[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / Analysis / ConstantFolding.cpp
blob8dbcf7034fdaff470b0b7ac535b0e8c7c6b4e04c
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/Config/config.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/KnownBits.h"
46 #include "llvm/Support/MathExtras.h"
47 #include <cassert>
48 #include <cerrno>
49 #include <cfenv>
50 #include <cmath>
51 #include <cstddef>
52 #include <cstdint>
54 using namespace llvm;
56 namespace {
58 //===----------------------------------------------------------------------===//
59 // Constant Folding internal helper functions
60 //===----------------------------------------------------------------------===//
62 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
63 Constant *C, Type *SrcEltTy,
64 unsigned NumSrcElts,
65 const DataLayout &DL) {
66 // Now that we know that the input value is a vector of integers, just shift
67 // and insert them into our result.
68 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
69 for (unsigned i = 0; i != NumSrcElts; ++i) {
70 Constant *Element;
71 if (DL.isLittleEndian())
72 Element = C->getAggregateElement(NumSrcElts - i - 1);
73 else
74 Element = C->getAggregateElement(i);
76 if (Element && isa<UndefValue>(Element)) {
77 Result <<= BitShift;
78 continue;
81 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
82 if (!ElementCI)
83 return ConstantExpr::getBitCast(C, DestTy);
85 Result <<= BitShift;
86 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
89 return nullptr;
92 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
93 /// This always returns a non-null constant, but it may be a
94 /// ConstantExpr if unfoldable.
95 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
96 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
97 "Invalid constantexpr bitcast!");
99 // Catch the obvious splat cases.
100 if (C->isNullValue() && !DestTy->isX86_MMXTy())
101 return Constant::getNullValue(DestTy);
102 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
103 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
104 return Constant::getAllOnesValue(DestTy);
106 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
107 // Handle a vector->scalar integer/fp cast.
108 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
109 unsigned NumSrcElts = VTy->getNumElements();
110 Type *SrcEltTy = VTy->getElementType();
112 // If the vector is a vector of floating point, convert it to vector of int
113 // to simplify things.
114 if (SrcEltTy->isFloatingPointTy()) {
115 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
116 Type *SrcIVTy =
117 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
118 // Ask IR to do the conversion now that #elts line up.
119 C = ConstantExpr::getBitCast(C, SrcIVTy);
122 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
123 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
124 SrcEltTy, NumSrcElts, DL))
125 return CE;
127 if (isa<IntegerType>(DestTy))
128 return ConstantInt::get(DestTy, Result);
130 APFloat FP(DestTy->getFltSemantics(), Result);
131 return ConstantFP::get(DestTy->getContext(), FP);
135 // The code below only handles casts to vectors currently.
136 auto *DestVTy = dyn_cast<VectorType>(DestTy);
137 if (!DestVTy)
138 return ConstantExpr::getBitCast(C, DestTy);
140 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
141 // vector so the code below can handle it uniformly.
142 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
143 Constant *Ops = C; // don't take the address of C!
144 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
147 // If this is a bitcast from constant vector -> vector, fold it.
148 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
149 return ConstantExpr::getBitCast(C, DestTy);
151 // If the element types match, IR can fold it.
152 unsigned NumDstElt = DestVTy->getNumElements();
153 unsigned NumSrcElt = C->getType()->getVectorNumElements();
154 if (NumDstElt == NumSrcElt)
155 return ConstantExpr::getBitCast(C, DestTy);
157 Type *SrcEltTy = C->getType()->getVectorElementType();
158 Type *DstEltTy = DestVTy->getElementType();
160 // Otherwise, we're changing the number of elements in a vector, which
161 // requires endianness information to do the right thing. For example,
162 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
163 // folds to (little endian):
164 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
165 // and to (big endian):
166 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
168 // First thing is first. We only want to think about integer here, so if
169 // we have something in FP form, recast it as integer.
170 if (DstEltTy->isFloatingPointTy()) {
171 // Fold to an vector of integers with same size as our FP type.
172 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
173 Type *DestIVTy =
174 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
175 // Recursively handle this integer conversion, if possible.
176 C = FoldBitCast(C, DestIVTy, DL);
178 // Finally, IR can handle this now that #elts line up.
179 return ConstantExpr::getBitCast(C, DestTy);
182 // Okay, we know the destination is integer, if the input is FP, convert
183 // it to integer first.
184 if (SrcEltTy->isFloatingPointTy()) {
185 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
186 Type *SrcIVTy =
187 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
188 // Ask IR to do the conversion now that #elts line up.
189 C = ConstantExpr::getBitCast(C, SrcIVTy);
190 // If IR wasn't able to fold it, bail out.
191 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
192 !isa<ConstantDataVector>(C))
193 return C;
196 // Now we know that the input and output vectors are both integer vectors
197 // of the same size, and that their #elements is not the same. Do the
198 // conversion here, which depends on whether the input or output has
199 // more elements.
200 bool isLittleEndian = DL.isLittleEndian();
202 SmallVector<Constant*, 32> Result;
203 if (NumDstElt < NumSrcElt) {
204 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
205 Constant *Zero = Constant::getNullValue(DstEltTy);
206 unsigned Ratio = NumSrcElt/NumDstElt;
207 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
208 unsigned SrcElt = 0;
209 for (unsigned i = 0; i != NumDstElt; ++i) {
210 // Build each element of the result.
211 Constant *Elt = Zero;
212 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
213 for (unsigned j = 0; j != Ratio; ++j) {
214 Constant *Src = C->getAggregateElement(SrcElt++);
215 if (Src && isa<UndefValue>(Src))
216 Src = Constant::getNullValue(C->getType()->getVectorElementType());
217 else
218 Src = dyn_cast_or_null<ConstantInt>(Src);
219 if (!Src) // Reject constantexpr elements.
220 return ConstantExpr::getBitCast(C, DestTy);
222 // Zero extend the element to the right size.
223 Src = ConstantExpr::getZExt(Src, Elt->getType());
225 // Shift it to the right place, depending on endianness.
226 Src = ConstantExpr::getShl(Src,
227 ConstantInt::get(Src->getType(), ShiftAmt));
228 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
230 // Mix it in.
231 Elt = ConstantExpr::getOr(Elt, Src);
233 Result.push_back(Elt);
235 return ConstantVector::get(Result);
238 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
239 unsigned Ratio = NumDstElt/NumSrcElt;
240 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
242 // Loop over each source value, expanding into multiple results.
243 for (unsigned i = 0; i != NumSrcElt; ++i) {
244 auto *Element = C->getAggregateElement(i);
246 if (!Element) // Reject constantexpr elements.
247 return ConstantExpr::getBitCast(C, DestTy);
249 if (isa<UndefValue>(Element)) {
250 // Correctly Propagate undef values.
251 Result.append(Ratio, UndefValue::get(DstEltTy));
252 continue;
255 auto *Src = dyn_cast<ConstantInt>(Element);
256 if (!Src)
257 return ConstantExpr::getBitCast(C, DestTy);
259 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
260 for (unsigned j = 0; j != Ratio; ++j) {
261 // Shift the piece of the value into the right place, depending on
262 // endianness.
263 Constant *Elt = ConstantExpr::getLShr(Src,
264 ConstantInt::get(Src->getType(), ShiftAmt));
265 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
267 // Truncate the element to an integer with the same pointer size and
268 // convert the element back to a pointer using a inttoptr.
269 if (DstEltTy->isPointerTy()) {
270 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
271 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
272 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
273 continue;
276 // Truncate and remember this piece.
277 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
281 return ConstantVector::get(Result);
284 } // end anonymous namespace
286 /// If this constant is a constant offset from a global, return the global and
287 /// the constant. Because of constantexprs, this function is recursive.
288 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
289 APInt &Offset, const DataLayout &DL) {
290 // Trivial case, constant is the global.
291 if ((GV = dyn_cast<GlobalValue>(C))) {
292 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
293 Offset = APInt(BitWidth, 0);
294 return true;
297 // Otherwise, if this isn't a constant expr, bail out.
298 auto *CE = dyn_cast<ConstantExpr>(C);
299 if (!CE) return false;
301 // Look through ptr->int and ptr->ptr casts.
302 if (CE->getOpcode() == Instruction::PtrToInt ||
303 CE->getOpcode() == Instruction::BitCast)
304 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
306 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
307 auto *GEP = dyn_cast<GEPOperator>(CE);
308 if (!GEP)
309 return false;
311 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
312 APInt TmpOffset(BitWidth, 0);
314 // If the base isn't a global+constant, we aren't either.
315 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
316 return false;
318 // Otherwise, add any offset that our operands provide.
319 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
320 return false;
322 Offset = TmpOffset;
323 return true;
326 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
327 const DataLayout &DL) {
328 do {
329 Type *SrcTy = C->getType();
331 // If the type sizes are the same and a cast is legal, just directly
332 // cast the constant.
333 if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
334 Instruction::CastOps Cast = Instruction::BitCast;
335 // If we are going from a pointer to int or vice versa, we spell the cast
336 // differently.
337 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
338 Cast = Instruction::IntToPtr;
339 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
340 Cast = Instruction::PtrToInt;
342 if (CastInst::castIsValid(Cast, C, DestTy))
343 return ConstantExpr::getCast(Cast, C, DestTy);
346 // If this isn't an aggregate type, there is nothing we can do to drill down
347 // and find a bitcastable constant.
348 if (!SrcTy->isAggregateType())
349 return nullptr;
351 // We're simulating a load through a pointer that was bitcast to point to
352 // a different type, so we can try to walk down through the initial
353 // elements of an aggregate to see if some part of the aggregate is
354 // castable to implement the "load" semantic model.
355 if (SrcTy->isStructTy()) {
356 // Struct types might have leading zero-length elements like [0 x i32],
357 // which are certainly not what we are looking for, so skip them.
358 unsigned Elem = 0;
359 Constant *ElemC;
360 do {
361 ElemC = C->getAggregateElement(Elem++);
362 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0);
363 C = ElemC;
364 } else {
365 C = C->getAggregateElement(0u);
367 } while (C);
369 return nullptr;
372 namespace {
374 /// Recursive helper to read bits out of global. C is the constant being copied
375 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
376 /// results into and BytesLeft is the number of bytes left in
377 /// the CurPtr buffer. DL is the DataLayout.
378 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
379 unsigned BytesLeft, const DataLayout &DL) {
380 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
381 "Out of range access");
383 // If this element is zero or undefined, we can just return since *CurPtr is
384 // zero initialized.
