[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / Analysis / DependenceGraphBuilder.cpp
blobed1d8351b2f03bbed9470206e4445734325ecbef
1 //===- DependenceGraphBuilder.cpp ------------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file implements common steps of the build algorithm for construction
9 // of dependence graphs such as DDG and PDG.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/Analysis/DependenceGraphBuilder.h"
13 #include "llvm/ADT/SCCIterator.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/DDG.h"
17 using namespace llvm;
19 #define DEBUG_TYPE "dgb"
21 STATISTIC(TotalGraphs, "Number of dependence graphs created.");
22 STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
23 STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
24 STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
25 STATISTIC(TotalConfusedEdges,
26 "Number of confused memory dependencies between two nodes.");
27 STATISTIC(TotalEdgeReversals,
28 "Number of times the source and sink of dependence was reversed to "
29 "expose cycles in the graph.");
31 using InstructionListType = SmallVector<Instruction *, 2>;
33 //===--------------------------------------------------------------------===//
34 // AbstractDependenceGraphBuilder implementation
35 //===--------------------------------------------------------------------===//
37 template <class G>
38 void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
39 ++TotalGraphs;
40 assert(IMap.empty() && "Expected empty instruction map at start");
41 for (BasicBlock *BB : BBList)
42 for (Instruction &I : *BB) {
43 auto &NewNode = createFineGrainedNode(I);
44 IMap.insert(std::make_pair(&I, &NewNode));
45 ++TotalFineGrainedNodes;
49 template <class G>
50 void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
51 // Create a root node that connects to every connected component of the graph.
52 // This is done to allow graph iterators to visit all the disjoint components
53 // of the graph, in a single walk.
55 // This algorithm works by going through each node of the graph and for each
56 // node N, do a DFS starting from N. A rooted edge is established between the
57 // root node and N (if N is not yet visited). All the nodes reachable from N
58 // are marked as visited and are skipped in the DFS of subsequent nodes.
60 // Note: This algorithm tries to limit the number of edges out of the root
61 // node to some extent, but there may be redundant edges created depending on
62 // the iteration order. For example for a graph {A -> B}, an edge from the
63 // root node is added to both nodes if B is visited before A. While it does
64 // not result in minimal number of edges, this approach saves compile-time
65 // while keeping the number of edges in check.
66 auto &RootNode = createRootNode();
67 df_iterator_default_set<const NodeType *, 4> Visited;
68 for (auto *N : Graph) {
69 if (*N == RootNode)
70 continue;
71 for (auto I : depth_first_ext(N, Visited))
72 if (I == N)
73 createRootedEdge(RootNode, *N);
77 template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
78 for (NodeType *N : Graph) {
79 InstructionListType SrcIList;
80 N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);
82 // Use a set to mark the targets that we link to N, so we don't add
83 // duplicate def-use edges when more than one instruction in a target node
84 // use results of instructions that are contained in N.
85 SmallPtrSet<NodeType *, 4> VisitedTargets;
87 for (Instruction *II : SrcIList) {
88 for (User *U : II->users()) {
89 Instruction *UI = dyn_cast<Instruction>(U);
90 if (!UI)
91 continue;
92 NodeType *DstNode = nullptr;
93 if (IMap.find(UI) != IMap.end())
94 DstNode = IMap.find(UI)->second;
96 // In the case of loops, the scope of the subgraph is all the
97 // basic blocks (and instructions within them) belonging to the loop. We
98 // simply ignore all the edges coming from (or going into) instructions
99 // or basic blocks outside of this range.
100 if (!DstNode) {
101 LLVM_DEBUG(
102 dbgs()
103 << "skipped def-use edge since the sink" << *UI
104 << " is outside the range of instructions being considered.\n");
105 continue;
108 // Self dependencies are ignored because they are redundant and
109 // uninteresting.
110 if (DstNode == N) {
111 LLVM_DEBUG(dbgs()
112 << "skipped def-use edge since the sink and the source ("
113 << N << ") are the same.\n");
114 continue;
117 if (VisitedTargets.insert(DstNode).second) {
118 createDefUseEdge(*N, *DstNode);
119 ++TotalDefUseEdges;
126 template <class G>
127 void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
128 using DGIterator = typename G::iterator;
129 auto isMemoryAccess = [](const Instruction *I) {
130 return I->mayReadOrWriteMemory();
132 for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
133 InstructionListType SrcIList;
134 (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
135 if (SrcIList.empty())
136 continue;
138 for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
139 if (**SrcIt == **DstIt)
140 continue;
141 InstructionListType DstIList;
142 (*DstIt)->collectInstructions(isMemoryAccess, DstIList);
143 if (DstIList.empty())
144 continue;
145 bool ForwardEdgeCreated = false;
146 bool BackwardEdgeCreated = false;
147 for (Instruction *ISrc : SrcIList) {
148 for (Instruction *IDst : DstIList) {
149 auto D = DI.depends(ISrc, IDst, true);
150 if (!D)
151 continue;
153 // If we have a dependence with its left-most non-'=' direction
154 // being '>' we need to reverse the direction of the edge, because
155 // the source of the dependence cannot occur after the sink. For
156 // confused dependencies, we will create edges in both directions to
157 // represent the possibility of a cycle.
159 auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
160 if (!ForwardEdgeCreated) {
161 createMemoryEdge(Src, Dst);
162 ++TotalMemoryEdges;
164 if (!BackwardEdgeCreated) {
165 createMemoryEdge(Dst, Src);
166 ++TotalMemoryEdges;
168 ForwardEdgeCreated = BackwardEdgeCreated = true;
169 ++TotalConfusedEdges;
172 auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
173 if (!ForwardEdgeCreated) {
174 createMemoryEdge(Src, Dst);
175 ++TotalMemoryEdges;
177 ForwardEdgeCreated = true;
180 auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
181 if (!BackwardEdgeCreated) {
182 createMemoryEdge(Dst, Src);
183 ++TotalMemoryEdges;
185 BackwardEdgeCreated = true;
188 if (D->isConfused())
189 createConfusedEdges(**SrcIt, **DstIt);
190 else if (D->isOrdered() && !D->isLoopIndependent()) {
191 bool ReversedEdge = false;
192 for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
193 if (D->getDirection(Level) == Dependence::DVEntry::EQ)
194 continue;
195 else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
196 createBackwardEdge(**SrcIt, **DstIt);
197 ReversedEdge = true;
198 ++TotalEdgeReversals;
199 break;
200 } else if (D->getDirection(Level) == Dependence::DVEntry::LT)
201 break;
202 else {
203 createConfusedEdges(**SrcIt, **DstIt);
204 break;
207 if (!ReversedEdge)
208 createForwardEdge(**SrcIt, **DstIt);
209 } else
210 createForwardEdge(**SrcIt, **DstIt);
212 // Avoid creating duplicate edges.
213 if (ForwardEdgeCreated && BackwardEdgeCreated)
214 break;
217 // If we've created edges in both directions, there is no more
218 // unique edge that we can create between these two nodes, so we
219 // can exit early.
220 if (ForwardEdgeCreated && BackwardEdgeCreated)
221 break;
227 template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
228 template class llvm::DependenceGraphInfo<DDGNode>;