[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / CodeGen / SelectionDAG / ScheduleDAGSDNodes.cpp
blobd4c1fb36475e7825c5d3482dcca42ac79e16bb2e
1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the ScheduleDAG class, which is a base class used by
10 // scheduling implementation classes.
12 //===----------------------------------------------------------------------===//
14 #include "ScheduleDAGSDNodes.h"
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 using namespace llvm;
36 #define DEBUG_TYPE "pre-RA-sched"
38 STATISTIC(LoadsClustered, "Number of loads clustered together");
40 // This allows the latency-based scheduler to notice high latency instructions
41 // without a target itinerary. The choice of number here has more to do with
42 // balancing scheduler heuristics than with the actual machine latency.
43 static cl::opt<int> HighLatencyCycles(
44 "sched-high-latency-cycles", cl::Hidden, cl::init(10),
45 cl::desc("Roughly estimate the number of cycles that 'long latency'"
46 "instructions take for targets with no itinerary"));
48 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
49 : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
50 InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
52 /// Run - perform scheduling.
53 ///
54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55 BB = bb;
56 DAG = dag;
58 // Clear the scheduler's SUnit DAG.
59 ScheduleDAG::clearDAG();
60 Sequence.clear();
62 // Invoke the target's selection of scheduler.
63 Schedule();
66 /// NewSUnit - Creates a new SUnit and return a ptr to it.
67 ///
68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
69 #ifndef NDEBUG
70 const SUnit *Addr = nullptr;
71 if (!SUnits.empty())
72 Addr = &SUnits[0];
73 #endif
74 SUnits.emplace_back(N, (unsigned)SUnits.size());
75 assert((Addr == nullptr || Addr == &SUnits[0]) &&
76 "SUnits std::vector reallocated on the fly!");
77 SUnits.back().OrigNode = &SUnits.back();
78 SUnit *SU = &SUnits.back();
79 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80 if (!N ||
81 (N->isMachineOpcode() &&
82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83 SU->SchedulingPref = Sched::None;
84 else
85 SU->SchedulingPref = TLI.getSchedulingPreference(N);
86 return SU;
89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90 SUnit *SU = newSUnit(Old->getNode());
91 SU->OrigNode = Old->OrigNode;
92 SU->Latency = Old->Latency;
93 SU->isVRegCycle = Old->isVRegCycle;
94 SU->isCall = Old->isCall;
95 SU->isCallOp = Old->isCallOp;
96 SU->isTwoAddress = Old->isTwoAddress;
97 SU->isCommutable = Old->isCommutable;
98 SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100 SU->isScheduleHigh = Old->isScheduleHigh;
101 SU->isScheduleLow = Old->isScheduleLow;
102 SU->SchedulingPref = Old->SchedulingPref;
103 Old->isCloned = true;
104 return SU;
107 /// CheckForPhysRegDependency - Check if the dependency between def and use of
108 /// a specified operand is a physical register dependency. If so, returns the
109 /// register and the cost of copying the register.
110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111 const TargetRegisterInfo *TRI,
112 const TargetInstrInfo *TII,
113 unsigned &PhysReg, int &Cost) {
114 if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
115 return;
117 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118 if (Register::isVirtualRegister(Reg))
119 return;
121 unsigned ResNo = User->getOperand(2).getResNo();
122 if (Def->getOpcode() == ISD::CopyFromReg &&
123 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
124 PhysReg = Reg;
125 } else if (Def->isMachineOpcode()) {
126 const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
127 if (ResNo >= II.getNumDefs() &&
128 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg)
129 PhysReg = Reg;
132 if (PhysReg != 0) {
133 const TargetRegisterClass *RC =
134 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
135 Cost = RC->getCopyCost();
139 // Helper for AddGlue to clone node operands.
140 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
141 SDValue ExtraOper = SDValue()) {
142 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
143 if (ExtraOper.getNode())
144 Ops.push_back(ExtraOper);
146 SDVTList VTList = DAG->getVTList(VTs);
147 MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
149 // Store memory references.
