1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the ELF-specific dumper for llvm-readobj.
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
17 #include "ObjDumper.h"
18 #include "StackMapPrinter.h"
19 #include "llvm-readobj.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/MipsABIFlags.h"
55 #include "llvm/Support/ScopedPrinter.h"
56 #include "llvm/Support/raw_ostream.h"
65 #include <system_error>
66 #include <unordered_set>
70 using namespace llvm::object
;
73 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
77 #define ENUM_ENT(enum, altName) \
78 { #enum, altName, ELF::enum }
80 #define ENUM_ENT_1(enum) \
81 { #enum, #enum, ELF::enum }
83 #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
85 return std::string(#enum).substr(3);
87 #define TYPEDEF_ELF_TYPES(ELFT) \
88 using ELFO = ELFFile<ELFT>; \
89 using Elf_Addr = typename ELFT::Addr; \
90 using Elf_Shdr = typename ELFT::Shdr; \
91 using Elf_Sym = typename ELFT::Sym; \
92 using Elf_Dyn = typename ELFT::Dyn; \
93 using Elf_Dyn_Range = typename ELFT::DynRange; \
94 using Elf_Rel = typename ELFT::Rel; \
95 using Elf_Rela = typename ELFT::Rela; \
96 using Elf_Relr = typename ELFT::Relr; \
97 using Elf_Rel_Range = typename ELFT::RelRange; \
98 using Elf_Rela_Range = typename ELFT::RelaRange; \
99 using Elf_Relr_Range = typename ELFT::RelrRange; \
100 using Elf_Phdr = typename ELFT::Phdr; \
101 using Elf_Half = typename ELFT::Half; \
102 using Elf_Ehdr = typename ELFT::Ehdr; \
103 using Elf_Word = typename ELFT::Word; \
104 using Elf_Hash = typename ELFT::Hash; \
105 using Elf_GnuHash = typename ELFT::GnuHash; \
106 using Elf_Note = typename ELFT::Note; \
107 using Elf_Sym_Range = typename ELFT::SymRange; \
108 using Elf_Versym = typename ELFT::Versym; \
109 using Elf_Verneed = typename ELFT::Verneed; \
110 using Elf_Vernaux = typename ELFT::Vernaux; \
111 using Elf_Verdef = typename ELFT::Verdef; \
112 using Elf_Verdaux = typename ELFT::Verdaux; \
113 using Elf_CGProfile = typename ELFT::CGProfile; \
114 using uintX_t = typename ELFT::uint;
118 template <class ELFT
> class DumpStyle
;
120 /// Represents a contiguous uniform range in the file. We cannot just create a
121 /// range directly because when creating one of these from the .dynamic table
122 /// the size, entity size and virtual address are different entries in arbitrary
123 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
124 struct DynRegionInfo
{
125 DynRegionInfo(StringRef ObjName
) : FileName(ObjName
) {}
126 DynRegionInfo(const void *A
, uint64_t S
, uint64_t ES
, StringRef ObjName
)
127 : Addr(A
), Size(S
), EntSize(ES
), FileName(ObjName
) {}
129 /// Address in current address space.
130 const void *Addr
= nullptr;
131 /// Size in bytes of the region.
133 /// Size of each entity in the region.
134 uint64_t EntSize
= 0;
136 /// Name of the file. Used for error reporting.
139 template <typename Type
> ArrayRef
<Type
> getAsArrayRef() const {
140 const Type
*Start
= reinterpret_cast<const Type
*>(Addr
);
142 return {Start
, Start
};
143 if (EntSize
!= sizeof(Type
) || Size
% EntSize
) {
144 // TODO: Add a section index to this warning.
145 reportWarning(createError("invalid section size (" + Twine(Size
) +
146 ") or entity size (" + Twine(EntSize
) + ")"),
148 return {Start
, Start
};
150 return {Start
, Start
+ (Size
/ EntSize
)};
154 template <typename ELFT
> class ELFDumper
: public ObjDumper
{
156 ELFDumper(const object::ELFObjectFile
<ELFT
> *ObjF
, ScopedPrinter
&Writer
);
158 void printFileHeaders() override
;
159 void printSectionHeaders() override
;
160 void printRelocations() override
;
161 void printDynamicRelocations() override
;
162 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) override
;
163 void printHashSymbols() override
;
164 void printUnwindInfo() override
;
166 void printDynamicTable() override
;
167 void printNeededLibraries() override
;
168 void printProgramHeaders(bool PrintProgramHeaders
,
169 cl::boolOrDefault PrintSectionMapping
) override
;
170 void printHashTable() override
;
171 void printGnuHashTable() override
;
172 void printLoadName() override
;
173 void printVersionInfo() override
;
174 void printGroupSections() override
;
176 void printAttributes() override
;
177 void printMipsPLTGOT() override
;
178 void printMipsABIFlags() override
;
179 void printMipsReginfo() override
;
180 void printMipsOptions() override
;
182 void printStackMap() const override
;
184 void printHashHistogram() override
;
186 void printCGProfile() override
;
187 void printAddrsig() override
;
189 void printNotes() override
;
191 void printELFLinkerOptions() override
;
192 void printStackSizes() override
;
194 const object::ELFObjectFile
<ELFT
> *getElfObject() const { return ObjF
; };
197 std::unique_ptr
<DumpStyle
<ELFT
>> ELFDumperStyle
;
199 TYPEDEF_ELF_TYPES(ELFT
)
201 DynRegionInfo
checkDRI(DynRegionInfo DRI
) {
202 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
203 if (DRI
.Addr
< Obj
->base() ||
204 reinterpret_cast<const uint8_t *>(DRI
.Addr
) + DRI
.Size
>
205 Obj
->base() + Obj
->getBufSize())
206 reportError(errorCodeToError(llvm::object::object_error::parse_failed
),
207 ObjF
->getFileName());
211 DynRegionInfo
createDRIFrom(const Elf_Phdr
*P
, uintX_t EntSize
) {
212 return checkDRI({ObjF
->getELFFile()->base() + P
->p_offset
, P
->p_filesz
,
213 EntSize
, ObjF
->getFileName()});
216 DynRegionInfo
createDRIFrom(const Elf_Shdr
*S
) {
217 return checkDRI({ObjF
->getELFFile()->base() + S
->sh_offset
, S
->sh_size
,
218 S
->sh_entsize
, ObjF
->getFileName()});
221 void loadDynamicTable(const ELFFile
<ELFT
> *Obj
);
222 void parseDynamicTable();
224 StringRef
getSymbolVersion(StringRef StrTab
, const Elf_Sym
*symb
,
225 bool &IsDefault
) const;
226 void LoadVersionMap() const;
227 void LoadVersionNeeds(const Elf_Shdr
*ec
) const;
228 void LoadVersionDefs(const Elf_Shdr
*sec
) const;
230 const object::ELFObjectFile
<ELFT
> *ObjF
;
231 DynRegionInfo DynRelRegion
;
232 DynRegionInfo DynRelaRegion
;
233 DynRegionInfo DynRelrRegion
;
234 DynRegionInfo DynPLTRelRegion
;
235 DynRegionInfo DynSymRegion
;
236 DynRegionInfo DynamicTable
;
237 StringRef DynamicStringTable
;
238 std::string SOName
= "<Not found>";
239 const Elf_Hash
*HashTable
= nullptr;
240 const Elf_GnuHash
*GnuHashTable
= nullptr;
241 const Elf_Shdr
*DotSymtabSec
= nullptr;
242 const Elf_Shdr
*DotCGProfileSec
= nullptr;
243 const Elf_Shdr
*DotAddrsigSec
= nullptr;
244 StringRef DynSymtabName
;
245 ArrayRef
<Elf_Word
> ShndxTable
;
247 const Elf_Shdr
*SymbolVersionSection
= nullptr; // .gnu.version
248 const Elf_Shdr
*SymbolVersionNeedSection
= nullptr; // .gnu.version_r
249 const Elf_Shdr
*SymbolVersionDefSection
= nullptr; // .gnu.version_d
251 // Records for each version index the corresponding Verdef or Vernaux entry.
252 // This is filled the first time LoadVersionMap() is called.
253 class VersionMapEntry
: public PointerIntPair
<const void *, 1> {
255 // If the integer is 0, this is an Elf_Verdef*.
256 // If the integer is 1, this is an Elf_Vernaux*.
257 VersionMapEntry() : PointerIntPair
<const void *, 1>(nullptr, 0) {}
258 VersionMapEntry(const Elf_Verdef
*verdef
)
259 : PointerIntPair
<const void *, 1>(verdef
, 0) {}
260 VersionMapEntry(const Elf_Vernaux
*vernaux
)
261 : PointerIntPair
<const void *, 1>(vernaux
, 1) {}
263 bool isNull() const { return getPointer() == nullptr; }
264 bool isVerdef() const { return !isNull() && getInt() == 0; }
265 bool isVernaux() const { return !isNull() && getInt() == 1; }
266 const Elf_Verdef
*getVerdef() const {
267 return isVerdef() ? (const Elf_Verdef
*)getPointer() : nullptr;
269 const Elf_Vernaux
*getVernaux() const {
270 return isVernaux() ? (const Elf_Vernaux
*)getPointer() : nullptr;
273 mutable SmallVector
<VersionMapEntry
, 16> VersionMap
;
276 Elf_Dyn_Range
dynamic_table() const {
277 // A valid .dynamic section contains an array of entries terminated
278 // with a DT_NULL entry. However, sometimes the section content may
279 // continue past the DT_NULL entry, so to dump the section correctly,
280 // we first find the end of the entries by iterating over them.
281 Elf_Dyn_Range Table
= DynamicTable
.getAsArrayRef
<Elf_Dyn
>();
284 while (Size
< Table
.size())
285 if (Table
[Size
++].getTag() == DT_NULL
)
288 return Table
.slice(0, Size
);
291 Elf_Sym_Range
dynamic_symbols() const {
292 return DynSymRegion
.getAsArrayRef
<Elf_Sym
>();
295 Elf_Rel_Range
dyn_rels() const;
296 Elf_Rela_Range
dyn_relas() const;
297 Elf_Relr_Range
dyn_relrs() const;
298 std::string
getFullSymbolName(const Elf_Sym
*Symbol
, StringRef StrTable
,
299 bool IsDynamic
) const;
300 void getSectionNameIndex(const Elf_Sym
*Symbol
, const Elf_Sym
*FirstSym
,
301 StringRef
&SectionName
,
302 unsigned &SectionIndex
) const;
303 std::string
getStaticSymbolName(uint32_t Index
) const;
304 std::string
getDynamicString(uint64_t Value
) const;
305 StringRef
getSymbolVersionByIndex(StringRef StrTab
,
306 uint32_t VersionSymbolIndex
,
307 bool &IsDefault
) const;
309 void printSymbolsHelper(bool IsDynamic
) const;
310 void printDynamicEntry(raw_ostream
&OS
, uint64_t Type
, uint64_t Value
) const;
312 const Elf_Shdr
*getDotSymtabSec() const { return DotSymtabSec
; }
313 const Elf_Shdr
*getDotCGProfileSec() const { return DotCGProfileSec
; }
314 const Elf_Shdr
*getDotAddrsigSec() const { return DotAddrsigSec
; }
315 ArrayRef
<Elf_Word
> getShndxTable() const { return ShndxTable
; }
316 StringRef
getDynamicStringTable() const { return DynamicStringTable
; }
317 const DynRegionInfo
&getDynRelRegion() const { return DynRelRegion
; }
318 const DynRegionInfo
&getDynRelaRegion() const { return DynRelaRegion
; }
319 const DynRegionInfo
&getDynRelrRegion() const { return DynRelrRegion
; }
320 const DynRegionInfo
&getDynPLTRelRegion() const { return DynPLTRelRegion
; }
321 const DynRegionInfo
&getDynamicTableRegion() const { return DynamicTable
; }
322 const Elf_Hash
*getHashTable() const { return HashTable
; }
323 const Elf_GnuHash
*getGnuHashTable() const { return GnuHashTable
; }
326 template <class ELFT
>
327 void ELFDumper
<ELFT
>::printSymbolsHelper(bool IsDynamic
) const {
328 StringRef StrTable
, SymtabName
;
330 Elf_Sym_Range
Syms(nullptr, nullptr);
331 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
333 StrTable
= DynamicStringTable
;
334 Syms
= dynamic_symbols();
335 SymtabName
= DynSymtabName
;
336 if (DynSymRegion
.Addr
)
337 Entries
= DynSymRegion
.Size
/ DynSymRegion
.EntSize
;
341 StrTable
= unwrapOrError(ObjF
->getFileName(),
342 Obj
->getStringTableForSymtab(*DotSymtabSec
));
343 Syms
= unwrapOrError(ObjF
->getFileName(), Obj
->symbols(DotSymtabSec
));
345 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(DotSymtabSec
));
346 Entries
= DotSymtabSec
->getEntityCount();
348 if (Syms
.begin() == Syms
.end())
350 ELFDumperStyle
->printSymtabMessage(Obj
, SymtabName
, Entries
);
351 for (const auto &Sym
: Syms
)
352 ELFDumperStyle
->printSymbol(Obj
, &Sym
, Syms
.begin(), StrTable
, IsDynamic
);
355 template <class ELFT
> class MipsGOTParser
;
357 template <typename ELFT
> class DumpStyle
{
359 using Elf_Shdr
= typename
ELFT::Shdr
;
360 using Elf_Sym
= typename
ELFT::Sym
;
361 using Elf_Addr
= typename
ELFT::Addr
;
363 DumpStyle(ELFDumper
<ELFT
> *Dumper
) : Dumper(Dumper
) {
364 FileName
= this->Dumper
->getElfObject()->getFileName();
366 // Dumper reports all non-critical errors as warnings.
367 // It does not print the same warning more than once.
368 WarningHandler
= [this](const Twine
&Msg
) {
369 if (Warnings
.insert(Msg
.str()).second
)
370 reportWarning(createError(Msg
), FileName
);
371 return Error::success();
375 virtual ~DumpStyle() = default;
377 virtual void printFileHeaders(const ELFFile
<ELFT
> *Obj
) = 0;
378 virtual void printGroupSections(const ELFFile
<ELFT
> *Obj
) = 0;
379 virtual void printRelocations(const ELFFile
<ELFT
> *Obj
) = 0;
380 virtual void printSectionHeaders(const ELFFile
<ELFT
> *Obj
) = 0;
381 virtual void printSymbols(const ELFFile
<ELFT
> *Obj
, bool PrintSymbols
,
382 bool PrintDynamicSymbols
) = 0;
383 virtual void printHashSymbols(const ELFFile
<ELFT
> *Obj
) {}
384 virtual void printDynamic(const ELFFile
<ELFT
> *Obj
) {}
385 virtual void printDynamicRelocations(const ELFFile
<ELFT
> *Obj
) = 0;
386 virtual void printSymtabMessage(const ELFFile
<ELFT
> *Obj
, StringRef Name
,
388 virtual void printSymbol(const ELFFile
<ELFT
> *Obj
, const Elf_Sym
*Symbol
,
389 const Elf_Sym
*FirstSym
, StringRef StrTable
,
391 virtual void printProgramHeaders(const ELFFile
<ELFT
> *Obj
,
392 bool PrintProgramHeaders
,
393 cl::boolOrDefault PrintSectionMapping
) = 0;
394 virtual void printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
395 const Elf_Shdr
*Sec
) = 0;
396 virtual void printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
397 const Elf_Shdr
*Sec
) = 0;
398 virtual void printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
399 const Elf_Shdr
*Sec
) = 0;
400 virtual void printHashHistogram(const ELFFile
<ELFT
> *Obj
) = 0;
401 virtual void printCGProfile(const ELFFile
<ELFT
> *Obj
) = 0;
402 virtual void printAddrsig(const ELFFile
<ELFT
> *Obj
) = 0;
403 virtual void printNotes(const ELFFile
<ELFT
> *Obj
) = 0;
404 virtual void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) = 0;
405 virtual void printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) = 0;
406 void printNonRelocatableStackSizes(const ELFObjectFile
<ELFT
> *Obj
,
407 std::function
<void()> PrintHeader
);
408 void printRelocatableStackSizes(const ELFObjectFile
<ELFT
> *Obj
,
409 std::function
<void()> PrintHeader
);
410 void printFunctionStackSize(const ELFObjectFile
<ELFT
> *Obj
, uint64_t SymValue
,
411 SectionRef FunctionSec
,
412 const StringRef SectionName
, DataExtractor Data
,
414 void printStackSize(const ELFObjectFile
<ELFT
> *Obj
, RelocationRef Rel
,
415 SectionRef FunctionSec
,
416 const StringRef
&StackSizeSectionName
,
417 const RelocationResolver
&Resolver
, DataExtractor Data
);
418 virtual void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) = 0;
419 virtual void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
420 virtual void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
421 const ELFDumper
<ELFT
> *dumper() const { return Dumper
; }
424 std::function
<Error(const Twine
&Msg
)> WarningHandler
;
428 std::unordered_set
<std::string
> Warnings
;
429 const ELFDumper
<ELFT
> *Dumper
;
432 template <typename ELFT
> class GNUStyle
: public DumpStyle
<ELFT
> {
433 formatted_raw_ostream
&OS
;
436 TYPEDEF_ELF_TYPES(ELFT
)
438 GNUStyle(ScopedPrinter
&W
, ELFDumper
<ELFT
> *Dumper
)
439 : DumpStyle
<ELFT
>(Dumper
),
440 OS(static_cast<formatted_raw_ostream
&>(W
.getOStream())) {
441 assert (&W
.getOStream() == &llvm::fouts());
444 void printFileHeaders(const ELFO
*Obj
) override
;
445 void printGroupSections(const ELFFile
<ELFT
> *Obj
) override
;
446 void printRelocations(const ELFO
*Obj
) override
;
447 void printSectionHeaders(const ELFO
*Obj
) override
;
448 void printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
449 bool PrintDynamicSymbols
) override
;
450 void printHashSymbols(const ELFO
*Obj
) override
;
451 void printDynamic(const ELFFile
<ELFT
> *Obj
) override
;
452 void printDynamicRelocations(const ELFO
*Obj
) override
;
453 void printSymtabMessage(const ELFO
*Obj
, StringRef Name
,
454 size_t Offset
) override
;
455 void printProgramHeaders(const ELFO
*Obj
, bool PrintProgramHeaders
,
456 cl::boolOrDefault PrintSectionMapping
) override
;
457 void printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
458 const Elf_Shdr
*Sec
) override
;
459 void printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
460 const Elf_Shdr
*Sec
) override
;
461 void printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
462 const Elf_Shdr
*Sec
) override
;
463 void printHashHistogram(const ELFFile
<ELFT
> *Obj
) override
;
464 void printCGProfile(const ELFFile
<ELFT
> *Obj
) override
;
465 void printAddrsig(const ELFFile
<ELFT
> *Obj
) override
;
466 void printNotes(const ELFFile
<ELFT
> *Obj
) override
;
467 void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) override
;
468 void printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) override
;
469 void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) override
;
470 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
471 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
478 Field(StringRef S
, unsigned Col
) : Str(S
), Column(Col
) {}
479 Field(unsigned Col
) : Column(Col
) {}
482 template <typename T
, typename TEnum
>
483 std::string
printEnum(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
) {
484 for (const auto &EnumItem
: EnumValues
)
485 if (EnumItem
.Value
== Value
)
486 return EnumItem
.AltName
;
487 return to_hexString(Value
, false);
490 template <typename T
, typename TEnum
>
491 std::string
printFlags(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
,
492 TEnum EnumMask1
= {}, TEnum EnumMask2
= {},
493 TEnum EnumMask3
= {}) {
495 for (const auto &Flag
: EnumValues
) {
500 if (Flag
.Value
& EnumMask1
)
501 EnumMask
= EnumMask1
;
502 else if (Flag
.Value
& EnumMask2
)
503 EnumMask
= EnumMask2
;
504 else if (Flag
.Value
& EnumMask3
)
505 EnumMask
= EnumMask3
;
506 bool IsEnum
= (Flag
.Value
& EnumMask
) != 0;
507 if ((!IsEnum
&& (Value
& Flag
.Value
) == Flag
.Value
) ||
508 (IsEnum
&& (Value
& EnumMask
) == Flag
.Value
)) {
517 formatted_raw_ostream
&printField(struct Field F
) {
519 OS
.PadToColumn(F
.Column
);
524 void printHashedSymbol(const ELFO
*Obj
, const Elf_Sym
*FirstSym
, uint32_t Sym
,
525 StringRef StrTable
, uint32_t Bucket
);
526 void printRelocHeader(unsigned SType
);
527 void printRelocation(const ELFO
*Obj
, const Elf_Shdr
*SymTab
,
528 const Elf_Rela
&R
, bool IsRela
);
529 void printRelocation(const ELFO
*Obj
, const Elf_Sym
*Sym
,
530 StringRef SymbolName
, const Elf_Rela
&R
, bool IsRela
);
531 void printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
, const Elf_Sym
*First
,
532 StringRef StrTable
, bool IsDynamic
) override
;
533 std::string
getSymbolSectionNdx(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
534 const Elf_Sym
*FirstSym
);
535 void printDynamicRelocation(const ELFO
*Obj
, Elf_Rela R
, bool IsRela
);
536 bool checkTLSSections(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
537 bool checkoffsets(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
538 bool checkVMA(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
539 bool checkPTDynamic(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
540 void printProgramHeaders(const ELFO
*Obj
);
541 void printSectionMapping(const ELFO
*Obj
);
544 template <typename ELFT
> class LLVMStyle
: public DumpStyle
<ELFT
> {
546 TYPEDEF_ELF_TYPES(ELFT
)
548 LLVMStyle(ScopedPrinter
&W
, ELFDumper
<ELFT
> *Dumper
)
549 : DumpStyle
<ELFT
>(Dumper
), W(W
) {}
551 void printFileHeaders(const ELFO
*Obj
) override
;
552 void printGroupSections(const ELFFile
<ELFT
> *Obj
) override
;
553 void printRelocations(const ELFO
*Obj
) override
;
554 void printRelocations(const Elf_Shdr
*Sec
, const ELFO
*Obj
);
555 void printSectionHeaders(const ELFO
*Obj
) override
;
556 void printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
557 bool PrintDynamicSymbols
) override
;
558 void printDynamic(const ELFFile
<ELFT
> *Obj
) override
;
559 void printDynamicRelocations(const ELFO
*Obj
) override
;
560 void printProgramHeaders(const ELFO
*Obj
, bool PrintProgramHeaders
,
561 cl::boolOrDefault PrintSectionMapping
) override
;
562 void printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
563 const Elf_Shdr
*Sec
) override
;
564 void printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
565 const Elf_Shdr
*Sec
) override
;
566 void printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
567 const Elf_Shdr
*Sec
) override
;
568 void printHashHistogram(const ELFFile
<ELFT
> *Obj
) override
;
569 void printCGProfile(const ELFFile
<ELFT
> *Obj
) override
;
570 void printAddrsig(const ELFFile
<ELFT
> *Obj
) override
;
571 void printNotes(const ELFFile
<ELFT
> *Obj
) override
;
572 void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) override
;
573 void printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) override
;
574 void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) override
;
575 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
576 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
579 void printRelocation(const ELFO
*Obj
, Elf_Rela Rel
, const Elf_Shdr
*SymTab
);
580 void printDynamicRelocation(const ELFO
*Obj
, Elf_Rela Rel
);
581 void printSymbols(const ELFO
*Obj
);
582 void printDynamicSymbols(const ELFO
*Obj
);
583 void printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
, const Elf_Sym
*First
,
584 StringRef StrTable
, bool IsDynamic
) override
;
585 void printProgramHeaders(const ELFO
*Obj
);
586 void printSectionMapping(const ELFO
*Obj
) {}
591 } // end anonymous namespace
595 template <class ELFT
>
596 static std::error_code
createELFDumper(const ELFObjectFile
<ELFT
> *Obj
,
597 ScopedPrinter
&Writer
,
598 std::unique_ptr
<ObjDumper
> &Result
) {
599 Result
.reset(new ELFDumper
<ELFT
>(Obj
, Writer
));
600 return readobj_error::success
;
603 std::error_code
createELFDumper(const object::ObjectFile
*Obj
,
604 ScopedPrinter
&Writer
,
605 std::unique_ptr
<ObjDumper
> &Result
) {
606 // Little-endian 32-bit
607 if (const ELF32LEObjectFile
*ELFObj
= dyn_cast
<ELF32LEObjectFile
>(Obj
))
608 return createELFDumper(ELFObj
, Writer
, Result
);
611 if (const ELF32BEObjectFile
*ELFObj
= dyn_cast
<ELF32BEObjectFile
>(Obj
))
612 return createELFDumper(ELFObj
, Writer
, Result
);
614 // Little-endian 64-bit
615 if (const ELF64LEObjectFile
*ELFObj
= dyn_cast
<ELF64LEObjectFile
>(Obj
))
616 return createELFDumper(ELFObj
, Writer
, Result
);
619 if (const ELF64BEObjectFile
*ELFObj
= dyn_cast
<ELF64BEObjectFile
>(Obj
))
620 return createELFDumper(ELFObj
, Writer
, Result
);
622 return readobj_error::unsupported_obj_file_format
;
625 } // end namespace llvm
627 // Iterate through the versions needed section, and place each Elf_Vernaux
628 // in the VersionMap according to its index.
629 template <class ELFT
>
630 void ELFDumper
<ELFT
>::LoadVersionNeeds(const Elf_Shdr
*Sec
) const {
631 unsigned VerneedSize
= Sec
->sh_size
; // Size of section in bytes
632 unsigned VerneedEntries
= Sec
->sh_info
; // Number of Verneed entries
633 const uint8_t *VerneedStart
= reinterpret_cast<const uint8_t *>(
634 ObjF
->getELFFile()->base() + Sec
->sh_offset
);
635 const uint8_t *VerneedEnd
= VerneedStart
+ VerneedSize
;
636 // The first Verneed entry is at the start of the section.
637 const uint8_t *VerneedBuf
= VerneedStart
;
638 for (unsigned VerneedIndex
= 0; VerneedIndex
< VerneedEntries
;
640 if (VerneedBuf
+ sizeof(Elf_Verneed
) > VerneedEnd
)
641 report_fatal_error("Section ended unexpectedly while scanning "
642 "version needed records.");
643 const Elf_Verneed
*Verneed
=
644 reinterpret_cast<const Elf_Verneed
*>(VerneedBuf
);
645 if (Verneed
->vn_version
!= ELF::VER_NEED_CURRENT
)
646 report_fatal_error("Unexpected verneed version");
647 // Iterate through the Vernaux entries
648 const uint8_t *VernauxBuf
= VerneedBuf
+ Verneed
->vn_aux
;
649 for (unsigned VernauxIndex
= 0; VernauxIndex
< Verneed
->vn_cnt
;
651 if (VernauxBuf
+ sizeof(Elf_Vernaux
) > VerneedEnd
)
652 report_fatal_error("Section ended unexpected while scanning auxiliary "
653 "version needed records.");
654 const Elf_Vernaux
*Vernaux
=
655 reinterpret_cast<const Elf_Vernaux
*>(VernauxBuf
);
656 size_t Index
= Vernaux
->vna_other
& ELF::VERSYM_VERSION
;
657 if (Index
>= VersionMap
.size())
658 VersionMap
.resize(Index
+ 1);
659 VersionMap
[Index
] = VersionMapEntry(Vernaux
);
660 VernauxBuf
+= Vernaux
->vna_next
;
662 VerneedBuf
+= Verneed
->vn_next
;
666 // Iterate through the version definitions, and place each Elf_Verdef
667 // in the VersionMap according to its index.
668 template <class ELFT
>
669 void ELFDumper
<ELFT
>::LoadVersionDefs(const Elf_Shdr
*Sec
) const {
670 unsigned VerdefSize
= Sec
->sh_size
; // Size of section in bytes
671 unsigned VerdefEntries
= Sec
->sh_info
; // Number of Verdef entries
672 const uint8_t *VerdefStart
= reinterpret_cast<const uint8_t *>(
673 ObjF
->getELFFile()->base() + Sec
->sh_offset
);
674 const uint8_t *VerdefEnd
= VerdefStart
+ VerdefSize
;
675 // The first Verdef entry is at the start of the section.
676 const uint8_t *VerdefBuf
= VerdefStart
;
677 for (unsigned VerdefIndex
= 0; VerdefIndex
< VerdefEntries
; ++VerdefIndex
) {
678 if (VerdefBuf
+ sizeof(Elf_Verdef
) > VerdefEnd
)
679 report_fatal_error("Section ended unexpectedly while scanning "
680 "version definitions.");
681 const Elf_Verdef
*Verdef
= reinterpret_cast<const Elf_Verdef
*>(VerdefBuf
);
682 if (Verdef
->vd_version
!= ELF::VER_DEF_CURRENT
)
683 report_fatal_error("Unexpected verdef version");
684 size_t Index
= Verdef
->vd_ndx
& ELF::VERSYM_VERSION
;
685 if (Index
>= VersionMap
.size())
686 VersionMap
.resize(Index
+ 1);
687 VersionMap
[Index
] = VersionMapEntry(Verdef
);
688 VerdefBuf
+= Verdef
->vd_next
;
692 template <class ELFT
> void ELFDumper
<ELFT
>::LoadVersionMap() const {
693 // If there is no dynamic symtab or version table, there is nothing to do.
694 if (!DynSymRegion
.Addr
|| !SymbolVersionSection
)
697 // Has the VersionMap already been loaded?
698 if (!VersionMap
.empty())
701 // The first two version indexes are reserved.
702 // Index 0 is LOCAL, index 1 is GLOBAL.
703 VersionMap
.push_back(VersionMapEntry());
704 VersionMap
.push_back(VersionMapEntry());
706 if (SymbolVersionDefSection
)
707 LoadVersionDefs(SymbolVersionDefSection
);
709 if (SymbolVersionNeedSection
)
710 LoadVersionNeeds(SymbolVersionNeedSection
);
713 template <typename ELFT
>
714 StringRef ELFDumper
<ELFT
>::getSymbolVersion(StringRef StrTab
,
716 bool &IsDefault
) const {
717 // This is a dynamic symbol. Look in the GNU symbol version table.
718 if (!SymbolVersionSection
) {
724 // Determine the position in the symbol table of this entry.
725 size_t EntryIndex
= (reinterpret_cast<uintptr_t>(Sym
) -
726 reinterpret_cast<uintptr_t>(DynSymRegion
.Addr
)) /
729 // Get the corresponding version index entry.
