289 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, TyX
, SllX
, Const1
);
2290 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, TyY
, Y
,
2291 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
));
2293 if (WidthX
> WidthY
)
2294 SrlY
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, SrlY
);
2295 else if (WidthY
> WidthX
)
2296 SrlY
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, SrlY
);
2298 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, TyX
, SrlY
,
2299 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
));
2300 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, TyX
, SrlX
, SllY
);
2301 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Or
);
2305 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
2306 if (Subtarget
.isGP64bit())
2307 return lowerFCOPYSIGN64(Op
, DAG
, Subtarget
.hasExtractInsert());
2309 return lowerFCOPYSIGN32(Op
, DAG
, Subtarget
.hasExtractInsert());
2312 static SDValue
lowerFABS32(SDValue Op
, SelectionDAG
&DAG
,
2313 bool HasExtractInsert
) {
2315 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2317 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2319 SDValue X
= (Op
.getValueType() == MVT::f32
)
2320 ? DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0))
2321 : DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2322 Op
.getOperand(0), Const1
);
2325 if (HasExtractInsert
)
2326 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
,
2327 DAG
.getRegister(Mips::ZERO
, MVT::i32
),
2328 DAG
.getConstant(31, DL
, MVT::i32
), Const1
, X
);
2330 // TODO: Provide DAG patterns which transform (and x, cst)
2331 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2332 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2333 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2336 if (Op
.getValueType() == MVT::f32
)
2337 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Res
);
2339 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2340 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2341 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2344 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2345 DAG
.getConstant(0, DL
, MVT::i32
));
2346 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2349 static SDValue
lowerFABS64(SDValue Op
, SelectionDAG
&DAG
,
2350 bool HasExtractInsert
) {
2352 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2354 // Bitcast to integer node.
2355 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Op
.getOperand(0));
2358 if (HasExtractInsert
)
2359 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i64
,
2360 DAG
.getRegister(Mips::ZERO_64
, MVT::i64
),
2361 DAG
.getConstant(63, DL
, MVT::i32
), Const1
, X
);
2363 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, X
, Const1
);
2364 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SllX
, Const1
);
2367 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, Res
);
2370 SDValue
MipsTargetLowering::lowerFABS(SDValue Op
, SelectionDAG
&DAG
) const {
2371 if ((ABI
.IsN32() || ABI
.IsN64()) && (Op
.getValueType() == MVT::f64
))
2372 return lowerFABS64(Op
, DAG
, Subtarget
.hasExtractInsert());
2374 return lowerFABS32(Op
, DAG
, Subtarget
.hasExtractInsert());
2377 SDValue
MipsTargetLowering::
2378 lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
2380 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2381 DAG
.getContext()->emitError(
2382 "return address can be determined only for current frame");
2386 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2387 MFI
.setFrameAddressIsTaken(true);
2388 EVT VT
= Op
.getValueType();
2390 SDValue FrameAddr
= DAG
.getCopyFromReg(
2391 DAG
.getEntryNode(), DL
, ABI
.IsN64() ? Mips::FP_64
: Mips::FP
, VT
);
2395 SDValue
MipsTargetLowering::lowerRETURNADDR(SDValue Op
,
2396 SelectionDAG
&DAG
) const {
2397 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
2401 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2402 DAG
.getContext()->emitError(
2403 "return address can be determined only for current frame");
2407 MachineFunction
&MF
= DAG
.getMachineFunction();
2408 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2409 MVT VT
= Op
.getSimpleValueType();
2410 unsigned RA
= ABI
.IsN64() ? Mips::RA_64
: Mips::RA
;
2411 MFI
.setReturnAddressIsTaken(true);
2413 // Return RA, which contains the return address. Mark it an implicit live-in.
2414 unsigned Reg
= MF
.addLiveIn(RA
, getRegClassFor(VT
));
2415 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SDLoc(Op
), Reg
, VT
);
2418 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2419 // generated from __builtin_eh_return (offset, handler)
2420 // The effect of this is to adjust the stack pointer by "offset"
2421 // and then branch to "handler".
2422 SDValue
MipsTargetLowering::lowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
2424 MachineFunction
&MF
= DAG
.getMachineFunction();
2425 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
2427 MipsFI
->setCallsEhReturn();
2428 SDValue Chain
= Op
.getOperand(0);
2429 SDValue Offset
= Op
.getOperand(1);
2430 SDValue Handler
= Op
.getOperand(2);
2432 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2434 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2435 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2436 unsigned OffsetReg
= ABI
.IsN64() ? Mips::V1_64
: Mips::V1
;
2437 unsigned AddrReg
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
2438 Chain
= DAG
.getCopyToReg(Chain
, DL
, OffsetReg
, Offset
, SDValue());
2439 Chain
= DAG
.getCopyToReg(Chain
, DL
, AddrReg
, Handler
, Chain
.getValue(1));
2440 return DAG
.getNode(MipsISD::EH_RETURN
, DL
, MVT::Other
, Chain
,
2441 DAG
.getRegister(OffsetReg
, Ty
),
2442 DAG
.getRegister(AddrReg
, getPointerTy(MF
.getDataLayout())),
2446 SDValue
MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op
,
2447 SelectionDAG
&DAG
) const {
2448 // FIXME: Need pseudo-fence for 'singlethread' fences
2449 // FIXME: Set SType for weaker fences where supported/appropriate.
2452 return DAG
.getNode(MipsISD::Sync
, DL
, MVT::Other
, Op
.getOperand(0),
2453 DAG
.getConstant(SType
, DL
, MVT::i32
));
2456 SDValue
MipsTargetLowering::lowerShiftLeftParts(SDValue Op
,
2457 SelectionDAG
&DAG
) const {
2459 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2461 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2462 SDValue Shamt
= Op
.getOperand(2);
2463 // if shamt < (VT.bits):
2464 // lo = (shl lo, shamt)
2465 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2468 // hi = (shl lo, shamt[4:0])
2469 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2470 DAG
.getConstant(-1, DL
, MVT::i32
));
2471 SDValue ShiftRight1Lo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
,
2472 DAG
.getConstant(1, DL
, VT
));
2473 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, ShiftRight1Lo
, Not
);
2474 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
, Shamt
);
2475 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2476 SDValue ShiftLeftLo
= DAG
.getNode(ISD::SHL
, DL
, VT
, Lo
, Shamt
);
2477 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2478 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2479 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2480 DAG
.getConstant(0, DL
, VT
), ShiftLeftLo
);
2481 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftLeftLo
, Or
);
2483 SDValue Ops
[2] = {Lo
, Hi
};
2484 return DAG
.getMergeValues(Ops
, DL
);
2487 SDValue
MipsTargetLowering::lowerShiftRightParts(SDValue Op
, SelectionDAG
&DAG
,
2490 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2491 SDValue Shamt
= Op
.getOperand(2);
2492 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2494 // if shamt < (VT.bits):
2495 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2497 // hi = (sra hi, shamt)
2499 // hi = (srl hi, shamt)
2502 // lo = (sra hi, shamt[4:0])
2503 // hi = (sra hi, 31)
2505 // lo = (srl hi, shamt[4:0])
2507 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2508 DAG
.getConstant(-1, DL
, MVT::i32
));
2509 SDValue ShiftLeft1Hi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
,
2510 DAG
.getConstant(1, DL
, VT
));
2511 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, ShiftLeft1Hi
, Not
);
2512 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
, Shamt
);
2513 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2514 SDValue ShiftRightHi
= DAG
.getNode(IsSRA
? ISD::SRA
: ISD::SRL
,
2516 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2517 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2518 SDValue Ext
= DAG
.getNode(ISD::SRA
, DL
, VT
, Hi
,
2519 DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
));
2521 if (!(Subtarget
.hasMips4() || Subtarget
.hasMips32())) {
2522 SDVTList VTList
= DAG
.getVTList(VT
, VT
);
2523 return DAG
.getNode(Subtarget
.isGP64bit() ? Mips::PseudoD_SELECT_I64
2524 : Mips::PseudoD_SELECT_I
,
2525 DL
, VTList
, Cond
, ShiftRightHi
,
2526 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), Or
,
2530 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftRightHi
, Or
);
2531 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2532 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), ShiftRightHi
);
2534 SDValue Ops
[2] = {Lo
, Hi
};
2535 return DAG
.getMergeValues(Ops
, DL
);
2538 static SDValue
createLoadLR(unsigned Opc
, SelectionDAG
&DAG
, LoadSDNode
*LD
,
2539 SDValue Chain
, SDValue Src
, unsigned Offset
) {
2540 SDValue Ptr
= LD
->getBasePtr();
2541 EVT VT
= LD
->getValueType(0), MemVT
= LD
->getMemoryVT();
2542 EVT BasePtrVT
= Ptr
.getValueType();
2544 SDVTList VTList
= DAG
.getVTList(VT
, MVT::Other
);
2547 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2548 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2550 SDValue Ops
[] = { Chain
, Ptr
, Src
};
2551 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2552 LD
->getMemOperand());
2555 // Expand an unaligned 32 or 64-bit integer load node.
2556 SDValue
MipsTargetLowering::lowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
2557 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2558 EVT MemVT
= LD
->getMemoryVT();
2560 if (Subtarget
.systemSupportsUnalignedAccess())
2563 // Return if load is aligned or if MemVT is neither i32 nor i64.