385 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
386 return true;
388 if (auto *CI = dyn_cast<ConstantInt>(C)) {
389 if (CI->getBitWidth() > 64 ||
390 (CI->getBitWidth() & 7) != 0)
391 return false;
393 uint64_t Val = CI->getZExtValue();
394 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
396 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
397 int n = ByteOffset;
398 if (!DL.isLittleEndian())
399 n = IntBytes - n - 1;
400 CurPtr[i] = (unsigned char)(Val >> (n * 8));
401 ++ByteOffset;
403 return true;
406 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
407 if (CFP->getType()->isDoubleTy()) {
408 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
409 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
411 if (CFP->getType()->isFloatTy()){
412 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
413 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
415 if (CFP->getType()->isHalfTy()){
416 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
417 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
419 return false;
422 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
423 const StructLayout *SL = DL.getStructLayout(CS->getType());
424 unsigned Index = SL->getElementContainingOffset(ByteOffset);
425 uint64_t CurEltOffset = SL->getElementOffset(Index);
426 ByteOffset -= CurEltOffset;
428 while (true) {
429 // If the element access is to the element itself and not to tail padding,
430 // read the bytes from the element.
431 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
433 if (ByteOffset < EltSize &&
434 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
435 BytesLeft, DL))
436 return false;
438 ++Index;
440 // Check to see if we read from the last struct element, if so we're done.
441 if (Index == CS->getType()->getNumElements())
442 return true;
444 // If we read all of the bytes we needed from this element we're done.
445 uint64_t NextEltOffset = SL->getElementOffset(Index);
447 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
448 return true;
450 // Move to the next element of the struct.
451 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
452 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
453 ByteOffset = 0;
454 CurEltOffset = NextEltOffset;
456 // not reached.
459 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
460 isa<ConstantDataSequential>(C)) {
461 Type *EltTy = C->getType()->getSequentialElementType();
462 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
463 uint64_t Index = ByteOffset / EltSize;
464 uint64_t Offset = ByteOffset - Index * EltSize;
465 uint64_t NumElts;
466 if (auto *AT = dyn_cast<ArrayType>(C->getType()))
467 NumElts = AT->getNumElements();
468 else
469 NumElts = C->getType()->getVectorNumElements();
471 for (; Index != NumElts; ++Index) {
472 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
473 BytesLeft, DL))
474 return false;
476 uint64_t BytesWritten = EltSize - Offset;
477 assert(BytesWritten <= EltSize && "Not indexing into this element?");
478 if (BytesWritten >= BytesLeft)
479 return true;
481 Offset = 0;
482 BytesLeft -= BytesWritten;
483 CurPtr += BytesWritten;
485 return true;
488 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
489 if (CE->getOpcode() == Instruction::IntToPtr &&
490 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
491 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
492 BytesLeft, DL);
496 // Otherwise, unknown initializer type.
497 return false;
500 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
501 const DataLayout &DL) {
502 auto *PTy = cast<PointerType>(C->getType());
503 auto *IntType = dyn_cast<IntegerType>(LoadTy);
505 // If this isn't an integer load we can't fold it directly.
506 if (!IntType) {
507 unsigned AS = PTy->getAddressSpace();
509 // If this is a float/double load, we can try folding it as an int32/64 load
510 // and then bitcast the result. This can be useful for union cases. Note
511 // that address spaces don't matter here since we're not going to result in
512 // an actual new load.
513 Type *MapTy;
514 if (LoadTy->isHalfTy())
515 MapTy = Type::getInt16Ty(C->getContext());
516 else if (LoadTy->isFloatTy())
517 MapTy = Type::getInt32Ty(C->getContext());
518 else if (LoadTy->isDoubleTy())
519 MapTy = Type::getInt64Ty(C->getContext());
520 else if (LoadTy->isVectorTy()) {
521 MapTy = PointerType::getIntNTy(C->getContext(),
522 DL.getTypeSizeInBits(LoadTy));
523 } else
524 return nullptr;
526 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
527 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
528 if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
529 // Materializing a zero can be done trivially without a bitcast
530 return Constant::getNullValue(LoadTy);
531 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
532 Res = FoldBitCast(Res, CastTy, DL);
533 if (LoadTy->isPtrOrPtrVectorTy()) {
534 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
535 if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
536 return Constant::getNullValue(LoadTy);
537 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
538 // Be careful not to replace a load of an addrspace value with an inttoptr here
539 return nullptr;
540 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
542 return Res;
544 return nullptr;
547 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
548 if (BytesLoaded > 32 || BytesLoaded == 0)
549 return nullptr;
551 GlobalValue *GVal;
552 APInt OffsetAI;
553 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
554 return nullptr;
556 auto *GV = dyn_cast<GlobalVariable>(GVal);
557 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
558 !GV->getInitializer()->getType()->isSized())
559 return nullptr;
561 int64_t Offset = OffsetAI.getSExtValue();
562 int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType());
564 // If we're not accessing anything in this constant, the result is undefined.
565 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
566 return UndefValue::get(IntType);
568 // If we're not accessing anything in this constant, the result is undefined.
569 if (Offset >= InitializerSize)
570 return UndefValue::get(IntType);
572 unsigned char RawBytes[32] = {0};
573 unsigned char *CurPtr = RawBytes;
574 unsigned BytesLeft = BytesLoaded;
576 // If we're loading off the beginning of the global, some bytes may be valid.
577 if (Offset < 0) {
578 CurPtr += -Offset;
579 BytesLeft += Offset;
580 Offset = 0;
583 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
584 return nullptr;
586 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
587 if (DL.isLittleEndian()) {
588 ResultVal = RawBytes[BytesLoaded - 1];
589 for (unsigned i = 1; i != BytesLoaded; ++i) {
590 ResultVal <<= 8;
591 ResultVal |= RawBytes[BytesLoaded - 1 - i];
593 } else {
594 ResultVal = RawBytes[0];
595 for (unsigned i = 1; i != BytesLoaded; ++i) {
596 ResultVal <<= 8;
597 ResultVal |= RawBytes[i];
601 return ConstantInt::get(IntType->getContext(), ResultVal);
604 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
605 const DataLayout &DL) {
606 auto *SrcPtr = CE->getOperand(0);
607 auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
608 if (!SrcPtrTy)
609 return nullptr;
610 Type *SrcTy = SrcPtrTy->getPointerElementType();
612 Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
613 if (!C)
614 return nullptr;
616 return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
619 } // end anonymous namespace
621 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
622 const DataLayout &DL) {
623 // First, try the easy cases:
624 if (auto *GV = dyn_cast<GlobalVariable>(C))
625 if (GV->isConstant() && GV->hasDefinitiveInitializer())
626 return GV->getInitializer();
628 if (auto *GA = dyn_cast<GlobalAlias>(C))
629 if (GA->getAliasee() && !GA->isInterposable())
630 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
632 // If the loaded value isn't a constant expr, we can't handle it.
633 auto *CE = dyn_cast<ConstantExpr>(C);
634 if (!CE)
635 return nullptr;
637 if (CE->getOpcode() == Instruction::GetElementPtr) {
638 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
639 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
640 if (Constant *V =
641 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
642 return V;
647 if (CE->getOpcode() == Instruction::BitCast)
648 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
649 return LoadedC;
651 // Instead of loading constant c string, use corresponding integer value
652 // directly if string length is small enough.
653 StringRef Str;
654 if (getConstantStringInfo(CE, Str) && !Str.empty()) {
655 size_t StrLen = Str.size();
656 unsigned NumBits = Ty->getPrimitiveSizeInBits();
657 // Replace load with immediate integer if the result is an integer or fp
658 // value.
659 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
660 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
661 APInt StrVal(NumBits, 0);
662 APInt SingleChar(NumBits, 0);
663 if (DL.isLittleEndian()) {
664 for (unsigned char C : reverse(Str.bytes())) {
665 SingleChar = static_cast<uint64_t>(C);
666 StrVal = (StrVal << 8) | SingleChar;
668 } else {
669 for (unsigned char C : Str.bytes()) {
670 SingleChar = static_cast<uint64_t>(C);
671 StrVal = (StrVal << 8) | SingleChar;
673 // Append NULL at the end.
674 SingleChar = 0;
675 StrVal = (StrVal << 8) | SingleChar;
678 Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
679 if (Ty->isFloatingPointTy())
680 Res = ConstantExpr::getBitCast(Res, Ty);
681 return Res;
685 // If this load comes from anywhere in a constant global, and if the global
686 // is all undef or zero, we know what it loads.
687 if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
688 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
689 if (GV->getInitializer()->isNullValue())
690 return Constant::getNullValue(Ty);
691 if (isa<UndefValue>(GV->getInitializer()))
692 return UndefValue::get(Ty);
696 // Try hard to fold loads from bitcasted strange and non-type-safe things.
697 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
700 namespace {
702 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
703 if (LI->isVolatile()) return nullptr;
705 if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
706 return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
708 return nullptr;
711 /// One of Op0/Op1 is a constant expression.
712 /// Attempt to symbolically evaluate the result of a binary operator merging
713 /// these together. If target data info is available, it is provided as DL,
714 /// otherwise DL is null.
715 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
716 const DataLayout &DL) {
717 // SROA
719 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
720 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
721 // bits.
723 if (Opc == Instruction::And) {
724 KnownBits Known0 = computeKnownBits(Op0, DL);
725 KnownBits Known1 = computeKnownBits(Op1, DL);
726 if ((Known1.One | Known0.Zero).isAllOnesValue()) {
727 // All the bits of Op0 that the 'and' could be masking are already zero.
728 return Op0;
730 if ((Known0.One | Known1.Zero).isAllOnesValue()) {
731 // All the bits of Op1 that the 'and' could be masking are already zero.
732 return Op1;
735 Known0.Zero |= Known1.Zero;
736 Known0.One &= Known1.One;
737 if (Known0.isConstant())
738 return ConstantInt::get(Op0->getType(), Known0.getConstant());
741 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
742 // constant. This happens frequently when iterating over a global array.
743 if (Opc == Instruction::Sub) {
744 GlobalValue *GV1, *GV2;
745 APInt Offs1, Offs2;
747 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
748 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
749 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
751 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
752 // PtrToInt may change the bitwidth so we have convert to the right size
753 // first.
754 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
755 Offs2.zextOrTrunc(OpSize));
759 return nullptr;
762 /// If array indices are not pointer-sized integers, explicitly cast them so
763 /// that they aren't implicitly casted by the getelementptr.
