[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / CodeGen / BranchFolding.cpp
blob455916eeb82fbd199e89dbbc7f2c8a025a094318
1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block. This pass often results in dead MBB's, which
11 // it then removes.
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
17 //===----------------------------------------------------------------------===//
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/LivePhysRegs.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/TargetPassConfig.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/MC/LaneBitmask.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <cassert>
60 #include <cstddef>
61 #include <iterator>
62 #include <numeric>
63 #include <vector>
65 using namespace llvm;
67 #define DEBUG_TYPE "branch-folder"
69 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
70 STATISTIC(NumBranchOpts, "Number of branches optimized");
71 STATISTIC(NumTailMerge , "Number of block tails merged");
72 STATISTIC(NumHoist , "Number of times common instructions are hoisted");
73 STATISTIC(NumTailCalls, "Number of tail calls optimized");
75 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
76 cl::init(cl::BOU_UNSET), cl::Hidden);
78 // Throttle for huge numbers of predecessors (compile speed problems)
79 static cl::opt<unsigned>
80 TailMergeThreshold("tail-merge-threshold",
81 cl::desc("Max number of predecessors to consider tail merging"),
82 cl::init(150), cl::Hidden);
84 // Heuristic for tail merging (and, inversely, tail duplication).
85 // TODO: This should be replaced with a target query.
86 static cl::opt<unsigned>
87 TailMergeSize("tail-merge-size",
88 cl::desc("Min number of instructions to consider tail merging"),
89 cl::init(3), cl::Hidden);
91 namespace {
93 /// BranchFolderPass - Wrap branch folder in a machine function pass.
94 class BranchFolderPass : public MachineFunctionPass {
95 public:
96 static char ID;
98 explicit BranchFolderPass(): MachineFunctionPass(ID) {}
100 bool runOnMachineFunction(MachineFunction &MF) override;
102 void getAnalysisUsage(AnalysisUsage &AU) const override {
103 AU.addRequired<MachineBlockFrequencyInfo>();
104 AU.addRequired<MachineBranchProbabilityInfo>();
105 AU.addRequired<TargetPassConfig>();
106 MachineFunctionPass::getAnalysisUsage(AU);
110 } // end anonymous namespace
112 char BranchFolderPass::ID = 0;
114 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
116 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
117 "Control Flow Optimizer", false, false)
119 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
120 if (skipFunction(MF.getFunction()))
121 return false;
123 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
124 // TailMerge can create jump into if branches that make CFG irreducible for
125 // HW that requires structurized CFG.
126 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
127 PassConfig->getEnableTailMerge();
128 BranchFolder::MBFIWrapper MBBFreqInfo(
129 getAnalysis<MachineBlockFrequencyInfo>());
130 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
131 getAnalysis<MachineBranchProbabilityInfo>());
132 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
133 return Folder.OptimizeFunction(
134 MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
135 MMIWP ? &MMIWP->getMMI() : nullptr);
138 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
139 MBFIWrapper &FreqInfo,
140 const MachineBranchProbabilityInfo &ProbInfo,
141 unsigned MinTailLength)
142 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
143 MBBFreqInfo(FreqInfo), MBPI(ProbInfo) {
144 if (MinCommonTailLength == 0)
145 MinCommonTailLength = TailMergeSize;
146 switch (FlagEnableTailMerge) {
147 case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
148 case cl::BOU_TRUE: EnableTailMerge = true; break;
149 case cl::BOU_FALSE: EnableTailMerge = false; break;
153 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
154 assert(MBB->pred_empty() && "MBB must be dead!");
155 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
157 MachineFunction *MF = MBB->getParent();
158 // drop all successors.
159 while (!MBB->succ_empty())
160 MBB->removeSuccessor(MBB->succ_end()-1);
162 // Avoid matching if this pointer gets reused.
163 TriedMerging.erase(MBB);
165 // Update call site info.
166 std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
167 if (MI.isCall(MachineInstr::IgnoreBundle))
168 MF->eraseCallSiteInfo(&MI);
170 // Remove the block.
171 MF->erase(MBB);
172 EHScopeMembership.erase(MBB);
173 if (MLI)
174 MLI->removeBlock(MBB);
177 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
178 const TargetInstrInfo *tii,
179 const TargetRegisterInfo *tri,
180 MachineModuleInfo *mmi,
181 MachineLoopInfo *mli, bool AfterPlacement) {
182 if (!tii) return false;
184 TriedMerging.clear();
186 MachineRegisterInfo &MRI = MF.getRegInfo();
187 AfterBlockPlacement = AfterPlacement;
188 TII = tii;
189 TRI = tri;
190 MMI = mmi;
191 MLI = mli;
192 this->MRI = &MRI;
194 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
195 if (!UpdateLiveIns)
196 MRI.invalidateLiveness();
198 // Fix CFG. The later algorithms expect it to be right.
199 bool MadeChange = false;
200 for (MachineBasicBlock &MBB : MF) {
201 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
202 SmallVector<MachineOperand, 4> Cond;
203 if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
204 MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
207 // Recalculate EH scope membership.
208 EHScopeMembership = getEHScopeMembership(MF);
210 bool MadeChangeThisIteration = true;
211 while (MadeChangeThisIteration) {
212 MadeChangeThisIteration = TailMergeBlocks(MF);
213 // No need to clean up if tail merging does not change anything after the
214 // block placement.
215 if (!AfterBlockPlacement || MadeChangeThisIteration)
216 MadeChangeThisIteration |= OptimizeBranches(MF);
217 if (EnableHoistCommonCode)
218 MadeChangeThisIteration |= HoistCommonCode(MF);
219 MadeChange |= MadeChangeThisIteration;
222 // See if any jump tables have become dead as the code generator
223 // did its thing.
224 MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
225 if (!JTI)
226 return MadeChange;
228 // Walk the function to find jump tables that are live.
229 BitVector JTIsLive(JTI->getJumpTables().size());
230 for (const MachineBasicBlock &BB : MF) {
231 for (const MachineInstr &I : BB)
232 for (const MachineOperand &Op : I.operands()) {
233 if (!Op.isJTI()) continue;
235 // Remember that this JT is live.
236 JTIsLive.set(Op.getIndex());
240 // Finally, remove dead jump tables. This happens when the
241 // indirect jump was unreachable (and thus deleted).
242 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
243 if (!JTIsLive.test(i)) {
244 JTI->RemoveJumpTable(i);
245 MadeChange = true;
248 return MadeChange;
251 //===----------------------------------------------------------------------===//
252 // Tail Merging of Blocks
253 //===----------------------------------------------------------------------===//
255 /// HashMachineInstr - Compute a hash value for MI and its operands.
256 static unsigned HashMachineInstr(const MachineInstr &MI) {
257 unsigned Hash = MI.getOpcode();
258 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
259 const MachineOperand &Op = MI.getOperand(i);
261 // Merge in bits from the operand if easy. We can't use MachineOperand's
262 // hash_code here because it's not deterministic and we sort by hash value
263 // later.
264 unsigned OperandHash = 0;
265 switch (Op.getType()) {
266 case MachineOperand::MO_Register:
267 OperandHash = Op.getReg();
268 break;
269 case MachineOperand::MO_Immediate:
270 OperandHash = Op.getImm();
271 break;
272 case MachineOperand::MO_MachineBasicBlock:
273 OperandHash = Op.getMBB()->getNumber();
274 break;
275 case MachineOperand::MO_FrameIndex:
276 case MachineOperand::MO_ConstantPoolIndex:
277 case MachineOperand::MO_JumpTableIndex:
278 OperandHash = Op.getIndex();
279 break;
280 case MachineOperand::MO_GlobalAddress:
281 case MachineOperand::MO_ExternalSymbol:
282 // Global address / external symbol are too hard, don't bother, but do
283 // pull in the offset.
284 OperandHash = Op.getOffset();
285 break;
286 default:
287 break;
290 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
292 return Hash;
295 /// HashEndOfMBB - Hash the last instruction in the MBB.
296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
297 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
298 if (I == MBB.end())
299 return 0;
301 return HashMachineInstr(*I);
304 /// Whether MI should be counted as an instruction when calculating common tail.
305 static bool countsAsInstruction(const MachineInstr &MI) {
306 return !(MI.isDebugInstr() || MI.isCFIInstruction());
309 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number
310 /// of instructions they actually have in common together at their end. Return
311 /// iterators for the first shared instruction in each block.