150 SmallVector<MachineMemOperand *, 2> MMOs;
151 if (MN)
152 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end());
154 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
156 // Reset the memory references
157 if (MN)
158 DAG->setNodeMemRefs(MN, MMOs);
161 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
162 SDNode *GlueDestNode = Glue.getNode();
164 // Don't add glue from a node to itself.
165 if (GlueDestNode == N) return false;
167 // Don't add a glue operand to something that already uses glue.
168 if (GlueDestNode &&
169 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
170 return false;
172 // Don't add glue to something that already has a glue value.
173 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
175 SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end());
176 if (AddGlue)
177 VTs.push_back(MVT::Glue);
179 CloneNodeWithValues(N, DAG, VTs, Glue);
181 return true;
184 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
185 // node even though simply shrinking the value list is sufficient.
186 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
187 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
188 !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
189 "expected an unused glue value");
191 CloneNodeWithValues(N, DAG,
192 makeArrayRef(N->value_begin(), N->getNumValues() - 1));
195 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
196 /// This function finds loads of the same base and different offsets. If the
197 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
198 /// outputs to ensure they are scheduled together and in order. This
199 /// optimization may benefit some targets by improving cache locality.
200 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
201 SDNode *Chain = nullptr;
202 unsigned NumOps = Node->getNumOperands();
203 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
204 Chain = Node->getOperand(NumOps-1).getNode();
205 if (!Chain)
206 return;
208 // Skip any load instruction that has a tied input. There may be an additional
209 // dependency requiring a different order than by increasing offsets, and the
210 // added glue may introduce a cycle.
211 auto hasTiedInput = [this](const SDNode *N) {
212 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
213 for (unsigned I = 0; I != MCID.getNumOperands(); ++I) {
214 if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1)
215 return true;
218 return false;
221 // Look for other loads of the same chain. Find loads that are loading from
222 // the same base pointer and different offsets.
223 SmallPtrSet<SDNode*, 16> Visited;
224 SmallVector<int64_t, 4> Offsets;
225 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
226 bool Cluster = false;
227 SDNode *Base = Node;
229 if (hasTiedInput(Base))
230 return;
232 // This algorithm requires a reasonably low use count before finding a match
233 // to avoid uselessly blowing up compile time in large blocks.
234 unsigned UseCount = 0;
235 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
236 I != E && UseCount < 100; ++I, ++UseCount) {
237 SDNode *User = *I;
238 if (User == Node || !Visited.insert(User).second)
239 continue;
240 int64_t Offset1, Offset2;
241 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
242 Offset1 == Offset2 ||
243 hasTiedInput(User)) {
244 // FIXME: Should be ok if they addresses are identical. But earlier
245 // optimizations really should have eliminated one of the loads.
246 continue;
248 if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
249 Offsets.push_back(Offset1);
250 O2SMap.insert(std::make_pair(Offset2, User));
251 Offsets.push_back(Offset2);
252 if (Offset2 < Offset1)
253 Base = User;
254 Cluster = true;
255 // Reset UseCount to allow more matches.
256 UseCount = 0;
259 if (!Cluster)
260 return;
262 // Sort them in increasing order.
263 llvm::sort(Offsets);
265 // Check if the loads are close enough.
266 SmallVector<SDNode*, 4> Loads;
267 unsigned NumLoads = 0;
268 int64_t BaseOff = Offsets[0];
269 SDNode *BaseLoad = O2SMap[BaseOff];
270 Loads.push_back(BaseLoad);
271 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
272 int64_t Offset = Offsets[i];
273 SDNode *Load = O2SMap[Offset];
274 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
275 break; // Stop right here. Ignore loads that are further away.
276 Loads.push_back(Load);
277 ++NumLoads;
280 if (NumLoads == 0)
281 return;
283 // Cluster loads by adding MVT::Glue outputs and inputs. This also
284 // ensure they are scheduled in order of increasing addresses.