764 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
765 Type *ResultTy, Optional<unsigned> InRangeIndex,
766 const DataLayout &DL, const TargetLibraryInfo *TLI) {
767 Type *IntPtrTy = DL.getIntPtrType(ResultTy);
768 Type *IntPtrScalarTy = IntPtrTy->getScalarType();
770 bool Any = false;
771 SmallVector<Constant*, 32> NewIdxs;
772 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
773 if ((i == 1 ||
774 !isa<StructType>(GetElementPtrInst::getIndexedType(
775 SrcElemTy, Ops.slice(1, i - 1)))) &&
776 Ops[i]->getType()->getScalarType() != IntPtrScalarTy) {
777 Any = true;
778 Type *NewType = Ops[i]->getType()->isVectorTy()
779 ? IntPtrTy
780 : IntPtrTy->getScalarType();
781 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
782 true,
783 NewType,
784 true),
785 Ops[i], NewType));
786 } else
787 NewIdxs.push_back(Ops[i]);
790 if (!Any)
791 return nullptr;
793 Constant *C = ConstantExpr::getGetElementPtr(
794 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
795 if (Constant *Folded = ConstantFoldConstant(C, DL, TLI))
796 C = Folded;
798 return C;
801 /// Strip the pointer casts, but preserve the address space information.
802 Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) {
803 assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
804 auto *OldPtrTy = cast<PointerType>(Ptr->getType());
805 Ptr = cast<Constant>(Ptr->stripPointerCasts());
806 auto *NewPtrTy = cast<PointerType>(Ptr->getType());
808 ElemTy = NewPtrTy->getPointerElementType();
810 // Preserve the address space number of the pointer.
811 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
812 NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
813 Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
815 return Ptr;
818 /// If we can symbolically evaluate the GEP constant expression, do so.
819 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
820 ArrayRef<Constant *> Ops,
821 const DataLayout &DL,
822 const TargetLibraryInfo *TLI) {
823 const GEPOperator *InnermostGEP = GEP;
824 bool InBounds = GEP->isInBounds();
826 Type *SrcElemTy = GEP->getSourceElementType();
827 Type *ResElemTy = GEP->getResultElementType();
828 Type *ResTy = GEP->getType();
829 if (!SrcElemTy->isSized())
830 return nullptr;
832 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
833 GEP->getInRangeIndex(), DL, TLI))
834 return C;
836 Constant *Ptr = Ops[0];
837 if (!Ptr->getType()->isPointerTy())
838 return nullptr;
840 Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
842 // If this is a constant expr gep that is effectively computing an
843 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
844 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
845 if (!isa<ConstantInt>(Ops[i])) {
847 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
848 // "inttoptr (sub (ptrtoint Ptr), V)"
849 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
850 auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
851 assert((!CE || CE->getType() == IntPtrTy) &&
852 "CastGEPIndices didn't canonicalize index types!");
853 if (CE && CE->getOpcode() == Instruction::Sub &&
854 CE->getOperand(0)->isNullValue()) {
855 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
856 Res = ConstantExpr::getSub(Res, CE->getOperand(1));
857 Res = ConstantExpr::getIntToPtr(Res, ResTy);
858 if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI))
859 Res = FoldedRes;
860 return Res;
863 return nullptr;
866 unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
867 APInt Offset =
868 APInt(BitWidth,
869 DL.getIndexedOffsetInType(
870 SrcElemTy,
871 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
872 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
874 // If this is a GEP of a GEP, fold it all into a single GEP.
875 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
876 InnermostGEP = GEP;
877 InBounds &= GEP->isInBounds();
879 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
881 // Do not try the incorporate the sub-GEP if some index is not a number.
882 bool AllConstantInt = true;
883 for (Value *NestedOp : NestedOps)
884 if (!isa<ConstantInt>(NestedOp)) {
885 AllConstantInt = false;
886 break;
888 if (!AllConstantInt)
889 break;
891 Ptr = cast<Constant>(GEP->getOperand(0));
892 SrcElemTy = GEP->getSourceElementType();
893 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
894 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
897 // If the base value for this address is a literal integer value, fold the
898 // getelementptr to the resulting integer value casted to the pointer type.
899 APInt BasePtr(BitWidth, 0);
900 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
901 if (CE->getOpcode() == Instruction::IntToPtr) {
902 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
903 BasePtr = Base->getValue().zextOrTrunc(BitWidth);
907 auto *PTy = cast<PointerType>(Ptr->getType());
908 if ((Ptr->isNullValue() || BasePtr != 0) &&
909 !DL.isNonIntegralPointerType(PTy)) {
910 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
911 return ConstantExpr::getIntToPtr(C, ResTy);
914 // Otherwise form a regular getelementptr. Recompute the indices so that
915 // we eliminate over-indexing of the notional static type array bounds.
916 // This makes it easy to determine if the getelementptr is "inbounds".
917 // Also, this helps GlobalOpt do SROA on GlobalVariables.
918 Type *Ty = PTy;
919 SmallVector<Constant *, 32> NewIdxs;
921 do {
922 if (!Ty->isStructTy()) {
923 if (Ty->isPointerTy()) {
924 // The only pointer indexing we'll do is on the first index of the GEP.
925 if (!NewIdxs.empty())
926 break;
928 Ty = SrcElemTy;
930 // Only handle pointers to sized types, not pointers to functions.
931 if (!Ty->isSized())
932 return nullptr;
933 } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
934 Ty = ATy->getElementType();
935 } else {
936 // We've reached some non-indexable type.
937 break;
940 // Determine which element of the array the offset points into.
941 APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
942 if (ElemSize == 0) {
943 // The element size is 0. This may be [0 x Ty]*, so just use a zero
944 // index for this level and proceed to the next level to see if it can
945 // accommodate the offset.
946 NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
947 } else {
948 // The element size is non-zero divide the offset by the element
949 // size (rounding down), to compute the index at this level.
950 bool Overflow;
951 APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
952 if (Overflow)
953 break;
954 Offset -= NewIdx * ElemSize;
955 NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
957 } else {
958 auto *STy = cast<StructType>(Ty);
959 // If we end up with an offset that isn't valid for this struct type, we
960 // can't re-form this GEP in a regular form, so bail out. The pointer
961 // operand likely went through casts that are necessary to make the GEP
962 // sensible.
963 const StructLayout &SL = *DL.getStructLayout(STy);
964 if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
965 break;
967 // Determine which field of the struct the offset points into. The
968 // getZExtValue is fine as we've already ensured that the offset is
969 // within the range representable by the StructLayout API.
970 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
971 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
972 ElIdx));
973 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
974 Ty = STy->getTypeAtIndex(ElIdx);
976 } while (Ty != ResElemTy);
978 // If we haven't used up the entire offset by descending the static
979 // type, then the offset is pointing into the middle of an indivisible
980 // member, so we can't simplify it.
981 if (Offset != 0)
982 return nullptr;
984 // Preserve the inrange index from the innermost GEP if possible. We must
985 // have calculated the same indices up to and including the inrange index.
986 Optional<unsigned> InRangeIndex;
987 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
988 if (SrcElemTy == InnermostGEP->getSourceElementType() &&
989 NewIdxs.size() > *LastIRIndex) {
990 InRangeIndex = LastIRIndex;
991 for (unsigned I = 0; I <= *LastIRIndex; ++I)
992 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
993 return nullptr;
996 // Create a GEP.
997 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
998 InBounds, InRangeIndex);
999 assert(C->getType()->getPointerElementType() == Ty &&
1000 "Computed GetElementPtr has unexpected type!");
1002 // If we ended up indexing a member with a type that doesn't match
1003 // the type of what the original indices indexed, add a cast.
1004 if (Ty != ResElemTy)
1005 C = FoldBitCast(C, ResTy, DL);
1007 return C;
1010 /// Attempt to constant fold an instruction with the
1011 /// specified opcode and operands. If successful, the constant result is
1012 /// returned, if not, null is returned. Note that this function can fail when
1013 /// attempting to fold instructions like loads and stores, which have no
1014 /// constant expression form.
1015 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1016 ArrayRef<Constant *> Ops,
1017 const DataLayout &DL,
1018 const TargetLibraryInfo *TLI) {
1019 Type *DestTy = InstOrCE->getType();
1021 if (Instruction::isUnaryOp(Opcode))
1022 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1024 if (Instruction::isBinaryOp(Opcode))
1025 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1027 if (Instruction::isCast(Opcode))
1028 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1030 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1031 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1032 return C;
1034 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1035 Ops.slice(1), GEP->isInBounds(),
1036 GEP->getInRangeIndex());
1039 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1040 return CE->getWithOperands(Ops);
1042 switch (Opcode) {
1043 default: return nullptr;
1044 case Instruction::ICmp:
1045 case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1046 case Instruction::Call:
1047 if (auto *F = dyn_cast<Function>(Ops.back())) {
1048 const auto *Call = cast<CallBase>(InstOrCE);
1049 if (canConstantFoldCallTo(Call, F))
1050 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1052 return nullptr;
1053 case Instruction::Select:
1054 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1055 case Instruction::ExtractElement:
1056 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1057 case Instruction::ExtractValue:
1058 return ConstantExpr::getExtractValue(
1059 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1060 case Instruction::InsertElement:
1061 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1062 case Instruction::ShuffleVector:
1063 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1067 } // end anonymous namespace
1069 //===----------------------------------------------------------------------===//
1070 // Constant Folding public APIs
1071 //===----------------------------------------------------------------------===//
1073 namespace {
1075 Constant *
1076 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1077 const TargetLibraryInfo *TLI,
1078 SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1079 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1080 return nullptr;
1082 SmallVector<Constant *, 8> Ops;
1083 for (const Use &NewU : C->operands()) {
1084 auto *NewC = cast<Constant>(&NewU);
1085 // Recursively fold the ConstantExpr's operands. If we have already folded
1086 // a ConstantExpr, we don't have to process it again.
1087 if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) {
1088 auto It = FoldedOps.find(NewC);
1089 if (It == FoldedOps.end()) {
1090 if (auto *FoldedC =
1091 ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
1092 FoldedOps.insert({NewC, FoldedC});
1093 NewC = FoldedC;
1094 } else {
1095 FoldedOps.insert({NewC, NewC});
1097 } else {
1098 NewC = It->second;
1101 Ops.push_back(NewC);
1104 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1105 if (CE->isCompare())
1106 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1107 DL, TLI);
1109 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1112 assert(isa<ConstantVector>(C));
1113 return ConstantVector::get(Ops);
1116 } // end anonymous namespace
1118 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1119 const TargetLibraryInfo *TLI) {
1120 // Handle PHI nodes quickly here...