312 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
313 MachineBasicBlock *MBB2,
314 MachineBasicBlock::iterator &I1,
315 MachineBasicBlock::iterator &I2) {
316 I1 = MBB1->end();
317 I2 = MBB2->end();
319 unsigned TailLen = 0;
320 while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
321 --I1; --I2;
322 // Skip debugging pseudos; necessary to avoid changing the code.
323 while (!countsAsInstruction(*I1)) {
324 if (I1==MBB1->begin()) {
325 while (!countsAsInstruction(*I2)) {
326 if (I2==MBB2->begin()) {
327 // I1==DBG at begin; I2==DBG at begin
328 goto SkipTopCFIAndReturn;
330 --I2;
332 ++I2;
333 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
334 goto SkipTopCFIAndReturn;
336 --I1;
338 // I1==first (untested) non-DBG preceding known match
339 while (!countsAsInstruction(*I2)) {
340 if (I2==MBB2->begin()) {
341 ++I1;
342 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
343 goto SkipTopCFIAndReturn;
345 --I2;
347 // I1, I2==first (untested) non-DBGs preceding known match
348 if (!I1->isIdenticalTo(*I2) ||
349 // FIXME: This check is dubious. It's used to get around a problem where
350 // people incorrectly expect inline asm directives to remain in the same
351 // relative order. This is untenable because normal compiler
352 // optimizations (like this one) may reorder and/or merge these
353 // directives.
354 I1->isInlineAsm()) {
355 ++I1; ++I2;
356 break;
358 ++TailLen;
360 // Back past possible debugging pseudos at beginning of block. This matters
361 // when one block differs from the other only by whether debugging pseudos
362 // are present at the beginning. (This way, the various checks later for
363 // I1==MBB1->begin() work as expected.)
364 if (I1 == MBB1->begin() && I2 != MBB2->begin()) {
365 --I2;
366 while (I2->isDebugInstr()) {
367 if (I2 == MBB2->begin())
368 return TailLen;
369 --I2;
371 ++I2;
373 if (I2 == MBB2->begin() && I1 != MBB1->begin()) {
374 --I1;
375 while (I1->isDebugInstr()) {
376 if (I1 == MBB1->begin())
377 return TailLen;
378 --I1;
380 ++I1;
383 SkipTopCFIAndReturn:
384 // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if
385 // I1 and I2 are non-identical when compared and then one or both of them ends
386 // up pointing to a CFI instruction after being incremented. For example:
388 BB1:
390 INSTRUCTION_A
391 ADD32ri8 <- last common instruction
393 BB2:
395 INSTRUCTION_B
396 CFI_INSTRUCTION
397 ADD32ri8 <- last common instruction
400 // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after
401 // incrementing the iterators, I1 will point to ADD, however I2 will point to
402 // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the
403 // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI
404 // instruction.
405 while (I1 != MBB1->end() && I1->isCFIInstruction()) {
406 ++I1;
409 while (I2 != MBB2->end() && I2->isCFIInstruction()) {
410 ++I2;
413 return TailLen;
416 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
417 MachineBasicBlock &NewDest) {
418 if (UpdateLiveIns) {
419 // OldInst should always point to an instruction.
420 MachineBasicBlock &OldMBB = *OldInst->getParent();
421 LiveRegs.clear();
422 LiveRegs.addLiveOuts(OldMBB);
423 // Move backward to the place where will insert the jump.
424 MachineBasicBlock::iterator I = OldMBB.end();
425 do {
426 --I;
427 LiveRegs.stepBackward(*I);
428 } while (I != OldInst);
430 // Merging the tails may have switched some undef operand to non-undef ones.
431 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
432 // register.
433 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
434 // We computed the liveins with computeLiveIn earlier and should only see
435 // full registers:
436 assert(P.LaneMask == LaneBitmask::getAll() &&
437 "Can only handle full register.");
438 MCPhysReg Reg = P.PhysReg;
439 if (!LiveRegs.available(*MRI, Reg))
440 continue;
441 DebugLoc DL;
442 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
446 TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
447 ++NumTailMerge;
450 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
451 MachineBasicBlock::iterator BBI1,
452 const BasicBlock *BB) {
453 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
454 return nullptr;
456 MachineFunction &MF = *CurMBB.getParent();
458 // Create the fall-through block.
459 MachineFunction::iterator MBBI = CurMBB.getIterator();
460 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
461 CurMBB.getParent()->insert(++MBBI, NewMBB);
463 // Move all the successors of this block to the specified block.
464 NewMBB->transferSuccessors(&CurMBB);
466 // Add an edge from CurMBB to NewMBB for the fall-through.
467 CurMBB.addSuccessor(NewMBB);
469 // Splice the code over.
470 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
472 // NewMBB belongs to the same loop as CurMBB.
473 if (MLI)
474 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
475 ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
477 // NewMBB inherits CurMBB's block frequency.
478 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
480 if (UpdateLiveIns)
481 computeAndAddLiveIns(LiveRegs, *NewMBB);
483 // Add the new block to the EH scope.
484 const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
485 if (EHScopeI != EHScopeMembership.end()) {
486 auto n = EHScopeI->second;
487 EHScopeMembership[NewMBB] = n;
490 return NewMBB;
493 /// EstimateRuntime - Make a rough estimate for how long it will take to run
494 /// the specified code.
495 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
496 MachineBasicBlock::iterator E) {
497 unsigned Time = 0;
498 for (; I != E; ++I) {
499 if (!countsAsInstruction(*I))
500 continue;
501 if (I->isCall())
502 Time += 10;
503 else if (I->mayLoad() || I->mayStore())
504 Time += 2;
505 else
506 ++Time;
508 return Time;
511 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
512 // branches temporarily for tail merging). In the case where CurMBB ends
513 // with a conditional branch to the next block, optimize by reversing the
514 // test and conditionally branching to SuccMBB instead.
515 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
516 const TargetInstrInfo *TII) {
517 MachineFunction *MF = CurMBB->getParent();
518 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
519 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
520 SmallVector<MachineOperand, 4> Cond;
521 DebugLoc dl = CurMBB->findBranchDebugLoc();
522 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
523 MachineBasicBlock *NextBB = &*I;
524 if (TBB == NextBB && !Cond.empty() && !FBB) {
525 if (!TII->reverseBranchCondition(Cond)) {
526 TII->removeBranch(*CurMBB);
527 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
528 return;
532 TII->insertBranch(*CurMBB, SuccBB, nullptr,
533 SmallVector<MachineOperand, 0>(), dl);
536 bool
537 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
538 if (getHash() < o.getHash())
539 return true;
540 if (getHash() > o.getHash())
541 return false;
542 if (getBlock()->getNumber() < o.getBlock()->getNumber())
543 return true;
544 if (getBlock()->getNumber() > o.getBlock()->getNumber())
545 return false;
546 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
547 // an object with itself.
548 #ifndef _GLIBCXX_DEBUG
549 llvm_unreachable("Predecessor appears twice");
550 #else
551 return false;
552 #endif
555 BlockFrequency
556 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
557 auto I = MergedBBFreq.find(MBB);
559 if (I != MergedBBFreq.end())
560 return I->second;
562 return MBFI.getBlockFreq(MBB);
565 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
566 BlockFrequency F) {
567 MergedBBFreq[MBB] = F;
570 raw_ostream &
571 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
572 const MachineBasicBlock *MBB) const {
573 return MBFI.printBlockFreq(OS, getBlockFreq(MBB));
576 raw_ostream &
577 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
578 const BlockFrequency Freq) const {
579 return MBFI.printBlockFreq(OS, Freq);
582 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) {
583 MBFI.view(Name, isSimple);
586 uint64_t
587 BranchFolder::MBFIWrapper::getEntryFreq() const {
588 return MBFI.getEntryFreq();
591 /// CountTerminators - Count the number of terminators in the given
592 /// block and set I to the position of the first non-terminator, if there
593 /// is one, or MBB->end() otherwise.
594 static unsigned CountTerminators(MachineBasicBlock *MBB,
595 MachineBasicBlock::iterator &I) {
596 I = MBB->end();
597 unsigned NumTerms = 0;
598 while (true) {
599 if (I == MBB->begin()) {
600 I = MBB->end();
601 break;
603 --I;
604 if (!I->isTerminator()) break;
605 ++NumTerms;
607 return NumTerms;
610 /// A no successor, non-return block probably ends in unreachable and is cold.
611 /// Also consider a block that ends in an indirect branch to be a return block,
612 /// since many targets use plain indirect branches to return.