285 SDNode *Lead = Loads[0];
286 SDValue InGlue = SDValue(nullptr, 0);
287 if (AddGlue(Lead, InGlue, true, DAG))
288 InGlue = SDValue(Lead, Lead->getNumValues() - 1);
289 for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
290 bool OutGlue = I < E - 1;
291 SDNode *Load = Loads[I];
293 // If AddGlue fails, we could leave an unsused glue value. This should not
294 // cause any
295 if (AddGlue(Load, InGlue, OutGlue, DAG)) {
296 if (OutGlue)
297 InGlue = SDValue(Load, Load->getNumValues() - 1);
299 ++LoadsClustered;
301 else if (!OutGlue && InGlue.getNode())
302 RemoveUnusedGlue(InGlue.getNode(), DAG);
306 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
308 void ScheduleDAGSDNodes::ClusterNodes() {
309 for (SDNode &NI : DAG->allnodes()) {
310 SDNode *Node = &NI;
311 if (!Node || !Node->isMachineOpcode())
312 continue;
314 unsigned Opc = Node->getMachineOpcode();
315 const MCInstrDesc &MCID = TII->get(Opc);
316 if (MCID.mayLoad())
317 // Cluster loads from "near" addresses into combined SUnits.
318 ClusterNeighboringLoads(Node);
322 void ScheduleDAGSDNodes::BuildSchedUnits() {
323 // During scheduling, the NodeId field of SDNode is used to map SDNodes
324 // to their associated SUnits by holding SUnits table indices. A value
325 // of -1 means the SDNode does not yet have an associated SUnit.
326 unsigned NumNodes = 0;
327 for (SDNode &NI : DAG->allnodes()) {
328 NI.setNodeId(-1);
329 ++NumNodes;
332 // Reserve entries in the vector for each of the SUnits we are creating. This
333 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
334 // invalidated.
335 // FIXME: Multiply by 2 because we may clone nodes during scheduling.
336 // This is a temporary workaround.
337 SUnits.reserve(NumNodes * 2);
339 // Add all nodes in depth first order.
340 SmallVector<SDNode*, 64> Worklist;
341 SmallPtrSet<SDNode*, 32> Visited;
342 Worklist.push_back(DAG->getRoot().getNode());
343 Visited.insert(DAG->getRoot().getNode());
345 SmallVector<SUnit*, 8> CallSUnits;
346 while (!Worklist.empty()) {
347 SDNode *NI = Worklist.pop_back_val();
349 // Add all operands to the worklist unless they've already been added.
350 for (const SDValue &Op : NI->op_values())
351 if (Visited.insert(Op.getNode()).second)
352 Worklist.push_back(Op.getNode());
354 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
355 continue;
357 // If this node has already been processed, stop now.
358 if (NI->getNodeId() != -1) continue;
360 SUnit *NodeSUnit = newSUnit(NI);
362 // See if anything is glued to this node, if so, add them to glued
363 // nodes. Nodes can have at most one glue input and one glue output. Glue
364 // is required to be the last operand and result of a node.
366 // Scan up to find glued preds.
367 SDNode *N = NI;
368 while (N->getNumOperands() &&
369 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
370 N = N->getOperand(N->getNumOperands()-1).getNode();
371 assert(N->getNodeId() == -1 && "Node already inserted!");
372 N->setNodeId(NodeSUnit->NodeNum);
373 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
374 NodeSUnit->isCall = true;
377 // Scan down to find any glued succs.
378 N = NI;
379 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
380 SDValue GlueVal(N, N->getNumValues()-1);
382 // There are either zero or one users of the Glue result.
383 bool HasGlueUse = false;
384 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
385 UI != E; ++UI)
386 if (GlueVal.isOperandOf(*UI)) {
387 HasGlueUse = true;
388 assert(N->getNodeId() == -1 && "Node already inserted!");
389 N->setNodeId(NodeSUnit->NodeNum);
390 N = *UI;
391 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
392 NodeSUnit->isCall = true;
393 break;
395 if (!HasGlueUse) break;
398 if (NodeSUnit->isCall)
399 CallSUnits.push_back(NodeSUnit);
401 // Schedule zero-latency TokenFactor below any nodes that may increase the
402 // schedule height. Otherwise, ancestors of the TokenFactor may appear to
403 // have false stalls.
