[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / include / llvm / Support / Allocator.h
blob106b90c35bf5aca23d5ddd0303a7d63d5fee400d
1 //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
11 /// of these conform to an LLVM "Allocator" concept which consists of an
12 /// Allocate method accepting a size and alignment, and a Deallocate accepting
13 /// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
14 /// Allocate and Deallocate for setting size and alignment based on the final
15 /// type. These overloads are typically provided by a base class template \c
16 /// AllocatorBase.
17 ///
18 //===----------------------------------------------------------------------===//
20 #ifndef LLVM_SUPPORT_ALLOCATOR_H
21 #define LLVM_SUPPORT_ALLOCATOR_H
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/Alignment.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/MemAlloc.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <cstdlib>
35 #include <iterator>
36 #include <type_traits>
37 #include <utility>
39 namespace llvm {
41 /// CRTP base class providing obvious overloads for the core \c
42 /// Allocate() methods of LLVM-style allocators.
43 ///
44 /// This base class both documents the full public interface exposed by all
45 /// LLVM-style allocators, and redirects all of the overloads to a single core
46 /// set of methods which the derived class must define.
47 template <typename DerivedT> class AllocatorBase {
48 public:
49 /// Allocate \a Size bytes of \a Alignment aligned memory. This method
50 /// must be implemented by \c DerivedT.
51 void *Allocate(size_t Size, size_t Alignment) {
52 #ifdef __clang__
53 static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
54 &AllocatorBase::Allocate) !=
55 static_cast<void *(DerivedT::*)(size_t, size_t)>(
56 &DerivedT::Allocate),
57 "Class derives from AllocatorBase without implementing the "
58 "core Allocate(size_t, size_t) overload!");
59 #endif
60 return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
63 /// Deallocate \a Ptr to \a Size bytes of memory allocated by this
64 /// allocator.
65 void Deallocate(const void *Ptr, size_t Size) {
66 #ifdef __clang__
67 static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
68 &AllocatorBase::Deallocate) !=
69 static_cast<void (DerivedT::*)(const void *, size_t)>(
70 &DerivedT::Deallocate),
71 "Class derives from AllocatorBase without implementing the "
72 "core Deallocate(void *) overload!");
73 #endif
74 return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
77 // The rest of these methods are helpers that redirect to one of the above
78 // core methods.
80 /// Allocate space for a sequence of objects without constructing them.
81 template <typename T> T *Allocate(size_t Num = 1) {
82 return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
85 /// Deallocate space for a sequence of objects without constructing them.
86 template <typename T>
87 typename std::enable_if<
88 !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
89 Deallocate(T *Ptr, size_t Num = 1) {
90 Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
94 class MallocAllocator : public AllocatorBase<MallocAllocator> {
95 public:
96 void Reset() {}
98 LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size,
99 size_t /*Alignment*/) {
100 return safe_malloc(Size);
103 // Pull in base class overloads.
104 using AllocatorBase<MallocAllocator>::Allocate;
106 void Deallocate(const void *Ptr, size_t /*Size*/) {
107 free(const_cast<void *>(Ptr));
110 // Pull in base class overloads.
111 using AllocatorBase<MallocAllocator>::Deallocate;
113 void PrintStats() const {}
116 namespace detail {
118 // We call out to an external function to actually print the message as the
119 // printing code uses Allocator.h in its implementation.
120 void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
121 size_t TotalMemory);
123 } // end namespace detail
125 /// Allocate memory in an ever growing pool, as if by bump-pointer.
127 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
128 /// memory rather than relying on a boundless contiguous heap. However, it has
129 /// bump-pointer semantics in that it is a monotonically growing pool of memory
130 /// where every allocation is found by merely allocating the next N bytes in
131 /// the slab, or the next N bytes in the next slab.
133 /// Note that this also has a threshold for forcing allocations above a certain
134 /// size into their own slab.
136 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
137 /// object, which wraps malloc, to allocate memory, but it can be changed to
138 /// use a custom allocator.