613 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
614 if (!MBB->succ_empty())
615 return false;
616 if (MBB->empty())
617 return true;
618 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
621 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
622 /// and decide if it would be profitable to merge those tails. Return the
623 /// length of the common tail and iterators to the first common instruction
624 /// in each block.
625 /// MBB1, MBB2 The blocks to check
626 /// MinCommonTailLength Minimum size of tail block to be merged.
627 /// CommonTailLen Out parameter to record the size of the shared tail between
628 /// MBB1 and MBB2
629 /// I1, I2 Iterator references that will be changed to point to the first
630 /// instruction in the common tail shared by MBB1,MBB2
631 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
632 /// relative to SuccBB
633 /// PredBB The layout predecessor of SuccBB, if any.
634 /// EHScopeMembership map from block to EH scope #.
635 /// AfterPlacement True if we are merging blocks after layout. Stricter
636 /// thresholds apply to prevent undoing tail-duplication.
637 static bool
638 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
639 unsigned MinCommonTailLength, unsigned &CommonTailLen,
640 MachineBasicBlock::iterator &I1,
641 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
642 MachineBasicBlock *PredBB,
643 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
644 bool AfterPlacement) {
645 // It is never profitable to tail-merge blocks from two different EH scopes.
646 if (!EHScopeMembership.empty()) {
647 auto EHScope1 = EHScopeMembership.find(MBB1);
648 assert(EHScope1 != EHScopeMembership.end());
649 auto EHScope2 = EHScopeMembership.find(MBB2);
650 assert(EHScope2 != EHScopeMembership.end());
651 if (EHScope1->second != EHScope2->second)
652 return false;
655 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
656 if (CommonTailLen == 0)
657 return false;
658 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
659 << " and " << printMBBReference(*MBB2) << " is "
660 << CommonTailLen << '\n');
662 // It's almost always profitable to merge any number of non-terminator
663 // instructions with the block that falls through into the common successor.
664 // This is true only for a single successor. For multiple successors, we are
665 // trading a conditional branch for an unconditional one.
666 // TODO: Re-visit successor size for non-layout tail merging.
667 if ((MBB1 == PredBB || MBB2 == PredBB) &&
668 (!AfterPlacement || MBB1->succ_size() == 1)) {
669 MachineBasicBlock::iterator I;
670 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
671 if (CommonTailLen > NumTerms)
672 return true;
675 // If these are identical non-return blocks with no successors, merge them.
676 // Such blocks are typically cold calls to noreturn functions like abort, and
677 // are unlikely to become a fallthrough target after machine block placement.
678 // Tail merging these blocks is unlikely to create additional unconditional
679 // branches, and will reduce the size of this cold code.
680 if (I1 == MBB1->begin() && I2 == MBB2->begin() &&
681 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
682 return true;
684 // If one of the blocks can be completely merged and happens to be in
685 // a position where the other could fall through into it, merge any number
686 // of instructions, because it can be done without a branch.
687 // TODO: If the blocks are not adjacent, move one of them so that they are?
688 if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin())
689 return true;
690 if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin())
691 return true;
693 // If both blocks are identical and end in a branch, merge them unless they
694 // both have a fallthrough predecessor and successor.
695 // We can only do this after block placement because it depends on whether
696 // there are fallthroughs, and we don't know until after layout.
697 if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) {
698 auto BothFallThrough = [](MachineBasicBlock *MBB) {
699 if (MBB->succ_size() != 0 && !MBB->canFallThrough())
700 return false;
701 MachineFunction::iterator I(MBB);
702 MachineFunction *MF = MBB->getParent();
703 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
705 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
706 return true;
709 // If both blocks have an unconditional branch temporarily stripped out,
710 // count that as an additional common instruction for the following
711 // heuristics. This heuristic is only accurate for single-succ blocks, so to
712 // make sure that during layout merging and duplicating don't crash, we check
713 // for that when merging during layout.
714 unsigned EffectiveTailLen = CommonTailLen;
715 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
716 (MBB1->succ_size() == 1 || !AfterPlacement) &&
717 !MBB1->back().isBarrier() &&
718 !MBB2->back().isBarrier())
719 ++EffectiveTailLen;
721 // Check if the common tail is long enough to be worthwhile.
722 if (EffectiveTailLen >= MinCommonTailLength)
723 return true;
725 // If we are optimizing for code size, 2 instructions in common is enough if
726 // we don't have to split a block. At worst we will be introducing 1 new
727 // branch instruction, which is likely to be smaller than the 2
728 // instructions that would be deleted in the merge.
729 MachineFunction *MF = MBB1->getParent();
730 return EffectiveTailLen >= 2 && MF->getFunction().hasOptSize() &&
731 (I1 == MBB1->begin() || I2 == MBB2->begin());
734 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
735 unsigned MinCommonTailLength,
736 MachineBasicBlock *SuccBB,
737 MachineBasicBlock *PredBB) {
738 unsigned maxCommonTailLength = 0U;
739 SameTails.clear();
740 MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
741 MPIterator HighestMPIter = std::prev(MergePotentials.end());
742 for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
743 B = MergePotentials.begin();
744 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
745 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
746 unsigned CommonTailLen;
747 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
748 MinCommonTailLength,
749 CommonTailLen, TrialBBI1, TrialBBI2,
750 SuccBB, PredBB,
751 EHScopeMembership,
752 AfterBlockPlacement)) {
753 if (CommonTailLen > maxCommonTailLength) {
754 SameTails.clear();
755 maxCommonTailLength = CommonTailLen;
756 HighestMPIter = CurMPIter;
757 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
759 if (HighestMPIter == CurMPIter &&
760 CommonTailLen == maxCommonTailLength)
761 SameTails.push_back(SameTailElt(I, TrialBBI2));
763 if (I == B)
764 break;
767 return maxCommonTailLength;
770 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
771 MachineBasicBlock *SuccBB,
772 MachineBasicBlock *PredBB) {
773 MPIterator CurMPIter, B;
774 for (CurMPIter = std::prev(MergePotentials.end()),
775 B = MergePotentials.begin();
776 CurMPIter->getHash() == CurHash; --CurMPIter) {
777 // Put the unconditional branch back, if we need one.
778 MachineBasicBlock *CurMBB = CurMPIter->getBlock();
779 if (SuccBB && CurMBB != PredBB)
780 FixTail(CurMBB, SuccBB, TII);
781 if (CurMPIter == B)
782 break;
784 if (CurMPIter->getHash() != CurHash)
785 CurMPIter++;
786 MergePotentials.erase(CurMPIter, MergePotentials.end());
789 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
790 MachineBasicBlock *SuccBB,
791 unsigned maxCommonTailLength,
792 unsigned &commonTailIndex) {
793 commonTailIndex = 0;
794 unsigned TimeEstimate = ~0U;
795 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
796 // Use PredBB if possible; that doesn't require a new branch.
797 if (SameTails[i].getBlock() == PredBB) {
798 commonTailIndex = i;
799 break;
801 // Otherwise, make a (fairly bogus) choice based on estimate of
802 // how long it will take the various blocks to execute.
803 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
804 SameTails[i].getTailStartPos());
805 if (t <= TimeEstimate) {
806 TimeEstimate = t;
807 commonTailIndex = i;
811 MachineBasicBlock::iterator BBI =
812 SameTails[commonTailIndex].getTailStartPos();
813 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
815 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
816 << maxCommonTailLength);
818 // If the split block unconditionally falls-thru to SuccBB, it will be
819 // merged. In control flow terms it should then take SuccBB's name. e.g. If
820 // SuccBB is an inner loop, the common tail is still part of the inner loop.
821 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
822 SuccBB->getBasicBlock() : MBB->getBasicBlock();
823 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
824 if (!newMBB) {
825 LLVM_DEBUG(dbgs() << "... failed!");
826 return false;
829 SameTails[commonTailIndex].setBlock(newMBB);
830 SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
832 // If we split PredBB, newMBB is the new predecessor.
833 if (PredBB == MBB)
834 PredBB = newMBB;
836 return true;
839 static void
840 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
841 MachineBasicBlock &MBBCommon) {
842 MachineBasicBlock *MBB = MBBIStartPos->getParent();
843 // Note CommonTailLen does not necessarily matches the size of
844 // the common BB nor all its instructions because of debug
845 // instructions differences.
