[Alignment] Move OffsetToAlignment to Alignment.h
[llvm-complete.git] / lib / Target / Mips / MipsISelLowering.cpp
blobc352007415b49a49a3c37c2099d31a46ba22d994
1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cctype>
73 #include <cstdint>
74 #include <deque>
75 #include <iterator>
76 #include <utility>
77 #include <vector>
79 using namespace llvm;
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls, "Number of tail calls");
85 static cl::opt<bool>
86 LargeGOT("mxgot", cl::Hidden,
87 cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
89 static cl::opt<bool>
90 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
91 cl::desc("MIPS: Don't trap on integer division by zero."),
92 cl::init(false));
94 extern cl::opt<bool> EmitJalrReloc;
96 static const MCPhysReg Mips64DPRegs[8] = {
97 Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
98 Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
101 // If I is a shifted mask, set the size (Size) and the first bit of the
102 // mask (Pos), and return true.
103 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
104 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
105 if (!isShiftedMask_64(I))
106 return false;
108 Size = countPopulation(I);
109 Pos = countTrailingZeros(I);
110 return true;
113 // The MIPS MSA ABI passes vector arguments in the integer register set.
114 // The number of integer registers used is dependant on the ABI used.
115 MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
116 CallingConv::ID CC,
117 EVT VT) const {
118 if (VT.isVector()) {
119 if (Subtarget.isABI_O32()) {
120 return MVT::i32;
121 } else {
122 return (VT.getSizeInBits() == 32) ? MVT::i32 : MVT::i64;
125 return MipsTargetLowering::getRegisterType(Context, VT);
128 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
129 CallingConv::ID CC,
130 EVT VT) const {
131 if (VT.isVector())
132 return std::max((VT.getSizeInBits() / (Subtarget.isABI_O32() ? 32 : 64)),
133 1U);
134 return MipsTargetLowering::getNumRegisters(Context, VT);
137 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
138 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
139 unsigned &NumIntermediates, MVT &RegisterVT) const {
140 // Break down vector types to either 2 i64s or 4 i32s.
141 RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
142 IntermediateVT = RegisterVT;
143 NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
144 ? VT.getVectorNumElements()
145 : VT.getSizeInBits() / RegisterVT.getSizeInBits();
147 return NumIntermediates;
150 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
151 MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
152 return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
155 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
156 SelectionDAG &DAG,
157 unsigned Flag) const {
158 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
161 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
162 SelectionDAG &DAG,
163 unsigned Flag) const {
164 return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
167 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
168 SelectionDAG &DAG,
169 unsigned Flag) const {
170 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
173 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
174 SelectionDAG &DAG,
175 unsigned Flag) const {
176 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
179 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
180 SelectionDAG &DAG,
181 unsigned Flag) const {
182 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
183 N->getOffset(), Flag);
186 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
187 switch ((MipsISD::NodeType)Opcode) {
188 case MipsISD::FIRST_NUMBER: break;
189 case MipsISD::JmpLink: return "MipsISD::JmpLink";
190 case MipsISD::TailCall: return "MipsISD::TailCall";
191 case MipsISD::Highest: return "MipsISD::Highest";
192 case MipsISD::Higher: return "MipsISD::Higher";
193 case MipsISD::Hi: return "MipsISD::Hi";
194 case MipsISD::Lo: return "MipsISD::Lo";
195 case MipsISD::GotHi: return "MipsISD::GotHi";
196 case MipsISD::TlsHi: return "MipsISD::TlsHi";
197 case MipsISD::GPRel: return "MipsISD::GPRel";
198 case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
199 case MipsISD::Ret: return "MipsISD::Ret";
200 case MipsISD::ERet: return "MipsISD::ERet";
201 case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
202 case MipsISD::FMS: return "MipsISD::FMS";
203 case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
204 case MipsISD::FPCmp: return "MipsISD::FPCmp";
205 case MipsISD::FSELECT: return "MipsISD::FSELECT";
206 case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64";
207 case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
208 case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
209 case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
210 case MipsISD::MFHI: return "MipsISD::MFHI";
211 case MipsISD::MFLO: return "MipsISD::MFLO";
212 case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
213 case MipsISD::Mult: return "MipsISD::Mult";
214 case MipsISD::Multu: return "MipsISD::Multu";
215 case MipsISD::MAdd: return "MipsISD::MAdd";
216 case MipsISD::MAddu: return "MipsISD::MAddu";
217 case MipsISD::MSub: return "MipsISD::MSub";
218 case MipsISD::MSubu: return "MipsISD::MSubu";
219 case MipsISD::DivRem: return "MipsISD::DivRem";
220 case MipsISD::DivRemU: return "MipsISD::DivRemU";
221 case MipsISD::DivRem16: return "MipsISD::DivRem16";
222 case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
223 case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
224 case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
225 case MipsISD::Wrapper: return "MipsISD::Wrapper";
226 case MipsISD::DynAlloc: return "MipsISD::DynAlloc";
227 case MipsISD::Sync: return "MipsISD::Sync";
228 case MipsISD::Ext: return "MipsISD::Ext";
229 case MipsISD::Ins: return "MipsISD::Ins";
230 case MipsISD::CIns: return "MipsISD::CIns";
231 case MipsISD::LWL: return "MipsISD::LWL";
232 case MipsISD::LWR: return "MipsISD::LWR";
233 case MipsISD::SWL: return "MipsISD::SWL";
234 case MipsISD::SWR: return "MipsISD::SWR";
235 case MipsISD::LDL: return "MipsISD::LDL";
236 case MipsISD::LDR: return "MipsISD::LDR";
237 case MipsISD::SDL: return "MipsISD::SDL";
238 case MipsISD::SDR: return "MipsISD::SDR";
239 case MipsISD::EXTP: return "MipsISD::EXTP";
240 case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
241 case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
242 case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
243 case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
244 case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
245 case MipsISD::SHILO: return "MipsISD::SHILO";
246 case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
247 case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH";
248 case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL";
249 case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR";
250 case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL";
251 case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR";
252 case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL";
253 case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR";
254 case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL";
255 case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR";
256 case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH";
257 case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH";
258 case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W";
259 case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W";
260 case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH";
261 case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH";
262 case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH";
263 case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH";
264 case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH";
265 case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH";
266 case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH";
267 case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH";
268 case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH";
269 case MipsISD::MULT: return "MipsISD::MULT";
270 case MipsISD::MULTU: return "MipsISD::MULTU";
271 case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
272 case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
273 case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
274 case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
275 case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
276 case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
277 case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
278 case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
279 case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
280 case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
281 case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
282 case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
283 case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
284 case MipsISD::VCEQ: return "MipsISD::VCEQ";
285 case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
286 case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
287 case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
288 case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
289 case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
290 case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
291 case MipsISD::VNOR: return "MipsISD::VNOR";
292 case MipsISD::VSHF: return "MipsISD::VSHF";
293 case MipsISD::SHF: return "MipsISD::SHF";
294 case MipsISD::ILVEV: return "MipsISD::ILVEV";
295 case MipsISD::ILVOD: return "MipsISD::ILVOD";
296 case MipsISD::ILVL: return "MipsISD::ILVL";
297 case MipsISD::ILVR: return "MipsISD::ILVR";
298 case MipsISD::PCKEV: return "MipsISD::PCKEV";
299 case MipsISD::PCKOD: return "MipsISD::PCKOD";
300 case MipsISD::INSVE: return "MipsISD::INSVE";
302 return nullptr;
305 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
306 const MipsSubtarget &STI)
307 : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
308 // Mips does not have i1 type, so use i32 for
309 // setcc operations results (slt, sgt, ...).
310 setBooleanContents(ZeroOrOneBooleanContent);
311 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
312 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
313 // does. Integer booleans still use 0 and 1.
314 if (Subtarget.hasMips32r6())
315 setBooleanContents(ZeroOrOneBooleanContent,
316 ZeroOrNegativeOneBooleanContent);
318 // Load extented operations for i1 types must be promoted
319 for (MVT VT : MVT::integer_valuetypes()) {
320 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
321 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
322 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
325 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
326 // for f32, f16
327 for (MVT VT : MVT::fp_valuetypes()) {
328 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
329 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
332 // Set LoadExtAction for f16 vectors to Expand
333 for (MVT VT : MVT::fp_vector_valuetypes()) {
334 MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
335 if (F16VT.isValid())
336 setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
339 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
340 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
342 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
344 // Used by legalize types to correctly generate the setcc result.
345 // Without this, every float setcc comes with a AND/OR with the result,
346 // we don't want this, since the fpcmp result goes to a flag register,
347 // which is used implicitly by brcond and select operations.
348 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
350 // Mips Custom Operations
351 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
352 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
353 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
354 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
355 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
356 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
357 setOperationAction(ISD::SELECT, MVT::f32, Custom);
358 setOperationAction(ISD::SELECT, MVT::f64, Custom);
359 setOperationAction(ISD::SELECT, MVT::i32, Custom);
360 setOperationAction(ISD::SETCC, MVT::f32, Custom);
361 setOperationAction(ISD::SETCC, MVT::f64, Custom);
362 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
363 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
364 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
365 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
367 if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) {
368 setOperationAction(ISD::FABS, MVT::f32, Custom);
369 setOperationAction(ISD::FABS, MVT::f64, Custom);
372 if (Subtarget.isGP64bit()) {
373 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
374 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
375 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
376 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
377 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
378 setOperationAction(ISD::SELECT, MVT::i64, Custom);
379 setOperationAction(ISD::LOAD, MVT::i64, Custom);
380 setOperationAction(ISD::STORE, MVT::i64, Custom);
381 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
382 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
383 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
384 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
387 if (!Subtarget.isGP64bit()) {
388 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
389 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
390 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
393 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
394 if (Subtarget.isGP64bit())
395 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
397 setOperationAction(ISD::SDIV, MVT::i32, Expand);
398 setOperationAction(ISD::SREM, MVT::i32, Expand);
399 setOperationAction(ISD::UDIV, MVT::i32, Expand);
400 setOperationAction(ISD::UREM, MVT::i32, Expand);
401 setOperationAction(ISD::SDIV, MVT::i64, Expand);
402 setOperationAction(ISD::SREM, MVT::i64, Expand);
403 setOperationAction(ISD::UDIV, MVT::i64, Expand);
404 setOperationAction(ISD::UREM, MVT::i64, Expand);
406 // Operations not directly supported by Mips.
407 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
408 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
409 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
410 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
411 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
412 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
413 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
414 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
415 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
416 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
417 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
418 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
419 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
420 if (Subtarget.hasCnMips()) {
421 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
422 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
423 } else {
424 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
425 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
427 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
428 setOperationAction(ISD::CTTZ, MVT::i64, Expand);
429 setOperationAction(ISD::ROTL, MVT::i32, Expand);
430 setOperationAction(ISD::ROTL, MVT::i64, Expand);
431 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
432 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
434 if (!Subtarget.hasMips32r2())
435 setOperationAction(ISD::ROTR, MVT::i32, Expand);
437 if (!Subtarget.hasMips64r2())
438 setOperationAction(ISD::ROTR, MVT::i64, Expand);
440 setOperationAction(ISD::FSIN, MVT::f32, Expand);
441 setOperationAction(ISD::FSIN, MVT::f64, Expand);
442 setOperationAction(ISD::FCOS, MVT::f32, Expand);
443 setOperationAction(ISD::FCOS, MVT::f64, Expand);
444 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
445 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
446 setOperationAction(ISD::FPOW, MVT::f32, Expand);
447 setOperationAction(ISD::FPOW, MVT::f64, Expand);
448 setOperationAction(ISD::FLOG, MVT::f32, Expand);
449 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
450 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
451 setOperationAction(ISD::FEXP, MVT::f32, Expand);
452 setOperationAction(ISD::FMA, MVT::f32, Expand);
453 setOperationAction(ISD::FMA, MVT::f64, Expand);
454 setOperationAction(ISD::FREM, MVT::f32, Expand);
455 setOperationAction(ISD::FREM, MVT::f64, Expand);
457 // Lower f16 conversion operations into library calls
458 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
459 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
460 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
461 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
463 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
465 setOperationAction(ISD::VASTART, MVT::Other, Custom);
466 setOperationAction(ISD::VAARG, MVT::Other, Custom);
467 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
468 setOperationAction(ISD::VAEND, MVT::Other, Expand);
470 // Use the default for now
471 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
472 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
474 if (!Subtarget.isGP64bit()) {
475 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
476 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
479 if (!Subtarget.hasMips32r2()) {
480 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
481 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
484 // MIPS16 lacks MIPS32's clz and clo instructions.
485 if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
486 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
487 if (!Subtarget.hasMips64())
488 setOperationAction(ISD::CTLZ, MVT::i64, Expand);
490 if (!Subtarget.hasMips32r2())
491 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
492 if (!Subtarget.hasMips64r2())
493 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
495 if (Subtarget.isGP64bit()) {
496 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
497 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
498 setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
499 setTruncStoreAction(MVT::i64, MVT::i32, Custom);
502 setOperationAction(ISD::TRAP, MVT::Other, Legal);
504 setTargetDAGCombine(ISD::SDIVREM);
505 setTargetDAGCombine(ISD::UDIVREM);
506 setTargetDAGCombine(ISD::SELECT);
507 setTargetDAGCombine(ISD::AND);
508 setTargetDAGCombine(ISD::OR);
509 setTargetDAGCombine(ISD::ADD);
510 setTargetDAGCombine(ISD::SUB);
511 setTargetDAGCombine(ISD::AssertZext);
512 setTargetDAGCombine(ISD::SHL);
514 if (ABI.IsO32()) {
515 // These libcalls are not available in 32-bit.
516 setLibcallName(RTLIB::SHL_I128, nullptr);
517 setLibcallName(RTLIB::SRL_I128, nullptr);
518 setLibcallName(RTLIB::SRA_I128, nullptr);
521 setMinFunctionAlignment(Subtarget.isGP64bit() ? llvm::Align(8)
522 : llvm::Align(4));
524 // The arguments on the stack are defined in terms of 4-byte slots on O32
525 // and 8-byte slots on N32/N64.
526 setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? llvm::Align(8)
527 : llvm::Align(4));
529 setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
531 MaxStoresPerMemcpy = 16;
533 isMicroMips = Subtarget.inMicroMipsMode();
536 const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
537 const MipsSubtarget &STI) {
538 if (STI.inMips16Mode())
539 return createMips16TargetLowering(TM, STI);
541 return createMipsSETargetLowering(TM, STI);
544 // Create a fast isel object.
545 FastISel *
546 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
547 const TargetLibraryInfo *libInfo) const {
548 const MipsTargetMachine &TM =
549 static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
551 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
552 bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
553 !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
554 !Subtarget.inMicroMipsMode();
556 // Disable if either of the following is true:
557 // We do not generate PIC, the ABI is not O32, LargeGOT is being used.
558 if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || LargeGOT)
559 UseFastISel = false;
561 return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
564 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
565 EVT VT) const {
566 if (!VT.isVector())
567 return MVT::i32;
568 return VT.changeVectorElementTypeToInteger();
571 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
572 TargetLowering::DAGCombinerInfo &DCI,
573 const MipsSubtarget &Subtarget) {
574 if (DCI.isBeforeLegalizeOps())
575 return SDValue();
577 EVT Ty = N->getValueType(0);
578 unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
579 unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
580 unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
581 MipsISD::DivRemU16;
582 SDLoc DL(N);
584 SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
585 N->getOperand(0), N->getOperand(1));
586 SDValue InChain = DAG.getEntryNode();
587 SDValue InGlue = DivRem;
589 // insert MFLO
590 if (N->hasAnyUseOfValue(0)) {
591 SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
592 InGlue);
593 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
594 InChain = CopyFromLo.getValue(1);
595 InGlue = CopyFromLo.getValue(2);
598 // insert MFHI
599 if (N->hasAnyUseOfValue(1)) {
600 SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
601 HI, Ty, InGlue);
602 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
605 return SDValue();
608 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
609 switch (CC) {
610 default: llvm_unreachable("Unknown fp condition code!");
611 case ISD::SETEQ:
612 case ISD::SETOEQ: return Mips::FCOND_OEQ;
613 case ISD::SETUNE: return Mips::FCOND_UNE;
614 case ISD::SETLT:
615 case ISD::SETOLT: return Mips::FCOND_OLT;
616 case ISD::SETGT:
617 case ISD::SETOGT: return Mips::FCOND_OGT;
618 case ISD::SETLE:
619 case ISD::SETOLE: return Mips::FCOND_OLE;
620 case ISD::SETGE:
621 case ISD::SETOGE: return Mips::FCOND_OGE;
622 case ISD::SETULT: return Mips::FCOND_ULT;
623 case ISD::SETULE: return Mips::FCOND_ULE;
624 case ISD::SETUGT: return Mips::FCOND_UGT;
625 case ISD::SETUGE: return Mips::FCOND_UGE;
626 case ISD::SETUO: return Mips::FCOND_UN;
627 case ISD::SETO: return Mips::FCOND_OR;
628 case ISD::SETNE:
629 case ISD::SETONE: return Mips::FCOND_ONE;
630 case ISD::SETUEQ: return Mips::FCOND_UEQ;
634 /// This function returns true if the floating point conditional branches and
635 /// conditional moves which use condition code CC should be inverted.