2564 if ((LD
->getAlignment() >= MemVT
.getSizeInBits() / 8) ||
2565 ((MemVT
!= MVT::i32
) && (MemVT
!= MVT::i64
)))
2568 bool IsLittle
= Subtarget
.isLittle();
2569 EVT VT
= Op
.getValueType();
2570 ISD::LoadExtType ExtType
= LD
->getExtensionType();
2571 SDValue Chain
= LD
->getChain(), Undef
= DAG
.getUNDEF(VT
);
2573 assert((VT
== MVT::i32
) || (VT
== MVT::i64
));
2576 // (set dst, (i64 (load baseptr)))
2578 // (set tmp, (ldl (add baseptr, 7), undef))
2579 // (set dst, (ldr baseptr, tmp))
2580 if ((VT
== MVT::i64
) && (ExtType
== ISD::NON_EXTLOAD
)) {
2581 SDValue LDL
= createLoadLR(MipsISD::LDL
, DAG
, LD
, Chain
, Undef
,
2583 return createLoadLR(MipsISD::LDR
, DAG
, LD
, LDL
.getValue(1), LDL
,
2587 SDValue LWL
= createLoadLR(MipsISD::LWL
, DAG
, LD
, Chain
, Undef
,
2589 SDValue LWR
= createLoadLR(MipsISD::LWR
, DAG
, LD
, LWL
.getValue(1), LWL
,
2593 // (set dst, (i32 (load baseptr))) or
2594 // (set dst, (i64 (sextload baseptr))) or
2595 // (set dst, (i64 (extload baseptr)))
2597 // (set tmp, (lwl (add baseptr, 3), undef))
2598 // (set dst, (lwr baseptr, tmp))
2599 if ((VT
== MVT::i32
) || (ExtType
== ISD::SEXTLOAD
) ||
2600 (ExtType
== ISD::EXTLOAD
))
2603 assert((VT
== MVT::i64
) && (ExtType
== ISD::ZEXTLOAD
));
2606 // (set dst, (i64 (zextload baseptr)))
2608 // (set tmp0, (lwl (add baseptr, 3), undef))
2609 // (set tmp1, (lwr baseptr, tmp0))
2610 // (set tmp2, (shl tmp1, 32))
2611 // (set dst, (srl tmp2, 32))
2613 SDValue Const32
= DAG
.getConstant(32, DL
, MVT::i32
);
2614 SDValue SLL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, LWR
, Const32
);
2615 SDValue SRL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SLL
, Const32
);
2616 SDValue Ops
[] = { SRL
, LWR
.getValue(1) };
2617 return DAG
.getMergeValues(Ops
, DL
);
2620 static SDValue
createStoreLR(unsigned Opc
, SelectionDAG
&DAG
, StoreSDNode
*SD
,
2621 SDValue Chain
, unsigned Offset
) {
2622 SDValue Ptr
= SD
->getBasePtr(), Value
= SD
->getValue();
2623 EVT MemVT
= SD
->getMemoryVT(), BasePtrVT
= Ptr
.getValueType();
2625 SDVTList VTList
= DAG
.getVTList(MVT::Other
);
2628 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2629 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2631 SDValue Ops
[] = { Chain
, Value
, Ptr
};
2632 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2633 SD
->getMemOperand());
2636 // Expand an unaligned 32 or 64-bit integer store node.
2637 static SDValue
lowerUnalignedIntStore(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2639 SDValue Value
= SD
->getValue(), Chain
= SD
->getChain();
2640 EVT VT
= Value
.getValueType();
2643 // (store val, baseptr) or
2644 // (truncstore val, baseptr)
2646 // (swl val, (add baseptr, 3))
2647 // (swr val, baseptr)
2648 if ((VT
== MVT::i32
) || SD
->isTruncatingStore()) {
2649 SDValue SWL
= createStoreLR(MipsISD::SWL
, DAG
, SD
, Chain
,
2651 return createStoreLR(MipsISD::SWR
, DAG
, SD
, SWL
, IsLittle
? 0 : 3);
2654 assert(VT
== MVT::i64
);
2657 // (store val, baseptr)
2659 // (sdl val, (add baseptr, 7))
2660 // (sdr val, baseptr)
2661 SDValue SDL
= createStoreLR(MipsISD::SDL
, DAG
, SD
, Chain
, IsLittle
? 7 : 0);
2662 return createStoreLR(MipsISD::SDR
, DAG
, SD
, SDL
, IsLittle
? 0 : 7);
2665 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2666 static SDValue
lowerFP_TO_SINT_STORE(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2668 SDValue Val
= SD
->getValue();
2670 if (Val
.getOpcode() != ISD::FP_TO_SINT
||
2671 (Val
.getValueSizeInBits() > 32 && SingleFloat
))
2674 EVT FPTy
= EVT::getFloatingPointVT(Val
.getValueSizeInBits());
2675 SDValue Tr
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Val
), FPTy
,
2677 return DAG
.getStore(SD
->getChain(), SDLoc(SD
), Tr
, SD
->getBasePtr(),
2678 SD
->getPointerInfo(), SD
->getAlignment(),
2679 SD
->getMemOperand()->getFlags());
2682 SDValue
MipsTargetLowering::lowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
2683 StoreSDNode
*SD
= cast
<StoreSDNode
>(Op
);
2684 EVT MemVT
= SD
->getMemoryVT();
2686 // Lower unaligned integer stores.
2687 if (!Subtarget
.systemSupportsUnalignedAccess() &&
2688 (SD
->getAlignment() < MemVT
.getSizeInBits() / 8) &&
2689 ((MemVT
== MVT::i32
) || (MemVT
== MVT::i64
)))
2690 return lowerUnalignedIntStore(SD
, DAG
, Subtarget
.isLittle());
2692 return lowerFP_TO_SINT_STORE(SD
, DAG
, Subtarget
.isSingleFloat());
2695 SDValue
MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op
,
2696 SelectionDAG
&DAG
) const {
2698 // Return a fixed StackObject with offset 0 which points to the old stack
2700 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2701 EVT ValTy
= Op
->getValueType(0);
2702 int FI
= MFI
.CreateFixedObject(Op
.getValueSizeInBits() / 8, 0, false);
2703 return DAG
.getFrameIndex(FI
, ValTy
);
2706 SDValue
MipsTargetLowering::lowerFP_TO_SINT(SDValue Op
,
2707 SelectionDAG
&DAG
) const {
2708 if (Op
.getValueSizeInBits() > 32 && Subtarget
.isSingleFloat())
2711 EVT FPTy
= EVT::getFloatingPointVT(Op
.getValueSizeInBits());
2712 SDValue Trunc
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Op
), FPTy
,
2714 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), Op
.getValueType(), Trunc
);
2717 //===----------------------------------------------------------------------===//
2718 // Calling Convention Implementation
2719 //===----------------------------------------------------------------------===//
2721 //===----------------------------------------------------------------------===//
2722 // TODO: Implement a generic logic using tblgen that can support this.
2723 // Mips O32 ABI rules:
2725 // i32 - Passed in A0, A1, A2, A3 and stack
2726 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2727 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2728 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2729 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2730 // not used, it must be shadowed. If only A3 is available, shadow it and
2732 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2733 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2734 // with the remainder spilled to the stack.
2735 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2736 // spilling the remainder to the stack.
2738 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2739 //===----------------------------------------------------------------------===//
2741 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2742 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2743 CCState
&State
, ArrayRef
<MCPhysReg
> F64Regs
) {
2744 const MipsSubtarget
&Subtarget
= static_cast<const MipsSubtarget
&>(
2745 State
.getMachineFunction().getSubtarget());
2747 static const MCPhysReg IntRegs
[] = { Mips::A0
, Mips::A1
, Mips::A2
, Mips::A3
};
2749 const MipsCCState
* MipsState
= static_cast<MipsCCState
*>(&State
);
2751 static const MCPhysReg F32Regs
[] = { Mips::F12
, Mips::F14
};
2753 static const MCPhysReg FloatVectorIntRegs
[] = { Mips::A0
, Mips::A2
};
2755 // Do not process byval args here.
2756 if (ArgFlags
.isByVal())
2759 // Promote i8 and i16
2760 if (ArgFlags
.isInReg() && !Subtarget
.isLittle()) {
2761 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
|| LocVT
== MVT::i32
) {
2763 if (ArgFlags
.isSExt())
2764 LocInfo
= CCValAssign::SExtUpper
;
2765 else if (ArgFlags
.isZExt())
2766 LocInfo
= CCValAssign::ZExtUpper
;
2768 LocInfo
= CCValAssign::AExtUpper
;
2772 // Promote i8 and i16
2773 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
) {
2775 if (ArgFlags
.isSExt())
2776 LocInfo
= CCValAssign::SExt
;
2777 else if (ArgFlags
.isZExt())
2778 LocInfo
= CCValAssign::ZExt
;
2780 LocInfo
= CCValAssign::AExt
;
2785 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2786 // is true: function is vararg, argument is 3rd or higher, there is previous
2787 // argument which is not f32 or f64.
2788 bool AllocateFloatsInIntReg
= State
.isVarArg() || ValNo
> 1 ||
2789 State
.getFirstUnallocated(F32Regs
) != ValNo
;
2790 unsigned OrigAlign
= ArgFlags
.getOrigAlign();
2791 bool isI64
= (ValVT
== MVT::i32
&& OrigAlign
== 8);
2792 bool isVectorFloat
= MipsState
->WasOriginalArgVectorFloat(ValNo
);
2794 // The MIPS vector ABI for floats passes them in a pair of registers
2795 if (ValVT
== MVT::i32
&& isVectorFloat
) {
2796 // This is the start of an vector that was scalarized into an unknown number
2797 // of components. It doesn't matter how many there are. Allocate one of the
2798 // notional 8 byte aligned registers which map onto the argument stack, and
2799 // shadow the register lost to alignment requirements.
2800 if (ArgFlags
.isSplit()) {
2801 Reg
= State
.AllocateReg(FloatVectorIntRegs
);
2802 if (Reg
== Mips::A2
)
2803 State
.AllocateReg(Mips::A1
);
2805 State
.AllocateReg(Mips::A3
);
2807 // If we're an intermediate component of the split, we can just attempt to
2808 // allocate a register directly.
2809 Reg
= State
.AllocateReg(IntRegs
);
2811 } else if (ValVT
== MVT::i32
|| (ValVT
== MVT::f32
&& AllocateFloatsInIntReg
)) {
2812 Reg
= State
.AllocateReg(IntRegs
);
2813 // If this is the first part of an i64 arg,
2814 // the allocated register must be either A0 or A2.
2815 if (isI64
&& (Reg
== Mips::A1
|| Reg
== Mips::A3
))
2816 Reg
= State
.AllocateReg(IntRegs
);
2818 } else if (ValVT
== MVT::f64
&& AllocateFloatsInIntReg
) {
2819 // Allocate int register and shadow next int register. If first
2820 // available register is Mips::A1 or Mips::A3, shadow it too.