846 unsigned CommonTailLen = 0;
847 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
848 ++CommonTailLen;
850 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
851 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
852 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
853 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
855 while (CommonTailLen--) {
856 assert(MBBI != MBBIE && "Reached BB end within common tail length!");
857 (void)MBBIE;
859 if (!countsAsInstruction(*MBBI)) {
860 ++MBBI;
861 continue;
864 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
865 ++MBBICommon;
867 assert(MBBICommon != MBBIECommon &&
868 "Reached BB end within common tail length!");
869 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
871 // Merge MMOs from memory operations in the common block.
872 if (MBBICommon->mayLoad() || MBBICommon->mayStore())
873 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
874 // Drop undef flags if they aren't present in all merged instructions.
875 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
876 MachineOperand &MO = MBBICommon->getOperand(I);
877 if (MO.isReg() && MO.isUndef()) {
878 const MachineOperand &OtherMO = MBBI->getOperand(I);
879 if (!OtherMO.isUndef())
880 MO.setIsUndef(false);
884 ++MBBI;
885 ++MBBICommon;
889 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
890 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
892 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
893 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
894 if (i != commonTailIndex) {
895 NextCommonInsts[i] = SameTails[i].getTailStartPos();
896 mergeOperations(SameTails[i].getTailStartPos(), *MBB);
897 } else {
898 assert(SameTails[i].getTailStartPos() == MBB->begin() &&
899 "MBB is not a common tail only block");
903 for (auto &MI : *MBB) {
904 if (!countsAsInstruction(MI))
905 continue;
906 DebugLoc DL = MI.getDebugLoc();
907 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
908 if (i == commonTailIndex)
909 continue;
911 auto &Pos = NextCommonInsts[i];
912 assert(Pos != SameTails[i].getBlock()->end() &&
913 "Reached BB end within common tail");
914 while (!countsAsInstruction(*Pos)) {
915 ++Pos;
916 assert(Pos != SameTails[i].getBlock()->end() &&
917 "Reached BB end within common tail");
919 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
920 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
921 NextCommonInsts[i] = ++Pos;
923 MI.setDebugLoc(DL);
926 if (UpdateLiveIns) {
927 LivePhysRegs NewLiveIns(*TRI);
928 computeLiveIns(NewLiveIns, *MBB);
929 LiveRegs.init(*TRI);
931 // The flag merging may lead to some register uses no longer using the
932 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
933 for (MachineBasicBlock *Pred : MBB->predecessors()) {
934 LiveRegs.clear();
935 LiveRegs.addLiveOuts(*Pred);
936 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
937 for (unsigned Reg : NewLiveIns) {
938 if (!LiveRegs.available(*MRI, Reg))
939 continue;
940 DebugLoc DL;
941 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
942 Reg);
946 MBB->clearLiveIns();
947 addLiveIns(*MBB, NewLiveIns);
951 // See if any of the blocks in MergePotentials (which all have SuccBB as a
952 // successor, or all have no successor if it is null) can be tail-merged.
953 // If there is a successor, any blocks in MergePotentials that are not
954 // tail-merged and are not immediately before Succ must have an unconditional
955 // branch to Succ added (but the predecessor/successor lists need no
956 // adjustment). The lone predecessor of Succ that falls through into Succ,
957 // if any, is given in PredBB.
958 // MinCommonTailLength - Except for the special cases below, tail-merge if
959 // there are at least this many instructions in common.
960 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
961 MachineBasicBlock *PredBB,
962 unsigned MinCommonTailLength) {
963 bool MadeChange = false;
965 LLVM_DEBUG(
966 dbgs() << "\nTryTailMergeBlocks: ";
967 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
968 << printMBBReference(*MergePotentials[i].getBlock())
969 << (i == e - 1 ? "" : ", ");
970 dbgs() << "\n"; if (SuccBB) {
971 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n';
972 if (PredBB)
973 dbgs() << " which has fall-through from "
974 << printMBBReference(*PredBB) << "\n";
975 } dbgs() << "Looking for common tails of at least "
976 << MinCommonTailLength << " instruction"
977 << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
979 // Sort by hash value so that blocks with identical end sequences sort
980 // together.
981 array_pod_sort(MergePotentials.begin(), MergePotentials.end());
983 // Walk through equivalence sets looking for actual exact matches.
984 while (MergePotentials.size() > 1) {
985 unsigned CurHash = MergePotentials.back().getHash();
987 // Build SameTails, identifying the set of blocks with this hash code
988 // and with the maximum number of instructions in common.
989 unsigned maxCommonTailLength = ComputeSameTails(CurHash,
990 MinCommonTailLength,
991 SuccBB, PredBB);
993 // If we didn't find any pair that has at least MinCommonTailLength
994 // instructions in common, remove all blocks with this hash code and retry.
995 if (SameTails.empty()) {
996 RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
997 continue;
1000 // If one of the blocks is the entire common tail (and not the entry
1001 // block, which we can't jump to), we can treat all blocks with this same
1002 // tail at once. Use PredBB if that is one of the possibilities, as that
1003 // will not introduce any extra branches.
1004 MachineBasicBlock *EntryBB =
1005 &MergePotentials.front().getBlock()->getParent()->front();
1006 unsigned commonTailIndex = SameTails.size();
1007 // If there are two blocks, check to see if one can be made to fall through
1008 // into the other.
1009 if (SameTails.size() == 2 &&
1010 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
1011 SameTails[1].tailIsWholeBlock())
1012 commonTailIndex = 1;
1013 else if (SameTails.size() == 2 &&
1014 SameTails[1].getBlock()->isLayoutSuccessor(
1015 SameTails[0].getBlock()) &&
1016 SameTails[0].tailIsWholeBlock())
1017 commonTailIndex = 0;
1018 else {
1019 // Otherwise just pick one, favoring the fall-through predecessor if
1020 // there is one.
1021 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
1022 MachineBasicBlock *MBB = SameTails[i].getBlock();
1023 if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
1024 continue;
1025 if (MBB == PredBB) {
1026 commonTailIndex = i;
1027 break;
1029 if (SameTails[i].tailIsWholeBlock())
1030 commonTailIndex = i;
1034 if (commonTailIndex == SameTails.size() ||
1035 (SameTails[commonTailIndex].getBlock() == PredBB &&
1036 !SameTails[commonTailIndex].tailIsWholeBlock())) {
1037 // None of the blocks consist entirely of the common tail.
1038 // Split a block so that one does.
1039 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
1040 maxCommonTailLength, commonTailIndex)) {
1041 RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
1042 continue;
1046 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
1048 // Recompute common tail MBB's edge weights and block frequency.
1049 setCommonTailEdgeWeights(*MBB);
1051 // Merge debug locations, MMOs and undef flags across identical instructions
1052 // for common tail.
1053 mergeCommonTails(commonTailIndex);
1055 // MBB is common tail. Adjust all other BB's to jump to this one.
1056 // Traversal must be forwards so erases work.
1057 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
1058 << " for ");
1059 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
1060 if (commonTailIndex == i)
1061 continue;
1062 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
1063 << (i == e - 1 ? "" : ", "));
1064 // Hack the end off BB i, making it jump to BB commonTailIndex instead.
1065 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
1066 // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1067 MergePotentials.erase(SameTails[i].getMPIter());
1069 LLVM_DEBUG(dbgs() << "\n");
1070 // We leave commonTailIndex in the worklist in case there are other blocks
1071 // that match it with a smaller number of instructions.
1072 MadeChange = true;
1074 return MadeChange;
1077 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1078 bool MadeChange = false;
1079 if (!EnableTailMerge)
1080 return MadeChange;
1082 // First find blocks with no successors.
1083 // Block placement may create new tail merging opportunities for these blocks.
1084 MergePotentials.clear();
1085 for (MachineBasicBlock &MBB : MF) {
1086 if (MergePotentials.size() == TailMergeThreshold)
1087 break;
1088 if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1089 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1092 // If this is a large problem, avoid visiting the same basic blocks
1093 // multiple times.
1094 if (MergePotentials.size() == TailMergeThreshold)
1095 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1096 TriedMerging.insert(MergePotentials[i].getBlock());
1098 // See if we can do any tail merging on those.
1099 if (MergePotentials.size() >= 2)
1100 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1102 // Look at blocks (IBB) with multiple predecessors (PBB).
1103 // We change each predecessor to a canonical form, by
1104 // (1) temporarily removing any unconditional branch from the predecessor
1105 // to IBB, and
1106 // (2) alter conditional branches so they branch to the other block
1107 // not IBB; this may require adding back an unconditional branch to IBB
1108 // later, where there wasn't one coming in. E.g.