404 if (NI->getOpcode() == ISD::TokenFactor)
405 NodeSUnit->isScheduleLow = true;
407 // If there are glue operands involved, N is now the bottom-most node
408 // of the sequence of nodes that are glued together.
409 // Update the SUnit.
410 NodeSUnit->setNode(N);
411 assert(N->getNodeId() == -1 && "Node already inserted!");
412 N->setNodeId(NodeSUnit->NodeNum);
414 // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
415 InitNumRegDefsLeft(NodeSUnit);
417 // Assign the Latency field of NodeSUnit using target-provided information.
418 computeLatency(NodeSUnit);
421 // Find all call operands.
422 while (!CallSUnits.empty()) {
423 SUnit *SU = CallSUnits.pop_back_val();
424 for (const SDNode *SUNode = SU->getNode(); SUNode;
425 SUNode = SUNode->getGluedNode()) {
426 if (SUNode->getOpcode() != ISD::CopyToReg)
427 continue;
428 SDNode *SrcN = SUNode->getOperand(2).getNode();
429 if (isPassiveNode(SrcN)) continue; // Not scheduled.
430 SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
431 SrcSU->isCallOp = true;
436 void ScheduleDAGSDNodes::AddSchedEdges() {
437 const TargetSubtargetInfo &ST = MF.getSubtarget();
439 // Check to see if the scheduler cares about latencies.
440 bool UnitLatencies = forceUnitLatencies();
442 // Pass 2: add the preds, succs, etc.
443 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
444 SUnit *SU = &SUnits[su];
445 SDNode *MainNode = SU->getNode();
447 if (MainNode->isMachineOpcode()) {
448 unsigned Opc = MainNode->getMachineOpcode();
449 const MCInstrDesc &MCID = TII->get(Opc);
450 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
451 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
452 SU->isTwoAddress = true;
453 break;
456 if (MCID.isCommutable())
457 SU->isCommutable = true;
460 // Find all predecessors and successors of the group.
461 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
462 if (N->isMachineOpcode() &&
463 TII->get(N->getMachineOpcode()).getImplicitDefs()) {
464 SU->hasPhysRegClobbers = true;
465 unsigned NumUsed = InstrEmitter::CountResults(N);
466 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
467 --NumUsed; // Skip over unused values at the end.
468 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
469 SU->hasPhysRegDefs = true;
472 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
473 SDNode *OpN = N->getOperand(i).getNode();
474 if (isPassiveNode(OpN)) continue; // Not scheduled.
475 SUnit *OpSU = &SUnits[OpN->getNodeId()];
476 assert(OpSU && "Node has no SUnit!");
477 if (OpSU == SU) continue; // In the same group.
479 EVT OpVT = N->getOperand(i).getValueType();
480 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
481 bool isChain = OpVT == MVT::Other;
483 unsigned PhysReg = 0;
484 int Cost = 1;
485 // Determine if this is a physical register dependency.
486 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
487 assert((PhysReg == 0 || !isChain) &&
488 "Chain dependence via physreg data?");
489 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
490 // emits a copy from the physical register to a virtual register unless
491 // it requires a cross class copy (cost < 0). That means we are only
492 // treating "expensive to copy" register dependency as physical register
493 // dependency. This may change in the future though.
494 if (Cost >= 0 && !StressSched)
495 PhysReg = 0;
497 // If this is a ctrl dep, latency is 1.
498 unsigned OpLatency = isChain ? 1 : OpSU->Latency;
499 // Special-case TokenFactor chains as zero-latency.