730 const Elf_Versym
*Versym
= unwrapOrError(
731 ObjF
->getFileName(), ObjF
->getELFFile()->template getEntry
<Elf_Versym
>(
732 SymbolVersionSection
, EntryIndex
));
733 return this->getSymbolVersionByIndex(StrTab
, Versym
->vs_index
, IsDefault
);
736 static std::string
maybeDemangle(StringRef Name
) {
737 return opts::Demangle
? demangle(Name
) : Name
.str();
740 template <typename ELFT
>
741 std::string ELFDumper
<ELFT
>::getStaticSymbolName(uint32_t Index
) const {
742 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
743 StringRef StrTable
= unwrapOrError(
744 ObjF
->getFileName(), Obj
->getStringTableForSymtab(*DotSymtabSec
));
746 unwrapOrError(ObjF
->getFileName(), Obj
->symbols(DotSymtabSec
));
747 if (Index
>= Syms
.size())
748 reportError(createError("Invalid symbol index"), ObjF
->getFileName());
749 const Elf_Sym
*Sym
= &Syms
[Index
];
750 return maybeDemangle(
751 unwrapOrError(ObjF
->getFileName(), Sym
->getName(StrTable
)));
754 template <typename ELFT
>
755 StringRef ELFDumper
<ELFT
>::getSymbolVersionByIndex(StringRef StrTab
,
756 uint32_t SymbolVersionIndex
,
757 bool &IsDefault
) const {
758 size_t VersionIndex
= SymbolVersionIndex
& VERSYM_VERSION
;
760 // Special markers for unversioned symbols.
761 if (VersionIndex
== VER_NDX_LOCAL
|| VersionIndex
== VER_NDX_GLOBAL
) {
766 // Lookup this symbol in the version table.
768 if (VersionIndex
>= VersionMap
.size() || VersionMap
[VersionIndex
].isNull())
769 reportError(createError("Invalid version entry"), ObjF
->getFileName());
770 const VersionMapEntry
&Entry
= VersionMap
[VersionIndex
];
772 // Get the version name string.
774 if (Entry
.isVerdef()) {
775 // The first Verdaux entry holds the name.
776 NameOffset
= Entry
.getVerdef()->getAux()->vda_name
;
777 IsDefault
= !(SymbolVersionIndex
& VERSYM_HIDDEN
);
779 NameOffset
= Entry
.getVernaux()->vna_name
;
782 if (NameOffset
>= StrTab
.size())
783 reportError(createError("Invalid string offset"), ObjF
->getFileName());
784 return StrTab
.data() + NameOffset
;
787 template <typename ELFT
>
788 std::string ELFDumper
<ELFT
>::getFullSymbolName(const Elf_Sym
*Symbol
,
790 bool IsDynamic
) const {
791 std::string SymbolName
= maybeDemangle(
792 unwrapOrError(ObjF
->getFileName(), Symbol
->getName(StrTable
)));
794 if (SymbolName
.empty() && Symbol
->getType() == ELF::STT_SECTION
) {
795 unsigned SectionIndex
;
796 StringRef SectionName
;
797 Elf_Sym_Range Syms
= unwrapOrError(
798 ObjF
->getFileName(), ObjF
->getELFFile()->symbols(DotSymtabSec
));
799 getSectionNameIndex(Symbol
, Syms
.begin(), SectionName
, SectionIndex
);
807 StringRef Version
= getSymbolVersion(StrTable
, &*Symbol
, IsDefault
);
808 if (!Version
.empty()) {
809 SymbolName
+= (IsDefault
? "@@" : "@");
810 SymbolName
+= Version
;
815 template <typename ELFT
>
816 void ELFDumper
<ELFT
>::getSectionNameIndex(const Elf_Sym
*Symbol
,
817 const Elf_Sym
*FirstSym
,
818 StringRef
&SectionName
,
819 unsigned &SectionIndex
) const {
820 SectionIndex
= Symbol
->st_shndx
;
821 if (Symbol
->isUndefined())
822 SectionName
= "Undefined";
823 else if (Symbol
->isProcessorSpecific())
824 SectionName
= "Processor Specific";
825 else if (Symbol
->isOSSpecific())
826 SectionName
= "Operating System Specific";
827 else if (Symbol
->isAbsolute())
828 SectionName
= "Absolute";
829 else if (Symbol
->isCommon())
830 SectionName
= "Common";
831 else if (Symbol
->isReserved() && SectionIndex
!= SHN_XINDEX
)
832 SectionName
= "Reserved";
834 if (SectionIndex
== SHN_XINDEX
)
835 SectionIndex
= unwrapOrError(ObjF
->getFileName(),
836 object::getExtendedSymbolTableIndex
<ELFT
>(
837 Symbol
, FirstSym
, ShndxTable
));
838 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
839 const typename
ELFT::Shdr
*Sec
=
840 unwrapOrError(ObjF
->getFileName(), Obj
->getSection(SectionIndex
));
841 SectionName
= unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(Sec
));
845 template <class ELFO
>
846 static const typename
ELFO::Elf_Shdr
*
847 findNotEmptySectionByAddress(const ELFO
*Obj
, StringRef FileName
,
849 for (const auto &Shdr
: unwrapOrError(FileName
, Obj
->sections()))
850 if (Shdr
.sh_addr
== Addr
&& Shdr
.sh_size
> 0)
855 template <class ELFO
>
856 static const typename
ELFO::Elf_Shdr
*
857 findSectionByName(const ELFO
&Obj
, StringRef FileName
, StringRef Name
) {
858 for (const auto &Shdr
: unwrapOrError(FileName
, Obj
.sections()))
859 if (Name
== unwrapOrError(FileName
, Obj
.getSectionName(&Shdr
)))
864 static const EnumEntry
<unsigned> ElfClass
[] = {
865 {"None", "none", ELF::ELFCLASSNONE
},
866 {"32-bit", "ELF32", ELF::ELFCLASS32
},
867 {"64-bit", "ELF64", ELF::ELFCLASS64
},
870 static const EnumEntry
<unsigned> ElfDataEncoding
[] = {
871 {"None", "none", ELF::ELFDATANONE
},
872 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB
},
873 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB
},
876 static const EnumEntry
<unsigned> ElfObjectFileType
[] = {
877 {"None", "NONE (none)", ELF::ET_NONE
},
878 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL
},
879 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC
},
880 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN
},
881 {"Core", "CORE (Core file)", ELF::ET_CORE
},
884 static const EnumEntry
<unsigned> ElfOSABI
[] = {
885 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE
},
886 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX
},
887 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD
},
888 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX
},
889 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD
},
890 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS
},
891 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX
},
892 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX
},
893 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD
},
894 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64
},
895 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO
},
896 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD
},
897 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS
},
898 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK
},
899 {"AROS", "AROS", ELF::ELFOSABI_AROS
},
900 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS
},
901 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI
},
902 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE
}
905 static const EnumEntry
<unsigned> SymVersionFlags
[] = {
906 {"Base", "BASE", VER_FLG_BASE
},
907 {"Weak", "WEAK", VER_FLG_WEAK
},
908 {"Info", "INFO", VER_FLG_INFO
}};
910 static const EnumEntry
<unsigned> AMDGPUElfOSABI
[] = {
911 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA
},
912 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL
},
913 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D
}
916 static const EnumEntry
<unsigned> ARMElfOSABI
[] = {
917 {"ARM", "ARM", ELF::ELFOSABI_ARM
}
920 static const EnumEntry
<unsigned> C6000ElfOSABI
[] = {
921 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI
},
922 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX
}
925 static const EnumEntry
<unsigned> ElfMachineType
[] = {
926 ENUM_ENT(EM_NONE
, "None"),
927 ENUM_ENT(EM_M32
, "WE32100"),
928 ENUM_ENT(EM_SPARC
, "Sparc"),
929 ENUM_ENT(EM_386
, "Intel 80386"),
930 ENUM_ENT(EM_68K
, "MC68000"),
931 ENUM_ENT(EM_88K
, "MC88000"),
932 ENUM_ENT(EM_IAMCU
, "EM_IAMCU"),
933 ENUM_ENT(EM_860
, "Intel 80860"),
934 ENUM_ENT(EM_MIPS
, "MIPS R3000"),
935 ENUM_ENT(EM_S370
, "IBM System/370"),
936 ENUM_ENT(EM_MIPS_RS3_LE
, "MIPS R3000 little-endian"),
937 ENUM_ENT(EM_PARISC
, "HPPA"),
938 ENUM_ENT(EM_VPP500
, "Fujitsu VPP500"),
939 ENUM_ENT(EM_SPARC32PLUS
, "Sparc v8+"),
940 ENUM_ENT(EM_960
, "Intel 80960"),
941 ENUM_ENT(EM_PPC
, "PowerPC"),
942 ENUM_ENT(EM_PPC64
, "PowerPC64"),
943 ENUM_ENT(EM_S390
, "IBM S/390"),
944 ENUM_ENT(EM_SPU
, "SPU"),
945 ENUM_ENT(EM_V800
, "NEC V800 series"),
946 ENUM_ENT(EM_FR20
, "Fujistsu FR20"),
947 ENUM_ENT(EM_RH32
, "TRW RH-32"),
948 ENUM_ENT(EM_RCE
, "Motorola RCE"),
949 ENUM_ENT(EM_ARM
, "ARM"),
950 ENUM_ENT(EM_ALPHA
, "EM_ALPHA"),
951 ENUM_ENT(EM_SH
, "Hitachi SH"),
952 ENUM_ENT(EM_SPARCV9
, "Sparc v9"),
953 ENUM_ENT(EM_TRICORE
, "Siemens Tricore"),
954 ENUM_ENT(EM_ARC
, "ARC"),
955 ENUM_ENT(EM_H8_300
, "Hitachi H8/300"),
956 ENUM_ENT(EM_H8_300H
, "Hitachi H8/300H"),
957 ENUM_ENT(EM_H8S
, "Hitachi H8S"),
958 ENUM_ENT(EM_H8_500
, "Hitachi H8/500"),
959 ENUM_ENT(EM_IA_64
, "Intel IA-64"),
960 ENUM_ENT(EM_MIPS_X
, "Stanford MIPS-X"),
961 ENUM_ENT(EM_COLDFIRE
, "Motorola Coldfire"),
962 ENUM_ENT(EM_68HC12
, "Motorola MC68HC12 Microcontroller"),
963 ENUM_ENT(EM_MMA
, "Fujitsu Multimedia Accelerator"),
964 ENUM_ENT(EM_PCP
, "Siemens PCP"),
965 ENUM_ENT(EM_NCPU
, "Sony nCPU embedded RISC processor"),
966 ENUM_ENT(EM_NDR1
, "Denso NDR1 microprocesspr"),
967 ENUM_ENT(EM_STARCORE
, "Motorola Star*Core processor"),
968 ENUM_ENT(EM_ME16
, "Toyota ME16 processor"),
969 ENUM_ENT(EM_ST100
, "STMicroelectronics ST100 processor"),
970 ENUM_ENT(EM_TINYJ
, "Advanced Logic Corp. TinyJ embedded processor"),
971 ENUM_ENT(EM_X86_64
, "Advanced Micro Devices X86-64"),
972 ENUM_ENT(EM_PDSP
, "Sony DSP processor"),
973 ENUM_ENT(EM_PDP10
, "Digital Equipment Corp. PDP-10"),
974 ENUM_ENT(EM_PDP11
, "Digital Equipment Corp. PDP-11"),
975 ENUM_ENT(EM_FX66
, "Siemens FX66 microcontroller"),
976 ENUM_ENT(EM_ST9PLUS
, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
977 ENUM_ENT(EM_ST7
, "STMicroelectronics ST7 8-bit microcontroller"),
978 ENUM_ENT(EM_68HC16
, "Motorola MC68HC16 Microcontroller"),
979 ENUM_ENT(EM_68HC11
, "Motorola MC68HC11 Microcontroller"),
980 ENUM_ENT(EM_68HC08
, "Motorola MC68HC08 Microcontroller"),
981 ENUM_ENT(EM_68HC05
, "Motorola MC68HC05 Microcontroller"),
982 ENUM_ENT(EM_SVX
, "Silicon Graphics SVx"),
983 ENUM_ENT(EM_ST19
, "STMicroelectronics ST19 8-bit microcontroller"),
984 ENUM_ENT(EM_VAX
, "Digital VAX"),
985 ENUM_ENT(EM_CRIS
, "Axis Communications 32-bit embedded processor"),
986 ENUM_ENT(EM_JAVELIN
, "Infineon Technologies 32-bit embedded cpu"),
987 ENUM_ENT(EM_FIREPATH
, "Element 14 64-bit DSP processor"),
988 ENUM_ENT(EM_ZSP
, "LSI Logic's 16-bit DSP processor"),
989 ENUM_ENT(EM_MMIX
, "Donald Knuth's educational 64-bit processor"),
990 ENUM_ENT(EM_HUANY
, "Harvard Universitys's machine-independent object format"),
991 ENUM_ENT(EM_PRISM
, "Vitesse Prism"),
992 ENUM_ENT(EM_AVR
, "Atmel AVR 8-bit microcontroller"),
993 ENUM_ENT(EM_FR30
, "Fujitsu FR30"),
994 ENUM_ENT(EM_D10V
, "Mitsubishi D10V"),
995 ENUM_ENT(EM_D30V
, "Mitsubishi D30V"),
996 ENUM_ENT(EM_V850
, "NEC v850"),
997 ENUM_ENT(EM_M32R
, "Renesas M32R (formerly Mitsubishi M32r)"),
998 ENUM_ENT(EM_MN10300
, "Matsushita MN10300"),
999 ENUM_ENT(EM_MN10200
, "Matsushita MN10200"),
1000 ENUM_ENT(EM_PJ
, "picoJava"),
1001 ENUM_ENT(EM_OPENRISC
, "OpenRISC 32-bit embedded processor"),
1002 ENUM_ENT(EM_ARC_COMPACT
, "EM_ARC_COMPACT"),
1003 ENUM_ENT(EM_XTENSA
, "Tensilica Xtensa Processor"),
1004 ENUM_ENT(EM_VIDEOCORE
, "Alphamosaic VideoCore processor"),
1005 ENUM_ENT(EM_TMM_GPP
, "Thompson Multimedia General Purpose Processor"),
1006 ENUM_ENT(EM_NS32K
, "National Semiconductor 32000 series"),
1007 ENUM_ENT(EM_TPC
, "Tenor Network TPC processor"),
1008 ENUM_ENT(EM_SNP1K
, "EM_SNP1K"),
1009 ENUM_ENT(EM_ST200
, "STMicroelectronics ST200 microcontroller"),
1010 ENUM_ENT(EM_IP2K
, "Ubicom IP2xxx 8-bit microcontrollers"),
1011 ENUM_ENT(EM_MAX
, "MAX Processor"),
1012 ENUM_ENT(EM_CR
, "National Semiconductor CompactRISC"),
1013 ENUM_ENT(EM_F2MC16
, "Fujitsu F2MC16"),
1014 ENUM_ENT(EM_MSP430
, "Texas Instruments msp430 microcontroller"),
1015 ENUM_ENT(EM_BLACKFIN
, "Analog Devices Blackfin"),
1016 ENUM_ENT(EM_SE_C33
, "S1C33 Family of Seiko Epson processors"),
1017 ENUM_ENT(EM_SEP
, "Sharp embedded microprocessor"),
1018 ENUM_ENT(EM_ARCA
, "Arca RISC microprocessor"),
1019 ENUM_ENT(EM_UNICORE
, "Unicore"),
1020 ENUM_ENT(EM_EXCESS
, "eXcess 16/32/64-bit configurable embedded CPU"),
1021 ENUM_ENT(EM_DXP
, "Icera Semiconductor Inc. Deep Execution Processor"),
1022 ENUM_ENT(EM_ALTERA_NIOS2
, "Altera Nios"),
1023 ENUM_ENT(EM_CRX
, "National Semiconductor CRX microprocessor"),
1024 ENUM_ENT(EM_XGATE
, "Motorola XGATE embedded processor"),
1025 ENUM_ENT(EM_C166
, "Infineon Technologies xc16x"),
1026 ENUM_ENT(EM_M16C
, "Renesas M16C"),
1027 ENUM_ENT(EM_DSPIC30F
, "Microchip Technology dsPIC30F Digital Signal Controller"),
1028 ENUM_ENT(EM_CE
, "Freescale Communication Engine RISC core"),
1029 ENUM_ENT(EM_M32C
, "Renesas M32C"),
1030 ENUM_ENT(EM_TSK3000
, "Altium TSK3000 core"),
1031 ENUM_ENT(EM_RS08
, "Freescale RS08 embedded processor"),
1032 ENUM_ENT(EM_SHARC
, "EM_SHARC"),
1033 ENUM_ENT(EM_ECOG2
, "Cyan Technology eCOG2 microprocessor"),
1034 ENUM_ENT(EM_SCORE7
, "SUNPLUS S+Core"),
1035 ENUM_ENT(EM_DSP24
, "New Japan Radio (NJR) 24-bit DSP Processor"),
1036 ENUM_ENT(EM_VIDEOCORE3
, "Broadcom VideoCore III processor"),
1037 ENUM_ENT(EM_LATTICEMICO32
, "Lattice Mico32"),
1038 ENUM_ENT(EM_SE_C17
, "Seiko Epson C17 family"),
1039 ENUM_ENT(EM_TI_C6000
, "Texas Instruments TMS320C6000 DSP family"),
1040 ENUM_ENT(EM_TI_C2000
, "Texas Instruments TMS320C2000 DSP family"),
1041 ENUM_ENT(EM_TI_C5500
, "Texas Instruments TMS320C55x DSP family"),
1042 ENUM_ENT(EM_MMDSP_PLUS
, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1043 ENUM_ENT(EM_CYPRESS_M8C
, "Cypress M8C microprocessor"),
1044 ENUM_ENT(EM_R32C
, "Renesas R32C series microprocessors"),
1045 ENUM_ENT(EM_TRIMEDIA
, "NXP Semiconductors TriMedia architecture family"),
1046 ENUM_ENT(EM_HEXAGON
, "Qualcomm Hexagon"),
1047 ENUM_ENT(EM_8051
, "Intel 8051 and variants"),
1048 ENUM_ENT(EM_STXP7X
, "STMicroelectronics STxP7x family"),
1049 ENUM_ENT(EM_NDS32
, "Andes Technology compact code size embedded RISC processor family"),
1050 ENUM_ENT(EM_ECOG1
, "Cyan Technology eCOG1 microprocessor"),
1051 ENUM_ENT(EM_ECOG1X
, "Cyan Technology eCOG1X family"),
1052 ENUM_ENT(EM_MAXQ30
, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1053 ENUM_ENT(EM_XIMO16
, "New Japan Radio (NJR) 16-bit DSP Processor"),
1054 ENUM_ENT(EM_MANIK
, "M2000 Reconfigurable RISC Microprocessor"),
1055 ENUM_ENT(EM_CRAYNV2
, "Cray Inc. NV2 vector architecture"),
1056 ENUM_ENT(EM_RX
, "Renesas RX"),
1057 ENUM_ENT(EM_METAG
, "Imagination Technologies Meta processor architecture"),
1058 ENUM_ENT(EM_MCST_ELBRUS
, "MCST Elbrus general purpose hardware architecture"),
1059 ENUM_ENT(EM_ECOG16
, "Cyan Technology eCOG16 family"),
1060 ENUM_ENT(EM_CR16
, "Xilinx MicroBlaze"),
1061 ENUM_ENT(EM_ETPU
, "Freescale Extended Time Processing Unit"),
1062 ENUM_ENT(EM_SLE9X
, "Infineon Technologies SLE9X core"),
1063 ENUM_ENT(EM_L10M
, "EM_L10M"),
1064 ENUM_ENT(EM_K10M
, "EM_K10M"),
1065 ENUM_ENT(EM_AARCH64
, "AArch64"),
1066 ENUM_ENT(EM_AVR32
, "Atmel Corporation 32-bit microprocessor family"),
1067 ENUM_ENT(EM_STM8
, "STMicroeletronics STM8 8-bit microcontroller"),
1068 ENUM_ENT(EM_TILE64
, "Tilera TILE64 multicore architecture family"),
1069 ENUM_ENT(EM_TILEPRO
, "Tilera TILEPro multicore architecture family"),
1070 ENUM_ENT(EM_CUDA
, "NVIDIA CUDA architecture"),
1071 ENUM_ENT(EM_TILEGX
, "Tilera TILE-Gx multicore architecture family"),
1072 ENUM_ENT(EM_CLOUDSHIELD
, "EM_CLOUDSHIELD"),
1073 ENUM_ENT(EM_COREA_1ST
, "EM_COREA_1ST"),
1074 ENUM_ENT(EM_COREA_2ND
, "EM_COREA_2ND"),
1075 ENUM_ENT(EM_ARC_COMPACT2
, "EM_ARC_COMPACT2"),
1076 ENUM_ENT(EM_OPEN8
, "EM_OPEN8"),
1077 ENUM_ENT(EM_RL78
, "Renesas RL78"),
1078 ENUM_ENT(EM_VIDEOCORE5
, "Broadcom VideoCore V processor"),
1079 ENUM_ENT(EM_78KOR
, "EM_78KOR"),
1080 ENUM_ENT(EM_56800EX
, "EM_56800EX"),
1081 ENUM_ENT(EM_AMDGPU
, "EM_AMDGPU"),
1082 ENUM_ENT(EM_RISCV
, "RISC-V"),
1083 ENUM_ENT(EM_LANAI
, "EM_LANAI"),
1084 ENUM_ENT(EM_BPF
, "EM_BPF"),
1087 static const EnumEntry
<unsigned> ElfSymbolBindings
[] = {
1088 {"Local", "LOCAL", ELF::STB_LOCAL
},
1089 {"Global", "GLOBAL", ELF::STB_GLOBAL
},
1090 {"Weak", "WEAK", ELF::STB_WEAK
},
1091 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE
}};
1093 static const EnumEntry
<unsigned> ElfSymbolVisibilities
[] = {
1094 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT
},
1095 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL
},
1096 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN
},
1097 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED
}};
1099 static const EnumEntry
<unsigned> AMDGPUSymbolTypes
[] = {
1100 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL
}
1103 static const char *getGroupType(uint32_t Flag
) {
1104 if (Flag
& ELF::GRP_COMDAT
)
1110 static const EnumEntry
<unsigned> ElfSectionFlags
[] = {
1111 ENUM_ENT(SHF_WRITE
, "W"),
1112 ENUM_ENT(SHF_ALLOC
, "A"),
1113 ENUM_ENT(SHF_EXCLUDE
, "E"),
1114 ENUM_ENT(SHF_EXECINSTR
, "X"),
1115 ENUM_ENT(SHF_MERGE
, "M"),
1116 ENUM_ENT(SHF_STRINGS
, "S"),
1117 ENUM_ENT(SHF_INFO_LINK
, "I"),
1118 ENUM_ENT(SHF_LINK_ORDER
, "L"),
1119 ENUM_ENT(SHF_OS_NONCONFORMING
, "o"),
1120 ENUM_ENT(SHF_GROUP
, "G"),
1121 ENUM_ENT(SHF_TLS
, "T"),
1122 ENUM_ENT(SHF_MASKOS
, "o"),
1123 ENUM_ENT(SHF_MASKPROC
, "p"),
1124 ENUM_ENT_1(SHF_COMPRESSED
),
1127 static const EnumEntry
<unsigned> ElfXCoreSectionFlags
[] = {
1128 LLVM_READOBJ_ENUM_ENT(ELF
, XCORE_SHF_CP_SECTION
),
1129 LLVM_READOBJ_ENUM_ENT(ELF
, XCORE_SHF_DP_SECTION
)
1132 static const EnumEntry
<unsigned> ElfARMSectionFlags
[] = {
1133 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_ARM_PURECODE
)
1136 static const EnumEntry
<unsigned> ElfHexagonSectionFlags
[] = {
1137 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_HEX_GPREL
)
1140 static const EnumEntry
<unsigned> ElfMipsSectionFlags
[] = {
1141 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NODUPES
),
1142 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NAMES
),
1143 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_LOCAL
),
1144 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NOSTRIP
),
1145 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_GPREL
),
1146 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_MERGE
),
1147 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_ADDR
),
1148 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_STRING
)
1151 static const EnumEntry
<unsigned> ElfX86_64SectionFlags
[] = {
1152 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_X86_64_LARGE
)
1155 static std::string
getGNUFlags(uint64_t Flags
) {
1157 for (auto Entry
: ElfSectionFlags
) {
1158 uint64_t Flag
= Entry
.Value
& Flags
;
1159 Flags
&= ~Entry
.Value
;
1161 case ELF::SHF_WRITE
:
1162 case ELF::SHF_ALLOC
:
1163 case ELF::SHF_EXECINSTR
:
1164 case ELF::SHF_MERGE
:
1165 case ELF::SHF_STRINGS
:
1166 case ELF::SHF_INFO_LINK
:
1167 case ELF::SHF_LINK_ORDER
:
1168 case ELF::SHF_OS_NONCONFORMING
:
1169 case ELF::SHF_GROUP
:
1171 case ELF::SHF_EXCLUDE
:
1172 Str
+= Entry
.AltName
;
1175 if (Flag
& ELF::SHF_MASKOS
)
1177 else if (Flag
& ELF::SHF_MASKPROC
)
1186 static const char *getElfSegmentType(unsigned Arch
, unsigned Type
) {
1187 // Check potentially overlapped processor-specific
1188 // program header type.
1191 switch (Type
) { LLVM_READOBJ_ENUM_CASE(ELF
, PT_ARM_EXIDX
); }
1194 case ELF::EM_MIPS_RS3_LE
:
1196 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_REGINFO
);
1197 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_RTPROC
);
1198 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_OPTIONS
);
1199 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_ABIFLAGS
);
1205 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NULL
);
1206 LLVM_READOBJ_ENUM_CASE(ELF
, PT_LOAD
);
1207 LLVM_READOBJ_ENUM_CASE(ELF
, PT_DYNAMIC
);
1208 LLVM_READOBJ_ENUM_CASE(ELF
, PT_INTERP
);
1209 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NOTE
);
1210 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SHLIB
);
1211 LLVM_READOBJ_ENUM_CASE(ELF
, PT_PHDR
);
1212 LLVM_READOBJ_ENUM_CASE(ELF
, PT_TLS
);
1214 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_EH_FRAME
);
1215 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SUNW_UNWIND
);
1217 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_STACK
);
1218 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_RELRO
);
1220 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_RANDOMIZE
);
1221 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_WXNEEDED
);
1222 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_BOOTDATA
);
1229 static std::string
getElfPtType(unsigned Arch
, unsigned Type
) {
1231 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_NULL
)
1232 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_LOAD
)
1233 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_DYNAMIC
)
1234 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_INTERP
)
1235 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_NOTE
)
1236 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_SHLIB
)
1237 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_PHDR
)
1238 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_TLS
)
1239 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_EH_FRAME
)
1240 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_SUNW_UNWIND
)
1241 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_STACK
)
1242 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_RELRO
)
1244 // All machine specific PT_* types
1247 if (Type
== ELF::PT_ARM_EXIDX
)
1251 case ELF::EM_MIPS_RS3_LE
:
1253 case PT_MIPS_REGINFO
:
1255 case PT_MIPS_RTPROC
:
1257 case PT_MIPS_OPTIONS
:
1259 case PT_MIPS_ABIFLAGS
:
1265 return std::string("<unknown>: ") + to_string(format_hex(Type
, 1));
1268 static const EnumEntry
<unsigned> ElfSegmentFlags
[] = {
1269 LLVM_READOBJ_ENUM_ENT(ELF
, PF_X
),
1270 LLVM_READOBJ_ENUM_ENT(ELF
, PF_W
),
1271 LLVM_READOBJ_ENUM_ENT(ELF
, PF_R
)
1274 static const EnumEntry
<unsigned> ElfHeaderMipsFlags
[] = {
1275 ENUM_ENT(EF_MIPS_NOREORDER
, "noreorder"),
1276 ENUM_ENT(EF_MIPS_PIC
, "pic"),
1277 ENUM_ENT(EF_MIPS_CPIC
, "cpic"),
1278 ENUM_ENT(EF_MIPS_ABI2
, "abi2"),
1279 ENUM_ENT(EF_MIPS_32BITMODE
, "32bitmode"),
1280 ENUM_ENT(EF_MIPS_FP64
, "fp64"),
1281 ENUM_ENT(EF_MIPS_NAN2008
, "nan2008"),
1282 ENUM_ENT(EF_MIPS_ABI_O32
, "o32"),
1283 ENUM_ENT(EF_MIPS_ABI_O64
, "o64"),
1284 ENUM_ENT(EF_MIPS_ABI_EABI32
, "eabi32"),
1285 ENUM_ENT(EF_MIPS_ABI_EABI64
, "eabi64"),
1286 ENUM_ENT(EF_MIPS_MACH_3900
, "3900"),
1287 ENUM_ENT(EF_MIPS_MACH_4010
, "4010"),
1288 ENUM_ENT(EF_MIPS_MACH_4100
, "4100"),
1289 ENUM_ENT(EF_MIPS_MACH_4650
, "4650"),
1290 ENUM_ENT(EF_MIPS_MACH_4120
, "4120"),
1291 ENUM_ENT(EF_MIPS_MACH_4111
, "4111"),
1292 ENUM_ENT(EF_MIPS_MACH_SB1
, "sb1"),
1293 ENUM_ENT(EF_MIPS_MACH_OCTEON
, "octeon"),
1294 ENUM_ENT(EF_MIPS_MACH_XLR
, "xlr"),
1295 ENUM_ENT(EF_MIPS_MACH_OCTEON2
, "octeon2"),
1296 ENUM_ENT(EF_MIPS_MACH_OCTEON3
, "octeon3"),
1297 ENUM_ENT(EF_MIPS_MACH_5400
, "5400"),
1298 ENUM_ENT(EF_MIPS_MACH_5900
, "5900"),
1299 ENUM_ENT(EF_MIPS_MACH_5500
, "5500"),
1300 ENUM_ENT(EF_MIPS_MACH_9000
, "9000"),
1301 ENUM_ENT(EF_MIPS_MACH_LS2E
, "loongson-2e"),
1302 ENUM_ENT(EF_MIPS_MACH_LS2F
, "loongson-2f"),
1303 ENUM_ENT(EF_MIPS_MACH_LS3A
, "loongson-3a"),
1304 ENUM_ENT(EF_MIPS_MICROMIPS
, "micromips"),
1305 ENUM_ENT(EF_MIPS_ARCH_ASE_M16
, "mips16"),
1306 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX
, "mdmx"),
1307 ENUM_ENT(EF_MIPS_ARCH_1
, "mips1"),
1308 ENUM_ENT(EF_MIPS_ARCH_2
, "mips2"),
1309 ENUM_ENT(EF_MIPS_ARCH_3
, "mips3"),
1310 ENUM_ENT(EF_MIPS_ARCH_4
, "mips4"),
1311 ENUM_ENT(EF_MIPS_ARCH_5
, "mips5"),
1312 ENUM_ENT(EF_MIPS_ARCH_32
, "mips32"),
1313 ENUM_ENT(EF_MIPS_ARCH_64
, "mips64"),
1314 ENUM_ENT(EF_MIPS_ARCH_32R2
, "mips32r2"),
1315 ENUM_ENT(EF_MIPS_ARCH_64R2
, "mips64r2"),
1316 ENUM_ENT(EF_MIPS_ARCH_32R6
, "mips32r6"),
1317 ENUM_ENT(EF_MIPS_ARCH_64R6
, "mips64r6")
1320 static const EnumEntry
<unsigned> ElfHeaderAMDGPUFlags
[] = {
1321 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_NONE
),
1322 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R600
),
1323 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R630
),
1324 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RS880
),
1325 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV670
),
1326 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV710
),
1327 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV730
),
1328 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV770
),
1329 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CEDAR
),
1330 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CYPRESS
),
1331 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_JUNIPER
),
1332 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_REDWOOD
),
1333 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_SUMO
),
1334 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_BARTS
),
1335 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAICOS
),
1336 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAYMAN
),
1337 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_TURKS
),
1338 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX600
),
1339 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX601
),
1340 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX700
),
1341 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX701
),
1342 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX702
),
1343 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX703
),
1344 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX704
),
1345 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX801
),
1346 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX802
),
1347 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX803
),
1348 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX810
),
1349 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX900
),
1350 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX902
),
1351 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX904
),
1352 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX906
),
1353 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX908
),
1354 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX909
),
1355 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1010
),
1356 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1011
),
1357 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1012
),
1358 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_XNACK
),
1359 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_SRAM_ECC
)
1362 static const EnumEntry
<unsigned> ElfHeaderRISCVFlags
[] = {
1363 ENUM_ENT(EF_RISCV_RVC
, "RVC"),
1364 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE
, "single-float ABI"),
1365 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE
, "double-float ABI"),
1366 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD
, "quad-float ABI"),
1367 ENUM_ENT(EF_RISCV_RVE
, "RVE")
1370 static const EnumEntry
<unsigned> ElfSymOtherFlags
[] = {
1371 LLVM_READOBJ_ENUM_ENT(ELF
, STV_INTERNAL
),
1372 LLVM_READOBJ_ENUM_ENT(ELF
, STV_HIDDEN
),
1373 LLVM_READOBJ_ENUM_ENT(ELF
, STV_PROTECTED
)
1376 static const EnumEntry
<unsigned> ElfMipsSymOtherFlags
[] = {
1377 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1378 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1379 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PIC
),
1380 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MICROMIPS
)
1383 static const EnumEntry
<unsigned> ElfMips16SymOtherFlags
[] = {
1384 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1385 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1386 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MIPS16
)
1389 static const char *getElfMipsOptionsOdkType(unsigned Odk
) {
1391 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_NULL
);
1392 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_REGINFO
);
1393 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_EXCEPTIONS
);
1394 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAD
);
1395 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWPATCH
);
1396 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_FILL
);
1397 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_TAGS
);
1398 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWAND
);
1399 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWOR
);
1400 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_GP_GROUP
);
1401 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_IDENT
);
1402 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAGESIZE
);
1408 template <typename ELFT
>
1409 void ELFDumper
<ELFT
>::loadDynamicTable(const ELFFile
<ELFT
> *Obj
) {
1410 // Try to locate the PT_DYNAMIC header.