2821 Reg
= State
.AllocateReg(IntRegs
);
2822 if (Reg
== Mips::A1
|| Reg
== Mips::A3
)
2823 Reg
= State
.AllocateReg(IntRegs
);
2824 State
.AllocateReg(IntRegs
);
2826 } else if (ValVT
.isFloatingPoint() && !AllocateFloatsInIntReg
) {
2827 // we are guaranteed to find an available float register
2828 if (ValVT
== MVT::f32
) {
2829 Reg
= State
.AllocateReg(F32Regs
);
2830 // Shadow int register
2831 State
.AllocateReg(IntRegs
);
2833 Reg
= State
.AllocateReg(F64Regs
);
2834 // Shadow int registers
2835 unsigned Reg2
= State
.AllocateReg(IntRegs
);
2836 if (Reg2
== Mips::A1
|| Reg2
== Mips::A3
)
2837 State
.AllocateReg(IntRegs
);
2838 State
.AllocateReg(IntRegs
);
2841 llvm_unreachable("Cannot handle this ValVT.");
2844 unsigned Offset
= State
.AllocateStack(ValVT
.getStoreSize(), OrigAlign
);
2845 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
2847 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
2852 static bool CC_MipsO32_FP32(unsigned ValNo
, MVT ValVT
,
2853 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2854 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2855 static const MCPhysReg F64Regs
[] = { Mips::D6
, Mips::D7
};
2857 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2860 static bool CC_MipsO32_FP64(unsigned ValNo
, MVT ValVT
,
2861 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2862 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2863 static const MCPhysReg F64Regs
[] = { Mips::D12_64
, Mips::D14_64
};
2865 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2868 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2869 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2870 CCState
&State
) LLVM_ATTRIBUTE_UNUSED
;
2872 #include "MipsGenCallingConv.inc"
2874 CCAssignFn
*MipsTargetLowering::CCAssignFnForCall() const{
2878 CCAssignFn
*MipsTargetLowering::CCAssignFnForReturn() const{
2881 //===----------------------------------------------------------------------===//
2882 // Call Calling Convention Implementation
2883 //===----------------------------------------------------------------------===//
2885 // Return next O32 integer argument register.
2886 static unsigned getNextIntArgReg(unsigned Reg
) {
2887 assert((Reg
== Mips::A0
) || (Reg
== Mips::A2
));
2888 return (Reg
== Mips::A0
) ? Mips::A1
: Mips::A3
;
2891 SDValue
MipsTargetLowering::passArgOnStack(SDValue StackPtr
, unsigned Offset
,
2892 SDValue Chain
, SDValue Arg
,
2893 const SDLoc
&DL
, bool IsTailCall
,
2894 SelectionDAG
&DAG
) const {
2897 DAG
.getNode(ISD::ADD
, DL
, getPointerTy(DAG
.getDataLayout()), StackPtr
,
2898 DAG
.getIntPtrConstant(Offset
, DL
));
2899 return DAG
.getStore(Chain
, DL
, Arg
, PtrOff
, MachinePointerInfo());
2902 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2903 int FI
= MFI
.CreateFixedObject(Arg
.getValueSizeInBits() / 8, Offset
, false);
2904 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
2905 return DAG
.getStore(Chain
, DL
, Arg
, FIN
, MachinePointerInfo(),
2906 /* Alignment = */ 0, MachineMemOperand::MOVolatile
);
2909 void MipsTargetLowering::
2910 getOpndList(SmallVectorImpl
<SDValue
> &Ops
,
2911 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
2912 bool IsPICCall
, bool GlobalOrExternal
, bool InternalLinkage
,
2913 bool IsCallReloc
, CallLoweringInfo
&CLI
, SDValue Callee
,
2914 SDValue Chain
) const {
2915 // Insert node "GP copy globalreg" before call to function.
2917 // R_MIPS_CALL* operators (emitted when non-internal functions are called
2918 // in PIC mode) allow symbols to be resolved via lazy binding.
2919 // The lazy binding stub requires GP to point to the GOT.
2920 // Note that we don't need GP to point to the GOT for indirect calls
2921 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2922 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2923 // used for the function (that is, Mips linker doesn't generate lazy binding
2924 // stub for a function whose address is taken in the program).
2925 if (IsPICCall
&& !InternalLinkage
&& IsCallReloc
) {
2926 unsigned GPReg
= ABI
.IsN64() ? Mips::GP_64
: Mips::GP
;
2927 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2928 RegsToPass
.push_back(std::make_pair(GPReg
, getGlobalReg(CLI
.DAG
, Ty
)));
2931 // Build a sequence of copy-to-reg nodes chained together with token
2932 // chain and flag operands which copy the outgoing args into registers.
2933 // The InFlag in necessary since all emitted instructions must be
2937 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2938 Chain
= CLI
.DAG
.getCopyToReg(Chain
, CLI
.DL
, RegsToPass
[i
].first
,
2939 RegsToPass
[i
].second
, InFlag
);
2940 InFlag
= Chain
.getValue(1);
2943 // Add argument registers to the end of the list so that they are
2944 // known live into the call.
2945 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2946 Ops
.push_back(CLI
.DAG
.getRegister(RegsToPass
[i
].first
,
2947 RegsToPass
[i
].second
.getValueType()));
2949 // Add a register mask operand representing the call-preserved registers.
2950 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
2951 const uint32_t *Mask
=
2952 TRI
->getCallPreservedMask(CLI
.DAG
.getMachineFunction(), CLI
.CallConv
);
2953 assert(Mask
&& "Missing call preserved mask for calling convention");
2954 if (Subtarget
.inMips16HardFloat()) {
2955 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(CLI
.Callee
)) {
2956 StringRef Sym
= G
->getGlobal()->getName();
2957 Function
*F
= G
->getGlobal()->getParent()->getFunction(Sym
);
2958 if (F
&& F
->hasFnAttribute("__Mips16RetHelper")) {
2959 Mask
= MipsRegisterInfo::getMips16RetHelperMask();
2963 Ops
.push_back(CLI
.DAG
.getRegisterMask(Mask
));
2965 if (InFlag
.getNode())
2966 Ops
.push_back(InFlag
);
2969 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
2970 SDNode
*Node
) const {
2971 switch (MI
.getOpcode()) {
2975 case Mips::JALRPseudo
:
2977 case Mips::JALR64Pseudo
:
2978 case Mips::JALR16_MM
:
2979 case Mips::JALRC16_MMR6
:
2980 case Mips::TAILCALLREG
:
2981 case Mips::TAILCALLREG64
:
2982 case Mips::TAILCALLR6REG
:
2983 case Mips::TAILCALL64R6REG
:
2984 case Mips::TAILCALLREG_MM
:
2985 case Mips::TAILCALLREG_MMR6
: {
2986 if (!EmitJalrReloc
||
2987 Subtarget
.inMips16Mode() ||
2988 !isPositionIndependent() ||
2989 Node
->getNumOperands() < 1 ||
2990 Node
->getOperand(0).getNumOperands() < 2) {
2993 // We are after the callee address, set by LowerCall().
2994 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
2996 const SDValue TargetAddr
= Node
->getOperand(0).getOperand(1);
2998 if (const GlobalAddressSDNode
*G
=
2999 dyn_cast_or_null
<const GlobalAddressSDNode
>(TargetAddr
)) {
3000 Sym
= G
->getGlobal()->getName();
3002 else if (const ExternalSymbolSDNode
*ES
=
3003 dyn_cast_or_null
<const ExternalSymbolSDNode
>(TargetAddr
)) {
3004 Sym
= ES
->getSymbol();
3010 MachineFunction
*MF
= MI
.getParent()->getParent();
3011 MCSymbol
*S
= MF
->getContext().getOrCreateSymbol(Sym
);
3012 MI
.addOperand(MachineOperand::CreateMCSymbol(S
, MipsII::MO_JALR
));
3017 /// LowerCall - functions arguments are copied from virtual regs to
3018 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3020 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
3021 SmallVectorImpl
<SDValue
> &InVals
) const {
3022 SelectionDAG
&DAG
= CLI
.DAG
;
3024 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
3025 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
3026 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
3027 SDValue Chain
= CLI
.Chain
;
3028 SDValue Callee
= CLI
.Callee
;
3029 bool &IsTailCall
= CLI
.IsTailCall
;
3030 CallingConv::ID CallConv
= CLI
.CallConv
;
3031 bool IsVarArg
= CLI
.IsVarArg
;
3033 MachineFunction
&MF
= DAG
.getMachineFunction();
3034 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3035 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
3036 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
3037 bool IsPIC
= isPositionIndependent();
3039 // Analyze operands of the call, assigning locations to each operand.
3040 SmallVector
<CCValAssign
, 16> ArgLocs
;
3042 CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
, *DAG
.getContext(),
3043 MipsCCState::getSpecialCallingConvForCallee(Callee
.getNode(), Subtarget
));
3045 const ExternalSymbolSDNode
*ES
=
3046 dyn_cast_or_null
<const ExternalSymbolSDNode
>(Callee
.getNode());
3048 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3049 // is during the lowering of a call with a byval argument which produces
3050 // a call to memcpy. For the O32 case, this causes the caller to allocate
3051 // stack space for the reserved argument area for the callee, then recursively
3052 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3053 // ABIs mandate that the callee allocates the reserved argument area. We do
3054 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3056 // If the callee has a byval argument and memcpy is used, we are mandated
3057 // to already have produced a reserved argument area for the callee for O32.
3058 // Therefore, the reserved argument area can be reused for both calls.
3060 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3061 // present, as we have yet to hook that node onto the chain.
3063 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3064 // case. GCC does a similar trick, in that wherever possible, it calculates
3065 // the maximum out going argument area (including the reserved area), and
3066 // preallocates the stack space on entrance to the caller.
3068 // FIXME: We should do the same for efficiency and space.
3070 // Note: The check on the calling convention below must match
3071 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3072 bool MemcpyInByVal
= ES
&&
3073 StringRef(ES
->getSymbol()) == StringRef("memcpy") &&
3074 CallConv
!= CallingConv::Fast
&&
3075 Chain
.getOpcode() == ISD::CALLSEQ_START
;
3077 // Allocate the reserved argument area. It seems strange to do this from the
3078 // caller side but removing it breaks the frame size calculation.
3079 unsigned ReservedArgArea
=
3080 MemcpyInByVal
? 0 : ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
);
3081 CCInfo
.AllocateStack(ReservedArgArea
, 1);
3083 CCInfo
.AnalyzeCallOperands(Outs
, CC_Mips
, CLI
.getArgs(),
3084 ES
? ES
->getSymbol() : nullptr);
3086 // Get a count of how many bytes are to be pushed on the stack.
3087 unsigned NextStackOffset
= CCInfo
.getNextStackOffset();
3089 // Check if it's really possible to do a tail call. Restrict it to functions
3090 // that are part of this compilation unit.