636 static bool invertFPCondCodeUser(Mips::CondCode CC) {
637 if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
638 return false;
640 assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
641 "Illegal Condition Code");
643 return true;
646 // Creates and returns an FPCmp node from a setcc node.
647 // Returns Op if setcc is not a floating point comparison.
648 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
649 // must be a SETCC node
650 if (Op.getOpcode() != ISD::SETCC)
651 return Op;
653 SDValue LHS = Op.getOperand(0);
655 if (!LHS.getValueType().isFloatingPoint())
656 return Op;
658 SDValue RHS = Op.getOperand(1);
659 SDLoc DL(Op);
661 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
662 // node if necessary.
663 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
665 return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
666 DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
669 // Creates and returns a CMovFPT/F node.
670 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
671 SDValue False, const SDLoc &DL) {
672 ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
673 bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
674 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
676 return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
677 True.getValueType(), True, FCC0, False, Cond);
680 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
681 TargetLowering::DAGCombinerInfo &DCI,
682 const MipsSubtarget &Subtarget) {
683 if (DCI.isBeforeLegalizeOps())
684 return SDValue();
686 SDValue SetCC = N->getOperand(0);
688 if ((SetCC.getOpcode() != ISD::SETCC) ||
689 !SetCC.getOperand(0).getValueType().isInteger())
690 return SDValue();
692 SDValue False = N->getOperand(2);
693 EVT FalseTy = False.getValueType();
695 if (!FalseTy.isInteger())
696 return SDValue();
698 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
700 // If the RHS (False) is 0, we swap the order of the operands
701 // of ISD::SELECT (obviously also inverting the condition) so that we can
702 // take advantage of conditional moves using the $0 register.
703 // Example:
704 // return (a != 0) ? x : 0;
705 // load $reg, x
706 // movz $reg, $0, a
707 if (!FalseC)
708 return SDValue();
710 const SDLoc DL(N);
712 if (!FalseC->getZExtValue()) {
713 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
714 SDValue True = N->getOperand(1);
716 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
717 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
719 return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
722 // If both operands are integer constants there's a possibility that we
723 // can do some interesting optimizations.
724 SDValue True = N->getOperand(1);
725 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
727 if (!TrueC || !True.getValueType().isInteger())
728 return SDValue();
730 // We'll also ignore MVT::i64 operands as this optimizations proves
731 // to be ineffective because of the required sign extensions as the result
732 // of a SETCC operator is always MVT::i32 for non-vector types.
733 if (True.getValueType() == MVT::i64)
734 return SDValue();
736 int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
738 // 1) (a < x) ? y : y-1
739 // slti $reg1, a, x
740 // addiu $reg2, $reg1, y-1
741 if (Diff == 1)
742 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
744 // 2) (a < x) ? y-1 : y
745 // slti $reg1, a, x
746 // xor $reg1, $reg1, 1
747 // addiu $reg2, $reg1, y-1
748 if (Diff == -1) {
749 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
750 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
751 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
752 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
755 // Could not optimize.
756 return SDValue();
759 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
760 TargetLowering::DAGCombinerInfo &DCI,
761 const MipsSubtarget &Subtarget) {
762 if (DCI.isBeforeLegalizeOps())
763 return SDValue();
765 SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
767 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
768 if (!FalseC || FalseC->getZExtValue())
769 return SDValue();
771 // Since RHS (False) is 0, we swap the order of the True/False operands
772 // (obviously also inverting the condition) so that we can
773 // take advantage of conditional moves using the $0 register.
774 // Example:
775 // return (a != 0) ? x : 0;
776 // load $reg, x
777 // movz $reg, $0, a
778 unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
779 MipsISD::CMovFP_T;
781 SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
782 return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
783 ValueIfFalse, FCC, ValueIfTrue, Glue);
786 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
787 TargetLowering::DAGCombinerInfo &DCI,
788 const MipsSubtarget &Subtarget) {
789 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
790 return SDValue();
792 SDValue FirstOperand = N->getOperand(0);
793 unsigned FirstOperandOpc = FirstOperand.getOpcode();
794 SDValue Mask = N->getOperand(1);
795 EVT ValTy = N->getValueType(0);
796 SDLoc DL(N);
798 uint64_t Pos = 0, SMPos, SMSize;
799 ConstantSDNode *CN;
800 SDValue NewOperand;
801 unsigned Opc;
803 // Op's second operand must be a shifted mask.
804 if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
805 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
806 return SDValue();
808 if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
809 // Pattern match EXT.
810 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
811 // => ext $dst, $src, pos, size
813 // The second operand of the shift must be an immediate.
814 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
815 return SDValue();
817 Pos = CN->getZExtValue();
819 // Return if the shifted mask does not start at bit 0 or the sum of its size
820 // and Pos exceeds the word's size.
821 if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
822 return SDValue();
824 Opc = MipsISD::Ext;
825 NewOperand = FirstOperand.getOperand(0);
826 } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
827 // Pattern match CINS.
828 // $dst = and (shl $src , pos), mask
829 // => cins $dst, $src, pos, size
830 // mask is a shifted mask with consecutive 1's, pos = shift amount,
831 // size = population count.
833 // The second operand of the shift must be an immediate.
834 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
835 return SDValue();
837 Pos = CN->getZExtValue();
839 if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
840 Pos + SMSize > ValTy.getSizeInBits())
841 return SDValue();
843 NewOperand = FirstOperand.getOperand(0);
844 // SMSize is 'location' (position) in this case, not size.
845 SMSize--;
846 Opc = MipsISD::CIns;
847 } else {
848 // Pattern match EXT.
849 // $dst = and $src, (2**size - 1) , if size > 16
850 // => ext $dst, $src, pos, size , pos = 0
852 // If the mask is <= 0xffff, andi can be used instead.
853 if (CN->getZExtValue() <= 0xffff)
854 return SDValue();
856 // Return if the mask doesn't start at position 0.
857 if (SMPos)
858 return SDValue();
860 Opc = MipsISD::Ext;
861 NewOperand = FirstOperand;
863 return DAG.getNode(Opc, DL, ValTy, NewOperand,
864 DAG.getConstant(Pos, DL, MVT::i32),
865 DAG.getConstant(SMSize, DL, MVT::i32));
868 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
869 TargetLowering::DAGCombinerInfo &DCI,
870 const MipsSubtarget &Subtarget) {
871 // Pattern match INS.
872 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
873 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
874 // => ins $dst, $src, size, pos, $src1
875 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
876 return SDValue();
878 SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
879 uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
880 ConstantSDNode *CN, *CN1;
882 // See if Op's first operand matches (and $src1 , mask0).
883 if (And0.getOpcode() != ISD::AND)
884 return SDValue();
886 if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
887 !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
888 return SDValue();
890 // See if Op's second operand matches (and (shl $src, pos), mask1).
891 if (And1.getOpcode() == ISD::AND &&
892 And1.getOperand(0).getOpcode() == ISD::SHL) {
894 if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
895 !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
896 return SDValue();
898 // The shift masks must have the same position and size.
899 if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
900 return SDValue();
902 SDValue Shl = And1.getOperand(0);
904 if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
905 return SDValue();
907 unsigned Shamt = CN->getZExtValue();
909 // Return if the shift amount and the first bit position of mask are not the
910 // same.
911 EVT ValTy = N->getValueType(0);
912 if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
913 return SDValue();
915 SDLoc DL(N);
916 return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
917 DAG.getConstant(SMPos0, DL, MVT::i32),
918 DAG.getConstant(SMSize0, DL, MVT::i32),
919 And0.getOperand(0));
920 } else {
921 // Pattern match DINS.
922 // $dst = or (and $src, mask0), mask1
923 // where mask0 = ((1 << SMSize0) -1) << SMPos0
924 // => dins $dst, $src, pos, size
925 if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
926 ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
927 (SMSize0 + SMPos0 <= 32))) {
928 // Check if AND instruction has constant as argument
929 bool isConstCase = And1.getOpcode() != ISD::AND;
930 if (And1.getOpcode() == ISD::AND) {
931 if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
932 return SDValue();
933 } else {
934 if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
935 return SDValue();
937 // Don't generate INS if constant OR operand doesn't fit into bits
938 // cleared by constant AND operand.
939 if (CN->getSExtValue() & CN1->getSExtValue())
940 return SDValue();
942 SDLoc DL(N);
943 EVT ValTy = N->getOperand(0)->getValueType(0);
944 SDValue Const1;
945 SDValue SrlX;
946 if (!isConstCase) {
947 Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
948 SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
950 return DAG.getNode(
951 MipsISD::Ins, DL, N->getValueType(0),
952 isConstCase
953 ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
954 : SrlX,
955 DAG.getConstant(SMPos0, DL, MVT::i32),
956 DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
957 : SMSize0,
958 DL, MVT::i32),
959 And0->getOperand(0));
962 return SDValue();
966 static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
967 const MipsSubtarget &Subtarget) {
968 // ROOTNode must have a multiplication as an operand for the match to be
969 // successful.
970 if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
971 ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
972 return SDValue();
974 // We don't handle vector types here.
975 if (ROOTNode->getValueType(0).isVector())
976 return SDValue();
978 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
979 // arithmetic. E.g.
980 // (add (mul a b) c) =>
981 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
982 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
983 // or
984 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
986 // The overhead of setting up the Hi/Lo registers and reassembling the
987 // result makes this a dubious optimzation for MIPS64. The core of the
988 // problem is that Hi/Lo contain the upper and lower 32 bits of the
989 // operand and result.
991 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
992 // density than doing it naively, 5 for MIPS64. Additionally, using
993 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
994 // extended operands, not true 64 bit values.
996 // FIXME: For the moment, disable this completely for MIPS64.
997 if (Subtarget.hasMips64())
998 return SDValue();
1000 SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
1001 ? ROOTNode->getOperand(0)
1002 : ROOTNode->getOperand(1);
1004 SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
1005 ? ROOTNode->getOperand(1)
1006 : ROOTNode->getOperand(0);
1008 // Transform this to a MADD only if the user of this node is the add.
1009 // If there are other users of the mul, this function returns here.
1010 if (!Mult.hasOneUse())
1011 return SDValue();
1013 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1014 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1015 // of the multiply must have 32 or more sign bits, otherwise we cannot
1016 // perform this optimization. We have to check this here as we're performing
1017 // this optimization pre-legalization.
1018 SDValue MultLHS = Mult->getOperand(0);
1019 SDValue MultRHS = Mult->getOperand(1);
1021 bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
1022 MultRHS->getOpcode() == ISD::SIGN_EXTEND;
1023 bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
1024 MultRHS->getOpcode() == ISD::ZERO_EXTEND;
1026 if (!IsSigned && !IsUnsigned)
1027 return SDValue();
1029 // Initialize accumulator.
1030 SDLoc DL(ROOTNode);
1031 SDValue TopHalf;
1032 SDValue BottomHalf;
1033 BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1034 CurDAG.getIntPtrConstant(0, DL));
1036 TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1037 CurDAG.getIntPtrConstant(1, DL));
1038 SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
1039 BottomHalf,
1040 TopHalf);
1042 // Create MipsMAdd(u) / MipsMSub(u) node.
1043 bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
1044 unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
1045 : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
1046 SDValue MAddOps[3] = {
1047 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
1048 CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
1049 EVT VTs[2] = {MVT::i32, MVT::i32};
1050 SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
1052 SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
1053 SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
1054 SDValue Combined =
1055 CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
1056 return Combined;
1059 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
1060 TargetLowering::DAGCombinerInfo &DCI,
1061 const MipsSubtarget &Subtarget) {
1062 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1063 if (DCI.isBeforeLegalizeOps()) {
1064 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1065 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1066 return performMADD_MSUBCombine(N, DAG, Subtarget);
1068 return SDValue();
1071 return SDValue();
1074 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
1075 TargetLowering::DAGCombinerInfo &DCI,
1076 const MipsSubtarget &Subtarget) {
1077 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1078 if (DCI.isBeforeLegalizeOps()) {
1079 if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1080 !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1081 return performMADD_MSUBCombine(N, DAG, Subtarget);
1083 return SDValue();
1086 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1087 SDValue Add = N->getOperand(1);
1089 if (Add.getOpcode() != ISD::ADD)
1090 return SDValue();
1092 SDValue Lo = Add.getOperand(1);
1094 if ((Lo.getOpcode() != MipsISD::Lo) ||
1095 (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
1096 return SDValue();
1098 EVT ValTy = N->getValueType(0);
1099 SDLoc DL(N);
1101 SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
1102 Add.getOperand(0));
1103 return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
1106 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
1107 TargetLowering::DAGCombinerInfo &DCI,
1108 const MipsSubtarget &Subtarget) {
1109 // Pattern match CINS.
1110 // $dst = shl (and $src , imm), pos
1111 // => cins $dst, $src, pos, size
1113 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
1114 return SDValue();
1116 SDValue FirstOperand = N->getOperand(0);
1117 unsigned FirstOperandOpc = FirstOperand.getOpcode();
1118 SDValue SecondOperand = N->getOperand(1);
1119 EVT ValTy = N->getValueType(0);
1120 SDLoc DL(N);
1122 uint64_t Pos = 0, SMPos, SMSize;
1123 ConstantSDNode *CN;
1124 SDValue NewOperand;
1126 // The second operand of the shift must be an immediate.
1127 if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
1128 return SDValue();
1130 Pos = CN->getZExtValue();
1132 if (Pos >= ValTy.getSizeInBits())
1133 return SDValue();
1135 if (FirstOperandOpc != ISD::AND)
1136 return SDValue();
1138 // AND's second operand must be a shifted mask.
1139 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
1140 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
1141 return SDValue();
1143 // Return if the shifted mask does not start at bit 0 or the sum of its size
1144 // and Pos exceeds the word's size.
1145 if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
1146 return SDValue();
1148 NewOperand = FirstOperand.getOperand(0);
1149 // SMSize is 'location' (position) in this case, not size.
1150 SMSize--;
1152 return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
1153 DAG.getConstant(Pos, DL, MVT::i32),
1154 DAG.getConstant(SMSize, DL, MVT::i32));
1157 SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1158 const {
1159 SelectionDAG &DAG = DCI.DAG;
1160 unsigned Opc = N->getOpcode();
1162 switch (Opc) {
1163 default: break;
1164 case ISD::SDIVREM:
1165 case ISD::UDIVREM:
1166 return performDivRemCombine(N, DAG, DCI, Subtarget);
1167 case ISD::SELECT:
1168 return performSELECTCombine(N, DAG, DCI, Subtarget);
1169 case MipsISD::CMovFP_F:
1170 case MipsISD::CMovFP_T:
1171 return performCMovFPCombine(N, DAG, DCI, Subtarget);
1172 case ISD::AND:
1173 return performANDCombine(N, DAG, DCI, Subtarget);
1174 case ISD::OR:
1175 return performORCombine(N, DAG, DCI, Subtarget);
1176 case ISD::ADD:
1177 return performADDCombine(N, DAG, DCI, Subtarget);
1178 case ISD::SHL:
1179 return performSHLCombine(N, DAG, DCI, Subtarget);
1180 case ISD::SUB:
1181 return performSUBCombine(N, DAG, DCI, Subtarget);
1184 return SDValue();
1187 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1188 return Subtarget.hasMips32();
1191 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1192 return Subtarget.hasMips32();
1195 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1196 const SDNode *N, CombineLevel Level) const {
1197 if (N->getOperand(0).getValueType().isVector())
1198 return false;
1199 return true;
1202 void
1203 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1204 SmallVectorImpl<SDValue> &Results,
1205 SelectionDAG &DAG) const {
1206 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1208 if (Res)
1209 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1210 Results.push_back(Res.getValue(I));
1213 void
1214 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1215 SmallVectorImpl<SDValue> &Results,
1216 SelectionDAG &DAG) const {
1217 return LowerOperationWrapper(N, Results, DAG);
1220 SDValue MipsTargetLowering::
1221 LowerOperation(SDValue Op, SelectionDAG &DAG) const
1223 switch (Op.getOpcode())
1225 case ISD::BRCOND: return lowerBRCOND(Op, DAG);
1226 case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
1227 case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
1228 case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
1229 case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
1230 case ISD::JumpTable: return lowerJumpTable(Op, DAG);
1231 case ISD::SELECT: return lowerSELECT(Op, DAG);
1232 case ISD::SETCC: return lowerSETCC(Op, DAG);
1233 case ISD::VASTART: return lowerVASTART(Op, DAG);
1234 case ISD::VAARG: return lowerVAARG(Op, DAG);
1235 case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
1236 case ISD::FABS: return lowerFABS(Op, DAG);
1237 case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
1238 case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
1239 case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
1240 case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
1241 case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
1242 case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
1243 case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
1244 case ISD::LOAD: return lowerLOAD(Op, DAG);
1245 case ISD::STORE: return lowerSTORE(Op, DAG);
1246 case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG);
1247 case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
1249 return SDValue();
1252 //===----------------------------------------------------------------------===//
1253 // Lower helper functions
1254 //===----------------------------------------------------------------------===//
1256 // addLiveIn - This helper function adds the specified physical register to the
1257 // MachineFunction as a live in value. It also creates a corresponding
1258 // virtual register for it.