1109 // Bcc IBB
1110 // fallthrough to QBB
1111 // here becomes
1112 // Bncc QBB
1113 // with a conceptual B to IBB after that, which never actually exists.
1114 // With those changes, we see whether the predecessors' tails match,
1115 // and merge them if so. We change things out of canonical form and
1116 // back to the way they were later in the process. (OptimizeBranches
1117 // would undo some of this, but we can't use it, because we'd get into
1118 // a compile-time infinite loop repeatedly doing and undoing the same
1119 // transformations.)
1121 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1122 I != E; ++I) {
1123 if (I->pred_size() < 2) continue;
1124 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1125 MachineBasicBlock *IBB = &*I;
1126 MachineBasicBlock *PredBB = &*std::prev(I);
1127 MergePotentials.clear();
1128 MachineLoop *ML;
1130 // Bail if merging after placement and IBB is the loop header because
1131 // -- If merging predecessors that belong to the same loop as IBB, the
1132 // common tail of merged predecessors may become the loop top if block
1133 // placement is called again and the predecessors may branch to this common
1134 // tail and require more branches. This can be relaxed if
1135 // MachineBlockPlacement::findBestLoopTop is more flexible.
1136 // --If merging predecessors that do not belong to the same loop as IBB, the
1137 // loop info of IBB's loop and the other loops may be affected. Calling the
1138 // block placement again may make big change to the layout and eliminate the
1139 // reason to do tail merging here.
1140 if (AfterBlockPlacement && MLI) {
1141 ML = MLI->getLoopFor(IBB);
1142 if (ML && IBB == ML->getHeader())
1143 continue;
1146 for (MachineBasicBlock *PBB : I->predecessors()) {
1147 if (MergePotentials.size() == TailMergeThreshold)
1148 break;
1150 if (TriedMerging.count(PBB))
1151 continue;
1153 // Skip blocks that loop to themselves, can't tail merge these.
1154 if (PBB == IBB)
1155 continue;
1157 // Visit each predecessor only once.
1158 if (!UniquePreds.insert(PBB).second)
1159 continue;
1161 // Skip blocks which may jump to a landing pad. Can't tail merge these.
1162 if (PBB->hasEHPadSuccessor())
1163 continue;
1165 // After block placement, only consider predecessors that belong to the
1166 // same loop as IBB. The reason is the same as above when skipping loop
1167 // header.
1168 if (AfterBlockPlacement && MLI)
1169 if (ML != MLI->getLoopFor(PBB))
1170 continue;
1172 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1173 SmallVector<MachineOperand, 4> Cond;
1174 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1175 // Failing case: IBB is the target of a cbr, and we cannot reverse the
1176 // branch.
1177 SmallVector<MachineOperand, 4> NewCond(Cond);
1178 if (!Cond.empty() && TBB == IBB) {
1179 if (TII->reverseBranchCondition(NewCond))
1180 continue;
1181 // This is the QBB case described above
1182 if (!FBB) {
1183 auto Next = ++PBB->getIterator();
1184 if (Next != MF.end())
1185 FBB = &*Next;
1189 // Remove the unconditional branch at the end, if any.
1190 if (TBB && (Cond.empty() || FBB)) {
1191 DebugLoc dl = PBB->findBranchDebugLoc();
1192 TII->removeBranch(*PBB);
1193 if (!Cond.empty())
1194 // reinsert conditional branch only, for now
1195 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1196 NewCond, dl);
1199 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1203 // If this is a large problem, avoid visiting the same basic blocks multiple
1204 // times.
1205 if (MergePotentials.size() == TailMergeThreshold)
1206 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1207 TriedMerging.insert(MergePotentials[i].getBlock());
1209 if (MergePotentials.size() >= 2)
1210 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1212 // Reinsert an unconditional branch if needed. The 1 below can occur as a
1213 // result of removing blocks in TryTailMergeBlocks.
1214 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1215 if (MergePotentials.size() == 1 &&
1216 MergePotentials.begin()->getBlock() != PredBB)
1217 FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1220 return MadeChange;
1223 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1224 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1225 BlockFrequency AccumulatedMBBFreq;
1227 // Aggregate edge frequency of successor edge j:
1228 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1229 // where bb is a basic block that is in SameTails.
1230 for (const auto &Src : SameTails) {
1231 const MachineBasicBlock *SrcMBB = Src.getBlock();
1232 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1233 AccumulatedMBBFreq += BlockFreq;
1235 // It is not necessary to recompute edge weights if TailBB has less than two
1236 // successors.
1237 if (TailMBB.succ_size() <= 1)
1238 continue;
1240 auto EdgeFreq = EdgeFreqLs.begin();
1242 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1243 SuccI != SuccE; ++SuccI, ++EdgeFreq)
1244 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1247 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1249 if (TailMBB.succ_size() <= 1)
1250 return;
1252 auto SumEdgeFreq =
1253 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1254 .getFrequency();
1255 auto EdgeFreq = EdgeFreqLs.begin();
1257 if (SumEdgeFreq > 0) {
1258 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1259 SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1260 auto Prob = BranchProbability::getBranchProbability(
1261 EdgeFreq->getFrequency(), SumEdgeFreq);
1262 TailMBB.setSuccProbability(SuccI, Prob);
1267 //===----------------------------------------------------------------------===//
1268 // Branch Optimization
1269 //===----------------------------------------------------------------------===//
1271 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1272 bool MadeChange = false;
1274 // Make sure blocks are numbered in order
1275 MF.RenumberBlocks();
1276 // Renumbering blocks alters EH scope membership, recalculate it.
1277 EHScopeMembership = getEHScopeMembership(MF);
1279 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1280 I != E; ) {
1281 MachineBasicBlock *MBB = &*I++;
1282 MadeChange |= OptimizeBlock(MBB);
1284 // If it is dead, remove it.
1285 if (MBB->pred_empty()) {
1286 RemoveDeadBlock(MBB);
1287 MadeChange = true;
1288 ++NumDeadBlocks;
1292 return MadeChange;
1295 // Blocks should be considered empty if they contain only debug info;
1296 // else the debug info would affect codegen.
1297 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1298 return MBB->getFirstNonDebugInstr() == MBB->end();
1301 // Blocks with only debug info and branches should be considered the same
1302 // as blocks with only branches.
1303 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1304 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1305 assert(I != MBB->end() && "empty block!");
1306 return I->isBranch();
1309 /// IsBetterFallthrough - Return true if it would be clearly better to
1310 /// fall-through to MBB1 than to fall through into MBB2. This has to return
1311 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1312 /// result in infinite loops.
1313 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1314 MachineBasicBlock *MBB2) {
1315 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1317 // Right now, we use a simple heuristic. If MBB2 ends with a call, and
1318 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
1319 // optimize branches that branch to either a return block or an assert block
1320 // into a fallthrough to the return.
1321 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1322 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1323 if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1324 return false;
1326 // If there is a clear successor ordering we make sure that one block
1327 // will fall through to the next
1328 if (MBB1->isSuccessor(MBB2)) return true;
1329 if (MBB2->isSuccessor(MBB1)) return false;
1331 return MBB2I->isCall() && !MBB1I->isCall();
1334 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1335 /// instructions on the block.
1336 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1337 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1338 if (I != MBB.end() && I->isBranch())
1339 return I->getDebugLoc();
1340 return DebugLoc();
1343 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1344 MachineBasicBlock &MBB,
1345 MachineBasicBlock &PredMBB) {
1346 auto InsertBefore = PredMBB.getFirstTerminator();
1347 for (MachineInstr &MI : MBB.instrs())
1348 if (MI.isDebugInstr()) {
1349 TII->duplicate(PredMBB, InsertBefore, MI);
1350 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1351 << MI);
1355 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1356 MachineBasicBlock &MBB,
1357 MachineBasicBlock &SuccMBB) {
1358 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1359 for (MachineInstr &MI : MBB.instrs())
1360 if (MI.isDebugInstr()) {
1361 TII->duplicate(SuccMBB, InsertBefore, MI);
1362 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1363 << MI);
1367 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1368 // a basic block is removed we would lose the debug information unless we have
1369 // copied the information to a predecessor/successor.
1371 // TODO: This function only handles some simple cases. An alternative would be
1372 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1373 // branch folding.
