[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
blob8c15563fcd23d44930a02fa64ecd98c3f1e7e68f
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include "llvm/Transforms/Utils/Local.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstddef>
116 #include <cstdint>
117 #include <cstring>
118 #include <iterator>
119 #include <limits>
120 #include <numeric>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
125 using namespace llvm;
126 using namespace PatternMatch;
127 using namespace SwitchCG;
129 #define DEBUG_TYPE "isel"
131 /// LimitFloatPrecision - Generate low-precision inline sequences for
132 /// some float libcalls (6, 8 or 12 bits).
133 static unsigned LimitFloatPrecision;
135 static cl::opt<unsigned, true>
136 LimitFPPrecision("limit-float-precision",
137 cl::desc("Generate low-precision inline sequences "
138 "for some float libcalls"),
139 cl::location(LimitFloatPrecision), cl::Hidden,
140 cl::init(0));
142 static cl::opt<unsigned> SwitchPeelThreshold(
143 "switch-peel-threshold", cl::Hidden, cl::init(66),
144 cl::desc("Set the case probability threshold for peeling the case from a "
145 "switch statement. A value greater than 100 will void this "
146 "optimization"));
148 // Limit the width of DAG chains. This is important in general to prevent
149 // DAG-based analysis from blowing up. For example, alias analysis and
150 // load clustering may not complete in reasonable time. It is difficult to
151 // recognize and avoid this situation within each individual analysis, and
152 // future analyses are likely to have the same behavior. Limiting DAG width is
153 // the safe approach and will be especially important with global DAGs.
155 // MaxParallelChains default is arbitrarily high to avoid affecting
156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
157 // sequence over this should have been converted to llvm.memcpy by the
158 // frontend. It is easy to induce this behavior with .ll code such as:
159 // %buffer = alloca [4096 x i8]
160 // %data = load [4096 x i8]* %argPtr
161 // store [4096 x i8] %data, [4096 x i8]* %buffer
162 static const unsigned MaxParallelChains = 64;
164 // Return the calling convention if the Value passed requires ABI mangling as it
165 // is a parameter to a function or a return value from a function which is not
166 // an intrinsic.
167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
168 if (auto *R = dyn_cast<ReturnInst>(V))
169 return R->getParent()->getParent()->getCallingConv();
171 if (auto *CI = dyn_cast<CallInst>(V)) {
172 const bool IsInlineAsm = CI->isInlineAsm();
173 const bool IsIndirectFunctionCall =
174 !IsInlineAsm && !CI->getCalledFunction();
176 // It is possible that the call instruction is an inline asm statement or an
177 // indirect function call in which case the return value of
178 // getCalledFunction() would be nullptr.
179 const bool IsInstrinsicCall =
180 !IsInlineAsm && !IsIndirectFunctionCall &&
181 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
183 if (!IsInlineAsm && !IsInstrinsicCall)
184 return CI->getCallingConv();
187 return None;
190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
191 const SDValue *Parts, unsigned NumParts,
192 MVT PartVT, EVT ValueVT, const Value *V,
193 Optional<CallingConv::ID> CC);
195 /// getCopyFromParts - Create a value that contains the specified legal parts
196 /// combined into the value they represent. If the parts combine to a type
197 /// larger than ValueVT then AssertOp can be used to specify whether the extra
198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
199 /// (ISD::AssertSext).
200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
201 const SDValue *Parts, unsigned NumParts,
202 MVT PartVT, EVT ValueVT, const Value *V,
203 Optional<CallingConv::ID> CC = None,
204 Optional<ISD::NodeType> AssertOp = None) {
205 if (ValueVT.isVector())
206 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
207 CC);
209 assert(NumParts > 0 && "No parts to assemble!");
210 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
211 SDValue Val = Parts[0];
213 if (NumParts > 1) {
214 // Assemble the value from multiple parts.
215 if (ValueVT.isInteger()) {
216 unsigned PartBits = PartVT.getSizeInBits();
217 unsigned ValueBits = ValueVT.getSizeInBits();
219 // Assemble the power of 2 part.
220 unsigned RoundParts =
221 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
222 unsigned RoundBits = PartBits * RoundParts;
223 EVT RoundVT = RoundBits == ValueBits ?
224 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
225 SDValue Lo, Hi;
227 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
229 if (RoundParts > 2) {
230 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
231 PartVT, HalfVT, V);
232 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
233 RoundParts / 2, PartVT, HalfVT, V);
234 } else {
235 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
236 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
239 if (DAG.getDataLayout().isBigEndian())
240 std::swap(Lo, Hi);
242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
244 if (RoundParts < NumParts) {
245 // Assemble the trailing non-power-of-2 part.
246 unsigned OddParts = NumParts - RoundParts;
247 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
248 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
249 OddVT, V, CC);
251 // Combine the round and odd parts.
252 Lo = Val;
253 if (DAG.getDataLayout().isBigEndian())
254 std::swap(Lo, Hi);
255 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
256 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
257 Hi =
258 DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
259 DAG.getConstant(Lo.getValueSizeInBits(), DL,
260 TLI.getPointerTy(DAG.getDataLayout())));
261 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
262 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
264 } else if (PartVT.isFloatingPoint()) {
265 // FP split into multiple FP parts (for ppcf128)
266 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
267 "Unexpected split");
268 SDValue Lo, Hi;
269 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
270 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
271 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
272 std::swap(Lo, Hi);
273 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
274 } else {
275 // FP split into integer parts (soft fp)
276 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
277 !PartVT.isVector() && "Unexpected split");
278 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
279 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
283 // There is now one part, held in Val. Correct it to match ValueVT.
284 // PartEVT is the type of the register class that holds the value.
285 // ValueVT is the type of the inline asm operation.
286 EVT PartEVT = Val.getValueType();
288 if (PartEVT == ValueVT)
289 return Val;
291 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
292 ValueVT.bitsLT(PartEVT)) {
293 // For an FP value in an integer part, we need to truncate to the right
294 // width first.
295 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
296 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
299 // Handle types that have the same size.
300 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
301 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
303 // Handle types with different sizes.
304 if (PartEVT.isInteger() && ValueVT.isInteger()) {
305 if (ValueVT.bitsLT(PartEVT)) {
306 // For a truncate, see if we have any information to
307 // indicate whether the truncated bits will always be
308 // zero or sign-extension.
309 if (AssertOp.hasValue())
310 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
311 DAG.getValueType(ValueVT));
312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
314 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
317 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
318 // FP_ROUND's are always exact here.
319 if (ValueVT.bitsLT(Val.getValueType()))
320 return DAG.getNode(
321 ISD::FP_ROUND, DL, ValueVT, Val,
322 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
324 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
328 // then truncating.
329 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
330 ValueVT.bitsLT(PartEVT)) {
331 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
332 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
335 report_fatal_error("Unknown mismatch in getCopyFromParts!");
338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
339 const Twine &ErrMsg) {
340 const Instruction *I = dyn_cast_or_null<Instruction>(V);
341 if (!V)
342 return Ctx.emitError(ErrMsg);
344 const char *AsmError = ", possible invalid constraint for vector type";
345 if (const CallInst *CI = dyn_cast<CallInst>(I))
346 if (isa<InlineAsm>(CI->getCalledValue()))
347 return Ctx.emitError(I, ErrMsg + AsmError);
349 return Ctx.emitError(I, ErrMsg);
352 /// getCopyFromPartsVector - Create a value that contains the specified legal
353 /// parts combined into the value they represent. If the parts combine to a
354 /// type larger than ValueVT then AssertOp can be used to specify whether the
355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
356 /// ValueVT (ISD::AssertSext).
357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
358 const SDValue *Parts, unsigned NumParts,
359 MVT PartVT, EVT ValueVT, const Value *V,
360 Optional<CallingConv::ID> CallConv) {
361 assert(ValueVT.isVector() && "Not a vector value");
362 assert(NumParts > 0 && "No parts to assemble!");
363 const bool IsABIRegCopy = CallConv.hasValue();
365 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
366 SDValue Val = Parts[0];
368 // Handle a multi-element vector.
369 if (NumParts > 1) {
370 EVT IntermediateVT;
371 MVT RegisterVT;
372 unsigned NumIntermediates;
373 unsigned NumRegs;
375 if (IsABIRegCopy) {
376 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
377 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
378 NumIntermediates, RegisterVT);
379 } else {
380 NumRegs =
381 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
382 NumIntermediates, RegisterVT);
385 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
386 NumParts = NumRegs; // Silence a compiler warning.
387 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
388 assert(RegisterVT.getSizeInBits() ==
389 Parts[0].getSimpleValueType().getSizeInBits() &&
390 "Part type sizes don't match!");
392 // Assemble the parts into intermediate operands.
393 SmallVector<SDValue, 8> Ops(NumIntermediates);
394 if (NumIntermediates == NumParts) {
395 // If the register was not expanded, truncate or copy the value,
396 // as appropriate.
397 for (unsigned i = 0; i != NumParts; ++i)
398 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
399 PartVT, IntermediateVT, V);
400 } else if (NumParts > 0) {
401 // If the intermediate type was expanded, build the intermediate
402 // operands from the parts.
403 assert(NumParts % NumIntermediates == 0 &&
404 "Must expand into a divisible number of parts!");
405 unsigned Factor = NumParts / NumIntermediates;
406 for (unsigned i = 0; i != NumIntermediates; ++i)
407 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
408 PartVT, IntermediateVT, V);
411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
412 // intermediate operands.
413 EVT BuiltVectorTy =
414 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
415 (IntermediateVT.isVector()
416 ? IntermediateVT.getVectorNumElements() * NumParts
417 : NumIntermediates));
418 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
419 : ISD::BUILD_VECTOR,
420 DL, BuiltVectorTy, Ops);
423 // There is now one part, held in Val. Correct it to match ValueVT.
424 EVT PartEVT = Val.getValueType();
426 if (PartEVT == ValueVT)
427 return Val;
429 if (PartEVT.isVector()) {
430 // If the element type of the source/dest vectors are the same, but the
431 // parts vector has more elements than the value vector, then we have a
432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
433 // elements we want.
434 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
435 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
436 "Cannot narrow, it would be a lossy transformation");
437 return DAG.getNode(
438 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
439 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
442 // Vector/Vector bitcast.
443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
446 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
447 "Cannot handle this kind of promotion");
448 // Promoted vector extract
449 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
453 // Trivial bitcast if the types are the same size and the destination
454 // vector type is legal.
455 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
456 TLI.isTypeLegal(ValueVT))
457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
459 if (ValueVT.getVectorNumElements() != 1) {
460 // Certain ABIs require that vectors are passed as integers. For vectors
461 // are the same size, this is an obvious bitcast.
462 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
465 // Bitcast Val back the original type and extract the corresponding
466 // vector we want.
467 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
468 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
469 ValueVT.getVectorElementType(), Elts);
470 Val = DAG.getBitcast(WiderVecType, Val);
471 return DAG.getNode(
472 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
473 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
476 diagnosePossiblyInvalidConstraint(
477 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
478 return DAG.getUNDEF(ValueVT);
481 // Handle cases such as i8 -> <1 x i1>
482 EVT ValueSVT = ValueVT.getVectorElementType();
483 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
484 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
485 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
487 return DAG.getBuildVector(ValueVT, DL, Val);
490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
491 SDValue Val, SDValue *Parts, unsigned NumParts,
492 MVT PartVT, const Value *V,
493 Optional<CallingConv::ID> CallConv);
495 /// getCopyToParts - Create a series of nodes that contain the specified value
496 /// split into legal parts. If the parts contain more bits than Val, then, for
497 /// integers, ExtendKind can be used to specify how to generate the extra bits.
498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
499 SDValue *Parts, unsigned NumParts, MVT PartVT,
500 const Value *V,
501 Optional<CallingConv::ID> CallConv = None,
502 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
503 EVT ValueVT = Val.getValueType();
505 // Handle the vector case separately.
506 if (ValueVT.isVector())
507 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
508 CallConv);
510 unsigned PartBits = PartVT.getSizeInBits();
511 unsigned OrigNumParts = NumParts;
512 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
513 "Copying to an illegal type!");
515 if (NumParts == 0)
516 return;
518 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
519 EVT PartEVT = PartVT;
520 if (PartEVT == ValueVT) {
521 assert(NumParts == 1 && "No-op copy with multiple parts!");
522 Parts[0] = Val;
523 return;
526 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
527 // If the parts cover more bits than the value has, promote the value.
528 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
529 assert(NumParts == 1 && "Do not know what to promote to!");
530 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
531 } else {
532 if (ValueVT.isFloatingPoint()) {
533 // FP values need to be bitcast, then extended if they are being put
534 // into a larger container.
535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
536 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
538 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
539 ValueVT.isInteger() &&
540 "Unknown mismatch!");
541 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
542 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
543 if (PartVT == MVT::x86mmx)
544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
546 } else if (PartBits == ValueVT.getSizeInBits()) {
547 // Different types of the same size.
548 assert(NumParts == 1 && PartEVT != ValueVT);
549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
550 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
551 // If the parts cover less bits than value has, truncate the value.
552 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
553 ValueVT.isInteger() &&
554 "Unknown mismatch!");
555 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
556 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
557 if (PartVT == MVT::x86mmx)
558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561 // The value may have changed - recompute ValueVT.
562 ValueVT = Val.getValueType();
563 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
564 "Failed to tile the value with PartVT!");
566 if (NumParts == 1) {
567 if (PartEVT != ValueVT) {
568 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
569 "scalar-to-vector conversion failed");
570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
573 Parts[0] = Val;
574 return;
577 // Expand the value into multiple parts.
578 if (NumParts & (NumParts - 1)) {
579 // The number of parts is not a power of 2. Split off and copy the tail.
580 assert(PartVT.isInteger() && ValueVT.isInteger() &&
581 "Do not know what to expand to!");
582 unsigned RoundParts = 1 << Log2_32(NumParts);
583 unsigned RoundBits = RoundParts * PartBits;
584 unsigned OddParts = NumParts - RoundParts;
585 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
586 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
588 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
589 CallConv);
591 if (DAG.getDataLayout().isBigEndian())
592 // The odd parts were reversed by getCopyToParts - unreverse them.
593 std::reverse(Parts + RoundParts, Parts + NumParts);
595 NumParts = RoundParts;
596 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
597 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
600 // The number of parts is a power of 2. Repeatedly bisect the value using
601 // EXTRACT_ELEMENT.
602 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
603 EVT::getIntegerVT(*DAG.getContext(),
604 ValueVT.getSizeInBits()),
605 Val);
607 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
608 for (unsigned i = 0; i < NumParts; i += StepSize) {
609 unsigned ThisBits = StepSize * PartBits / 2;
610 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
611 SDValue &Part0 = Parts[i];
612 SDValue &Part1 = Parts[i+StepSize/2];
614 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
616 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
617 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
619 if (ThisBits == PartBits && ThisVT != PartVT) {
620 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
621 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
626 if (DAG.getDataLayout().isBigEndian())
627 std::reverse(Parts, Parts + OrigNumParts);
630 static SDValue widenVectorToPartType(SelectionDAG &DAG,
631 SDValue Val, const SDLoc &DL, EVT PartVT) {
632 if (!PartVT.isVector())
633 return SDValue();
635 EVT ValueVT = Val.getValueType();
636 unsigned PartNumElts = PartVT.getVectorNumElements();
637 unsigned ValueNumElts = ValueVT.getVectorNumElements();
638 if (PartNumElts > ValueNumElts &&
639 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
640 EVT ElementVT = PartVT.getVectorElementType();
641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
642 // undef elements.
643 SmallVector<SDValue, 16> Ops;
644 DAG.ExtractVectorElements(Val, Ops);
645 SDValue EltUndef = DAG.getUNDEF(ElementVT);
646 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
647 Ops.push_back(EltUndef);
649 // FIXME: Use CONCAT for 2x -> 4x.
650 return DAG.getBuildVector(PartVT, DL, Ops);
653 return SDValue();
656 /// getCopyToPartsVector - Create a series of nodes that contain the specified
657 /// value split into legal parts.
658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
659 SDValue Val, SDValue *Parts, unsigned NumParts,
660 MVT PartVT, const Value *V,
661 Optional<CallingConv::ID> CallConv) {
662 EVT ValueVT = Val.getValueType();
663 assert(ValueVT.isVector() && "Not a vector");
664 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
665 const bool IsABIRegCopy = CallConv.hasValue();
667 if (NumParts == 1) {
668 EVT PartEVT = PartVT;
669 if (PartEVT == ValueVT) {
670 // Nothing to do.
671 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
672 // Bitconvert vector->vector case.
673 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
674 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
675 Val = Widened;
676 } else if (PartVT.isVector() &&
677 PartEVT.getVectorElementType().bitsGE(
678 ValueVT.getVectorElementType()) &&
679 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
681 // Promoted vector extract
682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
683 } else {
684 if (ValueVT.getVectorNumElements() == 1) {
685 Val = DAG.getNode(
686 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
687 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
688 } else {
689 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
690 "lossy conversion of vector to scalar type");
691 EVT IntermediateType =
692 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
693 Val = DAG.getBitcast(IntermediateType, Val);
694 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
698 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
699 Parts[0] = Val;
700 return;
703 // Handle a multi-element vector.
704 EVT IntermediateVT;
705 MVT RegisterVT;
706 unsigned NumIntermediates;
707 unsigned NumRegs;
708 if (IsABIRegCopy) {
709 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
710 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
711 NumIntermediates, RegisterVT);
712 } else {
713 NumRegs =
714 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
715 NumIntermediates, RegisterVT);
718 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
719 NumParts = NumRegs; // Silence a compiler warning.
720 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
722 unsigned IntermediateNumElts = IntermediateVT.isVector() ?
723 IntermediateVT.getVectorNumElements() : 1;
725 // Convert the vector to the appropiate type if necessary.
726 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
728 EVT BuiltVectorTy = EVT::getVectorVT(
729 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
730 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
731 if (ValueVT != BuiltVectorTy) {
732 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
733 Val = Widened;
735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
738 // Split the vector into intermediate operands.
739 SmallVector<SDValue, 8> Ops(NumIntermediates);
740 for (unsigned i = 0; i != NumIntermediates; ++i) {
741 if (IntermediateVT.isVector()) {
742 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
743 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
744 } else {
745 Ops[i] = DAG.getNode(
746 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
747 DAG.getConstant(i, DL, IdxVT));
751 // Split the intermediate operands into legal parts.
752 if (NumParts == NumIntermediates) {
753 // If the register was not expanded, promote or copy the value,
754 // as appropriate.
755 for (unsigned i = 0; i != NumParts; ++i)
756 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
757 } else if (NumParts > 0) {
758 // If the intermediate type was expanded, split each the value into
759 // legal parts.
760 assert(NumIntermediates != 0 && "division by zero");
761 assert(NumParts % NumIntermediates == 0 &&
762 "Must expand into a divisible number of parts!");
763 unsigned Factor = NumParts / NumIntermediates;
764 for (unsigned i = 0; i != NumIntermediates; ++i)
765 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
766 CallConv);
770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
771 EVT valuevt, Optional<CallingConv::ID> CC)
772 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
773 RegCount(1, regs.size()), CallConv(CC) {}
775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
776 const DataLayout &DL, unsigned Reg, Type *Ty,
777 Optional<CallingConv::ID> CC) {
778 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
780 CallConv = CC;
782 for (EVT ValueVT : ValueVTs) {
783 unsigned NumRegs =
784 isABIMangled()
785 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
786 : TLI.getNumRegisters(Context, ValueVT);
787 MVT RegisterVT =
788 isABIMangled()
789 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
790 : TLI.getRegisterType(Context, ValueVT);
791 for (unsigned i = 0; i != NumRegs; ++i)
792 Regs.push_back(Reg + i);
793 RegVTs.push_back(RegisterVT);
794 RegCount.push_back(NumRegs);
795 Reg += NumRegs;
799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
800 FunctionLoweringInfo &FuncInfo,
801 const SDLoc &dl, SDValue &Chain,
802 SDValue *Flag, const Value *V) const {
803 // A Value with type {} or [0 x %t] needs no registers.
804 if (ValueVTs.empty())
805 return SDValue();
807 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
809 // Assemble the legal parts into the final values.
810 SmallVector<SDValue, 4> Values(ValueVTs.size());
811 SmallVector<SDValue, 8> Parts;
812 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
813 // Copy the legal parts from the registers.
814 EVT ValueVT = ValueVTs[Value];
815 unsigned NumRegs = RegCount[Value];
816 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
817 *DAG.getContext(),
818 CallConv.getValue(), RegVTs[Value])
819 : RegVTs[Value];
821 Parts.resize(NumRegs);
822 for (unsigned i = 0; i != NumRegs; ++i) {
823 SDValue P;
824 if (!Flag) {
825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
826 } else {
827 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
828 *Flag = P.getValue(2);
831 Chain = P.getValue(1);
832 Parts[i] = P;
834 // If the source register was virtual and if we know something about it,
835 // add an assert node.
836 if (!Register::isVirtualRegister(Regs[Part + i]) ||
837 !RegisterVT.isInteger())
838 continue;
840 const FunctionLoweringInfo::LiveOutInfo *LOI =
841 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
842 if (!LOI)
843 continue;
845 unsigned RegSize = RegisterVT.getScalarSizeInBits();
846 unsigned NumSignBits = LOI->NumSignBits;
847 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
849 if (NumZeroBits == RegSize) {
850 // The current value is a zero.
851 // Explicitly express that as it would be easier for
852 // optimizations to kick in.
853 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
854 continue;
857 // FIXME: We capture more information than the dag can represent. For
858 // now, just use the tightest assertzext/assertsext possible.
859 bool isSExt;
860 EVT FromVT(MVT::Other);
861 if (NumZeroBits) {
862 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
863 isSExt = false;
864 } else if (NumSignBits > 1) {
865 FromVT =
866 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
867 isSExt = true;
868 } else {
869 continue;
871 // Add an assertion node.
872 assert(FromVT != MVT::Other);
873 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
874 RegisterVT, P, DAG.getValueType(FromVT));
877 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
878 RegisterVT, ValueVT, V, CallConv);
879 Part += NumRegs;
880 Parts.clear();
883 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
887 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
888 const Value *V,
889 ISD::NodeType PreferredExtendType) const {
890 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
891 ISD::NodeType ExtendKind = PreferredExtendType;
893 // Get the list of the values's legal parts.
894 unsigned NumRegs = Regs.size();
895 SmallVector<SDValue, 8> Parts(NumRegs);
896 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
897 unsigned NumParts = RegCount[Value];
899 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
900 *DAG.getContext(),
901 CallConv.getValue(), RegVTs[Value])
902 : RegVTs[Value];
904 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
905 ExtendKind = ISD::ZERO_EXTEND;
907 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
908 NumParts, RegisterVT, V, CallConv, ExtendKind);
909 Part += NumParts;
912 // Copy the parts into the registers.
913 SmallVector<SDValue, 8> Chains(NumRegs);
914 for (unsigned i = 0; i != NumRegs; ++i) {
915 SDValue Part;
916 if (!Flag) {
917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
918 } else {
919 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
920 *Flag = Part.getValue(1);
923 Chains[i] = Part.getValue(0);
926 if (NumRegs == 1 || Flag)
927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928 // flagged to it. That is the CopyToReg nodes and the user are considered
929 // a single scheduling unit. If we create a TokenFactor and return it as
930 // chain, then the TokenFactor is both a predecessor (operand) of the
931 // user as well as a successor (the TF operands are flagged to the user).
932 // c1, f1 = CopyToReg
933 // c2, f2 = CopyToReg
934 // c3 = TokenFactor c1, c2
935 // ...
936 // = op c3, ..., f2
937 Chain = Chains[NumRegs-1];
938 else
939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
943 unsigned MatchingIdx, const SDLoc &dl,
944 SelectionDAG &DAG,
945 std::vector<SDValue> &Ops) const {
946 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
948 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
949 if (HasMatching)
950 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
951 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
952 // Put the register class of the virtual registers in the flag word. That
953 // way, later passes can recompute register class constraints for inline
954 // assembly as well as normal instructions.
955 // Don't do this for tied operands that can use the regclass information
956 // from the def.
957 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
958 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
959 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
962 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
963 Ops.push_back(Res);
965 if (Code == InlineAsm::Kind_Clobber) {
966 // Clobbers should always have a 1:1 mapping with registers, and may
967 // reference registers that have illegal (e.g. vector) types. Hence, we
968 // shouldn't try to apply any sort of splitting logic to them.