500 if(isChain && OpN->getOpcode() == ISD::TokenFactor)
501 OpLatency = 0;
503 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
504 : SDep(OpSU, SDep::Data, PhysReg);
505 Dep.setLatency(OpLatency);
506 if (!isChain && !UnitLatencies) {
507 computeOperandLatency(OpN, N, i, Dep);
508 ST.adjustSchedDependency(OpSU, SU, Dep);
511 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
512 // Multiple register uses are combined in the same SUnit. For example,
513 // we could have a set of glued nodes with all their defs consumed by
514 // another set of glued nodes. Register pressure tracking sees this as
515 // a single use, so to keep pressure balanced we reduce the defs.
517 // We can't tell (without more book-keeping) if this results from
518 // glued nodes or duplicate operands. As long as we don't reduce
519 // NumRegDefsLeft to zero, we handle the common cases well.
520 --OpSU->NumRegDefsLeft;
527 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
528 /// are input. This SUnit graph is similar to the SelectionDAG, but
529 /// excludes nodes that aren't interesting to scheduling, and represents
530 /// glued together nodes with a single SUnit.
531 void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) {
532 // Cluster certain nodes which should be scheduled together.
533 ClusterNodes();
534 // Populate the SUnits array.
535 BuildSchedUnits();
536 // Compute all the scheduling dependencies between nodes.
537 AddSchedEdges();
540 // Initialize NumNodeDefs for the current Node's opcode.
541 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
542 // Check for phys reg copy.
543 if (!Node)
544 return;
546 if (!Node->isMachineOpcode()) {
547 if (Node->getOpcode() == ISD::CopyFromReg)
548 NodeNumDefs = 1;
549 else
550 NodeNumDefs = 0;
551 return;
553 unsigned POpc = Node->getMachineOpcode();
554 if (POpc == TargetOpcode::IMPLICIT_DEF) {
555 // No register need be allocated for this.
556 NodeNumDefs = 0;
557 return;
559 if (POpc == TargetOpcode::PATCHPOINT &&
560 Node->getValueType(0) == MVT::Other) {
561 // PATCHPOINT is defined to have one result, but it might really have none
562 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
563 // real definition.
564 NodeNumDefs = 0;
565 return;
567 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
568 // Some instructions define regs that are not represented in the selection DAG
569 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
570 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
571 DefIdx = 0;
574 // Construct a RegDefIter for this SUnit and find the first valid value.
575 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
576 const ScheduleDAGSDNodes *SD)
577 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
578 InitNodeNumDefs();
579 Advance();
582 // Advance to the next valid value defined by the SUnit.
583 void ScheduleDAGSDNodes::RegDefIter::Advance() {
584 for (;Node;) { // Visit all glued nodes.
585 for (;DefIdx < NodeNumDefs; ++DefIdx) {
586 if (!Node->hasAnyUseOfValue(DefIdx))
587 continue;
588 ValueType = Node->getSimpleValueType(DefIdx);
589 ++DefIdx;
590 return; // Found a normal regdef.
592 Node = Node->getGluedNode();
593 if (!Node) {
594 return; // No values left to visit.
596 InitNodeNumDefs();
600 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
601 assert(SU->NumRegDefsLeft == 0 && "expect a new node");
602 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
603 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
604 ++SU->NumRegDefsLeft;
608 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
609 SDNode *N = SU->getNode();
611 // TokenFactor operands are considered zero latency, and some schedulers
612 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
613 // whenever node latency is nonzero.
614 if (N && N->getOpcode() == ISD::TokenFactor) {
615 SU->Latency = 0;
616 return;
619 // Check to see if the scheduler cares about latencies.
620 if (forceUnitLatencies()) {
621 SU->Latency = 1;
622 return;
625 if (!InstrItins || InstrItins->isEmpty()) {
626 if (N && N->isMachineOpcode() &&
627 TII->isHighLatencyDef(N->getMachineOpcode()))
628 SU->Latency = HighLatencyCycles;
629 else
630 SU->Latency = 1;
631 return;
634 // Compute the latency for the node. We use the sum of the latencies for
635 // all nodes glued together into this SUnit.