1374 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1375 MachineBasicBlock &MBB) {
1376 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1377 // If this MBB is the only predecessor of a successor it is legal to copy
1378 // DBG_VALUE instructions to the beginning of the successor.
1379 for (MachineBasicBlock *SuccBB : MBB.successors())
1380 if (SuccBB->pred_size() == 1)
1381 copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1382 // If this MBB is the only successor of a predecessor it is legal to copy the
1383 // DBG_VALUE instructions to the end of the predecessor (just before the
1384 // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1385 for (MachineBasicBlock *PredBB : MBB.predecessors())
1386 if (PredBB->succ_size() == 1)
1387 copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1390 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1391 bool MadeChange = false;
1392 MachineFunction &MF = *MBB->getParent();
1393 ReoptimizeBlock:
1395 MachineFunction::iterator FallThrough = MBB->getIterator();
1396 ++FallThrough;
1398 // Make sure MBB and FallThrough belong to the same EH scope.
1399 bool SameEHScope = true;
1400 if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1401 auto MBBEHScope = EHScopeMembership.find(MBB);
1402 assert(MBBEHScope != EHScopeMembership.end());
1403 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1404 assert(FallThroughEHScope != EHScopeMembership.end());
1405 SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1408 // If this block is empty, make everyone use its fall-through, not the block
1409 // explicitly. Landing pads should not do this since the landing-pad table
1410 // points to this block. Blocks with their addresses taken shouldn't be
1411 // optimized away.
1412 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1413 SameEHScope) {
1414 salvageDebugInfoFromEmptyBlock(TII, *MBB);
1415 // Dead block? Leave for cleanup later.
1416 if (MBB->pred_empty()) return MadeChange;
1418 if (FallThrough == MF.end()) {
1419 // TODO: Simplify preds to not branch here if possible!
1420 } else if (FallThrough->isEHPad()) {
1421 // Don't rewrite to a landing pad fallthough. That could lead to the case
1422 // where a BB jumps to more than one landing pad.
1423 // TODO: Is it ever worth rewriting predecessors which don't already
1424 // jump to a landing pad, and so can safely jump to the fallthrough?
1425 } else if (MBB->isSuccessor(&*FallThrough)) {
1426 // Rewrite all predecessors of the old block to go to the fallthrough
1427 // instead.
1428 while (!MBB->pred_empty()) {
1429 MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1430 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1432 // If MBB was the target of a jump table, update jump tables to go to the
1433 // fallthrough instead.
1434 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1435 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1436 MadeChange = true;
1438 return MadeChange;
1441 // Check to see if we can simplify the terminator of the block before this
1442 // one.
1443 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1445 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1446 SmallVector<MachineOperand, 4> PriorCond;
1447 bool PriorUnAnalyzable =
1448 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1449 if (!PriorUnAnalyzable) {
1450 // If the CFG for the prior block has extra edges, remove them.
1451 MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
1452 !PriorCond.empty());
1454 // If the previous branch is conditional and both conditions go to the same
1455 // destination, remove the branch, replacing it with an unconditional one or
1456 // a fall-through.
1457 if (PriorTBB && PriorTBB == PriorFBB) {
1458 DebugLoc dl = getBranchDebugLoc(PrevBB);
1459 TII->removeBranch(PrevBB);
1460 PriorCond.clear();
1461 if (PriorTBB != MBB)
1462 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1463 MadeChange = true;
1464 ++NumBranchOpts;
1465 goto ReoptimizeBlock;
1468 // If the previous block unconditionally falls through to this block and
1469 // this block has no other predecessors, move the contents of this block
1470 // into the prior block. This doesn't usually happen when SimplifyCFG
1471 // has been used, but it can happen if tail merging splits a fall-through
1472 // predecessor of a block.
1473 // This has to check PrevBB->succ_size() because EH edges are ignored by
1474 // AnalyzeBranch.
1475 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1476 PrevBB.succ_size() == 1 &&
1477 !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1478 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1479 << "From MBB: " << *MBB);
1480 // Remove redundant DBG_VALUEs first.
1481 if (PrevBB.begin() != PrevBB.end()) {
1482 MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1483 --PrevBBIter;
1484 MachineBasicBlock::iterator MBBIter = MBB->begin();
1485 // Check if DBG_VALUE at the end of PrevBB is identical to the
1486 // DBG_VALUE at the beginning of MBB.
1487 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1488 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1489 if (!MBBIter->isIdenticalTo(*PrevBBIter))
1490 break;
1491 MachineInstr &DuplicateDbg = *MBBIter;
1492 ++MBBIter; -- PrevBBIter;
1493 DuplicateDbg.eraseFromParent();
1496 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1497 PrevBB.removeSuccessor(PrevBB.succ_begin());
1498 assert(PrevBB.succ_empty());
1499 PrevBB.transferSuccessors(MBB);
1500 MadeChange = true;
1501 return MadeChange;
1504 // If the previous branch *only* branches to *this* block (conditional or
1505 // not) remove the branch.
1506 if (PriorTBB == MBB && !PriorFBB) {
1507 TII->removeBranch(PrevBB);
1508 MadeChange = true;
1509 ++NumBranchOpts;
1510 goto ReoptimizeBlock;
1513 // If the prior block branches somewhere else on the condition and here if
1514 // the condition is false, remove the uncond second branch.
1515 if (PriorFBB == MBB) {
1516 DebugLoc dl = getBranchDebugLoc(PrevBB);
1517 TII->removeBranch(PrevBB);
1518 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1519 MadeChange = true;
1520 ++NumBranchOpts;
1521 goto ReoptimizeBlock;
1524 // If the prior block branches here on true and somewhere else on false, and
1525 // if the branch condition is reversible, reverse the branch to create a
1526 // fall-through.
1527 if (PriorTBB == MBB) {
1528 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1529 if (!TII->reverseBranchCondition(NewPriorCond)) {
1530 DebugLoc dl = getBranchDebugLoc(PrevBB);
1531 TII->removeBranch(PrevBB);
1532 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1533 MadeChange = true;
1534 ++NumBranchOpts;
1535 goto ReoptimizeBlock;
1539 // If this block has no successors (e.g. it is a return block or ends with
1540 // a call to a no-return function like abort or __cxa_throw) and if the pred
1541 // falls through into this block, and if it would otherwise fall through
1542 // into the block after this, move this block to the end of the function.
1544 // We consider it more likely that execution will stay in the function (e.g.
1545 // due to loops) than it is to exit it. This asserts in loops etc, moving
1546 // the assert condition out of the loop body.
1547 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1548 MachineFunction::iterator(PriorTBB) == FallThrough &&
1549 !MBB->canFallThrough()) {
1550 bool DoTransform = true;
1552 // We have to be careful that the succs of PredBB aren't both no-successor
1553 // blocks. If neither have successors and if PredBB is the second from
1554 // last block in the function, we'd just keep swapping the two blocks for
1555 // last. Only do the swap if one is clearly better to fall through than
1556 // the other.
1557 if (FallThrough == --MF.end() &&
1558 !IsBetterFallthrough(PriorTBB, MBB))
1559 DoTransform = false;
1561 if (DoTransform) {
1562 // Reverse the branch so we will fall through on the previous true cond.
1563 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1564 if (!TII->reverseBranchCondition(NewPriorCond)) {
1565 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1566 << "To make fallthrough to: " << *PriorTBB << "\n");
1568 DebugLoc dl = getBranchDebugLoc(PrevBB);
1569 TII->removeBranch(PrevBB);
1570 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1572 // Move this block to the end of the function.
1573 MBB->moveAfter(&MF.back());
1574 MadeChange = true;
1575 ++NumBranchOpts;
1576 return MadeChange;
1582 if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 &&
1583 MF.getFunction().hasOptSize()) {
1584 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1585 // direction, thereby defeating careful block placement and regressing
1586 // performance. Therefore, only consider this for optsize functions.
1587 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1588 if (TII->isUnconditionalTailCall(TailCall)) {
1589 MachineBasicBlock *Pred = *MBB->pred_begin();
1590 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1591 SmallVector<MachineOperand, 4> PredCond;
1592 bool PredAnalyzable =
1593 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1595 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1596 PredTBB != PredFBB) {
1597 // The predecessor has a conditional branch to this block which consists
1598 // of only a tail call. Try to fold the tail call into the conditional
1599 // branch.
1600 if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1601 // TODO: It would be nice if analyzeBranch() could provide a pointer
1602 // to the branch instruction so replaceBranchWithTailCall() doesn't
1603 // have to search for it.