969 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
970 "No 1:1 mapping from clobbers to regs?");
971 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
972 (void)SP;
973 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
974 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
975 assert(
976 (Regs[I] != SP ||
977 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
978 "If we clobbered the stack pointer, MFI should know about it.");
980 return;
983 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
984 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
985 MVT RegisterVT = RegVTs[Value];
986 for (unsigned i = 0; i != NumRegs; ++i) {
987 assert(Reg < Regs.size() && "Mismatch in # registers expected");
988 unsigned TheReg = Regs[Reg++];
989 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
994 SmallVector<std::pair<unsigned, unsigned>, 4>
995 RegsForValue::getRegsAndSizes() const {
996 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
997 unsigned I = 0;
998 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
999 unsigned RegCount = std::get<0>(CountAndVT);
1000 MVT RegisterVT = std::get<1>(CountAndVT);
1001 unsigned RegisterSize = RegisterVT.getSizeInBits();
1002 for (unsigned E = I + RegCount; I != E; ++I)
1003 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1005 return OutVec;
1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1009 const TargetLibraryInfo *li) {
1010 AA = aa;
1011 GFI = gfi;
1012 LibInfo = li;
1013 DL = &DAG.getDataLayout();
1014 Context = DAG.getContext();
1015 LPadToCallSiteMap.clear();
1016 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1019 void SelectionDAGBuilder::clear() {
1020 NodeMap.clear();
1021 UnusedArgNodeMap.clear();
1022 PendingLoads.clear();
1023 PendingExports.clear();
1024 CurInst = nullptr;
1025 HasTailCall = false;
1026 SDNodeOrder = LowestSDNodeOrder;
1027 StatepointLowering.clear();
1030 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1031 DanglingDebugInfoMap.clear();
1034 SDValue SelectionDAGBuilder::getRoot() {
1035 if (PendingLoads.empty())
1036 return DAG.getRoot();
1038 if (PendingLoads.size() == 1) {
1039 SDValue Root = PendingLoads[0];
1040 DAG.setRoot(Root);
1041 PendingLoads.clear();
1042 return Root;
1045 // Otherwise, we have to make a token factor node.
1046 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1047 PendingLoads.clear();
1048 DAG.setRoot(Root);
1049 return Root;
1052 SDValue SelectionDAGBuilder::getControlRoot() {
1053 SDValue Root = DAG.getRoot();
1055 if (PendingExports.empty())
1056 return Root;
1058 // Turn all of the CopyToReg chains into one factored node.
1059 if (Root.getOpcode() != ISD::EntryToken) {
1060 unsigned i = 0, e = PendingExports.size();
1061 for (; i != e; ++i) {
1062 assert(PendingExports[i].getNode()->getNumOperands() > 1);
1063 if (PendingExports[i].getNode()->getOperand(0) == Root)
1064 break; // Don't add the root if we already indirectly depend on it.
1067 if (i == e)
1068 PendingExports.push_back(Root);
1071 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1072 PendingExports);
1073 PendingExports.clear();
1074 DAG.setRoot(Root);
1075 return Root;
1078 void SelectionDAGBuilder::visit(const Instruction &I) {
1079 // Set up outgoing PHI node register values before emitting the terminator.
1080 if (I.isTerminator()) {
1081 HandlePHINodesInSuccessorBlocks(I.getParent());
1084 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1085 if (!isa<DbgInfoIntrinsic>(I))
1086 ++SDNodeOrder;
1088 CurInst = &I;
1090 visit(I.getOpcode(), I);
1092 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1093 // Propagate the fast-math-flags of this IR instruction to the DAG node that
1094 // maps to this instruction.
1095 // TODO: We could handle all flags (nsw, etc) here.
1096 // TODO: If an IR instruction maps to >1 node, only the final node will have
1097 // flags set.
1098 if (SDNode *Node = getNodeForIRValue(&I)) {
1099 SDNodeFlags IncomingFlags;
1100 IncomingFlags.copyFMF(*FPMO);
1101 if (!Node->getFlags().isDefined())
1102 Node->setFlags(IncomingFlags);
1103 else
1104 Node->intersectFlagsWith(IncomingFlags);
1108 if (!I.isTerminator() && !HasTailCall &&
1109 !isStatepoint(&I)) // statepoints handle their exports internally
1110 CopyToExportRegsIfNeeded(&I);
1112 CurInst = nullptr;
1115 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1116 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1120 // Note: this doesn't use InstVisitor, because it has to work with
1121 // ConstantExpr's in addition to instructions.
1122 switch (Opcode) {
1123 default: llvm_unreachable("Unknown instruction type encountered!");
1124 // Build the switch statement using the Instruction.def file.
1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1126 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1127 #include "llvm/IR/Instruction.def"
1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1132 const DIExpression *Expr) {
1133 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1134 const DbgValueInst *DI = DDI.getDI();
1135 DIVariable *DanglingVariable = DI->getVariable();
1136 DIExpression *DanglingExpr = DI->getExpression();
1137 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1138 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1139 return true;
1141 return false;
1144 for (auto &DDIMI : DanglingDebugInfoMap) {
1145 DanglingDebugInfoVector &DDIV = DDIMI.second;
1147 // If debug info is to be dropped, run it through final checks to see
1148 // whether it can be salvaged.
1149 for (auto &DDI : DDIV)
1150 if (isMatchingDbgValue(DDI))
1151 salvageUnresolvedDbgValue(DDI);
1153 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1158 // generate the debug data structures now that we've seen its definition.
1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1160 SDValue Val) {
1161 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1162 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1163 return;
1165 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1166 for (auto &DDI : DDIV) {
1167 const DbgValueInst *DI = DDI.getDI();
1168 assert(DI && "Ill-formed DanglingDebugInfo");
1169 DebugLoc dl = DDI.getdl();
1170 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1171 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1172 DILocalVariable *Variable = DI->getVariable();
1173 DIExpression *Expr = DI->getExpression();
1174 assert(Variable->isValidLocationForIntrinsic(dl) &&
1175 "Expected inlined-at fields to agree");
1176 SDDbgValue *SDV;
1177 if (Val.getNode()) {
1178 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1179 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1180 // we couldn't resolve it directly when examining the DbgValue intrinsic
1181 // in the first place we should not be more successful here). Unless we
1182 // have some test case that prove this to be correct we should avoid
1183 // calling EmitFuncArgumentDbgValue here.
1184 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1185 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1186 << DbgSDNodeOrder << "] for:\n " << *DI << "\n");
1187 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1188 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1189 // inserted after the definition of Val when emitting the instructions
1190 // after ISel. An alternative could be to teach
1191 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1192 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1193 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1194 << ValSDNodeOrder << "\n");
1195 SDV = getDbgValue(Val, Variable, Expr, dl,
1196 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1197 DAG.AddDbgValue(SDV, Val.getNode(), false);
1198 } else
1199 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1200 << "in EmitFuncArgumentDbgValue\n");
1201 } else {
1202 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1203 auto Undef =
1204 UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1205 auto SDV =
1206 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1207 DAG.AddDbgValue(SDV, nullptr, false);
1210 DDIV.clear();
1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1214 Value *V = DDI.getDI()->getValue();
1215 DILocalVariable *Var = DDI.getDI()->getVariable();
1216 DIExpression *Expr = DDI.getDI()->getExpression();
1217 DebugLoc DL = DDI.getdl();
1218 DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1219 unsigned SDOrder = DDI.getSDNodeOrder();
1221 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1222 // that DW_OP_stack_value is desired.
1223 assert(isa<DbgValueInst>(DDI.getDI()));
1224 bool StackValue = true;
1226 // Can this Value can be encoded without any further work?
1227 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1228 return;
1230 // Attempt to salvage back through as many instructions as possible. Bail if
1231 // a non-instruction is seen, such as a constant expression or global
1232 // variable. FIXME: Further work could recover those too.
1233 while (isa<Instruction>(V)) {
1234 Instruction &VAsInst = *cast<Instruction>(V);
1235 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1237 // If we cannot salvage any further, and haven't yet found a suitable debug
1238 // expression, bail out.
1239 if (!NewExpr)
1240 break;
1242 // New value and expr now represent this debuginfo.
1243 V = VAsInst.getOperand(0);
1244 Expr = NewExpr;
1246 // Some kind of simplification occurred: check whether the operand of the
1247 // salvaged debug expression can be encoded in this DAG.
1248 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1249 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1250 << DDI.getDI() << "\nBy stripping back to:\n " << V);
1251 return;
1255 // This was the final opportunity to salvage this debug information, and it
1256 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1257 // any earlier variable location.
1258 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1259 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1260 DAG.AddDbgValue(SDV, nullptr, false);
1262 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI()
1263 << "\n");
1264 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0)
1265 << "\n");
1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1269 DIExpression *Expr, DebugLoc dl,
1270 DebugLoc InstDL, unsigned Order) {
1271 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1272 SDDbgValue *SDV;
1273 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1274 isa<ConstantPointerNull>(V)) {
1275 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1276 DAG.AddDbgValue(SDV, nullptr, false);
1277 return true;
1280 // If the Value is a frame index, we can create a FrameIndex debug value
1281 // without relying on the DAG at all.
1282 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1283 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1284 if (SI != FuncInfo.StaticAllocaMap.end()) {
1285 auto SDV =
1286 DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1287 /*IsIndirect*/ false, dl, SDNodeOrder);
1288 // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1289 // is still available even if the SDNode gets optimized out.
1290 DAG.AddDbgValue(SDV, nullptr, false);
1291 return true;
1295 // Do not use getValue() in here; we don't want to generate code at
1296 // this point if it hasn't been done yet.
1297 SDValue N = NodeMap[V];
1298 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1299 N = UnusedArgNodeMap[V];
1300 if (N.getNode()) {
1301 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1302 return true;
1303 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1304 DAG.AddDbgValue(SDV, N.getNode(), false);
1305 return true;
1308 // Special rules apply for the first dbg.values of parameter variables in a
1309 // function. Identify them by the fact they reference Argument Values, that
1310 // they're parameters, and they are parameters of the current function. We
1311 // need to let them dangle until they get an SDNode.
1312 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1313 !InstDL.getInlinedAt();
1314 if (!IsParamOfFunc) {
1315 // The value is not used in this block yet (or it would have an SDNode).
1316 // We still want the value to appear for the user if possible -- if it has
1317 // an associated VReg, we can refer to that instead.
1318 auto VMI = FuncInfo.ValueMap.find(V);
1319 if (VMI != FuncInfo.ValueMap.end()) {
1320 unsigned Reg = VMI->second;
1321 // If this is a PHI node, it may be split up into several MI PHI nodes
1322 // (in FunctionLoweringInfo::set).
1323 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1324 V->getType(), None);
1325 if (RFV.occupiesMultipleRegs()) {
1326 unsigned Offset = 0;
1327 unsigned BitsToDescribe = 0;
1328 if (auto VarSize = Var->getSizeInBits())
1329 BitsToDescribe = *VarSize;
1330 if (auto Fragment = Expr->getFragmentInfo())
1331 BitsToDescribe = Fragment->SizeInBits;
1332 for (auto RegAndSize : RFV.getRegsAndSizes()) {
1333 unsigned RegisterSize = RegAndSize.second;
1334 // Bail out if all bits are described already.
1335 if (Offset >= BitsToDescribe)
1336 break;
1337 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1338 ? BitsToDescribe - Offset
1339 : RegisterSize;
1340 auto FragmentExpr = DIExpression::createFragmentExpression(
1341 Expr, Offset, FragmentSize);
1342 if (!FragmentExpr)
1343 continue;
1344 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1345 false, dl, SDNodeOrder);
1346 DAG.AddDbgValue(SDV, nullptr, false);
1347 Offset += RegisterSize;
1349 } else {
1350 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1351 DAG.AddDbgValue(SDV, nullptr, false);
1353 return true;
1357 return false;
1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1361 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1362 for (auto &Pair : DanglingDebugInfoMap)
1363 for (auto &DDI : Pair.second)
1364 salvageUnresolvedDbgValue(DDI);
1365 clearDanglingDebugInfo();
1368 /// getCopyFromRegs - If there was virtual register allocated for the value V
1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1371 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1372 SDValue Result;
1374 if (It != FuncInfo.ValueMap.end()) {
1375 unsigned InReg = It->second;
1377 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1378 DAG.getDataLayout(), InReg, Ty,
1379 None); // This is not an ABI copy.
1380 SDValue Chain = DAG.getEntryNode();
1381 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1383 resolveDanglingDebugInfo(V, Result);
1386 return Result;
1389 /// getValue - Return an SDValue for the given Value.
1390 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1391 // If we already have an SDValue for this value, use it. It's important
1392 // to do this first, so that we don't create a CopyFromReg if we already
1393 // have a regular SDValue.
1394 SDValue &N = NodeMap[V];
1395 if (N.getNode()) return N;
1397 // If there's a virtual register allocated and initialized for this
1398 // value, use it.
1399 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1400 return copyFromReg;
1402 // Otherwise create a new SDValue and remember it.
1403 SDValue Val = getValueImpl(V);
1404 NodeMap[V] = Val;
1405 resolveDanglingDebugInfo(V, Val);
1406 return Val;
1409 // Return true if SDValue exists for the given Value
1410 bool SelectionDAGBuilder::findValue(const Value *V) const {
1411 return (NodeMap.find(V) != NodeMap.end()) ||
1412 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1415 /// getNonRegisterValue - Return an SDValue for the given Value, but
1416 /// don't look in FuncInfo.ValueMap for a virtual register.
1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1418 // If we already have an SDValue for this value, use it.
1419 SDValue &N = NodeMap[V];
1420 if (N.getNode()) {
1421 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1422 // Remove the debug location from the node as the node is about to be used
1423 // in a location which may differ from the original debug location. This
1424 // is relevant to Constant and ConstantFP nodes because they can appear
1425 // as constant expressions inside PHI nodes.
1426 N->setDebugLoc(DebugLoc());
1428 return N;
1431 // Otherwise create a new SDValue and remember it.
1432 SDValue Val = getValueImpl(V);
1433 NodeMap[V] = Val;
1434 resolveDanglingDebugInfo(V, Val);
1435 return Val;
1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1439 /// Create an SDValue for the given value.
1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1441 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1443 if (const Constant *C = dyn_cast<Constant>(V)) {
1444 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1446 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1447 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1449 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1450 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1452 if (isa<ConstantPointerNull>(C)) {
1453 unsigned AS = V->getType()->getPointerAddressSpace();
1454 return DAG.getConstant(0, getCurSDLoc(),
1455 TLI.getPointerTy(DAG.getDataLayout(), AS));
1458 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1459 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1461 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1462 return DAG.getUNDEF(VT);
1464 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1465 visit(CE->getOpcode(), *CE);
1466 SDValue N1 = NodeMap[V];
1467 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1468 return N1;
1471 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1472 SmallVector<SDValue, 4> Constants;
1473 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1474 OI != OE; ++OI) {
1475 SDNode *Val = getValue(*OI).getNode();
1476 // If the operand is an empty aggregate, there are no values.
1477 if (!Val) continue;
1478 // Add each leaf value from the operand to the Constants list
1479 // to form a flattened list of all the values.
1480 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1481 Constants.push_back(SDValue(Val, i));
1484 return DAG.getMergeValues(Constants, getCurSDLoc());
1487 if (const ConstantDataSequential *CDS =
1488 dyn_cast<ConstantDataSequential>(C)) {
1489 SmallVector<SDValue, 4> Ops;
1490 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1491 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1492 // Add each leaf value from the operand to the Constants list
1493 // to form a flattened list of all the values.
1494 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1495 Ops.push_back(SDValue(Val, i));
1498 if (isa<ArrayType>(CDS->getType()))
1499 return DAG.getMergeValues(Ops, getCurSDLoc());
1500 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1503 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1504 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1505 "Unknown struct or array constant!");
1507 SmallVector<EVT, 4> ValueVTs;
1508 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1509 unsigned NumElts = ValueVTs.size();
1510 if (NumElts == 0)
1511 return SDValue(); // empty struct
1512 SmallVector<SDValue, 4> Constants(NumElts);
1513 for (unsigned i = 0; i != NumElts; ++i) {
1514 EVT EltVT = ValueVTs[i];
1515 if (isa<UndefValue>(C))
1516 Constants[i] = DAG.getUNDEF(EltVT);
1517 else if (EltVT.isFloatingPoint())
1518 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1519 else
1520 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1523 return DAG.getMergeValues(Constants, getCurSDLoc());
1526 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1527 return DAG.getBlockAddress(BA, VT);
1529 VectorType *VecTy = cast<VectorType>(V->getType());
1530 unsigned NumElements = VecTy->getNumElements();
1532 // Now that we know the number and type of the elements, get that number of
1533 // elements into the Ops array based on what kind of constant it is.
1534 SmallVector<SDValue, 16> Ops;
1535 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1536 for (unsigned i = 0; i != NumElements; ++i)
1537 Ops.push_back(getValue(CV->getOperand(i)));
1538 } else {
1539 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1540 EVT EltVT =
1541 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1543 SDValue Op;
1544 if (EltVT.isFloatingPoint())
1545 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1546 else
1547 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1548 Ops.assign(NumElements, Op);
1551 // Create a BUILD_VECTOR node.
1552 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1555 // If this is a static alloca, generate it as the frameindex instead of
1556 // computation.
1557 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1558 DenseMap<const AllocaInst*, int>::iterator SI =
1559 FuncInfo.StaticAllocaMap.find(AI);
1560 if (SI != FuncInfo.StaticAllocaMap.end())
1561 return DAG.getFrameIndex(SI->second,
1562 TLI.getFrameIndexTy(DAG.getDataLayout()));
1565 // If this is an instruction which fast-isel has deferred, select it now.
1566 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1567 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1569 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1570 Inst->getType(), getABIRegCopyCC(V));
1571 SDValue Chain = DAG.getEntryNode();
1572 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1575 llvm_unreachable("Can't get register for value!");
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582 bool IsSEH = isAsynchronousEHPersonality(Pers);
1583 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1584 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1585 if (!IsSEH)
1586 CatchPadMBB->setIsEHScopeEntry();
1587 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1588 if (IsMSVCCXX || IsCoreCLR)
1589 CatchPadMBB->setIsEHFuncletEntry();
1590 // Wasm does not need catchpads anymore
1591 if (!IsWasmCXX)
1592 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1593 getControlRoot()));
1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1597 // Update machine-CFG edge.
1598 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1599 FuncInfo.MBB->addSuccessor(TargetMBB);
1601 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1602 bool IsSEH = isAsynchronousEHPersonality(Pers);
1603 if (IsSEH) {
1604 // If this is not a fall-through branch or optimizations are switched off,
1605 // emit the branch.
1606 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1607 TM.getOptLevel() == CodeGenOpt::None)
1608 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1609 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1610 return;
1613 // Figure out the funclet membership for the catchret's successor.
1614 // This will be used by the FuncletLayout pass to determine how to order the
1615 // BB's.
1616 // A 'catchret' returns to the outer scope's color.
1617 Value *ParentPad = I.getCatchSwitchParentPad();
1618 const BasicBlock *SuccessorColor;
1619 if (isa<ConstantTokenNone>(ParentPad))
1620 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1621 else
1622 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1623 assert(SuccessorColor && "No parent funclet for catchret!");
1624 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1625 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1627 // Create the terminator node.
1628 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1629 getControlRoot(), DAG.getBasicBlock(TargetMBB),
1630 DAG.getBasicBlock(SuccessorColorMBB));
1631 DAG.setRoot(Ret);
1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1635 // Don't emit any special code for the cleanuppad instruction. It just marks
1636 // the start of an EH scope/funclet.
1637 FuncInfo.MBB->setIsEHScopeEntry();
1638 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1639 if (Pers != EHPersonality::Wasm_CXX) {
1640 FuncInfo.MBB->setIsEHFuncletEntry();
1641 FuncInfo.MBB->setIsCleanupFuncletEntry();
1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1646 // the control flow always stops at the single catch pad, as it does for a
1647 // cleanup pad. In case the exception caught is not of the types the catch pad
1648 // catches, it will be rethrown by a rethrow.
1649 static void findWasmUnwindDestinations(
1650 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1651 BranchProbability Prob,
1652 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1653 &UnwindDests) {
1654 while (EHPadBB) {
1655 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1656 if (isa<CleanupPadInst>(Pad)) {
1657 // Stop on cleanup pads.
1658 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1659 UnwindDests.back().first->setIsEHScopeEntry();
1660 break;
1661 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1662 // Add the catchpad handlers to the possible destinations. We don't
1663 // continue to the unwind destination of the catchswitch for wasm.
1664 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1665 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1666 UnwindDests.back().first->setIsEHScopeEntry();
1668 break;
1669 } else {
1670 continue;
1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1676 /// many places it could ultimately go. In the IR, we have a single unwind
1677 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1678 /// This function skips over imaginary basic blocks that hold catchswitch
1679 /// instructions, and finds all the "real" machine
1680 /// basic block destinations. As those destinations may not be successors of
1681 /// EHPadBB, here we also calculate the edge probability to those destinations.
1682 /// The passed-in Prob is the edge probability to EHPadBB.
1683 static void findUnwindDestinations(
1684 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1685 BranchProbability Prob,
1686 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1687 &UnwindDests) {
1688 EHPersonality Personality =
1689 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1690 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1691 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1692 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1693 bool IsSEH = isAsynchronousEHPersonality(Personality);
1695 if (IsWasmCXX) {
1696 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1697 assert(UnwindDests.size() <= 1 &&
1698 "There should be at most one unwind destination for wasm");
1699 return;
1702 while (EHPadBB) {
1703 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1704 BasicBlock *NewEHPadBB = nullptr;
1705 if (isa<LandingPadInst>(Pad)) {
1706 // Stop on landingpads. They are not funclets.
1707 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1708 break;
1709 } else if (isa<CleanupPadInst>(Pad)) {
1710 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1711 // personalities.
1712 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1713 UnwindDests.back().first->setIsEHScopeEntry();
1714 UnwindDests.back().first->setIsEHFuncletEntry();
1715 break;
1716 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1717 // Add the catchpad handlers to the possible destinations.
1718 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1719 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1720 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1721 if (IsMSVCCXX || IsCoreCLR)
1722 UnwindDests.back().first->setIsEHFuncletEntry();
1723 if (!IsSEH)
1724 UnwindDests.back().first->setIsEHScopeEntry();
1726 NewEHPadBB = CatchSwitch->getUnwindDest();
1727 } else {
1728 continue;
1731 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1732 if (BPI && NewEHPadBB)
1733 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1734 EHPadBB = NewEHPadBB;
1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1739 // Update successor info.
1740 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1741 auto UnwindDest = I.getUnwindDest();
1742 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1743 BranchProbability UnwindDestProb =
1744 (BPI && UnwindDest)
1745 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1746 : BranchProbability::getZero();
1747 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1748 for (auto &UnwindDest : UnwindDests) {
1749 UnwindDest.first->setIsEHPad();
1750 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1752 FuncInfo.MBB->normalizeSuccProbs();
1754 // Create the terminator node.
1755 SDValue Ret =
1756 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1757 DAG.setRoot(Ret);
1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1761 report_fatal_error("visitCatchSwitch not yet implemented!");
1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1765 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1766 auto &DL = DAG.getDataLayout();
1767 SDValue Chain = getControlRoot();
1768 SmallVector<ISD::OutputArg, 8> Outs;
1769 SmallVector<SDValue, 8> OutVals;
1771 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1772 // lower
1774 // %val = call <ty> @llvm.experimental.deoptimize()
1775 // ret <ty> %val
1777 // differently.
1778 if (I.getParent()->getTerminatingDeoptimizeCall()) {
1779 LowerDeoptimizingReturn();
1780 return;
1783 if (!FuncInfo.CanLowerReturn) {
1784 unsigned DemoteReg = FuncInfo.DemoteRegister;
1785 const Function *F = I.getParent()->getParent();
1787 // Emit a store of the return value through the virtual register.
1788 // Leave Outs empty so that LowerReturn won't try to load return
1789 // registers the usual way.
1790 SmallVector<EVT, 1> PtrValueVTs;
1791 ComputeValueVTs(TLI, DL,
1792 F->getReturnType()->getPointerTo(
1793 DAG.getDataLayout().getAllocaAddrSpace()),
1794 PtrValueVTs);
1796 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1797 DemoteReg, PtrValueVTs[0]);
1798 SDValue RetOp = getValue(I.getOperand(0));
1800 SmallVector<EVT, 4> ValueVTs, MemVTs;
1801 SmallVector<uint64_t, 4> Offsets;
1802 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1803 &Offsets);
1804 unsigned NumValues = ValueVTs.size();
1806 SmallVector<SDValue, 4> Chains(NumValues);
1807 for (unsigned i = 0; i != NumValues; ++i) {
1808 // An aggregate return value cannot wrap around the address space, so
1809 // offsets to its parts don't wrap either.
1810 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1812 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1813 if (MemVTs[i] != ValueVTs[i])
1814 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1815 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1816 // FIXME: better loc info would be nice.