1121 if (auto *PN = dyn_cast<PHINode>(I)) {
1122 Constant *CommonValue = nullptr;
1124 SmallDenseMap<Constant *, Constant *> FoldedOps;
1125 for (Value *Incoming : PN->incoming_values()) {
1126 // If the incoming value is undef then skip it. Note that while we could
1127 // skip the value if it is equal to the phi node itself we choose not to
1128 // because that would break the rule that constant folding only applies if
1129 // all operands are constants.
1130 if (isa<UndefValue>(Incoming))
1131 continue;
1132 // If the incoming value is not a constant, then give up.
1133 auto *C = dyn_cast<Constant>(Incoming);
1134 if (!C)
1135 return nullptr;
1136 // Fold the PHI's operands.
1137 if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps))
1138 C = FoldedC;
1139 // If the incoming value is a different constant to
1140 // the one we saw previously, then give up.
1141 if (CommonValue && C != CommonValue)
1142 return nullptr;
1143 CommonValue = C;
1146 // If we reach here, all incoming values are the same constant or undef.
1147 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1150 // Scan the operand list, checking to see if they are all constants, if so,
1151 // hand off to ConstantFoldInstOperandsImpl.
1152 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1153 return nullptr;
1155 SmallDenseMap<Constant *, Constant *> FoldedOps;
1156 SmallVector<Constant *, 8> Ops;
1157 for (const Use &OpU : I->operands()) {
1158 auto *Op = cast<Constant>(&OpU);
1159 // Fold the Instruction's operands.
1160 if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps))
1161 Op = FoldedOp;
1163 Ops.push_back(Op);
1166 if (const auto *CI = dyn_cast<CmpInst>(I))
1167 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1168 DL, TLI);
1170 if (const auto *LI = dyn_cast<LoadInst>(I))
1171 return ConstantFoldLoadInst(LI, DL);
1173 if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
1174 return ConstantExpr::getInsertValue(
1175 cast<Constant>(IVI->getAggregateOperand()),
1176 cast<Constant>(IVI->getInsertedValueOperand()),
1177 IVI->getIndices());
1180 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
1181 return ConstantExpr::getExtractValue(
1182 cast<Constant>(EVI->getAggregateOperand()),
1183 EVI->getIndices());
1186 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1189 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1190 const TargetLibraryInfo *TLI) {
1191 SmallDenseMap<Constant *, Constant *> FoldedOps;
1192 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1195 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1196 ArrayRef<Constant *> Ops,
1197 const DataLayout &DL,
1198 const TargetLibraryInfo *TLI) {
1199 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1202 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1203 Constant *Ops0, Constant *Ops1,
1204 const DataLayout &DL,
1205 const TargetLibraryInfo *TLI) {
1206 // fold: icmp (inttoptr x), null -> icmp x, 0
1207 // fold: icmp null, (inttoptr x) -> icmp 0, x
1208 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1209 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1210 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1211 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1213 // FIXME: The following comment is out of data and the DataLayout is here now.
1214 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1215 // around to know if bit truncation is happening.
1216 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1217 if (Ops1->isNullValue()) {
1218 if (CE0->getOpcode() == Instruction::IntToPtr) {
1219 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1220 // Convert the integer value to the right size to ensure we get the
1221 // proper extension or truncation.
1222 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1223 IntPtrTy, false);
1224 Constant *Null = Constant::getNullValue(C->getType());
1225 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1228 // Only do this transformation if the int is intptrty in size, otherwise
1229 // there is a truncation or extension that we aren't modeling.
1230 if (CE0->getOpcode() == Instruction::PtrToInt) {
1231 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1232 if (CE0->getType() == IntPtrTy) {
1233 Constant *C = CE0->getOperand(0);
1234 Constant *Null = Constant::getNullValue(C->getType());
1235 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1240 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1241 if (CE0->getOpcode() == CE1->getOpcode()) {
1242 if (CE0->getOpcode() == Instruction::IntToPtr) {
1243 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1245 // Convert the integer value to the right size to ensure we get the
1246 // proper extension or truncation.
1247 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1248 IntPtrTy, false);
1249 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1250 IntPtrTy, false);
1251 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1254 // Only do this transformation if the int is intptrty in size, otherwise
1255 // there is a truncation or extension that we aren't modeling.
1256 if (CE0->getOpcode() == Instruction::PtrToInt) {
1257 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1258 if (CE0->getType() == IntPtrTy &&
1259 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 return ConstantFoldCompareInstOperands(
1261 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1267 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1268 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1269 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1270 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1271 Constant *LHS = ConstantFoldCompareInstOperands(
1272 Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1273 Constant *RHS = ConstantFoldCompareInstOperands(
1274 Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1275 unsigned OpC =
1276 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1277 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1279 } else if (isa<ConstantExpr>(Ops1)) {
1280 // If RHS is a constant expression, but the left side isn't, swap the
1281 // operands and try again.
1282 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1283 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1286 return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1289 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1290 const DataLayout &DL) {
1291 assert(Instruction::isUnaryOp(Opcode));
1293 return ConstantExpr::get(Opcode, Op);
1296 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1297 Constant *RHS,
1298 const DataLayout &DL) {
1299 assert(Instruction::isBinaryOp(Opcode));
1300 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1301 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1302 return C;
1304 return ConstantExpr::get(Opcode, LHS, RHS);
1307 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1308 Type *DestTy, const DataLayout &DL) {
1309 assert(Instruction::isCast(Opcode));
1310 switch (Opcode) {
1311 default:
1312 llvm_unreachable("Missing case");
1313 case Instruction::PtrToInt:
1314 // If the input is a inttoptr, eliminate the pair. This requires knowing
1315 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1316 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1317 if (CE->getOpcode() == Instruction::IntToPtr) {
1318 Constant *Input = CE->getOperand(0);
1319 unsigned InWidth = Input->getType()->getScalarSizeInBits();
1320 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1321 if (PtrWidth < InWidth) {
1322 Constant *Mask =
1323 ConstantInt::get(CE->getContext(),
1324 APInt::getLowBitsSet(InWidth, PtrWidth));
1325 Input = ConstantExpr::getAnd(Input, Mask);
1327 // Do a zext or trunc to get to the dest size.
1328 return ConstantExpr::getIntegerCast(Input, DestTy, false);
1331 return ConstantExpr::getCast(Opcode, C, DestTy);
1332 case Instruction::IntToPtr:
1333 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1334 // the int size is >= the ptr size and the address spaces are the same.
1335 // This requires knowing the width of a pointer, so it can't be done in
1336 // ConstantExpr::getCast.
1337 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1338 if (CE->getOpcode() == Instruction::PtrToInt) {
1339 Constant *SrcPtr = CE->getOperand(0);
1340 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1341 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1343 if (MidIntSize >= SrcPtrSize) {
1344 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1345 if (SrcAS == DestTy->getPointerAddressSpace())
1346 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1351 return ConstantExpr::getCast(Opcode, C, DestTy);
1352 case Instruction::Trunc:
1353 case Instruction::ZExt:
1354 case Instruction::SExt:
1355 case Instruction::FPTrunc:
1356 case Instruction::FPExt:
1357 case Instruction::UIToFP:
1358 case Instruction::SIToFP:
1359 case Instruction::FPToUI:
1360 case Instruction::FPToSI:
1361 case Instruction::AddrSpaceCast:
1362 return ConstantExpr::getCast(Opcode, C, DestTy);
1363 case Instruction::BitCast:
1364 return FoldBitCast(C, DestTy, DL);
1368 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1369 ConstantExpr *CE) {
1370 if (!CE->getOperand(1)->isNullValue())
1371 return nullptr; // Do not allow stepping over the value!
1373 // Loop over all of the operands, tracking down which value we are
1374 // addressing.
1375 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1376 C = C->getAggregateElement(CE->getOperand(i));
1377 if (!C)
1378 return nullptr;
1380 return C;
1383 Constant *
1384 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1385 ArrayRef<Constant *> Indices) {
1386 // Loop over all of the operands, tracking down which value we are
1387 // addressing.