139 template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
140 size_t SizeThreshold = SlabSize>
141 class BumpPtrAllocatorImpl
142 : public AllocatorBase<
143 BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
144 public:
145 static_assert(SizeThreshold <= SlabSize,
146 "The SizeThreshold must be at most the SlabSize to ensure "
147 "that objects larger than a slab go into their own memory "
148 "allocation.");
150 BumpPtrAllocatorImpl() = default;
152 template <typename T>
153 BumpPtrAllocatorImpl(T &&Allocator)
154 : Allocator(std::forward<T &&>(Allocator)) {}
156 // Manually implement a move constructor as we must clear the old allocator's
157 // slabs as a matter of correctness.
158 BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
159 : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
160 CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
161 BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize),
162 Allocator(std::move(Old.Allocator)) {
163 Old.CurPtr = Old.End = nullptr;
164 Old.BytesAllocated = 0;
165 Old.Slabs.clear();
166 Old.CustomSizedSlabs.clear();
169 ~BumpPtrAllocatorImpl() {
170 DeallocateSlabs(Slabs.begin(), Slabs.end());
171 DeallocateCustomSizedSlabs();
174 BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
175 DeallocateSlabs(Slabs.begin(), Slabs.end());
176 DeallocateCustomSizedSlabs();
178 CurPtr = RHS.CurPtr;
179 End = RHS.End;
180 BytesAllocated = RHS.BytesAllocated;
181 RedZoneSize = RHS.RedZoneSize;
182 Slabs = std::move(RHS.Slabs);
183 CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
184 Allocator = std::move(RHS.Allocator);
186 RHS.CurPtr = RHS.End = nullptr;
187 RHS.BytesAllocated = 0;
188 RHS.Slabs.clear();
189 RHS.CustomSizedSlabs.clear();
190 return *this;
193 /// Deallocate all but the current slab and reset the current pointer
194 /// to the beginning of it, freeing all memory allocated so far.
195 void Reset() {
196 // Deallocate all but the first slab, and deallocate all custom-sized slabs.
197 DeallocateCustomSizedSlabs();
198 CustomSizedSlabs.clear();
200 if (Slabs.empty())
201 return;
203 // Reset the state.
204 BytesAllocated = 0;
205 CurPtr = (char *)Slabs.front();
206 End = CurPtr + SlabSize;
208 __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
209 DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
210 Slabs.erase(std::next(Slabs.begin()), Slabs.end());
213 /// Allocate space at the specified alignment.
214 LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
215 Allocate(size_t Size, Align Alignment) {
216 // Keep track of how many bytes we've allocated.
217 BytesAllocated += Size;
219 size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment);
220 assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
222 size_t SizeToAllocate = Size;
223 #if LLVM_ADDRESS_SANITIZER_BUILD
224 // Add trailing bytes as a "red zone" under ASan.
225 SizeToAllocate += RedZoneSize;
226 #endif
228 // Check if we have enough space.
229 if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)) {
230 char *AlignedPtr = CurPtr + Adjustment;
231 CurPtr = AlignedPtr + SizeToAllocate;
232 // Update the allocation point of this memory block in MemorySanitizer.
233 // Without this, MemorySanitizer messages for values originated from here
234 // will point to the allocation of the entire slab.
235 __msan_allocated_memory(AlignedPtr, Size);
236 // Similarly, tell ASan about this space.
237 __asan_unpoison_memory_region(AlignedPtr, Size);
238 return AlignedPtr;
241 // If Size is really big, allocate a separate slab for it.
242 size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
243 if (PaddedSize > SizeThreshold) {
244 void *NewSlab = Allocator.Allocate(PaddedSize, 0);
245 // We own the new slab and don't want anyone reading anyting other than
246 // pieces returned from this method. So poison the whole slab.
247 __asan_poison_memory_region(NewSlab, PaddedSize);
248 CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
250 uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
251 assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
252 char *AlignedPtr = (char*)AlignedAddr;
253 __msan_allocated_memory(AlignedPtr, Size);
254 __asan_unpoison_memory_region(AlignedPtr, Size);
255 return AlignedPtr;
258 // Otherwise, start a new slab and try again.