1411 const Elf_Phdr
*DynamicPhdr
= nullptr;
1412 for (const Elf_Phdr
&Phdr
:
1413 unwrapOrError(ObjF
->getFileName(), Obj
->program_headers())) {
1414 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
)
1416 DynamicPhdr
= &Phdr
;
1420 // Try to locate the .dynamic section in the sections header table.
1421 const Elf_Shdr
*DynamicSec
= nullptr;
1422 for (const Elf_Shdr
&Sec
:
1423 unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
1424 if (Sec
.sh_type
!= ELF::SHT_DYNAMIC
)
1430 // Information in the section header has priority over the information
1431 // in a PT_DYNAMIC header.
1432 // Ignore sh_entsize and use the expected value for entry size explicitly.
1433 // This allows us to dump the dynamic sections with a broken sh_entsize
1437 checkDRI({ObjF
->getELFFile()->base() + DynamicSec
->sh_offset
,
1438 DynamicSec
->sh_size
, sizeof(Elf_Dyn
), ObjF
->getFileName()});
1439 parseDynamicTable();
1442 // If we have a PT_DYNAMIC header, we will either check the found dynamic
1443 // section or take the dynamic table data directly from the header.
1447 if (DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
>
1448 ObjF
->getMemoryBufferRef().getBufferSize()) {
1451 "PT_DYNAMIC segment offset + size exceeds the size of the file"),
1452 ObjF
->getFileName());
1457 DynamicTable
= createDRIFrom(DynamicPhdr
, sizeof(Elf_Dyn
));
1458 parseDynamicTable();
1463 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(DynamicSec
));
1464 if (DynamicSec
->sh_addr
+ DynamicSec
->sh_size
>
1465 DynamicPhdr
->p_vaddr
+ DynamicPhdr
->p_memsz
||
1466 DynamicSec
->sh_addr
< DynamicPhdr
->p_vaddr
)
1467 reportWarning(createError("The SHT_DYNAMIC section '" + Name
+
1468 "' is not contained within the "
1469 "PT_DYNAMIC segment"),
1470 ObjF
->getFileName());
1472 if (DynamicSec
->sh_addr
!= DynamicPhdr
->p_vaddr
)
1473 reportWarning(createError("The SHT_DYNAMIC section '" + Name
+
1474 "' is not at the start of "
1475 "PT_DYNAMIC segment"),
1476 ObjF
->getFileName());
1479 template <typename ELFT
>
1480 ELFDumper
<ELFT
>::ELFDumper(const object::ELFObjectFile
<ELFT
> *ObjF
,
1481 ScopedPrinter
&Writer
)
1482 : ObjDumper(Writer
), ObjF(ObjF
), DynRelRegion(ObjF
->getFileName()),
1483 DynRelaRegion(ObjF
->getFileName()), DynRelrRegion(ObjF
->getFileName()),
1484 DynPLTRelRegion(ObjF
->getFileName()), DynSymRegion(ObjF
->getFileName()),
1485 DynamicTable(ObjF
->getFileName()) {
1486 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
1487 for (const Elf_Shdr
&Sec
:
1488 unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
1489 switch (Sec
.sh_type
) {
1490 case ELF::SHT_SYMTAB
:
1492 DotSymtabSec
= &Sec
;
1494 case ELF::SHT_DYNSYM
:
1495 if (!DynSymRegion
.Size
) {
1496 DynSymRegion
= createDRIFrom(&Sec
);
1497 // This is only used (if Elf_Shdr present)for naming section in GNU
1500 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(&Sec
));
1502 if (Expected
<StringRef
> E
= Obj
->getStringTableForSymtab(Sec
))
1503 DynamicStringTable
= *E
;
1505 reportWarning(E
.takeError(), ObjF
->getFileName());
1508 case ELF::SHT_SYMTAB_SHNDX
:
1509 ShndxTable
= unwrapOrError(ObjF
->getFileName(), Obj
->getSHNDXTable(Sec
));
1511 case ELF::SHT_GNU_versym
:
1512 if (!SymbolVersionSection
)
1513 SymbolVersionSection
= &Sec
;
1515 case ELF::SHT_GNU_verdef
:
1516 if (!SymbolVersionDefSection
)
1517 SymbolVersionDefSection
= &Sec
;
1519 case ELF::SHT_GNU_verneed
:
1520 if (!SymbolVersionNeedSection
)
1521 SymbolVersionNeedSection
= &Sec
;
1523 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE
:
1524 if (!DotCGProfileSec
)
1525 DotCGProfileSec
= &Sec
;
1527 case ELF::SHT_LLVM_ADDRSIG
:
1529 DotAddrsigSec
= &Sec
;
1534 loadDynamicTable(Obj
);
1536 if (opts::Output
== opts::GNU
)
1537 ELFDumperStyle
.reset(new GNUStyle
<ELFT
>(Writer
, this));
1539 ELFDumperStyle
.reset(new LLVMStyle
<ELFT
>(Writer
, this));
1542 static const char *getTypeString(unsigned Arch
, uint64_t Type
) {
1543 #define DYNAMIC_TAG(n, v)
1548 #define AARCH64_DYNAMIC_TAG(name, value) \
1551 #include "llvm/BinaryFormat/DynamicTags.def"
1552 #undef AARCH64_DYNAMIC_TAG
1558 #define HEXAGON_DYNAMIC_TAG(name, value) \
1561 #include "llvm/BinaryFormat/DynamicTags.def"
1562 #undef HEXAGON_DYNAMIC_TAG
1568 #define MIPS_DYNAMIC_TAG(name, value) \
1571 #include "llvm/BinaryFormat/DynamicTags.def"
1572 #undef MIPS_DYNAMIC_TAG
1578 #define PPC64_DYNAMIC_TAG(name, value) \
1581 #include "llvm/BinaryFormat/DynamicTags.def"
1582 #undef PPC64_DYNAMIC_TAG
1588 // Now handle all dynamic tags except the architecture specific ones
1589 #define AARCH64_DYNAMIC_TAG(name, value)
1590 #define MIPS_DYNAMIC_TAG(name, value)
1591 #define HEXAGON_DYNAMIC_TAG(name, value)
1592 #define PPC64_DYNAMIC_TAG(name, value)
1593 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
1594 #define DYNAMIC_TAG_MARKER(name, value)
1595 #define DYNAMIC_TAG(name, value) \
1598 #include "llvm/BinaryFormat/DynamicTags.def"
1600 #undef AARCH64_DYNAMIC_TAG
1601 #undef MIPS_DYNAMIC_TAG
1602 #undef HEXAGON_DYNAMIC_TAG
1603 #undef PPC64_DYNAMIC_TAG
1604 #undef DYNAMIC_TAG_MARKER
1610 template <typename ELFT
> void ELFDumper
<ELFT
>::parseDynamicTable() {
1611 auto toMappedAddr
= [&](uint64_t Tag
, uint64_t VAddr
) -> const uint8_t * {
1612 auto MappedAddrOrError
= ObjF
->getELFFile()->toMappedAddr(VAddr
);
1613 if (!MappedAddrOrError
) {
1615 createError("Unable to parse DT_" +
1616 Twine(getTypeString(
1617 ObjF
->getELFFile()->getHeader()->e_machine
, Tag
)) +
1618 ": " + llvm::toString(MappedAddrOrError
.takeError()));
1620 reportWarning(std::move(Err
), ObjF
->getFileName());
1623 return MappedAddrOrError
.get();
1626 uint64_t SONameOffset
= 0;
1627 const char *StringTableBegin
= nullptr;
1628 uint64_t StringTableSize
= 0;
1629 for (const Elf_Dyn
&Dyn
: dynamic_table()) {
1630 switch (Dyn
.d_tag
) {
1632 HashTable
= reinterpret_cast<const Elf_Hash
*>(
1633 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1635 case ELF::DT_GNU_HASH
:
1636 GnuHashTable
= reinterpret_cast<const Elf_GnuHash
*>(
1637 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1639 case ELF::DT_STRTAB
:
1640 StringTableBegin
= reinterpret_cast<const char *>(
1641 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1644 StringTableSize
= Dyn
.getVal();
1646 case ELF::DT_SYMTAB
: {
1647 // Often we find the information about the dynamic symbol table
1648 // location in the SHT_DYNSYM section header. However, the value in
1649 // DT_SYMTAB has priority, because it is used by dynamic loaders to
1650 // locate .dynsym at runtime. The location we find in the section header
1651 // and the location we find here should match. If we can't map the
1652 // DT_SYMTAB value to an address (e.g. when there are no program headers), we
1653 // ignore its value.
1654 if (const uint8_t *VA
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr())) {
1655 // EntSize is non-zero if the dynamic symbol table has been found via a
1657 if (DynSymRegion
.EntSize
&& VA
!= DynSymRegion
.Addr
)
1660 "SHT_DYNSYM section header and DT_SYMTAB disagree about "
1661 "the location of the dynamic symbol table"),
1662 ObjF
->getFileName());
1664 DynSymRegion
.Addr
= VA
;
1665 DynSymRegion
.EntSize
= sizeof(Elf_Sym
);
1670 DynRelaRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1672 case ELF::DT_RELASZ
:
1673 DynRelaRegion
.Size
= Dyn
.getVal();
1675 case ELF::DT_RELAENT
:
1676 DynRelaRegion
.EntSize
= Dyn
.getVal();
1678 case ELF::DT_SONAME
:
1679 SONameOffset
= Dyn
.getVal();
1682 DynRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1685 DynRelRegion
.Size
= Dyn
.getVal();
1687 case ELF::DT_RELENT
:
1688 DynRelRegion
.EntSize
= Dyn
.getVal();
1691 case ELF::DT_ANDROID_RELR
:
1692 DynRelrRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1694 case ELF::DT_RELRSZ
:
1695 case ELF::DT_ANDROID_RELRSZ
:
1696 DynRelrRegion
.Size
= Dyn
.getVal();
1698 case ELF::DT_RELRENT
:
1699 case ELF::DT_ANDROID_RELRENT
:
1700 DynRelrRegion
.EntSize
= Dyn
.getVal();
1702 case ELF::DT_PLTREL
:
1703 if (Dyn
.getVal() == DT_REL
)
1704 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rel
);
1705 else if (Dyn
.getVal() == DT_RELA
)
1706 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rela
);
1708 reportError(createError(Twine("unknown DT_PLTREL value of ") +
1709 Twine((uint64_t)Dyn
.getVal())),
1710 ObjF
->getFileName());
1712 case ELF::DT_JMPREL
:
1713 DynPLTRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1715 case ELF::DT_PLTRELSZ
:
1716 DynPLTRelRegion
.Size
= Dyn
.getVal();
1720 if (StringTableBegin
)
1721 DynamicStringTable
= StringRef(StringTableBegin
, StringTableSize
);
1722 SOName
= getDynamicString(SONameOffset
);
1725 template <typename ELFT
>
1726 typename ELFDumper
<ELFT
>::Elf_Rel_Range ELFDumper
<ELFT
>::dyn_rels() const {
1727 return DynRelRegion
.getAsArrayRef
<Elf_Rel
>();
1730 template <typename ELFT
>
1731 typename ELFDumper
<ELFT
>::Elf_Rela_Range ELFDumper
<ELFT
>::dyn_relas() const {
1732 return DynRelaRegion
.getAsArrayRef
<Elf_Rela
>();
1735 template <typename ELFT
>
1736 typename ELFDumper
<ELFT
>::Elf_Relr_Range ELFDumper
<ELFT
>::dyn_relrs() const {
1737 return DynRelrRegion
.getAsArrayRef
<Elf_Relr
>();
1740 template <class ELFT
> void ELFDumper
<ELFT
>::printFileHeaders() {
1741 ELFDumperStyle
->printFileHeaders(ObjF
->getELFFile());
1744 template <class ELFT
> void ELFDumper
<ELFT
>::printSectionHeaders() {
1745 ELFDumperStyle
->printSectionHeaders(ObjF
->getELFFile());
1748 template <class ELFT
> void ELFDumper
<ELFT
>::printRelocations() {
1749 ELFDumperStyle
->printRelocations(ObjF
->getELFFile());
1752 template <class ELFT
>
1753 void ELFDumper
<ELFT
>::printProgramHeaders(
1754 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
1755 ELFDumperStyle
->printProgramHeaders(ObjF
->getELFFile(), PrintProgramHeaders
,
1756 PrintSectionMapping
);
1759 template <typename ELFT
> void ELFDumper
<ELFT
>::printVersionInfo() {
1760 // Dump version symbol section.
1761 ELFDumperStyle
->printVersionSymbolSection(ObjF
->getELFFile(),
1762 SymbolVersionSection
);
1764 // Dump version definition section.
1765 ELFDumperStyle
->printVersionDefinitionSection(ObjF
->getELFFile(),
1766 SymbolVersionDefSection
);
1768 // Dump version dependency section.
1769 ELFDumperStyle
->printVersionDependencySection(ObjF
->getELFFile(),
1770 SymbolVersionNeedSection
);
1773 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicRelocations() {
1774 ELFDumperStyle
->printDynamicRelocations(ObjF
->getELFFile());
1777 template <class ELFT
>
1778 void ELFDumper
<ELFT
>::printSymbols(bool PrintSymbols
,
1779 bool PrintDynamicSymbols
) {
1780 ELFDumperStyle
->printSymbols(ObjF
->getELFFile(), PrintSymbols
,
1781 PrintDynamicSymbols
);
1784 template <class ELFT
> void ELFDumper
<ELFT
>::printHashSymbols() {
1785 ELFDumperStyle
->printHashSymbols(ObjF
->getELFFile());
1788 template <class ELFT
> void ELFDumper
<ELFT
>::printHashHistogram() {
1789 ELFDumperStyle
->printHashHistogram(ObjF
->getELFFile());
1792 template <class ELFT
> void ELFDumper
<ELFT
>::printCGProfile() {
1793 ELFDumperStyle
->printCGProfile(ObjF
->getELFFile());
1796 template <class ELFT
> void ELFDumper
<ELFT
>::printNotes() {
1797 ELFDumperStyle
->printNotes(ObjF
->getELFFile());
1800 template <class ELFT
> void ELFDumper
<ELFT
>::printELFLinkerOptions() {
1801 ELFDumperStyle
->printELFLinkerOptions(ObjF
->getELFFile());
1804 template <class ELFT
> void ELFDumper
<ELFT
>::printStackSizes() {
1805 ELFDumperStyle
->printStackSizes(ObjF
);
1808 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1809 { #enum, prefix##_##enum }
1811 static const EnumEntry
<unsigned> ElfDynamicDTFlags
[] = {
1812 LLVM_READOBJ_DT_FLAG_ENT(DF
, ORIGIN
),
1813 LLVM_READOBJ_DT_FLAG_ENT(DF
, SYMBOLIC
),
1814 LLVM_READOBJ_DT_FLAG_ENT(DF
, TEXTREL
),
1815 LLVM_READOBJ_DT_FLAG_ENT(DF
, BIND_NOW
),
1816 LLVM_READOBJ_DT_FLAG_ENT(DF
, STATIC_TLS
)
1819 static const EnumEntry
<unsigned> ElfDynamicDTFlags1
[] = {
1820 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOW
),
1821 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAL
),
1822 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GROUP
),
1823 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODELETE
),
1824 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, LOADFLTR
),
1825 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INITFIRST
),
1826 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOOPEN
),
1827 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ORIGIN
),
1828 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DIRECT
),
1829 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, TRANS
),
1830 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INTERPOSE
),
1831 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODEFLIB
),
1832 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODUMP
),
1833 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, CONFALT
),
1834 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ENDFILTEE
),
1835 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELDNE
),
1836 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELPND
),
1837 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODIRECT
),
1838 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, IGNMULDEF
),
1839 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOKSYMS
),
1840 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOHDR
),
1841 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, EDITED
),
1842 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NORELOC
),
1843 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SYMINTPOSE
),
1844 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAUDIT
),
1845 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SINGLETON
)
1848 static const EnumEntry
<unsigned> ElfDynamicDTMipsFlags
[] = {
1849 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NONE
),
1850 LLVM_READOBJ_DT_FLAG_ENT(RHF
, QUICKSTART
),
1851 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NOTPOT
),
1852 LLVM_READOBJ_DT_FLAG_ENT(RHS
, NO_LIBRARY_REPLACEMENT
),
1853 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_MOVE
),
1854 LLVM_READOBJ_DT_FLAG_ENT(RHF
, SGI_ONLY
),
1855 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_INIT
),
1856 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DELTA_C_PLUS_PLUS
),
1857 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_START_INIT
),
1858 LLVM_READOBJ_DT_FLAG_ENT(RHF
, PIXIE
),
1859 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DEFAULT_DELAY_LOAD
),
1860 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTART
),
1861 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTARTED
),
1862 LLVM_READOBJ_DT_FLAG_ENT(RHF
, CORD
),
1863 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_UNRES_UNDEF
),
1864 LLVM_READOBJ_DT_FLAG_ENT(RHF
, RLD_ORDER_SAFE
)
1867 #undef LLVM_READOBJ_DT_FLAG_ENT
1869 template <typename T
, typename TFlag
>
1870 void printFlags(T Value
, ArrayRef
<EnumEntry
<TFlag
>> Flags
, raw_ostream
&OS
) {
1871 using FlagEntry
= EnumEntry
<TFlag
>;
1872 using FlagVector
= SmallVector
<FlagEntry
, 10>;
1873 FlagVector SetFlags
;
1875 for (const auto &Flag
: Flags
) {
1876 if (Flag
.Value
== 0)
1879 if ((Value
& Flag
.Value
) == Flag
.Value
)
1880 SetFlags
.push_back(Flag
);
1883 for (const auto &Flag
: SetFlags
) {
1884 OS
<< Flag
.Name
<< " ";
1888 template <class ELFT
>
1889 void ELFDumper
<ELFT
>::printDynamicEntry(raw_ostream
&OS
, uint64_t Type
,
1890 uint64_t Value
) const {
1891 const char *ConvChar
=
1892 (opts::Output
== opts::GNU
) ? "0x%" PRIx64
: "0x%" PRIX64
;
1894 // Handle custom printing of architecture specific tags
1895 switch (ObjF
->getELFFile()->getHeader()->e_machine
) {
1898 case DT_AARCH64_BTI_PLT
:
1899 case DT_AARCH64_PAC_PLT
:
1908 case DT_HEXAGON_VER
:
1911 case DT_HEXAGON_SYMSZ
:
1912 case DT_HEXAGON_PLT
:
1913 OS
<< format(ConvChar
, Value
);
1921 case DT_MIPS_RLD_VERSION
:
1922 case DT_MIPS_LOCAL_GOTNO
:
1923 case DT_MIPS_SYMTABNO
:
1924 case DT_MIPS_UNREFEXTNO
:
1927 case DT_MIPS_TIME_STAMP
:
1928 case DT_MIPS_ICHECKSUM
:
1929 case DT_MIPS_IVERSION
:
1930 case DT_MIPS_BASE_ADDRESS
:
1932 case DT_MIPS_CONFLICT
:
1933 case DT_MIPS_LIBLIST
:
1934 case DT_MIPS_CONFLICTNO
:
1935 case DT_MIPS_LIBLISTNO
:
1936 case DT_MIPS_GOTSYM
:
1937 case DT_MIPS_HIPAGENO
:
1938 case DT_MIPS_RLD_MAP
:
1939 case DT_MIPS_DELTA_CLASS
:
1940 case DT_MIPS_DELTA_CLASS_NO
:
1941 case DT_MIPS_DELTA_INSTANCE
:
1942 case DT_MIPS_DELTA_RELOC
:
1943 case DT_MIPS_DELTA_RELOC_NO
:
1944 case DT_MIPS_DELTA_SYM
:
1945 case DT_MIPS_DELTA_SYM_NO
:
1946 case DT_MIPS_DELTA_CLASSSYM
:
1947 case DT_MIPS_DELTA_CLASSSYM_NO
:
1948 case DT_MIPS_CXX_FLAGS
:
1949 case DT_MIPS_PIXIE_INIT
:
1950 case DT_MIPS_SYMBOL_LIB
:
1951 case DT_MIPS_LOCALPAGE_GOTIDX
:
1952 case DT_MIPS_LOCAL_GOTIDX
:
1953 case DT_MIPS_HIDDEN_GOTIDX
:
1954 case DT_MIPS_PROTECTED_GOTIDX
:
1955 case DT_MIPS_OPTIONS
:
1956 case DT_MIPS_INTERFACE
:
1957 case DT_MIPS_DYNSTR_ALIGN
:
1958 case DT_MIPS_INTERFACE_SIZE
:
1959 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
1960 case DT_MIPS_PERF_SUFFIX
:
1961 case DT_MIPS_COMPACT_SIZE
:
1962 case DT_MIPS_GP_VALUE
:
1963 case DT_MIPS_AUX_DYNAMIC
:
1964 case DT_MIPS_PLTGOT
:
1966 case DT_MIPS_RLD_MAP_REL
:
1967 OS
<< format(ConvChar
, Value
);
1970 printFlags(Value
, makeArrayRef(ElfDynamicDTMipsFlags
), OS
);
1982 if (Value
== DT_REL
) {
1985 } else if (Value
== DT_RELA
) {
2001 case DT_PREINIT_ARRAY
:
2008 OS
<< format(ConvChar
, Value
);
2023 case DT_INIT_ARRAYSZ
:
2024 case DT_FINI_ARRAYSZ
:
2025 case DT_PREINIT_ARRAYSZ
:
2026 case DT_ANDROID_RELSZ
:
2027 case DT_ANDROID_RELASZ
:
2028 OS
<< Value
<< " (bytes)";
2037 const std::map
<uint64_t, const char*> TagNames
= {
2038 {DT_NEEDED
, "Shared library"},
2039 {DT_SONAME
, "Library soname"},
2040 {DT_AUXILIARY
, "Auxiliary library"},
2041 {DT_USED
, "Not needed object"},
2042 {DT_FILTER
, "Filter library"},
2043 {DT_RPATH
, "Library rpath"},
2044 {DT_RUNPATH
, "Library runpath"},
2046 OS
<< TagNames
.at(Type
) << ": [" << getDynamicString(Value
) << "]";
2050 printFlags(Value
, makeArrayRef(ElfDynamicDTFlags
), OS
);
2053 printFlags(Value
, makeArrayRef(ElfDynamicDTFlags1
), OS
);
2056 OS
<< format(ConvChar
, Value
);
2061 template <class ELFT
>
2062 std::string ELFDumper
<ELFT
>::getDynamicString(uint64_t Value
) const {
2063 if (DynamicStringTable
.empty())
2064 return "<String table is empty or was not found>";
2065 if (Value
< DynamicStringTable
.size())
2066 return DynamicStringTable
.data() + Value
;
2067 return Twine("<Invalid offset 0x" + utohexstr(Value
) + ">").str();
2070 template <class ELFT
> void ELFDumper
<ELFT
>::printUnwindInfo() {
2071 DwarfCFIEH::PrinterContext
<ELFT
> Ctx(W
, ObjF
);
2072 Ctx
.printUnwindInformation();
2077 template <> void ELFDumper
<ELF32LE
>::printUnwindInfo() {
2078 const ELFFile
<ELF32LE
> *Obj
= ObjF
->getELFFile();
2079 const unsigned Machine
= Obj
->getHeader()->e_machine
;
2080 if (Machine
== EM_ARM
) {
2081 ARM::EHABI::PrinterContext
<ELF32LE
> Ctx(W
, Obj
, ObjF
->getFileName(),
2083 Ctx
.PrintUnwindInformation();
2085 DwarfCFIEH::PrinterContext
<ELF32LE
> Ctx(W
, ObjF
);
2086 Ctx
.printUnwindInformation();
2089 } // end anonymous namespace
2091 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicTable() {
2092 ELFDumperStyle
->printDynamic(ObjF
->getELFFile());
2095 template <class ELFT
> void ELFDumper
<ELFT
>::printNeededLibraries() {
2096 ListScope
D(W
, "NeededLibraries");
2098 std::vector
<std::string
> Libs
;
2099 for (const auto &Entry
: dynamic_table())
2100 if (Entry
.d_tag
== ELF::DT_NEEDED
)
2101 Libs
.push_back(getDynamicString(Entry
.d_un
.d_val
));
2103 llvm::stable_sort(Libs
);
2105 for (const auto &L
: Libs
)
2106 W
.startLine() << L
<< "\n";
2109 template <typename ELFT
> void ELFDumper
<ELFT
>::printHashTable() {
2110 DictScope
D(W
, "HashTable");
2113 W
.printNumber("Num Buckets", HashTable
->nbucket
);
2114 W
.printNumber("Num Chains", HashTable
->nchain
);
2115 W
.printList("Buckets", HashTable
->buckets());
2116 W
.printList("Chains", HashTable
->chains());
2119 template <typename ELFT
> void ELFDumper
<ELFT
>::printGnuHashTable() {
2120 DictScope
D(W
, "GnuHashTable");
2123 W
.printNumber("Num Buckets", GnuHashTable
->nbuckets
);
2124 W
.printNumber("First Hashed Symbol Index", GnuHashTable
->symndx
);
2125 W
.printNumber("Num Mask Words", GnuHashTable
->maskwords
);
2126 W
.printNumber("Shift Count", GnuHashTable
->shift2
);
2127 W
.printHexList("Bloom Filter", GnuHashTable
->filter());
2128 W
.printList("Buckets", GnuHashTable
->buckets());
2129 Elf_Sym_Range Syms
= dynamic_symbols();
2130 unsigned NumSyms
= std::distance(Syms
.begin(), Syms
.end());
2132 reportError(createError("No dynamic symbol section"), ObjF
->getFileName());
2133 W
.printHexList("Values", GnuHashTable
->values(NumSyms
));
2136 template <typename ELFT
> void ELFDumper
<ELFT
>::printLoadName() {
2137 W
.printString("LoadName", SOName
);
2140 template <class ELFT
> void ELFDumper
<ELFT
>::printAttributes() {
2141 W
.startLine() << "Attributes not implemented.\n";
2146 template <> void ELFDumper
<ELF32LE
>::printAttributes() {
2147 const ELFFile
<ELF32LE
> *Obj
= ObjF
->getELFFile();
2148 if (Obj
->getHeader()->e_machine
!= EM_ARM
) {
2149 W
.startLine() << "Attributes not implemented.\n";
2153 DictScope
BA(W
, "BuildAttributes");
2154 for (const ELFO::Elf_Shdr
&Sec
:
2155 unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
2156 if (Sec
.sh_type
!= ELF::SHT_ARM_ATTRIBUTES
)
2159 ArrayRef
<uint8_t> Contents
=
2160 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(&Sec
));
2161 if (Contents
[0] != ARMBuildAttrs::Format_Version
) {
2162 errs() << "unrecognised FormatVersion: 0x"
2163 << Twine::utohexstr(Contents
[0]) << '\n';
2167 W
.printHex("FormatVersion", Contents
[0]);
2168 if (Contents
.size() == 1)
2171 ARMAttributeParser(&W
).Parse(Contents
, true);
2175 template <class ELFT
> class MipsGOTParser
{
2177 TYPEDEF_ELF_TYPES(ELFT
)
2178 using Entry
= typename
ELFO::Elf_Addr
;
2179 using Entries
= ArrayRef
<Entry
>;
2181 const bool IsStatic
;
2182 const ELFO
* const Obj
;
2184 MipsGOTParser(const ELFO
*Obj
, StringRef FileName
, Elf_Dyn_Range DynTable
,
2185 Elf_Sym_Range DynSyms
);
2187 bool hasGot() const { return !GotEntries
.empty(); }
2188 bool hasPlt() const { return !PltEntries
.empty(); }
2190 uint64_t getGp() const;
2192 const Entry
*getGotLazyResolver() const;
2193 const Entry
*getGotModulePointer() const;
2194 const Entry
*getPltLazyResolver() const;
2195 const Entry
*getPltModulePointer() const;
2197 Entries
getLocalEntries() const;
2198 Entries
getGlobalEntries() const;
2199 Entries
getOtherEntries() const;
2200 Entries
getPltEntries() const;
2202 uint64_t getGotAddress(const Entry
* E
) const;
2203 int64_t getGotOffset(const Entry
* E
) const;
2204 const Elf_Sym
*getGotSym(const Entry
*E
) const;
2206 uint64_t getPltAddress(const Entry
* E
) const;
2207 const Elf_Sym
*getPltSym(const Entry
*E
) const;
2209 StringRef
getPltStrTable() const { return PltStrTable
; }
2212 const Elf_Shdr
*GotSec
;
2216 const Elf_Shdr
*PltSec
;
2217 const Elf_Shdr
*PltRelSec
;
2218 const Elf_Shdr
*PltSymTable
;
2221 Elf_Sym_Range GotDynSyms
;
2222 StringRef PltStrTable
;
2228 } // end anonymous namespace
2230 template <class ELFT
>
2231 MipsGOTParser
<ELFT
>::MipsGOTParser(const ELFO
*Obj
, StringRef FileName
,
2232 Elf_Dyn_Range DynTable
,
2233 Elf_Sym_Range DynSyms
)
2234 : IsStatic(DynTable
.empty()), Obj(Obj
), GotSec(nullptr), LocalNum(0),
2235 GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr),
2236 FileName(FileName
) {
2237 // See "Global Offset Table" in Chapter 5 in the following document
2238 // for detailed GOT description.