1388 for (Constant *Index : Indices) {
1389 C = C->getAggregateElement(Index);
1390 if (!C)
1391 return nullptr;
1393 return C;
1396 //===----------------------------------------------------------------------===//
1397 // Constant Folding for Calls
1400 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1401 if (Call->isNoBuiltin() || Call->isStrictFP())
1402 return false;
1403 switch (F->getIntrinsicID()) {
1404 case Intrinsic::fabs:
1405 case Intrinsic::minnum:
1406 case Intrinsic::maxnum:
1407 case Intrinsic::minimum:
1408 case Intrinsic::maximum:
1409 case Intrinsic::log:
1410 case Intrinsic::log2:
1411 case Intrinsic::log10:
1412 case Intrinsic::exp:
1413 case Intrinsic::exp2:
1414 case Intrinsic::floor:
1415 case Intrinsic::ceil:
1416 case Intrinsic::sqrt:
1417 case Intrinsic::sin:
1418 case Intrinsic::cos:
1419 case Intrinsic::trunc:
1420 case Intrinsic::rint:
1421 case Intrinsic::nearbyint:
1422 case Intrinsic::pow:
1423 case Intrinsic::powi:
1424 case Intrinsic::bswap:
1425 case Intrinsic::ctpop:
1426 case Intrinsic::ctlz:
1427 case Intrinsic::cttz:
1428 case Intrinsic::fshl:
1429 case Intrinsic::fshr:
1430 case Intrinsic::fma:
1431 case Intrinsic::fmuladd:
1432 case Intrinsic::copysign:
1433 case Intrinsic::launder_invariant_group:
1434 case Intrinsic::strip_invariant_group:
1435 case Intrinsic::round:
1436 case Intrinsic::masked_load:
1437 case Intrinsic::sadd_with_overflow:
1438 case Intrinsic::uadd_with_overflow:
1439 case Intrinsic::ssub_with_overflow:
1440 case Intrinsic::usub_with_overflow:
1441 case Intrinsic::smul_with_overflow:
1442 case Intrinsic::umul_with_overflow:
1443 case Intrinsic::sadd_sat:
1444 case Intrinsic::uadd_sat:
1445 case Intrinsic::ssub_sat:
1446 case Intrinsic::usub_sat:
1447 case Intrinsic::smul_fix:
1448 case Intrinsic::smul_fix_sat:
1449 case Intrinsic::convert_from_fp16:
1450 case Intrinsic::convert_to_fp16:
1451 case Intrinsic::bitreverse:
1452 case Intrinsic::x86_sse_cvtss2si:
1453 case Intrinsic::x86_sse_cvtss2si64:
1454 case Intrinsic::x86_sse_cvttss2si:
1455 case Intrinsic::x86_sse_cvttss2si64:
1456 case Intrinsic::x86_sse2_cvtsd2si:
1457 case Intrinsic::x86_sse2_cvtsd2si64:
1458 case Intrinsic::x86_sse2_cvttsd2si:
1459 case Intrinsic::x86_sse2_cvttsd2si64:
1460 case Intrinsic::x86_avx512_vcvtss2si32:
1461 case Intrinsic::x86_avx512_vcvtss2si64:
1462 case Intrinsic::x86_avx512_cvttss2si:
1463 case Intrinsic::x86_avx512_cvttss2si64:
1464 case Intrinsic::x86_avx512_vcvtsd2si32:
1465 case Intrinsic::x86_avx512_vcvtsd2si64:
1466 case Intrinsic::x86_avx512_cvttsd2si:
1467 case Intrinsic::x86_avx512_cvttsd2si64:
1468 case Intrinsic::x86_avx512_vcvtss2usi32:
1469 case Intrinsic::x86_avx512_vcvtss2usi64:
1470 case Intrinsic::x86_avx512_cvttss2usi:
1471 case Intrinsic::x86_avx512_cvttss2usi64:
1472 case Intrinsic::x86_avx512_vcvtsd2usi32:
1473 case Intrinsic::x86_avx512_vcvtsd2usi64:
1474 case Intrinsic::x86_avx512_cvttsd2usi:
1475 case Intrinsic::x86_avx512_cvttsd2usi64:
1476 case Intrinsic::is_constant:
1477 return true;
1478 default:
1479 return false;
1480 case Intrinsic::not_intrinsic: break;
1483 if (!F->hasName())
1484 return false;
1486 // In these cases, the check of the length is required. We don't want to
1487 // return true for a name like "cos\0blah" which strcmp would return equal to
1488 // "cos", but has length 8.
1489 StringRef Name = F->getName();
1490 switch (Name[0]) {
1491 default:
1492 return false;
1493 case 'a':
1494 return Name == "acos" || Name == "acosf" ||
1495 Name == "asin" || Name == "asinf" ||
1496 Name == "atan" || Name == "atanf" ||
1497 Name == "atan2" || Name == "atan2f";
1498 case 'c':
1499 return Name == "ceil" || Name == "ceilf" ||
1500 Name == "cos" || Name == "cosf" ||
1501 Name == "cosh" || Name == "coshf";
1502 case 'e':
1503 return Name == "exp" || Name == "expf" ||
1504 Name == "exp2" || Name == "exp2f";
1505 case 'f':
1506 return Name == "fabs" || Name == "fabsf" ||
1507 Name == "floor" || Name == "floorf" ||
1508 Name == "fmod" || Name == "fmodf";
1509 case 'l':
1510 return Name == "log" || Name == "logf" ||
1511 Name == "log2" || Name == "log2f" ||
1512 Name == "log10" || Name == "log10f";
1513 case 'n':
1514 return Name == "nearbyint" || Name == "nearbyintf";
1515 case 'p':
1516 return Name == "pow" || Name == "powf";
1517 case 'r':
1518 return Name == "rint" || Name == "rintf" ||
1519 Name == "round" || Name == "roundf";
1520 case 's':
1521 return Name == "sin" || Name == "sinf" ||
1522 Name == "sinh" || Name == "sinhf" ||
1523 Name == "sqrt" || Name == "sqrtf";
1524 case 't':
1525 return Name == "tan" || Name == "tanf" ||
1526 Name == "tanh" || Name == "tanhf" ||
1527 Name == "trunc" || Name == "truncf";
1528 case '_':
1529 // Check for various function names that get used for the math functions
1530 // when the header files are preprocessed with the macro
1531 // __FINITE_MATH_ONLY__ enabled.
1532 // The '12' here is the length of the shortest name that can match.
1533 // We need to check the size before looking at Name[1] and Name[2]
1534 // so we may as well check a limit that will eliminate mismatches.
1535 if (Name.size() < 12 || Name[1] != '_')
1536 return false;
1537 switch (Name[2]) {
1538 default:
1539 return false;
1540 case 'a':
1541 return Name == "__acos_finite" || Name == "__acosf_finite" ||
1542 Name == "__asin_finite" || Name == "__asinf_finite" ||
1543 Name == "__atan2_finite" || Name == "__atan2f_finite";
1544 case 'c':
1545 return Name == "__cosh_finite" || Name == "__coshf_finite";
1546 case 'e':
1547 return Name == "__exp_finite" || Name == "__expf_finite" ||
1548 Name == "__exp2_finite" || Name == "__exp2f_finite";
1549 case 'l':
1550 return Name == "__log_finite" || Name == "__logf_finite" ||
1551 Name == "__log10_finite" || Name == "__log10f_finite";
1552 case 'p':
1553 return Name == "__pow_finite" || Name == "__powf_finite";
1554 case 's':
1555 return Name == "__sinh_finite" || Name == "__sinhf_finite";
1560 namespace {
1562 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1563 if (Ty->isHalfTy() || Ty->isFloatTy()) {
1564 APFloat APF(V);
1565 bool unused;
1566 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1567 return ConstantFP::get(Ty->getContext(), APF);
1569 if (Ty->isDoubleTy())
1570 return ConstantFP::get(Ty->getContext(), APFloat(V));
1571 llvm_unreachable("Can only constant fold half/float/double");
1574 /// Clear the floating-point exception state.
1575 inline void llvm_fenv_clearexcept() {
1576 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1577 feclearexcept(FE_ALL_EXCEPT);
1578 #endif
1579 errno = 0;
1582 /// Test if a floating-point exception was raised.
1583 inline bool llvm_fenv_testexcept() {
1584 int errno_val = errno;
1585 if (errno_val == ERANGE || errno_val == EDOM)
1586 return true;
1587 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1588 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1589 return true;
1590 #endif
1591 return false;
1594 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
1595 llvm_fenv_clearexcept();
1596 V = NativeFP(V);
1597 if (llvm_fenv_testexcept()) {
1598 llvm_fenv_clearexcept();
1599 return nullptr;
1602 return GetConstantFoldFPValue(V, Ty);
1605 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
1606 double W, Type *Ty) {
1607 llvm_fenv_clearexcept();
1608 V = NativeFP(V, W);
1609 if (llvm_fenv_testexcept()) {
1610 llvm_fenv_clearexcept();
1611 return nullptr;
1614 return GetConstantFoldFPValue(V, Ty);
1617 /// Attempt to fold an SSE floating point to integer conversion of a constant
1618 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1619 /// used (toward nearest, ties to even). This matches the behavior of the
1620 /// non-truncating SSE instructions in the default rounding mode. The desired
1621 /// integer type Ty is used to select how many bits are available for the
1622 /// result. Returns null if the conversion cannot be performed, otherwise
1623 /// returns the Constant value resulting from the conversion.
1624 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1625 Type *Ty, bool IsSigned) {
1626 // All of these conversion intrinsics form an integer of at most 64bits.
1627 unsigned ResultWidth = Ty->getIntegerBitWidth();
1628 assert(ResultWidth <= 64 &&
1629 "Can only constant fold conversions to 64 and 32 bit ints");
1631 uint64_t UIntVal;
1632 bool isExact = false;
1633 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1634 : APFloat::rmNearestTiesToEven;
1635 APFloat::opStatus status =
1636 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1637 IsSigned, mode, &isExact);
1638 if (status != APFloat::opOK &&
1639 (!roundTowardZero || status != APFloat::opInexact))
1640 return nullptr;
1641 return ConstantInt::get(Ty, UIntVal, IsSigned);
1644 double getValueAsDouble(ConstantFP *Op) {
1645 Type *Ty = Op->getType();
1647 if (Ty->isFloatTy())
1648 return Op->getValueAPF().convertToFloat();
1650 if (Ty->isDoubleTy())
1651 return Op->getValueAPF().convertToDouble();
1653 bool unused;
1654 APFloat APF = Op->getValueAPF();
1655 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1656 return APF.convertToDouble();
1659 static bool isManifestConstant(const Constant *c) {
1660 if (isa<ConstantData>(c)) {
1661 return true;
1662 } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
1663 for (const Value *subc : c->operand_values()) {
1664 if (!isManifestConstant(cast<Constant>(subc)))
1665 return false;
1667 return true;
1669 return false;
1672 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1673 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1674 C = &CI->getValue();
1675 return true;
1677 if (isa<UndefValue>(Op)) {
1678 C = nullptr;
1679 return true;
1681 return false;
1684 static Constant *ConstantFoldScalarCall1(StringRef Name,
1685 Intrinsic::ID IntrinsicID,
1686 Type *Ty,
1687 ArrayRef<Constant *> Operands,
1688 const TargetLibraryInfo *TLI,
1689 const CallBase *Call) {
1690 assert(Operands.size() == 1 && "Wrong number of operands.");
1692 if (IntrinsicID == Intrinsic::is_constant) {
1693 // We know we have a "Constant" argument. But we want to only
1694 // return true for manifest constants, not those that depend on
1695 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1696 if (isManifestConstant(Operands[0]))
1697 return ConstantInt::getTrue(Ty->getContext());
1698 return nullptr;
1700 if (isa<UndefValue>(Operands[0])) {
1701 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1702 // ctpop() is between 0 and bitwidth, pick 0 for undef.
1703 if (IntrinsicID == Intrinsic::cos ||
1704 IntrinsicID == Intrinsic::ctpop)
1705 return Constant::getNullValue(Ty);
1706 if (IntrinsicID == Intrinsic::bswap ||
1707 IntrinsicID == Intrinsic::bitreverse ||
1708 IntrinsicID == Intrinsic::launder_invariant_group ||
1709 IntrinsicID == Intrinsic::strip_invariant_group)
1710 return Operands[0];
1713 if (isa<ConstantPointerNull>(Operands[0])) {
1714 // launder(null) == null == strip(null) iff in addrspace 0
1715 if (IntrinsicID == Intrinsic::launder_invariant_group ||
1716 IntrinsicID == Intrinsic::strip_invariant_group) {
1717 // If instruction is not yet put in a basic block (e.g. when cloning
1718 // a function during inlining), Call's caller may not be available.