3091 bool InternalLinkage
= false;
3093 IsTailCall
= isEligibleForTailCallOptimization(
3094 CCInfo
, NextStackOffset
, *MF
.getInfo
<MipsFunctionInfo
>());
3095 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3096 InternalLinkage
= G
->getGlobal()->hasInternalLinkage();
3097 IsTailCall
&= (InternalLinkage
|| G
->getGlobal()->hasLocalLinkage() ||
3098 G
->getGlobal()->hasPrivateLinkage() ||
3099 G
->getGlobal()->hasHiddenVisibility() ||
3100 G
->getGlobal()->hasProtectedVisibility());
3103 if (!IsTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
3104 report_fatal_error("failed to perform tail call elimination on a call "
3105 "site marked musttail");
3110 // Chain is the output chain of the last Load/Store or CopyToReg node.
3111 // ByValChain is the output chain of the last Memcpy node created for copying
3112 // byval arguments to the stack.
3113 unsigned StackAlignment
= TFL
->getStackAlignment();
3114 NextStackOffset
= alignTo(NextStackOffset
, StackAlignment
);
3115 SDValue NextStackOffsetVal
= DAG
.getIntPtrConstant(NextStackOffset
, DL
, true);
3117 if (!(IsTailCall
|| MemcpyInByVal
))
3118 Chain
= DAG
.getCALLSEQ_START(Chain
, NextStackOffset
, 0, DL
);
3121 DAG
.getCopyFromReg(Chain
, DL
, ABI
.IsN64() ? Mips::SP_64
: Mips::SP
,
3122 getPointerTy(DAG
.getDataLayout()));
3124 std::deque
<std::pair
<unsigned, SDValue
>> RegsToPass
;
3125 SmallVector
<SDValue
, 8> MemOpChains
;
3127 CCInfo
.rewindByValRegsInfo();
3129 // Walk the register/memloc assignments, inserting copies/loads.
3130 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3131 SDValue Arg
= OutVals
[i
];
3132 CCValAssign
&VA
= ArgLocs
[i
];
3133 MVT ValVT
= VA
.getValVT(), LocVT
= VA
.getLocVT();
3134 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
3135 bool UseUpperBits
= false;
3138 if (Flags
.isByVal()) {
3139 unsigned FirstByValReg
, LastByValReg
;
3140 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3141 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3143 assert(Flags
.getByValSize() &&
3144 "ByVal args of size 0 should have been ignored by front-end.");
3145 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3146 assert(!IsTailCall
&&
3147 "Do not tail-call optimize if there is a byval argument.");
3148 passByValArg(Chain
, DL
, RegsToPass
, MemOpChains
, StackPtr
, MFI
, DAG
, Arg
,
3149 FirstByValReg
, LastByValReg
, Flags
, Subtarget
.isLittle(),
3151 CCInfo
.nextInRegsParam();
3155 // Promote the value if needed.
3156 switch (VA
.getLocInfo()) {
3158 llvm_unreachable("Unknown loc info!");
3159 case CCValAssign::Full
:
3160 if (VA
.isRegLoc()) {
3161 if ((ValVT
== MVT::f32
&& LocVT
== MVT::i32
) ||
3162 (ValVT
== MVT::f64
&& LocVT
== MVT::i64
) ||
3163 (ValVT
== MVT::i64
&& LocVT
== MVT::f64
))
3164 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3165 else if (ValVT
== MVT::f64
&& LocVT
== MVT::i32
) {
3166 SDValue Lo
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3167 Arg
, DAG
.getConstant(0, DL
, MVT::i32
));
3168 SDValue Hi
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3169 Arg
, DAG
.getConstant(1, DL
, MVT::i32
));
3170 if (!Subtarget
.isLittle())
3172 Register LocRegLo
= VA
.getLocReg();
3173 unsigned LocRegHigh
= getNextIntArgReg(LocRegLo
);
3174 RegsToPass
.push_back(std::make_pair(LocRegLo
, Lo
));
3175 RegsToPass
.push_back(std::make_pair(LocRegHigh
, Hi
));
3180 case CCValAssign::BCvt
:
3181 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3183 case CCValAssign::SExtUpper
:
3184 UseUpperBits
= true;
3186 case CCValAssign::SExt
:
3187 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, LocVT
, Arg
);
3189 case CCValAssign::ZExtUpper
:
3190 UseUpperBits
= true;
3192 case CCValAssign::ZExt
:
3193 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LocVT
, Arg
);
3195 case CCValAssign::AExtUpper
:
3196 UseUpperBits
= true;
3198 case CCValAssign::AExt
:
3199 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, LocVT
, Arg
);
3204 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3205 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3207 ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
3208 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3211 // Arguments that can be passed on register must be kept at
3212 // RegsToPass vector
3213 if (VA
.isRegLoc()) {
3214 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
3218 // Register can't get to this point...
3219 assert(VA
.isMemLoc());
3221 // emit ISD::STORE whichs stores the
3222 // parameter value to a stack Location
3223 MemOpChains
.push_back(passArgOnStack(StackPtr
, VA
.getLocMemOffset(),
3224 Chain
, Arg
, DL
, IsTailCall
, DAG
));
3227 // Transform all store nodes into one single node because all store
3228 // nodes are independent of each other.
3229 if (!MemOpChains
.empty())
3230 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
3232 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3233 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3234 // node so that legalize doesn't hack it.
3236 EVT Ty
= Callee
.getValueType();
3237 bool GlobalOrExternal
= false, IsCallReloc
= false;
3239 // The long-calls feature is ignored in case of PIC.
3240 // While we do not support -mshared / -mno-shared properly,
3241 // ignore long-calls in case of -mabicalls too.
3242 if (!Subtarget
.isABICalls() && !IsPIC
) {
3243 // If the function should be called using "long call",
3244 // get its address into a register to prevent using
3245 // of the `jal` instruction for the direct call.
3246 if (auto *N
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3247 if (Subtarget
.useLongCalls())
3248 Callee
= Subtarget
.hasSym32()
3249 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3250 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3251 } else if (auto *N
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3252 bool UseLongCalls
= Subtarget
.useLongCalls();
3253 // If the function has long-call/far/near attribute
3254 // it overrides command line switch pased to the backend.
3255 if (auto *F
= dyn_cast
<Function
>(N
->getGlobal())) {
3256 if (F
->hasFnAttribute("long-call"))
3257 UseLongCalls
= true;
3258 else if (F
->hasFnAttribute("short-call"))
3259 UseLongCalls
= false;
3262 Callee
= Subtarget
.hasSym32()
3263 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3264 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3268 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3270 const GlobalValue
*Val
= G
->getGlobal();
3271 InternalLinkage
= Val
->hasInternalLinkage();
3273 if (InternalLinkage
)
3274 Callee
= getAddrLocal(G
, DL
, Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
3275 else if (LargeGOT
) {
3276 Callee
= getAddrGlobalLargeGOT(G
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3277 MipsII::MO_CALL_LO16
, Chain
,
3278 FuncInfo
->callPtrInfo(Val
));
3281 Callee
= getAddrGlobal(G
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3282 FuncInfo
->callPtrInfo(Val
));
3286 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), DL
,
3287 getPointerTy(DAG
.getDataLayout()), 0,
3288 MipsII::MO_NO_FLAG
);
3289 GlobalOrExternal
= true;
3291 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3292 const char *Sym
= S
->getSymbol();
3294 if (!IsPIC
) // static
3295 Callee
= DAG
.getTargetExternalSymbol(
3296 Sym
, getPointerTy(DAG
.getDataLayout()), MipsII::MO_NO_FLAG
);
3297 else if (LargeGOT
) {
3298 Callee
= getAddrGlobalLargeGOT(S
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3299 MipsII::MO_CALL_LO16
, Chain
,
3300 FuncInfo
->callPtrInfo(Sym
));
3303 Callee
= getAddrGlobal(S
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3304 FuncInfo
->callPtrInfo(Sym
));
3308 GlobalOrExternal
= true;
3311 SmallVector
<SDValue
, 8> Ops(1, Chain
);
3312 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
3314 getOpndList(Ops
, RegsToPass
, IsPIC
, GlobalOrExternal
, InternalLinkage
,
3315 IsCallReloc
, CLI
, Callee
, Chain
);
3318 MF
.getFrameInfo().setHasTailCall();
3319 return DAG
.getNode(MipsISD::TailCall
, DL
, MVT::Other
, Ops
);
3322 Chain
= DAG
.getNode(MipsISD::JmpLink
, DL
, NodeTys
, Ops
);
3323 SDValue InFlag
= Chain
.getValue(1);
3325 // Create the CALLSEQ_END node in the case of where it is not a call to
3327 if (!(MemcpyInByVal
)) {
3328 Chain
= DAG
.getCALLSEQ_END(Chain
, NextStackOffsetVal
,
3329 DAG
.getIntPtrConstant(0, DL
, true), InFlag
, DL
);
3330 InFlag
= Chain
.getValue(1);
3333 // Handle result values, copying them out of physregs into vregs that we
3335 return LowerCallResult(Chain
, InFlag
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
3339 /// LowerCallResult - Lower the result values of a call into the
3340 /// appropriate copies out of appropriate physical registers.
3341 SDValue
MipsTargetLowering::LowerCallResult(
3342 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool IsVarArg
,
3343 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3344 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
3345 TargetLowering::CallLoweringInfo
&CLI
) const {
3346 // Assign locations to each value returned by this call.
3347 SmallVector
<CCValAssign
, 16> RVLocs
;
3348 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), RVLocs
,
3351 const ExternalSymbolSDNode
*ES
=
3352 dyn_cast_or_null
<const ExternalSymbolSDNode
>(CLI
.Callee
.getNode());
3353 CCInfo
.AnalyzeCallResult(Ins
, RetCC_Mips
, CLI
.RetTy
,
3354 ES
? ES
->getSymbol() : nullptr);
3356 // Copy all of the result registers out of their specified physreg.