2239 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2241 // Find static GOT secton.
2243 GotSec
= findSectionByName(*Obj
, FileName
, ".got");
2245 reportError(createError("Cannot find .got section"), FileName
);
2247 ArrayRef
<uint8_t> Content
=
2248 unwrapOrError(FileName
, Obj
->getSectionContents(GotSec
));
2249 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2250 Content
.size() / sizeof(Entry
));
2251 LocalNum
= GotEntries
.size();
2255 // Lookup dynamic table tags which define GOT/PLT layouts.
2256 Optional
<uint64_t> DtPltGot
;
2257 Optional
<uint64_t> DtLocalGotNum
;
2258 Optional
<uint64_t> DtGotSym
;
2259 Optional
<uint64_t> DtMipsPltGot
;
2260 Optional
<uint64_t> DtJmpRel
;
2261 for (const auto &Entry
: DynTable
) {
2262 switch (Entry
.getTag()) {
2263 case ELF::DT_PLTGOT
:
2264 DtPltGot
= Entry
.getVal();
2266 case ELF::DT_MIPS_LOCAL_GOTNO
:
2267 DtLocalGotNum
= Entry
.getVal();
2269 case ELF::DT_MIPS_GOTSYM
:
2270 DtGotSym
= Entry
.getVal();
2272 case ELF::DT_MIPS_PLTGOT
:
2273 DtMipsPltGot
= Entry
.getVal();
2275 case ELF::DT_JMPREL
:
2276 DtJmpRel
= Entry
.getVal();
2281 // Find dynamic GOT section.
2282 if (DtPltGot
|| DtLocalGotNum
|| DtGotSym
) {
2284 report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2286 report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2288 report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2290 size_t DynSymTotal
= DynSyms
.size();
2291 if (*DtGotSym
> DynSymTotal
)
2293 createError("MIPS_GOTSYM exceeds a number of dynamic symbols"),
2296 GotSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtPltGot
);
2298 reportError(createError("There is no not empty GOT section at 0x" +
2299 Twine::utohexstr(*DtPltGot
)),
2302 LocalNum
= *DtLocalGotNum
;
2303 GlobalNum
= DynSymTotal
- *DtGotSym
;
2305 ArrayRef
<uint8_t> Content
=
2306 unwrapOrError(FileName
, Obj
->getSectionContents(GotSec
));
2307 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2308 Content
.size() / sizeof(Entry
));
2309 GotDynSyms
= DynSyms
.drop_front(*DtGotSym
);
2312 // Find PLT section.
2313 if (DtMipsPltGot
|| DtJmpRel
) {
2315 report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2317 report_fatal_error("Cannot find JMPREL dynamic table tag.");
2319 PltSec
= findNotEmptySectionByAddress(Obj
, FileName
, * DtMipsPltGot
);
2321 report_fatal_error("There is no not empty PLTGOT section at 0x " +
2322 Twine::utohexstr(*DtMipsPltGot
));
2324 PltRelSec
= findNotEmptySectionByAddress(Obj
, FileName
, * DtJmpRel
);
2326 report_fatal_error("There is no not empty RELPLT section at 0x" +
2327 Twine::utohexstr(*DtJmpRel
));
2329 ArrayRef
<uint8_t> PltContent
=
2330 unwrapOrError(FileName
, Obj
->getSectionContents(PltSec
));
2331 PltEntries
= Entries(reinterpret_cast<const Entry
*>(PltContent
.data()),
2332 PltContent
.size() / sizeof(Entry
));
2334 PltSymTable
= unwrapOrError(FileName
, Obj
->getSection(PltRelSec
->sh_link
));
2336 unwrapOrError(FileName
, Obj
->getStringTableForSymtab(*PltSymTable
));
2340 template <class ELFT
> uint64_t MipsGOTParser
<ELFT
>::getGp() const {
2341 return GotSec
->sh_addr
+ 0x7ff0;
2344 template <class ELFT
>
2345 const typename MipsGOTParser
<ELFT
>::Entry
*
2346 MipsGOTParser
<ELFT
>::getGotLazyResolver() const {
2347 return LocalNum
> 0 ? &GotEntries
[0] : nullptr;
2350 template <class ELFT
>
2351 const typename MipsGOTParser
<ELFT
>::Entry
*
2352 MipsGOTParser
<ELFT
>::getGotModulePointer() const {
2355 const Entry
&E
= GotEntries
[1];
2356 if ((E
>> (sizeof(Entry
) * 8 - 1)) == 0)
2361 template <class ELFT
>
2362 typename MipsGOTParser
<ELFT
>::Entries
2363 MipsGOTParser
<ELFT
>::getLocalEntries() const {
2364 size_t Skip
= getGotModulePointer() ? 2 : 1;
2365 if (LocalNum
- Skip
<= 0)
2367 return GotEntries
.slice(Skip
, LocalNum
- Skip
);
2370 template <class ELFT
>
2371 typename MipsGOTParser
<ELFT
>::Entries
2372 MipsGOTParser
<ELFT
>::getGlobalEntries() const {
2375 return GotEntries
.slice(LocalNum
, GlobalNum
);
2378 template <class ELFT
>
2379 typename MipsGOTParser
<ELFT
>::Entries
2380 MipsGOTParser
<ELFT
>::getOtherEntries() const {
2381 size_t OtherNum
= GotEntries
.size() - LocalNum
- GlobalNum
;
2384 return GotEntries
.slice(LocalNum
+ GlobalNum
, OtherNum
);
2387 template <class ELFT
>
2388 uint64_t MipsGOTParser
<ELFT
>::getGotAddress(const Entry
*E
) const {
2389 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2390 return GotSec
->sh_addr
+ Offset
;
2393 template <class ELFT
>
2394 int64_t MipsGOTParser
<ELFT
>::getGotOffset(const Entry
*E
) const {
2395 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2396 return Offset
- 0x7ff0;
2399 template <class ELFT
>
2400 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2401 MipsGOTParser
<ELFT
>::getGotSym(const Entry
*E
) const {
2402 int64_t Offset
= std::distance(GotEntries
.data(), E
);
2403 return &GotDynSyms
[Offset
- LocalNum
];
2406 template <class ELFT
>
2407 const typename MipsGOTParser
<ELFT
>::Entry
*
2408 MipsGOTParser
<ELFT
>::getPltLazyResolver() const {
2409 return PltEntries
.empty() ? nullptr : &PltEntries
[0];
2412 template <class ELFT
>
2413 const typename MipsGOTParser
<ELFT
>::Entry
*
2414 MipsGOTParser
<ELFT
>::getPltModulePointer() const {
2415 return PltEntries
.size() < 2 ? nullptr : &PltEntries
[1];
2418 template <class ELFT
>
2419 typename MipsGOTParser
<ELFT
>::Entries
2420 MipsGOTParser
<ELFT
>::getPltEntries() const {
2421 if (PltEntries
.size() <= 2)
2423 return PltEntries
.slice(2, PltEntries
.size() - 2);
2426 template <class ELFT
>
2427 uint64_t MipsGOTParser
<ELFT
>::getPltAddress(const Entry
*E
) const {
2428 int64_t Offset
= std::distance(PltEntries
.data(), E
) * sizeof(Entry
);
2429 return PltSec
->sh_addr
+ Offset
;
2432 template <class ELFT
>
2433 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2434 MipsGOTParser
<ELFT
>::getPltSym(const Entry
*E
) const {
2435 int64_t Offset
= std::distance(getPltEntries().data(), E
);
2436 if (PltRelSec
->sh_type
== ELF::SHT_REL
) {
2437 Elf_Rel_Range Rels
= unwrapOrError(FileName
, Obj
->rels(PltRelSec
));
2438 return unwrapOrError(FileName
,
2439 Obj
->getRelocationSymbol(&Rels
[Offset
], PltSymTable
));
2441 Elf_Rela_Range Rels
= unwrapOrError(FileName
, Obj
->relas(PltRelSec
));
2442 return unwrapOrError(FileName
,
2443 Obj
->getRelocationSymbol(&Rels
[Offset
], PltSymTable
));
2447 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsPLTGOT() {
2448 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2449 if (Obj
->getHeader()->e_machine
!= EM_MIPS
)
2450 reportError(createError("MIPS PLT GOT is available for MIPS targets only"),
2451 ObjF
->getFileName());
2453 MipsGOTParser
<ELFT
> Parser(Obj
, ObjF
->getFileName(), dynamic_table(),
2455 if (Parser
.hasGot())
2456 ELFDumperStyle
->printMipsGOT(Parser
);
2457 if (Parser
.hasPlt())
2458 ELFDumperStyle
->printMipsPLT(Parser
);
2461 static const EnumEntry
<unsigned> ElfMipsISAExtType
[] = {
2462 {"None", Mips::AFL_EXT_NONE
},
2463 {"Broadcom SB-1", Mips::AFL_EXT_SB1
},
2464 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON
},
2465 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2
},
2466 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP
},
2467 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3
},
2468 {"LSI R4010", Mips::AFL_EXT_4010
},
2469 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E
},
2470 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F
},
2471 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A
},
2472 {"MIPS R4650", Mips::AFL_EXT_4650
},
2473 {"MIPS R5900", Mips::AFL_EXT_5900
},
2474 {"MIPS R10000", Mips::AFL_EXT_10000
},
2475 {"NEC VR4100", Mips::AFL_EXT_4100
},
2476 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111
},
2477 {"NEC VR4120", Mips::AFL_EXT_4120
},
2478 {"NEC VR5400", Mips::AFL_EXT_5400
},
2479 {"NEC VR5500", Mips::AFL_EXT_5500
},
2480 {"RMI Xlr", Mips::AFL_EXT_XLR
},
2481 {"Toshiba R3900", Mips::AFL_EXT_3900
}
2484 static const EnumEntry
<unsigned> ElfMipsASEFlags
[] = {
2485 {"DSP", Mips::AFL_ASE_DSP
},
2486 {"DSPR2", Mips::AFL_ASE_DSPR2
},
2487 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA
},
2488 {"MCU", Mips::AFL_ASE_MCU
},
2489 {"MDMX", Mips::AFL_ASE_MDMX
},
2490 {"MIPS-3D", Mips::AFL_ASE_MIPS3D
},
2491 {"MT", Mips::AFL_ASE_MT
},
2492 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS
},
2493 {"VZ", Mips::AFL_ASE_VIRT
},
2494 {"MSA", Mips::AFL_ASE_MSA
},
2495 {"MIPS16", Mips::AFL_ASE_MIPS16
},
2496 {"microMIPS", Mips::AFL_ASE_MICROMIPS
},
2497 {"XPA", Mips::AFL_ASE_XPA
},
2498 {"CRC", Mips::AFL_ASE_CRC
},
2499 {"GINV", Mips::AFL_ASE_GINV
},
2502 static const EnumEntry
<unsigned> ElfMipsFpABIType
[] = {
2503 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY
},
2504 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE
},
2505 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE
},
2506 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT
},
2507 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2508 Mips::Val_GNU_MIPS_ABI_FP_OLD_64
},
2509 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX
},
2510 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64
},
2511 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2512 Mips::Val_GNU_MIPS_ABI_FP_64A
}
2515 static const EnumEntry
<unsigned> ElfMipsFlags1
[] {
2516 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG
},
2519 static int getMipsRegisterSize(uint8_t Flag
) {
2521 case Mips::AFL_REG_NONE
:
2523 case Mips::AFL_REG_32
:
2525 case Mips::AFL_REG_64
:
2527 case Mips::AFL_REG_128
:
2534 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsABIFlags() {
2535 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2536 const Elf_Shdr
*Shdr
=
2537 findSectionByName(*Obj
, ObjF
->getFileName(), ".MIPS.abiflags");
2539 W
.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2542 ArrayRef
<uint8_t> Sec
=
2543 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(Shdr
));
2544 if (Sec
.size() != sizeof(Elf_Mips_ABIFlags
<ELFT
>)) {
2545 W
.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2549 auto *Flags
= reinterpret_cast<const Elf_Mips_ABIFlags
<ELFT
> *>(Sec
.data());
2551 raw_ostream
&OS
= W
.getOStream();
2552 DictScope
GS(W
, "MIPS ABI Flags");
2554 W
.printNumber("Version", Flags
->version
);
2555 W
.startLine() << "ISA: ";
2556 if (Flags
->isa_rev
<= 1)
2557 OS
<< format("MIPS%u", Flags
->isa_level
);
2559 OS
<< format("MIPS%ur%u", Flags
->isa_level
, Flags
->isa_rev
);
2561 W
.printEnum("ISA Extension", Flags
->isa_ext
, makeArrayRef(ElfMipsISAExtType
));
2562 W
.printFlags("ASEs", Flags
->ases
, makeArrayRef(ElfMipsASEFlags
));
2563 W
.printEnum("FP ABI", Flags
->fp_abi
, makeArrayRef(ElfMipsFpABIType
));
2564 W
.printNumber("GPR size", getMipsRegisterSize(Flags
->gpr_size
));
2565 W
.printNumber("CPR1 size", getMipsRegisterSize(Flags
->cpr1_size
));
2566 W
.printNumber("CPR2 size", getMipsRegisterSize(Flags
->cpr2_size
));
2567 W
.printFlags("Flags 1", Flags
->flags1
, makeArrayRef(ElfMipsFlags1
));
2568 W
.printHex("Flags 2", Flags
->flags2
);
2571 template <class ELFT
>
2572 static void printMipsReginfoData(ScopedPrinter
&W
,
2573 const Elf_Mips_RegInfo
<ELFT
> &Reginfo
) {
2574 W
.printHex("GP", Reginfo
.ri_gp_value
);
2575 W
.printHex("General Mask", Reginfo
.ri_gprmask
);
2576 W
.printHex("Co-Proc Mask0", Reginfo
.ri_cprmask
[0]);
2577 W
.printHex("Co-Proc Mask1", Reginfo
.ri_cprmask
[1]);
2578 W
.printHex("Co-Proc Mask2", Reginfo
.ri_cprmask
[2]);
2579 W
.printHex("Co-Proc Mask3", Reginfo
.ri_cprmask
[3]);
2582 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsReginfo() {
2583 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2584 const Elf_Shdr
*Shdr
= findSectionByName(*Obj
, ObjF
->getFileName(), ".reginfo");
2586 W
.startLine() << "There is no .reginfo section in the file.\n";
2589 ArrayRef
<uint8_t> Sec
=
2590 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(Shdr
));
2591 if (Sec
.size() != sizeof(Elf_Mips_RegInfo
<ELFT
>)) {
2592 W
.startLine() << "The .reginfo section has a wrong size.\n";
2596 DictScope
GS(W
, "MIPS RegInfo");
2597 auto *Reginfo
= reinterpret_cast<const Elf_Mips_RegInfo
<ELFT
> *>(Sec
.data());
2598 printMipsReginfoData(W
, *Reginfo
);
2601 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsOptions() {
2602 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2603 const Elf_Shdr
*Shdr
=
2604 findSectionByName(*Obj
, ObjF
->getFileName(), ".MIPS.options");
2606 W
.startLine() << "There is no .MIPS.options section in the file.\n";
2610 DictScope
GS(W
, "MIPS Options");
2612 ArrayRef
<uint8_t> Sec
=
2613 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(Shdr
));
2614 while (!Sec
.empty()) {
2615 if (Sec
.size() < sizeof(Elf_Mips_Options
<ELFT
>)) {
2616 W
.startLine() << "The .MIPS.options section has a wrong size.\n";
2619 auto *O
= reinterpret_cast<const Elf_Mips_Options
<ELFT
> *>(Sec
.data());
2620 DictScope
GS(W
, getElfMipsOptionsOdkType(O
->kind
));
2623 printMipsReginfoData(W
, O
->getRegInfo());
2626 W
.startLine() << "Unsupported MIPS options tag.\n";
2629 Sec
= Sec
.slice(O
->size
);
2633 template <class ELFT
> void ELFDumper
<ELFT
>::printStackMap() const {
2634 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2635 const Elf_Shdr
*StackMapSection
= nullptr;
2636 for (const auto &Sec
: unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
2638 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(&Sec
));
2639 if (Name
== ".llvm_stackmaps") {
2640 StackMapSection
= &Sec
;
2645 if (!StackMapSection
)
2648 ArrayRef
<uint8_t> StackMapContentsArray
= unwrapOrError(
2649 ObjF
->getFileName(), Obj
->getSectionContents(StackMapSection
));
2651 prettyPrintStackMap(
2652 W
, StackMapParser
<ELFT::TargetEndianness
>(StackMapContentsArray
));
2655 template <class ELFT
> void ELFDumper
<ELFT
>::printGroupSections() {
2656 ELFDumperStyle
->printGroupSections(ObjF
->getELFFile());
2659 template <class ELFT
> void ELFDumper
<ELFT
>::printAddrsig() {
2660 ELFDumperStyle
->printAddrsig(ObjF
->getELFFile());
2663 static inline void printFields(formatted_raw_ostream
&OS
, StringRef Str1
,
2667 OS
.PadToColumn(37u);
2672 template <class ELFT
>
2673 static std::string
getSectionHeadersNumString(const ELFFile
<ELFT
> *Obj
,
2674 StringRef FileName
) {
2675 const typename
ELFT::Ehdr
*ElfHeader
= Obj
->getHeader();
2676 if (ElfHeader
->e_shnum
!= 0)
2677 return to_string(ElfHeader
->e_shnum
);
2679 ArrayRef
<typename
ELFT::Shdr
> Arr
= unwrapOrError(FileName
, Obj
->sections());
2682 return "0 (" + to_string(Arr
[0].sh_size
) + ")";
2685 template <class ELFT
>
2686 static std::string
getSectionHeaderTableIndexString(const ELFFile
<ELFT
> *Obj
,
2687 StringRef FileName
) {
2688 const typename
ELFT::Ehdr
*ElfHeader
= Obj
->getHeader();
2689 if (ElfHeader
->e_shstrndx
!= SHN_XINDEX
)
2690 return to_string(ElfHeader
->e_shstrndx
);
2692 ArrayRef
<typename
ELFT::Shdr
> Arr
= unwrapOrError(FileName
, Obj
->sections());
2694 return "65535 (corrupt: out of range)";
2695 return to_string(ElfHeader
->e_shstrndx
) + " (" + to_string(Arr
[0].sh_link
) +
2699 template <class ELFT
> void GNUStyle
<ELFT
>::printFileHeaders(const ELFO
*Obj
) {
2700 const Elf_Ehdr
*e
= Obj
->getHeader();
2701 OS
<< "ELF Header:\n";
2704 for (int i
= 0; i
< ELF::EI_NIDENT
; i
++)
2705 OS
<< format(" %02x", static_cast<int>(e
->e_ident
[i
]));
2707 Str
= printEnum(e
->e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
2708 printFields(OS
, "Class:", Str
);
2709 Str
= printEnum(e
->e_ident
[ELF::EI_DATA
], makeArrayRef(ElfDataEncoding
));
2710 printFields(OS
, "Data:", Str
);
2713 OS
.PadToColumn(37u);
2714 OS
<< to_hexString(e
->e_ident
[ELF::EI_VERSION
]);
2715 if (e
->e_version
== ELF::EV_CURRENT
)
2718 Str
= printEnum(e
->e_ident
[ELF::EI_OSABI
], makeArrayRef(ElfOSABI
));
2719 printFields(OS
, "OS/ABI:", Str
);
2720 Str
= "0x" + to_hexString(e
->e_ident
[ELF::EI_ABIVERSION
]);
2721 printFields(OS
, "ABI Version:", Str
);
2722 Str
= printEnum(e
->e_type
, makeArrayRef(ElfObjectFileType
));
2723 printFields(OS
, "Type:", Str
);
2724 Str
= printEnum(e
->e_machine
, makeArrayRef(ElfMachineType
));
2725 printFields(OS
, "Machine:", Str
);
2726 Str
= "0x" + to_hexString(e
->e_version
);
2727 printFields(OS
, "Version:", Str
);
2728 Str
= "0x" + to_hexString(e
->e_entry
);
2729 printFields(OS
, "Entry point address:", Str
);
2730 Str
= to_string(e
->e_phoff
) + " (bytes into file)";
2731 printFields(OS
, "Start of program headers:", Str
);
2732 Str
= to_string(e
->e_shoff
) + " (bytes into file)";
2733 printFields(OS
, "Start of section headers:", Str
);
2734 std::string ElfFlags
;
2735 if (e
->e_machine
== EM_MIPS
)
2737 printFlags(e
->e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
2738 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
2739 unsigned(ELF::EF_MIPS_MACH
));
2740 else if (e
->e_machine
== EM_RISCV
)
2741 ElfFlags
= printFlags(e
->e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
2742 Str
= "0x" + to_hexString(e
->e_flags
);
2743 if (!ElfFlags
.empty())
2744 Str
= Str
+ ", " + ElfFlags
;
2745 printFields(OS
, "Flags:", Str
);
2746 Str
= to_string(e
->e_ehsize
) + " (bytes)";
2747 printFields(OS
, "Size of this header:", Str
);
2748 Str
= to_string(e
->e_phentsize
) + " (bytes)";
2749 printFields(OS
, "Size of program headers:", Str
);
2750 Str
= to_string(e
->e_phnum
);
2751 printFields(OS
, "Number of program headers:", Str
);
2752 Str
= to_string(e
->e_shentsize
) + " (bytes)";
2753 printFields(OS
, "Size of section headers:", Str
);
2754 Str
= getSectionHeadersNumString(Obj
, this->FileName
);
2755 printFields(OS
, "Number of section headers:", Str
);
2756 Str
= getSectionHeaderTableIndexString(Obj
, this->FileName
);
2757 printFields(OS
, "Section header string table index:", Str
);
2761 struct GroupMember
{
2766 struct GroupSection
{
2768 std::string Signature
;
2774 std::vector
<GroupMember
> Members
;
2777 template <class ELFT
>
2778 std::vector
<GroupSection
> getGroups(const ELFFile
<ELFT
> *Obj
,
2779 StringRef FileName
) {
2780 using Elf_Shdr
= typename
ELFT::Shdr
;
2781 using Elf_Sym
= typename
ELFT::Sym
;
2782 using Elf_Word
= typename
ELFT::Word
;
2784 std::vector
<GroupSection
> Ret
;
2786 for (const Elf_Shdr
&Sec
: unwrapOrError(FileName
, Obj
->sections())) {
2788 if (Sec
.sh_type
!= ELF::SHT_GROUP
)
2791 const Elf_Shdr
*Symtab
=
2792 unwrapOrError(FileName
, Obj
->getSection(Sec
.sh_link
));
2793 StringRef StrTable
=
2794 unwrapOrError(FileName
, Obj
->getStringTableForSymtab(*Symtab
));
2795 const Elf_Sym
*Sym
= unwrapOrError(
2796 FileName
, Obj
->template getEntry
<Elf_Sym
>(Symtab
, Sec
.sh_info
));
2797 auto Data
= unwrapOrError(
2798 FileName
, Obj
->template getSectionContentsAsArray
<Elf_Word
>(&Sec
));
2800 StringRef Name
= unwrapOrError(FileName
, Obj
->getSectionName(&Sec
));
2801 StringRef Signature
= StrTable
.data() + Sym
->st_name
;
2802 Ret
.push_back({Name
,
2803 maybeDemangle(Signature
),
2811 std::vector
<GroupMember
> &GM
= Ret
.back().Members
;
2812 for (uint32_t Ndx
: Data
.slice(1)) {
2813 auto Sec
= unwrapOrError(FileName
, Obj
->getSection(Ndx
));
2814 const StringRef Name
= unwrapOrError(FileName
, Obj
->getSectionName(Sec
));
2815 GM
.push_back({Name
, Ndx
});
2821 DenseMap
<uint64_t, const GroupSection
*>
2822 mapSectionsToGroups(ArrayRef
<GroupSection
> Groups
) {
2823 DenseMap
<uint64_t, const GroupSection
*> Ret
;
2824 for (const GroupSection
&G
: Groups
)
2825 for (const GroupMember
&GM
: G
.Members
)
2826 Ret
.insert({GM
.Index
, &G
});
2832 template <class ELFT
> void GNUStyle
<ELFT
>::printGroupSections(const ELFO
*Obj
) {
2833 std::vector
<GroupSection
> V
= getGroups
<ELFT
>(Obj
, this->FileName
);
2834 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
2835 for (const GroupSection
&G
: V
) {
2837 << getGroupType(G
.Type
) << " group section ["
2838 << format_decimal(G
.Index
, 5) << "] `" << G
.Name
<< "' [" << G
.Signature
2839 << "] contains " << G
.Members
.size() << " sections:\n"
2840 << " [Index] Name\n";
2841 for (const GroupMember
&GM
: G
.Members
) {
2842 const GroupSection
*MainGroup
= Map
[GM
.Index
];
2843 if (MainGroup
!= &G
) {
2845 errs() << "Error: section [" << format_decimal(GM
.Index
, 5)
2846 << "] in group section [" << format_decimal(G
.Index
, 5)
2847 << "] already in group section ["
2848 << format_decimal(MainGroup
->Index
, 5) << "]";
2852 OS
<< " [" << format_decimal(GM
.Index
, 5) << "] " << GM
.Name
<< "\n";
2857 OS
<< "There are no section groups in this file.\n";
2860 template <class ELFT
>
2861 void GNUStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, const Elf_Shdr
*SymTab
,
2862 const Elf_Rela
&R
, bool IsRela
) {
2863 const Elf_Sym
*Sym
=
2864 unwrapOrError(this->FileName
, Obj
->getRelocationSymbol(&R
, SymTab
));
2865 std::string TargetName
;
2866 if (Sym
&& Sym
->getType() == ELF::STT_SECTION
) {
2867 const Elf_Shdr
*Sec
= unwrapOrError(
2869 Obj
->getSection(Sym
, SymTab
, this->dumper()->getShndxTable()));
2870 TargetName
= unwrapOrError(this->FileName
, Obj
->getSectionName(Sec
));
2872 StringRef StrTable
=
2873 unwrapOrError(this->FileName
, Obj
->getStringTableForSymtab(*SymTab
));
2874 TargetName
= this->dumper()->getFullSymbolName(
2875 Sym
, StrTable
, SymTab
->sh_type
== SHT_DYNSYM
/* IsDynamic */);
2877 printRelocation(Obj
, Sym
, TargetName
, R
, IsRela
);
2880 template <class ELFT
>
2881 void GNUStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, const Elf_Sym
*Sym
,
2882 StringRef SymbolName
, const Elf_Rela
&R
,
2884 // First two fields are bit width dependent. The rest of them are fixed width.
2885 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
2886 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
2887 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
2889 Fields
[0].Str
= to_string(format_hex_no_prefix(R
.r_offset
, Width
));
2890 Fields
[1].Str
= to_string(format_hex_no_prefix(R
.r_info
, Width
));
2892 SmallString
<32> RelocName
;
2893 Obj
->getRelocationTypeName(R
.getType(Obj
->isMips64EL()), RelocName
);
2894 Fields
[2].Str
= RelocName
.c_str();
2896 if (Sym
&& (!SymbolName
.empty() || Sym
->getValue() != 0))
2897 Fields
[3].Str
= to_string(format_hex_no_prefix(Sym
->getValue(), Width
));
2899 Fields
[4].Str
= SymbolName
;
2900 for (const Field
&F
: Fields
)
2905 int64_t RelAddend
= R
.r_addend
;
2906 if (!SymbolName
.empty()) {
2907 if (R
.r_addend
< 0) {
2909 RelAddend
= std::abs(RelAddend
);
2914 Addend
+= to_hexString(RelAddend
, false);
2916 OS
<< Addend
<< "\n";
2919 template <class ELFT
> void GNUStyle
<ELFT
>::printRelocHeader(unsigned SType
) {
2920 bool IsRela
= SType
== ELF::SHT_RELA
|| SType
== ELF::SHT_ANDROID_RELA
;
2921 bool IsRelr
= SType
== ELF::SHT_RELR
|| SType
== ELF::SHT_ANDROID_RELR
;
2926 if (IsRelr
&& opts::RawRelr
)
2932 << " Symbol's Value Symbol's Name";
2934 OS
<< " Info Type Sym. Value Symbol's Name";
2940 template <class ELFT
> void GNUStyle
<ELFT
>::printRelocations(const ELFO
*Obj
) {
2941 bool HasRelocSections
= false;
2942 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
2943 if (Sec
.sh_type
!= ELF::SHT_REL
&& Sec
.sh_type
!= ELF::SHT_RELA
&&
2944 Sec
.sh_type
!= ELF::SHT_RELR
&& Sec
.sh_type
!= ELF::SHT_ANDROID_REL
&&
2945 Sec
.sh_type
!= ELF::SHT_ANDROID_RELA
&&
2946 Sec
.sh_type
!= ELF::SHT_ANDROID_RELR
)
2948 HasRelocSections
= true;
2949 StringRef Name
= unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
));
2950 unsigned Entries
= Sec
.getEntityCount();
2951 std::vector
<Elf_Rela
> AndroidRelas
;
2952 if (Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
2953 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
) {
2954 // Android's packed relocation section needs to be unpacked first
2955 // to get the actual number of entries.