1817 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1820 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1821 MVT::Other, Chains);
1822 } else if (I.getNumOperands() != 0) {
1823 SmallVector<EVT, 4> ValueVTs;
1824 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1825 unsigned NumValues = ValueVTs.size();
1826 if (NumValues) {
1827 SDValue RetOp = getValue(I.getOperand(0));
1829 const Function *F = I.getParent()->getParent();
1831 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1832 I.getOperand(0)->getType(), F->getCallingConv(),
1833 /*IsVarArg*/ false);
1835 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1836 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1837 Attribute::SExt))
1838 ExtendKind = ISD::SIGN_EXTEND;
1839 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1840 Attribute::ZExt))
1841 ExtendKind = ISD::ZERO_EXTEND;
1843 LLVMContext &Context = F->getContext();
1844 bool RetInReg = F->getAttributes().hasAttribute(
1845 AttributeList::ReturnIndex, Attribute::InReg);
1847 for (unsigned j = 0; j != NumValues; ++j) {
1848 EVT VT = ValueVTs[j];
1850 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1851 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1853 CallingConv::ID CC = F->getCallingConv();
1855 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1856 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1857 SmallVector<SDValue, 4> Parts(NumParts);
1858 getCopyToParts(DAG, getCurSDLoc(),
1859 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1860 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1862 // 'inreg' on function refers to return value
1863 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1864 if (RetInReg)
1865 Flags.setInReg();
1867 if (I.getOperand(0)->getType()->isPointerTy()) {
1868 Flags.setPointer();
1869 Flags.setPointerAddrSpace(
1870 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1873 if (NeedsRegBlock) {
1874 Flags.setInConsecutiveRegs();
1875 if (j == NumValues - 1)
1876 Flags.setInConsecutiveRegsLast();
1879 // Propagate extension type if any
1880 if (ExtendKind == ISD::SIGN_EXTEND)
1881 Flags.setSExt();
1882 else if (ExtendKind == ISD::ZERO_EXTEND)
1883 Flags.setZExt();
1885 for (unsigned i = 0; i < NumParts; ++i) {
1886 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1887 VT, /*isfixed=*/true, 0, 0));
1888 OutVals.push_back(Parts[i]);
1894 // Push in swifterror virtual register as the last element of Outs. This makes
1895 // sure swifterror virtual register will be returned in the swifterror
1896 // physical register.
1897 const Function *F = I.getParent()->getParent();
1898 if (TLI.supportSwiftError() &&
1899 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1900 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1901 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1902 Flags.setSwiftError();
1903 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1904 EVT(TLI.getPointerTy(DL)) /*argvt*/,
1905 true /*isfixed*/, 1 /*origidx*/,
1906 0 /*partOffs*/));
1907 // Create SDNode for the swifterror virtual register.
1908 OutVals.push_back(
1909 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1910 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1911 EVT(TLI.getPointerTy(DL))));
1914 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1915 CallingConv::ID CallConv =
1916 DAG.getMachineFunction().getFunction().getCallingConv();
1917 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1918 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1920 // Verify that the target's LowerReturn behaved as expected.
1921 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1922 "LowerReturn didn't return a valid chain!");
1924 // Update the DAG with the new chain value resulting from return lowering.
1925 DAG.setRoot(Chain);
1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1929 /// created for it, emit nodes to copy the value into the virtual
1930 /// registers.
1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1932 // Skip empty types
1933 if (V->getType()->isEmptyTy())
1934 return;
1936 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1937 if (VMI != FuncInfo.ValueMap.end()) {
1938 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1939 CopyValueToVirtualRegister(V, VMI->second);
1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1944 /// the current basic block, add it to ValueMap now so that we'll get a
1945 /// CopyTo/FromReg.
1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1947 // No need to export constants.
1948 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1950 // Already exported?
1951 if (FuncInfo.isExportedInst(V)) return;
1953 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1954 CopyValueToVirtualRegister(V, Reg);
1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1958 const BasicBlock *FromBB) {
1959 // The operands of the setcc have to be in this block. We don't know
1960 // how to export them from some other block.
1961 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1962 // Can export from current BB.
1963 if (VI->getParent() == FromBB)
1964 return true;
1966 // Is already exported, noop.
1967 return FuncInfo.isExportedInst(V);
1970 // If this is an argument, we can export it if the BB is the entry block or
1971 // if it is already exported.
1972 if (isa<Argument>(V)) {
1973 if (FromBB == &FromBB->getParent()->getEntryBlock())
1974 return true;
1976 // Otherwise, can only export this if it is already exported.
1977 return FuncInfo.isExportedInst(V);
1980 // Otherwise, constants can always be exported.
1981 return true;
1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1985 BranchProbability
1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1987 const MachineBasicBlock *Dst) const {
1988 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1989 const BasicBlock *SrcBB = Src->getBasicBlock();
1990 const BasicBlock *DstBB = Dst->getBasicBlock();
1991 if (!BPI) {
1992 // If BPI is not available, set the default probability as 1 / N, where N is
1993 // the number of successors.
1994 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1995 return BranchProbability(1, SuccSize);
1997 return BPI->getEdgeProbability(SrcBB, DstBB);
2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2001 MachineBasicBlock *Dst,
2002 BranchProbability Prob) {
2003 if (!FuncInfo.BPI)
2004 Src->addSuccessorWithoutProb(Dst);
2005 else {
2006 if (Prob.isUnknown())
2007 Prob = getEdgeProbability(Src, Dst);
2008 Src->addSuccessor(Dst, Prob);
2012 static bool InBlock(const Value *V, const BasicBlock *BB) {
2013 if (const Instruction *I = dyn_cast<Instruction>(V))
2014 return I->getParent() == BB;
2015 return true;
2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2019 /// This function emits a branch and is used at the leaves of an OR or an
2020 /// AND operator tree.
2021 void
2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2023 MachineBasicBlock *TBB,
2024 MachineBasicBlock *FBB,
2025 MachineBasicBlock *CurBB,
2026 MachineBasicBlock *SwitchBB,
2027 BranchProbability TProb,
2028 BranchProbability FProb,
2029 bool InvertCond) {
2030 const BasicBlock *BB = CurBB->getBasicBlock();
2032 // If the leaf of the tree is a comparison, merge the condition into
2033 // the caseblock.
2034 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2035 // The operands of the cmp have to be in this block. We don't know
2036 // how to export them from some other block. If this is the first block
2037 // of the sequence, no exporting is needed.
2038 if (CurBB == SwitchBB ||
2039 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2040 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2041 ISD::CondCode Condition;
2042 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2043 ICmpInst::Predicate Pred =
2044 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2045 Condition = getICmpCondCode(Pred);
2046 } else {
2047 const FCmpInst *FC = cast<FCmpInst>(Cond);
2048 FCmpInst::Predicate Pred =
2049 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2050 Condition = getFCmpCondCode(Pred);
2051 if (TM.Options.NoNaNsFPMath)
2052 Condition = getFCmpCodeWithoutNaN(Condition);
2055 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2056 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2057 SL->SwitchCases.push_back(CB);
2058 return;
2062 // Create a CaseBlock record representing this branch.
2063 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2064 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2065 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2066 SL->SwitchCases.push_back(CB);
2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2070 MachineBasicBlock *TBB,
2071 MachineBasicBlock *FBB,
2072 MachineBasicBlock *CurBB,
2073 MachineBasicBlock *SwitchBB,
2074 Instruction::BinaryOps Opc,
2075 BranchProbability TProb,
2076 BranchProbability FProb,
2077 bool InvertCond) {
2078 // Skip over not part of the tree and remember to invert op and operands at
2079 // next level.
2080 Value *NotCond;
2081 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2082 InBlock(NotCond, CurBB->getBasicBlock())) {
2083 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2084 !InvertCond);
2085 return;
2088 const Instruction *BOp = dyn_cast<Instruction>(Cond);
2089 // Compute the effective opcode for Cond, taking into account whether it needs
2090 // to be inverted, e.g.
2091 // and (not (or A, B)), C
2092 // gets lowered as
2093 // and (and (not A, not B), C)
2094 unsigned BOpc = 0;
2095 if (BOp) {
2096 BOpc = BOp->getOpcode();
2097 if (InvertCond) {
2098 if (BOpc == Instruction::And)
2099 BOpc = Instruction::Or;
2100 else if (BOpc == Instruction::Or)
2101 BOpc = Instruction::And;
2105 // If this node is not part of the or/and tree, emit it as a branch.
2106 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2107 BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2108 BOp->getParent() != CurBB->getBasicBlock() ||
2109 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2110 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2111 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2112 TProb, FProb, InvertCond);
2113 return;
2116 // Create TmpBB after CurBB.
2117 MachineFunction::iterator BBI(CurBB);
2118 MachineFunction &MF = DAG.getMachineFunction();
2119 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2120 CurBB->getParent()->insert(++BBI, TmpBB);
2122 if (Opc == Instruction::Or) {
2123 // Codegen X | Y as:
2124 // BB1:
2125 // jmp_if_X TBB
2126 // jmp TmpBB
2127 // TmpBB:
2128 // jmp_if_Y TBB
2129 // jmp FBB
2132 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2133 // The requirement is that
2134 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2135 // = TrueProb for original BB.
2136 // Assuming the original probabilities are A and B, one choice is to set
2137 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2138 // A/(1+B) and 2B/(1+B). This choice assumes that
2139 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2140 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2141 // TmpBB, but the math is more complicated.
2143 auto NewTrueProb = TProb / 2;
2144 auto NewFalseProb = TProb / 2 + FProb;
2145 // Emit the LHS condition.
2146 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2147 NewTrueProb, NewFalseProb, InvertCond);
2149 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2150 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2151 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2152 // Emit the RHS condition into TmpBB.
2153 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2154 Probs[0], Probs[1], InvertCond);
2155 } else {
2156 assert(Opc == Instruction::And && "Unknown merge op!");
2157 // Codegen X & Y as:
2158 // BB1:
2159 // jmp_if_X TmpBB
2160 // jmp FBB
2161 // TmpBB:
2162 // jmp_if_Y TBB
2163 // jmp FBB
2165 // This requires creation of TmpBB after CurBB.
2167 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2168 // The requirement is that
2169 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2170 // = FalseProb for original BB.
2171 // Assuming the original probabilities are A and B, one choice is to set
2172 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2173 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2174 // TrueProb for BB1 * FalseProb for TmpBB.
2176 auto NewTrueProb = TProb + FProb / 2;
2177 auto NewFalseProb = FProb / 2;
2178 // Emit the LHS condition.
2179 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2180 NewTrueProb, NewFalseProb, InvertCond);
2182 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2183 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2184 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2185 // Emit the RHS condition into TmpBB.
2186 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2187 Probs[0], Probs[1], InvertCond);
2191 /// If the set of cases should be emitted as a series of branches, return true.
2192 /// If we should emit this as a bunch of and/or'd together conditions, return
2193 /// false.
2194 bool
2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2196 if (Cases.size() != 2) return true;
2198 // If this is two comparisons of the same values or'd or and'd together, they
2199 // will get folded into a single comparison, so don't emit two blocks.
2200 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2201 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2202 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2203 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2204 return false;
2207 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2208 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2209 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2210 Cases[0].CC == Cases[1].CC &&
2211 isa<Constant>(Cases[0].CmpRHS) &&
2212 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2213 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2214 return false;
2215 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2216 return false;
2219 return true;
2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2223 MachineBasicBlock *BrMBB = FuncInfo.MBB;
2225 // Update machine-CFG edges.
2226 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2228 if (I.isUnconditional()) {
2229 // Update machine-CFG edges.
2230 BrMBB->addSuccessor(Succ0MBB);
2232 // If this is not a fall-through branch or optimizations are switched off,
2233 // emit the branch.
2234 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2235 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2236 MVT::Other, getControlRoot(),
2237 DAG.getBasicBlock(Succ0MBB)));
2239 return;
2242 // If this condition is one of the special cases we handle, do special stuff
2243 // now.
2244 const Value *CondVal = I.getCondition();
2245 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2247 // If this is a series of conditions that are or'd or and'd together, emit
2248 // this as a sequence of branches instead of setcc's with and/or operations.
2249 // As long as jumps are not expensive, this should improve performance.
2250 // For example, instead of something like:
2251 // cmp A, B
2252 // C = seteq
2253 // cmp D, E
2254 // F = setle
2255 // or C, F
2256 // jnz foo
2257 // Emit:
2258 // cmp A, B
2259 // je foo
2260 // cmp D, E
2261 // jle foo
2262 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2263 Instruction::BinaryOps Opcode = BOp->getOpcode();
2264 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2265 !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2266 (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2267 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2268 Opcode,
2269 getEdgeProbability(BrMBB, Succ0MBB),
2270 getEdgeProbability(BrMBB, Succ1MBB),
2271 /*InvertCond=*/false);
2272 // If the compares in later blocks need to use values not currently
2273 // exported from this block, export them now. This block should always
2274 // be the first entry.
2275 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2277 // Allow some cases to be rejected.
2278 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2279 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2280 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2284 // Emit the branch for this block.
2285 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2286 SL->SwitchCases.erase(SL->SwitchCases.begin());
2287 return;
2290 // Okay, we decided not to do this, remove any inserted MBB's and clear
2291 // SwitchCases.
2292 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2293 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2295 SL->SwitchCases.clear();
2299 // Create a CaseBlock record representing this branch.
2300 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2301 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2303 // Use visitSwitchCase to actually insert the fast branch sequence for this
2304 // cond branch.
2305 visitSwitchCase(CB, BrMBB);
2308 /// visitSwitchCase - Emits the necessary code to represent a single node in
2309 /// the binary search tree resulting from lowering a switch instruction.
2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2311 MachineBasicBlock *SwitchBB) {
2312 SDValue Cond;
2313 SDValue CondLHS = getValue(CB.CmpLHS);
2314 SDLoc dl = CB.DL;
2316 if (CB.CC == ISD::SETTRUE) {
2317 // Branch or fall through to TrueBB.
2318 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2319 SwitchBB->normalizeSuccProbs();
2320 if (CB.TrueBB != NextBlock(SwitchBB)) {
2321 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2322 DAG.getBasicBlock(CB.TrueBB)));
2324 return;
2327 auto &TLI = DAG.getTargetLoweringInfo();
2328 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2330 // Build the setcc now.
2331 if (!CB.CmpMHS) {
2332 // Fold "(X == true)" to X and "(X == false)" to !X to
2333 // handle common cases produced by branch lowering.
2334 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2335 CB.CC == ISD::SETEQ)
2336 Cond = CondLHS;
2337 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2338 CB.CC == ISD::SETEQ) {
2339 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2340 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2341 } else {
2342 SDValue CondRHS = getValue(CB.CmpRHS);
2344 // If a pointer's DAG type is larger than its memory type then the DAG
2345 // values are zero-extended. This breaks signed comparisons so truncate
2346 // back to the underlying type before doing the compare.
2347 if (CondLHS.getValueType() != MemVT) {
2348 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2349 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2351 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2353 } else {
2354 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2356 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2357 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2359 SDValue CmpOp = getValue(CB.CmpMHS);
2360 EVT VT = CmpOp.getValueType();
2362 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2363 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2364 ISD::SETLE);
2365 } else {
2366 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2367 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2368 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2369 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2373 // Update successor info
2374 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2375 // TrueBB and FalseBB are always different unless the incoming IR is
2376 // degenerate. This only happens when running llc on weird IR.
2377 if (CB.TrueBB != CB.FalseBB)
2378 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2379 SwitchBB->normalizeSuccProbs();
2381 // If the lhs block is the next block, invert the condition so that we can
2382 // fall through to the lhs instead of the rhs block.
2383 if (CB.TrueBB == NextBlock(SwitchBB)) {
2384 std::swap(CB.TrueBB, CB.FalseBB);
2385 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2386 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2389 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2390 MVT::Other, getControlRoot(), Cond,
2391 DAG.getBasicBlock(CB.TrueBB));
2393 // Insert the false branch. Do this even if it's a fall through branch,
2394 // this makes it easier to do DAG optimizations which require inverting
2395 // the branch condition.
2396 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2397 DAG.getBasicBlock(CB.FalseBB));
2399 DAG.setRoot(BrCond);
2402 /// visitJumpTable - Emit JumpTable node in the current MBB
2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2404 // Emit the code for the jump table
2405 assert(JT.Reg != -1U && "Should lower JT Header first!");
2406 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2407 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2408 JT.Reg, PTy);
2409 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2410 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2411 MVT::Other, Index.getValue(1),
2412 Table, Index);
2413 DAG.setRoot(BrJumpTable);
2416 /// visitJumpTableHeader - This function emits necessary code to produce index
2417 /// in the JumpTable from switch case.
2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2419 JumpTableHeader &JTH,
2420 MachineBasicBlock *SwitchBB) {
2421 SDLoc dl = getCurSDLoc();
2423 // Subtract the lowest switch case value from the value being switched on.
2424 SDValue SwitchOp = getValue(JTH.SValue);
2425 EVT VT = SwitchOp.getValueType();
2426 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2427 DAG.getConstant(JTH.First, dl, VT));
2429 // The SDNode we just created, which holds the value being switched on minus
2430 // the smallest case value, needs to be copied to a virtual register so it
2431 // can be used as an index into the jump table in a subsequent basic block.
2432 // This value may be smaller or larger than the target's pointer type, and
2433 // therefore require extension or truncating.
2434 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2435 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2437 unsigned JumpTableReg =
2438 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2439 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2440 JumpTableReg, SwitchOp);
2441 JT.Reg = JumpTableReg;
2443 if (!JTH.OmitRangeCheck) {
2444 // Emit the range check for the jump table, and branch to the default block
2445 // for the switch statement if the value being switched on exceeds the
2446 // largest case in the switch.
2447 SDValue CMP = DAG.getSetCC(
2448 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2449 Sub.getValueType()),
2450 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2452 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2453 MVT::Other, CopyTo, CMP,
2454 DAG.getBasicBlock(JT.Default));
2456 // Avoid emitting unnecessary branches to the next block.
2457 if (JT.MBB != NextBlock(SwitchBB))
2458 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2459 DAG.getBasicBlock(JT.MBB));
2461 DAG.setRoot(BrCond);
2462 } else {
2463 // Avoid emitting unnecessary branches to the next block.
2464 if (JT.MBB != NextBlock(SwitchBB))
2465 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2466 DAG.getBasicBlock(JT.MBB)));
2467 else
2468 DAG.setRoot(CopyTo);
2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2473 /// variable if there exists one.
2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2475 SDValue &Chain) {
2476 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2477 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2478 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2479 MachineFunction &MF = DAG.getMachineFunction();
2480 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2481 MachineSDNode *Node =
2482 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2483 if (Global) {
2484 MachinePointerInfo MPInfo(Global);
2485 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2486 MachineMemOperand::MODereferenceable;
2487 MachineMemOperand *MemRef = MF.getMachineMemOperand(
2488 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2489 DAG.setNodeMemRefs(Node, {MemRef});
2491 if (PtrTy != PtrMemTy)
2492 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2493 return SDValue(Node, 0);
2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2497 /// tail spliced into a stack protector check success bb.
2499 /// For a high level explanation of how this fits into the stack protector
2500 /// generation see the comment on the declaration of class
2501 /// StackProtectorDescriptor.
2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2503 MachineBasicBlock *ParentBB) {
2505 // First create the loads to the guard/stack slot for the comparison.
2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2510 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2511 int FI = MFI.getStackProtectorIndex();
2513 SDValue Guard;
2514 SDLoc dl = getCurSDLoc();
2515 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2516 const Module &M = *ParentBB->getParent()->getFunction().getParent();
2517 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2519 // Generate code to load the content of the guard slot.
2520 SDValue GuardVal = DAG.getLoad(
2521 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2522 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2523 MachineMemOperand::MOVolatile);
2525 if (TLI.useStackGuardXorFP())
2526 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2528 // Retrieve guard check function, nullptr if instrumentation is inlined.
2529 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2530 // The target provides a guard check function to validate the guard value.
2531 // Generate a call to that function with the content of the guard slot as
2532 // argument.
2533 FunctionType *FnTy = GuardCheckFn->getFunctionType();
2534 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2536 TargetLowering::ArgListTy Args;
2537 TargetLowering::ArgListEntry Entry;
2538 Entry.Node = GuardVal;
2539 Entry.Ty = FnTy->getParamType(0);
2540 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2541 Entry.IsInReg = true;
2542 Args.push_back(Entry);
2544 TargetLowering::CallLoweringInfo CLI(DAG);
2545 CLI.setDebugLoc(getCurSDLoc())
2546 .setChain(DAG.getEntryNode())
2547 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2548 getValue(GuardCheckFn), std::move(Args));
2550 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2551 DAG.setRoot(Result.second);
2552 return;
2555 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2556 // Otherwise, emit a volatile load to retrieve the stack guard value.
2557 SDValue Chain = DAG.getEntryNode();
2558 if (TLI.useLoadStackGuardNode()) {
2559 Guard = getLoadStackGuard(DAG, dl, Chain);
2560 } else {
2561 const Value *IRGuard = TLI.getSDagStackGuard(M);
2562 SDValue GuardPtr = getValue(IRGuard);
2564 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2565 MachinePointerInfo(IRGuard, 0), Align,
2566 MachineMemOperand::MOVolatile);
2569 // Perform the comparison via a subtract/getsetcc.
2570 EVT VT = Guard.getValueType();
2571 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2573 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2574 *DAG.getContext(),
2575 Sub.getValueType()),
2576 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2578 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2579 // branch to failure MBB.
2580 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2581 MVT::Other, GuardVal.getOperand(0),
2582 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2583 // Otherwise branch to success MBB.
2584 SDValue Br = DAG.getNode(ISD::BR, dl,
2585 MVT::Other, BrCond,
2586 DAG.getBasicBlock(SPD.getSuccessMBB()));
2588 DAG.setRoot(Br);
2591 /// Codegen the failure basic block for a stack protector check.
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2599 void
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2601 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2602 TargetLowering::MakeLibCallOptions CallOptions;
2603 CallOptions.setDiscardResult(true);
2604 SDValue Chain =
2605 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2606 None, CallOptions, getCurSDLoc()).second;
2607 // On PS4, the "return address" must still be within the calling function,
2608 // even if it's at the very end, so emit an explicit TRAP here.
2609 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2610 if (TM.getTargetTriple().isPS4CPU())
2611 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2613 DAG.setRoot(Chain);
2616 /// visitBitTestHeader - This function emits necessary code to produce value
2617 /// suitable for "bit tests"
2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2619 MachineBasicBlock *SwitchBB) {
2620 SDLoc dl = getCurSDLoc();
2622 // Subtract the minimum value.
2623 SDValue SwitchOp = getValue(B.SValue);
2624 EVT VT = SwitchOp.getValueType();
2625 SDValue RangeSub =
2626 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2628 // Determine the type of the test operands.
2629 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2630 bool UsePtrType = false;
2631 if (!TLI.isTypeLegal(VT)) {
2632 UsePtrType = true;
2633 } else {
2634 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2635 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2636 // Switch table case range are encoded into series of masks.
2637 // Just use pointer type, it's guaranteed to fit.
2638 UsePtrType = true;
2639 break;
2642 SDValue Sub = RangeSub;
2643 if (UsePtrType) {
2644 VT = TLI.getPointerTy(DAG.getDataLayout());
2645 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2648 B.RegVT = VT.getSimpleVT();
2649 B.Reg = FuncInfo.CreateReg(B.RegVT);
2650 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2652 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2654 if (!B.OmitRangeCheck)
2655 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2656 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2657 SwitchBB->normalizeSuccProbs();
2659 SDValue Root = CopyTo;
2660 if (!B.OmitRangeCheck) {
2661 // Conditional branch to the default block.
2662 SDValue RangeCmp = DAG.getSetCC(dl,
2663 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2664 RangeSub.getValueType()),
2665 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2666 ISD::SETUGT);
2668 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2669 DAG.getBasicBlock(B.Default));
2672 // Avoid emitting unnecessary branches to the next block.
2673 if (MBB != NextBlock(SwitchBB))
2674 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2676 DAG.setRoot(Root);
2679 /// visitBitTestCase - this function produces one "bit test"
2680 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2681 MachineBasicBlock* NextMBB,
2682 BranchProbability BranchProbToNext,
2683 unsigned Reg,
2684 BitTestCase &B,
2685 MachineBasicBlock *SwitchBB) {
2686 SDLoc dl = getCurSDLoc();
2687 MVT VT = BB.RegVT;
2688 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2689 SDValue Cmp;
2690 unsigned PopCount = countPopulation(B.Mask);
2691 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2692 if (PopCount == 1) {
2693 // Testing for a single bit; just compare the shift count with what it
2694 // would need to be to shift a 1 bit in that position.
2695 Cmp = DAG.getSetCC(
2696 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2697 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2698 ISD::SETEQ);
2699 } else if (PopCount == BB.Range) {
2700 // There is only one zero bit in the range, test for it directly.