3357 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3358 CCValAssign
&VA
= RVLocs
[i
];
3359 assert(VA
.isRegLoc() && "Can only return in registers!");
3361 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, RVLocs
[i
].getLocReg(),
3362 RVLocs
[i
].getLocVT(), InFlag
);
3363 Chain
= Val
.getValue(1);
3364 InFlag
= Val
.getValue(2);
3366 if (VA
.isUpperBitsInLoc()) {
3367 unsigned ValSizeInBits
= Ins
[i
].ArgVT
.getSizeInBits();
3368 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3370 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3372 Shift
, DL
, VA
.getLocVT(), Val
,
3373 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3376 switch (VA
.getLocInfo()) {
3378 llvm_unreachable("Unknown loc info!");
3379 case CCValAssign::Full
:
3381 case CCValAssign::BCvt
:
3382 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3384 case CCValAssign::AExt
:
3385 case CCValAssign::AExtUpper
:
3386 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3388 case CCValAssign::ZExt
:
3389 case CCValAssign::ZExtUpper
:
3390 Val
= DAG
.getNode(ISD::AssertZext
, DL
, VA
.getLocVT(), Val
,
3391 DAG
.getValueType(VA
.getValVT()));
3392 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3394 case CCValAssign::SExt
:
3395 case CCValAssign::SExtUpper
:
3396 Val
= DAG
.getNode(ISD::AssertSext
, DL
, VA
.getLocVT(), Val
,
3397 DAG
.getValueType(VA
.getValVT()));
3398 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3402 InVals
.push_back(Val
);
3408 static SDValue
UnpackFromArgumentSlot(SDValue Val
, const CCValAssign
&VA
,
3409 EVT ArgVT
, const SDLoc
&DL
,
3410 SelectionDAG
&DAG
) {
3411 MVT LocVT
= VA
.getLocVT();
3412 EVT ValVT
= VA
.getValVT();
3414 // Shift into the upper bits if necessary.
3415 switch (VA
.getLocInfo()) {
3418 case CCValAssign::AExtUpper
:
3419 case CCValAssign::SExtUpper
:
3420 case CCValAssign::ZExtUpper
: {
3421 unsigned ValSizeInBits
= ArgVT
.getSizeInBits();
3422 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3424 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3426 Opcode
, DL
, VA
.getLocVT(), Val
,
3427 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3432 // If this is an value smaller than the argument slot size (32-bit for O32,
3433 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3434 // size. Extract the value and insert any appropriate assertions regarding
3435 // sign/zero extension.
3436 switch (VA
.getLocInfo()) {
3438 llvm_unreachable("Unknown loc info!");
3439 case CCValAssign::Full
:
3441 case CCValAssign::AExtUpper
:
3442 case CCValAssign::AExt
:
3443 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3445 case CCValAssign::SExtUpper
:
3446 case CCValAssign::SExt
:
3447 Val
= DAG
.getNode(ISD::AssertSext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3448 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3450 case CCValAssign::ZExtUpper
:
3451 case CCValAssign::ZExt
:
3452 Val
= DAG
.getNode(ISD::AssertZext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3453 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3455 case CCValAssign::BCvt
:
3456 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, Val
);
3463 //===----------------------------------------------------------------------===//
3464 // Formal Arguments Calling Convention Implementation
3465 //===----------------------------------------------------------------------===//
3466 /// LowerFormalArguments - transform physical registers into virtual registers
3467 /// and generate load operations for arguments places on the stack.
3468 SDValue
MipsTargetLowering::LowerFormalArguments(
3469 SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
3470 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3471 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3472 MachineFunction
&MF
= DAG
.getMachineFunction();
3473 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3474 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3476 MipsFI
->setVarArgsFrameIndex(0);
3478 // Used with vargs to acumulate store chains.
3479 std::vector
<SDValue
> OutChains
;
3481 // Assign locations to all of the incoming arguments.
3482 SmallVector
<CCValAssign
, 16> ArgLocs
;
3483 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3485 CCInfo
.AllocateStack(ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
), 1);
3486 const Function
&Func
= DAG
.getMachineFunction().getFunction();
3487 Function::const_arg_iterator FuncArg
= Func
.arg_begin();
3489 if (Func
.hasFnAttribute("interrupt") && !Func
.arg_empty())
3491 "Functions with the interrupt attribute cannot have arguments!");
3493 CCInfo
.AnalyzeFormalArguments(Ins
, CC_Mips_FixedArg
);
3494 MipsFI
->setFormalArgInfo(CCInfo
.getNextStackOffset(),
3495 CCInfo
.getInRegsParamsCount() > 0);
3497 unsigned CurArgIdx
= 0;
3498 CCInfo
.rewindByValRegsInfo();
3500 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3501 CCValAssign
&VA
= ArgLocs
[i
];
3502 if (Ins
[i
].isOrigArg()) {
3503 std::advance(FuncArg
, Ins
[i
].getOrigArgIndex() - CurArgIdx
);
3504 CurArgIdx
= Ins
[i
].getOrigArgIndex();
3506 EVT ValVT
= VA
.getValVT();
3507 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
3508 bool IsRegLoc
= VA
.isRegLoc();
3510 if (Flags
.isByVal()) {
3511 assert(Ins
[i
].isOrigArg() && "Byval arguments cannot be implicit");
3512 unsigned FirstByValReg
, LastByValReg
;
3513 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3514 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3516 assert(Flags
.getByValSize() &&
3517 "ByVal args of size 0 should have been ignored by front-end.");
3518 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3519 copyByValRegs(Chain
, DL
, OutChains
, DAG
, Flags
, InVals
, &*FuncArg
,
3520 FirstByValReg
, LastByValReg
, VA
, CCInfo
);
3521 CCInfo
.nextInRegsParam();
3525 // Arguments stored on registers
3527 MVT RegVT
= VA
.getLocVT();
3528 Register ArgReg
= VA
.getLocReg();
3529 const TargetRegisterClass
*RC
= getRegClassFor(RegVT
);
3531 // Transform the arguments stored on
3532 // physical registers into virtual ones
3533 unsigned Reg
= addLiveIn(DAG
.getMachineFunction(), ArgReg
, RC
);
3534 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3536 ArgValue
= UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[i
].ArgVT
, DL
, DAG
);
3538 // Handle floating point arguments passed in integer registers and
3539 // long double arguments passed in floating point registers.
3540 if ((RegVT
== MVT::i32
&& ValVT
== MVT::f32
) ||
3541 (RegVT
== MVT::i64
&& ValVT
== MVT::f64
) ||
3542 (RegVT
== MVT::f64
&& ValVT
== MVT::i64
))
3543 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, ArgValue
);
3544 else if (ABI
.IsO32() && RegVT
== MVT::i32
&&
3545 ValVT
== MVT::f64
) {
3546 unsigned Reg2
= addLiveIn(DAG
.getMachineFunction(),
3547 getNextIntArgReg(ArgReg
), RC
);
3548 SDValue ArgValue2
= DAG
.getCopyFromReg(Chain
, DL
, Reg2
, RegVT
);
3549 if (!Subtarget
.isLittle())
3550 std::swap(ArgValue
, ArgValue2
);
3551 ArgValue
= DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
,
3552 ArgValue
, ArgValue2
);
3555 InVals
.push_back(ArgValue
);
3556 } else { // VA.isRegLoc()
3557 MVT LocVT
= VA
.getLocVT();
3560 // We ought to be able to use LocVT directly but O32 sets it to i32
3561 // when allocating floating point values to integer registers.
3562 // This shouldn't influence how we load the value into registers unless
3563 // we are targeting softfloat.
3564 if (VA
.getValVT().isFloatingPoint() && !Subtarget
.useSoftFloat())
3565 LocVT
= VA
.getValVT();
3569 assert(VA
.isMemLoc());
3571 // The stack pointer offset is relative to the caller stack frame.
3572 int FI
= MFI
.CreateFixedObject(LocVT
.getSizeInBits() / 8,
3573 VA
.getLocMemOffset(), true);
3575 // Create load nodes to retrieve arguments from the stack
3576 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3577 SDValue ArgValue
= DAG
.getLoad(
3578 LocVT
, DL
, Chain
, FIN
,
3579 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3580 OutChains
.push_back(ArgValue
.getValue(1));
3582 ArgValue
= UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[i
].ArgVT
, DL
, DAG
);
3584 InVals
.push_back(ArgValue
);
3588 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3589 // The mips ABIs for returning structs by value requires that we copy
3590 // the sret argument into $v0 for the return. Save the argument into
3591 // a virtual register so that we can access it from the return points.
3592 if (Ins
[i
].Flags
.isSRet()) {
3593 unsigned Reg
= MipsFI
->getSRetReturnReg();
3595 Reg
= MF
.getRegInfo().createVirtualRegister(
3596 getRegClassFor(ABI
.IsN64() ? MVT::i64
: MVT::i32
));
3597 MipsFI
->setSRetReturnReg(Reg
);
3599 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[i
]);
3600 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3606 writeVarArgRegs(OutChains
, Chain
, DL
, DAG
, CCInfo
);
3608 // All stores are grouped in one node to allow the matching between
3609 // the size of Ins and InVals. This only happens when on varg functions
3610 if (!OutChains
.empty()) {
3611 OutChains
.push_back(Chain
);
3612 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, OutChains
);
3618 //===----------------------------------------------------------------------===//
3619 // Return Value Calling Convention Implementation
3620 //===----------------------------------------------------------------------===//
3623 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
3624 MachineFunction
&MF
, bool IsVarArg
,
3625 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3626 LLVMContext
&Context
) const {
3627 SmallVector
<CCValAssign
, 16> RVLocs
;
3628 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, Context
);
3629 return CCInfo
.CheckReturn(Outs
, RetCC_Mips
);
3633 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type
, bool IsSigned
) const {
3634 if ((ABI
.IsN32() || ABI
.IsN64()) && Type
== MVT::i32
)
3641 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
3643 SelectionDAG
&DAG
) const {
3644 MachineFunction
&MF
= DAG
.getMachineFunction();
3645 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3649 return DAG
.getNode(MipsISD::ERet
, DL
, MVT::Other
, RetOps
);
3653 MipsTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
3655 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3656 const SmallVectorImpl
<SDValue
> &OutVals
,
3657 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
3658 // CCValAssign - represent the assignment of
3659 // the return value to a location
3660 SmallVector
<CCValAssign
, 16> RVLocs
;
3661 MachineFunction
&MF
= DAG
.getMachineFunction();
3663 // CCState - Info about the registers and stack slot.
3664 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, *DAG
.getContext());
3666 // Analyze return values.
3667 CCInfo
.AnalyzeReturn(Outs
, RetCC_Mips
);
3670 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
3672 // Copy the result values into the output registers.