1604 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1605 ++NumTailCalls;
1606 Pred->removeSuccessor(MBB);
1607 MadeChange = true;
1608 return MadeChange;
1611 // If the predecessor is falling through to this block, we could reverse
1612 // the branch condition and fold the tail call into that. However, after
1613 // that we might have to re-arrange the CFG to fall through to the other
1614 // block and there is a high risk of regressing code size rather than
1615 // improving it.
1619 // Analyze the branch in the current block.
1620 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1621 SmallVector<MachineOperand, 4> CurCond;
1622 bool CurUnAnalyzable =
1623 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1624 if (!CurUnAnalyzable) {
1625 // If the CFG for the prior block has extra edges, remove them.
1626 MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
1628 // If this is a two-way branch, and the FBB branches to this block, reverse
1629 // the condition so the single-basic-block loop is faster. Instead of:
1630 // Loop: xxx; jcc Out; jmp Loop
1631 // we want:
1632 // Loop: xxx; jncc Loop; jmp Out
1633 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1634 SmallVector<MachineOperand, 4> NewCond(CurCond);
1635 if (!TII->reverseBranchCondition(NewCond)) {
1636 DebugLoc dl = getBranchDebugLoc(*MBB);
1637 TII->removeBranch(*MBB);
1638 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1639 MadeChange = true;
1640 ++NumBranchOpts;
1641 goto ReoptimizeBlock;
1645 // If this branch is the only thing in its block, see if we can forward
1646 // other blocks across it.
1647 if (CurTBB && CurCond.empty() && !CurFBB &&
1648 IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1649 !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1650 DebugLoc dl = getBranchDebugLoc(*MBB);
1651 // This block may contain just an unconditional branch. Because there can
1652 // be 'non-branch terminators' in the block, try removing the branch and
1653 // then seeing if the block is empty.
1654 TII->removeBranch(*MBB);
1655 // If the only things remaining in the block are debug info, remove these
1656 // as well, so this will behave the same as an empty block in non-debug
1657 // mode.
1658 if (IsEmptyBlock(MBB)) {
1659 // Make the block empty, losing the debug info (we could probably
1660 // improve this in some cases.)
1661 MBB->erase(MBB->begin(), MBB->end());
1663 // If this block is just an unconditional branch to CurTBB, we can
1664 // usually completely eliminate the block. The only case we cannot
1665 // completely eliminate the block is when the block before this one
1666 // falls through into MBB and we can't understand the prior block's branch
1667 // condition.
1668 if (MBB->empty()) {
1669 bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1670 if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1671 !PrevBB.isSuccessor(MBB)) {
1672 // If the prior block falls through into us, turn it into an
1673 // explicit branch to us to make updates simpler.
1674 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1675 PriorTBB != MBB && PriorFBB != MBB) {
1676 if (!PriorTBB) {
1677 assert(PriorCond.empty() && !PriorFBB &&
1678 "Bad branch analysis");
1679 PriorTBB = MBB;
1680 } else {
1681 assert(!PriorFBB && "Machine CFG out of date!");
1682 PriorFBB = MBB;
1684 DebugLoc pdl = getBranchDebugLoc(PrevBB);
1685 TII->removeBranch(PrevBB);
1686 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1689 // Iterate through all the predecessors, revectoring each in-turn.
1690 size_t PI = 0;
1691 bool DidChange = false;
1692 bool HasBranchToSelf = false;
1693 while(PI != MBB->pred_size()) {
1694 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1695 if (PMBB == MBB) {
1696 // If this block has an uncond branch to itself, leave it.
1697 ++PI;
1698 HasBranchToSelf = true;
1699 } else {
1700 DidChange = true;
1701 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1702 // If this change resulted in PMBB ending in a conditional
1703 // branch where both conditions go to the same destination,
1704 // change this to an unconditional branch (and fix the CFG).
1705 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1706 SmallVector<MachineOperand, 4> NewCurCond;
1707 bool NewCurUnAnalyzable = TII->analyzeBranch(
1708 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1709 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1710 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1711 TII->removeBranch(*PMBB);
1712 NewCurCond.clear();
1713 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1714 MadeChange = true;
1715 ++NumBranchOpts;
1716 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
1721 // Change any jumptables to go to the new MBB.
1722 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1723 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1724 if (DidChange) {
1725 ++NumBranchOpts;
1726 MadeChange = true;
1727 if (!HasBranchToSelf) return MadeChange;
1732 // Add the branch back if the block is more than just an uncond branch.
1733 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1737 // If the prior block doesn't fall through into this block, and if this
1738 // block doesn't fall through into some other block, see if we can find a
1739 // place to move this block where a fall-through will happen.
1740 if (!PrevBB.canFallThrough()) {
1741 // Now we know that there was no fall-through into this block, check to
1742 // see if it has a fall-through into its successor.
1743 bool CurFallsThru = MBB->canFallThrough();
1745 if (!MBB->isEHPad()) {
1746 // Check all the predecessors of this block. If one of them has no fall
1747 // throughs, move this block right after it.
1748 for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1749 // Analyze the branch at the end of the pred.
1750 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1751 SmallVector<MachineOperand, 4> PredCond;
1752 if (PredBB != MBB && !PredBB->canFallThrough() &&
1753 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1754 (!CurFallsThru || !CurTBB || !CurFBB) &&
1755 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1756 // If the current block doesn't fall through, just move it.
1757 // If the current block can fall through and does not end with a
1758 // conditional branch, we need to append an unconditional jump to
1759 // the (current) next block. To avoid a possible compile-time
1760 // infinite loop, move blocks only backward in this case.
1761 // Also, if there are already 2 branches here, we cannot add a third;
1762 // this means we have the case
1763 // Bcc next
1764 // B elsewhere
1765 // next:
1766 if (CurFallsThru) {
1767 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1768 CurCond.clear();
1769 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1771 MBB->moveAfter(PredBB);
1772 MadeChange = true;
1773 goto ReoptimizeBlock;
1778 if (!CurFallsThru) {
1779 // Check all successors to see if we can move this block before it.
1780 for (MachineBasicBlock *SuccBB : MBB->successors()) {
1781 // Analyze the branch at the end of the block before the succ.
1782 MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1784 // If this block doesn't already fall-through to that successor, and if
1785 // the succ doesn't already have a block that can fall through into it,
1786 // and if the successor isn't an EH destination, we can arrange for the
1787 // fallthrough to happen.
1788 if (SuccBB != MBB && &*SuccPrev != MBB &&
1789 !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1790 !SuccBB->isEHPad()) {
1791 MBB->moveBefore(SuccBB);
1792 MadeChange = true;
1793 goto ReoptimizeBlock;
1797 // Okay, there is no really great place to put this block. If, however,
1798 // the block before this one would be a fall-through if this block were
1799 // removed, move this block to the end of the function. There is no real
1800 // advantage in "falling through" to an EH block, so we don't want to
1801 // perform this transformation for that case.
1803 // Also, Windows EH introduced the possibility of an arbitrary number of
1804 // successors to a given block. The analyzeBranch call does not consider
1805 // exception handling and so we can get in a state where a block
1806 // containing a call is followed by multiple EH blocks that would be
1807 // rotated infinitely at the end of the function if the transformation
1808 // below were performed for EH "FallThrough" blocks. Therefore, even if
1809 // that appears not to be happening anymore, we should assume that it is
1810 // possible and not remove the "!FallThrough()->isEHPad" condition below.
1811 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1812 SmallVector<MachineOperand, 4> PrevCond;
1813 if (FallThrough != MF.end() &&
1814 !FallThrough->isEHPad() &&
1815 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1816 PrevBB.isSuccessor(&*FallThrough)) {
1817 MBB->moveAfter(&MF.back());
1818 MadeChange = true;
1819 return MadeChange;
1824 return MadeChange;
1827 //===----------------------------------------------------------------------===//
1828 // Hoist Common Code
1829 //===----------------------------------------------------------------------===//
1831 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1832 bool MadeChange = false;
1833 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1834 MachineBasicBlock *MBB = &*I++;
1835 MadeChange |= HoistCommonCodeInSuccs(MBB);
1838 return MadeChange;
1841 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1842 /// its 'true' successor.