1259 static unsigned
1260 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1262 Register VReg = MF.getRegInfo().createVirtualRegister(RC);
1263 MF.getRegInfo().addLiveIn(PReg, VReg);
1264 return VReg;
1267 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
1268 MachineBasicBlock &MBB,
1269 const TargetInstrInfo &TII,
1270 bool Is64Bit, bool IsMicroMips) {
1271 if (NoZeroDivCheck)
1272 return &MBB;
1274 // Insert instruction "teq $divisor_reg, $zero, 7".
1275 MachineBasicBlock::iterator I(MI);
1276 MachineInstrBuilder MIB;
1277 MachineOperand &Divisor = MI.getOperand(2);
1278 MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
1279 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
1280 .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
1281 .addReg(Mips::ZERO)
1282 .addImm(7);
1284 // Use the 32-bit sub-register if this is a 64-bit division.
1285 if (Is64Bit)
1286 MIB->getOperand(0).setSubReg(Mips::sub_32);
1288 // Clear Divisor's kill flag.
1289 Divisor.setIsKill(false);
1291 // We would normally delete the original instruction here but in this case
1292 // we only needed to inject an additional instruction rather than replace it.
1294 return &MBB;
1297 MachineBasicBlock *
1298 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1299 MachineBasicBlock *BB) const {
1300 switch (MI.getOpcode()) {
1301 default:
1302 llvm_unreachable("Unexpected instr type to insert");
1303 case Mips::ATOMIC_LOAD_ADD_I8:
1304 return emitAtomicBinaryPartword(MI, BB, 1);
1305 case Mips::ATOMIC_LOAD_ADD_I16:
1306 return emitAtomicBinaryPartword(MI, BB, 2);
1307 case Mips::ATOMIC_LOAD_ADD_I32:
1308 return emitAtomicBinary(MI, BB);
1309 case Mips::ATOMIC_LOAD_ADD_I64:
1310 return emitAtomicBinary(MI, BB);
1312 case Mips::ATOMIC_LOAD_AND_I8:
1313 return emitAtomicBinaryPartword(MI, BB, 1);
1314 case Mips::ATOMIC_LOAD_AND_I16:
1315 return emitAtomicBinaryPartword(MI, BB, 2);
1316 case Mips::ATOMIC_LOAD_AND_I32:
1317 return emitAtomicBinary(MI, BB);
1318 case Mips::ATOMIC_LOAD_AND_I64:
1319 return emitAtomicBinary(MI, BB);
1321 case Mips::ATOMIC_LOAD_OR_I8:
1322 return emitAtomicBinaryPartword(MI, BB, 1);
1323 case Mips::ATOMIC_LOAD_OR_I16:
1324 return emitAtomicBinaryPartword(MI, BB, 2);
1325 case Mips::ATOMIC_LOAD_OR_I32:
1326 return emitAtomicBinary(MI, BB);
1327 case Mips::ATOMIC_LOAD_OR_I64:
1328 return emitAtomicBinary(MI, BB);
1330 case Mips::ATOMIC_LOAD_XOR_I8:
1331 return emitAtomicBinaryPartword(MI, BB, 1);
1332 case Mips::ATOMIC_LOAD_XOR_I16:
1333 return emitAtomicBinaryPartword(MI, BB, 2);
1334 case Mips::ATOMIC_LOAD_XOR_I32:
1335 return emitAtomicBinary(MI, BB);
1336 case Mips::ATOMIC_LOAD_XOR_I64:
1337 return emitAtomicBinary(MI, BB);
1339 case Mips::ATOMIC_LOAD_NAND_I8:
1340 return emitAtomicBinaryPartword(MI, BB, 1);
1341 case Mips::ATOMIC_LOAD_NAND_I16:
1342 return emitAtomicBinaryPartword(MI, BB, 2);
1343 case Mips::ATOMIC_LOAD_NAND_I32:
1344 return emitAtomicBinary(MI, BB);
1345 case Mips::ATOMIC_LOAD_NAND_I64:
1346 return emitAtomicBinary(MI, BB);
1348 case Mips::ATOMIC_LOAD_SUB_I8:
1349 return emitAtomicBinaryPartword(MI, BB, 1);
1350 case Mips::ATOMIC_LOAD_SUB_I16:
1351 return emitAtomicBinaryPartword(MI, BB, 2);
1352 case Mips::ATOMIC_LOAD_SUB_I32:
1353 return emitAtomicBinary(MI, BB);
1354 case Mips::ATOMIC_LOAD_SUB_I64:
1355 return emitAtomicBinary(MI, BB);
1357 case Mips::ATOMIC_SWAP_I8:
1358 return emitAtomicBinaryPartword(MI, BB, 1);
1359 case Mips::ATOMIC_SWAP_I16:
1360 return emitAtomicBinaryPartword(MI, BB, 2);
1361 case Mips::ATOMIC_SWAP_I32:
1362 return emitAtomicBinary(MI, BB);
1363 case Mips::ATOMIC_SWAP_I64:
1364 return emitAtomicBinary(MI, BB);
1366 case Mips::ATOMIC_CMP_SWAP_I8:
1367 return emitAtomicCmpSwapPartword(MI, BB, 1);
1368 case Mips::ATOMIC_CMP_SWAP_I16:
1369 return emitAtomicCmpSwapPartword(MI, BB, 2);
1370 case Mips::ATOMIC_CMP_SWAP_I32:
1371 return emitAtomicCmpSwap(MI, BB);
1372 case Mips::ATOMIC_CMP_SWAP_I64:
1373 return emitAtomicCmpSwap(MI, BB);
1374 case Mips::PseudoSDIV:
1375 case Mips::PseudoUDIV:
1376 case Mips::DIV:
1377 case Mips::DIVU:
1378 case Mips::MOD:
1379 case Mips::MODU:
1380 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
1381 false);
1382 case Mips::SDIV_MM_Pseudo:
1383 case Mips::UDIV_MM_Pseudo:
1384 case Mips::SDIV_MM:
1385 case Mips::UDIV_MM:
1386 case Mips::DIV_MMR6:
1387 case Mips::DIVU_MMR6:
1388 case Mips::MOD_MMR6:
1389 case Mips::MODU_MMR6:
1390 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
1391 case Mips::PseudoDSDIV:
1392 case Mips::PseudoDUDIV:
1393 case Mips::DDIV:
1394 case Mips::DDIVU:
1395 case Mips::DMOD:
1396 case Mips::DMODU:
1397 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
1399 case Mips::PseudoSELECT_I:
1400 case Mips::PseudoSELECT_I64:
1401 case Mips::PseudoSELECT_S:
1402 case Mips::PseudoSELECT_D32:
1403 case Mips::PseudoSELECT_D64:
1404 return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1405 case Mips::PseudoSELECTFP_F_I:
1406 case Mips::PseudoSELECTFP_F_I64:
1407 case Mips::PseudoSELECTFP_F_S:
1408 case Mips::PseudoSELECTFP_F_D32:
1409 case Mips::PseudoSELECTFP_F_D64:
1410 return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1411 case Mips::PseudoSELECTFP_T_I:
1412 case Mips::PseudoSELECTFP_T_I64:
1413 case Mips::PseudoSELECTFP_T_S:
1414 case Mips::PseudoSELECTFP_T_D32:
1415 case Mips::PseudoSELECTFP_T_D64:
1416 return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1417 case Mips::PseudoD_SELECT_I:
1418 case Mips::PseudoD_SELECT_I64:
1419 return emitPseudoD_SELECT(MI, BB);
1423 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1424 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1425 MachineBasicBlock *
1426 MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
1427 MachineBasicBlock *BB) const {
1429 MachineFunction *MF = BB->getParent();
1430 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1431 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1432 DebugLoc DL = MI.getDebugLoc();
1434 unsigned AtomicOp;
1435 switch (MI.getOpcode()) {
1436 case Mips::ATOMIC_LOAD_ADD_I32:
1437 AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
1438 break;
1439 case Mips::ATOMIC_LOAD_SUB_I32:
1440 AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
1441 break;
1442 case Mips::ATOMIC_LOAD_AND_I32:
1443 AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
1444 break;
1445 case Mips::ATOMIC_LOAD_OR_I32:
1446 AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
1447 break;
1448 case Mips::ATOMIC_LOAD_XOR_I32:
1449 AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
1450 break;
1451 case Mips::ATOMIC_LOAD_NAND_I32:
1452 AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
1453 break;
1454 case Mips::ATOMIC_SWAP_I32:
1455 AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
1456 break;
1457 case Mips::ATOMIC_LOAD_ADD_I64:
1458 AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
1459 break;
1460 case Mips::ATOMIC_LOAD_SUB_I64:
1461 AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
1462 break;
1463 case Mips::ATOMIC_LOAD_AND_I64:
1464 AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
1465 break;
1466 case Mips::ATOMIC_LOAD_OR_I64:
1467 AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
1468 break;
1469 case Mips::ATOMIC_LOAD_XOR_I64:
1470 AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
1471 break;
1472 case Mips::ATOMIC_LOAD_NAND_I64:
1473 AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
1474 break;
1475 case Mips::ATOMIC_SWAP_I64:
1476 AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
1477 break;
1478 default:
1479 llvm_unreachable("Unknown pseudo atomic for replacement!");
1482 Register OldVal = MI.getOperand(0).getReg();
1483 Register Ptr = MI.getOperand(1).getReg();
1484 Register Incr = MI.getOperand(2).getReg();
1485 Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1487 MachineBasicBlock::iterator II(MI);
1489 // The scratch registers here with the EarlyClobber | Define | Implicit
1490 // flags is used to persuade the register allocator and the machine
1491 // verifier to accept the usage of this register. This has to be a real
1492 // register which has an UNDEF value but is dead after the instruction which
1493 // is unique among the registers chosen for the instruction.
1495 // The EarlyClobber flag has the semantic properties that the operand it is
1496 // attached to is clobbered before the rest of the inputs are read. Hence it
1497 // must be unique among the operands to the instruction.
1498 // The Define flag is needed to coerce the machine verifier that an Undef
1499 // value isn't a problem.
1500 // The Dead flag is needed as the value in scratch isn't used by any other
1501 // instruction. Kill isn't used as Dead is more precise.
1502 // The implicit flag is here due to the interaction between the other flags
1503 // and the machine verifier.
1505 // For correctness purpose, a new pseudo is introduced here. We need this
1506 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1507 // that is spread over >1 basic blocks. A register allocator which
1508 // introduces (or any codegen infact) a store, can violate the expectations
1509 // of the hardware.
1511 // An atomic read-modify-write sequence starts with a linked load
1512 // instruction and ends with a store conditional instruction. The atomic
1513 // read-modify-write sequence fails if any of the following conditions
1514 // occur between the execution of ll and sc:
1515 // * A coherent store is completed by another process or coherent I/O
1516 // module into the block of synchronizable physical memory containing
1517 // the word. The size and alignment of the block is
1518 // implementation-dependent.
1519 // * A coherent store is executed between an LL and SC sequence on the
1520 // same processor to the block of synchornizable physical memory
1521 // containing the word.
1524 Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
1525 Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
1527 BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
1528 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1530 BuildMI(*BB, II, DL, TII->get(AtomicOp))
1531 .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
1532 .addReg(PtrCopy)
1533 .addReg(IncrCopy)
1534 .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
1535 RegState::Implicit | RegState::Dead);
1537 MI.eraseFromParent();
1539 return BB;
1542 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1543 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1544 unsigned SrcReg) const {
1545 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1546 const DebugLoc &DL = MI.getDebugLoc();
1548 if (Subtarget.hasMips32r2() && Size == 1) {
1549 BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1550 return BB;
1553 if (Subtarget.hasMips32r2() && Size == 2) {
1554 BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1555 return BB;
1558 MachineFunction *MF = BB->getParent();
1559 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1560 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1561 Register ScrReg = RegInfo.createVirtualRegister(RC);
1563 assert(Size < 32);
1564 int64_t ShiftImm = 32 - (Size * 8);
1566 BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1567 BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1569 return BB;
1572 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1573 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1574 assert((Size == 1 || Size == 2) &&
1575 "Unsupported size for EmitAtomicBinaryPartial.");
1577 MachineFunction *MF = BB->getParent();
1578 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1579 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1580 const bool ArePtrs64bit = ABI.ArePtrs64bit();
1581 const TargetRegisterClass *RCp =
1582 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1583 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1584 DebugLoc DL = MI.getDebugLoc();
1586 Register Dest = MI.getOperand(0).getReg();
1587 Register Ptr = MI.getOperand(1).getReg();
1588 Register Incr = MI.getOperand(2).getReg();
1590 Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1591 Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1592 Register Mask = RegInfo.createVirtualRegister(RC);
1593 Register Mask2 = RegInfo.createVirtualRegister(RC);
1594 Register Incr2 = RegInfo.createVirtualRegister(RC);
1595 Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1596 Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1597 Register MaskUpper = RegInfo.createVirtualRegister(RC);
1598 Register Scratch = RegInfo.createVirtualRegister(RC);
1599 Register Scratch2 = RegInfo.createVirtualRegister(RC);
1600 Register Scratch3 = RegInfo.createVirtualRegister(RC);
1602 unsigned AtomicOp = 0;
1603 switch (MI.getOpcode()) {
1604 case Mips::ATOMIC_LOAD_NAND_I8:
1605 AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
1606 break;
1607 case Mips::ATOMIC_LOAD_NAND_I16:
1608 AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
1609 break;
1610 case Mips::ATOMIC_SWAP_I8:
1611 AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
1612 break;
1613 case Mips::ATOMIC_SWAP_I16:
1614 AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
1615 break;
1616 case Mips::ATOMIC_LOAD_ADD_I8:
1617 AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
1618 break;
1619 case Mips::ATOMIC_LOAD_ADD_I16:
1620 AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
1621 break;
1622 case Mips::ATOMIC_LOAD_SUB_I8:
1623 AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
1624 break;
1625 case Mips::ATOMIC_LOAD_SUB_I16:
1626 AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
1627 break;
1628 case Mips::ATOMIC_LOAD_AND_I8:
1629 AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
1630 break;
1631 case Mips::ATOMIC_LOAD_AND_I16:
1632 AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
1633 break;
1634 case Mips::ATOMIC_LOAD_OR_I8:
1635 AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
1636 break;
1637 case Mips::ATOMIC_LOAD_OR_I16:
1638 AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
1639 break;
1640 case Mips::ATOMIC_LOAD_XOR_I8:
1641 AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
1642 break;
1643 case Mips::ATOMIC_LOAD_XOR_I16:
1644 AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
1645 break;
1646 default:
1647 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1650 // insert new blocks after the current block
1651 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1652 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1653 MachineFunction::iterator It = ++BB->getIterator();
1654 MF->insert(It, exitMBB);
1656 // Transfer the remainder of BB and its successor edges to exitMBB.
1657 exitMBB->splice(exitMBB->begin(), BB,
1658 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1659 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1661 BB->addSuccessor(exitMBB, BranchProbability::getOne());
1663 // thisMBB:
1664 // addiu masklsb2,$0,-4 # 0xfffffffc
1665 // and alignedaddr,ptr,masklsb2
1666 // andi ptrlsb2,ptr,3
1667 // sll shiftamt,ptrlsb2,3
1668 // ori maskupper,$0,255 # 0xff
1669 // sll mask,maskupper,shiftamt
1670 // nor mask2,$0,mask
1671 // sll incr2,incr,shiftamt
1673 int64_t MaskImm = (Size == 1) ? 255 : 65535;
1674 BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
1675 .addReg(ABI.GetNullPtr()).addImm(-4);
1676 BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
1677 .addReg(Ptr).addReg(MaskLSB2);
1678 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1679 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1680 if (Subtarget.isLittle()) {
1681 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1682 } else {
1683 Register Off = RegInfo.createVirtualRegister(RC);
1684 BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1685 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1686 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1688 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1689 .addReg(Mips::ZERO).addImm(MaskImm);
1690 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1691 .addReg(MaskUpper).addReg(ShiftAmt);
1692 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1693 BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1696 // The purposes of the flags on the scratch registers is explained in
1697 // emitAtomicBinary. In summary, we need a scratch register which is going to
1698 // be undef, that is unique among registers chosen for the instruction.