2956 AndroidRelas
= unwrapOrError(this->FileName
, Obj
->android_relas(&Sec
));
2957 Entries
= AndroidRelas
.size();
2959 std::vector
<Elf_Rela
> RelrRelas
;
2960 if (!opts::RawRelr
&& (Sec
.sh_type
== ELF::SHT_RELR
||
2961 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
)) {
2962 // .relr.dyn relative relocation section needs to be unpacked first
2963 // to get the actual number of entries.
2964 Elf_Relr_Range Relrs
= unwrapOrError(this->FileName
, Obj
->relrs(&Sec
));
2965 RelrRelas
= unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
2966 Entries
= RelrRelas
.size();
2968 uintX_t Offset
= Sec
.sh_offset
;
2969 OS
<< "\nRelocation section '" << Name
<< "' at offset 0x"
2970 << to_hexString(Offset
, false) << " contains " << Entries
2972 printRelocHeader(Sec
.sh_type
);
2973 const Elf_Shdr
*SymTab
=
2974 unwrapOrError(this->FileName
, Obj
->getSection(Sec
.sh_link
));
2975 switch (Sec
.sh_type
) {
2977 for (const auto &R
: unwrapOrError(this->FileName
, Obj
->rels(&Sec
))) {
2979 Rela
.r_offset
= R
.r_offset
;
2980 Rela
.r_info
= R
.r_info
;
2982 printRelocation(Obj
, SymTab
, Rela
, false);
2986 for (const auto &R
: unwrapOrError(this->FileName
, Obj
->relas(&Sec
)))
2987 printRelocation(Obj
, SymTab
, R
, true);
2990 case ELF::SHT_ANDROID_RELR
:
2992 for (const auto &R
: unwrapOrError(this->FileName
, Obj
->relrs(&Sec
)))
2993 OS
<< to_string(format_hex_no_prefix(R
, ELFT::Is64Bits
? 16 : 8))
2996 for (const auto &R
: RelrRelas
)
2997 printRelocation(Obj
, SymTab
, R
, false);
2999 case ELF::SHT_ANDROID_REL
:
3000 case ELF::SHT_ANDROID_RELA
:
3001 for (const auto &R
: AndroidRelas
)
3002 printRelocation(Obj
, SymTab
, R
, Sec
.sh_type
== ELF::SHT_ANDROID_RELA
);
3006 if (!HasRelocSections
)
3007 OS
<< "\nThere are no relocations in this file.\n";
3010 // Print the offset of a particular section from anyone of the ranges:
3011 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3012 // If 'Type' does not fall within any of those ranges, then a string is
3013 // returned as '<unknown>' followed by the type value.
3014 static std::string
getSectionTypeOffsetString(unsigned Type
) {
3015 if (Type
>= SHT_LOOS
&& Type
<= SHT_HIOS
)
3016 return "LOOS+0x" + to_hexString(Type
- SHT_LOOS
);
3017 else if (Type
>= SHT_LOPROC
&& Type
<= SHT_HIPROC
)
3018 return "LOPROC+0x" + to_hexString(Type
- SHT_LOPROC
);
3019 else if (Type
>= SHT_LOUSER
&& Type
<= SHT_HIUSER
)
3020 return "LOUSER+0x" + to_hexString(Type
- SHT_LOUSER
);
3021 return "0x" + to_hexString(Type
) + ": <unknown>";
3024 static std::string
getSectionTypeString(unsigned Arch
, unsigned Type
) {
3025 using namespace ELF
;
3032 case SHT_ARM_PREEMPTMAP
:
3033 return "ARM_PREEMPTMAP";
3034 case SHT_ARM_ATTRIBUTES
:
3035 return "ARM_ATTRIBUTES";
3036 case SHT_ARM_DEBUGOVERLAY
:
3037 return "ARM_DEBUGOVERLAY";
3038 case SHT_ARM_OVERLAYSECTION
:
3039 return "ARM_OVERLAYSECTION";
3044 case SHT_X86_64_UNWIND
:
3045 return "X86_64_UNWIND";
3049 case EM_MIPS_RS3_LE
:
3051 case SHT_MIPS_REGINFO
:
3052 return "MIPS_REGINFO";
3053 case SHT_MIPS_OPTIONS
:
3054 return "MIPS_OPTIONS";
3055 case SHT_MIPS_DWARF
:
3056 return "MIPS_DWARF";
3057 case SHT_MIPS_ABIFLAGS
:
3058 return "MIPS_ABIFLAGS";
3087 case SHT_INIT_ARRAY
:
3088 return "INIT_ARRAY";
3089 case SHT_FINI_ARRAY
:
3090 return "FINI_ARRAY";
3091 case SHT_PREINIT_ARRAY
:
3092 return "PREINIT_ARRAY";
3095 case SHT_SYMTAB_SHNDX
:
3096 return "SYMTAB SECTION INDICES";
3097 case SHT_ANDROID_REL
:
3098 return "ANDROID_REL";
3099 case SHT_ANDROID_RELA
:
3100 return "ANDROID_RELA";
3102 case SHT_ANDROID_RELR
:
3104 case SHT_LLVM_ODRTAB
:
3105 return "LLVM_ODRTAB";
3106 case SHT_LLVM_LINKER_OPTIONS
:
3107 return "LLVM_LINKER_OPTIONS";
3108 case SHT_LLVM_CALL_GRAPH_PROFILE
:
3109 return "LLVM_CALL_GRAPH_PROFILE";
3110 case SHT_LLVM_ADDRSIG
:
3111 return "LLVM_ADDRSIG";
3112 case SHT_LLVM_DEPENDENT_LIBRARIES
:
3113 return "LLVM_DEPENDENT_LIBRARIES";
3114 // FIXME: Parse processor specific GNU attributes
3115 case SHT_GNU_ATTRIBUTES
:
3116 return "ATTRIBUTES";
3119 case SHT_GNU_verdef
:
3121 case SHT_GNU_verneed
:
3123 case SHT_GNU_versym
:
3126 return getSectionTypeOffsetString(Type
);
3131 template <class ELFT
>
3132 void GNUStyle
<ELFT
>::printSectionHeaders(const ELFO
*Obj
) {
3133 unsigned Bias
= ELFT::Is64Bits
? 0 : 8;
3134 ArrayRef
<Elf_Shdr
> Sections
= unwrapOrError(this->FileName
, Obj
->sections());
3135 OS
<< "There are " << to_string(Sections
.size())
3136 << " section headers, starting at offset "
3137 << "0x" << to_hexString(Obj
->getHeader()->e_shoff
, false) << ":\n\n";
3138 OS
<< "Section Headers:\n";
3139 Field Fields
[11] = {
3140 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3141 {"Address", 41}, {"Off", 58 - Bias
}, {"Size", 65 - Bias
},
3142 {"ES", 72 - Bias
}, {"Flg", 75 - Bias
}, {"Lk", 79 - Bias
},
3143 {"Inf", 82 - Bias
}, {"Al", 86 - Bias
}};
3144 for (auto &F
: Fields
)
3148 const ELFObjectFile
<ELFT
> *ElfObj
= this->dumper()->getElfObject();
3149 size_t SectionIndex
= 0;
3150 for (const Elf_Shdr
&Sec
: Sections
) {
3151 Fields
[0].Str
= to_string(SectionIndex
);
3152 Fields
[1].Str
= unwrapOrError
<StringRef
>(
3153 ElfObj
->getFileName(), Obj
->getSectionName(&Sec
, this->WarningHandler
));
3155 getSectionTypeString(Obj
->getHeader()->e_machine
, Sec
.sh_type
);
3157 to_string(format_hex_no_prefix(Sec
.sh_addr
, ELFT::Is64Bits
? 16 : 8));
3158 Fields
[4].Str
= to_string(format_hex_no_prefix(Sec
.sh_offset
, 6));
3159 Fields
[5].Str
= to_string(format_hex_no_prefix(Sec
.sh_size
, 6));
3160 Fields
[6].Str
= to_string(format_hex_no_prefix(Sec
.sh_entsize
, 2));
3161 Fields
[7].Str
= getGNUFlags(Sec
.sh_flags
);
3162 Fields
[8].Str
= to_string(Sec
.sh_link
);
3163 Fields
[9].Str
= to_string(Sec
.sh_info
);
3164 Fields
[10].Str
= to_string(Sec
.sh_addralign
);
3166 OS
.PadToColumn(Fields
[0].Column
);
3167 OS
<< "[" << right_justify(Fields
[0].Str
, 2) << "]";
3168 for (int i
= 1; i
< 7; i
++)
3169 printField(Fields
[i
]);
3170 OS
.PadToColumn(Fields
[7].Column
);
3171 OS
<< right_justify(Fields
[7].Str
, 3);
3172 OS
.PadToColumn(Fields
[8].Column
);
3173 OS
<< right_justify(Fields
[8].Str
, 2);
3174 OS
.PadToColumn(Fields
[9].Column
);
3175 OS
<< right_justify(Fields
[9].Str
, 3);
3176 OS
.PadToColumn(Fields
[10].Column
);
3177 OS
<< right_justify(Fields
[10].Str
, 2);
3181 OS
<< "Key to Flags:\n"
3182 << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
3184 << " I (info), L (link order), G (group), T (TLS), E (exclude),\
3186 << " O (extra OS processing required) o (OS specific),\
3187 p (processor specific)\n";
3190 template <class ELFT
>
3191 void GNUStyle
<ELFT
>::printSymtabMessage(const ELFO
*Obj
, StringRef Name
,
3194 OS
<< "\nSymbol table '" << Name
<< "' contains " << Entries
3197 OS
<< "\n Symbol table for image:\n";
3200 OS
<< " Num: Value Size Type Bind Vis Ndx Name\n";
3202 OS
<< " Num: Value Size Type Bind Vis Ndx Name\n";
3205 template <class ELFT
>
3206 std::string GNUStyle
<ELFT
>::getSymbolSectionNdx(const ELFO
*Obj
,
3207 const Elf_Sym
*Symbol
,
3208 const Elf_Sym
*FirstSym
) {
3209 unsigned SectionIndex
= Symbol
->st_shndx
;
3210 switch (SectionIndex
) {
3211 case ELF::SHN_UNDEF
:
3215 case ELF::SHN_COMMON
:
3217 case ELF::SHN_XINDEX
:
3218 return to_string(format_decimal(
3219 unwrapOrError(this->FileName
,
3220 object::getExtendedSymbolTableIndex
<ELFT
>(
3221 Symbol
, FirstSym
, this->dumper()->getShndxTable())),
3225 // Processor specific
3226 if (SectionIndex
>= ELF::SHN_LOPROC
&& SectionIndex
<= ELF::SHN_HIPROC
)
3227 return std::string("PRC[0x") +
3228 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3230 if (SectionIndex
>= ELF::SHN_LOOS
&& SectionIndex
<= ELF::SHN_HIOS
)
3231 return std::string("OS[0x") +
3232 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3233 // Architecture reserved:
3234 if (SectionIndex
>= ELF::SHN_LORESERVE
&&
3235 SectionIndex
<= ELF::SHN_HIRESERVE
)
3236 return std::string("RSV[0x") +
3237 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3238 // A normal section with an index
3239 return to_string(format_decimal(SectionIndex
, 3));
3243 template <class ELFT
>
3244 void GNUStyle
<ELFT
>::printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
3245 const Elf_Sym
*FirstSym
, StringRef StrTable
,
3248 static bool Dynamic
= true;
3250 // If this function was called with a different value from IsDynamic
3251 // from last call, happens when we move from dynamic to static symbol
3252 // table, "Num" field should be reset.
3253 if (!Dynamic
!= !IsDynamic
) {
3258 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3259 Field Fields
[8] = {0, 8, 17 + Bias
, 23 + Bias
,
3260 31 + Bias
, 38 + Bias
, 47 + Bias
, 51 + Bias
};
3261 Fields
[0].Str
= to_string(format_decimal(Idx
++, 6)) + ":";
3262 Fields
[1].Str
= to_string(
3263 format_hex_no_prefix(Symbol
->st_value
, ELFT::Is64Bits
? 16 : 8));
3264 Fields
[2].Str
= to_string(format_decimal(Symbol
->st_size
, 5));
3266 unsigned char SymbolType
= Symbol
->getType();
3267 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
3268 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
3269 Fields
[3].Str
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
3271 Fields
[3].Str
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
3274 printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
3276 printEnum(Symbol
->getVisibility(), makeArrayRef(ElfSymbolVisibilities
));
3277 Fields
[6].Str
= getSymbolSectionNdx(Obj
, Symbol
, FirstSym
);
3279 this->dumper()->getFullSymbolName(Symbol
, StrTable
, IsDynamic
);
3280 for (auto &Entry
: Fields
)
3285 template <class ELFT
>
3286 void GNUStyle
<ELFT
>::printHashedSymbol(const ELFO
*Obj
, const Elf_Sym
*FirstSym
,
3287 uint32_t Sym
, StringRef StrTable
,
3289 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3290 Field Fields
[9] = {0, 6, 11, 20 + Bias
, 25 + Bias
,
3291 34 + Bias
, 41 + Bias
, 49 + Bias
, 53 + Bias
};
3292 Fields
[0].Str
= to_string(format_decimal(Sym
, 5));
3293 Fields
[1].Str
= to_string(format_decimal(Bucket
, 3)) + ":";
3295 const auto Symbol
= FirstSym
+ Sym
;
3296 Fields
[2].Str
= to_string(
3297 format_hex_no_prefix(Symbol
->st_value
, ELFT::Is64Bits
? 16 : 8));
3298 Fields
[3].Str
= to_string(format_decimal(Symbol
->st_size
, 5));
3300 unsigned char SymbolType
= Symbol
->getType();
3301 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
3302 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
3303 Fields
[4].Str
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
3305 Fields
[4].Str
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
3308 printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
3310 printEnum(Symbol
->getVisibility(), makeArrayRef(ElfSymbolVisibilities
));
3311 Fields
[7].Str
= getSymbolSectionNdx(Obj
, Symbol
, FirstSym
);
3312 Fields
[8].Str
= this->dumper()->getFullSymbolName(Symbol
, StrTable
, true);
3314 for (auto &Entry
: Fields
)
3319 template <class ELFT
>
3320 void GNUStyle
<ELFT
>::printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
3321 bool PrintDynamicSymbols
) {
3322 if (!PrintSymbols
&& !PrintDynamicSymbols
)
3324 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3325 this->dumper()->printSymbolsHelper(true);
3327 this->dumper()->printSymbolsHelper(false);
3330 template <class ELFT
> void GNUStyle
<ELFT
>::printHashSymbols(const ELFO
*Obj
) {
3331 if (this->dumper()->getDynamicStringTable().empty())
3333 auto StringTable
= this->dumper()->getDynamicStringTable();
3334 auto DynSyms
= this->dumper()->dynamic_symbols();
3336 // Try printing .hash
3337 if (auto SysVHash
= this->dumper()->getHashTable()) {
3338 OS
<< "\n Symbol table of .hash for image:\n";
3340 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3342 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3345 auto Buckets
= SysVHash
->buckets();
3346 auto Chains
= SysVHash
->chains();
3347 for (uint32_t Buc
= 0; Buc
< SysVHash
->nbucket
; Buc
++) {
3348 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3350 for (uint32_t Ch
= Buckets
[Buc
]; Ch
< SysVHash
->nchain
; Ch
= Chains
[Ch
]) {
3351 if (Ch
== ELF::STN_UNDEF
)
3353 printHashedSymbol(Obj
, &DynSyms
[0], Ch
, StringTable
, Buc
);
3358 // Try printing .gnu.hash
3359 if (auto GnuHash
= this->dumper()->getGnuHashTable()) {
3360 OS
<< "\n Symbol table of .gnu.hash for image:\n";
3362 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3364 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3366 auto Buckets
= GnuHash
->buckets();
3367 for (uint32_t Buc
= 0; Buc
< GnuHash
->nbuckets
; Buc
++) {
3368 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3370 uint32_t Index
= Buckets
[Buc
];
3371 uint32_t GnuHashable
= Index
- GnuHash
->symndx
;
3372 // Print whole chain
3374 printHashedSymbol(Obj
, &DynSyms
[0], Index
++, StringTable
, Buc
);
3375 // Chain ends at symbol with stopper bit
3376 if ((GnuHash
->values(DynSyms
.size())[GnuHashable
++] & 1) == 1)
3383 static inline std::string
printPhdrFlags(unsigned Flag
) {
3385 Str
= (Flag
& PF_R
) ? "R" : " ";
3386 Str
+= (Flag
& PF_W
) ? "W" : " ";
3387 Str
+= (Flag
& PF_X
) ? "E" : " ";
3391 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3392 // PT_TLS must only have SHF_TLS sections
3393 template <class ELFT
>
3394 bool GNUStyle
<ELFT
>::checkTLSSections(const Elf_Phdr
&Phdr
,
3395 const Elf_Shdr
&Sec
) {
3396 return (((Sec
.sh_flags
& ELF::SHF_TLS
) &&
3397 ((Phdr
.p_type
== ELF::PT_TLS
) || (Phdr
.p_type
== ELF::PT_LOAD
) ||
3398 (Phdr
.p_type
== ELF::PT_GNU_RELRO
))) ||
3399 (!(Sec
.sh_flags
& ELF::SHF_TLS
) && Phdr
.p_type
!= ELF::PT_TLS
));
3402 // Non-SHT_NOBITS must have its offset inside the segment
3403 // Only non-zero section can be at end of segment
3404 template <class ELFT
>
3405 bool GNUStyle
<ELFT
>::checkoffsets(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3406 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
3409 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
3410 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3412 (IsSpecial
&& Phdr
.p_type
!= ELF::PT_TLS
) ? 0 : Sec
.sh_size
;
3413 if (Sec
.sh_offset
>= Phdr
.p_offset
)
3414 return ((Sec
.sh_offset
+ SectionSize
<= Phdr
.p_filesz
+ Phdr
.p_offset
)
3415 /*only non-zero sized sections at end*/
3416 && (Sec
.sh_offset
+ 1 <= Phdr
.p_offset
+ Phdr
.p_filesz
));
3420 // SHF_ALLOC must have VMA inside segment
3421 // Only non-zero section can be at end of segment
3422 template <class ELFT
>
3423 bool GNUStyle
<ELFT
>::checkVMA(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3424 if (!(Sec
.sh_flags
& ELF::SHF_ALLOC
))
3427 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
3428 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3430 (IsSpecial
&& Phdr
.p_type
!= ELF::PT_TLS
) ? 0 : Sec
.sh_size
;
3431 if (Sec
.sh_addr
>= Phdr
.p_vaddr
)
3432 return ((Sec
.sh_addr
+ SectionSize
<= Phdr
.p_vaddr
+ Phdr
.p_memsz
) &&
3433 (Sec
.sh_addr
+ 1 <= Phdr
.p_vaddr
+ Phdr
.p_memsz
));
3437 // No section with zero size must be at start or end of PT_DYNAMIC
3438 template <class ELFT
>
3439 bool GNUStyle
<ELFT
>::checkPTDynamic(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3440 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
|| Sec
.sh_size
!= 0 || Phdr
.p_memsz
== 0)
3442 // Is section within the phdr both based on offset and VMA ?
3443 return ((Sec
.sh_type
== ELF::SHT_NOBITS
) ||
3444 (Sec
.sh_offset
> Phdr
.p_offset
&&
3445 Sec
.sh_offset
< Phdr
.p_offset
+ Phdr
.p_filesz
)) &&
3446 (!(Sec
.sh_flags
& ELF::SHF_ALLOC
) ||
3447 (Sec
.sh_addr
> Phdr
.p_vaddr
&& Sec
.sh_addr
< Phdr
.p_memsz
));
3450 template <class ELFT
>
3451 void GNUStyle
<ELFT
>::printProgramHeaders(
3452 const ELFO
*Obj
, bool PrintProgramHeaders
,
3453 cl::boolOrDefault PrintSectionMapping
) {
3454 if (PrintProgramHeaders
)
3455 printProgramHeaders(Obj
);
3457 // Display the section mapping along with the program headers, unless
3458 // -section-mapping is explicitly set to false.
3459 if (PrintSectionMapping
!= cl::BOU_FALSE
)
3460 printSectionMapping(Obj
);
3463 template <class ELFT
>
3464 void GNUStyle
<ELFT
>::printProgramHeaders(const ELFO
*Obj
) {
3465 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3466 const Elf_Ehdr
*Header
= Obj
->getHeader();
3467 Field Fields
[8] = {2, 17, 26, 37 + Bias
,
3468 48 + Bias
, 56 + Bias
, 64 + Bias
, 68 + Bias
};
3469 OS
<< "\nElf file type is "
3470 << printEnum(Header
->e_type
, makeArrayRef(ElfObjectFileType
)) << "\n"
3471 << "Entry point " << format_hex(Header
->e_entry
, 3) << "\n"
3472 << "There are " << Header
->e_phnum
<< " program headers,"
3473 << " starting at offset " << Header
->e_phoff
<< "\n\n"
3474 << "Program Headers:\n";
3476 OS
<< " Type Offset VirtAddr PhysAddr "
3477 << " FileSiz MemSiz Flg Align\n";
3479 OS
<< " Type Offset VirtAddr PhysAddr FileSiz "
3480 << "MemSiz Flg Align\n";
3482 unsigned Width
= ELFT::Is64Bits
? 18 : 10;
3483 unsigned SizeWidth
= ELFT::Is64Bits
? 8 : 7;
3484 for (const auto &Phdr
:
3485 unwrapOrError(this->FileName
, Obj
->program_headers())) {
3486 Fields
[0].Str
= getElfPtType(Header
->e_machine
, Phdr
.p_type
);
3487 Fields
[1].Str
= to_string(format_hex(Phdr
.p_offset
, 8));
3488 Fields
[2].Str
= to_string(format_hex(Phdr
.p_vaddr
, Width
));
3489 Fields
[3].Str
= to_string(format_hex(Phdr
.p_paddr
, Width
));
3490 Fields
[4].Str
= to_string(format_hex(Phdr
.p_filesz
, SizeWidth
));
3491 Fields
[5].Str
= to_string(format_hex(Phdr
.p_memsz
, SizeWidth
));
3492 Fields
[6].Str
= printPhdrFlags(Phdr
.p_flags
);
3493 Fields
[7].Str
= to_string(format_hex(Phdr
.p_align
, 1));
3494 for (auto Field
: Fields
)
3496 if (Phdr
.p_type
== ELF::PT_INTERP
) {
3497 OS
<< "\n [Requesting program interpreter: ";
3498 OS
<< reinterpret_cast<const char *>(Obj
->base()) + Phdr
.p_offset
<< "]";
3504 template <class ELFT
>
3505 void GNUStyle
<ELFT
>::printSectionMapping(const ELFO
*Obj
) {
3506 OS
<< "\n Section to Segment mapping:\n Segment Sections...\n";
3507 DenseSet
<const Elf_Shdr
*> BelongsToSegment
;
3509 for (const Elf_Phdr
&Phdr
:
3510 unwrapOrError(this->FileName
, Obj
->program_headers())) {
3511 std::string Sections
;
3512 OS
<< format(" %2.2d ", Phnum
++);
3513 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
3514 // Check if each section is in a segment and then print mapping.
3515 // readelf additionally makes sure it does not print zero sized sections
3516 // at end of segments and for PT_DYNAMIC both start and end of section
3517 // .tbss must only be shown in PT_TLS section.
3518 bool TbssInNonTLS
= (Sec
.sh_type
== ELF::SHT_NOBITS
) &&
3519 ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0) &&
3520 Phdr
.p_type
!= ELF::PT_TLS
;
3521 if (!TbssInNonTLS
&& checkTLSSections(Phdr
, Sec
) &&
3522 checkoffsets(Phdr
, Sec
) && checkVMA(Phdr
, Sec
) &&
3523 checkPTDynamic(Phdr
, Sec
) && (Sec
.sh_type
!= ELF::SHT_NULL
)) {
3525 unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
)).str() +
3527 BelongsToSegment
.insert(&Sec
);
3530 OS
<< Sections
<< "\n";
3534 // Display sections that do not belong to a segment.
3535 std::string Sections
;
3536 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
3537 if (BelongsToSegment
.find(&Sec
) == BelongsToSegment
.end())
3539 unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
)).str() + ' ';
3541 if (!Sections
.empty()) {
3542 OS
<< " None " << Sections
<< '\n';
3548 template <class ELFT
> struct RelSymbol
{
3549 const typename
ELFT::Sym
*Sym
;
3553 template <class ELFT
>
3554 RelSymbol
<ELFT
> getSymbolForReloc(const ELFFile
<ELFT
> *Obj
, StringRef FileName
,
3555 const ELFDumper
<ELFT
> *Dumper
,
3556 const typename
ELFT::Rela
&Reloc
) {
3557 uint32_t SymIndex
= Reloc
.getSymbol(Obj
->isMips64EL());
3558 const typename
ELFT::Sym
*Sym
= Dumper
->dynamic_symbols().begin() + SymIndex
;
3559 Expected
<StringRef
> ErrOrName
= Sym
->getName(Dumper
->getDynamicStringTable());
3563 Name
= maybeDemangle(*ErrOrName
);
3566 createError("unable to get name of the dynamic symbol with index " +
3567 Twine(SymIndex
) + ": " + toString(ErrOrName
.takeError())),
3572 return {Sym
, std::move(Name
)};
3576 template <class ELFT
>
3577 void GNUStyle
<ELFT
>::printDynamicRelocation(const ELFO
*Obj
, Elf_Rela R
,
3579 RelSymbol
<ELFT
> S
= getSymbolForReloc(Obj
, this->FileName
, this->dumper(), R
);
3580 printRelocation(Obj
, S
.Sym
, S
.Name
, R
, IsRela
);
3583 template <class ELFT
> void GNUStyle
<ELFT
>::printDynamic(const ELFO
*Obj
) {
3584 Elf_Dyn_Range Table
= this->dumper()->dynamic_table();
3588 const DynRegionInfo
&DynamicTableRegion
=
3589 this->dumper()->getDynamicTableRegion();
3591 OS
<< "Dynamic section at offset "
3592 << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion
.Addr
) -
3595 << " contains " << Table
.size() << " entries:\n";
3597 bool Is64
= ELFT::Is64Bits
;
3599 OS
<< " Tag Type Name/Value\n";
3601 OS
<< " Tag Type Name/Value\n";
3602 for (auto Entry
: Table
) {
3603 uintX_t Tag
= Entry
.getTag();
3604 std::string TypeString
= std::string("(") +
3605 getTypeString(Obj
->getHeader()->e_machine
, Tag
) +
3607 OS
<< " " << format_hex(Tag
, Is64
? 18 : 10)
3608 << format(" %-20s ", TypeString
.c_str());
3609 this->dumper()->printDynamicEntry(OS
, Tag
, Entry
.getVal());
3614 template <class ELFT
>
3615 void GNUStyle
<ELFT
>::printDynamicRelocations(const ELFO
*Obj
) {
3616 const DynRegionInfo
&DynRelRegion
= this->dumper()->getDynRelRegion();
3617 const DynRegionInfo
&DynRelaRegion
= this->dumper()->getDynRelaRegion();
3618 const DynRegionInfo
&DynRelrRegion
= this->dumper()->getDynRelrRegion();
3619 const DynRegionInfo
&DynPLTRelRegion
= this->dumper()->getDynPLTRelRegion();
3620 if (DynRelaRegion
.Size
> 0) {
3621 OS
<< "\n'RELA' relocation section at offset "
3622 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion
.Addr
) -
3625 << " contains " << DynRelaRegion
.Size
<< " bytes:\n";
3626 printRelocHeader(ELF::SHT_RELA
);
3627 for (const Elf_Rela
&Rela
: this->dumper()->dyn_relas())
3628 printDynamicRelocation(Obj
, Rela
, true);
3630 if (DynRelRegion
.Size
> 0) {
3631 OS
<< "\n'REL' relocation section at offset "
3632 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion
.Addr
) -
3635 << " contains " << DynRelRegion
.Size
<< " bytes:\n";
3636 printRelocHeader(ELF::SHT_REL
);
3637 for (const Elf_Rel
&Rel
: this->dumper()->dyn_rels()) {
3639 Rela
.r_offset
= Rel
.r_offset
;
3640 Rela
.r_info
= Rel
.r_info
;
3642 printDynamicRelocation(Obj
, Rela
, false);
3645 if (DynRelrRegion
.Size
> 0) {
3646 OS
<< "\n'RELR' relocation section at offset "
3647 << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion
.Addr
) -
3650 << " contains " << DynRelrRegion
.Size
<< " bytes:\n";
3651 printRelocHeader(ELF::SHT_REL
);
3652 Elf_Relr_Range Relrs
= this->dumper()->dyn_relrs();
3653 std::vector
<Elf_Rela
> RelrRelas
=
3654 unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
3655 for (const Elf_Rela
&Rela
: RelrRelas
) {
3656 printDynamicRelocation(Obj
, Rela
, false);
3659 if (DynPLTRelRegion
.Size
) {
3660 OS
<< "\n'PLT' relocation section at offset "
3661 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion
.Addr
) -
3664 << " contains " << DynPLTRelRegion
.Size
<< " bytes:\n";
3666 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
)) {
3667 printRelocHeader(ELF::SHT_RELA
);
3668 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
3669 printDynamicRelocation(Obj
, Rela
, true);
3671 printRelocHeader(ELF::SHT_REL
);
3672 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>()) {
3674 Rela
.r_offset
= Rel
.r_offset
;
3675 Rela
.r_info
= Rel
.r_info
;
3677 printDynamicRelocation(Obj
, Rela
, false);
3682 template <class ELFT
>
3683 static void printGNUVersionSectionProlog(formatted_raw_ostream
&OS
,
3684 const Twine
&Name
, unsigned EntriesNum
,
3685 const ELFFile
<ELFT
> *Obj
,
3686 const typename
ELFT::Shdr
*Sec
,
3687 StringRef FileName
) {
3688 StringRef SecName
= unwrapOrError(FileName
, Obj
->getSectionName(Sec
));
3689 OS
<< Name
<< " section '" << SecName
<< "' "
3690 << "contains " << EntriesNum
<< " entries:\n";
3692 const typename
ELFT::Shdr
*SymTab
=
3693 unwrapOrError(FileName
, Obj
->getSection(Sec
->sh_link
));
3694 StringRef SymTabName
= unwrapOrError(FileName
, Obj
->getSectionName(SymTab
));
3695 OS
<< " Addr: " << format_hex_no_prefix(Sec
->sh_addr
, 16)
3696 << " Offset: " << format_hex(Sec
->sh_offset
, 8)
3697 << " Link: " << Sec
->sh_link
<< " (" << SymTabName
<< ")\n";
3700 template <class ELFT
>
3701 void GNUStyle
<ELFT
>::printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
3702 const Elf_Shdr
*Sec
) {
3706 unsigned Entries
= Sec
->sh_size
/ sizeof(Elf_Versym
);
3707 printGNUVersionSectionProlog(OS
, "Version symbols", Entries
, Obj
, Sec
,
3710 const uint8_t *VersymBuf
=
3711 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
3712 const ELFDumper
<ELFT
> *Dumper
= this->dumper();
3713 StringRef StrTable
= Dumper
->getDynamicStringTable();
3715 // readelf prints 4 entries per line.