1719 // So check Call's BB first before querying Call->getCaller.
1720 const Function *Caller =
1721 Call->getParent() ? Call->getCaller() : nullptr;
1722 if (Caller &&
1723 !NullPointerIsDefined(
1724 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1725 return Operands[0];
1727 return nullptr;
1731 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1732 if (IntrinsicID == Intrinsic::convert_to_fp16) {
1733 APFloat Val(Op->getValueAPF());
1735 bool lost = false;
1736 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1738 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1741 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1742 return nullptr;
1744 // Use internal versions of these intrinsics.
1745 APFloat U = Op->getValueAPF();
1747 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1748 U.roundToIntegral(APFloat::rmNearestTiesToEven);
1749 return ConstantFP::get(Ty->getContext(), U);
1752 if (IntrinsicID == Intrinsic::round) {
1753 U.roundToIntegral(APFloat::rmNearestTiesToAway);
1754 return ConstantFP::get(Ty->getContext(), U);
1757 if (IntrinsicID == Intrinsic::ceil) {
1758 U.roundToIntegral(APFloat::rmTowardPositive);
1759 return ConstantFP::get(Ty->getContext(), U);
1762 if (IntrinsicID == Intrinsic::floor) {
1763 U.roundToIntegral(APFloat::rmTowardNegative);
1764 return ConstantFP::get(Ty->getContext(), U);
1767 if (IntrinsicID == Intrinsic::trunc) {
1768 U.roundToIntegral(APFloat::rmTowardZero);
1769 return ConstantFP::get(Ty->getContext(), U);
1772 if (IntrinsicID == Intrinsic::fabs) {
1773 U.clearSign();
1774 return ConstantFP::get(Ty->getContext(), U);
1777 /// We only fold functions with finite arguments. Folding NaN and inf is
1778 /// likely to be aborted with an exception anyway, and some host libms
1779 /// have known errors raising exceptions.
1780 if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1781 return nullptr;
1783 /// Currently APFloat versions of these functions do not exist, so we use
1784 /// the host native double versions. Float versions are not called
1785 /// directly but for all these it is true (float)(f((double)arg)) ==
1786 /// f(arg). Long double not supported yet.
1787 double V = getValueAsDouble(Op);
1789 switch (IntrinsicID) {
1790 default: break;
1791 case Intrinsic::log:
1792 return ConstantFoldFP(log, V, Ty);
1793 case Intrinsic::log2:
1794 // TODO: What about hosts that lack a C99 library?
1795 return ConstantFoldFP(Log2, V, Ty);
1796 case Intrinsic::log10:
1797 // TODO: What about hosts that lack a C99 library?
1798 return ConstantFoldFP(log10, V, Ty);
1799 case Intrinsic::exp:
1800 return ConstantFoldFP(exp, V, Ty);
1801 case Intrinsic::exp2:
1802 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
1803 return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1804 case Intrinsic::sin:
1805 return ConstantFoldFP(sin, V, Ty);
1806 case Intrinsic::cos:
1807 return ConstantFoldFP(cos, V, Ty);
1808 case Intrinsic::sqrt:
1809 return ConstantFoldFP(sqrt, V, Ty);
1812 if (!TLI)
1813 return nullptr;
1815 LibFunc Func = NotLibFunc;
1816 TLI->getLibFunc(Name, Func);
1817 switch (Func) {
1818 default:
1819 break;
1820 case LibFunc_acos:
1821 case LibFunc_acosf:
1822 case LibFunc_acos_finite:
1823 case LibFunc_acosf_finite:
1824 if (TLI->has(Func))
1825 return ConstantFoldFP(acos, V, Ty);
1826 break;
1827 case LibFunc_asin:
1828 case LibFunc_asinf:
1829 case LibFunc_asin_finite:
1830 case LibFunc_asinf_finite:
1831 if (TLI->has(Func))
1832 return ConstantFoldFP(asin, V, Ty);
1833 break;
1834 case LibFunc_atan:
1835 case LibFunc_atanf:
1836 if (TLI->has(Func))
1837 return ConstantFoldFP(atan, V, Ty);
1838 break;
1839 case LibFunc_ceil:
1840 case LibFunc_ceilf:
1841 if (TLI->has(Func)) {
1842 U.roundToIntegral(APFloat::rmTowardPositive);
1843 return ConstantFP::get(Ty->getContext(), U);
1845 break;
1846 case LibFunc_cos:
1847 case LibFunc_cosf:
1848 if (TLI->has(Func))
1849 return ConstantFoldFP(cos, V, Ty);
1850 break;
1851 case LibFunc_cosh:
1852 case LibFunc_coshf:
1853 case LibFunc_cosh_finite:
1854 case LibFunc_coshf_finite:
1855 if (TLI->has(Func))
1856 return ConstantFoldFP(cosh, V, Ty);
1857 break;
1858 case LibFunc_exp:
1859 case LibFunc_expf:
1860 case LibFunc_exp_finite:
1861 case LibFunc_expf_finite:
1862 if (TLI->has(Func))
1863 return ConstantFoldFP(exp, V, Ty);
1864 break;
1865 case LibFunc_exp2:
1866 case LibFunc_exp2f:
1867 case LibFunc_exp2_finite:
1868 case LibFunc_exp2f_finite:
1869 if (TLI->has(Func))
1870 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
1871 return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1872 break;
1873 case LibFunc_fabs:
1874 case LibFunc_fabsf:
1875 if (TLI->has(Func)) {
1876 U.clearSign();
1877 return ConstantFP::get(Ty->getContext(), U);
1879 break;
1880 case LibFunc_floor:
1881 case LibFunc_floorf:
1882 if (TLI->has(Func)) {
1883 U.roundToIntegral(APFloat::rmTowardNegative);
1884 return ConstantFP::get(Ty->getContext(), U);
1886 break;
1887 case LibFunc_log:
1888 case LibFunc_logf:
1889 case LibFunc_log_finite:
1890 case LibFunc_logf_finite:
1891 if (V > 0.0 && TLI->has(Func))
1892 return ConstantFoldFP(log, V, Ty);
1893 break;
1894 case LibFunc_log2:
1895 case LibFunc_log2f:
1896 case LibFunc_log2_finite:
1897 case LibFunc_log2f_finite:
1898 if (V > 0.0 && TLI->has(Func))
1899 // TODO: What about hosts that lack a C99 library?
1900 return ConstantFoldFP(Log2, V, Ty);
1901 break;
1902 case LibFunc_log10:
1903 case LibFunc_log10f:
1904 case LibFunc_log10_finite:
1905 case LibFunc_log10f_finite:
1906 if (V > 0.0 && TLI->has(Func))
1907 // TODO: What about hosts that lack a C99 library?
1908 return ConstantFoldFP(log10, V, Ty);
1909 break;
1910 case LibFunc_nearbyint:
1911 case LibFunc_nearbyintf:
1912 case LibFunc_rint:
1913 case LibFunc_rintf:
1914 if (TLI->has(Func)) {
1915 U.roundToIntegral(APFloat::rmNearestTiesToEven);
1916 return ConstantFP::get(Ty->getContext(), U);
1918 break;
1919 case LibFunc_round:
1920 case LibFunc_roundf:
1921 if (TLI->has(Func)) {
1922 U.roundToIntegral(APFloat::rmNearestTiesToAway);
1923 return ConstantFP::get(Ty->getContext(), U);
1925 break;
1926 case LibFunc_sin:
1927 case LibFunc_sinf:
1928 if (TLI->has(Func))
1929 return ConstantFoldFP(sin, V, Ty);
1930 break;
1931 case LibFunc_sinh:
1932 case LibFunc_sinhf:
1933 case LibFunc_sinh_finite:
1934 case LibFunc_sinhf_finite:
1935 if (TLI->has(Func))
1936 return ConstantFoldFP(sinh, V, Ty);
1937 break;
1938 case LibFunc_sqrt:
1939 case LibFunc_sqrtf:
1940 if (V >= 0.0 && TLI->has(Func))
1941 return ConstantFoldFP(sqrt, V, Ty);
1942 break;
1943 case LibFunc_tan:
1944 case LibFunc_tanf:
1945 if (TLI->has(Func))
1946 return ConstantFoldFP(tan, V, Ty);
1947 break;
1948 case LibFunc_tanh:
1949 case LibFunc_tanhf:
1950 if (TLI->has(Func))
1951 return ConstantFoldFP(tanh, V, Ty);
1952 break;
1953 case LibFunc_trunc:
1954 case LibFunc_truncf:
1955 if (TLI->has(Func)) {
1956 U.roundToIntegral(APFloat::rmTowardZero);
1957 return ConstantFP::get(Ty->getContext(), U);
1959 break;
1961 return nullptr;
1964 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
1965 switch (IntrinsicID) {
1966 case Intrinsic::bswap:
1967 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1968 case Intrinsic::ctpop:
1969 return ConstantInt::get(Ty, Op->getValue().countPopulation());
1970 case Intrinsic::bitreverse:
1971 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
1972 case Intrinsic::convert_from_fp16: {
1973 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
1975 bool lost = false;
1976 APFloat::opStatus status = Val.convert(
1977 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
1979 // Conversion is always precise.
1980 (void)status;
1981 assert(status == APFloat::opOK && !lost &&
1982 "Precision lost during fp16 constfolding");
1984 return ConstantFP::get(Ty->getContext(), Val);
1986 default:
1987 return nullptr;
1991 // Support ConstantVector in case we have an Undef in the top.