3673 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3674 SDValue Val
= OutVals
[i
];
3675 CCValAssign
&VA
= RVLocs
[i
];
3676 assert(VA
.isRegLoc() && "Can only return in registers!");
3677 bool UseUpperBits
= false;
3679 switch (VA
.getLocInfo()) {
3681 llvm_unreachable("Unknown loc info!");
3682 case CCValAssign::Full
:
3684 case CCValAssign::BCvt
:
3685 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Val
);
3687 case CCValAssign::AExtUpper
:
3688 UseUpperBits
= true;
3690 case CCValAssign::AExt
:
3691 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Val
);
3693 case CCValAssign::ZExtUpper
:
3694 UseUpperBits
= true;
3696 case CCValAssign::ZExt
:
3697 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Val
);
3699 case CCValAssign::SExtUpper
:
3700 UseUpperBits
= true;
3702 case CCValAssign::SExt
:
3703 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Val
);
3708 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3709 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3711 ISD::SHL
, DL
, VA
.getLocVT(), Val
,
3712 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3715 Chain
= DAG
.getCopyToReg(Chain
, DL
, VA
.getLocReg(), Val
, Flag
);
3717 // Guarantee that all emitted copies are stuck together with flags.
3718 Flag
= Chain
.getValue(1);
3719 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3722 // The mips ABIs for returning structs by value requires that we copy
3723 // the sret argument into $v0 for the return. We saved the argument into
3724 // a virtual register in the entry block, so now we copy the value out
3726 if (MF
.getFunction().hasStructRetAttr()) {
3727 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3728 unsigned Reg
= MipsFI
->getSRetReturnReg();
3731 llvm_unreachable("sret virtual register not created in the entry block");
3733 DAG
.getCopyFromReg(Chain
, DL
, Reg
, getPointerTy(DAG
.getDataLayout()));
3734 unsigned V0
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
3736 Chain
= DAG
.getCopyToReg(Chain
, DL
, V0
, Val
, Flag
);
3737 Flag
= Chain
.getValue(1);
3738 RetOps
.push_back(DAG
.getRegister(V0
, getPointerTy(DAG
.getDataLayout())));
3741 RetOps
[0] = Chain
; // Update chain.
3743 // Add the flag if we have it.
3745 RetOps
.push_back(Flag
);
3747 // ISRs must use "eret".
3748 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3749 return LowerInterruptReturn(RetOps
, DL
, DAG
);
3751 // Standard return on Mips is a "jr $ra"
3752 return DAG
.getNode(MipsISD::Ret
, DL
, MVT::Other
, RetOps
);
3755 //===----------------------------------------------------------------------===//
3756 // Mips Inline Assembly Support
3757 //===----------------------------------------------------------------------===//
3759 /// getConstraintType - Given a constraint letter, return the type of
3760 /// constraint it is for this target.
3761 MipsTargetLowering::ConstraintType
3762 MipsTargetLowering::getConstraintType(StringRef Constraint
) const {
3763 // Mips specific constraints
3764 // GCC config/mips/constraints.md
3766 // 'd' : An address register. Equivalent to r
3767 // unless generating MIPS16 code.
3768 // 'y' : Equivalent to r; retained for
3769 // backwards compatibility.
3770 // 'c' : A register suitable for use in an indirect
3771 // jump. This will always be $25 for -mabicalls.
3772 // 'l' : The lo register. 1 word storage.
3773 // 'x' : The hilo register pair. Double word storage.
3774 if (Constraint
.size() == 1) {
3775 switch (Constraint
[0]) {
3783 return C_RegisterClass
;
3789 if (Constraint
== "ZC")
3792 return TargetLowering::getConstraintType(Constraint
);
3795 /// Examine constraint type and operand type and determine a weight value.
3796 /// This object must already have been set up with the operand type
3797 /// and the current alternative constraint selected.
3798 TargetLowering::ConstraintWeight
3799 MipsTargetLowering::getSingleConstraintMatchWeight(
3800 AsmOperandInfo
&info
, const char *constraint
) const {
3801 ConstraintWeight weight
= CW_Invalid
;
3802 Value
*CallOperandVal
= info
.CallOperandVal
;
3803 // If we don't have a value, we can't do a match,
3804 // but allow it at the lowest weight.
3805 if (!CallOperandVal
)
3807 Type
*type
= CallOperandVal
->getType();
3808 // Look at the constraint type.
3809 switch (*constraint
) {
3811 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
3815 if (type
->isIntegerTy())
3816 weight
= CW_Register
;
3818 case 'f': // FPU or MSA register
3819 if (Subtarget
.hasMSA() && type
->isVectorTy() &&
3820 cast
<VectorType
>(type
)->getBitWidth() == 128)
3821 weight
= CW_Register
;
3822 else if (type
->isFloatTy())
3823 weight
= CW_Register
;
3825 case 'c': // $25 for indirect jumps
3826 case 'l': // lo register
3827 case 'x': // hilo register pair
3828 if (type
->isIntegerTy())
3829 weight
= CW_SpecificReg
;
3831 case 'I': // signed 16 bit immediate
3832 case 'J': // integer zero
3833 case 'K': // unsigned 16 bit immediate
3834 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3835 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3836 case 'O': // signed 15 bit immediate (+- 16383)
3837 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3838 if (isa
<ConstantInt
>(CallOperandVal
))
3839 weight
= CW_Constant
;
3848 /// This is a helper function to parse a physical register string and split it
3849 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3850 /// that is returned indicates whether parsing was successful. The second flag
3851 /// is true if the numeric part exists.
3852 static std::pair
<bool, bool> parsePhysicalReg(StringRef C
, StringRef
&Prefix
,
3853 unsigned long long &Reg
) {
3854 if (C
.front() != '{' || C
.back() != '}')
3855 return std::make_pair(false, false);
3857 // Search for the first numeric character.
3858 StringRef::const_iterator I
, B
= C
.begin() + 1, E
= C
.end() - 1;
3859 I
= std::find_if(B
, E
, isdigit
);
3861 Prefix
= StringRef(B
, I
- B
);
3863 // The second flag is set to false if no numeric characters were found.
3865 return std::make_pair(true, false);
3867 // Parse the numeric characters.
3868 return std::make_pair(!getAsUnsignedInteger(StringRef(I
, E
- I
), 10, Reg
),
3872 EVT
MipsTargetLowering::getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
3873 ISD::NodeType
) const {
3874 bool Cond
= !Subtarget
.isABI_O32() && VT
.getSizeInBits() == 32;
3875 EVT MinVT
= getRegisterType(Context
, Cond
? MVT::i64
: MVT::i32
);
3876 return VT
.bitsLT(MinVT
) ? MinVT
: VT
;
3879 std::pair
<unsigned, const TargetRegisterClass
*> MipsTargetLowering::
3880 parseRegForInlineAsmConstraint(StringRef C
, MVT VT
) const {
3881 const TargetRegisterInfo
*TRI
=
3882 Subtarget
.getRegisterInfo();
3883 const TargetRegisterClass
*RC
;
3885 unsigned long long Reg
;
3887 std::pair
<bool, bool> R
= parsePhysicalReg(C
, Prefix
, Reg
);
3890 return std::make_pair(0U, nullptr);
3892 if ((Prefix
== "hi" || Prefix
== "lo")) { // Parse hi/lo.
3893 // No numeric characters follow "hi" or "lo".
3895 return std::make_pair(0U, nullptr);
3897 RC
= TRI
->getRegClass(Prefix
== "hi" ?
3898 Mips::HI32RegClassID
: Mips::LO32RegClassID
);
3899 return std::make_pair(*(RC
->begin()), RC
);
3900 } else if (Prefix
.startswith("$msa")) {
3901 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3903 // No numeric characters follow the name.
3905 return std::make_pair(0U, nullptr);
3907 Reg
= StringSwitch
<unsigned long long>(Prefix
)
3908 .Case("$msair", Mips::MSAIR
)
3909 .Case("$msacsr", Mips::MSACSR
)
3910 .Case("$msaaccess", Mips::MSAAccess
)
3911 .Case("$msasave", Mips::MSASave
)
3912 .Case("$msamodify", Mips::MSAModify
)
3913 .Case("$msarequest", Mips::MSARequest
)
3914 .Case("$msamap", Mips::MSAMap
)
3915 .Case("$msaunmap", Mips::MSAUnmap
)
3919 return std::make_pair(0U, nullptr);
3921 RC
= TRI
->getRegClass(Mips::MSACtrlRegClassID
);
3922 return std::make_pair(Reg
, RC
);
3926 return std::make_pair(0U, nullptr);
3928 if (Prefix
== "$f") { // Parse $f0-$f31.
3929 // If the size of FP registers is 64-bit or Reg is an even number, select
3930 // the 64-bit register class. Otherwise, select the 32-bit register class.
3931 if (VT
== MVT::Other
)
3932 VT
= (Subtarget
.isFP64bit() || !(Reg
% 2)) ? MVT::f64
: MVT::f32
;
3934 RC
= getRegClassFor(VT
);
3936 if (RC
== &Mips::AFGR64RegClass
) {
3937 assert(Reg
% 2 == 0);
3940 } else if (Prefix
== "$fcc") // Parse $fcc0-$fcc7.
3941 RC
= TRI
->getRegClass(Mips::FCCRegClassID
);
3942 else if (Prefix
== "$w") { // Parse $w0-$w31.
3943 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::v16i8
: VT
);
3944 } else { // Parse $0-$31.
3945 assert(Prefix
== "$");
3946 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::i32
: VT
);
3949 assert(Reg
< RC
->getNumRegs());
3950 return std::make_pair(*(RC
->begin() + Reg
), RC
);
3953 /// Given a register class constraint, like 'r', if this corresponds directly
3954 /// to an LLVM register class, return a register of 0 and the register class
3956 std::pair
<unsigned, const TargetRegisterClass
*>
3957 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
3958 StringRef Constraint
,
3960 if (Constraint
.size() == 1) {
3961 switch (Constraint
[0]) {
3962 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3963 case 'y': // Same as 'r'. Exists for compatibility.