1843 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1844 MachineBasicBlock *TrueBB) {
1845 for (MachineBasicBlock *SuccBB : BB->successors())
1846 if (SuccBB != TrueBB)
1847 return SuccBB;
1848 return nullptr;
1851 template <class Container>
1852 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
1853 Container &Set) {
1854 if (Register::isPhysicalRegister(Reg)) {
1855 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1856 Set.insert(*AI);
1857 } else {
1858 Set.insert(Reg);
1862 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1863 /// in successors to. The location is usually just before the terminator,
1864 /// however if the terminator is a conditional branch and its previous
1865 /// instruction is the flag setting instruction, the previous instruction is
1866 /// the preferred location. This function also gathers uses and defs of the
1867 /// instructions from the insertion point to the end of the block. The data is
1868 /// used by HoistCommonCodeInSuccs to ensure safety.
1869 static
1870 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1871 const TargetInstrInfo *TII,
1872 const TargetRegisterInfo *TRI,
1873 SmallSet<unsigned,4> &Uses,
1874 SmallSet<unsigned,4> &Defs) {
1875 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1876 if (!TII->isUnpredicatedTerminator(*Loc))
1877 return MBB->end();
1879 for (const MachineOperand &MO : Loc->operands()) {
1880 if (!MO.isReg())
1881 continue;
1882 Register Reg = MO.getReg();
1883 if (!Reg)
1884 continue;
1885 if (MO.isUse()) {
1886 addRegAndItsAliases(Reg, TRI, Uses);
1887 } else {
1888 if (!MO.isDead())
1889 // Don't try to hoist code in the rare case the terminator defines a
1890 // register that is later used.
1891 return MBB->end();
1893 // If the terminator defines a register, make sure we don't hoist
1894 // the instruction whose def might be clobbered by the terminator.
1895 addRegAndItsAliases(Reg, TRI, Defs);
1899 if (Uses.empty())
1900 return Loc;
1901 // If the terminator is the only instruction in the block and Uses is not
1902 // empty (or we would have returned above), we can still safely hoist
1903 // instructions just before the terminator as long as the Defs/Uses are not
1904 // violated (which is checked in HoistCommonCodeInSuccs).
1905 if (Loc == MBB->begin())
1906 return Loc;
1908 // The terminator is probably a conditional branch, try not to separate the
1909 // branch from condition setting instruction.
1910 MachineBasicBlock::iterator PI =
1911 skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());
1913 bool IsDef = false;
1914 for (const MachineOperand &MO : PI->operands()) {
1915 // If PI has a regmask operand, it is probably a call. Separate away.
1916 if (MO.isRegMask())
1917 return Loc;
1918 if (!MO.isReg() || MO.isUse())
1919 continue;
1920 Register Reg = MO.getReg();
1921 if (!Reg)
1922 continue;
1923 if (Uses.count(Reg)) {
1924 IsDef = true;
1925 break;
1928 if (!IsDef)
1929 // The condition setting instruction is not just before the conditional
1930 // branch.
1931 return Loc;
1933 // Be conservative, don't insert instruction above something that may have
1934 // side-effects. And since it's potentially bad to separate flag setting
1935 // instruction from the conditional branch, just abort the optimization
1936 // completely.
1937 // Also avoid moving code above predicated instruction since it's hard to
1938 // reason about register liveness with predicated instruction.
1939 bool DontMoveAcrossStore = true;
1940 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1941 return MBB->end();
1943 // Find out what registers are live. Note this routine is ignoring other live
1944 // registers which are only used by instructions in successor blocks.
1945 for (const MachineOperand &MO : PI->operands()) {
1946 if (!MO.isReg())
1947 continue;
1948 Register Reg = MO.getReg();
1949 if (!Reg)
1950 continue;
1951 if (MO.isUse()) {
1952 addRegAndItsAliases(Reg, TRI, Uses);
1953 } else {
1954 if (Uses.erase(Reg)) {
1955 if (Register::isPhysicalRegister(Reg)) {
1956 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1957 Uses.erase(*SubRegs); // Use sub-registers to be conservative
1960 addRegAndItsAliases(Reg, TRI, Defs);
1964 return PI;
1967 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1968 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1969 SmallVector<MachineOperand, 4> Cond;
1970 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1971 return false;
1973 if (!FBB) FBB = findFalseBlock(MBB, TBB);
1974 if (!FBB)
1975 // Malformed bcc? True and false blocks are the same?
1976 return false;
1978 // Restrict the optimization to cases where MBB is the only predecessor,
1979 // it is an obvious win.
1980 if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1981 return false;
1983 // Find a suitable position to hoist the common instructions to. Also figure
1984 // out which registers are used or defined by instructions from the insertion
1985 // point to the end of the block.
1986 SmallSet<unsigned, 4> Uses, Defs;
1987 MachineBasicBlock::iterator Loc =
1988 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1989 if (Loc == MBB->end())
1990 return false;
1992 bool HasDups = false;
1993 SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
1994 MachineBasicBlock::iterator TIB = TBB->begin();
1995 MachineBasicBlock::iterator FIB = FBB->begin();
1996 MachineBasicBlock::iterator TIE = TBB->end();
1997 MachineBasicBlock::iterator FIE = FBB->end();
1998 while (TIB != TIE && FIB != FIE) {
1999 // Skip dbg_value instructions. These do not count.
2000 TIB = skipDebugInstructionsForward(TIB, TIE);
2001 FIB = skipDebugInstructionsForward(FIB, FIE);
2002 if (TIB == TIE || FIB == FIE)
2003 break;
2005 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
2006 break;
2008 if (TII->isPredicated(*TIB))
2009 // Hard to reason about register liveness with predicated instruction.
2010 break;
2012 bool IsSafe = true;
2013 for (MachineOperand &MO : TIB->operands()) {
2014 // Don't attempt to hoist instructions with register masks.
2015 if (MO.isRegMask()) {
2016 IsSafe = false;
2017 break;
2019 if (!MO.isReg())
2020 continue;
2021 Register Reg = MO.getReg();
2022 if (!Reg)
2023 continue;
2024 if (MO.isDef()) {
2025 if (Uses.count(Reg)) {
2026 // Avoid clobbering a register that's used by the instruction at
2027 // the point of insertion.
2028 IsSafe = false;
2029 break;
2032 if (Defs.count(Reg) && !MO.isDead()) {
2033 // Don't hoist the instruction if the def would be clobber by the
2034 // instruction at the point insertion. FIXME: This is overly
2035 // conservative. It should be possible to hoist the instructions
2036 // in BB2 in the following example:
2037 // BB1:
2038 // r1, eflag = op1 r2, r3
2039 // brcc eflag
2041 // BB2:
2042 // r1 = op2, ...
2043 // = op3, killed r1
2044 IsSafe = false;
2045 break;
2047 } else if (!ActiveDefsSet.count(Reg)) {
2048 if (Defs.count(Reg)) {
2049 // Use is defined by the instruction at the point of insertion.
2050 IsSafe = false;
2051 break;
2054 if (MO.isKill() && Uses.count(Reg))
2055 // Kills a register that's read by the instruction at the point of
2056 // insertion. Remove the kill marker.
2057 MO.setIsKill(false);
2060 if (!IsSafe)
2061 break;
2063 bool DontMoveAcrossStore = true;
2064 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
2065 break;
2067 // Remove kills from ActiveDefsSet, these registers had short live ranges.
2068 for (const MachineOperand &MO : TIB->operands()) {
2069 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2070 continue;
2071 Register Reg = MO.getReg();
2072 if (!Reg)
2073 continue;
2074 if (!AllDefsSet.count(Reg)) {
2075 continue;
2077 if (Register::isPhysicalRegister(Reg)) {
2078 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2079 ActiveDefsSet.erase(*AI);
2080 } else {
2081 ActiveDefsSet.erase(Reg);
2085 // Track local defs so we can update liveins.
2086 for (const MachineOperand &MO : TIB->operands()) {
2087 if (!MO.isReg() || !MO.isDef() || MO.isDead())
2088 continue;
2089 Register Reg = MO.getReg();
2090 if (!Reg || Register::isVirtualRegister(Reg))
2091 continue;
2092 addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2093 addRegAndItsAliases(Reg, TRI, AllDefsSet);
2096 HasDups = true;
2097 ++TIB;
2098 ++FIB;
2101 if (!HasDups)
2102 return false;
2104 MBB->splice(Loc, TBB, TBB->begin(), TIB);
2105 FBB->erase(FBB->begin(), FIB);
2107 if (UpdateLiveIns) {
2108 recomputeLiveIns(*TBB);
2109 recomputeLiveIns(*FBB);
2112 ++NumHoist;
2113 return true;