1700 BuildMI(BB, DL, TII->get(AtomicOp))
1701 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1702 .addReg(AlignedAddr)
1703 .addReg(Incr2)
1704 .addReg(Mask)
1705 .addReg(Mask2)
1706 .addReg(ShiftAmt)
1707 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1708 RegState::Dead | RegState::Implicit)
1709 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1710 RegState::Dead | RegState::Implicit)
1711 .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
1712 RegState::Dead | RegState::Implicit);
1714 MI.eraseFromParent(); // The instruction is gone now.
1716 return exitMBB;
1719 // Lower atomic compare and swap to a pseudo instruction, taking care to
1720 // define a scratch register for the pseudo instruction's expansion. The
1721 // instruction is expanded after the register allocator as to prevent
1722 // the insertion of stores between the linked load and the store conditional.
1724 MachineBasicBlock *
1725 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
1726 MachineBasicBlock *BB) const {
1728 assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
1729 MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
1730 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1732 const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
1734 MachineFunction *MF = BB->getParent();
1735 MachineRegisterInfo &MRI = MF->getRegInfo();
1736 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1737 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1738 DebugLoc DL = MI.getDebugLoc();
1740 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1741 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1742 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
1743 Register Dest = MI.getOperand(0).getReg();
1744 Register Ptr = MI.getOperand(1).getReg();
1745 Register OldVal = MI.getOperand(2).getReg();
1746 Register NewVal = MI.getOperand(3).getReg();
1748 Register Scratch = MRI.createVirtualRegister(RC);
1749 MachineBasicBlock::iterator II(MI);
1751 // We need to create copies of the various registers and kill them at the
1752 // atomic pseudo. If the copies are not made, when the atomic is expanded
1753 // after fast register allocation, the spills will end up outside of the
1754 // blocks that their values are defined in, causing livein errors.
1756 Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
1757 Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
1758 Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
1760 BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1761 BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
1762 BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
1764 // The purposes of the flags on the scratch registers is explained in
1765 // emitAtomicBinary. In summary, we need a scratch register which is going to
1766 // be undef, that is unique among registers chosen for the instruction.
1768 BuildMI(*BB, II, DL, TII->get(AtomicOp))
1769 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1770 .addReg(PtrCopy, RegState::Kill)
1771 .addReg(OldValCopy, RegState::Kill)
1772 .addReg(NewValCopy, RegState::Kill)
1773 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1774 RegState::Dead | RegState::Implicit);
1776 MI.eraseFromParent(); // The instruction is gone now.
1778 return BB;
1781 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
1782 MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1783 assert((Size == 1 || Size == 2) &&
1784 "Unsupported size for EmitAtomicCmpSwapPartial.");
1786 MachineFunction *MF = BB->getParent();
1787 MachineRegisterInfo &RegInfo = MF->getRegInfo();
1788 const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1789 const bool ArePtrs64bit = ABI.ArePtrs64bit();
1790 const TargetRegisterClass *RCp =
1791 getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1792 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1793 DebugLoc DL = MI.getDebugLoc();
1795 Register Dest = MI.getOperand(0).getReg();
1796 Register Ptr = MI.getOperand(1).getReg();
1797 Register CmpVal = MI.getOperand(2).getReg();
1798 Register NewVal = MI.getOperand(3).getReg();
1800 Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1801 Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1802 Register Mask = RegInfo.createVirtualRegister(RC);
1803 Register Mask2 = RegInfo.createVirtualRegister(RC);
1804 Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1805 Register ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1806 Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1807 Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1808 Register MaskUpper = RegInfo.createVirtualRegister(RC);
1809 Register MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1810 Register MaskedNewVal = RegInfo.createVirtualRegister(RC);
1811 unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1812 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1813 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
1815 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1816 // flags are used to coerce the register allocator and the machine verifier to
1817 // accept the usage of these registers.
1818 // The EarlyClobber flag has the semantic properties that the operand it is
1819 // attached to is clobbered before the rest of the inputs are read. Hence it
1820 // must be unique among the operands to the instruction.
1821 // The Define flag is needed to coerce the machine verifier that an Undef
1822 // value isn't a problem.
1823 // The Dead flag is needed as the value in scratch isn't used by any other
1824 // instruction. Kill isn't used as Dead is more precise.
1825 Register Scratch = RegInfo.createVirtualRegister(RC);
1826 Register Scratch2 = RegInfo.createVirtualRegister(RC);
1828 // insert new blocks after the current block
1829 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1830 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1831 MachineFunction::iterator It = ++BB->getIterator();
1832 MF->insert(It, exitMBB);
1834 // Transfer the remainder of BB and its successor edges to exitMBB.
1835 exitMBB->splice(exitMBB->begin(), BB,
1836 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1837 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1839 BB->addSuccessor(exitMBB, BranchProbability::getOne());
1841 // thisMBB:
1842 // addiu masklsb2,$0,-4 # 0xfffffffc
1843 // and alignedaddr,ptr,masklsb2
1844 // andi ptrlsb2,ptr,3
1845 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1846 // sll shiftamt,ptrlsb2,3
1847 // ori maskupper,$0,255 # 0xff
1848 // sll mask,maskupper,shiftamt
1849 // nor mask2,$0,mask
1850 // andi maskedcmpval,cmpval,255
1851 // sll shiftedcmpval,maskedcmpval,shiftamt
1852 // andi maskednewval,newval,255
1853 // sll shiftednewval,maskednewval,shiftamt
1854 int64_t MaskImm = (Size == 1) ? 255 : 65535;
1855 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
1856 .addReg(ABI.GetNullPtr()).addImm(-4);
1857 BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
1858 .addReg(Ptr).addReg(MaskLSB2);
1859 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1860 .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1861 if (Subtarget.isLittle()) {
1862 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1863 } else {
1864 Register Off = RegInfo.createVirtualRegister(RC);
1865 BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1866 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1867 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1869 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1870 .addReg(Mips::ZERO).addImm(MaskImm);
1871 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1872 .addReg(MaskUpper).addReg(ShiftAmt);
1873 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1874 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1875 .addReg(CmpVal).addImm(MaskImm);
1876 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1877 .addReg(MaskedCmpVal).addReg(ShiftAmt);
1878 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1879 .addReg(NewVal).addImm(MaskImm);
1880 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1881 .addReg(MaskedNewVal).addReg(ShiftAmt);
1883 // The purposes of the flags on the scratch registers are explained in
1884 // emitAtomicBinary. In summary, we need a scratch register which is going to
1885 // be undef, that is unique among the register chosen for the instruction.
1887 BuildMI(BB, DL, TII->get(AtomicOp))
1888 .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1889 .addReg(AlignedAddr)
1890 .addReg(Mask)
1891 .addReg(ShiftedCmpVal)
1892 .addReg(Mask2)
1893 .addReg(ShiftedNewVal)
1894 .addReg(ShiftAmt)
1895 .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1896 RegState::Dead | RegState::Implicit)
1897 .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1898 RegState::Dead | RegState::Implicit);
1900 MI.eraseFromParent(); // The instruction is gone now.
1902 return exitMBB;
1905 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1906 // The first operand is the chain, the second is the condition, the third is
1907 // the block to branch to if the condition is true.
1908 SDValue Chain = Op.getOperand(0);
1909 SDValue Dest = Op.getOperand(2);
1910 SDLoc DL(Op);
1912 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1913 SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
1915 // Return if flag is not set by a floating point comparison.
1916 if (CondRes.getOpcode() != MipsISD::FPCmp)
1917 return Op;
1919 SDValue CCNode = CondRes.getOperand(2);
1920 Mips::CondCode CC =
1921 (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1922 unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
1923 SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
1924 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
1925 return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
1926 FCC0, Dest, CondRes);
1929 SDValue MipsTargetLowering::
1930 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
1932 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1933 SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
1935 // Return if flag is not set by a floating point comparison.
1936 if (Cond.getOpcode() != MipsISD::FPCmp)
1937 return Op;
1939 return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1940 SDLoc(Op));
1943 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1944 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
1945 SDValue Cond = createFPCmp(DAG, Op);
1947 assert(Cond.getOpcode() == MipsISD::FPCmp &&
1948 "Floating point operand expected.");
1950 SDLoc DL(Op);
1951 SDValue True = DAG.getConstant(1, DL, MVT::i32);
1952 SDValue False = DAG.getConstant(0, DL, MVT::i32);
1954 return createCMovFP(DAG, Cond, True, False, DL);
1957 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
1958 SelectionDAG &DAG) const {
1959 EVT Ty = Op.getValueType();
1960 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1961 const GlobalValue *GV = N->getGlobal();
1963 if (!isPositionIndependent()) {
1964 const MipsTargetObjectFile *TLOF =
1965 static_cast<const MipsTargetObjectFile *>(
1966 getTargetMachine().getObjFileLowering());
1967 const GlobalObject *GO = GV->getBaseObject();
1968 if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
1969 // %gp_rel relocation
1970 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
1972 // %hi/%lo relocation
1973 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
1974 // %highest/%higher/%hi/%lo relocation
1975 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
1978 // Every other architecture would use shouldAssumeDSOLocal in here, but
1979 // mips is special.
1980 // * In PIC code mips requires got loads even for local statics!
1981 // * To save on got entries, for local statics the got entry contains the
1982 // page and an additional add instruction takes care of the low bits.
1983 // * It is legal to access a hidden symbol with a non hidden undefined,
1984 // so one cannot guarantee that all access to a hidden symbol will know
1985 // it is hidden.
1986 // * Mips linkers don't support creating a page and a full got entry for
1987 // the same symbol.
1988 // * Given all that, we have to use a full got entry for hidden symbols :-(
1989 if (GV->hasLocalLinkage())
1990 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
1992 if (LargeGOT)
1993 return getAddrGlobalLargeGOT(
1994 N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
1995 DAG.getEntryNode(),
1996 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1998 return getAddrGlobal(
1999 N, SDLoc(N), Ty, DAG,
2000 (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
2001 DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2004 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
2005 SelectionDAG &DAG) const {
2006 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2007 EVT Ty = Op.getValueType();
2009 if (!isPositionIndependent())
2010 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2011 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2013 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2016 SDValue MipsTargetLowering::
2017 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2019 // If the relocation model is PIC, use the General Dynamic TLS Model or
2020 // Local Dynamic TLS model, otherwise use the Initial Exec or
2021 // Local Exec TLS Model.
2023 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2024 if (DAG.getTarget().useEmulatedTLS())
2025 return LowerToTLSEmulatedModel(GA, DAG);
2027 SDLoc DL(GA);
2028 const GlobalValue *GV = GA->getGlobal();
2029 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2031 TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2033 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2034 // General Dynamic and Local Dynamic TLS Model.
2035 unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2036 : MipsII::MO_TLSGD;
2038 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
2039 SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
2040 getGlobalReg(DAG, PtrVT), TGA);
2041 unsigned PtrSize = PtrVT.getSizeInBits();
2042 IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2044 SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2046 ArgListTy Args;
2047 ArgListEntry Entry;
2048 Entry.Node = Argument;
2049 Entry.Ty = PtrTy;
2050 Args.push_back(Entry);
2052 TargetLowering::CallLoweringInfo CLI(DAG);
2053 CLI.setDebugLoc(DL)
2054 .setChain(DAG.getEntryNode())
2055 .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
2056 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2058 SDValue Ret = CallResult.first;
2060 if (model != TLSModel::LocalDynamic)
2061 return Ret;
2063 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2064 MipsII::MO_DTPREL_HI);
2065 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2066 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2067 MipsII::MO_DTPREL_LO);
2068 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2069 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
2070 return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
2073 SDValue Offset;
2074 if (model == TLSModel::InitialExec) {
2075 // Initial Exec TLS Model
2076 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2077 MipsII::MO_GOTTPREL);
2078 TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
2079 TGA);
2080 Offset =
2081 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
2082 } else {
2083 // Local Exec TLS Model
2084 assert(model == TLSModel::LocalExec);
2085 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2086 MipsII::MO_TPREL_HI);
2087 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2088 MipsII::MO_TPREL_LO);
2089 SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2090 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2091 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2094 SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2095 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
2098 SDValue MipsTargetLowering::
2099 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2101 JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2102 EVT Ty = Op.getValueType();
2104 if (!isPositionIndependent())
2105 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2106 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2108 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2111 SDValue MipsTargetLowering::
2112 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2114 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2115 EVT Ty = Op.getValueType();
2117 if (!isPositionIndependent()) {
2118 const MipsTargetObjectFile *TLOF =
2119 static_cast<const MipsTargetObjectFile *>(
2120 getTargetMachine().getObjFileLowering());
2122 if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
2123 getTargetMachine()))
2124 // %gp_rel relocation
2125 return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2127 return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2128 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2131 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2134 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2135 MachineFunction &MF = DAG.getMachineFunction();
2136 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2138 SDLoc DL(Op);
2139 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2140 getPointerTy(MF.getDataLayout()));
2142 // vastart just stores the address of the VarArgsFrameIndex slot into the
2143 // memory location argument.
2144 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2145 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2146 MachinePointerInfo(SV));
2149 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2150 SDNode *Node = Op.getNode();
2151 EVT VT = Node->getValueType(0);
2152 SDValue Chain = Node->getOperand(0);
2153 SDValue VAListPtr = Node->getOperand(1);
2154 const llvm::Align Align =
2155 llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne();
2156 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2157 SDLoc DL(Node);
2158 unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
2160 SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
2161 VAListPtr, MachinePointerInfo(SV));
2162 SDValue VAList = VAListLoad;
2164 // Re-align the pointer if necessary.
2165 // It should only ever be necessary for 64-bit types on O32 since the minimum
2166 // argument alignment is the same as the maximum type alignment for N32/N64.
2168 // FIXME: We currently align too often. The code generator doesn't notice
2169 // when the pointer is still aligned from the last va_arg (or pair of
2170 // va_args for the i64 on O32 case).
2171 if (Align > getMinStackArgumentAlignment()) {
2172 VAList = DAG.getNode(
2173 ISD::ADD, DL, VAList.getValueType(), VAList,
2174 DAG.getConstant(Align.value() - 1, DL, VAList.getValueType()));
2176 VAList = DAG.getNode(
2177 ISD::AND, DL, VAList.getValueType(), VAList,
2178 DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType()));
2181 // Increment the pointer, VAList, to the next vaarg.
2182 auto &TD = DAG.getDataLayout();
2183 unsigned ArgSizeInBytes =
2184 TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
2185 SDValue Tmp3 =
2186 DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2187 DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
2188 DL, VAList.getValueType()));
2189 // Store the incremented VAList to the legalized pointer
2190 Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
2191 MachinePointerInfo(SV));
2193 // In big-endian mode we must adjust the pointer when the load size is smaller
2194 // than the argument slot size. We must also reduce the known alignment to
2195 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2196 // the correct half of the slot, and reduce the alignment from 8 (slot
2197 // alignment) down to 4 (type alignment).
2198 if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
2199 unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
2200 VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
2201 DAG.getIntPtrConstant(Adjustment, DL));
2203 // Load the actual argument out of the pointer VAList
2204 return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
2207 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
2208 bool HasExtractInsert) {
2209 EVT TyX = Op.getOperand(0).getValueType();
2210 EVT TyY = Op.getOperand(1).getValueType();
2211 SDLoc DL(Op);
2212 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2213 SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
2214 SDValue Res;
2216 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2217 // to i32.
2218 SDValue X = (TyX == MVT::f32) ?
2219 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2220 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2221 Const1);
2222 SDValue Y = (TyY == MVT::f32) ?
2223 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2224 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2225 Const1);
2227 if (HasExtractInsert) {
2228 // ext E, Y, 31, 1 ; extract bit31 of Y
2229 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2230 SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2231 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2232 } else {
2233 // sll SllX, X, 1
2234 // srl SrlX, SllX, 1
2235 // srl SrlY, Y, 31
2236 // sll SllY, SrlX, 31
2237 // or Or, SrlX, SllY
2238 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2239 SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2240 SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2241 SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2242 Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2245 if (TyX == MVT::f32)
2246 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2248 SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2249 Op.getOperand(0),
2250 DAG.getConstant(0, DL, MVT::i32));
2251 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2254 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
2255 bool HasExtractInsert) {
2256 unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2257 unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2258 EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2259 SDLoc DL(Op);
2260 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2262 // Bitcast to integer nodes.
2263 SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2264 SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2266 if (HasExtractInsert) {
2267 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2268 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2269 SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2270 DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
2272 if (WidthX > WidthY)
2273 E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2274 else if (WidthY > WidthX)
2275 E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2277 SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2278 DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
2280 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2283 // (d)sll SllX, X, 1
2284 // (d)srl SrlX, SllX, 1
2285 // (d)srl SrlY, Y, width(Y)-1
2286 // (d)sll SllY, SrlX, width(Y)-1
2287 // or Or, SrlX, SllY
2288 SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2289 SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2290 SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2291 DAG.getConstant(WidthY - 1, DL, MVT::i32));
2293 if (WidthX > WidthY)
2294 SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2295 else if (WidthY > WidthX)
2296 SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2298 SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2299 DAG.getConstant(WidthX - 1, DL, MVT::i32));
2300 SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2301 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2304 SDValue
2305 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2306 if (Subtarget.isGP64bit())
2307 return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
2309 return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
2312 static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
2313 bool HasExtractInsert) {
2314 SDLoc DL(Op);
2315 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2317 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2318 // to i32.