1992 if (isa<ConstantVector>(Operands[0]) ||
1993 isa<ConstantDataVector>(Operands[0])) {
1994 auto *Op = cast<Constant>(Operands[0]);
1995 switch (IntrinsicID) {
1996 default: break;
1997 case Intrinsic::x86_sse_cvtss2si:
1998 case Intrinsic::x86_sse_cvtss2si64:
1999 case Intrinsic::x86_sse2_cvtsd2si:
2000 case Intrinsic::x86_sse2_cvtsd2si64:
2001 if (ConstantFP *FPOp =
2002 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2003 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2004 /*roundTowardZero=*/false, Ty,
2005 /*IsSigned*/true);
2006 break;
2007 case Intrinsic::x86_sse_cvttss2si:
2008 case Intrinsic::x86_sse_cvttss2si64:
2009 case Intrinsic::x86_sse2_cvttsd2si:
2010 case Intrinsic::x86_sse2_cvttsd2si64:
2011 if (ConstantFP *FPOp =
2012 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2013 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2014 /*roundTowardZero=*/true, Ty,
2015 /*IsSigned*/true);
2016 break;
2020 return nullptr;
2023 static Constant *ConstantFoldScalarCall2(StringRef Name,
2024 Intrinsic::ID IntrinsicID,
2025 Type *Ty,
2026 ArrayRef<Constant *> Operands,
2027 const TargetLibraryInfo *TLI,
2028 const CallBase *Call) {
2029 assert(Operands.size() == 2 && "Wrong number of operands.");
2031 if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2032 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2033 return nullptr;
2034 double Op1V = getValueAsDouble(Op1);
2036 if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2037 if (Op2->getType() != Op1->getType())
2038 return nullptr;
2040 double Op2V = getValueAsDouble(Op2);
2041 if (IntrinsicID == Intrinsic::pow) {
2042 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2044 if (IntrinsicID == Intrinsic::copysign) {
2045 APFloat V1 = Op1->getValueAPF();
2046 const APFloat &V2 = Op2->getValueAPF();
2047 V1.copySign(V2);
2048 return ConstantFP::get(Ty->getContext(), V1);
2051 if (IntrinsicID == Intrinsic::minnum) {
2052 const APFloat &C1 = Op1->getValueAPF();
2053 const APFloat &C2 = Op2->getValueAPF();
2054 return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
2057 if (IntrinsicID == Intrinsic::maxnum) {
2058 const APFloat &C1 = Op1->getValueAPF();
2059 const APFloat &C2 = Op2->getValueAPF();
2060 return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
2063 if (IntrinsicID == Intrinsic::minimum) {
2064 const APFloat &C1 = Op1->getValueAPF();
2065 const APFloat &C2 = Op2->getValueAPF();
2066 return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
2069 if (IntrinsicID == Intrinsic::maximum) {
2070 const APFloat &C1 = Op1->getValueAPF();
2071 const APFloat &C2 = Op2->getValueAPF();
2072 return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
2075 if (!TLI)
2076 return nullptr;
2078 LibFunc Func = NotLibFunc;
2079 TLI->getLibFunc(Name, Func);
2080 switch (Func) {
2081 default:
2082 break;
2083 case LibFunc_pow:
2084 case LibFunc_powf:
2085 case LibFunc_pow_finite:
2086 case LibFunc_powf_finite:
2087 if (TLI->has(Func))
2088 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2089 break;
2090 case LibFunc_fmod:
2091 case LibFunc_fmodf:
2092 if (TLI->has(Func)) {
2093 APFloat V = Op1->getValueAPF();
2094 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2095 return ConstantFP::get(Ty->getContext(), V);
2097 break;
2098 case LibFunc_atan2:
2099 case LibFunc_atan2f:
2100 case LibFunc_atan2_finite:
2101 case LibFunc_atan2f_finite:
2102 if (TLI->has(Func))
2103 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2104 break;
2106 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2107 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2108 return ConstantFP::get(Ty->getContext(),
2109 APFloat((float)std::pow((float)Op1V,
2110 (int)Op2C->getZExtValue())));
2111 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2112 return ConstantFP::get(Ty->getContext(),
2113 APFloat((float)std::pow((float)Op1V,
2114 (int)Op2C->getZExtValue())));
2115 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2116 return ConstantFP::get(Ty->getContext(),
2117 APFloat((double)std::pow((double)Op1V,
2118 (int)Op2C->getZExtValue())));
2120 return nullptr;
2123 if (Operands[0]->getType()->isIntegerTy() &&
2124 Operands[1]->getType()->isIntegerTy()) {
2125 const APInt *C0, *C1;
2126 if (!getConstIntOrUndef(Operands[0], C0) ||
2127 !getConstIntOrUndef(Operands[1], C1))
2128 return nullptr;
2130 switch (IntrinsicID) {
2131 default: break;
2132 case Intrinsic::usub_with_overflow:
2133 case Intrinsic::ssub_with_overflow:
2134 case Intrinsic::uadd_with_overflow:
2135 case Intrinsic::sadd_with_overflow:
2136 // X - undef -> { undef, false }
2137 // undef - X -> { undef, false }
2138 // X + undef -> { undef, false }
2139 // undef + x -> { undef, false }
2140 if (!C0 || !C1) {
2141 return ConstantStruct::get(
2142 cast<StructType>(Ty),
2143 {UndefValue::get(Ty->getStructElementType(0)),
2144 Constant::getNullValue(Ty->getStructElementType(1))});
2146 LLVM_FALLTHROUGH;
2147 case Intrinsic::smul_with_overflow:
2148 case Intrinsic::umul_with_overflow: {
2149 // undef * X -> { 0, false }
2150 // X * undef -> { 0, false }
2151 if (!C0 || !C1)
2152 return Constant::getNullValue(Ty);
2154 APInt Res;
2155 bool Overflow;
2156 switch (IntrinsicID) {
2157 default: llvm_unreachable("Invalid case");
2158 case Intrinsic::sadd_with_overflow:
2159 Res = C0->sadd_ov(*C1, Overflow);
2160 break;
2161 case Intrinsic::uadd_with_overflow:
2162 Res = C0->uadd_ov(*C1, Overflow);
2163 break;
2164 case Intrinsic::ssub_with_overflow:
2165 Res = C0->ssub_ov(*C1, Overflow);
2166 break;
2167 case Intrinsic::usub_with_overflow:
2168 Res = C0->usub_ov(*C1, Overflow);
2169 break;
2170 case Intrinsic::smul_with_overflow:
2171 Res = C0->smul_ov(*C1, Overflow);
2172 break;
2173 case Intrinsic::umul_with_overflow:
2174 Res = C0->umul_ov(*C1, Overflow);
2175 break;
2177 Constant *Ops[] = {
2178 ConstantInt::get(Ty->getContext(), Res),
2179 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2181 return ConstantStruct::get(cast<StructType>(Ty), Ops);
2183 case Intrinsic::uadd_sat:
2184 case Intrinsic::sadd_sat:
2185 if (!C0 && !C1)
2186 return UndefValue::get(Ty);
2187 if (!C0 || !C1)
2188 return Constant::getAllOnesValue(Ty);
2189 if (IntrinsicID == Intrinsic::uadd_sat)
2190 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2191 else
2192 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2193 case Intrinsic::usub_sat:
2194 case Intrinsic::ssub_sat:
2195 if (!C0 && !C1)
2196 return UndefValue::get(Ty);
2197 if (!C0 || !C1)
2198 return Constant::getNullValue(Ty);
2199 if (IntrinsicID == Intrinsic::usub_sat)
2200 return ConstantInt::get(Ty, C0->usub_sat(*C1));
2201 else
2202 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2203 case Intrinsic::cttz:
2204 case Intrinsic::ctlz:
2205 assert(C1 && "Must be constant int");
2207 // cttz(0, 1) and ctlz(0, 1) are undef.
2208 if (C1->isOneValue() && (!C0 || C0->isNullValue()))
2209 return UndefValue::get(Ty);
2210 if (!C0)
2211 return Constant::getNullValue(Ty);
2212 if (IntrinsicID == Intrinsic::cttz)
2213 return ConstantInt::get(Ty, C0->countTrailingZeros());
2214 else
2215 return ConstantInt::get(Ty, C0->countLeadingZeros());
2218 return nullptr;
2221 // Support ConstantVector in case we have an Undef in the top.
2222 if ((isa<ConstantVector>(Operands[0]) ||
2223 isa<ConstantDataVector>(Operands[0])) &&
2224 // Check for default rounding mode.
2225 // FIXME: Support other rounding modes?
2226 isa<ConstantInt>(Operands[1]) &&
2227 cast<ConstantInt>(Operands[1])->getValue() == 4) {
2228 auto *Op = cast<Constant>(Operands[0]);
2229 switch (IntrinsicID) {
2230 default: break;
2231 case Intrinsic::x86_avx512_vcvtss2si32:
2232 case Intrinsic::x86_avx512_vcvtss2si64:
2233 case Intrinsic::x86_avx512_vcvtsd2si32:
2234 case Intrinsic::x86_avx512_vcvtsd2si64:
2235 if (ConstantFP *FPOp =
2236 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2237 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2238 /*roundTowardZero=*/false, Ty,
2239 /*IsSigned*/true);
2240 break;
2241 case Intrinsic::x86_avx512_vcvtss2usi32:
2242 case Intrinsic::x86_avx512_vcvtss2usi64:
2243 case Intrinsic::x86_avx512_vcvtsd2usi32:
2244 case Intrinsic::x86_avx512_vcvtsd2usi64:
2245 if (ConstantFP *FPOp =
2246 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2247 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2248 /*roundTowardZero=*/false, Ty,
2249 /*IsSigned*/false);
2250 break;
2251 case Intrinsic::x86_avx512_cvttss2si:
2252 case Intrinsic::x86_avx512_cvttss2si64:
2253 case Intrinsic::x86_avx512_cvttsd2si:
2254 case Intrinsic::x86_avx512_cvttsd2si64:
2255 if (ConstantFP *FPOp =
2256 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2257 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2258 /*roundTowardZero=*/true, Ty,
2259 /*IsSigned*/true);
2260 break;
2261 case Intrinsic::x86_avx512_cvttss2usi:
2262 case Intrinsic::x86_avx512_cvttss2usi64:
2263 case Intrinsic::x86_avx512_cvttsd2usi:
2264 case Intrinsic::x86_avx512_cvttsd2usi64:
2265 if (ConstantFP *FPOp =
2266 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2267 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2268 /*roundTowardZero=*/true, Ty,
2269 /*IsSigned*/false);
2270 break;
2273 return nullptr;
2276 static Constant *ConstantFoldScalarCall3(StringRef Name,
2277 Intrinsic::ID IntrinsicID,
2278 Type *Ty,
2279 ArrayRef<Constant *> Operands,
2280 const TargetLibraryInfo *TLI,
2281 const CallBase *Call) {
2282 assert(Operands.size() == 3 && "Wrong number of operands.");
2284 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2285 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2286 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2287 switch (IntrinsicID) {
2288 default: break;
2289 case Intrinsic::fma:
2290 case Intrinsic::fmuladd: {
2291 APFloat V = Op1->getValueAPF();
2292 V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(),
2293 APFloat::rmNearestTiesToEven);
2294 return ConstantFP::get(Ty->getContext(), V);
2301 if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
2302 if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
2303 if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
2304 switch (IntrinsicID) {
2305 default: break;
2306 case Intrinsic::smul_fix:
2307 case Intrinsic::smul_fix_sat: {
2308 // This code performs rounding towards negative infinity in case the
2309 // result cannot be represented exactly for the given scale. Targets
2310 // that do care about rounding should use a target hook for specifying
2311 // how rounding should be done, and provide their own folding to be
2312 // consistent with rounding. This is the same approach as used by
2313 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2314 APInt Lhs = Op1->getValue();
2315 APInt Rhs = Op2->getValue();
2316 unsigned Scale = Op3->getValue().getZExtValue();
2317 unsigned Width = Lhs.getBitWidth();
2318 assert(Scale < Width && "Illegal scale.");
2319 unsigned ExtendedWidth = Width * 2;
2320 APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
2321 Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
2322 if (IntrinsicID == Intrinsic::smul_fix_sat) {
2323 APInt MaxValue =
2324 APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2325 APInt MinValue =
2326 APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2327 Product = APIntOps::smin(Product, MaxValue);
2328 Product = APIntOps::smax(Product, MinValue);
2330 return ConstantInt::get(Ty->getContext(),
2331 Product.sextOrTrunc(Width));
2338 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2339 const APInt *C0, *C1, *C2;
2340 if (!getConstIntOrUndef(Operands[0], C0) ||
2341 !getConstIntOrUndef(Operands[1], C1) ||
2342 !getConstIntOrUndef(Operands[2], C2))
2343 return nullptr;
2345 bool IsRight = IntrinsicID == Intrinsic::fshr;
2346 if (!C2)
2347 return Operands[IsRight ? 1 : 0];
2348 if (!C0 && !C1)
2349 return UndefValue::get(Ty);
2351 // The shift amount is interpreted as modulo the bitwidth. If the shift
2352 // amount is effectively 0, avoid UB due to oversized inverse shift below.