636 SU->Latency = 0;
637 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
638 if (N->isMachineOpcode())
639 SU->Latency += TII->getInstrLatency(InstrItins, N);
642 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
643 unsigned OpIdx, SDep& dep) const{
644 // Check to see if the scheduler cares about latencies.
645 if (forceUnitLatencies())
646 return;
648 if (dep.getKind() != SDep::Data)
649 return;
651 unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
652 if (Use->isMachineOpcode())
653 // Adjust the use operand index by num of defs.
654 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
655 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
656 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
657 !BB->succ_empty()) {
658 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
659 if (Register::isVirtualRegister(Reg))
660 // This copy is a liveout value. It is likely coalesced, so reduce the
661 // latency so not to penalize the def.
662 // FIXME: need target specific adjustment here?
663 Latency = (Latency > 1) ? Latency - 1 : 1;
665 if (Latency >= 0)
666 dep.setLatency(Latency);
669 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const {
670 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
671 dumpNodeName(SU);
672 dbgs() << ": ";
674 if (!SU.getNode()) {
675 dbgs() << "PHYS REG COPY\n";
676 return;
679 SU.getNode()->dump(DAG);
680 dbgs() << "\n";
681 SmallVector<SDNode *, 4> GluedNodes;
682 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode())
683 GluedNodes.push_back(N);
684 while (!GluedNodes.empty()) {
685 dbgs() << " ";
686 GluedNodes.back()->dump(DAG);
687 dbgs() << "\n";
688 GluedNodes.pop_back();
690 #endif
693 void ScheduleDAGSDNodes::dump() const {
694 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
695 if (EntrySU.getNode() != nullptr)
696 dumpNodeAll(EntrySU);
697 for (const SUnit &SU : SUnits)
698 dumpNodeAll(SU);
699 if (ExitSU.getNode() != nullptr)
700 dumpNodeAll(ExitSU);
701 #endif
704 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
705 void ScheduleDAGSDNodes::dumpSchedule() const {
706 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
707 if (SUnit *SU = Sequence[i])
708 dumpNode(*SU);
709 else
710 dbgs() << "**** NOOP ****\n";
713 #endif
715 #ifndef NDEBUG
716 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
717 /// their state is consistent with the nodes listed in Sequence.
719 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
720 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
721 unsigned Noops = 0;
722 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
723 if (!Sequence[i])
724 ++Noops;
725 assert(Sequence.size() - Noops == ScheduledNodes &&
726 "The number of nodes scheduled doesn't match the expected number!");
728 #endif // NDEBUG
730 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
731 static void
732 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
733 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
734 DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
735 if (!N->getHasDebugValue())
736 return;
738 // Opportunistically insert immediate dbg_value uses, i.e. those with the same
739 // source order number as N.
740 MachineBasicBlock *BB = Emitter.getBlock();
741 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
742 for (auto DV : DAG->GetDbgValues(N)) {
743 if (DV->isEmitted())
744 continue;
745 unsigned DVOrder = DV->getOrder();
746 if (!Order || DVOrder == Order) {
747 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap);
748 if (DbgMI) {
749 Orders.push_back({DVOrder, DbgMI});
750 BB->insert(InsertPos, DbgMI);
756 // ProcessSourceNode - Process nodes with source order numbers. These are added
757 // to a vector which EmitSchedule uses to determine how to insert dbg_value
758 // instructions in the right order.
759 static void
760 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
761 DenseMap<SDValue, unsigned> &VRBaseMap,
762 SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders,
763 SmallSet<unsigned, 8> &Seen, MachineInstr *NewInsn) {
764 unsigned Order = N->getIROrder();
765 if (!Order || Seen.count(Order)) {
766 // Process any valid SDDbgValues even if node does not have any order
767 // assigned.
768 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
769 return;
772 // If a new instruction was generated for this Order number, record it.
773 // Otherwise, leave this order number unseen: we will either find later
774 // instructions for it, or leave it unseen if there were no instructions at
775 // all.