2319 SDValue X = (Op.getValueType() == MVT::f32)
2320 ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
2321 : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2322 Op.getOperand(0), Const1);
2324 // Clear MSB.
2325 if (HasExtractInsert)
2326 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2327 DAG.getRegister(Mips::ZERO, MVT::i32),
2328 DAG.getConstant(31, DL, MVT::i32), Const1, X);
2329 else {
2330 // TODO: Provide DAG patterns which transform (and x, cst)
2331 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2332 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2333 Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2336 if (Op.getValueType() == MVT::f32)
2337 return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2339 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2340 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2341 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2342 // place.
2343 SDValue LowX =
2344 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2345 DAG.getConstant(0, DL, MVT::i32));
2346 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2349 static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
2350 bool HasExtractInsert) {
2351 SDLoc DL(Op);
2352 SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2354 // Bitcast to integer node.
2355 SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2357 // Clear MSB.
2358 if (HasExtractInsert)
2359 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2360 DAG.getRegister(Mips::ZERO_64, MVT::i64),
2361 DAG.getConstant(63, DL, MVT::i32), Const1, X);
2362 else {
2363 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2364 Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2367 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2370 SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
2371 if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
2372 return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());
2374 return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
2377 SDValue MipsTargetLowering::
2378 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2379 // check the depth
2380 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2381 DAG.getContext()->emitError(
2382 "return address can be determined only for current frame");
2383 return SDValue();
2386 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2387 MFI.setFrameAddressIsTaken(true);
2388 EVT VT = Op.getValueType();
2389 SDLoc DL(Op);
2390 SDValue FrameAddr = DAG.getCopyFromReg(
2391 DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
2392 return FrameAddr;
2395 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
2396 SelectionDAG &DAG) const {
2397 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2398 return SDValue();
2400 // check the depth
2401 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2402 DAG.getContext()->emitError(
2403 "return address can be determined only for current frame");
2404 return SDValue();
2407 MachineFunction &MF = DAG.getMachineFunction();
2408 MachineFrameInfo &MFI = MF.getFrameInfo();
2409 MVT VT = Op.getSimpleValueType();
2410 unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2411 MFI.setReturnAddressIsTaken(true);
2413 // Return RA, which contains the return address. Mark it an implicit live-in.
2414 unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2415 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2418 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2419 // generated from __builtin_eh_return (offset, handler)
2420 // The effect of this is to adjust the stack pointer by "offset"
2421 // and then branch to "handler".
2422 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2423 const {
2424 MachineFunction &MF = DAG.getMachineFunction();
2425 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2427 MipsFI->setCallsEhReturn();
2428 SDValue Chain = Op.getOperand(0);
2429 SDValue Offset = Op.getOperand(1);
2430 SDValue Handler = Op.getOperand(2);
2431 SDLoc DL(Op);
2432 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2434 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2435 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2436 unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2437 unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2438 Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2439 Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2440 return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2441 DAG.getRegister(OffsetReg, Ty),
2442 DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
2443 Chain.getValue(1));
2446 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2447 SelectionDAG &DAG) const {
2448 // FIXME: Need pseudo-fence for 'singlethread' fences
2449 // FIXME: Set SType for weaker fences where supported/appropriate.
2450 unsigned SType = 0;
2451 SDLoc DL(Op);
2452 return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2453 DAG.getConstant(SType, DL, MVT::i32));
2456 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2457 SelectionDAG &DAG) const {
2458 SDLoc DL(Op);
2459 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2461 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2462 SDValue Shamt = Op.getOperand(2);
2463 // if shamt < (VT.bits):
2464 // lo = (shl lo, shamt)
2465 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2466 // else:
2467 // lo = 0
2468 // hi = (shl lo, shamt[4:0])
2469 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2470 DAG.getConstant(-1, DL, MVT::i32));
2471 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2472 DAG.getConstant(1, DL, VT));
2473 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2474 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2475 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2476 SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2477 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2478 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2479 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2480 DAG.getConstant(0, DL, VT), ShiftLeftLo);
2481 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2483 SDValue Ops[2] = {Lo, Hi};
2484 return DAG.getMergeValues(Ops, DL);
2487 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2488 bool IsSRA) const {
2489 SDLoc DL(Op);
2490 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2491 SDValue Shamt = Op.getOperand(2);
2492 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2494 // if shamt < (VT.bits):
2495 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2496 // if isSRA:
2497 // hi = (sra hi, shamt)
2498 // else:
2499 // hi = (srl hi, shamt)
2500 // else:
2501 // if isSRA:
2502 // lo = (sra hi, shamt[4:0])
2503 // hi = (sra hi, 31)
2504 // else:
2505 // lo = (srl hi, shamt[4:0])
2506 // hi = 0
2507 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2508 DAG.getConstant(-1, DL, MVT::i32));
2509 SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2510 DAG.getConstant(1, DL, VT));
2511 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2512 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2513 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2514 SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2515 DL, VT, Hi, Shamt);
2516 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2517 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2518 SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
2519 DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
2521 if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
2522 SDVTList VTList = DAG.getVTList(VT, VT);
2523 return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
2524 : Mips::PseudoD_SELECT_I,
2525 DL, VTList, Cond, ShiftRightHi,
2526 IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
2527 ShiftRightHi);
2530 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2531 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2532 IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
2534 SDValue Ops[2] = {Lo, Hi};
2535 return DAG.getMergeValues(Ops, DL);
2538 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2539 SDValue Chain, SDValue Src, unsigned Offset) {
2540 SDValue Ptr = LD->getBasePtr();
2541 EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2542 EVT BasePtrVT = Ptr.getValueType();
2543 SDLoc DL(LD);
2544 SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2546 if (Offset)
2547 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2548 DAG.getConstant(Offset, DL, BasePtrVT));
2550 SDValue Ops[] = { Chain, Ptr, Src };
2551 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2552 LD->getMemOperand());
2555 // Expand an unaligned 32 or 64-bit integer load node.
2556 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2557 LoadSDNode *LD = cast<LoadSDNode>(Op);
2558 EVT MemVT = LD->getMemoryVT();
2560 if (Subtarget.systemSupportsUnalignedAccess())
2561 return Op;
2563 // Return if load is aligned or if MemVT is neither i32 nor i64.
2564 if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2565 ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2566 return SDValue();
2568 bool IsLittle = Subtarget.isLittle();
2569 EVT VT = Op.getValueType();
2570 ISD::LoadExtType ExtType = LD->getExtensionType();
2571 SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2573 assert((VT == MVT::i32) || (VT == MVT::i64));
2575 // Expand
2576 // (set dst, (i64 (load baseptr)))
2577 // to
2578 // (set tmp, (ldl (add baseptr, 7), undef))
2579 // (set dst, (ldr baseptr, tmp))
2580 if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2581 SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2582 IsLittle ? 7 : 0);
2583 return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2584 IsLittle ? 0 : 7);
2587 SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2588 IsLittle ? 3 : 0);
2589 SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2590 IsLittle ? 0 : 3);
2592 // Expand
2593 // (set dst, (i32 (load baseptr))) or
2594 // (set dst, (i64 (sextload baseptr))) or
2595 // (set dst, (i64 (extload baseptr)))
2596 // to
2597 // (set tmp, (lwl (add baseptr, 3), undef))
2598 // (set dst, (lwr baseptr, tmp))
2599 if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2600 (ExtType == ISD::EXTLOAD))
2601 return LWR;
2603 assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2605 // Expand
2606 // (set dst, (i64 (zextload baseptr)))
2607 // to
2608 // (set tmp0, (lwl (add baseptr, 3), undef))
2609 // (set tmp1, (lwr baseptr, tmp0))
2610 // (set tmp2, (shl tmp1, 32))
2611 // (set dst, (srl tmp2, 32))
2612 SDLoc DL(LD);
2613 SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
2614 SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2615 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2616 SDValue Ops[] = { SRL, LWR.getValue(1) };
2617 return DAG.getMergeValues(Ops, DL);
2620 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2621 SDValue Chain, unsigned Offset) {
2622 SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2623 EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2624 SDLoc DL(SD);
2625 SDVTList VTList = DAG.getVTList(MVT::Other);
2627 if (Offset)
2628 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2629 DAG.getConstant(Offset, DL, BasePtrVT));
2631 SDValue Ops[] = { Chain, Value, Ptr };
2632 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2633 SD->getMemOperand());
2636 // Expand an unaligned 32 or 64-bit integer store node.
2637 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2638 bool IsLittle) {
2639 SDValue Value = SD->getValue(), Chain = SD->getChain();
2640 EVT VT = Value.getValueType();
2642 // Expand
2643 // (store val, baseptr) or
2644 // (truncstore val, baseptr)
2645 // to
2646 // (swl val, (add baseptr, 3))
2647 // (swr val, baseptr)
2648 if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2649 SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2650 IsLittle ? 3 : 0);
2651 return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2654 assert(VT == MVT::i64);
2656 // Expand
2657 // (store val, baseptr)
2658 // to
2659 // (sdl val, (add baseptr, 7))
2660 // (sdr val, baseptr)
2661 SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2662 return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2665 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2666 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
2667 bool SingleFloat) {
2668 SDValue Val = SD->getValue();
2670 if (Val.getOpcode() != ISD::FP_TO_SINT ||
2671 (Val.getValueSizeInBits() > 32 && SingleFloat))
2672 return SDValue();
2674 EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2675 SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2676 Val.getOperand(0));
2677 return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2678 SD->getPointerInfo(), SD->getAlignment(),
2679 SD->getMemOperand()->getFlags());
2682 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2683 StoreSDNode *SD = cast<StoreSDNode>(Op);
2684 EVT MemVT = SD->getMemoryVT();
2686 // Lower unaligned integer stores.
2687 if (!Subtarget.systemSupportsUnalignedAccess() &&
2688 (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2689 ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2690 return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2692 return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
2695 SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
2696 SelectionDAG &DAG) const {
2698 // Return a fixed StackObject with offset 0 which points to the old stack
2699 // pointer.
2700 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2701 EVT ValTy = Op->getValueType(0);
2702 int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2703 return DAG.getFrameIndex(FI, ValTy);
2706 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2707 SelectionDAG &DAG) const {
2708 if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
2709 return SDValue();
2711 EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2712 SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2713 Op.getOperand(0));
2714 return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2717 //===----------------------------------------------------------------------===//
2718 // Calling Convention Implementation
2719 //===----------------------------------------------------------------------===//
2721 //===----------------------------------------------------------------------===//
2722 // TODO: Implement a generic logic using tblgen that can support this.
2723 // Mips O32 ABI rules:
2724 // ---
2725 // i32 - Passed in A0, A1, A2, A3 and stack
2726 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2727 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2728 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2729 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2730 // not used, it must be shadowed. If only A3 is available, shadow it and
2731 // go to stack.
2732 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2733 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2734 // with the remainder spilled to the stack.
2735 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2736 // spilling the remainder to the stack.
2738 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2739 //===----------------------------------------------------------------------===//
2741 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2742 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2743 CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2744 const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2745 State.getMachineFunction().getSubtarget());
2747 static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2749 const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
2751 static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2753 static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
2755 // Do not process byval args here.
2756 if (ArgFlags.isByVal())
2757 return true;
2759 // Promote i8 and i16
2760 if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2761 if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2762 LocVT = MVT::i32;
2763 if (ArgFlags.isSExt())
2764 LocInfo = CCValAssign::SExtUpper;
2765 else if (ArgFlags.isZExt())
2766 LocInfo = CCValAssign::ZExtUpper;
2767 else
2768 LocInfo = CCValAssign::AExtUpper;
2772 // Promote i8 and i16
2773 if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2774 LocVT = MVT::i32;
2775 if (ArgFlags.isSExt())
2776 LocInfo = CCValAssign::SExt;
2777 else if (ArgFlags.isZExt())
2778 LocInfo = CCValAssign::ZExt;
2779 else
2780 LocInfo = CCValAssign::AExt;
2783 unsigned Reg;
2785 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2786 // is true: function is vararg, argument is 3rd or higher, there is previous
2787 // argument which is not f32 or f64.
2788 bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2789 State.getFirstUnallocated(F32Regs) != ValNo;
2790 unsigned OrigAlign = ArgFlags.getOrigAlign();
2791 bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2792 bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
2794 // The MIPS vector ABI for floats passes them in a pair of registers
2795 if (ValVT == MVT::i32 && isVectorFloat) {
2796 // This is the start of an vector that was scalarized into an unknown number
2797 // of components. It doesn't matter how many there are. Allocate one of the
2798 // notional 8 byte aligned registers which map onto the argument stack, and
2799 // shadow the register lost to alignment requirements.
2800 if (ArgFlags.isSplit()) {
2801 Reg = State.AllocateReg(FloatVectorIntRegs);
2802 if (Reg == Mips::A2)
2803 State.AllocateReg(Mips::A1);
2804 else if (Reg == 0)
2805 State.AllocateReg(Mips::A3);
2806 } else {
2807 // If we're an intermediate component of the split, we can just attempt to
2808 // allocate a register directly.
2809 Reg = State.AllocateReg(IntRegs);
2811 } else if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2812 Reg = State.AllocateReg(IntRegs);
2813 // If this is the first part of an i64 arg,
2814 // the allocated register must be either A0 or A2.
2815 if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2816 Reg = State.AllocateReg(IntRegs);
2817 LocVT = MVT::i32;
2818 } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2819 // Allocate int register and shadow next int register. If first
2820 // available register is Mips::A1 or Mips::A3, shadow it too.
2821 Reg = State.AllocateReg(IntRegs);
2822 if (Reg == Mips::A1 || Reg == Mips::A3)
2823 Reg = State.AllocateReg(IntRegs);
2824 State.AllocateReg(IntRegs);
2825 LocVT = MVT::i32;
2826 } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2827 // we are guaranteed to find an available float register
2828 if (ValVT == MVT::f32) {
2829 Reg = State.AllocateReg(F32Regs);
2830 // Shadow int register
2831 State.AllocateReg(IntRegs);
2832 } else {
2833 Reg = State.AllocateReg(F64Regs);
2834 // Shadow int registers
2835 unsigned Reg2 = State.AllocateReg(IntRegs);
2836 if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2837 State.AllocateReg(IntRegs);
2838 State.AllocateReg(IntRegs);
2840 } else
2841 llvm_unreachable("Cannot handle this ValVT.");
2843 if (!Reg) {
2844 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
2845 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2846 } else
2847 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2849 return false;
2852 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2853 MVT LocVT, CCValAssign::LocInfo LocInfo,
2854 ISD::ArgFlagsTy ArgFlags, CCState &State) {
2855 static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2857 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2860 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2861 MVT LocVT, CCValAssign::LocInfo LocInfo,
2862 ISD::ArgFlagsTy ArgFlags, CCState &State) {
2863 static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2865 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2868 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2869 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2870 CCState &State) LLVM_ATTRIBUTE_UNUSED;
2872 #include "MipsGenCallingConv.inc"
2874 CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
2875 return CC_Mips;
2878 CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
2879 return RetCC_Mips;
2881 //===----------------------------------------------------------------------===//
2882 // Call Calling Convention Implementation
2883 //===----------------------------------------------------------------------===//
2885 // Return next O32 integer argument register.
2886 static unsigned getNextIntArgReg(unsigned Reg) {
2887 assert((Reg == Mips::A0) || (Reg == Mips::A2));
2888 return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2891 SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
2892 SDValue Chain, SDValue Arg,
2893 const SDLoc &DL, bool IsTailCall,
2894 SelectionDAG &DAG) const {
2895 if (!IsTailCall) {
2896 SDValue PtrOff =
2897 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
2898 DAG.getIntPtrConstant(Offset, DL));
2899 return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
2902 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2903 int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
2904 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2905 return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
2906 /* Alignment = */ 0, MachineMemOperand::MOVolatile);
2909 void MipsTargetLowering::
2910 getOpndList(SmallVectorImpl<SDValue> &Ops,
2911 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
2912 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
2913 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
2914 SDValue Chain) const {
2915 // Insert node "GP copy globalreg" before call to function.
2917 // R_MIPS_CALL* operators (emitted when non-internal functions are called
2918 // in PIC mode) allow symbols to be resolved via lazy binding.
2919 // The lazy binding stub requires GP to point to the GOT.
2920 // Note that we don't need GP to point to the GOT for indirect calls
2921 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2922 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2923 // used for the function (that is, Mips linker doesn't generate lazy binding
2924 // stub for a function whose address is taken in the program).
2925 if (IsPICCall && !InternalLinkage && IsCallReloc) {
2926 unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
2927 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2928 RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
2931 // Build a sequence of copy-to-reg nodes chained together with token
2932 // chain and flag operands which copy the outgoing args into registers.