3716 for (uint64_t VersymRow
= 0; VersymRow
< Entries
; VersymRow
+= 4) {
3717 OS
<< " " << format_hex_no_prefix(VersymRow
, 3) << ":";
3719 for (uint64_t VersymIndex
= 0;
3720 (VersymIndex
< 4) && (VersymIndex
+ VersymRow
) < Entries
;
3722 const Elf_Versym
*Versym
=
3723 reinterpret_cast<const Elf_Versym
*>(VersymBuf
);
3724 switch (Versym
->vs_index
) {
3726 OS
<< " 0 (*local*) ";
3729 OS
<< " 1 (*global*) ";
3732 OS
<< format("%4x%c", Versym
->vs_index
& VERSYM_VERSION
,
3733 Versym
->vs_index
& VERSYM_HIDDEN
? 'h' : ' ');
3735 bool IsDefault
= true;
3736 std::string VersionName
= Dumper
->getSymbolVersionByIndex(
3737 StrTable
, Versym
->vs_index
, IsDefault
);
3739 if (!VersionName
.empty())
3740 VersionName
= "(" + VersionName
+ ")";
3742 VersionName
= "(*invalid*)";
3743 OS
<< left_justify(VersionName
, 13);
3745 VersymBuf
+= sizeof(Elf_Versym
);
3752 static std::string
versionFlagToString(unsigned Flags
) {
3757 auto AddFlag
= [&Ret
, &Flags
](unsigned Flag
, StringRef Name
) {
3758 if (!(Flags
& Flag
))
3766 AddFlag(VER_FLG_BASE
, "BASE");
3767 AddFlag(VER_FLG_WEAK
, "WEAK");
3768 AddFlag(VER_FLG_INFO
, "INFO");
3769 AddFlag(~0, "<unknown>");
3773 template <class ELFT
>
3774 void GNUStyle
<ELFT
>::printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
3775 const Elf_Shdr
*Sec
) {
3779 unsigned VerDefsNum
= Sec
->sh_info
;
3780 printGNUVersionSectionProlog(OS
, "Version definition", VerDefsNum
, Obj
, Sec
,
3783 const Elf_Shdr
*StrTabSec
=
3784 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
3785 StringRef
StringTable(
3786 reinterpret_cast<const char *>(Obj
->base() + StrTabSec
->sh_offset
),
3787 (size_t)StrTabSec
->sh_size
);
3789 const uint8_t *VerdefBuf
=
3790 unwrapOrError(this->FileName
, Obj
->getSectionContents(Sec
)).data();
3791 const uint8_t *Begin
= VerdefBuf
;
3793 while (VerDefsNum
--) {
3794 const Elf_Verdef
*Verdef
= reinterpret_cast<const Elf_Verdef
*>(VerdefBuf
);
3795 OS
<< format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u",
3796 VerdefBuf
- Begin
, (unsigned)Verdef
->vd_version
,
3797 versionFlagToString(Verdef
->vd_flags
).c_str(),
3798 (unsigned)Verdef
->vd_ndx
, (unsigned)Verdef
->vd_cnt
);
3800 const uint8_t *VerdauxBuf
= VerdefBuf
+ Verdef
->vd_aux
;
3801 const Elf_Verdaux
*Verdaux
=
3802 reinterpret_cast<const Elf_Verdaux
*>(VerdauxBuf
);
3803 OS
<< format(" Name: %s\n",
3804 StringTable
.drop_front(Verdaux
->vda_name
).data());
3806 for (unsigned I
= 1; I
< Verdef
->vd_cnt
; ++I
) {
3807 VerdauxBuf
+= Verdaux
->vda_next
;
3808 Verdaux
= reinterpret_cast<const Elf_Verdaux
*>(VerdauxBuf
);
3809 OS
<< format(" 0x%04x: Parent %u: %s\n", VerdauxBuf
- Begin
, I
,
3810 StringTable
.drop_front(Verdaux
->vda_name
).data());
3813 VerdefBuf
+= Verdef
->vd_next
;
3818 template <class ELFT
>
3819 void GNUStyle
<ELFT
>::printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
3820 const Elf_Shdr
*Sec
) {
3824 unsigned VerneedNum
= Sec
->sh_info
;
3825 printGNUVersionSectionProlog(OS
, "Version needs", VerneedNum
, Obj
, Sec
,
3828 ArrayRef
<uint8_t> SecData
=
3829 unwrapOrError(this->FileName
, Obj
->getSectionContents(Sec
));
3831 const Elf_Shdr
*StrTabSec
=
3832 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
3833 StringRef StringTable
= {
3834 reinterpret_cast<const char *>(Obj
->base() + StrTabSec
->sh_offset
),
3835 (size_t)StrTabSec
->sh_size
};
3837 const uint8_t *VerneedBuf
= SecData
.data();
3838 for (unsigned I
= 0; I
< VerneedNum
; ++I
) {
3839 const Elf_Verneed
*Verneed
=
3840 reinterpret_cast<const Elf_Verneed
*>(VerneedBuf
);
3842 OS
<< format(" 0x%04x: Version: %u File: %s Cnt: %u\n",
3843 reinterpret_cast<const uint8_t *>(Verneed
) - SecData
.begin(),
3844 (unsigned)Verneed
->vn_version
,
3845 StringTable
.drop_front(Verneed
->vn_file
).data(),
3846 (unsigned)Verneed
->vn_cnt
);
3848 const uint8_t *VernauxBuf
= VerneedBuf
+ Verneed
->vn_aux
;
3849 for (unsigned J
= 0; J
< Verneed
->vn_cnt
; ++J
) {
3850 const Elf_Vernaux
*Vernaux
=
3851 reinterpret_cast<const Elf_Vernaux
*>(VernauxBuf
);
3853 OS
<< format(" 0x%04x: Name: %s Flags: %s Version: %u\n",
3854 reinterpret_cast<const uint8_t *>(Vernaux
) - SecData
.begin(),
3855 StringTable
.drop_front(Vernaux
->vna_name
).data(),
3856 versionFlagToString(Vernaux
->vna_flags
).c_str(),
3857 (unsigned)Vernaux
->vna_other
);
3858 VernauxBuf
+= Vernaux
->vna_next
;
3860 VerneedBuf
+= Verneed
->vn_next
;
3865 // Hash histogram shows statistics of how efficient the hash was for the
3866 // dynamic symbol table. The table shows number of hash buckets for different
3867 // lengths of chains as absolute number and percentage of the total buckets.
3868 // Additionally cumulative coverage of symbols for each set of buckets.
3869 template <class ELFT
>
3870 void GNUStyle
<ELFT
>::printHashHistogram(const ELFFile
<ELFT
> *Obj
) {
3871 // Print histogram for .hash section
3872 if (const Elf_Hash
*HashTable
= this->dumper()->getHashTable()) {
3873 size_t NBucket
= HashTable
->nbucket
;
3874 size_t NChain
= HashTable
->nchain
;
3875 ArrayRef
<Elf_Word
> Buckets
= HashTable
->buckets();
3876 ArrayRef
<Elf_Word
> Chains
= HashTable
->chains();
3877 size_t TotalSyms
= 0;
3878 // If hash table is correct, we have at least chains with 0 length
3879 size_t MaxChain
= 1;
3880 size_t CumulativeNonZero
= 0;
3882 if (NChain
== 0 || NBucket
== 0)
3885 std::vector
<size_t> ChainLen(NBucket
, 0);
3886 // Go over all buckets and and note chain lengths of each bucket (total
3887 // unique chain lengths).
3888 for (size_t B
= 0; B
< NBucket
; B
++) {
3889 for (size_t C
= Buckets
[B
]; C
> 0 && C
< NChain
; C
= Chains
[C
])
3890 if (MaxChain
<= ++ChainLen
[B
])
3892 TotalSyms
+= ChainLen
[B
];
3898 std::vector
<size_t> Count(MaxChain
, 0) ;
3899 // Count how long is the chain for each bucket
3900 for (size_t B
= 0; B
< NBucket
; B
++)
3901 ++Count
[ChainLen
[B
]];
3902 // Print Number of buckets with each chain lengths and their cumulative
3903 // coverage of the symbols
3904 OS
<< "Histogram for bucket list length (total of " << NBucket
3906 << " Length Number % of total Coverage\n";
3907 for (size_t I
= 0; I
< MaxChain
; I
++) {
3908 CumulativeNonZero
+= Count
[I
] * I
;
3909 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
3910 (Count
[I
] * 100.0) / NBucket
,
3911 (CumulativeNonZero
* 100.0) / TotalSyms
);
3915 // Print histogram for .gnu.hash section
3916 if (const Elf_GnuHash
*GnuHashTable
= this->dumper()->getGnuHashTable()) {
3917 size_t NBucket
= GnuHashTable
->nbuckets
;
3918 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
->buckets();
3919 unsigned NumSyms
= this->dumper()->dynamic_symbols().size();
3922 ArrayRef
<Elf_Word
> Chains
= GnuHashTable
->values(NumSyms
);
3923 size_t Symndx
= GnuHashTable
->symndx
;
3924 size_t TotalSyms
= 0;
3925 size_t MaxChain
= 1;
3926 size_t CumulativeNonZero
= 0;
3928 if (Chains
.empty() || NBucket
== 0)
3931 std::vector
<size_t> ChainLen(NBucket
, 0);
3933 for (size_t B
= 0; B
< NBucket
; B
++) {
3937 for (size_t C
= Buckets
[B
] - Symndx
;
3938 C
< Chains
.size() && (Chains
[C
] & 1) == 0; C
++)
3939 if (MaxChain
< ++Len
)
3949 std::vector
<size_t> Count(MaxChain
, 0) ;
3950 for (size_t B
= 0; B
< NBucket
; B
++)
3951 ++Count
[ChainLen
[B
]];
3952 // Print Number of buckets with each chain lengths and their cumulative
3953 // coverage of the symbols
3954 OS
<< "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
3956 << " Length Number % of total Coverage\n";
3957 for (size_t I
= 0; I
<MaxChain
; I
++) {
3958 CumulativeNonZero
+= Count
[I
] * I
;
3959 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
3960 (Count
[I
] * 100.0) / NBucket
,
3961 (CumulativeNonZero
* 100.0) / TotalSyms
);
3966 template <class ELFT
>
3967 void GNUStyle
<ELFT
>::printCGProfile(const ELFFile
<ELFT
> *Obj
) {
3968 OS
<< "GNUStyle::printCGProfile not implemented\n";
3971 template <class ELFT
>
3972 void GNUStyle
<ELFT
>::printAddrsig(const ELFFile
<ELFT
> *Obj
) {
3973 OS
<< "GNUStyle::printAddrsig not implemented\n";
3976 static StringRef
getGenericNoteTypeName(const uint32_t NT
) {
3977 static const struct {
3981 {ELF::NT_VERSION
, "NT_VERSION (version)"},
3982 {ELF::NT_ARCH
, "NT_ARCH (architecture)"},
3983 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN
, "OPEN"},
3984 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC
, "func"},
3987 for (const auto &Note
: Notes
)
3994 static StringRef
getCoreNoteTypeName(const uint32_t NT
) {
3995 static const struct {
3999 {ELF::NT_PRSTATUS
, "NT_PRSTATUS (prstatus structure)"},
4000 {ELF::NT_FPREGSET
, "NT_FPREGSET (floating point registers)"},
4001 {ELF::NT_PRPSINFO
, "NT_PRPSINFO (prpsinfo structure)"},
4002 {ELF::NT_TASKSTRUCT
, "NT_TASKSTRUCT (task structure)"},
4003 {ELF::NT_AUXV
, "NT_AUXV (auxiliary vector)"},
4004 {ELF::NT_PSTATUS
, "NT_PSTATUS (pstatus structure)"},
4005 {ELF::NT_FPREGS
, "NT_FPREGS (floating point registers)"},
4006 {ELF::NT_PSINFO
, "NT_PSINFO (psinfo structure)"},
4007 {ELF::NT_LWPSTATUS
, "NT_LWPSTATUS (lwpstatus_t structure)"},
4008 {ELF::NT_LWPSINFO
, "NT_LWPSINFO (lwpsinfo_t structure)"},
4009 {ELF::NT_WIN32PSTATUS
, "NT_WIN32PSTATUS (win32_pstatus structure)"},
4011 {ELF::NT_PPC_VMX
, "NT_PPC_VMX (ppc Altivec registers)"},
4012 {ELF::NT_PPC_VSX
, "NT_PPC_VSX (ppc VSX registers)"},
4013 {ELF::NT_PPC_TAR
, "NT_PPC_TAR (ppc TAR register)"},
4014 {ELF::NT_PPC_PPR
, "NT_PPC_PPR (ppc PPR register)"},
4015 {ELF::NT_PPC_DSCR
, "NT_PPC_DSCR (ppc DSCR register)"},
4016 {ELF::NT_PPC_EBB
, "NT_PPC_EBB (ppc EBB registers)"},
4017 {ELF::NT_PPC_PMU
, "NT_PPC_PMU (ppc PMU registers)"},
4018 {ELF::NT_PPC_TM_CGPR
, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
4019 {ELF::NT_PPC_TM_CFPR
,
4020 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
4021 {ELF::NT_PPC_TM_CVMX
,
4022 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
4023 {ELF::NT_PPC_TM_CVSX
, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
4024 {ELF::NT_PPC_TM_SPR
, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
4025 {ELF::NT_PPC_TM_CTAR
, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
4026 {ELF::NT_PPC_TM_CPPR
, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
4027 {ELF::NT_PPC_TM_CDSCR
,
4028 "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
4030 {ELF::NT_386_TLS
, "NT_386_TLS (x86 TLS information)"},
4031 {ELF::NT_386_IOPERM
, "NT_386_IOPERM (x86 I/O permissions)"},
4032 {ELF::NT_X86_XSTATE
, "NT_X86_XSTATE (x86 XSAVE extended state)"},
4034 {ELF::NT_S390_HIGH_GPRS
,
4035 "NT_S390_HIGH_GPRS (s390 upper register halves)"},
4036 {ELF::NT_S390_TIMER
, "NT_S390_TIMER (s390 timer register)"},
4037 {ELF::NT_S390_TODCMP
, "NT_S390_TODCMP (s390 TOD comparator register)"},
4038 {ELF::NT_S390_TODPREG
,
4039 "NT_S390_TODPREG (s390 TOD programmable register)"},
4040 {ELF::NT_S390_CTRS
, "NT_S390_CTRS (s390 control registers)"},
4041 {ELF::NT_S390_PREFIX
, "NT_S390_PREFIX (s390 prefix register)"},
4042 {ELF::NT_S390_LAST_BREAK
,
4043 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
4044 {ELF::NT_S390_SYSTEM_CALL
,
4045 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
4046 {ELF::NT_S390_TDB
, "NT_S390_TDB (s390 transaction diagnostic block)"},
4047 {ELF::NT_S390_VXRS_LOW
,
4048 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
4049 {ELF::NT_S390_VXRS_HIGH
,
4050 "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
4051 {ELF::NT_S390_GS_CB
, "NT_S390_GS_CB (s390 guarded-storage registers)"},
4052 {ELF::NT_S390_GS_BC
,
4053 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
4055 {ELF::NT_ARM_VFP
, "NT_ARM_VFP (arm VFP registers)"},
4056 {ELF::NT_ARM_TLS
, "NT_ARM_TLS (AArch TLS registers)"},
4057 {ELF::NT_ARM_HW_BREAK
,
4058 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
4059 {ELF::NT_ARM_HW_WATCH
,
4060 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
4062 {ELF::NT_FILE
, "NT_FILE (mapped files)"},
4063 {ELF::NT_PRXFPREG
, "NT_PRXFPREG (user_xfpregs structure)"},
4064 {ELF::NT_SIGINFO
, "NT_SIGINFO (siginfo_t data)"},
4067 for (const auto &Note
: Notes
)
4074 static std::string
getGNUNoteTypeName(const uint32_t NT
) {
4075 static const struct {
4079 {ELF::NT_GNU_ABI_TAG
, "NT_GNU_ABI_TAG (ABI version tag)"},
4080 {ELF::NT_GNU_HWCAP
, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
4081 {ELF::NT_GNU_BUILD_ID
, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
4082 {ELF::NT_GNU_GOLD_VERSION
, "NT_GNU_GOLD_VERSION (gold version)"},
4083 {ELF::NT_GNU_PROPERTY_TYPE_0
, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
4086 for (const auto &Note
: Notes
)
4088 return std::string(Note
.Name
);
4091 raw_string_ostream
OS(string
);
4092 OS
<< format("Unknown note type (0x%08x)", NT
);
4096 static std::string
getFreeBSDNoteTypeName(const uint32_t NT
) {
4097 static const struct {
4101 {ELF::NT_FREEBSD_THRMISC
, "NT_THRMISC (thrmisc structure)"},
4102 {ELF::NT_FREEBSD_PROCSTAT_PROC
, "NT_PROCSTAT_PROC (proc data)"},
4103 {ELF::NT_FREEBSD_PROCSTAT_FILES
, "NT_PROCSTAT_FILES (files data)"},
4104 {ELF::NT_FREEBSD_PROCSTAT_VMMAP
, "NT_PROCSTAT_VMMAP (vmmap data)"},
4105 {ELF::NT_FREEBSD_PROCSTAT_GROUPS
, "NT_PROCSTAT_GROUPS (groups data)"},
4106 {ELF::NT_FREEBSD_PROCSTAT_UMASK
, "NT_PROCSTAT_UMASK (umask data)"},
4107 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT
, "NT_PROCSTAT_RLIMIT (rlimit data)"},
4108 {ELF::NT_FREEBSD_PROCSTAT_OSREL
, "NT_PROCSTAT_OSREL (osreldate data)"},
4109 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS
,
4110 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
4111 {ELF::NT_FREEBSD_PROCSTAT_AUXV
, "NT_PROCSTAT_AUXV (auxv data)"},
4114 for (const auto &Note
: Notes
)
4116 return std::string(Note
.Name
);
4119 raw_string_ostream
OS(string
);
4120 OS
<< format("Unknown note type (0x%08x)", NT
);
4124 static std::string
getAMDNoteTypeName(const uint32_t NT
) {
4125 static const struct {
4128 } Notes
[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA
,
4129 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
4130 {ELF::NT_AMD_AMDGPU_ISA
, "NT_AMD_AMDGPU_ISA (ISA Version)"},
4131 {ELF::NT_AMD_AMDGPU_PAL_METADATA
,
4132 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}};
4134 for (const auto &Note
: Notes
)
4136 return std::string(Note
.Name
);
4139 raw_string_ostream
OS(string
);
4140 OS
<< format("Unknown note type (0x%08x)", NT
);
4144 static std::string
getAMDGPUNoteTypeName(const uint32_t NT
) {
4145 if (NT
== ELF::NT_AMDGPU_METADATA
)
4146 return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)");
4149 raw_string_ostream
OS(string
);
4150 OS
<< format("Unknown note type (0x%08x)", NT
);
4154 template <typename ELFT
>
4155 static std::string
getGNUProperty(uint32_t Type
, uint32_t DataSize
,
4156 ArrayRef
<uint8_t> Data
) {
4158 raw_string_ostream
OS(str
);
4160 auto DumpBit
= [&](uint32_t Flag
, StringRef Name
) {
4161 if (PrData
& Flag
) {
4171 OS
<< format("<application-specific type 0x%x>", Type
);
4173 case GNU_PROPERTY_STACK_SIZE
: {
4174 OS
<< "stack size: ";
4175 if (DataSize
== sizeof(typename
ELFT::uint
))
4176 OS
<< formatv("{0:x}",
4177 (uint64_t)(*(const typename
ELFT::Addr
*)Data
.data()));
4179 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4182 case GNU_PROPERTY_NO_COPY_ON_PROTECTED
:
4183 OS
<< "no copy on protected";
4185 OS
<< format(" <corrupt length: 0x%x>", DataSize
);
4187 case GNU_PROPERTY_AARCH64_FEATURE_1_AND
:
4188 case GNU_PROPERTY_X86_FEATURE_1_AND
:
4189 OS
<< ((Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) ? "aarch64 feature: "
4191 if (DataSize
!= 4) {
4192 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4195 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4200 if (Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) {
4201 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI
, "BTI");
4202 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC
, "PAC");
4204 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT
, "IBT");
4205 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK
, "SHSTK");
4208 OS
<< format("<unknown flags: 0x%x>", PrData
);
4210 case GNU_PROPERTY_X86_ISA_1_NEEDED
:
4211 case GNU_PROPERTY_X86_ISA_1_USED
:
4213 << (Type
== GNU_PROPERTY_X86_ISA_1_NEEDED
? "needed: " : "used: ");
4214 if (DataSize
!= 4) {
4215 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4218 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4223 DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV
, "CMOV");
4224 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE
, "SSE");
4225 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2
, "SSE2");
4226 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3
, "SSE3");
4227 DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3
, "SSSE3");
4228 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1
, "SSE4_1");
4229 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2
, "SSE4_2");
4230 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX
, "AVX");
4231 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2
, "AVX2");
4232 DumpBit(GNU_PROPERTY_X86_ISA_1_FMA
, "FMA");
4233 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F
, "AVX512F");
4234 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD
, "AVX512CD");
4235 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER
, "AVX512ER");
4236 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF
, "AVX512PF");
4237 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL
, "AVX512VL");
4238 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ
, "AVX512DQ");
4239 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW
, "AVX512BW");
4240 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS
, "AVX512_4FMAPS");
4241 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW
, "AVX512_4VNNIW");
4242 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG
, "AVX512_BITALG");
4243 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA
, "AVX512_IFMA");
4244 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI
, "AVX512_VBMI");
4245 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2
, "AVX512_VBMI2");
4246 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI
, "AVX512_VNNI");
4248 OS
<< format("<unknown flags: 0x%x>", PrData
);
4251 case GNU_PROPERTY_X86_FEATURE_2_NEEDED
:
4252 case GNU_PROPERTY_X86_FEATURE_2_USED
:
4253 OS
<< "x86 feature "
4254 << (Type
== GNU_PROPERTY_X86_FEATURE_2_NEEDED
? "needed: " : "used: ");
4255 if (DataSize
!= 4) {
4256 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4259 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4264 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86
, "x86");
4265 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87
, "x87");
4266 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX
, "MMX");
4267 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM
, "XMM");
4268 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM
, "YMM");
4269 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM
, "ZMM");
4270 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR
, "FXSR");
4271 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE
, "XSAVE");
4272 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
, "XSAVEOPT");
4273 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC
, "XSAVEC");
4275 OS
<< format("<unknown flags: 0x%x>", PrData
);
4280 template <typename ELFT
>
4281 static SmallVector
<std::string
, 4> getGNUPropertyList(ArrayRef
<uint8_t> Arr
) {
4282 using Elf_Word
= typename
ELFT::Word
;
4284 SmallVector
<std::string
, 4> Properties
;
4285 while (Arr
.size() >= 8) {
4286 uint32_t Type
= *reinterpret_cast<const Elf_Word
*>(Arr
.data());
4287 uint32_t DataSize
= *reinterpret_cast<const Elf_Word
*>(Arr
.data() + 4);
4288 Arr
= Arr
.drop_front(8);
4290 // Take padding size into account if present.
4291 uint64_t PaddedSize
= alignTo(DataSize
, sizeof(typename
ELFT::uint
));
4293 raw_string_ostream
OS(str
);
4294 if (Arr
.size() < PaddedSize
) {
4295 OS
<< format("<corrupt type (0x%x) datasz: 0x%x>", Type
, DataSize
);
4296 Properties
.push_back(OS
.str());
4299 Properties
.push_back(
4300 getGNUProperty
<ELFT
>(Type
, DataSize
, Arr
.take_front(PaddedSize
)));
4301 Arr
= Arr
.drop_front(PaddedSize
);
4305 Properties
.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4316 template <typename ELFT
> static GNUAbiTag
getGNUAbiTag(ArrayRef
<uint8_t> Desc
) {
4317 typedef typename
ELFT::Word Elf_Word
;
4319 ArrayRef
<Elf_Word
> Words(reinterpret_cast<const Elf_Word
*>(Desc
.begin()),
4320 reinterpret_cast<const Elf_Word
*>(Desc
.end()));
4322 if (Words
.size() < 4)
4323 return {"", "", /*IsValid=*/false};
4325 static const char *OSNames
[] = {
4326 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4328 StringRef OSName
= "Unknown";
4329 if (Words
[0] < array_lengthof(OSNames
))
4330 OSName
= OSNames
[Words
[0]];
4331 uint32_t Major
= Words
[1], Minor
= Words
[2], Patch
= Words
[3];
4333 raw_string_ostream
ABI(str
);
4334 ABI
<< Major
<< "." << Minor
<< "." << Patch
;
4335 return {OSName
, ABI
.str(), /*IsValid=*/true};
4338 static std::string
getGNUBuildId(ArrayRef
<uint8_t> Desc
) {
4340 raw_string_ostream
OS(str
);
4341 for (const auto &B
: Desc
)
4342 OS
<< format_hex_no_prefix(B
, 2);
4346 static StringRef
getGNUGoldVersion(ArrayRef
<uint8_t> Desc
) {
4347 return StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
4350 template <typename ELFT
>
4351 static void printGNUNote(raw_ostream
&OS
, uint32_t NoteType
,
4352 ArrayRef
<uint8_t> Desc
) {
4356 case ELF::NT_GNU_ABI_TAG
: {
4357 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
4358 if (!AbiTag
.IsValid
)
4359 OS
<< " <corrupt GNU_ABI_TAG>";
4361 OS
<< " OS: " << AbiTag
.OSName
<< ", ABI: " << AbiTag
.ABI
;
4364 case ELF::NT_GNU_BUILD_ID
: {
4365 OS
<< " Build ID: " << getGNUBuildId(Desc
);
4368 case ELF::NT_GNU_GOLD_VERSION
:
4369 OS
<< " Version: " << getGNUGoldVersion(Desc
);
4371 case ELF::NT_GNU_PROPERTY_TYPE_0
:
4372 OS
<< " Properties:";
4373 for (const auto &Property
: getGNUPropertyList
<ELFT
>(Desc
))
4374 OS
<< " " << Property
<< "\n";
4385 template <typename ELFT
>
4386 static AMDNote
getAMDNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
4390 case ELF::NT_AMD_AMDGPU_HSA_METADATA
:
4393 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
4394 case ELF::NT_AMD_AMDGPU_ISA
:
4397 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
4406 template <typename ELFT
>
4407 static AMDGPUNote
getAMDGPUNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
4411 case ELF::NT_AMDGPU_METADATA
: {
4412 auto MsgPackString
=
4413 StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
4414 msgpack::Document MsgPackDoc
;
4415 if (!MsgPackDoc
.readFromBlob(MsgPackString
, /*Multi=*/false))
4416 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4418 AMDGPU::HSAMD::V3::MetadataVerifier
Verifier(true);
4419 if (!Verifier
.verify(MsgPackDoc
.getRoot()))
4420 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4422 std::string HSAMetadataString
;
4423 raw_string_ostream
StrOS(HSAMetadataString
);
4424 MsgPackDoc
.toYAML(StrOS
);
4426 return {"AMDGPU Metadata", StrOS
.str()};
4431 struct CoreFileMapping
{
4432 uint64_t Start
, End
, Offset
;
4438 std::vector
<CoreFileMapping
> Mappings
;
4441 static Expected
<CoreNote
> readCoreNote(DataExtractor Desc
) {
4442 // Expected format of the NT_FILE note description:
4443 // 1. # of file mappings (call it N)
4445 // 3. N (start, end, offset) triples
4446 // 4. N packed filenames (null delimited)
4447 // Each field is an Elf_Addr, except for filenames which are char* strings.
4450 const int Bytes
= Desc
.getAddressSize();
4452 if (!Desc
.isValidOffsetForAddress(2))
4453 return createStringError(object_error::parse_failed
,
4454 "malformed note: header too short");
4455 if (Desc
.getData().back() != 0)
4456 return createStringError(object_error::parse_failed
,
4457 "malformed note: not NUL terminated");
4459 uint64_t DescOffset
= 0;
4460 uint64_t FileCount
= Desc
.getAddress(&DescOffset
);
4461 Ret
.PageSize
= Desc
.getAddress(&DescOffset
);
4463 if (!Desc
.isValidOffsetForAddress(3 * FileCount
* Bytes
))
4464 return createStringError(object_error::parse_failed
,
4465 "malformed note: too short for number of files");
4467 uint64_t FilenamesOffset
= 0;
4468 DataExtractor
Filenames(
4469 Desc
.getData().drop_front(DescOffset
+ 3 * FileCount
* Bytes
),
4470 Desc
.isLittleEndian(), Desc
.getAddressSize());
4472 Ret
.Mappings
.resize(FileCount
);
4473 for (CoreFileMapping
&Mapping
: Ret
.Mappings
) {
4474 if (!Filenames
.isValidOffsetForDataOfSize(FilenamesOffset
, 1))
4475 return createStringError(object_error::parse_failed
,
4476 "malformed note: too few filenames");
4477 Mapping
.Start
= Desc
.getAddress(&DescOffset
);
4478 Mapping
.End
= Desc
.getAddress(&DescOffset
);
4479 Mapping
.Offset
= Desc
.getAddress(&DescOffset
);
4480 Mapping
.Filename
= Filenames
.getCStrRef(&FilenamesOffset
);
4486 template <typename ELFT
>
4487 static void printCoreNote(raw_ostream
&OS
, const CoreNote
&Note
) {
4488 // Length of "0x<address>" string.