259 StartNewSlab();
260 uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
261 assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
262 "Unable to allocate memory!");
263 char *AlignedPtr = (char*)AlignedAddr;
264 CurPtr = AlignedPtr + SizeToAllocate;
265 __msan_allocated_memory(AlignedPtr, Size);
266 __asan_unpoison_memory_region(AlignedPtr, Size);
267 return AlignedPtr;
270 inline LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
271 Allocate(size_t Size, size_t Alignment) {
272 assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead.");
273 return Allocate(Size, Align(Alignment));
276 // Pull in base class overloads.
277 using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
279 // Bump pointer allocators are expected to never free their storage; and
280 // clients expect pointers to remain valid for non-dereferencing uses even
281 // after deallocation.
282 void Deallocate(const void *Ptr, size_t Size) {
283 __asan_poison_memory_region(Ptr, Size);
286 // Pull in base class overloads.
287 using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
289 size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
291 /// \return An index uniquely and reproducibly identifying
292 /// an input pointer \p Ptr in the given allocator.
293 /// The returned value is negative iff the object is inside a custom-size
294 /// slab.
295 /// Returns an empty optional if the pointer is not found in the allocator.
296 llvm::Optional<int64_t> identifyObject(const void *Ptr) {
297 const char *P = static_cast<const char *>(Ptr);
298 int64_t InSlabIdx = 0;
299 for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
300 const char *S = static_cast<const char *>(Slabs[Idx]);
301 if (P >= S && P < S + computeSlabSize(Idx))
302 return InSlabIdx + static_cast<int64_t>(P - S);
303 InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
306 // Use negative index to denote custom sized slabs.
307 int64_t InCustomSizedSlabIdx = -1;
308 for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
309 const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
310 size_t Size = CustomSizedSlabs[Idx].second;
311 if (P >= S && P < S + Size)
312 return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
313 InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
315 return None;
318 /// A wrapper around identifyObject that additionally asserts that
319 /// the object is indeed within the allocator.
320 /// \return An index uniquely and reproducibly identifying
321 /// an input pointer \p Ptr in the given allocator.
322 int64_t identifyKnownObject(const void *Ptr) {
323 Optional<int64_t> Out = identifyObject(Ptr);
324 assert(Out && "Wrong allocator used");
325 return *Out;
328 /// A wrapper around identifyKnownObject. Accepts type information
329 /// about the object and produces a smaller identifier by relying on
330 /// the alignment information. Note that sub-classes may have different
331 /// alignment, so the most base class should be passed as template parameter
332 /// in order to obtain correct results. For that reason automatic template
333 /// parameter deduction is disabled.
334 /// \return An index uniquely and reproducibly identifying
335 /// an input pointer \p Ptr in the given allocator. This identifier is
336 /// different from the ones produced by identifyObject and
337 /// identifyAlignedObject.
338 template <typename T>
339 int64_t identifyKnownAlignedObject(const void *Ptr) {
340 int64_t Out = identifyKnownObject(Ptr);
341 assert(Out % alignof(T) == 0 && "Wrong alignment information");
342 return Out / alignof(T);
345 size_t getTotalMemory() const {
346 size_t TotalMemory = 0;
347 for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
348 TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
349 for (auto &PtrAndSize : CustomSizedSlabs)
350 TotalMemory += PtrAndSize.second;
351 return TotalMemory;
354 size_t getBytesAllocated() const { return BytesAllocated; }
356 void setRedZoneSize(size_t NewSize) {
357 RedZoneSize = NewSize;
360 void PrintStats() const {
361 detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
362 getTotalMemory());
365 private:
366 /// The current pointer into the current slab.
368 /// This points to the next free byte in the slab.
369 char *CurPtr = nullptr;
371 /// The end of the current slab.
372 char *End = nullptr;
374 /// The slabs allocated so far.
375 SmallVector<void *, 4> Slabs;
377 /// Custom-sized slabs allocated for too-large allocation requests.
378 SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
380 /// How many bytes we've allocated.