2933 // The InFlag in necessary since all emitted instructions must be
2934 // stuck together.
2935 SDValue InFlag;
2937 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2938 Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
2939 RegsToPass[i].second, InFlag);
2940 InFlag = Chain.getValue(1);
2943 // Add argument registers to the end of the list so that they are
2944 // known live into the call.
2945 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2946 Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
2947 RegsToPass[i].second.getValueType()));
2949 // Add a register mask operand representing the call-preserved registers.
2950 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2951 const uint32_t *Mask =
2952 TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
2953 assert(Mask && "Missing call preserved mask for calling convention");
2954 if (Subtarget.inMips16HardFloat()) {
2955 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
2956 StringRef Sym = G->getGlobal()->getName();
2957 Function *F = G->getGlobal()->getParent()->getFunction(Sym);
2958 if (F && F->hasFnAttribute("__Mips16RetHelper")) {
2959 Mask = MipsRegisterInfo::getMips16RetHelperMask();
2963 Ops.push_back(CLI.DAG.getRegisterMask(Mask));
2965 if (InFlag.getNode())
2966 Ops.push_back(InFlag);
2969 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
2970 SDNode *Node) const {
2971 switch (MI.getOpcode()) {
2972 default:
2973 return;
2974 case Mips::JALR:
2975 case Mips::JALRPseudo:
2976 case Mips::JALR64:
2977 case Mips::JALR64Pseudo:
2978 case Mips::JALR16_MM:
2979 case Mips::JALRC16_MMR6:
2980 case Mips::TAILCALLREG:
2981 case Mips::TAILCALLREG64:
2982 case Mips::TAILCALLR6REG:
2983 case Mips::TAILCALL64R6REG:
2984 case Mips::TAILCALLREG_MM:
2985 case Mips::TAILCALLREG_MMR6: {
2986 if (!EmitJalrReloc ||
2987 Subtarget.inMips16Mode() ||
2988 !isPositionIndependent() ||
2989 Node->getNumOperands() < 1 ||
2990 Node->getOperand(0).getNumOperands() < 2) {
2991 return;
2993 // We are after the callee address, set by LowerCall().
2994 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
2995 // symbol.
2996 const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
2997 StringRef Sym;
2998 if (const GlobalAddressSDNode *G =
2999 dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
3000 Sym = G->getGlobal()->getName();
3002 else if (const ExternalSymbolSDNode *ES =
3003 dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
3004 Sym = ES->getSymbol();
3007 if (Sym.empty())
3008 return;
3010 MachineFunction *MF = MI.getParent()->getParent();
3011 MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
3012 MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
3017 /// LowerCall - functions arguments are copied from virtual regs to
3018 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3019 SDValue
3020 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3021 SmallVectorImpl<SDValue> &InVals) const {
3022 SelectionDAG &DAG = CLI.DAG;
3023 SDLoc DL = CLI.DL;
3024 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3025 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
3026 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
3027 SDValue Chain = CLI.Chain;
3028 SDValue Callee = CLI.Callee;
3029 bool &IsTailCall = CLI.IsTailCall;
3030 CallingConv::ID CallConv = CLI.CallConv;
3031 bool IsVarArg = CLI.IsVarArg;
3033 MachineFunction &MF = DAG.getMachineFunction();
3034 MachineFrameInfo &MFI = MF.getFrameInfo();
3035 const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3036 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
3037 bool IsPIC = isPositionIndependent();
3039 // Analyze operands of the call, assigning locations to each operand.
3040 SmallVector<CCValAssign, 16> ArgLocs;
3041 MipsCCState CCInfo(
3042 CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
3043 MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
3045 const ExternalSymbolSDNode *ES =
3046 dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
3048 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3049 // is during the lowering of a call with a byval argument which produces
3050 // a call to memcpy. For the O32 case, this causes the caller to allocate
3051 // stack space for the reserved argument area for the callee, then recursively
3052 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3053 // ABIs mandate that the callee allocates the reserved argument area. We do
3054 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3056 // If the callee has a byval argument and memcpy is used, we are mandated
3057 // to already have produced a reserved argument area for the callee for O32.
3058 // Therefore, the reserved argument area can be reused for both calls.
3060 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3061 // present, as we have yet to hook that node onto the chain.
3063 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3064 // case. GCC does a similar trick, in that wherever possible, it calculates
3065 // the maximum out going argument area (including the reserved area), and
3066 // preallocates the stack space on entrance to the caller.
3068 // FIXME: We should do the same for efficiency and space.
3070 // Note: The check on the calling convention below must match
3071 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3072 bool MemcpyInByVal = ES &&
3073 StringRef(ES->getSymbol()) == StringRef("memcpy") &&
3074 CallConv != CallingConv::Fast &&
3075 Chain.getOpcode() == ISD::CALLSEQ_START;
3077 // Allocate the reserved argument area. It seems strange to do this from the
3078 // caller side but removing it breaks the frame size calculation.
3079 unsigned ReservedArgArea =
3080 MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
3081 CCInfo.AllocateStack(ReservedArgArea, 1);
3083 CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
3084 ES ? ES->getSymbol() : nullptr);
3086 // Get a count of how many bytes are to be pushed on the stack.
3087 unsigned NextStackOffset = CCInfo.getNextStackOffset();
3089 // Check if it's really possible to do a tail call. Restrict it to functions
3090 // that are part of this compilation unit.
3091 bool InternalLinkage = false;
3092 if (IsTailCall) {
3093 IsTailCall = isEligibleForTailCallOptimization(
3094 CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
3095 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3096 InternalLinkage = G->getGlobal()->hasInternalLinkage();
3097 IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
3098 G->getGlobal()->hasPrivateLinkage() ||
3099 G->getGlobal()->hasHiddenVisibility() ||
3100 G->getGlobal()->hasProtectedVisibility());
3103 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3104 report_fatal_error("failed to perform tail call elimination on a call "
3105 "site marked musttail");
3107 if (IsTailCall)
3108 ++NumTailCalls;
3110 // Chain is the output chain of the last Load/Store or CopyToReg node.
3111 // ByValChain is the output chain of the last Memcpy node created for copying
3112 // byval arguments to the stack.
3113 unsigned StackAlignment = TFL->getStackAlignment();
3114 NextStackOffset = alignTo(NextStackOffset, StackAlignment);
3115 SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
3117 if (!(IsTailCall || MemcpyInByVal))
3118 Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
3120 SDValue StackPtr =
3121 DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
3122 getPointerTy(DAG.getDataLayout()));
3124 std::deque<std::pair<unsigned, SDValue>> RegsToPass;
3125 SmallVector<SDValue, 8> MemOpChains;
3127 CCInfo.rewindByValRegsInfo();
3129 // Walk the register/memloc assignments, inserting copies/loads.
3130 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3131 SDValue Arg = OutVals[i];
3132 CCValAssign &VA = ArgLocs[i];
3133 MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3134 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3135 bool UseUpperBits = false;
3137 // ByVal Arg.
3138 if (Flags.isByVal()) {
3139 unsigned FirstByValReg, LastByValReg;
3140 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3141 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3143 assert(Flags.getByValSize() &&
3144 "ByVal args of size 0 should have been ignored by front-end.");
3145 assert(ByValIdx < CCInfo.getInRegsParamsCount());
3146 assert(!IsTailCall &&
3147 "Do not tail-call optimize if there is a byval argument.");
3148 passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3149 FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
3150 VA);
3151 CCInfo.nextInRegsParam();
3152 continue;
3155 // Promote the value if needed.
3156 switch (VA.getLocInfo()) {
3157 default:
3158 llvm_unreachable("Unknown loc info!");
3159 case CCValAssign::Full:
3160 if (VA.isRegLoc()) {
3161 if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3162 (ValVT == MVT::f64 && LocVT == MVT::i64) ||
3163 (ValVT == MVT::i64 && LocVT == MVT::f64))
3164 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3165 else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3166 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3167 Arg, DAG.getConstant(0, DL, MVT::i32));
3168 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3169 Arg, DAG.getConstant(1, DL, MVT::i32));
3170 if (!Subtarget.isLittle())
3171 std::swap(Lo, Hi);
3172 Register LocRegLo = VA.getLocReg();
3173 unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3174 RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3175 RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3176 continue;
3179 break;
3180 case CCValAssign::BCvt:
3181 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3182 break;
3183 case CCValAssign::SExtUpper:
3184 UseUpperBits = true;
3185 LLVM_FALLTHROUGH;
3186 case CCValAssign::SExt:
3187 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
3188 break;
3189 case CCValAssign::ZExtUpper:
3190 UseUpperBits = true;
3191 LLVM_FALLTHROUGH;
3192 case CCValAssign::ZExt:
3193 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
3194 break;
3195 case CCValAssign::AExtUpper:
3196 UseUpperBits = true;
3197 LLVM_FALLTHROUGH;
3198 case CCValAssign::AExt:
3199 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
3200 break;
3203 if (UseUpperBits) {
3204 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3205 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3206 Arg = DAG.getNode(
3207 ISD::SHL, DL, VA.getLocVT(), Arg,
3208 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3211 // Arguments that can be passed on register must be kept at
3212 // RegsToPass vector
3213 if (VA.isRegLoc()) {
3214 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3215 continue;
3218 // Register can't get to this point...
3219 assert(VA.isMemLoc());
3221 // emit ISD::STORE whichs stores the
3222 // parameter value to a stack Location
3223 MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3224 Chain, Arg, DL, IsTailCall, DAG));
3227 // Transform all store nodes into one single node because all store
3228 // nodes are independent of each other.
3229 if (!MemOpChains.empty())
3230 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3232 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3233 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3234 // node so that legalize doesn't hack it.
3236 EVT Ty = Callee.getValueType();
3237 bool GlobalOrExternal = false, IsCallReloc = false;
3239 // The long-calls feature is ignored in case of PIC.
3240 // While we do not support -mshared / -mno-shared properly,
3241 // ignore long-calls in case of -mabicalls too.
3242 if (!Subtarget.isABICalls() && !IsPIC) {
3243 // If the function should be called using "long call",
3244 // get its address into a register to prevent using
3245 // of the `jal` instruction for the direct call.
3246 if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3247 if (Subtarget.useLongCalls())
3248 Callee = Subtarget.hasSym32()
3249 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3250 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3251 } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
3252 bool UseLongCalls = Subtarget.useLongCalls();
3253 // If the function has long-call/far/near attribute
3254 // it overrides command line switch pased to the backend.
3255 if (auto *F = dyn_cast<Function>(N->getGlobal())) {
3256 if (F->hasFnAttribute("long-call"))
3257 UseLongCalls = true;
3258 else if (F->hasFnAttribute("short-call"))
3259 UseLongCalls = false;
3261 if (UseLongCalls)
3262 Callee = Subtarget.hasSym32()
3263 ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3264 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3268 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3269 if (IsPIC) {
3270 const GlobalValue *Val = G->getGlobal();
3271 InternalLinkage = Val->hasInternalLinkage();
3273 if (InternalLinkage)
3274 Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
3275 else if (LargeGOT) {
3276 Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3277 MipsII::MO_CALL_LO16, Chain,
3278 FuncInfo->callPtrInfo(Val));
3279 IsCallReloc = true;
3280 } else {
3281 Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3282 FuncInfo->callPtrInfo(Val));
3283 IsCallReloc = true;
3285 } else
3286 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
3287 getPointerTy(DAG.getDataLayout()), 0,
3288 MipsII::MO_NO_FLAG);
3289 GlobalOrExternal = true;
3291 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3292 const char *Sym = S->getSymbol();
3294 if (!IsPIC) // static
3295 Callee = DAG.getTargetExternalSymbol(
3296 Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
3297 else if (LargeGOT) {
3298 Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3299 MipsII::MO_CALL_LO16, Chain,
3300 FuncInfo->callPtrInfo(Sym));
3301 IsCallReloc = true;
3302 } else { // PIC
3303 Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3304 FuncInfo->callPtrInfo(Sym));
3305 IsCallReloc = true;
3308 GlobalOrExternal = true;
3311 SmallVector<SDValue, 8> Ops(1, Chain);
3312 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3314 getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
3315 IsCallReloc, CLI, Callee, Chain);
3317 if (IsTailCall) {
3318 MF.getFrameInfo().setHasTailCall();
3319 return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
3322 Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
3323 SDValue InFlag = Chain.getValue(1);
3325 // Create the CALLSEQ_END node in the case of where it is not a call to
3326 // memcpy.
3327 if (!(MemcpyInByVal)) {
3328 Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3329 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3330 InFlag = Chain.getValue(1);
3333 // Handle result values, copying them out of physregs into vregs that we
3334 // return.
3335 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3336 InVals, CLI);
3339 /// LowerCallResult - Lower the result values of a call into the
3340 /// appropriate copies out of appropriate physical registers.
3341 SDValue MipsTargetLowering::LowerCallResult(
3342 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
3343 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3344 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
3345 TargetLowering::CallLoweringInfo &CLI) const {
3346 // Assign locations to each value returned by this call.
3347 SmallVector<CCValAssign, 16> RVLocs;
3348 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3349 *DAG.getContext());
3351 const ExternalSymbolSDNode *ES =
3352 dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
3353 CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
3354 ES ? ES->getSymbol() : nullptr);
3356 // Copy all of the result registers out of their specified physreg.
3357 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3358 CCValAssign &VA = RVLocs[i];
3359 assert(VA.isRegLoc() && "Can only return in registers!");
3361 SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
3362 RVLocs[i].getLocVT(), InFlag);
3363 Chain = Val.getValue(1);
3364 InFlag = Val.getValue(2);
3366 if (VA.isUpperBitsInLoc()) {
3367 unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
3368 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3369 unsigned Shift =
3370 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3371 Val = DAG.getNode(
3372 Shift, DL, VA.getLocVT(), Val,
3373 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3376 switch (VA.getLocInfo()) {
3377 default:
3378 llvm_unreachable("Unknown loc info!");
3379 case CCValAssign::Full:
3380 break;
3381 case CCValAssign::BCvt:
3382 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3383 break;
3384 case CCValAssign::AExt:
3385 case CCValAssign::AExtUpper:
3386 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3387 break;
3388 case CCValAssign::ZExt:
3389 case CCValAssign::ZExtUpper:
3390 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3391 DAG.getValueType(VA.getValVT()));
3392 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3393 break;
3394 case CCValAssign::SExt:
3395 case CCValAssign::SExtUpper:
3396 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3397 DAG.getValueType(VA.getValVT()));
3398 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3399 break;
3402 InVals.push_back(Val);
3405 return Chain;
3408 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
3409 EVT ArgVT, const SDLoc &DL,
3410 SelectionDAG &DAG) {
3411 MVT LocVT = VA.getLocVT();
3412 EVT ValVT = VA.getValVT();
3414 // Shift into the upper bits if necessary.
3415 switch (VA.getLocInfo()) {
3416 default:
3417 break;
3418 case CCValAssign::AExtUpper:
3419 case CCValAssign::SExtUpper:
3420 case CCValAssign::ZExtUpper: {
3421 unsigned ValSizeInBits = ArgVT.getSizeInBits();
3422 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3423 unsigned Opcode =
3424 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3425 Val = DAG.getNode(
3426 Opcode, DL, VA.getLocVT(), Val,
3427 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3428 break;
3432 // If this is an value smaller than the argument slot size (32-bit for O32,
3433 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3434 // size. Extract the value and insert any appropriate assertions regarding
3435 // sign/zero extension.
3436 switch (VA.getLocInfo()) {
3437 default:
3438 llvm_unreachable("Unknown loc info!");
3439 case CCValAssign::Full:
3440 break;
3441 case CCValAssign::AExtUpper:
3442 case CCValAssign::AExt:
3443 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3444 break;
3445 case CCValAssign::SExtUpper:
3446 case CCValAssign::SExt:
3447 Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
3448 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3449 break;
3450 case CCValAssign::ZExtUpper:
3451 case CCValAssign::ZExt:
3452 Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
3453 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3454 break;
3455 case CCValAssign::BCvt:
3456 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3457 break;
3460 return Val;
3463 //===----------------------------------------------------------------------===//
3464 // Formal Arguments Calling Convention Implementation
3465 //===----------------------------------------------------------------------===//
3466 /// LowerFormalArguments - transform physical registers into virtual registers
3467 /// and generate load operations for arguments places on the stack.
3468 SDValue MipsTargetLowering::LowerFormalArguments(
3469 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3470 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3471 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3472 MachineFunction &MF = DAG.getMachineFunction();
3473 MachineFrameInfo &MFI = MF.getFrameInfo();
3474 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3476 MipsFI->setVarArgsFrameIndex(0);
3478 // Used with vargs to acumulate store chains.
3479 std::vector<SDValue> OutChains;
3481 // Assign locations to all of the incoming arguments.