4489 const int FieldWidth
= ELFT::Is64Bits
? 18 : 10;
4491 OS
<< " Page size: " << format_decimal(Note
.PageSize
, 0) << '\n';
4492 OS
<< " " << right_justify("Start", FieldWidth
) << " "
4493 << right_justify("End", FieldWidth
) << " "
4494 << right_justify("Page Offset", FieldWidth
) << '\n';
4495 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
4496 OS
<< " " << format_hex(Mapping
.Start
, FieldWidth
) << " "
4497 << format_hex(Mapping
.End
, FieldWidth
) << " "
4498 << format_hex(Mapping
.Offset
, FieldWidth
) << "\n "
4499 << Mapping
.Filename
<< '\n';
4503 template <class ELFT
>
4504 void GNUStyle
<ELFT
>::printNotes(const ELFFile
<ELFT
> *Obj
) {
4505 auto PrintHeader
= [&](const typename
ELFT::Off Offset
,
4506 const typename
ELFT::Addr Size
) {
4507 OS
<< "Displaying notes found at file offset " << format_hex(Offset
, 10)
4508 << " with length " << format_hex(Size
, 10) << ":\n"
4509 << " Owner Data size \tDescription\n";
4512 auto ProcessNote
= [&](const Elf_Note
&Note
) {
4513 StringRef Name
= Note
.getName();
4514 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc();
4515 Elf_Word Type
= Note
.getType();
4517 // Print the note owner/type.
4518 OS
<< " " << left_justify(Name
, 20) << ' '
4519 << format_hex(Descriptor
.size(), 10) << '\t';
4520 if (Name
== "GNU") {
4521 OS
<< getGNUNoteTypeName(Type
) << '\n';
4522 } else if (Name
== "FreeBSD") {
4523 OS
<< getFreeBSDNoteTypeName(Type
) << '\n';
4524 } else if (Name
== "AMD") {
4525 OS
<< getAMDNoteTypeName(Type
) << '\n';
4526 } else if (Name
== "AMDGPU") {
4527 OS
<< getAMDGPUNoteTypeName(Type
) << '\n';
4529 StringRef NoteType
= Obj
->getHeader()->e_type
== ELF::ET_CORE
4530 ? getCoreNoteTypeName(Type
)
4531 : getGenericNoteTypeName(Type
);
4532 if (!NoteType
.empty())
4533 OS
<< NoteType
<< '\n';
4535 OS
<< "Unknown note type: (" << format_hex(Type
, 10) << ")\n";
4538 // Print the description, or fallback to printing raw bytes for unknown
4540 if (Name
== "GNU") {
4541 printGNUNote
<ELFT
>(OS
, Type
, Descriptor
);
4542 } else if (Name
== "AMD") {
4543 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
4544 if (!N
.Type
.empty())
4545 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
4546 } else if (Name
== "AMDGPU") {
4547 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
4548 if (!N
.Type
.empty())
4549 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
4550 } else if (Name
== "CORE") {
4551 if (Type
== ELF::NT_FILE
) {
4552 DataExtractor
DescExtractor(
4553 StringRef(reinterpret_cast<const char *>(Descriptor
.data()),
4555 ELFT::TargetEndianness
== support::little
, sizeof(Elf_Addr
));
4556 Expected
<CoreNote
> Note
= readCoreNote(DescExtractor
);
4558 printCoreNote
<ELFT
>(OS
, *Note
);
4560 reportWarning(Note
.takeError(), this->FileName
);
4562 } else if (!Descriptor
.empty()) {
4563 OS
<< " description data:";
4564 for (uint8_t B
: Descriptor
)
4565 OS
<< " " << format("%02x", B
);
4570 ArrayRef
<Elf_Shdr
> Sections
= unwrapOrError(this->FileName
, Obj
->sections());
4571 if (Obj
->getHeader()->e_type
!= ELF::ET_CORE
&& !Sections
.empty()) {
4572 for (const auto &S
: Sections
) {
4573 if (S
.sh_type
!= SHT_NOTE
)
4575 PrintHeader(S
.sh_offset
, S
.sh_size
);
4576 Error Err
= Error::success();
4577 for (const auto &Note
: Obj
->notes(S
, Err
))
4580 reportError(std::move(Err
), this->FileName
);
4583 for (const auto &P
:
4584 unwrapOrError(this->FileName
, Obj
->program_headers())) {
4585 if (P
.p_type
!= PT_NOTE
)
4587 PrintHeader(P
.p_offset
, P
.p_filesz
);
4588 Error Err
= Error::success();
4589 for (const auto &Note
: Obj
->notes(P
, Err
))
4592 reportError(std::move(Err
), this->FileName
);
4597 template <class ELFT
>
4598 void GNUStyle
<ELFT
>::printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) {
4599 OS
<< "printELFLinkerOptions not implemented!\n";
4602 template <class ELFT
>
4603 void DumpStyle
<ELFT
>::printFunctionStackSize(
4604 const ELFObjectFile
<ELFT
> *Obj
, uint64_t SymValue
, SectionRef FunctionSec
,
4605 const StringRef SectionName
, DataExtractor Data
, uint64_t *Offset
) {
4606 // This function ignores potentially erroneous input, unless it is directly
4607 // related to stack size reporting.
4609 for (const ELFSymbolRef
&Symbol
: Obj
->symbols()) {
4610 Expected
<uint64_t> SymAddrOrErr
= Symbol
.getAddress();
4611 if (!SymAddrOrErr
) {
4612 consumeError(SymAddrOrErr
.takeError());
4615 if (Symbol
.getELFType() == ELF::STT_FUNC
&& *SymAddrOrErr
== SymValue
) {
4616 // Check if the symbol is in the right section.
4617 if (FunctionSec
.containsSymbol(Symbol
)) {
4624 std::string FuncName
= "?";
4625 // A valid SymbolRef has a non-null object file pointer.
4626 if (FuncSym
.BasicSymbolRef::getObject()) {
4627 // Extract the symbol name.
4628 Expected
<StringRef
> FuncNameOrErr
= FuncSym
.getName();
4630 FuncName
= maybeDemangle(*FuncNameOrErr
);
4632 consumeError(FuncNameOrErr
.takeError());
4635 createError("could not identify function symbol for stack size entry"),
4636 Obj
->getFileName());
4639 // Extract the size. The expectation is that Offset is pointing to the right
4640 // place, i.e. past the function address.
4641 uint64_t PrevOffset
= *Offset
;
4642 uint64_t StackSize
= Data
.getULEB128(Offset
);
4643 // getULEB128() does not advance Offset if it is not able to extract a valid
4645 if (*Offset
== PrevOffset
)
4647 createStringError(object_error::parse_failed
,
4648 "could not extract a valid stack size in section %s",
4649 SectionName
.data()),
4650 Obj
->getFileName());
4652 printStackSizeEntry(StackSize
, FuncName
);
4655 template <class ELFT
>
4656 void GNUStyle
<ELFT
>::printStackSizeEntry(uint64_t Size
, StringRef FuncName
) {
4658 OS
<< format_decimal(Size
, 11);
4660 OS
<< FuncName
<< "\n";
4663 template <class ELFT
>
4664 void DumpStyle
<ELFT
>::printStackSize(const ELFObjectFile
<ELFT
> *Obj
,
4665 RelocationRef Reloc
,
4666 SectionRef FunctionSec
,
4667 const StringRef
&StackSizeSectionName
,
4668 const RelocationResolver
&Resolver
,
4669 DataExtractor Data
) {
4670 // This function ignores potentially erroneous input, unless it is directly
4671 // related to stack size reporting.
4672 object::symbol_iterator RelocSym
= Reloc
.getSymbol();
4673 uint64_t RelocSymValue
= 0;
4674 StringRef FileStr
= Obj
->getFileName();
4675 if (RelocSym
!= Obj
->symbol_end()) {
4676 // Ensure that the relocation symbol is in the function section, i.e. the
4677 // section where the functions whose stack sizes we are reporting are
4679 StringRef SymName
= "?";
4680 Expected
<StringRef
> NameOrErr
= RelocSym
->getName();
4682 SymName
= *NameOrErr
;
4684 consumeError(NameOrErr
.takeError());
4686 auto SectionOrErr
= RelocSym
->getSection();
4687 if (!SectionOrErr
) {
4689 createError("cannot identify the section for relocation symbol " +
4692 consumeError(SectionOrErr
.takeError());
4693 } else if (*SectionOrErr
!= FunctionSec
) {
4694 reportWarning(createError("relocation symbol " + SymName
+
4695 " is not in the expected section"),
4697 // Pretend that the symbol is in the correct section and report its
4698 // stack size anyway.
4699 FunctionSec
= **SectionOrErr
;
4702 Expected
<uint64_t> RelocSymValueOrErr
= RelocSym
->getValue();
4703 if (RelocSymValueOrErr
)
4704 RelocSymValue
= *RelocSymValueOrErr
;
4706 consumeError(RelocSymValueOrErr
.takeError());
4709 uint64_t Offset
= Reloc
.getOffset();
4710 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1))
4712 createStringError(object_error::parse_failed
,
4713 "found invalid relocation offset into section %s "
4714 "while trying to extract a stack size entry",
4715 StackSizeSectionName
.data()),
4718 uint64_t Addend
= Data
.getAddress(&Offset
);
4719 uint64_t SymValue
= Resolver(Reloc
, RelocSymValue
, Addend
);
4720 this->printFunctionStackSize(Obj
, SymValue
, FunctionSec
, StackSizeSectionName
,
4724 template <class ELFT
>
4725 SectionRef
toSectionRef(const ObjectFile
*Obj
, const typename
ELFT::Shdr
*Sec
) {
4727 DRI
.p
= reinterpret_cast<uintptr_t>(Sec
);
4728 return SectionRef(DRI
, Obj
);
4731 template <class ELFT
>
4732 void DumpStyle
<ELFT
>::printNonRelocatableStackSizes(
4733 const ELFObjectFile
<ELFT
> *Obj
, std::function
<void()> PrintHeader
) {
4734 // This function ignores potentially erroneous input, unless it is directly
4735 // related to stack size reporting.
4736 const ELFFile
<ELFT
> *EF
= Obj
->getELFFile();
4737 StringRef FileStr
= Obj
->getFileName();
4738 for (const SectionRef
&Sec
: Obj
->sections()) {
4739 StringRef SectionName
;
4740 if (Expected
<StringRef
> NameOrErr
= Sec
.getName())
4741 SectionName
= *NameOrErr
;
4743 consumeError(NameOrErr
.takeError());
4745 const Elf_Shdr
*ElfSec
= Obj
->getSection(Sec
.getRawDataRefImpl());
4746 if (!SectionName
.startswith(".stack_sizes"))
4749 ArrayRef
<uint8_t> Contents
=
4750 unwrapOrError(this->FileName
, EF
->getSectionContents(ElfSec
));
4752 StringRef(reinterpret_cast<const char *>(Contents
.data()),
4754 Obj
->isLittleEndian(), sizeof(Elf_Addr
));
4755 // A .stack_sizes section header's sh_link field is supposed to point
4756 // to the section that contains the functions whose stack sizes are
4758 const Elf_Shdr
*FunctionELFSec
=
4759 unwrapOrError(this->FileName
, EF
->getSection(ElfSec
->sh_link
));
4760 uint64_t Offset
= 0;
4761 while (Offset
< Contents
.size()) {
4762 // The function address is followed by a ULEB representing the stack
4763 // size. Check for an extra byte before we try to process the entry.
4764 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
4767 object_error::parse_failed
,
4768 "section %s ended while trying to extract a stack size entry",
4769 SectionName
.data()),
4772 uint64_t SymValue
= Data
.getAddress(&Offset
);
4773 printFunctionStackSize(Obj
, SymValue
,
4774 toSectionRef
<ELFT
>(Obj
, FunctionELFSec
),
4775 SectionName
, Data
, &Offset
);
4780 template <class ELFT
>
4781 void DumpStyle
<ELFT
>::printRelocatableStackSizes(
4782 const ELFObjectFile
<ELFT
> *Obj
, std::function
<void()> PrintHeader
) {
4783 const ELFFile
<ELFT
> *EF
= Obj
->getELFFile();
4785 // Build a map between stack size sections and their corresponding relocation
4787 llvm::MapVector
<SectionRef
, SectionRef
> StackSizeRelocMap
;
4788 const SectionRef NullSection
{};
4790 for (const SectionRef
&Sec
: Obj
->sections()) {
4791 StringRef SectionName
;
4792 if (Expected
<StringRef
> NameOrErr
= Sec
.getName())
4793 SectionName
= *NameOrErr
;
4795 consumeError(NameOrErr
.takeError());
4797 // A stack size section that we haven't encountered yet is mapped to the
4798 // null section until we find its corresponding relocation section.
4799 if (SectionName
.startswith(".stack_sizes"))
4800 if (StackSizeRelocMap
.count(Sec
) == 0) {
4801 StackSizeRelocMap
[Sec
] = NullSection
;
4805 // Check relocation sections if they are relocating contents of a
4806 // stack sizes section.
4807 const Elf_Shdr
*ElfSec
= Obj
->getSection(Sec
.getRawDataRefImpl());
4808 uint32_t SectionType
= ElfSec
->sh_type
;
4809 if (SectionType
!= ELF::SHT_RELA
&& SectionType
!= ELF::SHT_REL
)
4812 SectionRef Contents
= *Sec
.getRelocatedSection();
4813 const Elf_Shdr
*ContentsSec
= Obj
->getSection(Contents
.getRawDataRefImpl());
4814 Expected
<StringRef
> ContentsSectionNameOrErr
=
4815 EF
->getSectionName(ContentsSec
);
4816 if (!ContentsSectionNameOrErr
) {
4817 consumeError(ContentsSectionNameOrErr
.takeError());
4820 if (!ContentsSectionNameOrErr
->startswith(".stack_sizes"))
4822 // Insert a mapping from the stack sizes section to its relocation section.
4823 StackSizeRelocMap
[toSectionRef
<ELFT
>(Obj
, ContentsSec
)] = Sec
;
4826 for (const auto &StackSizeMapEntry
: StackSizeRelocMap
) {
4828 const SectionRef
&StackSizesSec
= StackSizeMapEntry
.first
;
4829 const SectionRef
&RelocSec
= StackSizeMapEntry
.second
;
4831 // Warn about stack size sections without a relocation section.
4832 StringRef StackSizeSectionName
;
4833 if (Expected
<StringRef
> NameOrErr
= StackSizesSec
.getName())
4834 StackSizeSectionName
= *NameOrErr
;
4836 consumeError(NameOrErr
.takeError());
4838 if (RelocSec
== NullSection
) {
4839 reportWarning(createError("section " + StackSizeSectionName
+
4840 " does not have a corresponding "
4841 "relocation section"),
4842 Obj
->getFileName());
4846 // A .stack_sizes section header's sh_link field is supposed to point
4847 // to the section that contains the functions whose stack sizes are
4849 const Elf_Shdr
*StackSizesELFSec
=
4850 Obj
->getSection(StackSizesSec
.getRawDataRefImpl());
4851 const SectionRef FunctionSec
= toSectionRef
<ELFT
>(
4852 Obj
, unwrapOrError(this->FileName
,
4853 EF
->getSection(StackSizesELFSec
->sh_link
)));
4855 bool (*IsSupportedFn
)(uint64_t);
4856 RelocationResolver Resolver
;
4857 std::tie(IsSupportedFn
, Resolver
) = getRelocationResolver(*Obj
);
4858 auto Contents
= unwrapOrError(this->FileName
, StackSizesSec
.getContents());
4860 StringRef(reinterpret_cast<const char *>(Contents
.data()),
4862 Obj
->isLittleEndian(), sizeof(Elf_Addr
));
4863 for (const RelocationRef
&Reloc
: RelocSec
.relocations()) {
4864 if (!IsSupportedFn(Reloc
.getType())) {
4865 StringRef RelocSectionName
;
4866 Expected
<StringRef
> NameOrErr
= RelocSec
.getName();
4868 RelocSectionName
= *NameOrErr
;
4870 consumeError(NameOrErr
.takeError());
4872 StringRef RelocName
= EF
->getRelocationTypeName(Reloc
.getType());
4874 createStringError(object_error::parse_failed
,
4875 "unsupported relocation type in section %s: %s",
4876 RelocSectionName
.data(), RelocName
.data()),
4877 Obj
->getFileName());
4879 this->printStackSize(Obj
, Reloc
, FunctionSec
, StackSizeSectionName
,
4885 template <class ELFT
>
4886 void GNUStyle
<ELFT
>::printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) {
4887 bool HeaderHasBeenPrinted
= false;
4888 auto PrintHeader
= [&]() {
4889 if (HeaderHasBeenPrinted
)
4891 OS
<< "\nStack Sizes:\n";
4896 HeaderHasBeenPrinted
= true;
4899 // For non-relocatable objects, look directly for sections whose name starts
4900 // with .stack_sizes and process the contents.
4901 if (Obj
->isRelocatableObject())
4902 this->printRelocatableStackSizes(Obj
, PrintHeader
);
4904 this->printNonRelocatableStackSizes(Obj
, PrintHeader
);
4907 template <class ELFT
>
4908 void GNUStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
4909 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
4910 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
4912 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
4913 OS
.PadToColumn(11 + Bias
);
4914 OS
<< format_decimal(Parser
.getGotOffset(E
), 6) << "(gp)";
4915 OS
.PadToColumn(22 + Bias
);
4916 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
4917 OS
.PadToColumn(31 + 2 * Bias
);
4918 OS
<< Purpose
<< "\n";
4921 OS
<< (Parser
.IsStatic
? "Static GOT:\n" : "Primary GOT:\n");
4922 OS
<< " Canonical gp value: "
4923 << format_hex_no_prefix(Parser
.getGp(), 8 + Bias
) << "\n\n";
4925 OS
<< " Reserved entries:\n";
4927 OS
<< " Address Access Initial Purpose\n";
4929 OS
<< " Address Access Initial Purpose\n";
4930 PrintEntry(Parser
.getGotLazyResolver(), "Lazy resolver");
4931 if (Parser
.getGotModulePointer())
4932 PrintEntry(Parser
.getGotModulePointer(), "Module pointer (GNU extension)");
4934 if (!Parser
.getLocalEntries().empty()) {
4936 OS
<< " Local entries:\n";
4938 OS
<< " Address Access Initial\n";
4940 OS
<< " Address Access Initial\n";
4941 for (auto &E
: Parser
.getLocalEntries())
4945 if (Parser
.IsStatic
)
4948 if (!Parser
.getGlobalEntries().empty()) {
4950 OS
<< " Global entries:\n";
4952 OS
<< " Address Access Initial Sym.Val."
4953 << " Type Ndx Name\n";
4955 OS
<< " Address Access Initial Sym.Val. Type Ndx Name\n";
4956 for (auto &E
: Parser
.getGlobalEntries()) {
4957 const Elf_Sym
*Sym
= Parser
.getGotSym(&E
);
4958 std::string SymName
= this->dumper()->getFullSymbolName(
4959 Sym
, this->dumper()->getDynamicStringTable(), false);
4962 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
4963 OS
.PadToColumn(11 + Bias
);
4964 OS
<< to_string(format_decimal(Parser
.getGotOffset(&E
), 6)) + "(gp)";
4965 OS
.PadToColumn(22 + Bias
);
4966 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
4967 OS
.PadToColumn(31 + 2 * Bias
);
4968 OS
<< to_string(format_hex_no_prefix(Sym
->st_value
, 8 + Bias
));
4969 OS
.PadToColumn(40 + 3 * Bias
);
4970 OS
<< printEnum(Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
4971 OS
.PadToColumn(48 + 3 * Bias
);
4972 OS
<< getSymbolSectionNdx(Parser
.Obj
, Sym
,
4973 this->dumper()->dynamic_symbols().begin());
4974 OS
.PadToColumn(52 + 3 * Bias
);
4975 OS
<< SymName
<< "\n";
4979 if (!Parser
.getOtherEntries().empty())
4980 OS
<< "\n Number of TLS and multi-GOT entries "
4981 << Parser
.getOtherEntries().size() << "\n";
4984 template <class ELFT
>
4985 void GNUStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
4986 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
4987 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
4989 OS
<< format_hex_no_prefix(Parser
.getPltAddress(E
), 8 + Bias
);
4990 OS
.PadToColumn(11 + Bias
);
4991 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
4992 OS
.PadToColumn(20 + 2 * Bias
);
4993 OS
<< Purpose
<< "\n";
4996 OS
<< "PLT GOT:\n\n";
4998 OS
<< " Reserved entries:\n";
4999 OS
<< " Address Initial Purpose\n";
5000 PrintEntry(Parser
.getPltLazyResolver(), "PLT lazy resolver");
5001 if (Parser
.getPltModulePointer())
5002 PrintEntry(Parser
.getPltModulePointer(), "Module pointer");
5004 if (!Parser
.getPltEntries().empty()) {
5006 OS
<< " Entries:\n";
5007 OS
<< " Address Initial Sym.Val. Type Ndx Name\n";
5008 for (auto &E
: Parser
.getPltEntries()) {
5009 const Elf_Sym
*Sym
= Parser
.getPltSym(&E
);
5010 std::string SymName
= this->dumper()->getFullSymbolName(
5011 Sym
, this->dumper()->getDynamicStringTable(), false);
5014 OS
<< to_string(format_hex_no_prefix(Parser
.getPltAddress(&E
), 8 + Bias
));
5015 OS
.PadToColumn(11 + Bias
);
5016 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
5017 OS
.PadToColumn(20 + 2 * Bias
);
5018 OS
<< to_string(format_hex_no_prefix(Sym
->st_value
, 8 + Bias
));
5019 OS
.PadToColumn(29 + 3 * Bias
);
5020 OS
<< printEnum(Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
5021 OS
.PadToColumn(37 + 3 * Bias
);
5022 OS
<< getSymbolSectionNdx(Parser
.Obj
, Sym
,
5023 this->dumper()->dynamic_symbols().begin());
5024 OS
.PadToColumn(41 + 3 * Bias
);
5025 OS
<< SymName
<< "\n";
5030 template <class ELFT
> void LLVMStyle
<ELFT
>::printFileHeaders(const ELFO
*Obj
) {
5031 const Elf_Ehdr
*E
= Obj
->getHeader();
5033 DictScope
D(W
, "ElfHeader");
5035 DictScope
D(W
, "Ident");
5036 W
.printBinary("Magic", makeArrayRef(E
->e_ident
).slice(ELF::EI_MAG0
, 4));
5037 W
.printEnum("Class", E
->e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
5038 W
.printEnum("DataEncoding", E
->e_ident
[ELF::EI_DATA
],
5039 makeArrayRef(ElfDataEncoding
));
5040 W
.printNumber("FileVersion", E
->e_ident
[ELF::EI_VERSION
]);
5042 auto OSABI
= makeArrayRef(ElfOSABI
);
5043 if (E
->e_ident
[ELF::EI_OSABI
] >= ELF::ELFOSABI_FIRST_ARCH
&&
5044 E
->e_ident
[ELF::EI_OSABI
] <= ELF::ELFOSABI_LAST_ARCH
) {
5045 switch (E
->e_machine
) {
5046 case ELF::EM_AMDGPU
:
5047 OSABI
= makeArrayRef(AMDGPUElfOSABI
);
5050 OSABI
= makeArrayRef(ARMElfOSABI
);
5052 case ELF::EM_TI_C6000
:
5053 OSABI
= makeArrayRef(C6000ElfOSABI
);
5057 W
.printEnum("OS/ABI", E
->e_ident
[ELF::EI_OSABI
], OSABI
);
5058 W
.printNumber("ABIVersion", E
->e_ident
[ELF::EI_ABIVERSION
]);
5059 W
.printBinary("Unused", makeArrayRef(E
->e_ident
).slice(ELF::EI_PAD
));
5062 W
.printEnum("Type", E
->e_type
, makeArrayRef(ElfObjectFileType
));
5063 W
.printEnum("Machine", E
->e_machine
, makeArrayRef(ElfMachineType
));
5064 W
.printNumber("Version", E
->e_version
);
5065 W
.printHex("Entry", E
->e_entry
);
5066 W
.printHex("ProgramHeaderOffset", E
->e_phoff
);
5067 W
.printHex("SectionHeaderOffset", E
->e_shoff
);
5068 if (E
->e_machine
== EM_MIPS
)
5069 W
.printFlags("Flags", E
->e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
5070 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
5071 unsigned(ELF::EF_MIPS_MACH
));
5072 else if (E
->e_machine
== EM_AMDGPU
)
5073 W
.printFlags("Flags", E
->e_flags
, makeArrayRef(ElfHeaderAMDGPUFlags
),
5074 unsigned(ELF::EF_AMDGPU_MACH
));
5075 else if (E
->e_machine
== EM_RISCV
)
5076 W
.printFlags("Flags", E
->e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
5078 W
.printFlags("Flags", E
->e_flags
);
5079 W
.printNumber("HeaderSize", E
->e_ehsize
);
5080 W
.printNumber("ProgramHeaderEntrySize", E
->e_phentsize
);
5081 W
.printNumber("ProgramHeaderCount", E
->e_phnum
);
5082 W
.printNumber("SectionHeaderEntrySize", E
->e_shentsize
);
5083 W
.printString("SectionHeaderCount",
5084 getSectionHeadersNumString(Obj
, this->FileName
));
5085 W
.printString("StringTableSectionIndex",
5086 getSectionHeaderTableIndexString(Obj
, this->FileName
));
5090 template <class ELFT
>
5091 void LLVMStyle
<ELFT
>::printGroupSections(const ELFO
*Obj
) {
5092 DictScope
Lists(W
, "Groups");
5093 std::vector
<GroupSection
> V
= getGroups
<ELFT
>(Obj
, this->FileName
);
5094 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
5095 for (const GroupSection
&G
: V
) {
5096 DictScope
D(W
, "Group");
5097 W
.printNumber("Name", G
.Name
, G
.ShName
);
5098 W
.printNumber("Index", G
.Index
);
5099 W
.printNumber("Link", G
.Link
);
5100 W
.printNumber("Info", G
.Info
);
5101 W
.printHex("Type", getGroupType(G
.Type
), G
.Type
);
5102 W
.startLine() << "Signature: " << G
.Signature
<< "\n";
5104 ListScope
L(W
, "Section(s) in group");
5105 for (const GroupMember
&GM
: G
.Members
) {
5106 const GroupSection
*MainGroup
= Map
[GM
.Index
];
5107 if (MainGroup
!= &G
) {
5109 errs() << "Error: " << GM
.Name
<< " (" << GM
.Index
5110 << ") in a group " + G
.Name
+ " (" << G
.Index
5111 << ") is already in a group " + MainGroup
->Name
+ " ("
5112 << MainGroup
->Index
<< ")\n";
5116 W
.startLine() << GM
.Name
<< " (" << GM
.Index
<< ")\n";
5121 W
.startLine() << "There are no group sections in the file.\n";
5124 template <class ELFT
> void LLVMStyle
<ELFT
>::printRelocations(const ELFO
*Obj
) {
5125 ListScope
D(W
, "Relocations");
5127 int SectionNumber
= -1;
5128 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
5131 if (Sec
.sh_type
!= ELF::SHT_REL
&& Sec
.sh_type
!= ELF::SHT_RELA
&&
5132 Sec
.sh_type
!= ELF::SHT_RELR
&& Sec
.sh_type
!= ELF::SHT_ANDROID_REL
&&
5133 Sec
.sh_type
!= ELF::SHT_ANDROID_RELA
&&
5134 Sec
.sh_type
!= ELF::SHT_ANDROID_RELR
)
5137 StringRef Name
= unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
));
5139 W
.startLine() << "Section (" << SectionNumber
<< ") " << Name
<< " {\n";
5142 printRelocations(&Sec
, Obj
);
5145 W
.startLine() << "}\n";
5149 template <class ELFT
>
5150 void LLVMStyle
<ELFT
>::printRelocations(const Elf_Shdr
*Sec
, const ELFO
*Obj
) {
5151 const Elf_Shdr
*SymTab
=
5152 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
5154 switch (Sec
->sh_type
) {
5156 for (const Elf_Rel
&R
: unwrapOrError(this->FileName
, Obj
->rels(Sec
))) {
5158 Rela
.r_offset
= R
.r_offset
;
5159 Rela
.r_info
= R
.r_info
;
5161 printRelocation(Obj
, Rela
, SymTab
);
5165 for (const Elf_Rela
&R
: unwrapOrError(this->FileName
, Obj
->relas(Sec
)))
5166 printRelocation(Obj
, R
, SymTab
);
5169 case ELF::SHT_ANDROID_RELR
: {
5170 Elf_Relr_Range Relrs
= unwrapOrError(this->FileName
, Obj
->relrs(Sec
));
5171 if (opts::RawRelr
) {
5172 for (const Elf_Relr
&R
: Relrs
)
5173 W
.startLine() << W
.hex(R
) << "\n";
5175 std::vector
<Elf_Rela
> RelrRelas
=
5176 unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
5177 for (const Elf_Rela
&R
: RelrRelas
)
5178 printRelocation(Obj
, R
, SymTab
);
5182 case ELF::SHT_ANDROID_REL
:
5183 case ELF::SHT_ANDROID_RELA
:
5184 for (const Elf_Rela
&R
:
5185 unwrapOrError(this->FileName
, Obj
->android_relas(Sec
)))
5186 printRelocation(Obj
, R
, SymTab
);
5191 template <class ELFT
>
5192 void LLVMStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, Elf_Rela Rel
,
5193 const Elf_Shdr
*SymTab
) {
5194 SmallString
<32> RelocName
;
5195 Obj
->getRelocationTypeName(Rel
.getType(Obj
->isMips64EL()), RelocName
);
5196 std::string TargetName
;
5197 const Elf_Sym
*Sym
=
5198 unwrapOrError(this->FileName
, Obj
->getRelocationSymbol(&Rel
, SymTab
));
5199 if (Sym
&& Sym
->getType() == ELF::STT_SECTION
) {
5200 const Elf_Shdr
*Sec
= unwrapOrError(
5202 Obj
->getSection(Sym
, SymTab
, this->dumper()->getShndxTable()));
5203 TargetName
= unwrapOrError(this->FileName
, Obj
->getSectionName(Sec
));
5205 StringRef StrTable
=
5206 unwrapOrError(this->FileName
, Obj
->getStringTableForSymtab(*SymTab
));
5207 TargetName
= this->dumper()->getFullSymbolName(
5208 Sym
, StrTable
, SymTab
->sh_type
== SHT_DYNSYM
/* IsDynamic */);
5211 if (opts::ExpandRelocs
) {
5212 DictScope
Group(W
, "Relocation");
5213 W
.printHex("Offset", Rel
.r_offset
);
5214 W
.printNumber("Type", RelocName
, (int)Rel
.getType(Obj
->isMips64EL()));
5215 W
.printNumber("Symbol", !TargetName
.empty() ? TargetName
: "-",
5216 Rel
.getSymbol(Obj
->isMips64EL()));
5217 W
.printHex("Addend", Rel
.r_addend
);
5219 raw_ostream
&OS
= W
.startLine();
5220 OS
<< W
.hex(Rel
.r_offset
) << " " << RelocName
<< " "
5221 << (!TargetName
.empty() ? TargetName
: "-") << " " << W
.hex(Rel
.r_addend
)
5226 template <class ELFT
>
5227 void LLVMStyle
<ELFT
>::printSectionHeaders(const ELFO
*Obj
) {
5228 ListScope
SectionsD(W
, "Sections");
5230 int SectionIndex
= -1;
5231 ArrayRef
<Elf_Shdr
> Sections
= unwrapOrError(this->FileName
, Obj
->sections());
5232 const ELFObjectFile
<ELFT
> *ElfObj
= this->dumper()->getElfObject();
5233 for (const Elf_Shdr
&Sec
: Sections
) {
5234 StringRef Name
= unwrapOrError(
5235 ElfObj
->getFileName(), Obj
->getSectionName(&Sec
, this->WarningHandler
));
5236 DictScope
SectionD(W
, "Section");
5237 W
.printNumber("Index", ++SectionIndex
);
5238 W
.printNumber("Name", Name
, Sec
.sh_name
);
5241 object::getELFSectionTypeName(Obj
->getHeader()->e_machine
, Sec
.sh_type
),
5243 std::vector
<EnumEntry
<unsigned>> SectionFlags(std::begin(ElfSectionFlags
),
5244 std::end(ElfSectionFlags
));
5245 switch (Obj
->getHeader()->e_machine
) {
5247 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfARMSectionFlags
),
5248 std::end(ElfARMSectionFlags
));
5251 SectionFlags
.insert(SectionFlags
.end(),
5252 std::begin(ElfHexagonSectionFlags
),
5253 std::end(ElfHexagonSectionFlags
));
5256 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfMipsSectionFlags
),
5257 std::end(ElfMipsSectionFlags
));
5260 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfX86_64SectionFlags
),
5261 std::end(ElfX86_64SectionFlags
));
5264 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfXCoreSectionFlags
),
5265 std::end(ElfXCoreSectionFlags
));
5271 W
.printFlags("Flags", Sec
.sh_flags
, makeArrayRef(SectionFlags
));
5272 W
.printHex("Address", Sec
.sh_addr
);
5273 W
.printHex("Offset", Sec
.sh_offset
);
5274 W
.printNumber("Size", Sec
.sh_size
);
5275 W
.printNumber("Link", Sec
.sh_link
);
5276 W
.printNumber("Info", Sec
.sh_info
);
5277 W
.printNumber("AddressAlignment", Sec
.sh_addralign
);
5278 W
.printNumber("EntrySize", Sec
.sh_entsize
);
5280 if (opts::SectionRelocations
) {
5281 ListScope
D(W
, "Relocations");
5282 printRelocations(&Sec
, Obj
);
5285 if (opts::SectionSymbols
) {
5286 ListScope
D(W
, "Symbols");
5287 const Elf_Shdr
*Symtab
= this->dumper()->getDotSymtabSec();
5288 StringRef StrTable
=
5289 unwrapOrError(this->FileName
, Obj
->getStringTableForSymtab(*Symtab
));
5291 for (const Elf_Sym
&Sym
:
5292 unwrapOrError(this->FileName
, Obj
->symbols(Symtab
))) {
5293 const Elf_Shdr
*SymSec
= unwrapOrError(
5295 Obj
->getSection(&Sym
, Symtab
, this->dumper()->getShndxTable()));
5299 unwrapOrError(this->FileName
, Obj
->symbols(Symtab
)).begin(),
5304 if (opts::SectionData
&& Sec
.sh_type
!= ELF::SHT_NOBITS
) {
5305 ArrayRef
<uint8_t> Data
=
5306 unwrapOrError(this->FileName
, Obj
->getSectionContents(&Sec
));
5309 StringRef(reinterpret_cast<const char *>(Data
.data()), Data
.size()));
5314 template <class ELFT
>
5315 void LLVMStyle
<ELFT
>::printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
5316 const Elf_Sym
*First
, StringRef StrTable
,
5318 unsigned SectionIndex
= 0;
5319 StringRef SectionName
;
5320 this->dumper()->getSectionNameIndex(Symbol
, First
, SectionName
, SectionIndex
);
5321 std::string FullSymbolName
=
5322 this->dumper()->getFullSymbolName(Symbol
, StrTable
, IsDynamic
);
5323 unsigned char SymbolType
= Symbol
->getType();
5325 DictScope
D(W
, "Symbol");
5326 W
.printNumber("Name", FullSymbolName
, Symbol
->st_name
);
5327 W
.printHex("Value", Symbol
->st_value
);
5328 W
.printNumber("Size", Symbol
->st_size
);
5329 W
.printEnum("Binding", Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
5330 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
5331 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
5332 W
.printEnum("Type", SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
5334 W
.printEnum("Type", SymbolType
, makeArrayRef(ElfSymbolTypes
));
5335 if (Symbol
->st_other
== 0)
5336 // Usually st_other flag is zero. Do not pollute the output
5337 // by flags enumeration in that case.