2701 Cmp = DAG.getSetCC(
2702 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2703 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2704 ISD::SETNE);
2705 } else {
2706 // Make desired shift
2707 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2708 DAG.getConstant(1, dl, VT), ShiftOp);
2710 // Emit bit tests and jumps
2711 SDValue AndOp = DAG.getNode(ISD::AND, dl,
2712 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2713 Cmp = DAG.getSetCC(
2714 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2715 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2718 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2719 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2720 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2721 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2722 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2723 // one as they are relative probabilities (and thus work more like weights),
2724 // and hence we need to normalize them to let the sum of them become one.
2725 SwitchBB->normalizeSuccProbs();
2727 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2728 MVT::Other, getControlRoot(),
2729 Cmp, DAG.getBasicBlock(B.TargetBB));
2731 // Avoid emitting unnecessary branches to the next block.
2732 if (NextMBB != NextBlock(SwitchBB))
2733 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2734 DAG.getBasicBlock(NextMBB));
2736 DAG.setRoot(BrAnd);
2739 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2740 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2742 // Retrieve successors. Look through artificial IR level blocks like
2743 // catchswitch for successors.
2744 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2745 const BasicBlock *EHPadBB = I.getSuccessor(1);
2747 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2748 // have to do anything here to lower funclet bundles.
2749 assert(!I.hasOperandBundlesOtherThan(
2750 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2751 "Cannot lower invokes with arbitrary operand bundles yet!");
2753 const Value *Callee(I.getCalledValue());
2754 const Function *Fn = dyn_cast<Function>(Callee);
2755 if (isa<InlineAsm>(Callee))
2756 visitInlineAsm(&I);
2757 else if (Fn && Fn->isIntrinsic()) {
2758 switch (Fn->getIntrinsicID()) {
2759 default:
2760 llvm_unreachable("Cannot invoke this intrinsic");
2761 case Intrinsic::donothing:
2762 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2763 break;
2764 case Intrinsic::experimental_patchpoint_void:
2765 case Intrinsic::experimental_patchpoint_i64:
2766 visitPatchpoint(&I, EHPadBB);
2767 break;
2768 case Intrinsic::experimental_gc_statepoint:
2769 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2770 break;
2771 case Intrinsic::wasm_rethrow_in_catch: {
2772 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2773 // special because it can be invoked, so we manually lower it to a DAG
2774 // node here.
2775 SmallVector<SDValue, 8> Ops;
2776 Ops.push_back(getRoot()); // inchain
2777 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2778 Ops.push_back(
2779 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2780 TLI.getPointerTy(DAG.getDataLayout())));
2781 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2782 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2783 break;
2786 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2787 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2788 // Eventually we will support lowering the @llvm.experimental.deoptimize
2789 // intrinsic, and right now there are no plans to support other intrinsics
2790 // with deopt state.
2791 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2792 } else {
2793 LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2796 // If the value of the invoke is used outside of its defining block, make it
2797 // available as a virtual register.
2798 // We already took care of the exported value for the statepoint instruction
2799 // during call to the LowerStatepoint.
2800 if (!isStatepoint(I)) {
2801 CopyToExportRegsIfNeeded(&I);
2804 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2805 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2806 BranchProbability EHPadBBProb =
2807 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2808 : BranchProbability::getZero();
2809 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2811 // Update successor info.
2812 addSuccessorWithProb(InvokeMBB, Return);
2813 for (auto &UnwindDest : UnwindDests) {
2814 UnwindDest.first->setIsEHPad();
2815 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2817 InvokeMBB->normalizeSuccProbs();
2819 // Drop into normal successor.
2820 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2821 DAG.getBasicBlock(Return)));
2824 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2825 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2827 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2828 // have to do anything here to lower funclet bundles.
2829 assert(!I.hasOperandBundlesOtherThan(
2830 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2831 "Cannot lower callbrs with arbitrary operand bundles yet!");
2833 assert(isa<InlineAsm>(I.getCalledValue()) &&
2834 "Only know how to handle inlineasm callbr");
2835 visitInlineAsm(&I);
2837 // Retrieve successors.
2838 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2840 // Update successor info.
2841 addSuccessorWithProb(CallBrMBB, Return);
2842 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2843 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2844 addSuccessorWithProb(CallBrMBB, Target);
2846 CallBrMBB->normalizeSuccProbs();
2848 // Drop into default successor.
2849 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2850 MVT::Other, getControlRoot(),
2851 DAG.getBasicBlock(Return)));
2854 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2855 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2858 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2859 assert(FuncInfo.MBB->isEHPad() &&
2860 "Call to landingpad not in landing pad!");
2862 // If there aren't registers to copy the values into (e.g., during SjLj
2863 // exceptions), then don't bother to create these DAG nodes.
2864 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2865 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2866 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2867 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2868 return;
2870 // If landingpad's return type is token type, we don't create DAG nodes
2871 // for its exception pointer and selector value. The extraction of exception
2872 // pointer or selector value from token type landingpads is not currently
2873 // supported.
2874 if (LP.getType()->isTokenTy())
2875 return;
2877 SmallVector<EVT, 2> ValueVTs;
2878 SDLoc dl = getCurSDLoc();
2879 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2880 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2882 // Get the two live-in registers as SDValues. The physregs have already been
2883 // copied into virtual registers.
2884 SDValue Ops[2];
2885 if (FuncInfo.ExceptionPointerVirtReg) {
2886 Ops[0] = DAG.getZExtOrTrunc(
2887 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2888 FuncInfo.ExceptionPointerVirtReg,
2889 TLI.getPointerTy(DAG.getDataLayout())),
2890 dl, ValueVTs[0]);
2891 } else {
2892 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2894 Ops[1] = DAG.getZExtOrTrunc(
2895 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2896 FuncInfo.ExceptionSelectorVirtReg,
2897 TLI.getPointerTy(DAG.getDataLayout())),
2898 dl, ValueVTs[1]);
2900 // Merge into one.
2901 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2902 DAG.getVTList(ValueVTs), Ops);
2903 setValue(&LP, Res);
2906 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2907 MachineBasicBlock *Last) {
2908 // Update JTCases.
2909 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2910 if (SL->JTCases[i].first.HeaderBB == First)
2911 SL->JTCases[i].first.HeaderBB = Last;
2913 // Update BitTestCases.
2914 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2915 if (SL->BitTestCases[i].Parent == First)
2916 SL->BitTestCases[i].Parent = Last;
2919 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2920 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2922 // Update machine-CFG edges with unique successors.
2923 SmallSet<BasicBlock*, 32> Done;
2924 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2925 BasicBlock *BB = I.getSuccessor(i);
2926 bool Inserted = Done.insert(BB).second;
2927 if (!Inserted)
2928 continue;
2930 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2931 addSuccessorWithProb(IndirectBrMBB, Succ);
2933 IndirectBrMBB->normalizeSuccProbs();
2935 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2936 MVT::Other, getControlRoot(),
2937 getValue(I.getAddress())));
2940 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2941 if (!DAG.getTarget().Options.TrapUnreachable)
2942 return;
2944 // We may be able to ignore unreachable behind a noreturn call.
2945 if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2946 const BasicBlock &BB = *I.getParent();
2947 if (&I != &BB.front()) {
2948 BasicBlock::const_iterator PredI =
2949 std::prev(BasicBlock::const_iterator(&I));
2950 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2951 if (Call->doesNotReturn())
2952 return;
2957 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2960 void SelectionDAGBuilder::visitFSub(const User &I) {
2961 // -0.0 - X --> fneg
2962 Type *Ty = I.getType();
2963 if (isa<Constant>(I.getOperand(0)) &&
2964 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2965 SDValue Op2 = getValue(I.getOperand(1));
2966 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2967 Op2.getValueType(), Op2));
2968 return;
2971 visitBinary(I, ISD::FSUB);
2974 /// Checks if the given instruction performs a vector reduction, in which case
2975 /// we have the freedom to alter the elements in the result as long as the
2976 /// reduction of them stays unchanged.
2977 static bool isVectorReductionOp(const User *I) {
2978 const Instruction *Inst = dyn_cast<Instruction>(I);
2979 if (!Inst || !Inst->getType()->isVectorTy())
2980 return false;
2982 auto OpCode = Inst->getOpcode();
2983 switch (OpCode) {
2984 case Instruction::Add:
2985 case Instruction::Mul:
2986 case Instruction::And:
2987 case Instruction::Or:
2988 case Instruction::Xor:
2989 break;
2990 case Instruction::FAdd:
2991 case Instruction::FMul:
2992 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2993 if (FPOp->getFastMathFlags().isFast())
2994 break;
2995 LLVM_FALLTHROUGH;
2996 default:
2997 return false;
3000 unsigned ElemNum = Inst->getType()->getVectorNumElements();
3001 // Ensure the reduction size is a power of 2.
3002 if (!isPowerOf2_32(ElemNum))
3003 return false;
3005 unsigned ElemNumToReduce = ElemNum;
3007 // Do DFS search on the def-use chain from the given instruction. We only
3008 // allow four kinds of operations during the search until we reach the
3009 // instruction that extracts the first element from the vector:
3011 // 1. The reduction operation of the same opcode as the given instruction.
3013 // 2. PHI node.
3015 // 3. ShuffleVector instruction together with a reduction operation that
3016 // does a partial reduction.
3018 // 4. ExtractElement that extracts the first element from the vector, and we
3019 // stop searching the def-use chain here.
3021 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3022 // from 1-3 to the stack to continue the DFS. The given instruction is not
3023 // a reduction operation if we meet any other instructions other than those
3024 // listed above.
3026 SmallVector<const User *, 16> UsersToVisit{Inst};
3027 SmallPtrSet<const User *, 16> Visited;
3028 bool ReduxExtracted = false;
3030 while (!UsersToVisit.empty()) {
3031 auto User = UsersToVisit.back();
3032 UsersToVisit.pop_back();
3033 if (!Visited.insert(User).second)
3034 continue;
3036 for (const auto &U : User->users()) {
3037 auto Inst = dyn_cast<Instruction>(U);
3038 if (!Inst)
3039 return false;
3041 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3042 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3043 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3044 return false;
3045 UsersToVisit.push_back(U);
3046 } else if (const ShuffleVectorInst *ShufInst =
3047 dyn_cast<ShuffleVectorInst>(U)) {
3048 // Detect the following pattern: A ShuffleVector instruction together
3049 // with a reduction that do partial reduction on the first and second
3050 // ElemNumToReduce / 2 elements, and store the result in
3051 // ElemNumToReduce / 2 elements in another vector.
3053 unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3054 if (ResultElements < ElemNum)
3055 return false;
3057 if (ElemNumToReduce == 1)
3058 return false;
3059 if (!isa<UndefValue>(U->getOperand(1)))
3060 return false;
3061 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3062 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3063 return false;
3064 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3065 if (ShufInst->getMaskValue(i) != -1)
3066 return false;
3068 // There is only one user of this ShuffleVector instruction, which
3069 // must be a reduction operation.
3070 if (!U->hasOneUse())
3071 return false;
3073 auto U2 = dyn_cast<Instruction>(*U->user_begin());
3074 if (!U2 || U2->getOpcode() != OpCode)
3075 return false;
3077 // Check operands of the reduction operation.
3078 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3079 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3080 UsersToVisit.push_back(U2);
3081 ElemNumToReduce /= 2;
3082 } else
3083 return false;
3084 } else if (isa<ExtractElementInst>(U)) {
3085 // At this moment we should have reduced all elements in the vector.
3086 if (ElemNumToReduce != 1)
3087 return false;
3089 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3090 if (!Val || !Val->isZero())
3091 return false;
3093 ReduxExtracted = true;
3094 } else
3095 return false;
3098 return ReduxExtracted;
3101 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3102 SDNodeFlags Flags;
3104 SDValue Op = getValue(I.getOperand(0));
3105 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3106 Op, Flags);
3107 setValue(&I, UnNodeValue);
3110 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3111 SDNodeFlags Flags;
3112 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3113 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3114 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3116 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3117 Flags.setExact(ExactOp->isExact());
3119 if (isVectorReductionOp(&I)) {
3120 Flags.setVectorReduction(true);
3121 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3124 SDValue Op1 = getValue(I.getOperand(0));
3125 SDValue Op2 = getValue(I.getOperand(1));
3126 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3127 Op1, Op2, Flags);
3128 setValue(&I, BinNodeValue);
3131 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3132 SDValue Op1 = getValue(I.getOperand(0));
3133 SDValue Op2 = getValue(I.getOperand(1));
3135 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3136 Op1.getValueType(), DAG.getDataLayout());
3138 // Coerce the shift amount to the right type if we can.
3139 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3140 unsigned ShiftSize = ShiftTy.getSizeInBits();
3141 unsigned Op2Size = Op2.getValueSizeInBits();
3142 SDLoc DL = getCurSDLoc();
3144 // If the operand is smaller than the shift count type, promote it.
3145 if (ShiftSize > Op2Size)
3146 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3148 // If the operand is larger than the shift count type but the shift
3149 // count type has enough bits to represent any shift value, truncate
3150 // it now. This is a common case and it exposes the truncate to
3151 // optimization early.
3152 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3153 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3154 // Otherwise we'll need to temporarily settle for some other convenient
3155 // type. Type legalization will make adjustments once the shiftee is split.
3156 else
3157 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3160 bool nuw = false;
3161 bool nsw = false;
3162 bool exact = false;
3164 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3166 if (const OverflowingBinaryOperator *OFBinOp =
3167 dyn_cast<const OverflowingBinaryOperator>(&I)) {
3168 nuw = OFBinOp->hasNoUnsignedWrap();
3169 nsw = OFBinOp->hasNoSignedWrap();
3171 if (const PossiblyExactOperator *ExactOp =
3172 dyn_cast<const PossiblyExactOperator>(&I))
3173 exact = ExactOp->isExact();
3175 SDNodeFlags Flags;
3176 Flags.setExact(exact);
3177 Flags.setNoSignedWrap(nsw);
3178 Flags.setNoUnsignedWrap(nuw);
3179 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3180 Flags);
3181 setValue(&I, Res);
3184 void SelectionDAGBuilder::visitSDiv(const User &I) {
3185 SDValue Op1 = getValue(I.getOperand(0));
3186 SDValue Op2 = getValue(I.getOperand(1));
3188 SDNodeFlags Flags;
3189 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3190 cast<PossiblyExactOperator>(&I)->isExact());
3191 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3192 Op2, Flags));
3195 void SelectionDAGBuilder::visitICmp(const User &I) {
3196 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3197 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3198 predicate = IC->getPredicate();
3199 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3200 predicate = ICmpInst::Predicate(IC->getPredicate());
3201 SDValue Op1 = getValue(I.getOperand(0));
3202 SDValue Op2 = getValue(I.getOperand(1));
3203 ISD::CondCode Opcode = getICmpCondCode(predicate);
3205 auto &TLI = DAG.getTargetLoweringInfo();
3206 EVT MemVT =
3207 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3209 // If a pointer's DAG type is larger than its memory type then the DAG values
3210 // are zero-extended. This breaks signed comparisons so truncate back to the
3211 // underlying type before doing the compare.
3212 if (Op1.getValueType() != MemVT) {
3213 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3214 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3217 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3218 I.getType());
3219 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3222 void SelectionDAGBuilder::visitFCmp(const User &I) {
3223 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3224 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3225 predicate = FC->getPredicate();
3226 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3227 predicate = FCmpInst::Predicate(FC->getPredicate());
3228 SDValue Op1 = getValue(I.getOperand(0));
3229 SDValue Op2 = getValue(I.getOperand(1));
3231 ISD::CondCode Condition = getFCmpCondCode(predicate);
3232 auto *FPMO = dyn_cast<FPMathOperator>(&I);
3233 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3234 Condition = getFCmpCodeWithoutNaN(Condition);
3236 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3237 I.getType());
3238 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3241 // Check if the condition of the select has one use or two users that are both
3242 // selects with the same condition.
3243 static bool hasOnlySelectUsers(const Value *Cond) {
3244 return llvm::all_of(Cond->users(), [](const Value *V) {
3245 return isa<SelectInst>(V);
3249 void SelectionDAGBuilder::visitSelect(const User &I) {
3250 SmallVector<EVT, 4> ValueVTs;
3251 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3252 ValueVTs);
3253 unsigned NumValues = ValueVTs.size();
3254 if (NumValues == 0) return;
3256 SmallVector<SDValue, 4> Values(NumValues);
3257 SDValue Cond = getValue(I.getOperand(0));
3258 SDValue LHSVal = getValue(I.getOperand(1));
3259 SDValue RHSVal = getValue(I.getOperand(2));
3260 auto BaseOps = {Cond};
3261 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3262 ISD::VSELECT : ISD::SELECT;
3264 bool IsUnaryAbs = false;
3266 // Min/max matching is only viable if all output VTs are the same.
3267 if (is_splat(ValueVTs)) {
3268 EVT VT = ValueVTs[0];
3269 LLVMContext &Ctx = *DAG.getContext();
3270 auto &TLI = DAG.getTargetLoweringInfo();
3272 // We care about the legality of the operation after it has been type
3273 // legalized.
3274 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3275 VT = TLI.getTypeToTransformTo(Ctx, VT);
3277 // If the vselect is legal, assume we want to leave this as a vector setcc +
3278 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3279 // min/max is legal on the scalar type.
3280 bool UseScalarMinMax = VT.isVector() &&
3281 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3283 Value *LHS, *RHS;
3284 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3285 ISD::NodeType Opc = ISD::DELETED_NODE;
3286 switch (SPR.Flavor) {
3287 case SPF_UMAX: Opc = ISD::UMAX; break;
3288 case SPF_UMIN: Opc = ISD::UMIN; break;
3289 case SPF_SMAX: Opc = ISD::SMAX; break;
3290 case SPF_SMIN: Opc = ISD::SMIN; break;
3291 case SPF_FMINNUM:
3292 switch (SPR.NaNBehavior) {
3293 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3294 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break;
3295 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3296 case SPNB_RETURNS_ANY: {
3297 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3298 Opc = ISD::FMINNUM;
3299 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3300 Opc = ISD::FMINIMUM;
3301 else if (UseScalarMinMax)
3302 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3303 ISD::FMINNUM : ISD::FMINIMUM;
3304 break;
3307 break;
3308 case SPF_FMAXNUM:
3309 switch (SPR.NaNBehavior) {
3310 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3311 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break;
3312 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3313 case SPNB_RETURNS_ANY:
3315 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3316 Opc = ISD::FMAXNUM;
3317 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3318 Opc = ISD::FMAXIMUM;
3319 else if (UseScalarMinMax)
3320 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3321 ISD::FMAXNUM : ISD::FMAXIMUM;
3322 break;
3324 break;
3325 case SPF_ABS:
3326 IsUnaryAbs = true;
3327 Opc = ISD::ABS;
3328 break;
3329 case SPF_NABS:
3330 // TODO: we need to produce sub(0, abs(X)).
3331 default: break;
3334 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3335 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3336 (UseScalarMinMax &&
3337 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3338 // If the underlying comparison instruction is used by any other
3339 // instruction, the consumed instructions won't be destroyed, so it is
3340 // not profitable to convert to a min/max.
3341 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3342 OpCode = Opc;
3343 LHSVal = getValue(LHS);
3344 RHSVal = getValue(RHS);
3345 BaseOps = {};
3348 if (IsUnaryAbs) {
3349 OpCode = Opc;
3350 LHSVal = getValue(LHS);
3351 BaseOps = {};
3355 if (IsUnaryAbs) {
3356 for (unsigned i = 0; i != NumValues; ++i) {
3357 Values[i] =
3358 DAG.getNode(OpCode, getCurSDLoc(),
3359 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3360 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3362 } else {
3363 for (unsigned i = 0; i != NumValues; ++i) {
3364 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3365 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3366 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3367 Values[i] = DAG.getNode(
3368 OpCode, getCurSDLoc(),
3369 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3373 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3374 DAG.getVTList(ValueVTs), Values));
3377 void SelectionDAGBuilder::visitTrunc(const User &I) {
3378 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3379 SDValue N = getValue(I.getOperand(0));
3380 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3381 I.getType());
3382 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3385 void SelectionDAGBuilder::visitZExt(const User &I) {
3386 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3387 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3388 SDValue N = getValue(I.getOperand(0));
3389 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3390 I.getType());
3391 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3394 void SelectionDAGBuilder::visitSExt(const User &I) {
3395 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3396 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3397 SDValue N = getValue(I.getOperand(0));
3398 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3399 I.getType());
3400 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3403 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3404 // FPTrunc is never a no-op cast, no need to check
3405 SDValue N = getValue(I.getOperand(0));
3406 SDLoc dl = getCurSDLoc();
3407 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3408 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3409 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3410 DAG.getTargetConstant(
3411 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3414 void SelectionDAGBuilder::visitFPExt(const User &I) {
3415 // FPExt is never a no-op cast, no need to check
3416 SDValue N = getValue(I.getOperand(0));
3417 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3418 I.getType());
3419 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3422 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3423 // FPToUI is never a no-op cast, no need to check
3424 SDValue N = getValue(I.getOperand(0));
3425 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3426 I.getType());
3427 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3430 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3431 // FPToSI is never a no-op cast, no need to check
3432 SDValue N = getValue(I.getOperand(0));
3433 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3434 I.getType());
3435 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3438 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3439 // UIToFP is never a no-op cast, no need to check
3440 SDValue N = getValue(I.getOperand(0));
3441 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3442 I.getType());
3443 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3446 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3447 // SIToFP is never a no-op cast, no need to check
3448 SDValue N = getValue(I.getOperand(0));
3449 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3450 I.getType());
3451 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3454 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3455 // What to do depends on the size of the integer and the size of the pointer.
3456 // We can either truncate, zero extend, or no-op, accordingly.
3457 SDValue N = getValue(I.getOperand(0));
3458 auto &TLI = DAG.getTargetLoweringInfo();
3459 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3460 I.getType());
3461 EVT PtrMemVT =
3462 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3463 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3464 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3465 setValue(&I, N);
3468 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3469 // What to do depends on the size of the integer and the size of the pointer.
3470 // We can either truncate, zero extend, or no-op, accordingly.
3471 SDValue N = getValue(I.getOperand(0));
3472 auto &TLI = DAG.getTargetLoweringInfo();
3473 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3474 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3475 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3476 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3477 setValue(&I, N);
3480 void SelectionDAGBuilder::visitBitCast(const User &I) {
3481 SDValue N = getValue(I.getOperand(0));
3482 SDLoc dl = getCurSDLoc();
3483 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3484 I.getType());
3486 // BitCast assures us that source and destination are the same size so this is
3487 // either a BITCAST or a no-op.
3488 if (DestVT != N.getValueType())
3489 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3490 DestVT, N)); // convert types.
3491 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3492 // might fold any kind of constant expression to an integer constant and that
3493 // is not what we are looking for. Only recognize a bitcast of a genuine
3494 // constant integer as an opaque constant.
3495 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3496 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3497 /*isOpaque*/true));
3498 else
3499 setValue(&I, N); // noop cast.
3502 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3503 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3504 const Value *SV = I.getOperand(0);
3505 SDValue N = getValue(SV);
3506 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3508 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3509 unsigned DestAS = I.getType()->getPointerAddressSpace();
3511 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3512 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3514 setValue(&I, N);
3517 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3518 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3519 SDValue InVec = getValue(I.getOperand(0));
3520 SDValue InVal = getValue(I.getOperand(1));
3521 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3522 TLI.getVectorIdxTy(DAG.getDataLayout()));
3523 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3524 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3525 InVec, InVal, InIdx));
3528 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3529 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3530 SDValue InVec = getValue(I.getOperand(0));
3531 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3532 TLI.getVectorIdxTy(DAG.getDataLayout()));
3533 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3534 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3535 InVec, InIdx));
3538 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3539 SDValue Src1 = getValue(I.getOperand(0));
3540 SDValue Src2 = getValue(I.getOperand(1));
3541 Constant *MaskV = cast<Constant>(I.getOperand(2));
3542 SDLoc DL = getCurSDLoc();
3543 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3545 EVT SrcVT = Src1.getValueType();
3546 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3548 if (MaskV->isNullValue() && VT.isScalableVector()) {
3549 // Canonical splat form of first element of first input vector.
3550 SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3551 SrcVT.getScalarType(), Src1,
3552 DAG.getConstant(0, DL,
3553 TLI.getVectorIdxTy(DAG.getDataLayout())));
3554 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3555 return;
3558 // For now, we only handle splats for scalable vectors.
3559 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3560 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3561 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3563 SmallVector<int, 8> Mask;
3564 ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3565 unsigned MaskNumElts = Mask.size();
3567 if (SrcNumElts == MaskNumElts) {
3568 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3569 return;
3572 // Normalize the shuffle vector since mask and vector length don't match.
3573 if (SrcNumElts < MaskNumElts) {
3574 // Mask is longer than the source vectors. We can use concatenate vector to
3575 // make the mask and vectors lengths match.