776 if (NewInsn) {
777 Seen.insert(Order);
778 Orders.push_back({Order, NewInsn});
781 // Even if no instruction was generated, a Value may have become defined via
782 // earlier nodes. Try to process them now.
783 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
786 void ScheduleDAGSDNodes::
787 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
788 MachineBasicBlock::iterator InsertPos) {
789 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
790 I != E; ++I) {
791 if (I->isCtrl()) continue; // ignore chain preds
792 if (I->getSUnit()->CopyDstRC) {
793 // Copy to physical register.
794 DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
795 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
796 // Find the destination physical register.
797 unsigned Reg = 0;
798 for (SUnit::const_succ_iterator II = SU->Succs.begin(),
799 EE = SU->Succs.end(); II != EE; ++II) {
800 if (II->isCtrl()) continue; // ignore chain preds
801 if (II->getReg()) {
802 Reg = II->getReg();
803 break;
806 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
807 .addReg(VRI->second);
808 } else {
809 // Copy from physical register.
810 assert(I->getReg() && "Unknown physical register!");
811 Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
812 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
813 (void)isNew; // Silence compiler warning.
814 assert(isNew && "Node emitted out of order - early");
815 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
816 .addReg(I->getReg());
818 break;
822 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
823 /// InsertPos and MachineBasicBlock that contains this insertion
824 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
825 /// not necessarily refer to returned BB. The emitter may split blocks.
826 MachineBasicBlock *ScheduleDAGSDNodes::
827 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
828 InstrEmitter Emitter(BB, InsertPos);
829 DenseMap<SDValue, unsigned> VRBaseMap;
830 DenseMap<SUnit*, unsigned> CopyVRBaseMap;
831 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
832 SmallSet<unsigned, 8> Seen;
833 bool HasDbg = DAG->hasDebugValues();
835 // Emit a node, and determine where its first instruction is for debuginfo.
836 // Zero, one, or multiple instructions can be created when emitting a node.
837 auto EmitNode =
838 [&](SDNode *Node, bool IsClone, bool IsCloned,
839 DenseMap<SDValue, unsigned> &VRBaseMap) -> MachineInstr * {
840 // Fetch instruction prior to this, or end() if nonexistant.
841 auto GetPrevInsn = [&](MachineBasicBlock::iterator I) {
842 if (I == BB->begin())
843 return BB->end();
844 else
845 return std::prev(Emitter.getInsertPos());
848 MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos());
849 Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap);
850 MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos());
852 // If the iterator did not change, no instructions were inserted.
853 if (Before == After)
854 return nullptr;
856 MachineInstr *MI;
857 if (Before == BB->end()) {
858 // There were no prior instructions; the new ones must start at the
859 // beginning of the block.
860 MI = &Emitter.getBlock()->instr_front();
861 } else {
862 // Return first instruction after the pre-existing instructions.
863 MI = &*std::next(Before);
866 if (MI->isCall() && DAG->getTarget().Options.EnableDebugEntryValues)
867 MF.addCallArgsForwardingRegs(MI, DAG->getSDCallSiteInfo(Node));
869 return MI;
872 // If this is the first BB, emit byval parameter dbg_value's.
873 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
874 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
875 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
876 for (; PDI != PDE; ++PDI) {
877 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
878 if (DbgMI) {
879 BB->insert(InsertPos, DbgMI);
880 // We re-emit the dbg_value closer to its use, too, after instructions
881 // are emitted to the BB.
882 (*PDI)->clearIsEmitted();
887 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
888 SUnit *SU = Sequence[i];
889 if (!SU) {
890 // Null SUnit* is a noop.
891 TII->insertNoop(*Emitter.getBlock(), InsertPos);
892 continue;
895 // For pre-regalloc scheduling, create instructions corresponding to the
896 // SDNode and any glued SDNodes and append them to the block.
897 if (!SU->getNode()) {
898 // Emit a copy.