3482 SmallVector<CCValAssign, 16> ArgLocs;
3483 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3484 *DAG.getContext());
3485 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
3486 const Function &Func = DAG.getMachineFunction().getFunction();
3487 Function::const_arg_iterator FuncArg = Func.arg_begin();
3489 if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
3490 report_fatal_error(
3491 "Functions with the interrupt attribute cannot have arguments!");
3493 CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
3494 MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3495 CCInfo.getInRegsParamsCount() > 0);
3497 unsigned CurArgIdx = 0;
3498 CCInfo.rewindByValRegsInfo();
3500 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3501 CCValAssign &VA = ArgLocs[i];
3502 if (Ins[i].isOrigArg()) {
3503 std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3504 CurArgIdx = Ins[i].getOrigArgIndex();
3506 EVT ValVT = VA.getValVT();
3507 ISD::ArgFlagsTy Flags = Ins[i].Flags;
3508 bool IsRegLoc = VA.isRegLoc();
3510 if (Flags.isByVal()) {
3511 assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
3512 unsigned FirstByValReg, LastByValReg;
3513 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3514 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3516 assert(Flags.getByValSize() &&
3517 "ByVal args of size 0 should have been ignored by front-end.");
3518 assert(ByValIdx < CCInfo.getInRegsParamsCount());
3519 copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
3520 FirstByValReg, LastByValReg, VA, CCInfo);
3521 CCInfo.nextInRegsParam();
3522 continue;
3525 // Arguments stored on registers
3526 if (IsRegLoc) {
3527 MVT RegVT = VA.getLocVT();
3528 Register ArgReg = VA.getLocReg();
3529 const TargetRegisterClass *RC = getRegClassFor(RegVT);
3531 // Transform the arguments stored on
3532 // physical registers into virtual ones
3533 unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3534 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3536 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3538 // Handle floating point arguments passed in integer registers and
3539 // long double arguments passed in floating point registers.
3540 if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3541 (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3542 (RegVT == MVT::f64 && ValVT == MVT::i64))
3543 ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
3544 else if (ABI.IsO32() && RegVT == MVT::i32 &&
3545 ValVT == MVT::f64) {
3546 unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
3547 getNextIntArgReg(ArgReg), RC);
3548 SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
3549 if (!Subtarget.isLittle())
3550 std::swap(ArgValue, ArgValue2);
3551 ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
3552 ArgValue, ArgValue2);
3555 InVals.push_back(ArgValue);
3556 } else { // VA.isRegLoc()
3557 MVT LocVT = VA.getLocVT();
3559 if (ABI.IsO32()) {
3560 // We ought to be able to use LocVT directly but O32 sets it to i32
3561 // when allocating floating point values to integer registers.
3562 // This shouldn't influence how we load the value into registers unless
3563 // we are targeting softfloat.
3564 if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
3565 LocVT = VA.getValVT();
3568 // sanity check
3569 assert(VA.isMemLoc());
3571 // The stack pointer offset is relative to the caller stack frame.
3572 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
3573 VA.getLocMemOffset(), true);
3575 // Create load nodes to retrieve arguments from the stack
3576 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3577 SDValue ArgValue = DAG.getLoad(
3578 LocVT, DL, Chain, FIN,
3579 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3580 OutChains.push_back(ArgValue.getValue(1));
3582 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3584 InVals.push_back(ArgValue);
3588 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3589 // The mips ABIs for returning structs by value requires that we copy
3590 // the sret argument into $v0 for the return. Save the argument into
3591 // a virtual register so that we can access it from the return points.
3592 if (Ins[i].Flags.isSRet()) {
3593 unsigned Reg = MipsFI->getSRetReturnReg();
3594 if (!Reg) {
3595 Reg = MF.getRegInfo().createVirtualRegister(
3596 getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3597 MipsFI->setSRetReturnReg(Reg);
3599 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3600 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3601 break;
3605 if (IsVarArg)
3606 writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3608 // All stores are grouped in one node to allow the matching between
3609 // the size of Ins and InVals. This only happens when on varg functions
3610 if (!OutChains.empty()) {
3611 OutChains.push_back(Chain);
3612 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3615 return Chain;
3618 //===----------------------------------------------------------------------===//
3619 // Return Value Calling Convention Implementation
3620 //===----------------------------------------------------------------------===//
3622 bool
3623 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3624 MachineFunction &MF, bool IsVarArg,
3625 const SmallVectorImpl<ISD::OutputArg> &Outs,
3626 LLVMContext &Context) const {
3627 SmallVector<CCValAssign, 16> RVLocs;
3628 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3629 return CCInfo.CheckReturn(Outs, RetCC_Mips);
3632 bool
3633 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
3634 if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
3635 return true;
3637 return IsSigned;
3640 SDValue
3641 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3642 const SDLoc &DL,
3643 SelectionDAG &DAG) const {
3644 MachineFunction &MF = DAG.getMachineFunction();
3645 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3647 MipsFI->setISR();
3649 return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
3652 SDValue
3653 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3654 bool IsVarArg,
3655 const SmallVectorImpl<ISD::OutputArg> &Outs,
3656 const SmallVectorImpl<SDValue> &OutVals,
3657 const SDLoc &DL, SelectionDAG &DAG) const {
3658 // CCValAssign - represent the assignment of
3659 // the return value to a location
3660 SmallVector<CCValAssign, 16> RVLocs;
3661 MachineFunction &MF = DAG.getMachineFunction();
3663 // CCState - Info about the registers and stack slot.
3664 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3666 // Analyze return values.
3667 CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3669 SDValue Flag;
3670 SmallVector<SDValue, 4> RetOps(1, Chain);
3672 // Copy the result values into the output registers.
3673 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3674 SDValue Val = OutVals[i];
3675 CCValAssign &VA = RVLocs[i];
3676 assert(VA.isRegLoc() && "Can only return in registers!");
3677 bool UseUpperBits = false;
3679 switch (VA.getLocInfo()) {
3680 default:
3681 llvm_unreachable("Unknown loc info!");
3682 case CCValAssign::Full:
3683 break;
3684 case CCValAssign::BCvt:
3685 Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3686 break;
3687 case CCValAssign::AExtUpper:
3688 UseUpperBits = true;
3689 LLVM_FALLTHROUGH;
3690 case CCValAssign::AExt:
3691 Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3692 break;
3693 case CCValAssign::ZExtUpper:
3694 UseUpperBits = true;
3695 LLVM_FALLTHROUGH;
3696 case CCValAssign::ZExt:
3697 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3698 break;
3699 case CCValAssign::SExtUpper:
3700 UseUpperBits = true;
3701 LLVM_FALLTHROUGH;
3702 case CCValAssign::SExt:
3703 Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3704 break;
3707 if (UseUpperBits) {
3708 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3709 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3710 Val = DAG.getNode(
3711 ISD::SHL, DL, VA.getLocVT(), Val,
3712 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3715 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3717 // Guarantee that all emitted copies are stuck together with flags.
3718 Flag = Chain.getValue(1);
3719 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3722 // The mips ABIs for returning structs by value requires that we copy
3723 // the sret argument into $v0 for the return. We saved the argument into
3724 // a virtual register in the entry block, so now we copy the value out
3725 // and into $v0.
3726 if (MF.getFunction().hasStructRetAttr()) {
3727 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3728 unsigned Reg = MipsFI->getSRetReturnReg();
3730 if (!Reg)
3731 llvm_unreachable("sret virtual register not created in the entry block");
3732 SDValue Val =
3733 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
3734 unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3736 Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3737 Flag = Chain.getValue(1);
3738 RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
3741 RetOps[0] = Chain; // Update chain.
3743 // Add the flag if we have it.
3744 if (Flag.getNode())
3745 RetOps.push_back(Flag);
3747 // ISRs must use "eret".
3748 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3749 return LowerInterruptReturn(RetOps, DL, DAG);
3751 // Standard return on Mips is a "jr $ra"
3752 return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3755 //===----------------------------------------------------------------------===//
3756 // Mips Inline Assembly Support
3757 //===----------------------------------------------------------------------===//
3759 /// getConstraintType - Given a constraint letter, return the type of
3760 /// constraint it is for this target.
3761 MipsTargetLowering::ConstraintType
3762 MipsTargetLowering::getConstraintType(StringRef Constraint) const {
3763 // Mips specific constraints
3764 // GCC config/mips/constraints.md
3766 // 'd' : An address register. Equivalent to r
3767 // unless generating MIPS16 code.
3768 // 'y' : Equivalent to r; retained for
3769 // backwards compatibility.
3770 // 'c' : A register suitable for use in an indirect
3771 // jump. This will always be $25 for -mabicalls.
3772 // 'l' : The lo register. 1 word storage.
3773 // 'x' : The hilo register pair. Double word storage.
3774 if (Constraint.size() == 1) {
3775 switch (Constraint[0]) {
3776 default : break;
3777 case 'd':
3778 case 'y':
3779 case 'f':
3780 case 'c':
3781 case 'l':
3782 case 'x':
3783 return C_RegisterClass;
3784 case 'R':
3785 return C_Memory;
3789 if (Constraint == "ZC")
3790 return C_Memory;
3792 return TargetLowering::getConstraintType(Constraint);
3795 /// Examine constraint type and operand type and determine a weight value.
3796 /// This object must already have been set up with the operand type
3797 /// and the current alternative constraint selected.
3798 TargetLowering::ConstraintWeight
3799 MipsTargetLowering::getSingleConstraintMatchWeight(
3800 AsmOperandInfo &info, const char *constraint) const {
3801 ConstraintWeight weight = CW_Invalid;
3802 Value *CallOperandVal = info.CallOperandVal;
3803 // If we don't have a value, we can't do a match,
3804 // but allow it at the lowest weight.
3805 if (!CallOperandVal)
3806 return CW_Default;
3807 Type *type = CallOperandVal->getType();
3808 // Look at the constraint type.
3809 switch (*constraint) {
3810 default:
3811 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3812 break;
3813 case 'd':
3814 case 'y':
3815 if (type->isIntegerTy())
3816 weight = CW_Register;
3817 break;
3818 case 'f': // FPU or MSA register
3819 if (Subtarget.hasMSA() && type->isVectorTy() &&
3820 cast<VectorType>(type)->getBitWidth() == 128)
3821 weight = CW_Register;
3822 else if (type->isFloatTy())
3823 weight = CW_Register;
3824 break;
3825 case 'c': // $25 for indirect jumps
3826 case 'l': // lo register
3827 case 'x': // hilo register pair
3828 if (type->isIntegerTy())
3829 weight = CW_SpecificReg;
3830 break;
3831 case 'I': // signed 16 bit immediate
3832 case 'J': // integer zero
3833 case 'K': // unsigned 16 bit immediate
3834 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3835 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3836 case 'O': // signed 15 bit immediate (+- 16383)
3837 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3838 if (isa<ConstantInt>(CallOperandVal))
3839 weight = CW_Constant;
3840 break;
3841 case 'R':
3842 weight = CW_Memory;
3843 break;
3845 return weight;
3848 /// This is a helper function to parse a physical register string and split it
3849 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3850 /// that is returned indicates whether parsing was successful. The second flag
3851 /// is true if the numeric part exists.
3852 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
3853 unsigned long long &Reg) {
3854 if (C.front() != '{' || C.back() != '}')
3855 return std::make_pair(false, false);
3857 // Search for the first numeric character.
3858 StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
3859 I = std::find_if(B, E, isdigit);
3861 Prefix = StringRef(B, I - B);
3863 // The second flag is set to false if no numeric characters were found.
3864 if (I == E)
3865 return std::make_pair(true, false);
3867 // Parse the numeric characters.
3868 return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
3869 true);
3872 EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
3873 ISD::NodeType) const {
3874 bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
3875 EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
3876 return VT.bitsLT(MinVT) ? MinVT : VT;
3879 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
3880 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
3881 const TargetRegisterInfo *TRI =
3882 Subtarget.getRegisterInfo();
3883 const TargetRegisterClass *RC;
3884 StringRef Prefix;
3885 unsigned long long Reg;
3887 std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
3889 if (!R.first)
3890 return std::make_pair(0U, nullptr);
3892 if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
3893 // No numeric characters follow "hi" or "lo".
3894 if (R.second)
3895 return std::make_pair(0U, nullptr);
3897 RC = TRI->getRegClass(Prefix == "hi" ?
3898 Mips::HI32RegClassID : Mips::LO32RegClassID);
3899 return std::make_pair(*(RC->begin()), RC);
3900 } else if (Prefix.startswith("$msa")) {
3901 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3903 // No numeric characters follow the name.
3904 if (R.second)
3905 return std::make_pair(0U, nullptr);
3907 Reg = StringSwitch<unsigned long long>(Prefix)
3908 .Case("$msair", Mips::MSAIR)
3909 .Case("$msacsr", Mips::MSACSR)
3910 .Case("$msaaccess", Mips::MSAAccess)
3911 .Case("$msasave", Mips::MSASave)
3912 .Case("$msamodify", Mips::MSAModify)
3913 .Case("$msarequest", Mips::MSARequest)
3914 .Case("$msamap", Mips::MSAMap)
3915 .Case("$msaunmap", Mips::MSAUnmap)
3916 .Default(0);
3918 if (!Reg)
3919 return std::make_pair(0U, nullptr);
3921 RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
3922 return std::make_pair(Reg, RC);
3925 if (!R.second)
3926 return std::make_pair(0U, nullptr);
3928 if (Prefix == "$f") { // Parse $f0-$f31.
3929 // If the size of FP registers is 64-bit or Reg is an even number, select
3930 // the 64-bit register class. Otherwise, select the 32-bit register class.
3931 if (VT == MVT::Other)
3932 VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
3934 RC = getRegClassFor(VT);
3936 if (RC == &Mips::AFGR64RegClass) {
3937 assert(Reg % 2 == 0);
3938 Reg >>= 1;
3940 } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
3941 RC = TRI->getRegClass(Mips::FCCRegClassID);
3942 else if (Prefix == "$w") { // Parse $w0-$w31.
3943 RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
3944 } else { // Parse $0-$31.
3945 assert(Prefix == "$");
3946 RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
3949 assert(Reg < RC->getNumRegs());
3950 return std::make_pair(*(RC->begin() + Reg), RC);
3953 /// Given a register class constraint, like 'r', if this corresponds directly
3954 /// to an LLVM register class, return a register of 0 and the register class
3955 /// pointer.
3956 std::pair<unsigned, const TargetRegisterClass *>
3957 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3958 StringRef Constraint,
3959 MVT VT) const {
3960 if (Constraint.size() == 1) {
3961 switch (Constraint[0]) {
3962 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3963 case 'y': // Same as 'r'. Exists for compatibility.
3964 case 'r':
3965 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
3966 if (Subtarget.inMips16Mode())
3967 return std::make_pair(0U, &Mips::CPU16RegsRegClass);
3968 return std::make_pair(0U, &Mips::GPR32RegClass);
3970 if (VT == MVT::i64 && !Subtarget.isGP64bit())
3971 return std::make_pair(0U, &Mips::GPR32RegClass);
3972 if (VT == MVT::i64 && Subtarget.isGP64bit())
3973 return std::make_pair(0U, &Mips::GPR64RegClass);
3974 // This will generate an error message
3975 return std::make_pair(0U, nullptr);
3976 case 'f': // FPU or MSA register
3977 if (VT == MVT::v16i8)
3978 return std::make_pair(0U, &Mips::MSA128BRegClass);
3979 else if (VT == MVT::v8i16 || VT == MVT::v8f16)
3980 return std::make_pair(0U, &Mips::MSA128HRegClass);
3981 else if (VT == MVT::v4i32 || VT == MVT::v4f32)
3982 return std::make_pair(0U, &Mips::MSA128WRegClass);
3983 else if (VT == MVT::v2i64 || VT == MVT::v2f64)
3984 return std::make_pair(0U, &Mips::MSA128DRegClass);
3985 else if (VT == MVT::f32)
3986 return std::make_pair(0U, &Mips::FGR32RegClass);
3987 else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
3988 if (Subtarget.isFP64bit())
3989 return std::make_pair(0U, &Mips::FGR64RegClass);
3990 return std::make_pair(0U, &Mips::AFGR64RegClass);
3992 break;
3993 case 'c': // register suitable for indirect jump
3994 if (VT == MVT::i32)
3995 return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
3996 if (VT == MVT::i64)
3997 return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
3998 // This will generate an error message
3999 return std::make_pair(0U, nullptr);
4000 case 'l': // use the `lo` register to store values
4001 // that are no bigger than a word
4002 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
4003 return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
4004 return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
4005 case 'x': // use the concatenated `hi` and `lo` registers
4006 // to store doubleword values
4007 // Fixme: Not triggering the use of both hi and low
4008 // This will generate an error message
4009 return std::make_pair(0U, nullptr);
4013 std::pair<unsigned, const TargetRegisterClass *> R;
4014 R = parseRegForInlineAsmConstraint(Constraint, VT);
4016 if (R.second)
4017 return R;
4019 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4022 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4023 /// vector. If it is invalid, don't add anything to Ops.
4024 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4025 std::string &Constraint,
4026 std::vector<SDValue>&Ops,
4027 SelectionDAG &DAG) const {
4028 SDLoc DL(Op);
4029 SDValue Result;
4031 // Only support length 1 constraints for now.