2353 unsigned BitWidth = C2->getBitWidth();
2354 unsigned ShAmt = C2->urem(BitWidth);
2355 if (!ShAmt)
2356 return Operands[IsRight ? 1 : 0];
2358 // (C0 << ShlAmt) | (C1 >> LshrAmt)
2359 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2360 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2361 if (!C0)
2362 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2363 if (!C1)
2364 return ConstantInt::get(Ty, C0->shl(ShlAmt));
2365 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2368 return nullptr;
2371 static Constant *ConstantFoldScalarCall(StringRef Name,
2372 Intrinsic::ID IntrinsicID,
2373 Type *Ty,
2374 ArrayRef<Constant *> Operands,
2375 const TargetLibraryInfo *TLI,
2376 const CallBase *Call) {
2377 if (Operands.size() == 1)
2378 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2380 if (Operands.size() == 2)
2381 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2383 if (Operands.size() == 3)
2384 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2386 return nullptr;
2389 static Constant *ConstantFoldVectorCall(StringRef Name,
2390 Intrinsic::ID IntrinsicID,
2391 VectorType *VTy,
2392 ArrayRef<Constant *> Operands,
2393 const DataLayout &DL,
2394 const TargetLibraryInfo *TLI,
2395 const CallBase *Call) {
2396 SmallVector<Constant *, 4> Result(VTy->getNumElements());
2397 SmallVector<Constant *, 4> Lane(Operands.size());
2398 Type *Ty = VTy->getElementType();
2400 if (IntrinsicID == Intrinsic::masked_load) {
2401 auto *SrcPtr = Operands[0];
2402 auto *Mask = Operands[2];
2403 auto *Passthru = Operands[3];
2405 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
2407 SmallVector<Constant *, 32> NewElements;
2408 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2409 auto *MaskElt = Mask->getAggregateElement(I);
2410 if (!MaskElt)
2411 break;
2412 auto *PassthruElt = Passthru->getAggregateElement(I);
2413 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2414 if (isa<UndefValue>(MaskElt)) {
2415 if (PassthruElt)
2416 NewElements.push_back(PassthruElt);
2417 else if (VecElt)
2418 NewElements.push_back(VecElt);
2419 else
2420 return nullptr;
2422 if (MaskElt->isNullValue()) {
2423 if (!PassthruElt)
2424 return nullptr;
2425 NewElements.push_back(PassthruElt);
2426 } else if (MaskElt->isOneValue()) {
2427 if (!VecElt)
2428 return nullptr;
2429 NewElements.push_back(VecElt);
2430 } else {
2431 return nullptr;
2434 if (NewElements.size() != VTy->getNumElements())
2435 return nullptr;
2436 return ConstantVector::get(NewElements);
2439 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2440 // Gather a column of constants.
2441 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
2442 // Some intrinsics use a scalar type for certain arguments.
2443 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
2444 Lane[J] = Operands[J];
2445 continue;
2448 Constant *Agg = Operands[J]->getAggregateElement(I);
2449 if (!Agg)
2450 return nullptr;
2452 Lane[J] = Agg;
2455 // Use the regular scalar folding to simplify this column.
2456 Constant *Folded =
2457 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
2458 if (!Folded)
2459 return nullptr;
2460 Result[I] = Folded;
2463 return ConstantVector::get(Result);
2466 } // end anonymous namespace
2468 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
2469 ArrayRef<Constant *> Operands,
2470 const TargetLibraryInfo *TLI) {
2471 if (Call->isNoBuiltin() || Call->isStrictFP())
2472 return nullptr;
2473 if (!F->hasName())
2474 return nullptr;
2475 StringRef Name = F->getName();
2477 Type *Ty = F->getReturnType();
2479 if (auto *VTy = dyn_cast<VectorType>(Ty))
2480 return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
2481 F->getParent()->getDataLayout(), TLI, Call);
2483 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
2484 Call);
2487 bool llvm::isMathLibCallNoop(const CallBase *Call,
2488 const TargetLibraryInfo *TLI) {
2489 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
2490 // (and to some extent ConstantFoldScalarCall).
2491 if (Call->isNoBuiltin() || Call->isStrictFP())
2492 return false;
2493 Function *F = Call->getCalledFunction();
2494 if (!F)
2495 return false;
2497 LibFunc Func;
2498 if (!TLI || !TLI->getLibFunc(*F, Func))
2499 return false;
2501 if (Call->getNumArgOperands() == 1) {
2502 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
2503 const APFloat &Op = OpC->getValueAPF();
2504 switch (Func) {
2505 case LibFunc_logl:
2506 case LibFunc_log:
2507 case LibFunc_logf:
2508 case LibFunc_log2l:
2509 case LibFunc_log2:
2510 case LibFunc_log2f:
2511 case LibFunc_log10l:
2512 case LibFunc_log10:
2513 case LibFunc_log10f:
2514 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
2516 case LibFunc_expl:
2517 case LibFunc_exp:
2518 case LibFunc_expf:
2519 // FIXME: These boundaries are slightly conservative.
2520 if (OpC->getType()->isDoubleTy())
2521 return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan &&
2522 Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan;
2523 if (OpC->getType()->isFloatTy())
2524 return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan &&
2525 Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan;
2526 break;
2528 case LibFunc_exp2l:
2529 case LibFunc_exp2:
2530 case LibFunc_exp2f:
2531 // FIXME: These boundaries are slightly conservative.
2532 if (OpC->getType()->isDoubleTy())
2533 return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan &&
2534 Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan;
2535 if (OpC->getType()->isFloatTy())
2536 return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan &&
2537 Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan;
2538 break;
2540 case LibFunc_sinl:
2541 case LibFunc_sin:
2542 case LibFunc_sinf:
2543 case LibFunc_cosl:
2544 case LibFunc_cos:
2545 case LibFunc_cosf:
2546 return !Op.isInfinity();
2548 case LibFunc_tanl:
2549 case LibFunc_tan:
2550 case LibFunc_tanf: {
2551 // FIXME: Stop using the host math library.
2552 // FIXME: The computation isn't done in the right precision.
2553 Type *Ty = OpC->getType();
2554 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2555 double OpV = getValueAsDouble(OpC);
2556 return ConstantFoldFP(tan, OpV, Ty) != nullptr;
2558 break;
2561 case LibFunc_asinl:
2562 case LibFunc_asin:
2563 case LibFunc_asinf:
2564 case LibFunc_acosl:
2565 case LibFunc_acos:
2566 case LibFunc_acosf:
2567 return Op.compare(APFloat(Op.getSemantics(), "-1")) !=
2568 APFloat::cmpLessThan &&
2569 Op.compare(APFloat(Op.getSemantics(), "1")) !=
2570 APFloat::cmpGreaterThan;
2572 case LibFunc_sinh:
2573 case LibFunc_cosh:
2574 case LibFunc_sinhf:
2575 case LibFunc_coshf:
2576 case LibFunc_sinhl:
2577 case LibFunc_coshl:
2578 // FIXME: These boundaries are slightly conservative.
2579 if (OpC->getType()->isDoubleTy())
2580 return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan &&
2581 Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan;
2582 if (OpC->getType()->isFloatTy())
2583 return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan &&
2584 Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan;
2585 break;
2587 case LibFunc_sqrtl:
2588 case LibFunc_sqrt:
2589 case LibFunc_sqrtf:
2590 return Op.isNaN() || Op.isZero() || !Op.isNegative();
2592 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
2593 // maybe others?
2594 default:
2595 break;
2600 if (Call->getNumArgOperands() == 2) {
2601 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
2602 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
2603 if (Op0C && Op1C) {
2604 const APFloat &Op0 = Op0C->getValueAPF();
2605 const APFloat &Op1 = Op1C->getValueAPF();
2607 switch (Func) {
2608 case LibFunc_powl:
2609 case LibFunc_pow:
2610 case LibFunc_powf: {
2611 // FIXME: Stop using the host math library.
2612 // FIXME: The computation isn't done in the right precision.
2613 Type *Ty = Op0C->getType();
2614 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2615 if (Ty == Op1C->getType()) {
2616 double Op0V = getValueAsDouble(Op0C);
2617 double Op1V = getValueAsDouble(Op1C);
2618 return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
2621 break;
2624 case LibFunc_fmodl:
2625 case LibFunc_fmod:
2626 case LibFunc_fmodf:
2627 return Op0.isNaN() || Op1.isNaN() ||
2628 (!Op0.isInfinity() && !Op1.isZero());
2630 default:
2631 break;
2636 return false;