3577 if (MaskNumElts % SrcNumElts == 0) {
3578 // Mask length is a multiple of the source vector length.
3579 // Check if the shuffle is some kind of concatenation of the input
3580 // vectors.
3581 unsigned NumConcat = MaskNumElts / SrcNumElts;
3582 bool IsConcat = true;
3583 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3584 for (unsigned i = 0; i != MaskNumElts; ++i) {
3585 int Idx = Mask[i];
3586 if (Idx < 0)
3587 continue;
3588 // Ensure the indices in each SrcVT sized piece are sequential and that
3589 // the same source is used for the whole piece.
3590 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3591 (ConcatSrcs[i / SrcNumElts] >= 0 &&
3592 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3593 IsConcat = false;
3594 break;
3596 // Remember which source this index came from.
3597 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3600 // The shuffle is concatenating multiple vectors together. Just emit
3601 // a CONCAT_VECTORS operation.
3602 if (IsConcat) {
3603 SmallVector<SDValue, 8> ConcatOps;
3604 for (auto Src : ConcatSrcs) {
3605 if (Src < 0)
3606 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3607 else if (Src == 0)
3608 ConcatOps.push_back(Src1);
3609 else
3610 ConcatOps.push_back(Src2);
3612 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3613 return;
3617 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3618 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3619 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3620 PaddedMaskNumElts);
3622 // Pad both vectors with undefs to make them the same length as the mask.
3623 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3625 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3626 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3627 MOps1[0] = Src1;
3628 MOps2[0] = Src2;
3630 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3631 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3633 // Readjust mask for new input vector length.
3634 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3635 for (unsigned i = 0; i != MaskNumElts; ++i) {
3636 int Idx = Mask[i];
3637 if (Idx >= (int)SrcNumElts)
3638 Idx -= SrcNumElts - PaddedMaskNumElts;
3639 MappedOps[i] = Idx;
3642 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3644 // If the concatenated vector was padded, extract a subvector with the
3645 // correct number of elements.
3646 if (MaskNumElts != PaddedMaskNumElts)
3647 Result = DAG.getNode(
3648 ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3649 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3651 setValue(&I, Result);
3652 return;
3655 if (SrcNumElts > MaskNumElts) {
3656 // Analyze the access pattern of the vector to see if we can extract
3657 // two subvectors and do the shuffle.
3658 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
3659 bool CanExtract = true;
3660 for (int Idx : Mask) {
3661 unsigned Input = 0;
3662 if (Idx < 0)
3663 continue;
3665 if (Idx >= (int)SrcNumElts) {
3666 Input = 1;
3667 Idx -= SrcNumElts;
3670 // If all the indices come from the same MaskNumElts sized portion of
3671 // the sources we can use extract. Also make sure the extract wouldn't
3672 // extract past the end of the source.
3673 int NewStartIdx = alignDown(Idx, MaskNumElts);
3674 if (NewStartIdx + MaskNumElts > SrcNumElts ||
3675 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3676 CanExtract = false;
3677 // Make sure we always update StartIdx as we use it to track if all
3678 // elements are undef.
3679 StartIdx[Input] = NewStartIdx;
3682 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3683 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3684 return;
3686 if (CanExtract) {
3687 // Extract appropriate subvector and generate a vector shuffle
3688 for (unsigned Input = 0; Input < 2; ++Input) {
3689 SDValue &Src = Input == 0 ? Src1 : Src2;
3690 if (StartIdx[Input] < 0)
3691 Src = DAG.getUNDEF(VT);
3692 else {
3693 Src = DAG.getNode(
3694 ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3695 DAG.getConstant(StartIdx[Input], DL,
3696 TLI.getVectorIdxTy(DAG.getDataLayout())));
3700 // Calculate new mask.
3701 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3702 for (int &Idx : MappedOps) {
3703 if (Idx >= (int)SrcNumElts)
3704 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3705 else if (Idx >= 0)
3706 Idx -= StartIdx[0];
3709 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3710 return;
3714 // We can't use either concat vectors or extract subvectors so fall back to
3715 // replacing the shuffle with extract and build vector.
3716 // to insert and build vector.
3717 EVT EltVT = VT.getVectorElementType();
3718 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3719 SmallVector<SDValue,8> Ops;
3720 for (int Idx : Mask) {
3721 SDValue Res;
3723 if (Idx < 0) {
3724 Res = DAG.getUNDEF(EltVT);
3725 } else {
3726 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3727 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3729 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3730 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3733 Ops.push_back(Res);
3736 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3739 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3740 ArrayRef<unsigned> Indices;
3741 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3742 Indices = IV->getIndices();
3743 else
3744 Indices = cast<ConstantExpr>(&I)->getIndices();
3746 const Value *Op0 = I.getOperand(0);
3747 const Value *Op1 = I.getOperand(1);
3748 Type *AggTy = I.getType();
3749 Type *ValTy = Op1->getType();
3750 bool IntoUndef = isa<UndefValue>(Op0);
3751 bool FromUndef = isa<UndefValue>(Op1);
3753 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3755 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3756 SmallVector<EVT, 4> AggValueVTs;
3757 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3758 SmallVector<EVT, 4> ValValueVTs;
3759 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3761 unsigned NumAggValues = AggValueVTs.size();
3762 unsigned NumValValues = ValValueVTs.size();
3763 SmallVector<SDValue, 4> Values(NumAggValues);
3765 // Ignore an insertvalue that produces an empty object
3766 if (!NumAggValues) {
3767 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3768 return;
3771 SDValue Agg = getValue(Op0);
3772 unsigned i = 0;
3773 // Copy the beginning value(s) from the original aggregate.
3774 for (; i != LinearIndex; ++i)
3775 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3776 SDValue(Agg.getNode(), Agg.getResNo() + i);
3777 // Copy values from the inserted value(s).
3778 if (NumValValues) {
3779 SDValue Val = getValue(Op1);
3780 for (; i != LinearIndex + NumValValues; ++i)
3781 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3782 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3784 // Copy remaining value(s) from the original aggregate.
3785 for (; i != NumAggValues; ++i)
3786 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3787 SDValue(Agg.getNode(), Agg.getResNo() + i);
3789 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3790 DAG.getVTList(AggValueVTs), Values));
3793 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3794 ArrayRef<unsigned> Indices;
3795 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3796 Indices = EV->getIndices();
3797 else
3798 Indices = cast<ConstantExpr>(&I)->getIndices();
3800 const Value *Op0 = I.getOperand(0);
3801 Type *AggTy = Op0->getType();
3802 Type *ValTy = I.getType();
3803 bool OutOfUndef = isa<UndefValue>(Op0);
3805 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3807 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3808 SmallVector<EVT, 4> ValValueVTs;
3809 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3811 unsigned NumValValues = ValValueVTs.size();
3813 // Ignore a extractvalue that produces an empty object
3814 if (!NumValValues) {
3815 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3816 return;
3819 SmallVector<SDValue, 4> Values(NumValValues);
3821 SDValue Agg = getValue(Op0);
3822 // Copy out the selected value(s).
3823 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3824 Values[i - LinearIndex] =
3825 OutOfUndef ?
3826 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3827 SDValue(Agg.getNode(), Agg.getResNo() + i);
3829 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3830 DAG.getVTList(ValValueVTs), Values));
3833 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3834 Value *Op0 = I.getOperand(0);
3835 // Note that the pointer operand may be a vector of pointers. Take the scalar
3836 // element which holds a pointer.
3837 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3838 SDValue N = getValue(Op0);
3839 SDLoc dl = getCurSDLoc();
3840 auto &TLI = DAG.getTargetLoweringInfo();
3841 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3842 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3844 // Normalize Vector GEP - all scalar operands should be converted to the
3845 // splat vector.
3846 unsigned VectorWidth = I.getType()->isVectorTy() ?
3847 I.getType()->getVectorNumElements() : 0;
3849 if (VectorWidth && !N.getValueType().isVector()) {
3850 LLVMContext &Context = *DAG.getContext();
3851 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3852 N = DAG.getSplatBuildVector(VT, dl, N);
3855 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3856 GTI != E; ++GTI) {
3857 const Value *Idx = GTI.getOperand();
3858 if (StructType *StTy = GTI.getStructTypeOrNull()) {
3859 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3860 if (Field) {
3861 // N = N + Offset
3862 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3864 // In an inbounds GEP with an offset that is nonnegative even when
3865 // interpreted as signed, assume there is no unsigned overflow.
3866 SDNodeFlags Flags;
3867 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3868 Flags.setNoUnsignedWrap(true);
3870 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3871 DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3873 } else {
3874 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3875 MVT IdxTy = MVT::getIntegerVT(IdxSize);
3876 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3878 // If this is a scalar constant or a splat vector of constants,
3879 // handle it quickly.
3880 const auto *C = dyn_cast<Constant>(Idx);
3881 if (C && isa<VectorType>(C->getType()))
3882 C = C->getSplatValue();
3884 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
3885 if (CI->isZero())
3886 continue;
3887 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3888 LLVMContext &Context = *DAG.getContext();
3889 SDValue OffsVal = VectorWidth ?
3890 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3891 DAG.getConstant(Offs, dl, IdxTy);
3893 // In an inbounds GEP with an offset that is nonnegative even when
3894 // interpreted as signed, assume there is no unsigned overflow.
3895 SDNodeFlags Flags;
3896 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3897 Flags.setNoUnsignedWrap(true);
3899 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3901 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3902 continue;
3905 // N = N + Idx * ElementSize;
3906 SDValue IdxN = getValue(Idx);
3908 if (!IdxN.getValueType().isVector() && VectorWidth) {
3909 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3910 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3913 // If the index is smaller or larger than intptr_t, truncate or extend
3914 // it.
3915 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3917 // If this is a multiply by a power of two, turn it into a shl
3918 // immediately. This is a very common case.
3919 if (ElementSize != 1) {
3920 if (ElementSize.isPowerOf2()) {
3921 unsigned Amt = ElementSize.logBase2();
3922 IdxN = DAG.getNode(ISD::SHL, dl,
3923 N.getValueType(), IdxN,
3924 DAG.getConstant(Amt, dl, IdxN.getValueType()));
3925 } else {
3926 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3927 IdxN.getValueType());
3928 IdxN = DAG.getNode(ISD::MUL, dl,
3929 N.getValueType(), IdxN, Scale);
3933 N = DAG.getNode(ISD::ADD, dl,
3934 N.getValueType(), N, IdxN);
3938 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3939 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3941 setValue(&I, N);
3944 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3945 // If this is a fixed sized alloca in the entry block of the function,
3946 // allocate it statically on the stack.
3947 if (FuncInfo.StaticAllocaMap.count(&I))
3948 return; // getValue will auto-populate this.
3950 SDLoc dl = getCurSDLoc();
3951 Type *Ty = I.getAllocatedType();
3952 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3953 auto &DL = DAG.getDataLayout();
3954 uint64_t TySize = DL.getTypeAllocSize(Ty);
3955 unsigned Align =
3956 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3958 SDValue AllocSize = getValue(I.getArraySize());
3960 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3961 if (AllocSize.getValueType() != IntPtr)
3962 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3964 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3965 AllocSize,
3966 DAG.getConstant(TySize, dl, IntPtr));
3968 // Handle alignment. If the requested alignment is less than or equal to
3969 // the stack alignment, ignore it. If the size is greater than or equal to
3970 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3971 unsigned StackAlign =
3972 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3973 if (Align <= StackAlign)
3974 Align = 0;
3976 // Round the size of the allocation up to the stack alignment size
3977 // by add SA-1 to the size. This doesn't overflow because we're computing
3978 // an address inside an alloca.
3979 SDNodeFlags Flags;
3980 Flags.setNoUnsignedWrap(true);
3981 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3982 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3984 // Mask out the low bits for alignment purposes.
3985 AllocSize =
3986 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3987 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3989 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3990 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3991 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3992 setValue(&I, DSA);
3993 DAG.setRoot(DSA.getValue(1));
3995 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3998 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3999 if (I.isAtomic())
4000 return visitAtomicLoad(I);
4002 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4003 const Value *SV = I.getOperand(0);
4004 if (TLI.supportSwiftError()) {
4005 // Swifterror values can come from either a function parameter with
4006 // swifterror attribute or an alloca with swifterror attribute.
4007 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4008 if (Arg->hasSwiftErrorAttr())
4009 return visitLoadFromSwiftError(I);
4012 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4013 if (Alloca->isSwiftError())
4014 return visitLoadFromSwiftError(I);
4018 SDValue Ptr = getValue(SV);
4020 Type *Ty = I.getType();
4022 bool isVolatile = I.isVolatile();
4023 bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal);
4024 bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load);
4025 bool isDereferenceable =
4026 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4027 unsigned Alignment = I.getAlignment();
4029 AAMDNodes AAInfo;
4030 I.getAAMetadata(AAInfo);
4031 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4033 SmallVector<EVT, 4> ValueVTs, MemVTs;
4034 SmallVector<uint64_t, 4> Offsets;
4035 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4036 unsigned NumValues = ValueVTs.size();
4037 if (NumValues == 0)
4038 return;
4040 SDValue Root;
4041 bool ConstantMemory = false;
4042 if (isVolatile || NumValues > MaxParallelChains)
4043 // Serialize volatile loads with other side effects.
4044 Root = getRoot();
4045 else if (AA &&
4046 AA->pointsToConstantMemory(MemoryLocation(
4048 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4049 AAInfo))) {
4050 // Do not serialize (non-volatile) loads of constant memory with anything.
4051 Root = DAG.getEntryNode();
4052 ConstantMemory = true;
4053 } else {
4054 // Do not serialize non-volatile loads against each other.
4055 Root = DAG.getRoot();
4058 SDLoc dl = getCurSDLoc();
4060 if (isVolatile)
4061 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4063 // An aggregate load cannot wrap around the address space, so offsets to its
4064 // parts don't wrap either.
4065 SDNodeFlags Flags;
4066 Flags.setNoUnsignedWrap(true);
4068 SmallVector<SDValue, 4> Values(NumValues);
4069 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4070 EVT PtrVT = Ptr.getValueType();
4071 unsigned ChainI = 0;
4072 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4073 // Serializing loads here may result in excessive register pressure, and
4074 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4075 // could recover a bit by hoisting nodes upward in the chain by recognizing
4076 // they are side-effect free or do not alias. The optimizer should really
4077 // avoid this case by converting large object/array copies to llvm.memcpy
4078 // (MaxParallelChains should always remain as failsafe).
4079 if (ChainI == MaxParallelChains) {
4080 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4081 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4082 makeArrayRef(Chains.data(), ChainI));
4083 Root = Chain;
4084 ChainI = 0;
4086 SDValue A = DAG.getNode(ISD::ADD, dl,
4087 PtrVT, Ptr,
4088 DAG.getConstant(Offsets[i], dl, PtrVT),
4089 Flags);
4090 auto MMOFlags = MachineMemOperand::MONone;
4091 if (isVolatile)
4092 MMOFlags |= MachineMemOperand::MOVolatile;
4093 if (isNonTemporal)
4094 MMOFlags |= MachineMemOperand::MONonTemporal;
4095 if (isInvariant)
4096 MMOFlags |= MachineMemOperand::MOInvariant;
4097 if (isDereferenceable)
4098 MMOFlags |= MachineMemOperand::MODereferenceable;
4099 MMOFlags |= TLI.getMMOFlags(I);
4101 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4102 MachinePointerInfo(SV, Offsets[i]), Alignment,
4103 MMOFlags, AAInfo, Ranges);
4104 Chains[ChainI] = L.getValue(1);
4106 if (MemVTs[i] != ValueVTs[i])
4107 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4109 Values[i] = L;
4112 if (!ConstantMemory) {
4113 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4114 makeArrayRef(Chains.data(), ChainI));
4115 if (isVolatile)
4116 DAG.setRoot(Chain);
4117 else
4118 PendingLoads.push_back(Chain);
4121 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4122 DAG.getVTList(ValueVTs), Values));
4125 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4126 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4127 "call visitStoreToSwiftError when backend supports swifterror");
4129 SmallVector<EVT, 4> ValueVTs;
4130 SmallVector<uint64_t, 4> Offsets;
4131 const Value *SrcV = I.getOperand(0);
4132 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4133 SrcV->getType(), ValueVTs, &Offsets);
4134 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4135 "expect a single EVT for swifterror");
4137 SDValue Src = getValue(SrcV);
4138 // Create a virtual register, then update the virtual register.
4139 Register VReg =
4140 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4141 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4142 // Chain can be getRoot or getControlRoot.
4143 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4144 SDValue(Src.getNode(), Src.getResNo()));
4145 DAG.setRoot(CopyNode);
4148 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4149 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4150 "call visitLoadFromSwiftError when backend supports swifterror");
4152 assert(!I.isVolatile() &&
4153 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4154 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4155 "Support volatile, non temporal, invariant for load_from_swift_error");
4157 const Value *SV = I.getOperand(0);
4158 Type *Ty = I.getType();
4159 AAMDNodes AAInfo;
4160 I.getAAMetadata(AAInfo);
4161 assert(
4162 (!AA ||
4163 !AA->pointsToConstantMemory(MemoryLocation(
4164 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4165 AAInfo))) &&
4166 "load_from_swift_error should not be constant memory");
4168 SmallVector<EVT, 4> ValueVTs;
4169 SmallVector<uint64_t, 4> Offsets;
4170 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4171 ValueVTs, &Offsets);
4172 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4173 "expect a single EVT for swifterror");
4175 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4176 SDValue L = DAG.getCopyFromReg(
4177 getRoot(), getCurSDLoc(),
4178 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4180 setValue(&I, L);
4183 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4184 if (I.isAtomic())
4185 return visitAtomicStore(I);
4187 const Value *SrcV = I.getOperand(0);
4188 const Value *PtrV = I.getOperand(1);
4190 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4191 if (TLI.supportSwiftError()) {
4192 // Swifterror values can come from either a function parameter with
4193 // swifterror attribute or an alloca with swifterror attribute.
4194 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4195 if (Arg->hasSwiftErrorAttr())
4196 return visitStoreToSwiftError(I);
4199 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4200 if (Alloca->isSwiftError())
4201 return visitStoreToSwiftError(I);
4205 SmallVector<EVT, 4> ValueVTs, MemVTs;
4206 SmallVector<uint64_t, 4> Offsets;
4207 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4208 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4209 unsigned NumValues = ValueVTs.size();
4210 if (NumValues == 0)
4211 return;
4213 // Get the lowered operands. Note that we do this after
4214 // checking if NumResults is zero, because with zero results
4215 // the operands won't have values in the map.
4216 SDValue Src = getValue(SrcV);
4217 SDValue Ptr = getValue(PtrV);
4219 SDValue Root = getRoot();
4220 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4221 SDLoc dl = getCurSDLoc();
4222 EVT PtrVT = Ptr.getValueType();
4223 unsigned Alignment = I.getAlignment();
4224 AAMDNodes AAInfo;
4225 I.getAAMetadata(AAInfo);
4227 auto MMOFlags = MachineMemOperand::MONone;
4228 if (I.isVolatile())
4229 MMOFlags |= MachineMemOperand::MOVolatile;
4230 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4231 MMOFlags |= MachineMemOperand::MONonTemporal;
4232 MMOFlags |= TLI.getMMOFlags(I);
4234 // An aggregate load cannot wrap around the address space, so offsets to its
4235 // parts don't wrap either.
4236 SDNodeFlags Flags;
4237 Flags.setNoUnsignedWrap(true);
4239 unsigned ChainI = 0;
4240 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4241 // See visitLoad comments.
4242 if (ChainI == MaxParallelChains) {
4243 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4244 makeArrayRef(Chains.data(), ChainI));
4245 Root = Chain;
4246 ChainI = 0;
4248 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4249 DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4250 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4251 if (MemVTs[i] != ValueVTs[i])
4252 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4253 SDValue St =
4254 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4255 Alignment, MMOFlags, AAInfo);
4256 Chains[ChainI] = St;
4259 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4260 makeArrayRef(Chains.data(), ChainI));
4261 DAG.setRoot(StoreNode);
4264 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4265 bool IsCompressing) {
4266 SDLoc sdl = getCurSDLoc();
4268 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4269 unsigned& Alignment) {
4270 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4271 Src0 = I.getArgOperand(0);
4272 Ptr = I.getArgOperand(1);
4273 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4274 Mask = I.getArgOperand(3);
4276 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4277 unsigned& Alignment) {
4278 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4279 Src0 = I.getArgOperand(0);
4280 Ptr = I.getArgOperand(1);
4281 Mask = I.getArgOperand(2);
4282 Alignment = 0;
4285 Value *PtrOperand, *MaskOperand, *Src0Operand;
4286 unsigned Alignment;
4287 if (IsCompressing)
4288 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4289 else
4290 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4292 SDValue Ptr = getValue(PtrOperand);
4293 SDValue Src0 = getValue(Src0Operand);
4294 SDValue Mask = getValue(MaskOperand);
4296 EVT VT = Src0.getValueType();
4297 if (!Alignment)
4298 Alignment = DAG.getEVTAlignment(VT);
4300 AAMDNodes AAInfo;
4301 I.getAAMetadata(AAInfo);
4303 MachineMemOperand *MMO =
4304 DAG.getMachineFunction().
4305 getMachineMemOperand(MachinePointerInfo(PtrOperand),
4306 MachineMemOperand::MOStore, VT.getStoreSize(),
4307 Alignment, AAInfo);
4308 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4309 MMO, false /* Truncating */,
4310 IsCompressing);
4311 DAG.setRoot(StoreNode);
4312 setValue(&I, StoreNode);
4315 // Get a uniform base for the Gather/Scatter intrinsic.
4316 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4317 // We try to represent it as a base pointer + vector of indices.
4318 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4319 // The first operand of the GEP may be a single pointer or a vector of pointers
4320 // Example:
4321 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4322 // or
4323 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4324 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4326 // When the first GEP operand is a single pointer - it is the uniform base we
4327 // are looking for. If first operand of the GEP is a splat vector - we
4328 // extract the splat value and use it as a uniform base.
4329 // In all other cases the function returns 'false'.
4330 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4331 ISD::MemIndexType &IndexType, SDValue &Scale,
4332 SelectionDAGBuilder *SDB) {
4333 SelectionDAG& DAG = SDB->DAG;
4334 LLVMContext &Context = *DAG.getContext();
4336 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4337 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4338 if (!GEP)
4339 return false;
4341 const Value *GEPPtr = GEP->getPointerOperand();
4342 if (!GEPPtr->getType()->isVectorTy())
4343 Ptr = GEPPtr;
4344 else if (!(Ptr = getSplatValue(GEPPtr)))
4345 return false;
4347 unsigned FinalIndex = GEP->getNumOperands() - 1;
4348 Value *IndexVal = GEP->getOperand(FinalIndex);
4350 // Ensure all the other indices are 0.
4351 for (unsigned i = 1; i < FinalIndex; ++i) {
4352 auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4353 if (!C)
4354 return false;
4355 if (isa<VectorType>(C->getType()))
4356 C = C->getSplatValue();
4357 auto *CI = dyn_cast_or_null<ConstantInt>(C);
4358 if (!CI || !CI->isZero())
4359 return false;
4362 // The operands of the GEP may be defined in another basic block.
4363 // In this case we'll not find nodes for the operands.
4364 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4365 return false;
4367 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4368 const DataLayout &DL = DAG.getDataLayout();
4369 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4370 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4371 Base = SDB->getValue(Ptr);
4372 Index = SDB->getValue(IndexVal);
4373 IndexType = ISD::SIGNED_SCALED;
4375 if (!Index.getValueType().isVector()) {
4376 unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4377 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4378 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4380 return true;
4383 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4384 SDLoc sdl = getCurSDLoc();
4386 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4387 const Value *Ptr = I.getArgOperand(1);
4388 SDValue Src0 = getValue(I.getArgOperand(0));
4389 SDValue Mask = getValue(I.getArgOperand(3));
4390 EVT VT = Src0.getValueType();
4391 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4392 if (!Alignment)
4393 Alignment = DAG.getEVTAlignment(VT);
4394 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4396 AAMDNodes AAInfo;
4397 I.getAAMetadata(AAInfo);
4399 SDValue Base;
4400 SDValue Index;
4401 ISD::MemIndexType IndexType;
4402 SDValue Scale;
4403 const Value *BasePtr = Ptr;
4404 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4405 this);
4407 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4408 MachineMemOperand *MMO = DAG.getMachineFunction().