4032 if (Constraint.length() > 1) return;
4034 char ConstraintLetter = Constraint[0];
4035 switch (ConstraintLetter) {
4036 default: break; // This will fall through to the generic implementation
4037 case 'I': // Signed 16 bit constant
4038 // If this fails, the parent routine will give an error
4039 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4040 EVT Type = Op.getValueType();
4041 int64_t Val = C->getSExtValue();
4042 if (isInt<16>(Val)) {
4043 Result = DAG.getTargetConstant(Val, DL, Type);
4044 break;
4047 return;
4048 case 'J': // integer zero
4049 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4050 EVT Type = Op.getValueType();
4051 int64_t Val = C->getZExtValue();
4052 if (Val == 0) {
4053 Result = DAG.getTargetConstant(0, DL, Type);
4054 break;
4057 return;
4058 case 'K': // unsigned 16 bit immediate
4059 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4060 EVT Type = Op.getValueType();
4061 uint64_t Val = (uint64_t)C->getZExtValue();
4062 if (isUInt<16>(Val)) {
4063 Result = DAG.getTargetConstant(Val, DL, Type);
4064 break;
4067 return;
4068 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4069 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4070 EVT Type = Op.getValueType();
4071 int64_t Val = C->getSExtValue();
4072 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
4073 Result = DAG.getTargetConstant(Val, DL, Type);
4074 break;
4077 return;
4078 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4079 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4080 EVT Type = Op.getValueType();
4081 int64_t Val = C->getSExtValue();
4082 if ((Val >= -65535) && (Val <= -1)) {
4083 Result = DAG.getTargetConstant(Val, DL, Type);
4084 break;
4087 return;
4088 case 'O': // signed 15 bit immediate
4089 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4090 EVT Type = Op.getValueType();
4091 int64_t Val = C->getSExtValue();
4092 if ((isInt<15>(Val))) {
4093 Result = DAG.getTargetConstant(Val, DL, Type);
4094 break;
4097 return;
4098 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4099 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4100 EVT Type = Op.getValueType();
4101 int64_t Val = C->getSExtValue();
4102 if ((Val <= 65535) && (Val >= 1)) {
4103 Result = DAG.getTargetConstant(Val, DL, Type);
4104 break;
4107 return;
4110 if (Result.getNode()) {
4111 Ops.push_back(Result);
4112 return;
4115 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4118 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4119 const AddrMode &AM, Type *Ty,
4120 unsigned AS, Instruction *I) const {
4121 // No global is ever allowed as a base.
4122 if (AM.BaseGV)
4123 return false;
4125 switch (AM.Scale) {
4126 case 0: // "r+i" or just "i", depending on HasBaseReg.
4127 break;
4128 case 1:
4129 if (!AM.HasBaseReg) // allow "r+i".
4130 break;
4131 return false; // disallow "r+r" or "r+r+i".
4132 default:
4133 return false;
4136 return true;
4139 bool
4140 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4141 // The Mips target isn't yet aware of offsets.
4142 return false;
4145 EVT MipsTargetLowering::getOptimalMemOpType(
4146 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
4147 bool ZeroMemset, bool MemcpyStrSrc,
4148 const AttributeList &FuncAttributes) const {
4149 if (Subtarget.hasMips64())
4150 return MVT::i64;
4152 return MVT::i32;
4155 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
4156 bool ForCodeSize) const {
4157 if (VT != MVT::f32 && VT != MVT::f64)
4158 return false;
4159 if (Imm.isNegZero())
4160 return false;
4161 return Imm.isZero();
4164 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4166 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4167 if (ABI.IsN64() && isPositionIndependent())
4168 return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4170 return TargetLowering::getJumpTableEncoding();
4173 bool MipsTargetLowering::useSoftFloat() const {
4174 return Subtarget.useSoftFloat();
4177 void MipsTargetLowering::copyByValRegs(
4178 SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
4179 SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4180 SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4181 unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
4182 MipsCCState &State) const {
4183 MachineFunction &MF = DAG.getMachineFunction();
4184 MachineFrameInfo &MFI = MF.getFrameInfo();
4185 unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
4186 unsigned NumRegs = LastReg - FirstReg;
4187 unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
4188 unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4189 int FrameObjOffset;
4190 ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
4192 if (RegAreaSize)
4193 FrameObjOffset =
4194 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4195 (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
4196 else
4197 FrameObjOffset = VA.getLocMemOffset();
4199 // Create frame object.
4200 EVT PtrTy = getPointerTy(DAG.getDataLayout());
4201 // Make the fixed object stored to mutable so that the load instructions
4202 // referencing it have their memory dependencies added.
4203 // Set the frame object as isAliased which clears the underlying objects
4204 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4205 // stores as dependencies for loads referencing this fixed object.
4206 int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
4207 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4208 InVals.push_back(FIN);
4210 if (!NumRegs)
4211 return;
4213 // Copy arg registers.
4214 MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
4215 const TargetRegisterClass *RC = getRegClassFor(RegTy);
4217 for (unsigned I = 0; I < NumRegs; ++I) {
4218 unsigned ArgReg = ByValArgRegs[FirstReg + I];
4219 unsigned VReg = addLiveIn(MF, ArgReg, RC);
4220 unsigned Offset = I * GPRSizeInBytes;
4221 SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4222 DAG.getConstant(Offset, DL, PtrTy));
4223 SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4224 StorePtr, MachinePointerInfo(FuncArg, Offset));
4225 OutChains.push_back(Store);
4229 // Copy byVal arg to registers and stack.
4230 void MipsTargetLowering::passByValArg(
4231 SDValue Chain, const SDLoc &DL,
4232 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
4233 SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
4234 MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
4235 unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
4236 const CCValAssign &VA) const {
4237 unsigned ByValSizeInBytes = Flags.getByValSize();
4238 unsigned OffsetInBytes = 0; // From beginning of struct
4239 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4240 unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
4241 EVT PtrTy = getPointerTy(DAG.getDataLayout()),
4242 RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4243 unsigned NumRegs = LastReg - FirstReg;
4245 if (NumRegs) {
4246 ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
4247 bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
4248 unsigned I = 0;
4250 // Copy words to registers.
4251 for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
4252 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4253 DAG.getConstant(OffsetInBytes, DL, PtrTy));
4254 SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4255 MachinePointerInfo(), Alignment);
4256 MemOpChains.push_back(LoadVal.getValue(1));
4257 unsigned ArgReg = ArgRegs[FirstReg + I];
4258 RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4261 // Return if the struct has been fully copied.
4262 if (ByValSizeInBytes == OffsetInBytes)
4263 return;
4265 // Copy the remainder of the byval argument with sub-word loads and shifts.
4266 if (LeftoverBytes) {
4267 SDValue Val;
4269 for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
4270 OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
4271 unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
4273 if (RemainingSizeInBytes < LoadSizeInBytes)
4274 continue;
4276 // Load subword.
4277 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4278 DAG.getConstant(OffsetInBytes, DL,
4279 PtrTy));
4280 SDValue LoadVal = DAG.getExtLoad(
4281 ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
4282 MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
4283 MemOpChains.push_back(LoadVal.getValue(1));
4285 // Shift the loaded value.
4286 unsigned Shamt;
4288 if (isLittle)
4289 Shamt = TotalBytesLoaded * 8;
4290 else
4291 Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
4293 SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4294 DAG.getConstant(Shamt, DL, MVT::i32));
4296 if (Val.getNode())
4297 Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4298 else
4299 Val = Shift;
4301 OffsetInBytes += LoadSizeInBytes;
4302 TotalBytesLoaded += LoadSizeInBytes;
4303 Alignment = std::min(Alignment, LoadSizeInBytes);
4306 unsigned ArgReg = ArgRegs[FirstReg + I];
4307 RegsToPass.push_back(std::make_pair(ArgReg, Val));
4308 return;
4312 // Copy remainder of byval arg to it with memcpy.
4313 unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
4314 SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4315 DAG.getConstant(OffsetInBytes, DL, PtrTy));
4316 SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4317 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
4318 Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4319 DAG.getConstant(MemCpySize, DL, PtrTy),
4320 Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
4321 /*isTailCall=*/false,
4322 MachinePointerInfo(), MachinePointerInfo());
4323 MemOpChains.push_back(Chain);
4326 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4327 SDValue Chain, const SDLoc &DL,
4328 SelectionDAG &DAG,
4329 CCState &State) const {
4330 ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
4331 unsigned Idx = State.getFirstUnallocated(ArgRegs);
4332 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4333 MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4334 const TargetRegisterClass *RC = getRegClassFor(RegTy);
4335 MachineFunction &MF = DAG.getMachineFunction();
4336 MachineFrameInfo &MFI = MF.getFrameInfo();
4337 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4339 // Offset of the first variable argument from stack pointer.
4340 int VaArgOffset;
4342 if (ArgRegs.size() == Idx)
4343 VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
4344 else {
4345 VaArgOffset =
4346 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4347 (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
4350 // Record the frame index of the first variable argument
4351 // which is a value necessary to VASTART.
4352 int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4353 MipsFI->setVarArgsFrameIndex(FI);
4355 // Copy the integer registers that have not been used for argument passing
4356 // to the argument register save area. For O32, the save area is allocated
4357 // in the caller's stack frame, while for N32/64, it is allocated in the
4358 // callee's stack frame.
4359 for (unsigned I = Idx; I < ArgRegs.size();
4360 ++I, VaArgOffset += RegSizeInBytes) {
4361 unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
4362 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4363 FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4364 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4365 SDValue Store =
4366 DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
4367 cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
4368 (Value *)nullptr);
4369 OutChains.push_back(Store);
4373 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
4374 unsigned Align) const {
4375 const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
4377 assert(Size && "Byval argument's size shouldn't be 0.");
4379 Align = std::min(Align, TFL->getStackAlignment());
4381 unsigned FirstReg = 0;
4382 unsigned NumRegs = 0;
4384 if (State->getCallingConv() != CallingConv::Fast) {
4385 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4386 ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
4387 // FIXME: The O32 case actually describes no shadow registers.
4388 const MCPhysReg *ShadowRegs =
4389 ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
4391 // We used to check the size as well but we can't do that anymore since
4392 // CCState::HandleByVal() rounds up the size after calling this function.
4393 assert(!(Align % RegSizeInBytes) &&
4394 "Byval argument's alignment should be a multiple of"
4395 "RegSizeInBytes.");
4397 FirstReg = State->getFirstUnallocated(IntArgRegs);
4399 // If Align > RegSizeInBytes, the first arg register must be even.
4400 // FIXME: This condition happens to do the right thing but it's not the
4401 // right way to test it. We want to check that the stack frame offset
4402 // of the register is aligned.
4403 if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
4404 State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
4405 ++FirstReg;
4408 // Mark the registers allocated.
4409 Size = alignTo(Size, RegSizeInBytes);
4410 for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
4411 Size -= RegSizeInBytes, ++I, ++NumRegs)
4412 State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4415 State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
4418 MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
4419 MachineBasicBlock *BB,
4420 bool isFPCmp,
4421 unsigned Opc) const {
4422 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4423 "Subtarget already supports SELECT nodes with the use of"
4424 "conditional-move instructions.");
4426 const TargetInstrInfo *TII =
4427 Subtarget.getInstrInfo();
4428 DebugLoc DL = MI.getDebugLoc();
4430 // To "insert" a SELECT instruction, we actually have to insert the
4431 // diamond control-flow pattern. The incoming instruction knows the
4432 // destination vreg to set, the condition code register to branch on, the
4433 // true/false values to select between, and a branch opcode to use.
4434 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4435 MachineFunction::iterator It = ++BB->getIterator();
4437 // thisMBB:
4438 // ...
4439 // TrueVal = ...
4440 // setcc r1, r2, r3
4441 // bNE r1, r0, copy1MBB
4442 // fallthrough --> copy0MBB
4443 MachineBasicBlock *thisMBB = BB;
4444 MachineFunction *F = BB->getParent();
4445 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4446 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4447 F->insert(It, copy0MBB);
4448 F->insert(It, sinkMBB);
4450 // Transfer the remainder of BB and its successor edges to sinkMBB.
4451 sinkMBB->splice(sinkMBB->begin(), BB,
4452 std::next(MachineBasicBlock::iterator(MI)), BB->end());
4453 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4455 // Next, add the true and fallthrough blocks as its successors.
4456 BB->addSuccessor(copy0MBB);
4457 BB->addSuccessor(sinkMBB);
4459 if (isFPCmp) {
4460 // bc1[tf] cc, sinkMBB
4461 BuildMI(BB, DL, TII->get(Opc))
4462 .addReg(MI.getOperand(1).getReg())
4463 .addMBB(sinkMBB);
4464 } else {
4465 // bne rs, $0, sinkMBB
4466 BuildMI(BB, DL, TII->get(Opc))
4467 .addReg(MI.getOperand(1).getReg())
4468 .addReg(Mips::ZERO)
4469 .addMBB(sinkMBB);
4472 // copy0MBB:
4473 // %FalseValue = ...
4474 // # fallthrough to sinkMBB
4475 BB = copy0MBB;
4477 // Update machine-CFG edges
4478 BB->addSuccessor(sinkMBB);
4480 // sinkMBB:
4481 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4482 // ...
4483 BB = sinkMBB;
4485 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4486 .addReg(MI.getOperand(2).getReg())
4487 .addMBB(thisMBB)
4488 .addReg(MI.getOperand(3).getReg())
4489 .addMBB(copy0MBB);
4491 MI.eraseFromParent(); // The pseudo instruction is gone now.
4493 return BB;
4496 MachineBasicBlock *MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
4497 MachineBasicBlock *BB) const {
4498 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4499 "Subtarget already supports SELECT nodes with the use of"
4500 "conditional-move instructions.");
4502 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4503 DebugLoc DL = MI.getDebugLoc();
4505 // D_SELECT substitutes two SELECT nodes that goes one after another and
4506 // have the same condition operand. On machines which don't have
4507 // conditional-move instruction, it reduces unnecessary branch instructions
4508 // which are result of using two diamond patterns that are result of two
4509 // SELECT pseudo instructions.
4510 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4511 MachineFunction::iterator It = ++BB->getIterator();
4513 // thisMBB:
4514 // ...
4515 // TrueVal = ...
4516 // setcc r1, r2, r3
4517 // bNE r1, r0, copy1MBB
4518 // fallthrough --> copy0MBB
4519 MachineBasicBlock *thisMBB = BB;
4520 MachineFunction *F = BB->getParent();
4521 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4522 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4523 F->insert(It, copy0MBB);
4524 F->insert(It, sinkMBB);
4526 // Transfer the remainder of BB and its successor edges to sinkMBB.
4527 sinkMBB->splice(sinkMBB->begin(), BB,
4528 std::next(MachineBasicBlock::iterator(MI)), BB->end());
4529 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4531 // Next, add the true and fallthrough blocks as its successors.
4532 BB->addSuccessor(copy0MBB);
4533 BB->addSuccessor(sinkMBB);
4535 // bne rs, $0, sinkMBB
4536 BuildMI(BB, DL, TII->get(Mips::BNE))
4537 .addReg(MI.getOperand(2).getReg())
4538 .addReg(Mips::ZERO)
4539 .addMBB(sinkMBB);
4541 // copy0MBB:
4542 // %FalseValue = ...
4543 // # fallthrough to sinkMBB
4544 BB = copy0MBB;
4546 // Update machine-CFG edges
4547 BB->addSuccessor(sinkMBB);
4549 // sinkMBB:
4550 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4551 // ...
4552 BB = sinkMBB;
4554 // Use two PHI nodes to select two reults
4555 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4556 .addReg(MI.getOperand(3).getReg())
4557 .addMBB(thisMBB)
4558 .addReg(MI.getOperand(5).getReg())
4559 .addMBB(copy0MBB);
4560 BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
4561 .addReg(MI.getOperand(4).getReg())
4562 .addMBB(thisMBB)
4563 .addReg(MI.getOperand(6).getReg())
4564 .addMBB(copy0MBB);
4566 MI.eraseFromParent(); // The pseudo instruction is gone now.
4568 return BB;
4571 // FIXME? Maybe this could be a TableGen attribute on some registers and
4572 // this table could be generated automatically from RegInfo.
4573 unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT,
4574 SelectionDAG &DAG) const {
4575 // Named registers is expected to be fairly rare. For now, just support $28
4576 // since the linux kernel uses it.
4577 if (Subtarget.isGP64bit()) {
4578 unsigned Reg = StringSwitch<unsigned>(RegName)
4579 .Case("$28", Mips::GP_64)
4580 .Default(0);
4581 if (Reg)
4582 return Reg;
4583 } else {
4584 unsigned Reg = StringSwitch<unsigned>(RegName)
4585 .Case("$28", Mips::GP)
4586 .Default(0);
4587 if (Reg)
4588 return Reg;
4590 report_fatal_error("Invalid register name global variable");