382 /// Used so that we can compute how much space was wasted.
383 size_t BytesAllocated = 0;
385 /// The number of bytes to put between allocations when running under
386 /// a sanitizer.
387 size_t RedZoneSize = 1;
389 /// The allocator instance we use to get slabs of memory.
390 AllocatorT Allocator;
392 static size_t computeSlabSize(unsigned SlabIdx) {
393 // Scale the actual allocated slab size based on the number of slabs
394 // allocated. Every 128 slabs allocated, we double the allocated size to
395 // reduce allocation frequency, but saturate at multiplying the slab size by
396 // 2^30.
397 return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
400 /// Allocate a new slab and move the bump pointers over into the new
401 /// slab, modifying CurPtr and End.
402 void StartNewSlab() {
403 size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
405 void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
406 // We own the new slab and don't want anyone reading anything other than
407 // pieces returned from this method. So poison the whole slab.
408 __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
410 Slabs.push_back(NewSlab);
411 CurPtr = (char *)(NewSlab);
412 End = ((char *)NewSlab) + AllocatedSlabSize;
415 /// Deallocate a sequence of slabs.
416 void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
417 SmallVectorImpl<void *>::iterator E) {
418 for (; I != E; ++I) {
419 size_t AllocatedSlabSize =
420 computeSlabSize(std::distance(Slabs.begin(), I));
421 Allocator.Deallocate(*I, AllocatedSlabSize);
425 /// Deallocate all memory for custom sized slabs.
426 void DeallocateCustomSizedSlabs() {
427 for (auto &PtrAndSize : CustomSizedSlabs) {
428 void *Ptr = PtrAndSize.first;
429 size_t Size = PtrAndSize.second;
430 Allocator.Deallocate(Ptr, Size);
434 template <typename T> friend class SpecificBumpPtrAllocator;
437 /// The standard BumpPtrAllocator which just uses the default template
438 /// parameters.
439 typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
441 /// A BumpPtrAllocator that allows only elements of a specific type to be
442 /// allocated.
444 /// This allows calling the destructor in DestroyAll() and when the allocator is
445 /// destroyed.
446 template <typename T> class SpecificBumpPtrAllocator {
447 BumpPtrAllocator Allocator;
449 public:
450 SpecificBumpPtrAllocator() {
451 // Because SpecificBumpPtrAllocator walks the memory to call destructors,
452 // it can't have red zones between allocations.
453 Allocator.setRedZoneSize(0);
455 SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
456 : Allocator(std::move(Old.Allocator)) {}
457 ~SpecificBumpPtrAllocator() { DestroyAll(); }
459 SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
460 Allocator = std::move(RHS.Allocator);
461 return *this;
464 /// Call the destructor of each allocated object and deallocate all but the
465 /// current slab and reset the current pointer to the beginning of it, freeing
466 /// all memory allocated so far.
467 void DestroyAll() {
468 auto DestroyElements = [](char *Begin, char *End) {
469 assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()));
470 for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
471 reinterpret_cast<T *>(Ptr)->~T();
474 for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
475 ++I) {
476 size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
477 std::distance(Allocator.Slabs.begin(), I));
478 char *Begin = (char *)alignAddr(*I, Align::Of<T>());
479 char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
480 : (char *)*I + AllocatedSlabSize;
482 DestroyElements(Begin, End);
485 for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
486 void *Ptr = PtrAndSize.first;
487 size_t Size = PtrAndSize.second;
488 DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
489 (char *)Ptr + Size);
492 Allocator.Reset();
495 /// Allocate space for an array of objects without constructing them.
496 T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
499 } // end namespace llvm
501 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
502 void *operator new(size_t Size,
503 llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
504 SizeThreshold> &Allocator) {
505 struct S {
506 char c;
507 union {
508 double D;
509 long double LD;
510 long long L;
511 void *P;
512 } x;
514 return Allocator.Allocate(
515 Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
518 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
519 void operator delete(
520 void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
523 #endif // LLVM_SUPPORT_ALLOCATOR_H