4409 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4410 MachineMemOperand::MOStore, VT.getStoreSize(),
4411 Alignment, AAInfo);
4412 if (!UniformBase) {
4413 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4414 Index = getValue(Ptr);
4415 IndexType = ISD::SIGNED_SCALED;
4416 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4418 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4419 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4420 Ops, MMO, IndexType);
4421 DAG.setRoot(Scatter);
4422 setValue(&I, Scatter);
4425 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4426 SDLoc sdl = getCurSDLoc();
4428 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4429 unsigned& Alignment) {
4430 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4431 Ptr = I.getArgOperand(0);
4432 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4433 Mask = I.getArgOperand(2);
4434 Src0 = I.getArgOperand(3);
4436 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4437 unsigned& Alignment) {
4438 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4439 Ptr = I.getArgOperand(0);
4440 Alignment = 0;
4441 Mask = I.getArgOperand(1);
4442 Src0 = I.getArgOperand(2);
4445 Value *PtrOperand, *MaskOperand, *Src0Operand;
4446 unsigned Alignment;
4447 if (IsExpanding)
4448 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4449 else
4450 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4452 SDValue Ptr = getValue(PtrOperand);
4453 SDValue Src0 = getValue(Src0Operand);
4454 SDValue Mask = getValue(MaskOperand);
4456 EVT VT = Src0.getValueType();
4457 if (!Alignment)
4458 Alignment = DAG.getEVTAlignment(VT);
4460 AAMDNodes AAInfo;
4461 I.getAAMetadata(AAInfo);
4462 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4464 // Do not serialize masked loads of constant memory with anything.
4465 bool AddToChain =
4466 !AA || !AA->pointsToConstantMemory(MemoryLocation(
4467 PtrOperand,
4468 LocationSize::precise(
4469 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4470 AAInfo));
4471 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4473 MachineMemOperand *MMO =
4474 DAG.getMachineFunction().
4475 getMachineMemOperand(MachinePointerInfo(PtrOperand),
4476 MachineMemOperand::MOLoad, VT.getStoreSize(),
4477 Alignment, AAInfo, Ranges);
4479 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4480 ISD::NON_EXTLOAD, IsExpanding);
4481 if (AddToChain)
4482 PendingLoads.push_back(Load.getValue(1));
4483 setValue(&I, Load);
4486 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4487 SDLoc sdl = getCurSDLoc();
4489 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4490 const Value *Ptr = I.getArgOperand(0);
4491 SDValue Src0 = getValue(I.getArgOperand(3));
4492 SDValue Mask = getValue(I.getArgOperand(2));
4494 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4495 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4496 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4497 if (!Alignment)
4498 Alignment = DAG.getEVTAlignment(VT);
4500 AAMDNodes AAInfo;
4501 I.getAAMetadata(AAInfo);
4502 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4504 SDValue Root = DAG.getRoot();
4505 SDValue Base;
4506 SDValue Index;
4507 ISD::MemIndexType IndexType;
4508 SDValue Scale;
4509 const Value *BasePtr = Ptr;
4510 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4511 this);
4512 bool ConstantMemory = false;
4513 if (UniformBase && AA &&
4514 AA->pointsToConstantMemory(
4515 MemoryLocation(BasePtr,
4516 LocationSize::precise(
4517 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4518 AAInfo))) {
4519 // Do not serialize (non-volatile) loads of constant memory with anything.
4520 Root = DAG.getEntryNode();
4521 ConstantMemory = true;
4524 MachineMemOperand *MMO =
4525 DAG.getMachineFunction().
4526 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4527 MachineMemOperand::MOLoad, VT.getStoreSize(),
4528 Alignment, AAInfo, Ranges);
4530 if (!UniformBase) {
4531 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4532 Index = getValue(Ptr);
4533 IndexType = ISD::SIGNED_SCALED;
4534 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4536 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4537 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4538 Ops, MMO, IndexType);
4540 SDValue OutChain = Gather.getValue(1);
4541 if (!ConstantMemory)
4542 PendingLoads.push_back(OutChain);
4543 setValue(&I, Gather);
4546 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4547 SDLoc dl = getCurSDLoc();
4548 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4549 AtomicOrdering FailureOrdering = I.getFailureOrdering();
4550 SyncScope::ID SSID = I.getSyncScopeID();
4552 SDValue InChain = getRoot();
4554 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4555 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4557 auto Alignment = DAG.getEVTAlignment(MemVT);
4559 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4560 if (I.isVolatile())
4561 Flags |= MachineMemOperand::MOVolatile;
4562 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4564 MachineFunction &MF = DAG.getMachineFunction();
4565 MachineMemOperand *MMO =
4566 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4567 Flags, MemVT.getStoreSize(), Alignment,
4568 AAMDNodes(), nullptr, SSID, SuccessOrdering,
4569 FailureOrdering);
4571 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4572 dl, MemVT, VTs, InChain,
4573 getValue(I.getPointerOperand()),
4574 getValue(I.getCompareOperand()),
4575 getValue(I.getNewValOperand()), MMO);
4577 SDValue OutChain = L.getValue(2);
4579 setValue(&I, L);
4580 DAG.setRoot(OutChain);
4583 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4584 SDLoc dl = getCurSDLoc();
4585 ISD::NodeType NT;
4586 switch (I.getOperation()) {
4587 default: llvm_unreachable("Unknown atomicrmw operation");
4588 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4589 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
4590 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
4591 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
4592 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4593 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
4594 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
4595 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
4596 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
4597 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4598 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4599 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4600 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4602 AtomicOrdering Ordering = I.getOrdering();
4603 SyncScope::ID SSID = I.getSyncScopeID();
4605 SDValue InChain = getRoot();
4607 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4608 auto Alignment = DAG.getEVTAlignment(MemVT);
4610 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4611 if (I.isVolatile())
4612 Flags |= MachineMemOperand::MOVolatile;
4613 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4615 MachineFunction &MF = DAG.getMachineFunction();
4616 MachineMemOperand *MMO =
4617 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4618 MemVT.getStoreSize(), Alignment, AAMDNodes(),
4619 nullptr, SSID, Ordering);
4621 SDValue L =
4622 DAG.getAtomic(NT, dl, MemVT, InChain,
4623 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4624 MMO);
4626 SDValue OutChain = L.getValue(1);
4628 setValue(&I, L);
4629 DAG.setRoot(OutChain);
4632 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4633 SDLoc dl = getCurSDLoc();
4634 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4635 SDValue Ops[3];
4636 Ops[0] = getRoot();
4637 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4638 TLI.getFenceOperandTy(DAG.getDataLayout()));
4639 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4640 TLI.getFenceOperandTy(DAG.getDataLayout()));
4641 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4644 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4645 SDLoc dl = getCurSDLoc();
4646 AtomicOrdering Order = I.getOrdering();
4647 SyncScope::ID SSID = I.getSyncScopeID();
4649 SDValue InChain = getRoot();
4651 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4652 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4653 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4655 if (!TLI.supportsUnalignedAtomics() &&
4656 I.getAlignment() < MemVT.getSizeInBits() / 8)
4657 report_fatal_error("Cannot generate unaligned atomic load");
4659 auto Flags = MachineMemOperand::MOLoad;
4660 if (I.isVolatile())
4661 Flags |= MachineMemOperand::MOVolatile;
4662 if (I.hasMetadata(LLVMContext::MD_invariant_load))
4663 Flags |= MachineMemOperand::MOInvariant;
4664 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4665 DAG.getDataLayout()))
4666 Flags |= MachineMemOperand::MODereferenceable;
4668 Flags |= TLI.getMMOFlags(I);
4670 MachineMemOperand *MMO =
4671 DAG.getMachineFunction().
4672 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4673 Flags, MemVT.getStoreSize(),
4674 I.getAlignment() ? I.getAlignment() :
4675 DAG.getEVTAlignment(MemVT),
4676 AAMDNodes(), nullptr, SSID, Order);
4678 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4680 SDValue Ptr = getValue(I.getPointerOperand());
4682 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4683 // TODO: Once this is better exercised by tests, it should be merged with
4684 // the normal path for loads to prevent future divergence.
4685 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4686 if (MemVT != VT)
4687 L = DAG.getPtrExtOrTrunc(L, dl, VT);
4689 setValue(&I, L);
4690 SDValue OutChain = L.getValue(1);
4691 if (!I.isUnordered())
4692 DAG.setRoot(OutChain);
4693 else
4694 PendingLoads.push_back(OutChain);
4695 return;
4698 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4699 Ptr, MMO);
4701 SDValue OutChain = L.getValue(1);
4702 if (MemVT != VT)
4703 L = DAG.getPtrExtOrTrunc(L, dl, VT);
4705 setValue(&I, L);
4706 DAG.setRoot(OutChain);
4709 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4710 SDLoc dl = getCurSDLoc();
4712 AtomicOrdering Ordering = I.getOrdering();
4713 SyncScope::ID SSID = I.getSyncScopeID();
4715 SDValue InChain = getRoot();
4717 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4718 EVT MemVT =
4719 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4721 if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4722 report_fatal_error("Cannot generate unaligned atomic store");
4724 auto Flags = MachineMemOperand::MOStore;
4725 if (I.isVolatile())
4726 Flags |= MachineMemOperand::MOVolatile;
4727 Flags |= TLI.getMMOFlags(I);
4729 MachineFunction &MF = DAG.getMachineFunction();
4730 MachineMemOperand *MMO =
4731 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4732 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4733 nullptr, SSID, Ordering);
4735 SDValue Val = getValue(I.getValueOperand());
4736 if (Val.getValueType() != MemVT)
4737 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4738 SDValue Ptr = getValue(I.getPointerOperand());
4740 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4741 // TODO: Once this is better exercised by tests, it should be merged with
4742 // the normal path for stores to prevent future divergence.
4743 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4744 DAG.setRoot(S);
4745 return;
4747 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4748 Ptr, Val, MMO);
4751 DAG.setRoot(OutChain);
4754 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4755 /// node.
4756 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4757 unsigned Intrinsic) {
4758 // Ignore the callsite's attributes. A specific call site may be marked with
4759 // readnone, but the lowering code will expect the chain based on the
4760 // definition.
4761 const Function *F = I.getCalledFunction();
4762 bool HasChain = !F->doesNotAccessMemory();
4763 bool OnlyLoad = HasChain && F->onlyReadsMemory();
4765 // Build the operand list.
4766 SmallVector<SDValue, 8> Ops;
4767 if (HasChain) { // If this intrinsic has side-effects, chainify it.
4768 if (OnlyLoad) {
4769 // We don't need to serialize loads against other loads.
4770 Ops.push_back(DAG.getRoot());
4771 } else {
4772 Ops.push_back(getRoot());
4776 // Info is set by getTgtMemInstrinsic
4777 TargetLowering::IntrinsicInfo Info;
4778 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4779 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4780 DAG.getMachineFunction(),
4781 Intrinsic);
4783 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4784 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4785 Info.opc == ISD::INTRINSIC_W_CHAIN)
4786 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4787 TLI.getPointerTy(DAG.getDataLayout())));
4789 // Add all operands of the call to the operand list.
4790 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4791 const Value *Arg = I.getArgOperand(i);
4792 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4793 Ops.push_back(getValue(Arg));
4794 continue;
4797 // Use TargetConstant instead of a regular constant for immarg.
4798 EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4800 assert(CI->getBitWidth() <= 64 &&
4801 "large intrinsic immediates not handled");
4802 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4803 } else {
4804 Ops.push_back(
4805 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4809 SmallVector<EVT, 4> ValueVTs;
4810 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4812 if (HasChain)
4813 ValueVTs.push_back(MVT::Other);
4815 SDVTList VTs = DAG.getVTList(ValueVTs);
4817 // Create the node.
4818 SDValue Result;
4819 if (IsTgtIntrinsic) {
4820 // This is target intrinsic that touches memory
4821 AAMDNodes AAInfo;
4822 I.getAAMetadata(AAInfo);
4823 Result = DAG.getMemIntrinsicNode(
4824 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4825 MachinePointerInfo(Info.ptrVal, Info.offset),
4826 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4827 } else if (!HasChain) {
4828 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4829 } else if (!I.getType()->isVoidTy()) {
4830 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4831 } else {
4832 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4835 if (HasChain) {
4836 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4837 if (OnlyLoad)
4838 PendingLoads.push_back(Chain);
4839 else
4840 DAG.setRoot(Chain);
4843 if (!I.getType()->isVoidTy()) {
4844 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4845 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4846 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4847 } else
4848 Result = lowerRangeToAssertZExt(DAG, I, Result);
4850 setValue(&I, Result);
4854 /// GetSignificand - Get the significand and build it into a floating-point
4855 /// number with exponent of 1:
4857 /// Op = (Op & 0x007fffff) | 0x3f800000;
4859 /// where Op is the hexadecimal representation of floating point value.
4860 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4861 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4862 DAG.getConstant(0x007fffff, dl, MVT::i32));
4863 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4864 DAG.getConstant(0x3f800000, dl, MVT::i32));
4865 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4868 /// GetExponent - Get the exponent:
4870 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4872 /// where Op is the hexadecimal representation of floating point value.
4873 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4874 const TargetLowering &TLI, const SDLoc &dl) {
4875 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4876 DAG.getConstant(0x7f800000, dl, MVT::i32));
4877 SDValue t1 = DAG.getNode(
4878 ISD::SRL, dl, MVT::i32, t0,
4879 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4880 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4881 DAG.getConstant(127, dl, MVT::i32));
4882 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4885 /// getF32Constant - Get 32-bit floating point constant.
4886 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4887 const SDLoc &dl) {
4888 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4889 MVT::f32);
4892 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4893 SelectionDAG &DAG) {
4894 // TODO: What fast-math-flags should be set on the floating-point nodes?
4896 // IntegerPartOfX = ((int32_t)(t0);
4897 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4899 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4900 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4901 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4903 // IntegerPartOfX <<= 23;
4904 IntegerPartOfX = DAG.getNode(
4905 ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4906 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4907 DAG.getDataLayout())));
4909 SDValue TwoToFractionalPartOfX;
4910 if (LimitFloatPrecision <= 6) {
4911 // For floating-point precision of 6:
4913 // TwoToFractionalPartOfX =
4914 // 0.997535578f +
4915 // (0.735607626f + 0.252464424f * x) * x;
4917 // error 0.0144103317, which is 6 bits
4918 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4919 getF32Constant(DAG, 0x3e814304, dl));
4920 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4921 getF32Constant(DAG, 0x3f3c50c8, dl));
4922 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4923 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4924 getF32Constant(DAG, 0x3f7f5e7e, dl));
4925 } else if (LimitFloatPrecision <= 12) {
4926 // For floating-point precision of 12:
4928 // TwoToFractionalPartOfX =
4929 // 0.999892986f +
4930 // (0.696457318f +
4931 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4933 // error 0.000107046256, which is 13 to 14 bits
4934 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4935 getF32Constant(DAG, 0x3da235e3, dl));
4936 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4937 getF32Constant(DAG, 0x3e65b8f3, dl));
4938 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4939 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4940 getF32Constant(DAG, 0x3f324b07, dl));
4941 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4942 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4943 getF32Constant(DAG, 0x3f7ff8fd, dl));
4944 } else { // LimitFloatPrecision <= 18
4945 // For floating-point precision of 18:
4947 // TwoToFractionalPartOfX =
4948 // 0.999999982f +
4949 // (0.693148872f +
4950 // (0.240227044f +
4951 // (0.554906021e-1f +
4952 // (0.961591928e-2f +
4953 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4954 // error 2.47208000*10^(-7), which is better than 18 bits
4955 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4956 getF32Constant(DAG, 0x3924b03e, dl));
4957 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4958 getF32Constant(DAG, 0x3ab24b87, dl));
4959 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4960 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4961 getF32Constant(DAG, 0x3c1d8c17, dl));
4962 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4963 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4964 getF32Constant(DAG, 0x3d634a1d, dl));
4965 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4966 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4967 getF32Constant(DAG, 0x3e75fe14, dl));
4968 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4969 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4970 getF32Constant(DAG, 0x3f317234, dl));
4971 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4972 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4973 getF32Constant(DAG, 0x3f800000, dl));
4976 // Add the exponent into the result in integer domain.
4977 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4978 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4979 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4982 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4983 /// limited-precision mode.
4984 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4985 const TargetLowering &TLI) {
4986 if (Op.getValueType() == MVT::f32 &&
4987 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4989 // Put the exponent in the right bit position for later addition to the
4990 // final result:
4992 // t0 = Op * log2(e)
4994 // TODO: What fast-math-flags should be set here?
4995 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4996 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4997 return getLimitedPrecisionExp2(t0, dl, DAG);
5000 // No special expansion.
5001 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5004 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5005 /// limited-precision mode.
5006 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5007 const TargetLowering &TLI) {
5008 // TODO: What fast-math-flags should be set on the floating-point nodes?
5010 if (Op.getValueType() == MVT::f32 &&
5011 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5012 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5014 // Scale the exponent by log(2).
5015 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5016 SDValue LogOfExponent =
5017 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5018 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5020 // Get the significand and build it into a floating-point number with
5021 // exponent of 1.
5022 SDValue X = GetSignificand(DAG, Op1, dl);
5024 SDValue LogOfMantissa;
5025 if (LimitFloatPrecision <= 6) {
5026 // For floating-point precision of 6:
5028 // LogofMantissa =
5029 // -1.1609546f +
5030 // (1.4034025f - 0.23903021f * x) * x;
5032 // error 0.0034276066, which is better than 8 bits
5033 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5034 getF32Constant(DAG, 0xbe74c456, dl));
5035 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5036 getF32Constant(DAG, 0x3fb3a2b1, dl));
5037 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5038 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5039 getF32Constant(DAG, 0x3f949a29, dl));
5040 } else if (LimitFloatPrecision <= 12) {
5041 // For floating-point precision of 12:
5043 // LogOfMantissa =
5044 // -1.7417939f +
5045 // (2.8212026f +
5046 // (-1.4699568f +
5047 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5049 // error 0.000061011436, which is 14 bits
5050 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5051 getF32Constant(DAG, 0xbd67b6d6, dl));
5052 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5053 getF32Constant(DAG, 0x3ee4f4b8, dl));
5054 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5055 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5056 getF32Constant(DAG, 0x3fbc278b, dl));
5057 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5058 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5059 getF32Constant(DAG, 0x40348e95, dl));
5060 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5061 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5062 getF32Constant(DAG, 0x3fdef31a, dl));
5063 } else { // LimitFloatPrecision <= 18
5064 // For floating-point precision of 18:
5066 // LogOfMantissa =
5067 // -2.1072184f +
5068 // (4.2372794f +
5069 // (-3.7029485f +
5070 // (2.2781945f +
5071 // (-0.87823314f +
5072 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5074 // error 0.0000023660568, which is better than 18 bits
5075 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5076 getF32Constant(DAG, 0xbc91e5ac, dl));
5077 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5078 getF32Constant(DAG, 0x3e4350aa, dl));
5079 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5080 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5081 getF32Constant(DAG, 0x3f60d3e3, dl));
5082 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5083 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5084 getF32Constant(DAG, 0x4011cdf0, dl));
5085 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5086 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5087 getF32Constant(DAG, 0x406cfd1c, dl));
5088 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5089 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5090 getF32Constant(DAG, 0x408797cb, dl));
5091 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5092 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5093 getF32Constant(DAG, 0x4006dcab, dl));
5096 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5099 // No special expansion.
5100 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5103 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5104 /// limited-precision mode.
5105 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5106 const TargetLowering &TLI) {
5107 // TODO: What fast-math-flags should be set on the floating-point nodes?
5109 if (Op.getValueType() == MVT::f32 &&
5110 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5111 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5113 // Get the exponent.
5114 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5116 // Get the significand and build it into a floating-point number with
5117 // exponent of 1.
5118 SDValue X = GetSignificand(DAG, Op1, dl);
5120 // Different possible minimax approximations of significand in
5121 // floating-point for various degrees of accuracy over [1,2].
5122 SDValue Log2ofMantissa;
5123 if (LimitFloatPrecision <= 6) {
5124 // For floating-point precision of 6:
5126 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5128 // error 0.0049451742, which is more than 7 bits
5129 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5130 getF32Constant(DAG, 0xbeb08fe0, dl));
5131 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5132 getF32Constant(DAG, 0x40019463, dl));
5133 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5134 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5135 getF32Constant(DAG, 0x3fd6633d, dl));
5136 } else if (LimitFloatPrecision <= 12) {
5137 // For floating-point precision of 12:
5139 // Log2ofMantissa =
5140 // -2.51285454f +
5141 // (4.07009056f +
5142 // (-2.12067489f +
5143 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5145 // error 0.0000876136000, which is better than 13 bits
5146 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5147 getF32Constant(DAG, 0xbda7262e, dl));
5148 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5149 getF32Constant(DAG, 0x3f25280b, dl));
5150 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5151 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5152 getF32Constant(DAG, 0x4007b923, dl));
5153 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5154 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5155 getF32Constant(DAG, 0x40823e2f, dl));
5156 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5157 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5158 getF32Constant(DAG, 0x4020d29c, dl));
5159 } else { // LimitFloatPrecision <= 18
5160 // For floating-point precision of 18:
5162 // Log2ofMantissa =
5163 // -3.0400495f +
5164 // (6.1129976f +
5165 // (-5.3420409f +
5166 // (3.2865683f +
5167 // (-1.2669343f +
5168 // (0.27515199f -
5169 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5171 // error 0.0000018516, which is better than 18 bits
5172 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5173 getF32Constant(DAG, 0xbcd2769e, dl));
5174 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5175 getF32Constant(DAG, 0x3e8ce0b9, dl));
5176 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5177 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5178 getF32Constant(DAG, 0x3fa22ae7, dl));
5179 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5180 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5181 getF32Constant(DAG, 0x40525723, dl));
5182 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5183 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5184 getF32Constant(DAG, 0x40aaf200, dl));
5185 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5186 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5187 getF32Constant(DAG, 0x40c39dad, dl));
5188 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5189 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5190 getF32Constant(DAG, 0x4042902c, dl));
5193 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5196 // No special expansion.
5197 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5200 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5201 /// limited-precision mode.
5202 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5203 const TargetLowering &TLI) {
5204 // TODO: What fast-math-flags should be set on the floating-point nodes?
5206 if (Op.getValueType() == MVT::f32 &&
5207 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5208 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5210 // Scale the exponent by log10(2) [0.30102999f].
5211 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5212 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5213 getF32Constant(DAG, 0x3e9a209a, dl));
5215 // Get the significand and build it into a floating-point number with
5216 // exponent of 1.
5217 SDValue X = GetSignificand(DAG, Op1, dl);
5219 SDValue Log10ofMantissa;
5220 if (LimitFloatPrecision <= 6) {
5221 // For floating-point precision of 6:
5223 // Log10ofMantissa =
5224 // -0.50419619f +
5225 // (0.60948995f - 0.10380950f * x) * x;
5227 // error 0.0014886165, which is 6 bits
5228 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5229 getF32Constant(DAG, 0xbdd49a13, dl));
5230 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5231 getF32Constant(DAG, 0x3f1c0789, dl));
5232 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5233 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5234 getF32Constant(DAG, 0x3f011300, dl));
5235 } else if (LimitFloatPrecision <= 12) {
5236 // For floating-point precision of 12:
5238 // Log10ofMantissa =
5239 // -0.64831180f +
5240 // (0.91751397f +
5241 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5243 // error 0.00019228036, which is better than 12 bits
5244 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5245 getF32Constant(DAG, 0x3d431f31, dl));
5246 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5247 getF32Constant(DAG, 0x3ea21fb2, dl));
5248 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5249 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5250 getF32Constant(DAG, 0x3f6ae232, dl));
5251 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5252 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5253 getF32Constant(DAG, 0x3f25f7c3, dl));
5254 } else { // LimitFloatPrecision <= 18
5255 // For floating-point precision of 18:
5257 // Log10ofMantissa =
5258 // -0.84299375f +
5259 // (1.5327582f +
5260 // (-1.0688956f +
5261 // (0.49102474f +
5262 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5264 // error 0.0000037995730, which is better than 18 bits
5265 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5266 getF32Constant(DAG, 0x3c5d51ce, dl));
5267 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5268 getF32Constant(DAG, 0x3e00685a, dl));
5269 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5270 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5271 getF32Constant(DAG, 0x3efb6798, dl));
5272 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5273 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5274 getF32Constant(DAG, 0x3f88d192, dl));
5275 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5276 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5277 getF32Constant(DAG, 0x3fc4316c, dl));
5278 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5279 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5280 getF32Constant(DAG, 0x3f57ce70, dl));
5283 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5286 // No special expansion.
5287 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5290 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5291 /// limited-precision mode.
5292 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5293 const TargetLowering &TLI) {
5294 if (Op.getValueType() == MVT::f32 &&
5295 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5296 return getLimitedPrecisionExp2(Op, dl, DAG);
5298 // No special expansion.
5299 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5302 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5303 /// limited-precision mode with x == 10.0f.
5304 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5305 SelectionDAG &DAG, const TargetLowering &TLI) {
5306 bool IsExp10 = false;
5307 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5308 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5309 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5310 APFloat Ten(10.0f);
5311 IsExp10 = LHSC->isExactlyValue(Ten);
5315 // TODO: What fast-math-flags should be set on the FMUL node?