3965 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
) {
3966 if (Subtarget
.inMips16Mode())
3967 return std::make_pair(0U, &Mips::CPU16RegsRegClass
);
3968 return std::make_pair(0U, &Mips::GPR32RegClass
);
3970 if (VT
== MVT::i64
&& !Subtarget
.isGP64bit())
3971 return std::make_pair(0U, &Mips::GPR32RegClass
);
3972 if (VT
== MVT::i64
&& Subtarget
.isGP64bit())
3973 return std::make_pair(0U, &Mips::GPR64RegClass
);
3974 // This will generate an error message
3975 return std::make_pair(0U, nullptr);
3976 case 'f': // FPU or MSA register
3977 if (VT
== MVT::v16i8
)
3978 return std::make_pair(0U, &Mips::MSA128BRegClass
);
3979 else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
)
3980 return std::make_pair(0U, &Mips::MSA128HRegClass
);
3981 else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
)
3982 return std::make_pair(0U, &Mips::MSA128WRegClass
);
3983 else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
)
3984 return std::make_pair(0U, &Mips::MSA128DRegClass
);
3985 else if (VT
== MVT::f32
)
3986 return std::make_pair(0U, &Mips::FGR32RegClass
);
3987 else if ((VT
== MVT::f64
) && (!Subtarget
.isSingleFloat())) {
3988 if (Subtarget
.isFP64bit())
3989 return std::make_pair(0U, &Mips::FGR64RegClass
);
3990 return std::make_pair(0U, &Mips::AFGR64RegClass
);
3993 case 'c': // register suitable for indirect jump
3995 return std::make_pair((unsigned)Mips::T9
, &Mips::GPR32RegClass
);
3997 return std::make_pair((unsigned)Mips::T9_64
, &Mips::GPR64RegClass
);
3998 // This will generate an error message
3999 return std::make_pair(0U, nullptr);
4000 case 'l': // use the `lo` register to store values
4001 // that are no bigger than a word
4002 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
)
4003 return std::make_pair((unsigned)Mips::LO0
, &Mips::LO32RegClass
);
4004 return std::make_pair((unsigned)Mips::LO0_64
, &Mips::LO64RegClass
);
4005 case 'x': // use the concatenated `hi` and `lo` registers
4006 // to store doubleword values
4007 // Fixme: Not triggering the use of both hi and low
4008 // This will generate an error message
4009 return std::make_pair(0U, nullptr);
4013 std::pair
<unsigned, const TargetRegisterClass
*> R
;
4014 R
= parseRegForInlineAsmConstraint(Constraint
, VT
);
4019 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
4022 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4023 /// vector. If it is invalid, don't add anything to Ops.
4024 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
4025 std::string
&Constraint
,
4026 std::vector
<SDValue
>&Ops
,
4027 SelectionDAG
&DAG
) const {
4031 // Only support length 1 constraints for now.
4032 if (Constraint
.length() > 1) return;
4034 char ConstraintLetter
= Constraint
[0];
4035 switch (ConstraintLetter
) {
4036 default: break; // This will fall through to the generic implementation
4037 case 'I': // Signed 16 bit constant
4038 // If this fails, the parent routine will give an error
4039 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4040 EVT Type
= Op
.getValueType();
4041 int64_t Val
= C
->getSExtValue();
4042 if (isInt
<16>(Val
)) {
4043 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4048 case 'J': // integer zero
4049 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4050 EVT Type
= Op
.getValueType();
4051 int64_t Val
= C
->getZExtValue();
4053 Result
= DAG
.getTargetConstant(0, DL
, Type
);
4058 case 'K': // unsigned 16 bit immediate
4059 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4060 EVT Type
= Op
.getValueType();
4061 uint64_t Val
= (uint64_t)C
->getZExtValue();
4062 if (isUInt
<16>(Val
)) {
4063 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4068 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4069 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4070 EVT Type
= Op
.getValueType();
4071 int64_t Val
= C
->getSExtValue();
4072 if ((isInt
<32>(Val
)) && ((Val
& 0xffff) == 0)){
4073 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4078 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4079 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4080 EVT Type
= Op
.getValueType();
4081 int64_t Val
= C
->getSExtValue();
4082 if ((Val
>= -65535) && (Val
<= -1)) {
4083 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4088 case 'O': // signed 15 bit immediate
4089 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4090 EVT Type
= Op
.getValueType();
4091 int64_t Val
= C
->getSExtValue();
4092 if ((isInt
<15>(Val
))) {
4093 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4098 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4099 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4100 EVT Type
= Op
.getValueType();
4101 int64_t Val
= C
->getSExtValue();
4102 if ((Val
<= 65535) && (Val
>= 1)) {
4103 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4110 if (Result
.getNode()) {
4111 Ops
.push_back(Result
);
4115 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
4118 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
4119 const AddrMode
&AM
, Type
*Ty
,
4120 unsigned AS
, Instruction
*I
) const {
4121 // No global is ever allowed as a base.
4126 case 0: // "r+i" or just "i", depending on HasBaseReg.
4129 if (!AM
.HasBaseReg
) // allow "r+i".
4131 return false; // disallow "r+r" or "r+r+i".
4140 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
4141 // The Mips target isn't yet aware of offsets.
4145 EVT
MipsTargetLowering::getOptimalMemOpType(
4146 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
4147 bool ZeroMemset
, bool MemcpyStrSrc
,
4148 const AttributeList
&FuncAttributes
) const {
4149 if (Subtarget
.hasMips64())
4155 bool MipsTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
4156 bool ForCodeSize
) const {
4157 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
4159 if (Imm
.isNegZero())
4161 return Imm
.isZero();
4164 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4166 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4167 if (ABI
.IsN64() && isPositionIndependent())
4168 return MachineJumpTableInfo::EK_GPRel64BlockAddress
;
4170 return TargetLowering::getJumpTableEncoding();
4173 bool MipsTargetLowering::useSoftFloat() const {
4174 return Subtarget
.useSoftFloat();
4177 void MipsTargetLowering::copyByValRegs(
4178 SDValue Chain
, const SDLoc
&DL
, std::vector
<SDValue
> &OutChains
,
4179 SelectionDAG
&DAG
, const ISD::ArgFlagsTy
&Flags
,
4180 SmallVectorImpl
<SDValue
> &InVals
, const Argument
*FuncArg
,
4181 unsigned FirstReg
, unsigned LastReg
, const CCValAssign
&VA
,
4182 MipsCCState
&State
) const {
4183 MachineFunction
&MF
= DAG
.getMachineFunction();
4184 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4185 unsigned GPRSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4186 unsigned NumRegs
= LastReg
- FirstReg
;
4187 unsigned RegAreaSize
= NumRegs
* GPRSizeInBytes
;
4188 unsigned FrameObjSize
= std::max(Flags
.getByValSize(), RegAreaSize
);
4190 ArrayRef
<MCPhysReg
> ByValArgRegs
= ABI
.GetByValArgRegs();
4194 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4195 (int)((ByValArgRegs
.size() - FirstReg
) * GPRSizeInBytes
);
4197 FrameObjOffset
= VA
.getLocMemOffset();
4199 // Create frame object.
4200 EVT PtrTy
= getPointerTy(DAG
.getDataLayout());
4201 // Make the fixed object stored to mutable so that the load instructions
4202 // referencing it have their memory dependencies added.
4203 // Set the frame object as isAliased which clears the underlying objects
4204 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4205 // stores as dependencies for loads referencing this fixed object.
4206 int FI
= MFI
.CreateFixedObject(FrameObjSize
, FrameObjOffset
, false, true);
4207 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4208 InVals
.push_back(FIN
);
4213 // Copy arg registers.
4214 MVT RegTy
= MVT::getIntegerVT(GPRSizeInBytes
* 8);
4215 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4217 for (unsigned I
= 0; I
< NumRegs
; ++I
) {
4218 unsigned ArgReg
= ByValArgRegs
[FirstReg
+ I
];
4219 unsigned VReg
= addLiveIn(MF
, ArgReg
, RC
);
4220 unsigned Offset
= I
* GPRSizeInBytes
;
4221 SDValue StorePtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, FIN
,
4222 DAG
.getConstant(Offset
, DL
, PtrTy
));
4223 SDValue Store
= DAG
.getStore(Chain
, DL
, DAG
.getRegister(VReg
, RegTy
),
4224 StorePtr
, MachinePointerInfo(FuncArg
, Offset
));
4225 OutChains
.push_back(Store
);
4229 // Copy byVal arg to registers and stack.
4230 void MipsTargetLowering::passByValArg(
4231 SDValue Chain
, const SDLoc
&DL
,
4232 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
4233 SmallVectorImpl
<SDValue
> &MemOpChains
, SDValue StackPtr
,
4234 MachineFrameInfo
&MFI
, SelectionDAG
&DAG
, SDValue Arg
, unsigned FirstReg
,
4235 unsigned LastReg
, const ISD::ArgFlagsTy
&Flags
, bool isLittle
,
4236 const CCValAssign
&VA
) const {
4237 unsigned ByValSizeInBytes
= Flags
.getByValSize();
4238 unsigned OffsetInBytes
= 0; // From beginning of struct
4239 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4240 unsigned Alignment
= std::min(Flags
.getByValAlign(), RegSizeInBytes
);
4241 EVT PtrTy
= getPointerTy(DAG
.getDataLayout()),
4242 RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4243 unsigned NumRegs
= LastReg
- FirstReg
;
4246 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetByValArgRegs();
4247 bool LeftoverBytes
= (NumRegs
* RegSizeInBytes
> ByValSizeInBytes
);
4250 // Copy words to registers.
4251 for (; I
< NumRegs
- LeftoverBytes
; ++I
, OffsetInBytes
+= RegSizeInBytes
) {
4252 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4253 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4254 SDValue LoadVal
= DAG
.getLoad(RegTy
, DL
, Chain
, LoadPtr
,
4255 MachinePointerInfo(), Alignment
);
4256 MemOpChains
.push_back(LoadVal
.getValue(1));
4257 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4258 RegsToPass
.push_back(std::make_pair(ArgReg
, LoadVal
));
4261 // Return if the struct has been fully copied.
4262 if (ByValSizeInBytes
== OffsetInBytes
)
4265 // Copy the remainder of the byval argument with sub-word loads and shifts.
4266 if (LeftoverBytes
) {
4269 for (unsigned LoadSizeInBytes
= RegSizeInBytes
/ 2, TotalBytesLoaded
= 0;
4270 OffsetInBytes
< ByValSizeInBytes
; LoadSizeInBytes
/= 2) {
4271 unsigned RemainingSizeInBytes
= ByValSizeInBytes
- OffsetInBytes
;
4273 if (RemainingSizeInBytes
< LoadSizeInBytes
)
4277 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4278 DAG
.getConstant(OffsetInBytes
, DL
,
4280 SDValue LoadVal
= DAG
.getExtLoad(
4281 ISD::ZEXTLOAD
, DL
, RegTy
, Chain
, LoadPtr
, MachinePointerInfo(),
4282 MVT::getIntegerVT(LoadSizeInBytes
* 8), Alignment
);
4283 MemOpChains
.push_back(LoadVal
.getValue(1));
4285 // Shift the loaded value.