899 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
900 continue;
903 SmallVector<SDNode *, 4> GluedNodes;
904 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
905 GluedNodes.push_back(N);
906 while (!GluedNodes.empty()) {
907 SDNode *N = GluedNodes.back();
908 auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap);
909 // Remember the source order of the inserted instruction.
910 if (HasDbg)
911 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn);
913 if (MDNode *MD = DAG->getHeapAllocSite(N)) {
914 if (NewInsn && NewInsn->isCall())
915 MF.addCodeViewHeapAllocSite(NewInsn, MD);
918 GluedNodes.pop_back();
920 auto NewInsn =
921 EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap);
922 // Remember the source order of the inserted instruction.
923 if (HasDbg)
924 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen,
925 NewInsn);
926 if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) {
927 if (NewInsn && NewInsn->isCall())
928 MF.addCodeViewHeapAllocSite(NewInsn, MD);
932 // Insert all the dbg_values which have not already been inserted in source
933 // order sequence.
934 if (HasDbg) {
935 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
937 // Sort the source order instructions and use the order to insert debug
938 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order
939 // regardless of the host's implementation fo std::sort.
940 llvm::stable_sort(Orders, less_first());
941 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(),
942 [](const SDDbgValue *LHS, const SDDbgValue *RHS) {
943 return LHS->getOrder() < RHS->getOrder();
946 SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
947 SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
948 // Now emit the rest according to source order.
949 unsigned LastOrder = 0;
950 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
951 unsigned Order = Orders[i].first;
952 MachineInstr *MI = Orders[i].second;
953 // Insert all SDDbgValue's whose order(s) are before "Order".
954 assert(MI);
955 for (; DI != DE; ++DI) {
956 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order)
957 break;
958 if ((*DI)->isEmitted())
959 continue;
961 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
962 if (DbgMI) {
963 if (!LastOrder)
964 // Insert to start of the BB (after PHIs).
965 BB->insert(BBBegin, DbgMI);
966 else {
967 // Insert at the instruction, which may be in a different
968 // block, if the block was split by a custom inserter.
969 MachineBasicBlock::iterator Pos = MI;
970 MI->getParent()->insert(Pos, DbgMI);
974 LastOrder = Order;
976 // Add trailing DbgValue's before the terminator. FIXME: May want to add
977 // some of them before one or more conditional branches?
978 SmallVector<MachineInstr*, 8> DbgMIs;
979 for (; DI != DE; ++DI) {
980 if ((*DI)->isEmitted())
981 continue;
982 assert((*DI)->getOrder() >= LastOrder &&
983 "emitting DBG_VALUE out of order");
984 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
985 DbgMIs.push_back(DbgMI);
988 MachineBasicBlock *InsertBB = Emitter.getBlock();
989 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
990 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
992 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin();
993 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd();
994 // Now emit the rest according to source order.
995 LastOrder = 0;
996 for (const auto &InstrOrder : Orders) {
997 unsigned Order = InstrOrder.first;
998 MachineInstr *MI = InstrOrder.second;
999 if (!MI)
1000 continue;
1002 // Insert all SDDbgLabel's whose order(s) are before "Order".
1003 for (; DLI != DLE &&
1004 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order;
1005 ++DLI) {
1006 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI);
1007 if (DbgMI) {
1008 if (!LastOrder)
1009 // Insert to start of the BB (after PHIs).
1010 BB->insert(BBBegin, DbgMI);
1011 else {
1012 // Insert at the instruction, which may be in a different
1013 // block, if the block was split by a custom inserter.
1014 MachineBasicBlock::iterator Pos = MI;
1015 MI->getParent()->insert(Pos, DbgMI);
1019 if (DLI == DLE)
1020 break;
1022 LastOrder = Order;
1026 InsertPos = Emitter.getInsertPos();
1027 return Emitter.getBlock();
1030 /// Return the basic block label.
1031 std::string ScheduleDAGSDNodes::getDAGName() const {
1032 return "sunit-dag." + BB->getFullName();