5316 if (IsExp10) {
5317 // Put the exponent in the right bit position for later addition to the
5318 // final result:
5320 // #define LOG2OF10 3.3219281f
5321 // t0 = Op * LOG2OF10;
5322 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5323 getF32Constant(DAG, 0x40549a78, dl));
5324 return getLimitedPrecisionExp2(t0, dl, DAG);
5327 // No special expansion.
5328 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5331 /// ExpandPowI - Expand a llvm.powi intrinsic.
5332 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5333 SelectionDAG &DAG) {
5334 // If RHS is a constant, we can expand this out to a multiplication tree,
5335 // otherwise we end up lowering to a call to __powidf2 (for example). When
5336 // optimizing for size, we only want to do this if the expansion would produce
5337 // a small number of multiplies, otherwise we do the full expansion.
5338 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5339 // Get the exponent as a positive value.
5340 unsigned Val = RHSC->getSExtValue();
5341 if ((int)Val < 0) Val = -Val;
5343 // powi(x, 0) -> 1.0
5344 if (Val == 0)
5345 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5347 const Function &F = DAG.getMachineFunction().getFunction();
5348 if (!F.hasOptSize() ||
5349 // If optimizing for size, don't insert too many multiplies.
5350 // This inserts up to 5 multiplies.
5351 countPopulation(Val) + Log2_32(Val) < 7) {
5352 // We use the simple binary decomposition method to generate the multiply
5353 // sequence. There are more optimal ways to do this (for example,
5354 // powi(x,15) generates one more multiply than it should), but this has
5355 // the benefit of being both really simple and much better than a libcall.
5356 SDValue Res; // Logically starts equal to 1.0
5357 SDValue CurSquare = LHS;
5358 // TODO: Intrinsics should have fast-math-flags that propagate to these
5359 // nodes.
5360 while (Val) {
5361 if (Val & 1) {
5362 if (Res.getNode())
5363 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5364 else
5365 Res = CurSquare; // 1.0*CurSquare.
5368 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5369 CurSquare, CurSquare);
5370 Val >>= 1;
5373 // If the original was negative, invert the result, producing 1/(x*x*x).
5374 if (RHSC->getSExtValue() < 0)
5375 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5376 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5377 return Res;
5381 // Otherwise, expand to a libcall.
5382 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5385 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5386 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5387 static void
5388 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5389 const SDValue &N) {
5390 switch (N.getOpcode()) {
5391 case ISD::CopyFromReg: {
5392 SDValue Op = N.getOperand(1);
5393 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5394 Op.getValueType().getSizeInBits());
5395 return;
5397 case ISD::BITCAST:
5398 case ISD::AssertZext:
5399 case ISD::AssertSext:
5400 case ISD::TRUNCATE:
5401 getUnderlyingArgRegs(Regs, N.getOperand(0));
5402 return;
5403 case ISD::BUILD_PAIR:
5404 case ISD::BUILD_VECTOR:
5405 case ISD::CONCAT_VECTORS:
5406 for (SDValue Op : N->op_values())
5407 getUnderlyingArgRegs(Regs, Op);
5408 return;
5409 default:
5410 return;
5414 /// If the DbgValueInst is a dbg_value of a function argument, create the
5415 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5416 /// instruction selection, they will be inserted to the entry BB.
5417 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5418 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5419 DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5420 const Argument *Arg = dyn_cast<Argument>(V);
5421 if (!Arg)
5422 return false;
5424 if (!IsDbgDeclare) {
5425 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5426 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5427 // the entry block.
5428 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5429 if (!IsInEntryBlock)
5430 return false;
5432 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5433 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5434 // variable that also is a param.
5436 // Although, if we are at the top of the entry block already, we can still
5437 // emit using ArgDbgValue. This might catch some situations when the
5438 // dbg.value refers to an argument that isn't used in the entry block, so
5439 // any CopyToReg node would be optimized out and the only way to express
5440 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5441 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5442 // we should only emit as ArgDbgValue if the Variable is an argument to the
5443 // current function, and the dbg.value intrinsic is found in the entry
5444 // block.
5445 bool VariableIsFunctionInputArg = Variable->isParameter() &&
5446 !DL->getInlinedAt();
5447 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5448 if (!IsInPrologue && !VariableIsFunctionInputArg)
5449 return false;
5451 // Here we assume that a function argument on IR level only can be used to
5452 // describe one input parameter on source level. If we for example have
5453 // source code like this
5455 // struct A { long x, y; };
5456 // void foo(struct A a, long b) {
5457 // ...
5458 // b = a.x;
5459 // ...
5460 // }
5462 // and IR like this
5464 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5465 // entry:
5466 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5467 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5468 // call void @llvm.dbg.value(metadata i32 %b, "b",
5469 // ...
5470 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5471 // ...
5473 // then the last dbg.value is describing a parameter "b" using a value that
5474 // is an argument. But since we already has used %a1 to describe a parameter
5475 // we should not handle that last dbg.value here (that would result in an
5476 // incorrect hoisting of the DBG_VALUE to the function entry).
5477 // Notice that we allow one dbg.value per IR level argument, to accomodate
5478 // for the situation with fragments above.
5479 if (VariableIsFunctionInputArg) {
5480 unsigned ArgNo = Arg->getArgNo();
5481 if (ArgNo >= FuncInfo.DescribedArgs.size())
5482 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5483 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5484 return false;
5485 FuncInfo.DescribedArgs.set(ArgNo);
5489 MachineFunction &MF = DAG.getMachineFunction();
5490 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5492 bool IsIndirect = false;
5493 Optional<MachineOperand> Op;
5494 // Some arguments' frame index is recorded during argument lowering.
5495 int FI = FuncInfo.getArgumentFrameIndex(Arg);
5496 if (FI != std::numeric_limits<int>::max())
5497 Op = MachineOperand::CreateFI(FI);
5499 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5500 if (!Op && N.getNode()) {
5501 getUnderlyingArgRegs(ArgRegsAndSizes, N);
5502 Register Reg;
5503 if (ArgRegsAndSizes.size() == 1)
5504 Reg = ArgRegsAndSizes.front().first;
5506 if (Reg && Reg.isVirtual()) {
5507 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5508 Register PR = RegInfo.getLiveInPhysReg(Reg);
5509 if (PR)
5510 Reg = PR;
5512 if (Reg) {
5513 Op = MachineOperand::CreateReg(Reg, false);
5514 IsIndirect = IsDbgDeclare;
5518 if (!Op && N.getNode()) {
5519 // Check if frame index is available.
5520 SDValue LCandidate = peekThroughBitcasts(N);
5521 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5522 if (FrameIndexSDNode *FINode =
5523 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5524 Op = MachineOperand::CreateFI(FINode->getIndex());
5527 if (!Op) {
5528 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5529 auto splitMultiRegDbgValue
5530 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5531 unsigned Offset = 0;
5532 for (auto RegAndSize : SplitRegs) {
5533 auto FragmentExpr = DIExpression::createFragmentExpression(
5534 Expr, Offset, RegAndSize.second);
5535 if (!FragmentExpr)
5536 continue;
5537 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5538 FuncInfo.ArgDbgValues.push_back(
5539 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5540 RegAndSize.first, Variable, *FragmentExpr));
5541 Offset += RegAndSize.second;
5545 // Check if ValueMap has reg number.
5546 DenseMap<const Value *, unsigned>::const_iterator
5547 VMI = FuncInfo.ValueMap.find(V);
5548 if (VMI != FuncInfo.ValueMap.end()) {
5549 const auto &TLI = DAG.getTargetLoweringInfo();
5550 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5551 V->getType(), getABIRegCopyCC(V));
5552 if (RFV.occupiesMultipleRegs()) {
5553 splitMultiRegDbgValue(RFV.getRegsAndSizes());
5554 return true;
5557 Op = MachineOperand::CreateReg(VMI->second, false);
5558 IsIndirect = IsDbgDeclare;
5559 } else if (ArgRegsAndSizes.size() > 1) {
5560 // This was split due to the calling convention, and no virtual register
5561 // mapping exists for the value.
5562 splitMultiRegDbgValue(ArgRegsAndSizes);
5563 return true;
5567 if (!Op)
5568 return false;
5570 assert(Variable->isValidLocationForIntrinsic(DL) &&
5571 "Expected inlined-at fields to agree");
5572 IsIndirect = (Op->isReg()) ? IsIndirect : true;
5573 if (IsIndirect)
5574 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
5575 FuncInfo.ArgDbgValues.push_back(
5576 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5577 *Op, Variable, Expr));
5579 return true;
5582 /// Return the appropriate SDDbgValue based on N.
5583 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5584 DILocalVariable *Variable,
5585 DIExpression *Expr,
5586 const DebugLoc &dl,
5587 unsigned DbgSDNodeOrder) {
5588 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5589 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5590 // stack slot locations.
5592 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5593 // debug values here after optimization:
5595 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5596 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5598 // Both describe the direct values of their associated variables.
5599 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5600 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5602 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5603 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5606 // VisualStudio defines setjmp as _setjmp
5607 #if defined(_MSC_VER) && defined(setjmp) && \
5608 !defined(setjmp_undefined_for_msvc)
5609 # pragma push_macro("setjmp")
5610 # undef setjmp
5611 # define setjmp_undefined_for_msvc
5612 #endif
5614 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5615 switch (Intrinsic) {
5616 case Intrinsic::smul_fix:
5617 return ISD::SMULFIX;
5618 case Intrinsic::umul_fix:
5619 return ISD::UMULFIX;
5620 default:
5621 llvm_unreachable("Unhandled fixed point intrinsic");
5625 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5626 const char *FunctionName) {
5627 assert(FunctionName && "FunctionName must not be nullptr");
5628 SDValue Callee = DAG.getExternalSymbol(
5629 FunctionName,
5630 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5631 LowerCallTo(&I, Callee, I.isTailCall());
5634 /// Lower the call to the specified intrinsic function.
5635 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5636 unsigned Intrinsic) {
5637 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5638 SDLoc sdl = getCurSDLoc();
5639 DebugLoc dl = getCurDebugLoc();
5640 SDValue Res;
5642 switch (Intrinsic) {
5643 default:
5644 // By default, turn this into a target intrinsic node.
5645 visitTargetIntrinsic(I, Intrinsic);
5646 return;
5647 case Intrinsic::vastart: visitVAStart(I); return;
5648 case Intrinsic::vaend: visitVAEnd(I); return;
5649 case Intrinsic::vacopy: visitVACopy(I); return;
5650 case Intrinsic::returnaddress:
5651 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5652 TLI.getPointerTy(DAG.getDataLayout()),
5653 getValue(I.getArgOperand(0))));
5654 return;
5655 case Intrinsic::addressofreturnaddress:
5656 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5657 TLI.getPointerTy(DAG.getDataLayout())));
5658 return;
5659 case Intrinsic::sponentry:
5660 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5661 TLI.getFrameIndexTy(DAG.getDataLayout())));
5662 return;
5663 case Intrinsic::frameaddress:
5664 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5665 TLI.getFrameIndexTy(DAG.getDataLayout()),
5666 getValue(I.getArgOperand(0))));
5667 return;
5668 case Intrinsic::read_register: {
5669 Value *Reg = I.getArgOperand(0);
5670 SDValue Chain = getRoot();
5671 SDValue RegName =
5672 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5673 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5674 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5675 DAG.getVTList(VT, MVT::Other), Chain, RegName);
5676 setValue(&I, Res);
5677 DAG.setRoot(Res.getValue(1));
5678 return;
5680 case Intrinsic::write_register: {
5681 Value *Reg = I.getArgOperand(0);
5682 Value *RegValue = I.getArgOperand(1);
5683 SDValue Chain = getRoot();
5684 SDValue RegName =
5685 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5686 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5687 RegName, getValue(RegValue)));
5688 return;
5690 case Intrinsic::setjmp:
5691 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5692 return;
5693 case Intrinsic::longjmp:
5694 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5695 return;
5696 case Intrinsic::memcpy: {
5697 const auto &MCI = cast<MemCpyInst>(I);
5698 SDValue Op1 = getValue(I.getArgOperand(0));
5699 SDValue Op2 = getValue(I.getArgOperand(1));
5700 SDValue Op3 = getValue(I.getArgOperand(2));
5701 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5702 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5703 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5704 unsigned Align = MinAlign(DstAlign, SrcAlign);
5705 bool isVol = MCI.isVolatile();
5706 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5707 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5708 // node.
5709 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5710 false, isTC,
5711 MachinePointerInfo(I.getArgOperand(0)),
5712 MachinePointerInfo(I.getArgOperand(1)));
5713 updateDAGForMaybeTailCall(MC);
5714 return;
5716 case Intrinsic::memset: {
5717 const auto &MSI = cast<MemSetInst>(I);
5718 SDValue Op1 = getValue(I.getArgOperand(0));
5719 SDValue Op2 = getValue(I.getArgOperand(1));
5720 SDValue Op3 = getValue(I.getArgOperand(2));
5721 // @llvm.memset defines 0 and 1 to both mean no alignment.
5722 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5723 bool isVol = MSI.isVolatile();
5724 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5725 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5726 isTC, MachinePointerInfo(I.getArgOperand(0)));
5727 updateDAGForMaybeTailCall(MS);
5728 return;
5730 case Intrinsic::memmove: {
5731 const auto &MMI = cast<MemMoveInst>(I);
5732 SDValue Op1 = getValue(I.getArgOperand(0));
5733 SDValue Op2 = getValue(I.getArgOperand(1));
5734 SDValue Op3 = getValue(I.getArgOperand(2));
5735 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5736 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5737 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5738 unsigned Align = MinAlign(DstAlign, SrcAlign);
5739 bool isVol = MMI.isVolatile();
5740 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5741 // FIXME: Support passing different dest/src alignments to the memmove DAG
5742 // node.
5743 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5744 isTC, MachinePointerInfo(I.getArgOperand(0)),
5745 MachinePointerInfo(I.getArgOperand(1)));
5746 updateDAGForMaybeTailCall(MM);
5747 return;
5749 case Intrinsic::memcpy_element_unordered_atomic: {
5750 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5751 SDValue Dst = getValue(MI.getRawDest());
5752 SDValue Src = getValue(MI.getRawSource());
5753 SDValue Length = getValue(MI.getLength());
5755 unsigned DstAlign = MI.getDestAlignment();
5756 unsigned SrcAlign = MI.getSourceAlignment();
5757 Type *LengthTy = MI.getLength()->getType();
5758 unsigned ElemSz = MI.getElementSizeInBytes();
5759 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5760 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5761 SrcAlign, Length, LengthTy, ElemSz, isTC,
5762 MachinePointerInfo(MI.getRawDest()),
5763 MachinePointerInfo(MI.getRawSource()));
5764 updateDAGForMaybeTailCall(MC);
5765 return;
5767 case Intrinsic::memmove_element_unordered_atomic: {
5768 auto &MI = cast<AtomicMemMoveInst>(I);
5769 SDValue Dst = getValue(MI.getRawDest());
5770 SDValue Src = getValue(MI.getRawSource());
5771 SDValue Length = getValue(MI.getLength());
5773 unsigned DstAlign = MI.getDestAlignment();
5774 unsigned SrcAlign = MI.getSourceAlignment();
5775 Type *LengthTy = MI.getLength()->getType();
5776 unsigned ElemSz = MI.getElementSizeInBytes();
5777 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5778 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5779 SrcAlign, Length, LengthTy, ElemSz, isTC,
5780 MachinePointerInfo(MI.getRawDest()),
5781 MachinePointerInfo(MI.getRawSource()));
5782 updateDAGForMaybeTailCall(MC);
5783 return;
5785 case Intrinsic::memset_element_unordered_atomic: {
5786 auto &MI = cast<AtomicMemSetInst>(I);
5787 SDValue Dst = getValue(MI.getRawDest());
5788 SDValue Val = getValue(MI.getValue());
5789 SDValue Length = getValue(MI.getLength());
5791 unsigned DstAlign = MI.getDestAlignment();
5792 Type *LengthTy = MI.getLength()->getType();
5793 unsigned ElemSz = MI.getElementSizeInBytes();
5794 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5795 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5796 LengthTy, ElemSz, isTC,
5797 MachinePointerInfo(MI.getRawDest()));
5798 updateDAGForMaybeTailCall(MC);
5799 return;
5801 case Intrinsic::dbg_addr:
5802 case Intrinsic::dbg_declare: {
5803 const auto &DI = cast<DbgVariableIntrinsic>(I);
5804 DILocalVariable *Variable = DI.getVariable();
5805 DIExpression *Expression = DI.getExpression();
5806 dropDanglingDebugInfo(Variable, Expression);
5807 assert(Variable && "Missing variable");
5809 // Check if address has undef value.
5810 const Value *Address = DI.getVariableLocation();
5811 if (!Address || isa<UndefValue>(Address) ||
5812 (Address->use_empty() && !isa<Argument>(Address))) {
5813 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5814 return;
5817 bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5819 // Check if this variable can be described by a frame index, typically
5820 // either as a static alloca or a byval parameter.
5821 int FI = std::numeric_limits<int>::max();
5822 if (const auto *AI =
5823 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5824 if (AI->isStaticAlloca()) {
5825 auto I = FuncInfo.StaticAllocaMap.find(AI);
5826 if (I != FuncInfo.StaticAllocaMap.end())
5827 FI = I->second;
5829 } else if (const auto *Arg = dyn_cast<Argument>(
5830 Address->stripInBoundsConstantOffsets())) {
5831 FI = FuncInfo.getArgumentFrameIndex(Arg);
5834 // llvm.dbg.addr is control dependent and always generates indirect
5835 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5836 // the MachineFunction variable table.
5837 if (FI != std::numeric_limits<int>::max()) {
5838 if (Intrinsic == Intrinsic::dbg_addr) {
5839 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5840 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5841 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5843 return;
5846 SDValue &N = NodeMap[Address];
5847 if (!N.getNode() && isa<Argument>(Address))
5848 // Check unused arguments map.
5849 N = UnusedArgNodeMap[Address];
5850 SDDbgValue *SDV;
5851 if (N.getNode()) {
5852 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5853 Address = BCI->getOperand(0);
5854 // Parameters are handled specially.
5855 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5856 if (isParameter && FINode) {
5857 // Byval parameter. We have a frame index at this point.
5858 SDV =
5859 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5860 /*IsIndirect*/ true, dl, SDNodeOrder);
5861 } else if (isa<Argument>(Address)) {
5862 // Address is an argument, so try to emit its dbg value using
5863 // virtual register info from the FuncInfo.ValueMap.
5864 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5865 return;
5866 } else {
5867 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5868 true, dl, SDNodeOrder);
5870 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5871 } else {
5872 // If Address is an argument then try to emit its dbg value using
5873 // virtual register info from the FuncInfo.ValueMap.
5874 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5875 N)) {
5876 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5879 return;
5881 case Intrinsic::dbg_label: {
5882 const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5883 DILabel *Label = DI.getLabel();
5884 assert(Label && "Missing label");
5886 SDDbgLabel *SDV;
5887 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5888 DAG.AddDbgLabel(SDV);
5889 return;
5891 case Intrinsic::dbg_value: {
5892 const DbgValueInst &DI = cast<DbgValueInst>(I);
5893 assert(DI.getVariable() && "Missing variable");
5895 DILocalVariable *Variable = DI.getVariable();
5896 DIExpression *Expression = DI.getExpression();
5897 dropDanglingDebugInfo(Variable, Expression);
5898 const Value *V = DI.getValue();
5899 if (!V)
5900 return;
5902 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5903 SDNodeOrder))
5904 return;
5906 // TODO: Dangling debug info will eventually either be resolved or produce
5907 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5908 // between the original dbg.value location and its resolved DBG_VALUE, which
5909 // we should ideally fill with an extra Undef DBG_VALUE.
5911 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5912 return;
5915 case Intrinsic::eh_typeid_for: {
5916 // Find the type id for the given typeinfo.
5917 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5918 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5919 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5920 setValue(&I, Res);
5921 return;
5924 case Intrinsic::eh_return_i32:
5925 case Intrinsic::eh_return_i64:
5926 DAG.getMachineFunction().setCallsEHReturn(true);
5927 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5928 MVT::Other,
5929 getControlRoot(),
5930 getValue(I.getArgOperand(0)),
5931 getValue(I.getArgOperand(1))));
5932 return;
5933 case Intrinsic::eh_unwind_init:
5934 DAG.getMachineFunction().setCallsUnwindInit(true);
5935 return;
5936 case Intrinsic::eh_dwarf_cfa:
5937 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5938 TLI.getPointerTy(DAG.getDataLayout()),
5939 getValue(I.getArgOperand(0))));
5940 return;
5941 case Intrinsic::eh_sjlj_callsite: {
5942 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5943 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5944 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5945 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5947 MMI.setCurrentCallSite(CI->getZExtValue());
5948 return;
5950 case Intrinsic::eh_sjlj_functioncontext: {
5951 // Get and store the index of the function context.
5952 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5953 AllocaInst *FnCtx =
5954 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5955 int FI = FuncInfo.StaticAllocaMap[FnCtx];
5956 MFI.setFunctionContextIndex(FI);
5957 return;
5959 case Intrinsic::eh_sjlj_setjmp: {
5960 SDValue Ops[2];
5961 Ops[0] = getRoot();
5962 Ops[1] = getValue(I.getArgOperand(0));
5963 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5964 DAG.getVTList(MVT::i32, MVT::Other), Ops);
5965 setValue(&I, Op.getValue(0));
5966 DAG.setRoot(Op.getValue(1));
5967 return;
5969 case Intrinsic::eh_sjlj_longjmp:
5970 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5971 getRoot(), getValue(I.getArgOperand(0))));
5972 return;
5973 case Intrinsic::eh_sjlj_setup_dispatch:
5974 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5975 getRoot()));
5976 return;
5977 case Intrinsic::masked_gather:
5978 visitMaskedGather(I);
5979 return;
5980 case Intrinsic::masked_load:
5981 visitMaskedLoad(I);
5982 return;
5983 case Intrinsic::masked_scatter:
5984 visitMaskedScatter(I);
5985 return;
5986 case Intrinsic::masked_store:
5987 visitMaskedStore(I);
5988 return;
5989 case Intrinsic::masked_expandload:
5990 visitMaskedLoad(I, true /* IsExpanding */);
5991 return;
5992 case Intrinsic::masked_compressstore:
5993 visitMaskedStore(I, true /* IsCompressing */);
5994 return;
5995 case Intrinsic::powi:
5996 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5997 getValue(I.getArgOperand(1)), DAG));
5998 return;
5999 case Intrinsic::log:
6000 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6001 return;
6002 case Intrinsic::log2:
6003 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6004 return;
6005 case Intrinsic::log10:
6006 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6007 return;
6008 case Intrinsic::exp:
6009 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6010 return;
6011 case Intrinsic::exp2:
6012 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6013 return;
6014 case Intrinsic::pow:
6015 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6016 getValue(I.getArgOperand(1)), DAG, TLI));
6017 return;
6018 case Intrinsic::sqrt:
6019 case Intrinsic::fabs:
6020 case Intrinsic::sin:
6021 case Intrinsic::cos:
6022 case Intrinsic::floor:
6023 case Intrinsic::ceil:
6024 case Intrinsic::trunc:
6025 case Intrinsic::rint:
6026 case Intrinsic::nearbyint:
6027 case Intrinsic::round:
6028 case Intrinsic::canonicalize: {
6029 unsigned Opcode;
6030 switch (Intrinsic) {
6031 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6032 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6033 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6034 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6035 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6036 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6037 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6038 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6039 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6040 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6041 case Intrinsic::round: Opcode = ISD::FROUND; break;
6042 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6045 setValue(&I, DAG.getNode(Opcode, sdl,
6046 getValue(I.getArgOperand(0)).getValueType(),
6047 getValue(I.getArgOperand(0))));
6048 return;
6050 case Intrinsic::lround:
6051 case Intrinsic::llround:
6052 case Intrinsic::lrint:
6053 case Intrinsic::llrint: {
6054 unsigned Opcode;
6055 switch (Intrinsic) {
6056 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6057 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6058 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6059 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6060 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6063 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6064 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6065 getValue(I.getArgOperand(0))));
6066 return;
6068 case Intrinsic::minnum:
6069 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6070 getValue(I.getArgOperand(0)).getValueType(),
6071 getValue(I.getArgOperand(0)),
6072 getValue(I.getArgOperand(1))));
6073 return;
6074 case Intrinsic::maxnum:
6075 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6076 getValue(I.getArgOperand(0)).getValueType(),
6077 getValue(I.getArgOperand(0)),
6078 getValue(I.getArgOperand(1))));
6079 return;
6080 case Intrinsic::minimum:
6081 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6082 getValue(I.getArgOperand(0)).getValueType(),
6083 getValue(I.getArgOperand(0)),
6084 getValue(I.getArgOperand(1))));
6085 return;
6086 case Intrinsic::maximum:
6087 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6088 getValue(I.getArgOperand(0)).getValueType(),
6089 getValue(I.getArgOperand(0)),
6090 getValue(I.getArgOperand(1))));
6091 return;
6092 case Intrinsic::copysign:
6093 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6094 getValue(I.getArgOperand(0)).getValueType(),
6095 getValue(I.getArgOperand(0)),
6096 getValue(I.getArgOperand(1))));
6097 return;
6098 case Intrinsic::fma:
6099 setValue(&I, DAG.getNode(ISD::FMA, sdl,
6100 getValue(I.getArgOperand(0)).getValueType(),
6101 getValue(I.getArgOperand(0)),
6102 getValue(I.getArgOperand(1)),
6103 getValue(I.getArgOperand(2))));
6104 return;
6105 case Intrinsic::experimental_constrained_fadd:
6106 case Intrinsic::experimental_constrained_fsub:
6107 case Intrinsic::experimental_constrained_fmul:
6108 case Intrinsic::experimental_constrained_fdiv:
6109 case Intrinsic::experimental_constrained_frem:
6110 case Intrinsic::experimental_constrained_fma:
6111 case Intrinsic::experimental_constrained_fptosi:
6112 case Intrinsic::experimental_constrained_fptoui:
6113 case Intrinsic::experimental_constrained_fptrunc:
6114 case Intrinsic::experimental_constrained_fpext:
6115 case Intrinsic::experimental_constrained_sqrt:
6116 case Intrinsic::experimental_constrained_pow:
6117 case Intrinsic::experimental_constrained_powi:
6118 case Intrinsic::experimental_constrained_sin:
6119 case Intrinsic::experimental_constrained_cos:
6120 case Intrinsic::experimental_constrained_exp:
6121 case Intrinsic::experimental_constrained_exp2:
6122 case Intrinsic::experimental_constrained_log:
6123 case Intrinsic::experimental_constrained_log10:
6124 case Intrinsic::experimental_constrained_log2:
6125 case Intrinsic::experimental_constrained_lrint:
6126 case Intrinsic::experimental_constrained_llrint:
6127 case Intrinsic::experimental_constrained_rint:
6128 case Intrinsic::experimental_constrained_nearbyint:
6129 case Intrinsic::experimental_constrained_maxnum:
6130 case Intrinsic::experimental_constrained_minnum:
6131 case Intrinsic::experimental_constrained_ceil:
6132 case Intrinsic::experimental_constrained_floor:
6133 case Intrinsic::experimental_constrained_lround:
6134 case Intrinsic::experimental_constrained_llround:
6135 case Intrinsic::experimental_constrained_round:
6136 case Intrinsic::experimental_constrained_trunc:
6137 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6138 return;
6139 case Intrinsic::fmuladd: {
6140 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6141 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6142 TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6143 setValue(&I, DAG.getNode(ISD::FMA, sdl,
6144 getValue(I.getArgOperand(0)).getValueType(),
6145 getValue(I.getArgOperand(0)),
6146 getValue(I.getArgOperand(1)),
6147 getValue(I.getArgOperand(2))));
6148 } else {
6149 // TODO: Intrinsic calls should have fast-math-flags.