4289 Shamt
= TotalBytesLoaded
* 8;
4291 Shamt
= (RegSizeInBytes
- (TotalBytesLoaded
+ LoadSizeInBytes
)) * 8;
4293 SDValue Shift
= DAG
.getNode(ISD::SHL
, DL
, RegTy
, LoadVal
,
4294 DAG
.getConstant(Shamt
, DL
, MVT::i32
));
4297 Val
= DAG
.getNode(ISD::OR
, DL
, RegTy
, Val
, Shift
);
4301 OffsetInBytes
+= LoadSizeInBytes
;
4302 TotalBytesLoaded
+= LoadSizeInBytes
;
4303 Alignment
= std::min(Alignment
, LoadSizeInBytes
);
4306 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4307 RegsToPass
.push_back(std::make_pair(ArgReg
, Val
));
4312 // Copy remainder of byval arg to it with memcpy.
4313 unsigned MemCpySize
= ByValSizeInBytes
- OffsetInBytes
;
4314 SDValue Src
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4315 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4316 SDValue Dst
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, StackPtr
,
4317 DAG
.getIntPtrConstant(VA
.getLocMemOffset(), DL
));
4318 Chain
= DAG
.getMemcpy(Chain
, DL
, Dst
, Src
,
4319 DAG
.getConstant(MemCpySize
, DL
, PtrTy
),
4320 Alignment
, /*isVolatile=*/false, /*AlwaysInline=*/false,
4321 /*isTailCall=*/false,
4322 MachinePointerInfo(), MachinePointerInfo());
4323 MemOpChains
.push_back(Chain
);
4326 void MipsTargetLowering::writeVarArgRegs(std::vector
<SDValue
> &OutChains
,
4327 SDValue Chain
, const SDLoc
&DL
,
4329 CCState
&State
) const {
4330 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetVarArgRegs();
4331 unsigned Idx
= State
.getFirstUnallocated(ArgRegs
);
4332 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4333 MVT RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4334 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4335 MachineFunction
&MF
= DAG
.getMachineFunction();
4336 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4337 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
4339 // Offset of the first variable argument from stack pointer.
4342 if (ArgRegs
.size() == Idx
)
4343 VaArgOffset
= alignTo(State
.getNextStackOffset(), RegSizeInBytes
);
4346 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4347 (int)(RegSizeInBytes
* (ArgRegs
.size() - Idx
));
4350 // Record the frame index of the first variable argument
4351 // which is a value necessary to VASTART.
4352 int FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4353 MipsFI
->setVarArgsFrameIndex(FI
);
4355 // Copy the integer registers that have not been used for argument passing
4356 // to the argument register save area. For O32, the save area is allocated
4357 // in the caller's stack frame, while for N32/64, it is allocated in the
4358 // callee's stack frame.
4359 for (unsigned I
= Idx
; I
< ArgRegs
.size();
4360 ++I
, VaArgOffset
+= RegSizeInBytes
) {
4361 unsigned Reg
= addLiveIn(MF
, ArgRegs
[I
], RC
);
4362 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegTy
);
4363 FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4364 SDValue PtrOff
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
4366 DAG
.getStore(Chain
, DL
, ArgValue
, PtrOff
, MachinePointerInfo());
4367 cast
<StoreSDNode
>(Store
.getNode())->getMemOperand()->setValue(
4369 OutChains
.push_back(Store
);
4373 void MipsTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
4374 unsigned Align
) const {
4375 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
4377 assert(Size
&& "Byval argument's size shouldn't be 0.");
4379 Align
= std::min(Align
, TFL
->getStackAlignment());
4381 unsigned FirstReg
= 0;
4382 unsigned NumRegs
= 0;
4384 if (State
->getCallingConv() != CallingConv::Fast
) {
4385 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4386 ArrayRef
<MCPhysReg
> IntArgRegs
= ABI
.GetByValArgRegs();
4387 // FIXME: The O32 case actually describes no shadow registers.
4388 const MCPhysReg
*ShadowRegs
=
4389 ABI
.IsO32() ? IntArgRegs
.data() : Mips64DPRegs
;
4391 // We used to check the size as well but we can't do that anymore since
4392 // CCState::HandleByVal() rounds up the size after calling this function.
4393 assert(!(Align
% RegSizeInBytes
) &&
4394 "Byval argument's alignment should be a multiple of"
4397 FirstReg
= State
->getFirstUnallocated(IntArgRegs
);
4399 // If Align > RegSizeInBytes, the first arg register must be even.
4400 // FIXME: This condition happens to do the right thing but it's not the
4401 // right way to test it. We want to check that the stack frame offset
4402 // of the register is aligned.
4403 if ((Align
> RegSizeInBytes
) && (FirstReg
% 2)) {
4404 State
->AllocateReg(IntArgRegs
[FirstReg
], ShadowRegs
[FirstReg
]);
4408 // Mark the registers allocated.
4409 Size
= alignTo(Size
, RegSizeInBytes
);
4410 for (unsigned I
= FirstReg
; Size
> 0 && (I
< IntArgRegs
.size());
4411 Size
-= RegSizeInBytes
, ++I
, ++NumRegs
)
4412 State
->AllocateReg(IntArgRegs
[I
], ShadowRegs
[I
]);
4415 State
->addInRegsParamInfo(FirstReg
, FirstReg
+ NumRegs
);
4418 MachineBasicBlock
*MipsTargetLowering::emitPseudoSELECT(MachineInstr
&MI
,
4419 MachineBasicBlock
*BB
,
4421 unsigned Opc
) const {
4422 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4423 "Subtarget already supports SELECT nodes with the use of"
4424 "conditional-move instructions.");
4426 const TargetInstrInfo
*TII
=
4427 Subtarget
.getInstrInfo();
4428 DebugLoc DL
= MI
.getDebugLoc();
4430 // To "insert" a SELECT instruction, we actually have to insert the
4431 // diamond control-flow pattern. The incoming instruction knows the
4432 // destination vreg to set, the condition code register to branch on, the
4433 // true/false values to select between, and a branch opcode to use.
4434 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4435 MachineFunction::iterator It
= ++BB
->getIterator();
4441 // bNE r1, r0, copy1MBB
4442 // fallthrough --> copy0MBB
4443 MachineBasicBlock
*thisMBB
= BB
;
4444 MachineFunction
*F
= BB
->getParent();
4445 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4446 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4447 F
->insert(It
, copy0MBB
);
4448 F
->insert(It
, sinkMBB
);
4450 // Transfer the remainder of BB and its successor edges to sinkMBB.
4451 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4452 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4453 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4455 // Next, add the true and fallthrough blocks as its successors.
4456 BB
->addSuccessor(copy0MBB
);
4457 BB
->addSuccessor(sinkMBB
);
4460 // bc1[tf] cc, sinkMBB
4461 BuildMI(BB
, DL
, TII
->get(Opc
))
4462 .addReg(MI
.getOperand(1).getReg())
4465 // bne rs, $0, sinkMBB
4466 BuildMI(BB
, DL
, TII
->get(Opc
))
4467 .addReg(MI
.getOperand(1).getReg())
4473 // %FalseValue = ...
4474 // # fallthrough to sinkMBB
4477 // Update machine-CFG edges
4478 BB
->addSuccessor(sinkMBB
);
4481 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4485 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4486 .addReg(MI
.getOperand(2).getReg())
4488 .addReg(MI
.getOperand(3).getReg())
4491 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4496 MachineBasicBlock
*MipsTargetLowering::emitPseudoD_SELECT(MachineInstr
&MI
,
4497 MachineBasicBlock
*BB
) const {
4498 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4499 "Subtarget already supports SELECT nodes with the use of"
4500 "conditional-move instructions.");
4502 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4503 DebugLoc DL
= MI
.getDebugLoc();
4505 // D_SELECT substitutes two SELECT nodes that goes one after another and
4506 // have the same condition operand. On machines which don't have
4507 // conditional-move instruction, it reduces unnecessary branch instructions
4508 // which are result of using two diamond patterns that are result of two
4509 // SELECT pseudo instructions.
4510 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4511 MachineFunction::iterator It
= ++BB
->getIterator();
4517 // bNE r1, r0, copy1MBB
4518 // fallthrough --> copy0MBB
4519 MachineBasicBlock
*thisMBB
= BB
;
4520 MachineFunction
*F
= BB
->getParent();
4521 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4522 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4523 F
->insert(It
, copy0MBB
);
4524 F
->insert(It
, sinkMBB
);
4526 // Transfer the remainder of BB and its successor edges to sinkMBB.
4527 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4528 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4529 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4531 // Next, add the true and fallthrough blocks as its successors.
4532 BB
->addSuccessor(copy0MBB
);
4533 BB
->addSuccessor(sinkMBB
);
4535 // bne rs, $0, sinkMBB
4536 BuildMI(BB
, DL
, TII
->get(Mips::BNE
))
4537 .addReg(MI
.getOperand(2).getReg())
4542 // %FalseValue = ...
4543 // # fallthrough to sinkMBB
4546 // Update machine-CFG edges
4547 BB
->addSuccessor(sinkMBB
);
4550 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4554 // Use two PHI nodes to select two reults
4555 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4556 .addReg(MI
.getOperand(3).getReg())
4558 .addReg(MI
.getOperand(5).getReg())
4560 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(1).getReg())
4561 .addReg(MI
.getOperand(4).getReg())
4563 .addReg(MI
.getOperand(6).getReg())
4566 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4571 // FIXME? Maybe this could be a TableGen attribute on some registers and
4572 // this table could be generated automatically from RegInfo.
4573 unsigned MipsTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
4574 SelectionDAG
&DAG
) const {
4575 // Named registers is expected to be fairly rare. For now, just support $28
4576 // since the linux kernel uses it.
4577 if (Subtarget
.isGP64bit()) {
4578 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
4579 .Case("$28", Mips::GP_64
)
4584 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
4585 .Case("$28", Mips::GP
)
4590 report_fatal_error("Invalid register name global variable");