5338 W
.printNumber("Other", 0);
5340 std::vector
<EnumEntry
<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags
),
5341 std::end(ElfSymOtherFlags
));
5342 if (Obj
->getHeader()->e_machine
== EM_MIPS
) {
5343 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
5344 // flag overlapped with other ST_MIPS_xxx flags. So consider both
5345 // cases separately.
5346 if ((Symbol
->st_other
& STO_MIPS_MIPS16
) == STO_MIPS_MIPS16
)
5347 SymOtherFlags
.insert(SymOtherFlags
.end(),
5348 std::begin(ElfMips16SymOtherFlags
),
5349 std::end(ElfMips16SymOtherFlags
));
5351 SymOtherFlags
.insert(SymOtherFlags
.end(),
5352 std::begin(ElfMipsSymOtherFlags
),
5353 std::end(ElfMipsSymOtherFlags
));
5355 W
.printFlags("Other", Symbol
->st_other
, makeArrayRef(SymOtherFlags
), 0x3u
);
5357 W
.printHex("Section", SectionName
, SectionIndex
);
5360 template <class ELFT
>
5361 void LLVMStyle
<ELFT
>::printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
5362 bool PrintDynamicSymbols
) {
5365 if (PrintDynamicSymbols
)
5366 printDynamicSymbols(Obj
);
5369 template <class ELFT
> void LLVMStyle
<ELFT
>::printSymbols(const ELFO
*Obj
) {
5370 ListScope
Group(W
, "Symbols");
5371 this->dumper()->printSymbolsHelper(false);
5374 template <class ELFT
>
5375 void LLVMStyle
<ELFT
>::printDynamicSymbols(const ELFO
*Obj
) {
5376 ListScope
Group(W
, "DynamicSymbols");
5377 this->dumper()->printSymbolsHelper(true);
5380 template <class ELFT
> void LLVMStyle
<ELFT
>::printDynamic(const ELFFile
<ELFT
> *Obj
) {
5381 Elf_Dyn_Range Table
= this->dumper()->dynamic_table();
5385 raw_ostream
&OS
= W
.getOStream();
5386 W
.startLine() << "DynamicSection [ (" << Table
.size() << " entries)\n";
5388 bool Is64
= ELFT::Is64Bits
;
5390 W
.startLine() << " Tag Type Name/Value\n";
5392 W
.startLine() << " Tag Type Name/Value\n";
5393 for (auto Entry
: Table
) {
5394 uintX_t Tag
= Entry
.getTag();
5395 W
.startLine() << " " << format_hex(Tag
, Is64
? 18 : 10, true) << " "
5397 getTypeString(Obj
->getHeader()->e_machine
, Tag
));
5398 this->dumper()->printDynamicEntry(OS
, Tag
, Entry
.getVal());
5402 W
.startLine() << "]\n";
5405 template <class ELFT
>
5406 void LLVMStyle
<ELFT
>::printDynamicRelocations(const ELFO
*Obj
) {
5407 const DynRegionInfo
&DynRelRegion
= this->dumper()->getDynRelRegion();
5408 const DynRegionInfo
&DynRelaRegion
= this->dumper()->getDynRelaRegion();
5409 const DynRegionInfo
&DynRelrRegion
= this->dumper()->getDynRelrRegion();
5410 const DynRegionInfo
&DynPLTRelRegion
= this->dumper()->getDynPLTRelRegion();
5411 if (DynRelRegion
.Size
&& DynRelaRegion
.Size
)
5412 report_fatal_error("There are both REL and RELA dynamic relocations");
5413 W
.startLine() << "Dynamic Relocations {\n";
5415 if (DynRelaRegion
.Size
> 0)
5416 for (const Elf_Rela
&Rela
: this->dumper()->dyn_relas())
5417 printDynamicRelocation(Obj
, Rela
);
5419 for (const Elf_Rel
&Rel
: this->dumper()->dyn_rels()) {
5421 Rela
.r_offset
= Rel
.r_offset
;
5422 Rela
.r_info
= Rel
.r_info
;
5424 printDynamicRelocation(Obj
, Rela
);
5426 if (DynRelrRegion
.Size
> 0) {
5427 Elf_Relr_Range Relrs
= this->dumper()->dyn_relrs();
5428 std::vector
<Elf_Rela
> RelrRelas
=
5429 unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
5430 for (const Elf_Rela
&Rela
: RelrRelas
)
5431 printDynamicRelocation(Obj
, Rela
);
5433 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
))
5434 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
5435 printDynamicRelocation(Obj
, Rela
);
5437 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>()) {
5439 Rela
.r_offset
= Rel
.r_offset
;
5440 Rela
.r_info
= Rel
.r_info
;
5442 printDynamicRelocation(Obj
, Rela
);
5445 W
.startLine() << "}\n";
5448 template <class ELFT
>
5449 void LLVMStyle
<ELFT
>::printDynamicRelocation(const ELFO
*Obj
, Elf_Rela Rel
) {
5450 SmallString
<32> RelocName
;
5451 Obj
->getRelocationTypeName(Rel
.getType(Obj
->isMips64EL()), RelocName
);
5452 std::string SymbolName
=
5453 getSymbolForReloc(Obj
, this->FileName
, this->dumper(), Rel
).Name
;
5455 if (opts::ExpandRelocs
) {
5456 DictScope
Group(W
, "Relocation");
5457 W
.printHex("Offset", Rel
.r_offset
);
5458 W
.printNumber("Type", RelocName
, (int)Rel
.getType(Obj
->isMips64EL()));
5459 W
.printString("Symbol", !SymbolName
.empty() ? SymbolName
: "-");
5460 W
.printHex("Addend", Rel
.r_addend
);
5462 raw_ostream
&OS
= W
.startLine();
5463 OS
<< W
.hex(Rel
.r_offset
) << " " << RelocName
<< " "
5464 << (!SymbolName
.empty() ? SymbolName
: "-") << " " << W
.hex(Rel
.r_addend
)
5469 template <class ELFT
>
5470 void LLVMStyle
<ELFT
>::printProgramHeaders(
5471 const ELFO
*Obj
, bool PrintProgramHeaders
,
5472 cl::boolOrDefault PrintSectionMapping
) {
5473 if (PrintProgramHeaders
)
5474 printProgramHeaders(Obj
);
5475 if (PrintSectionMapping
== cl::BOU_TRUE
)
5476 printSectionMapping(Obj
);
5479 template <class ELFT
>
5480 void LLVMStyle
<ELFT
>::printProgramHeaders(const ELFO
*Obj
) {
5481 ListScope
L(W
, "ProgramHeaders");
5483 for (const Elf_Phdr
&Phdr
:
5484 unwrapOrError(this->FileName
, Obj
->program_headers())) {
5485 DictScope
P(W
, "ProgramHeader");
5487 getElfSegmentType(Obj
->getHeader()->e_machine
, Phdr
.p_type
),
5489 W
.printHex("Offset", Phdr
.p_offset
);
5490 W
.printHex("VirtualAddress", Phdr
.p_vaddr
);
5491 W
.printHex("PhysicalAddress", Phdr
.p_paddr
);
5492 W
.printNumber("FileSize", Phdr
.p_filesz
);
5493 W
.printNumber("MemSize", Phdr
.p_memsz
);
5494 W
.printFlags("Flags", Phdr
.p_flags
, makeArrayRef(ElfSegmentFlags
));
5495 W
.printNumber("Alignment", Phdr
.p_align
);
5499 template <class ELFT
>
5500 void LLVMStyle
<ELFT
>::printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
5501 const Elf_Shdr
*Sec
) {
5502 DictScope
SS(W
, "Version symbols");
5506 StringRef SecName
= unwrapOrError(this->FileName
, Obj
->getSectionName(Sec
));
5507 W
.printNumber("Section Name", SecName
, Sec
->sh_name
);
5508 W
.printHex("Address", Sec
->sh_addr
);
5509 W
.printHex("Offset", Sec
->sh_offset
);
5510 W
.printNumber("Link", Sec
->sh_link
);
5512 const uint8_t *VersymBuf
=
5513 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
5514 const ELFDumper
<ELFT
> *Dumper
= this->dumper();
5515 StringRef StrTable
= Dumper
->getDynamicStringTable();
5517 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
5518 ListScope
Syms(W
, "Symbols");
5519 for (const Elf_Sym
&Sym
: Dumper
->dynamic_symbols()) {
5520 DictScope
S(W
, "Symbol");
5521 const Elf_Versym
*Versym
= reinterpret_cast<const Elf_Versym
*>(VersymBuf
);
5522 std::string FullSymbolName
=
5523 Dumper
->getFullSymbolName(&Sym
, StrTable
, true /* IsDynamic */);
5524 W
.printNumber("Version", Versym
->vs_index
& VERSYM_VERSION
);
5525 W
.printString("Name", FullSymbolName
);
5526 VersymBuf
+= sizeof(Elf_Versym
);
5530 template <class ELFT
>
5531 void LLVMStyle
<ELFT
>::printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
5532 const Elf_Shdr
*Sec
) {
5533 DictScope
SD(W
, "SHT_GNU_verdef");
5537 const uint8_t *SecStartAddress
=
5538 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
5539 const uint8_t *SecEndAddress
= SecStartAddress
+ Sec
->sh_size
;
5540 const uint8_t *VerdefBuf
= SecStartAddress
;
5541 const Elf_Shdr
*StrTab
=
5542 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
5544 unsigned VerDefsNum
= Sec
->sh_info
;
5545 while (VerDefsNum
--) {
5546 if (VerdefBuf
+ sizeof(Elf_Verdef
) > SecEndAddress
)
5547 // FIXME: report_fatal_error is not a good way to report error. We should
5548 // emit a parsing error here and below.
5549 report_fatal_error("invalid offset in the section");
5551 const Elf_Verdef
*Verdef
= reinterpret_cast<const Elf_Verdef
*>(VerdefBuf
);
5552 DictScope
Def(W
, "Definition");
5553 W
.printNumber("Version", Verdef
->vd_version
);
5554 W
.printEnum("Flags", Verdef
->vd_flags
, makeArrayRef(SymVersionFlags
));
5555 W
.printNumber("Index", Verdef
->vd_ndx
);
5556 W
.printNumber("Hash", Verdef
->vd_hash
);
5557 W
.printString("Name", StringRef(reinterpret_cast<const char *>(
5558 Obj
->base() + StrTab
->sh_offset
+
5559 Verdef
->getAux()->vda_name
)));
5560 if (!Verdef
->vd_cnt
)
5561 report_fatal_error("at least one definition string must exist");
5562 if (Verdef
->vd_cnt
> 2)
5563 report_fatal_error("more than one predecessor is not expected");
5565 if (Verdef
->vd_cnt
== 2) {
5566 const uint8_t *VerdauxBuf
=
5567 VerdefBuf
+ Verdef
->vd_aux
+ Verdef
->getAux()->vda_next
;
5568 const Elf_Verdaux
*Verdaux
=
5569 reinterpret_cast<const Elf_Verdaux
*>(VerdauxBuf
);
5570 W
.printString("Predecessor",
5571 StringRef(reinterpret_cast<const char *>(
5572 Obj
->base() + StrTab
->sh_offset
+ Verdaux
->vda_name
)));
5574 VerdefBuf
+= Verdef
->vd_next
;
5578 template <class ELFT
>
5579 void LLVMStyle
<ELFT
>::printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
5580 const Elf_Shdr
*Sec
) {
5581 DictScope
SD(W
, "SHT_GNU_verneed");
5585 const uint8_t *SecData
=
5586 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
5587 const Elf_Shdr
*StrTab
=
5588 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
5590 const uint8_t *VerneedBuf
= SecData
;
5591 unsigned VerneedNum
= Sec
->sh_info
;
5592 for (unsigned I
= 0; I
< VerneedNum
; ++I
) {
5593 const Elf_Verneed
*Verneed
=
5594 reinterpret_cast<const Elf_Verneed
*>(VerneedBuf
);
5595 DictScope
Entry(W
, "Dependency");
5596 W
.printNumber("Version", Verneed
->vn_version
);
5597 W
.printNumber("Count", Verneed
->vn_cnt
);
5598 W
.printString("FileName",
5599 StringRef(reinterpret_cast<const char *>(
5600 Obj
->base() + StrTab
->sh_offset
+ Verneed
->vn_file
)));
5602 const uint8_t *VernauxBuf
= VerneedBuf
+ Verneed
->vn_aux
;
5603 ListScope
L(W
, "Entries");
5604 for (unsigned J
= 0; J
< Verneed
->vn_cnt
; ++J
) {
5605 const Elf_Vernaux
*Vernaux
=
5606 reinterpret_cast<const Elf_Vernaux
*>(VernauxBuf
);
5607 DictScope
Entry(W
, "Entry");
5608 W
.printNumber("Hash", Vernaux
->vna_hash
);
5609 W
.printEnum("Flags", Vernaux
->vna_flags
, makeArrayRef(SymVersionFlags
));
5610 W
.printNumber("Index", Vernaux
->vna_other
);
5611 W
.printString("Name",
5612 StringRef(reinterpret_cast<const char *>(
5613 Obj
->base() + StrTab
->sh_offset
+ Vernaux
->vna_name
)));
5614 VernauxBuf
+= Vernaux
->vna_next
;
5616 VerneedBuf
+= Verneed
->vn_next
;
5620 template <class ELFT
>
5621 void LLVMStyle
<ELFT
>::printHashHistogram(const ELFFile
<ELFT
> *Obj
) {
5622 W
.startLine() << "Hash Histogram not implemented!\n";
5625 template <class ELFT
>
5626 void LLVMStyle
<ELFT
>::printCGProfile(const ELFFile
<ELFT
> *Obj
) {
5627 ListScope
L(W
, "CGProfile");
5628 if (!this->dumper()->getDotCGProfileSec())
5630 auto CGProfile
= unwrapOrError(
5631 this->FileName
, Obj
->template getSectionContentsAsArray
<Elf_CGProfile
>(
5632 this->dumper()->getDotCGProfileSec()));
5633 for (const Elf_CGProfile
&CGPE
: CGProfile
) {
5634 DictScope
D(W
, "CGProfileEntry");
5635 W
.printNumber("From", this->dumper()->getStaticSymbolName(CGPE
.cgp_from
),
5637 W
.printNumber("To", this->dumper()->getStaticSymbolName(CGPE
.cgp_to
),
5639 W
.printNumber("Weight", CGPE
.cgp_weight
);
5643 template <class ELFT
>
5644 void LLVMStyle
<ELFT
>::printAddrsig(const ELFFile
<ELFT
> *Obj
) {
5645 ListScope
L(W
, "Addrsig");
5646 if (!this->dumper()->getDotAddrsigSec())
5648 ArrayRef
<uint8_t> Contents
= unwrapOrError(
5650 Obj
->getSectionContents(this->dumper()->getDotAddrsigSec()));
5651 const uint8_t *Cur
= Contents
.begin();
5652 const uint8_t *End
= Contents
.end();
5653 while (Cur
!= End
) {
5656 uint64_t SymIndex
= decodeULEB128(Cur
, &Size
, End
, &Err
);
5658 reportError(createError(Err
), this->FileName
);
5660 W
.printNumber("Sym", this->dumper()->getStaticSymbolName(SymIndex
),
5666 template <typename ELFT
>
5667 static void printGNUNoteLLVMStyle(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
,
5672 case ELF::NT_GNU_ABI_TAG
: {
5673 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
5674 if (!AbiTag
.IsValid
) {
5675 W
.printString("ABI", "<corrupt GNU_ABI_TAG>");
5677 W
.printString("OS", AbiTag
.OSName
);
5678 W
.printString("ABI", AbiTag
.ABI
);
5682 case ELF::NT_GNU_BUILD_ID
: {
5683 W
.printString("Build ID", getGNUBuildId(Desc
));
5686 case ELF::NT_GNU_GOLD_VERSION
:
5687 W
.printString("Version", getGNUGoldVersion(Desc
));
5689 case ELF::NT_GNU_PROPERTY_TYPE_0
:
5690 ListScope
D(W
, "Property");
5691 for (const auto &Property
: getGNUPropertyList
<ELFT
>(Desc
))
5692 W
.printString(Property
);
5697 static void printCoreNoteLLVMStyle(const CoreNote
&Note
, ScopedPrinter
&W
) {
5698 W
.printNumber("Page Size", Note
.PageSize
);
5699 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
5700 ListScope
D(W
, "Mapping");
5701 W
.printHex("Start", Mapping
.Start
);
5702 W
.printHex("End", Mapping
.End
);
5703 W
.printHex("Offset", Mapping
.Offset
);
5704 W
.printString("Filename", Mapping
.Filename
);
5708 template <class ELFT
>
5709 void LLVMStyle
<ELFT
>::printNotes(const ELFFile
<ELFT
> *Obj
) {
5710 ListScope
L(W
, "Notes");
5712 auto PrintHeader
= [&](const typename
ELFT::Off Offset
,
5713 const typename
ELFT::Addr Size
) {
5714 W
.printHex("Offset", Offset
);
5715 W
.printHex("Size", Size
);
5718 auto ProcessNote
= [&](const Elf_Note
&Note
) {
5719 DictScope
D2(W
, "Note");
5720 StringRef Name
= Note
.getName();
5721 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc();
5722 Elf_Word Type
= Note
.getType();
5724 // Print the note owner/type.
5725 W
.printString("Owner", Name
);
5726 W
.printHex("Data size", Descriptor
.size());
5727 if (Name
== "GNU") {
5728 W
.printString("Type", getGNUNoteTypeName(Type
));
5729 } else if (Name
== "FreeBSD") {
5730 W
.printString("Type", getFreeBSDNoteTypeName(Type
));
5731 } else if (Name
== "AMD") {
5732 W
.printString("Type", getAMDNoteTypeName(Type
));
5733 } else if (Name
== "AMDGPU") {
5734 W
.printString("Type", getAMDGPUNoteTypeName(Type
));
5736 StringRef NoteType
= Obj
->getHeader()->e_type
== ELF::ET_CORE
5737 ? getCoreNoteTypeName(Type
)
5738 : getGenericNoteTypeName(Type
);
5739 if (!NoteType
.empty())
5740 W
.printString("Type", NoteType
);
5742 W
.printString("Type",
5743 "Unknown (" + to_string(format_hex(Type
, 10)) + ")");
5746 // Print the description, or fallback to printing raw bytes for unknown
5748 if (Name
== "GNU") {
5749 printGNUNoteLLVMStyle
<ELFT
>(Type
, Descriptor
, W
);
5750 } else if (Name
== "AMD") {
5751 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
5752 if (!N
.Type
.empty())
5753 W
.printString(N
.Type
, N
.Value
);
5754 } else if (Name
== "AMDGPU") {
5755 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
5756 if (!N
.Type
.empty())
5757 W
.printString(N
.Type
, N
.Value
);
5758 } else if (Name
== "CORE") {
5759 if (Type
== ELF::NT_FILE
) {
5760 DataExtractor
DescExtractor(
5761 StringRef(reinterpret_cast<const char *>(Descriptor
.data()),
5763 ELFT::TargetEndianness
== support::little
, sizeof(Elf_Addr
));
5764 Expected
<CoreNote
> Note
= readCoreNote(DescExtractor
);
5766 printCoreNoteLLVMStyle(*Note
, W
);
5768 reportWarning(Note
.takeError(), this->FileName
);
5770 } else if (!Descriptor
.empty()) {
5771 W
.printBinaryBlock("Description data", Descriptor
);
5775 ArrayRef
<Elf_Shdr
> Sections
= unwrapOrError(this->FileName
, Obj
->sections());
5776 if (Obj
->getHeader()->e_type
!= ELF::ET_CORE
&& !Sections
.empty()) {
5777 for (const auto &S
: Sections
) {
5778 if (S
.sh_type
!= SHT_NOTE
)
5780 DictScope
D(W
, "NoteSection");
5781 PrintHeader(S
.sh_offset
, S
.sh_size
);
5782 Error Err
= Error::success();
5783 for (const auto &Note
: Obj
->notes(S
, Err
))
5786 reportError(std::move(Err
), this->FileName
);
5789 for (const auto &P
:
5790 unwrapOrError(this->FileName
, Obj
->program_headers())) {
5791 if (P
.p_type
!= PT_NOTE
)
5793 DictScope
D(W
, "NoteSection");
5794 PrintHeader(P
.p_offset
, P
.p_filesz
);
5795 Error Err
= Error::success();
5796 for (const auto &Note
: Obj
->notes(P
, Err
))
5799 reportError(std::move(Err
), this->FileName
);
5804 template <class ELFT
>
5805 void LLVMStyle
<ELFT
>::printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) {
5806 ListScope
L(W
, "LinkerOptions");
5808 for (const Elf_Shdr
&Shdr
: unwrapOrError(this->FileName
, Obj
->sections())) {
5809 if (Shdr
.sh_type
!= ELF::SHT_LLVM_LINKER_OPTIONS
)
5812 ArrayRef
<uint8_t> Contents
=
5813 unwrapOrError(this->FileName
, Obj
->getSectionContents(&Shdr
));
5814 for (const uint8_t *P
= Contents
.begin(), *E
= Contents
.end(); P
< E
; ) {
5815 StringRef Key
= StringRef(reinterpret_cast<const char *>(P
));
5817 StringRef(reinterpret_cast<const char *>(P
) + Key
.size() + 1);
5819 W
.printString(Key
, Value
);
5821 P
= P
+ Key
.size() + Value
.size() + 2;
5826 template <class ELFT
>
5827 void LLVMStyle
<ELFT
>::printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) {
5829 "Dumping of stack sizes in LLVM style is not implemented yet\n");
5832 template <class ELFT
>
5833 void LLVMStyle
<ELFT
>::printStackSizeEntry(uint64_t Size
, StringRef FuncName
) {
5834 // FIXME: Implement this function for LLVM-style dumping.
5837 template <class ELFT
>
5838 void LLVMStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
5839 auto PrintEntry
= [&](const Elf_Addr
*E
) {
5840 W
.printHex("Address", Parser
.getGotAddress(E
));
5841 W
.printNumber("Access", Parser
.getGotOffset(E
));
5842 W
.printHex("Initial", *E
);
5845 DictScope
GS(W
, Parser
.IsStatic
? "Static GOT" : "Primary GOT");
5847 W
.printHex("Canonical gp value", Parser
.getGp());
5849 ListScope
RS(W
, "Reserved entries");
5851 DictScope
D(W
, "Entry");
5852 PrintEntry(Parser
.getGotLazyResolver());
5853 W
.printString("Purpose", StringRef("Lazy resolver"));
5856 if (Parser
.getGotModulePointer()) {
5857 DictScope
D(W
, "Entry");
5858 PrintEntry(Parser
.getGotModulePointer());
5859 W
.printString("Purpose", StringRef("Module pointer (GNU extension)"));
5863 ListScope
LS(W
, "Local entries");
5864 for (auto &E
: Parser
.getLocalEntries()) {
5865 DictScope
D(W
, "Entry");
5870 if (Parser
.IsStatic
)
5874 ListScope
GS(W
, "Global entries");
5875 for (auto &E
: Parser
.getGlobalEntries()) {
5876 DictScope
D(W
, "Entry");
5880 const Elf_Sym
*Sym
= Parser
.getGotSym(&E
);
5881 W
.printHex("Value", Sym
->st_value
);
5882 W
.printEnum("Type", Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
5884 unsigned SectionIndex
= 0;
5885 StringRef SectionName
;
5886 this->dumper()->getSectionNameIndex(
5887 Sym
, this->dumper()->dynamic_symbols().begin(), SectionName
,
5889 W
.printHex("Section", SectionName
, SectionIndex
);
5891 std::string SymName
= this->dumper()->getFullSymbolName(
5892 Sym
, this->dumper()->getDynamicStringTable(), true);
5893 W
.printNumber("Name", SymName
, Sym
->st_name
);
5897 W
.printNumber("Number of TLS and multi-GOT entries",
5898 uint64_t(Parser
.getOtherEntries().size()));
5901 template <class ELFT
>
5902 void LLVMStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
5903 auto PrintEntry
= [&](const Elf_Addr
*E
) {
5904 W
.printHex("Address", Parser
.getPltAddress(E
));
5905 W
.printHex("Initial", *E
);
5908 DictScope
GS(W
, "PLT GOT");
5911 ListScope
RS(W
, "Reserved entries");
5913 DictScope
D(W
, "Entry");
5914 PrintEntry(Parser
.getPltLazyResolver());
5915 W
.printString("Purpose", StringRef("PLT lazy resolver"));
5918 if (auto E
= Parser
.getPltModulePointer()) {
5919 DictScope
D(W
, "Entry");
5921 W
.printString("Purpose", StringRef("Module pointer"));
5925 ListScope
LS(W
, "Entries");
5926 for (auto &E
: Parser
.getPltEntries()) {
5927 DictScope
D(W
, "Entry");
5930 const Elf_Sym
*Sym
= Parser
.getPltSym(&E
);
5931 W
.printHex("Value", Sym
->st_value
);
5932 W
.printEnum("Type", Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
5934 unsigned SectionIndex
= 0;
5935 StringRef SectionName
;
5936 this->dumper()->getSectionNameIndex(
5937 Sym
, this->dumper()->dynamic_symbols().begin(), SectionName
,
5939 W
.printHex("Section", SectionName
, SectionIndex
);
5941 std::string SymName
=
5942 this->dumper()->getFullSymbolName(Sym
, Parser
.getPltStrTable(), true);
5943 W
.printNumber("Name", SymName
, Sym
->st_name
);