6150 SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6151 getValue(I.getArgOperand(0)).getValueType(),
6152 getValue(I.getArgOperand(0)),
6153 getValue(I.getArgOperand(1)));
6154 SDValue Add = DAG.getNode(ISD::FADD, sdl,
6155 getValue(I.getArgOperand(0)).getValueType(),
6156 Mul,
6157 getValue(I.getArgOperand(2)));
6158 setValue(&I, Add);
6160 return;
6162 case Intrinsic::convert_to_fp16:
6163 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6164 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6165 getValue(I.getArgOperand(0)),
6166 DAG.getTargetConstant(0, sdl,
6167 MVT::i32))));
6168 return;
6169 case Intrinsic::convert_from_fp16:
6170 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6171 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6172 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6173 getValue(I.getArgOperand(0)))));
6174 return;
6175 case Intrinsic::pcmarker: {
6176 SDValue Tmp = getValue(I.getArgOperand(0));
6177 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6178 return;
6180 case Intrinsic::readcyclecounter: {
6181 SDValue Op = getRoot();
6182 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6183 DAG.getVTList(MVT::i64, MVT::Other), Op);
6184 setValue(&I, Res);
6185 DAG.setRoot(Res.getValue(1));
6186 return;
6188 case Intrinsic::bitreverse:
6189 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6190 getValue(I.getArgOperand(0)).getValueType(),
6191 getValue(I.getArgOperand(0))));
6192 return;
6193 case Intrinsic::bswap:
6194 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6195 getValue(I.getArgOperand(0)).getValueType(),
6196 getValue(I.getArgOperand(0))));
6197 return;
6198 case Intrinsic::cttz: {
6199 SDValue Arg = getValue(I.getArgOperand(0));
6200 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6201 EVT Ty = Arg.getValueType();
6202 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6203 sdl, Ty, Arg));
6204 return;
6206 case Intrinsic::ctlz: {
6207 SDValue Arg = getValue(I.getArgOperand(0));
6208 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6209 EVT Ty = Arg.getValueType();
6210 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6211 sdl, Ty, Arg));
6212 return;
6214 case Intrinsic::ctpop: {
6215 SDValue Arg = getValue(I.getArgOperand(0));
6216 EVT Ty = Arg.getValueType();
6217 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6218 return;
6220 case Intrinsic::fshl:
6221 case Intrinsic::fshr: {
6222 bool IsFSHL = Intrinsic == Intrinsic::fshl;
6223 SDValue X = getValue(I.getArgOperand(0));
6224 SDValue Y = getValue(I.getArgOperand(1));
6225 SDValue Z = getValue(I.getArgOperand(2));
6226 EVT VT = X.getValueType();
6227 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6228 SDValue Zero = DAG.getConstant(0, sdl, VT);
6229 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6231 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6232 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6233 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6234 return;
6237 // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6238 // avoid the select that is necessary in the general case to filter out
6239 // the 0-shift possibility that leads to UB.
6240 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6241 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6242 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6243 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6244 return;
6247 // Some targets only rotate one way. Try the opposite direction.
6248 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6249 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6250 // Negate the shift amount because it is safe to ignore the high bits.
6251 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6252 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6253 return;
6256 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6257 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6258 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6259 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6260 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6261 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6262 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6263 return;
6266 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6267 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6268 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6269 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6270 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6271 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6273 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6274 // and that is undefined. We must compare and select to avoid UB.
6275 EVT CCVT = MVT::i1;
6276 if (VT.isVector())
6277 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6279 // For fshl, 0-shift returns the 1st arg (X).
6280 // For fshr, 0-shift returns the 2nd arg (Y).
6281 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6282 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6283 return;
6285 case Intrinsic::sadd_sat: {
6286 SDValue Op1 = getValue(I.getArgOperand(0));
6287 SDValue Op2 = getValue(I.getArgOperand(1));
6288 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6289 return;
6291 case Intrinsic::uadd_sat: {
6292 SDValue Op1 = getValue(I.getArgOperand(0));
6293 SDValue Op2 = getValue(I.getArgOperand(1));
6294 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6295 return;
6297 case Intrinsic::ssub_sat: {
6298 SDValue Op1 = getValue(I.getArgOperand(0));
6299 SDValue Op2 = getValue(I.getArgOperand(1));
6300 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6301 return;
6303 case Intrinsic::usub_sat: {
6304 SDValue Op1 = getValue(I.getArgOperand(0));
6305 SDValue Op2 = getValue(I.getArgOperand(1));
6306 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6307 return;
6309 case Intrinsic::smul_fix:
6310 case Intrinsic::umul_fix: {
6311 SDValue Op1 = getValue(I.getArgOperand(0));
6312 SDValue Op2 = getValue(I.getArgOperand(1));
6313 SDValue Op3 = getValue(I.getArgOperand(2));
6314 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6315 Op1.getValueType(), Op1, Op2, Op3));
6316 return;
6318 case Intrinsic::smul_fix_sat: {
6319 SDValue Op1 = getValue(I.getArgOperand(0));
6320 SDValue Op2 = getValue(I.getArgOperand(1));
6321 SDValue Op3 = getValue(I.getArgOperand(2));
6322 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6323 Op3));
6324 return;
6326 case Intrinsic::umul_fix_sat: {
6327 SDValue Op1 = getValue(I.getArgOperand(0));
6328 SDValue Op2 = getValue(I.getArgOperand(1));
6329 SDValue Op3 = getValue(I.getArgOperand(2));
6330 setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6331 Op3));
6332 return;
6334 case Intrinsic::stacksave: {
6335 SDValue Op = getRoot();
6336 Res = DAG.getNode(
6337 ISD::STACKSAVE, sdl,
6338 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6339 setValue(&I, Res);
6340 DAG.setRoot(Res.getValue(1));
6341 return;
6343 case Intrinsic::stackrestore:
6344 Res = getValue(I.getArgOperand(0));
6345 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6346 return;
6347 case Intrinsic::get_dynamic_area_offset: {
6348 SDValue Op = getRoot();
6349 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6350 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6351 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6352 // target.
6353 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6354 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6355 " intrinsic!");
6356 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6357 Op);
6358 DAG.setRoot(Op);
6359 setValue(&I, Res);
6360 return;
6362 case Intrinsic::stackguard: {
6363 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6364 MachineFunction &MF = DAG.getMachineFunction();
6365 const Module &M = *MF.getFunction().getParent();
6366 SDValue Chain = getRoot();
6367 if (TLI.useLoadStackGuardNode()) {
6368 Res = getLoadStackGuard(DAG, sdl, Chain);
6369 } else {
6370 const Value *Global = TLI.getSDagStackGuard(M);
6371 unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6372 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6373 MachinePointerInfo(Global, 0), Align,
6374 MachineMemOperand::MOVolatile);
6376 if (TLI.useStackGuardXorFP())
6377 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6378 DAG.setRoot(Chain);
6379 setValue(&I, Res);
6380 return;
6382 case Intrinsic::stackprotector: {
6383 // Emit code into the DAG to store the stack guard onto the stack.
6384 MachineFunction &MF = DAG.getMachineFunction();
6385 MachineFrameInfo &MFI = MF.getFrameInfo();
6386 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6387 SDValue Src, Chain = getRoot();
6389 if (TLI.useLoadStackGuardNode())
6390 Src = getLoadStackGuard(DAG, sdl, Chain);
6391 else
6392 Src = getValue(I.getArgOperand(0)); // The guard's value.
6394 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6396 int FI = FuncInfo.StaticAllocaMap[Slot];
6397 MFI.setStackProtectorIndex(FI);
6399 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6401 // Store the stack protector onto the stack.
6402 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6403 DAG.getMachineFunction(), FI),
6404 /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6405 setValue(&I, Res);
6406 DAG.setRoot(Res);
6407 return;
6409 case Intrinsic::objectsize:
6410 llvm_unreachable("llvm.objectsize.* should have been lowered already");
6412 case Intrinsic::is_constant:
6413 llvm_unreachable("llvm.is.constant.* should have been lowered already");
6415 case Intrinsic::annotation:
6416 case Intrinsic::ptr_annotation:
6417 case Intrinsic::launder_invariant_group:
6418 case Intrinsic::strip_invariant_group:
6419 // Drop the intrinsic, but forward the value
6420 setValue(&I, getValue(I.getOperand(0)));
6421 return;
6422 case Intrinsic::assume:
6423 case Intrinsic::var_annotation:
6424 case Intrinsic::sideeffect:
6425 // Discard annotate attributes, assumptions, and artificial side-effects.
6426 return;
6428 case Intrinsic::codeview_annotation: {
6429 // Emit a label associated with this metadata.
6430 MachineFunction &MF = DAG.getMachineFunction();
6431 MCSymbol *Label =
6432 MF.getMMI().getContext().createTempSymbol("annotation", true);
6433 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6434 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6435 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6436 DAG.setRoot(Res);
6437 return;
6440 case Intrinsic::init_trampoline: {
6441 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6443 SDValue Ops[6];
6444 Ops[0] = getRoot();
6445 Ops[1] = getValue(I.getArgOperand(0));
6446 Ops[2] = getValue(I.getArgOperand(1));
6447 Ops[3] = getValue(I.getArgOperand(2));
6448 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6449 Ops[5] = DAG.getSrcValue(F);
6451 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6453 DAG.setRoot(Res);
6454 return;
6456 case Intrinsic::adjust_trampoline:
6457 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6458 TLI.getPointerTy(DAG.getDataLayout()),
6459 getValue(I.getArgOperand(0))));
6460 return;
6461 case Intrinsic::gcroot: {
6462 assert(DAG.getMachineFunction().getFunction().hasGC() &&
6463 "only valid in functions with gc specified, enforced by Verifier");
6464 assert(GFI && "implied by previous");
6465 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6466 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6468 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6469 GFI->addStackRoot(FI->getIndex(), TypeMap);
6470 return;
6472 case Intrinsic::gcread:
6473 case Intrinsic::gcwrite:
6474 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6475 case Intrinsic::flt_rounds:
6476 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6477 return;
6479 case Intrinsic::expect:
6480 // Just replace __builtin_expect(exp, c) with EXP.
6481 setValue(&I, getValue(I.getArgOperand(0)));
6482 return;
6484 case Intrinsic::debugtrap:
6485 case Intrinsic::trap: {
6486 StringRef TrapFuncName =
6487 I.getAttributes()
6488 .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6489 .getValueAsString();
6490 if (TrapFuncName.empty()) {
6491 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6492 ISD::TRAP : ISD::DEBUGTRAP;
6493 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6494 return;
6496 TargetLowering::ArgListTy Args;
6498 TargetLowering::CallLoweringInfo CLI(DAG);
6499 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6500 CallingConv::C, I.getType(),
6501 DAG.getExternalSymbol(TrapFuncName.data(),
6502 TLI.getPointerTy(DAG.getDataLayout())),
6503 std::move(Args));
6505 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6506 DAG.setRoot(Result.second);
6507 return;
6510 case Intrinsic::uadd_with_overflow:
6511 case Intrinsic::sadd_with_overflow:
6512 case Intrinsic::usub_with_overflow:
6513 case Intrinsic::ssub_with_overflow:
6514 case Intrinsic::umul_with_overflow:
6515 case Intrinsic::smul_with_overflow: {
6516 ISD::NodeType Op;
6517 switch (Intrinsic) {
6518 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6519 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6520 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6521 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6522 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6523 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6524 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6526 SDValue Op1 = getValue(I.getArgOperand(0));
6527 SDValue Op2 = getValue(I.getArgOperand(1));
6529 EVT ResultVT = Op1.getValueType();
6530 EVT OverflowVT = MVT::i1;
6531 if (ResultVT.isVector())
6532 OverflowVT = EVT::getVectorVT(
6533 *Context, OverflowVT, ResultVT.getVectorNumElements());
6535 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6536 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6537 return;
6539 case Intrinsic::prefetch: {
6540 SDValue Ops[5];
6541 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6542 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6543 Ops[0] = DAG.getRoot();
6544 Ops[1] = getValue(I.getArgOperand(0));
6545 Ops[2] = getValue(I.getArgOperand(1));
6546 Ops[3] = getValue(I.getArgOperand(2));
6547 Ops[4] = getValue(I.getArgOperand(3));
6548 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6549 DAG.getVTList(MVT::Other), Ops,
6550 EVT::getIntegerVT(*Context, 8),
6551 MachinePointerInfo(I.getArgOperand(0)),
6552 0, /* align */
6553 Flags);
6555 // Chain the prefetch in parallell with any pending loads, to stay out of
6556 // the way of later optimizations.
6557 PendingLoads.push_back(Result);
6558 Result = getRoot();
6559 DAG.setRoot(Result);
6560 return;
6562 case Intrinsic::lifetime_start:
6563 case Intrinsic::lifetime_end: {
6564 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6565 // Stack coloring is not enabled in O0, discard region information.
6566 if (TM.getOptLevel() == CodeGenOpt::None)
6567 return;
6569 const int64_t ObjectSize =
6570 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6571 Value *const ObjectPtr = I.getArgOperand(1);
6572 SmallVector<const Value *, 4> Allocas;
6573 GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6575 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6576 E = Allocas.end(); Object != E; ++Object) {
6577 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6579 // Could not find an Alloca.
6580 if (!LifetimeObject)
6581 continue;
6583 // First check that the Alloca is static, otherwise it won't have a
6584 // valid frame index.
6585 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6586 if (SI == FuncInfo.StaticAllocaMap.end())
6587 return;
6589 const int FrameIndex = SI->second;
6590 int64_t Offset;
6591 if (GetPointerBaseWithConstantOffset(
6592 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6593 Offset = -1; // Cannot determine offset from alloca to lifetime object.
6594 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6595 Offset);
6596 DAG.setRoot(Res);
6598 return;
6600 case Intrinsic::invariant_start:
6601 // Discard region information.
6602 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6603 return;
6604 case Intrinsic::invariant_end:
6605 // Discard region information.
6606 return;
6607 case Intrinsic::clear_cache:
6608 /// FunctionName may be null.
6609 if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6610 lowerCallToExternalSymbol(I, FunctionName);
6611 return;
6612 case Intrinsic::donothing:
6613 // ignore
6614 return;
6615 case Intrinsic::experimental_stackmap:
6616 visitStackmap(I);
6617 return;
6618 case Intrinsic::experimental_patchpoint_void:
6619 case Intrinsic::experimental_patchpoint_i64:
6620 visitPatchpoint(&I);
6621 return;
6622 case Intrinsic::experimental_gc_statepoint:
6623 LowerStatepoint(ImmutableStatepoint(&I));
6624 return;
6625 case Intrinsic::experimental_gc_result:
6626 visitGCResult(cast<GCResultInst>(I));
6627 return;
6628 case Intrinsic::experimental_gc_relocate:
6629 visitGCRelocate(cast<GCRelocateInst>(I));
6630 return;
6631 case Intrinsic::instrprof_increment:
6632 llvm_unreachable("instrprof failed to lower an increment");
6633 case Intrinsic::instrprof_value_profile:
6634 llvm_unreachable("instrprof failed to lower a value profiling call");
6635 case Intrinsic::localescape: {
6636 MachineFunction &MF = DAG.getMachineFunction();
6637 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6639 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6640 // is the same on all targets.
6641 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6642 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6643 if (isa<ConstantPointerNull>(Arg))
6644 continue; // Skip null pointers. They represent a hole in index space.
6645 AllocaInst *Slot = cast<AllocaInst>(Arg);
6646 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6647 "can only escape static allocas");
6648 int FI = FuncInfo.StaticAllocaMap[Slot];
6649 MCSymbol *FrameAllocSym =
6650 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6651 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6652 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6653 TII->get(TargetOpcode::LOCAL_ESCAPE))
6654 .addSym(FrameAllocSym)
6655 .addFrameIndex(FI);
6658 return;
6661 case Intrinsic::localrecover: {
6662 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6663 MachineFunction &MF = DAG.getMachineFunction();
6664 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6666 // Get the symbol that defines the frame offset.
6667 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6668 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6669 unsigned IdxVal =
6670 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6671 MCSymbol *FrameAllocSym =
6672 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6673 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6675 // Create a MCSymbol for the label to avoid any target lowering
6676 // that would make this PC relative.
6677 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6678 SDValue OffsetVal =
6679 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6681 // Add the offset to the FP.
6682 Value *FP = I.getArgOperand(1);
6683 SDValue FPVal = getValue(FP);
6684 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6685 setValue(&I, Add);
6687 return;
6690 case Intrinsic::eh_exceptionpointer:
6691 case Intrinsic::eh_exceptioncode: {
6692 // Get the exception pointer vreg, copy from it, and resize it to fit.
6693 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6694 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6695 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6696 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6697 SDValue N =
6698 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6699 if (Intrinsic == Intrinsic::eh_exceptioncode)
6700 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6701 setValue(&I, N);
6702 return;
6704 case Intrinsic::xray_customevent: {
6705 // Here we want to make sure that the intrinsic behaves as if it has a
6706 // specific calling convention, and only for x86_64.
6707 // FIXME: Support other platforms later.
6708 const auto &Triple = DAG.getTarget().getTargetTriple();
6709 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6710 return;
6712 SDLoc DL = getCurSDLoc();
6713 SmallVector<SDValue, 8> Ops;
6715 // We want to say that we always want the arguments in registers.
6716 SDValue LogEntryVal = getValue(I.getArgOperand(0));
6717 SDValue StrSizeVal = getValue(I.getArgOperand(1));
6718 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6719 SDValue Chain = getRoot();
6720 Ops.push_back(LogEntryVal);
6721 Ops.push_back(StrSizeVal);
6722 Ops.push_back(Chain);
6724 // We need to enforce the calling convention for the callsite, so that
6725 // argument ordering is enforced correctly, and that register allocation can
6726 // see that some registers may be assumed clobbered and have to preserve
6727 // them across calls to the intrinsic.
6728 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6729 DL, NodeTys, Ops);
6730 SDValue patchableNode = SDValue(MN, 0);
6731 DAG.setRoot(patchableNode);
6732 setValue(&I, patchableNode);
6733 return;
6735 case Intrinsic::xray_typedevent: {
6736 // Here we want to make sure that the intrinsic behaves as if it has a
6737 // specific calling convention, and only for x86_64.
6738 // FIXME: Support other platforms later.
6739 const auto &Triple = DAG.getTarget().getTargetTriple();
6740 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6741 return;
6743 SDLoc DL = getCurSDLoc();
6744 SmallVector<SDValue, 8> Ops;
6746 // We want to say that we always want the arguments in registers.
6747 // It's unclear to me how manipulating the selection DAG here forces callers
6748 // to provide arguments in registers instead of on the stack.
6749 SDValue LogTypeId = getValue(I.getArgOperand(0));
6750 SDValue LogEntryVal = getValue(I.getArgOperand(1));
6751 SDValue StrSizeVal = getValue(I.getArgOperand(2));
6752 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6753 SDValue Chain = getRoot();
6754 Ops.push_back(LogTypeId);
6755 Ops.push_back(LogEntryVal);
6756 Ops.push_back(StrSizeVal);
6757 Ops.push_back(Chain);
6759 // We need to enforce the calling convention for the callsite, so that
6760 // argument ordering is enforced correctly, and that register allocation can
6761 // see that some registers may be assumed clobbered and have to preserve
6762 // them across calls to the intrinsic.
6763 MachineSDNode *MN = DAG.getMachineNode(
6764 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6765 SDValue patchableNode = SDValue(MN, 0);
6766 DAG.setRoot(patchableNode);
6767 setValue(&I, patchableNode);
6768 return;
6770 case Intrinsic::experimental_deoptimize:
6771 LowerDeoptimizeCall(&I);
6772 return;
6774 case Intrinsic::experimental_vector_reduce_v2_fadd:
6775 case Intrinsic::experimental_vector_reduce_v2_fmul:
6776 case Intrinsic::experimental_vector_reduce_add:
6777 case Intrinsic::experimental_vector_reduce_mul:
6778 case Intrinsic::experimental_vector_reduce_and:
6779 case Intrinsic::experimental_vector_reduce_or:
6780 case Intrinsic::experimental_vector_reduce_xor:
6781 case Intrinsic::experimental_vector_reduce_smax:
6782 case Intrinsic::experimental_vector_reduce_smin:
6783 case Intrinsic::experimental_vector_reduce_umax:
6784 case Intrinsic::experimental_vector_reduce_umin:
6785 case Intrinsic::experimental_vector_reduce_fmax:
6786 case Intrinsic::experimental_vector_reduce_fmin:
6787 visitVectorReduce(I, Intrinsic);
6788 return;
6790 case Intrinsic::icall_branch_funnel: {
6791 SmallVector<SDValue, 16> Ops;
6792 Ops.push_back(getValue(I.getArgOperand(0)));
6794 int64_t Offset;
6795 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6796 I.getArgOperand(1), Offset, DAG.getDataLayout()));
6797 if (!Base)
6798 report_fatal_error(
6799 "llvm.icall.branch.funnel operand must be a GlobalValue");
6800 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6802 struct BranchFunnelTarget {
6803 int64_t Offset;
6804 SDValue Target;
6806 SmallVector<BranchFunnelTarget, 8> Targets;
6808 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6809 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6810 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6811 if (ElemBase != Base)
6812 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6813 "to the same GlobalValue");
6815 SDValue Val = getValue(I.getArgOperand(Op + 1));
6816 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6817 if (!GA)
6818 report_fatal_error(
6819 "llvm.icall.branch.funnel operand must be a GlobalValue");
6820 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6821 GA->getGlobal(), getCurSDLoc(),
6822 Val.getValueType(), GA->getOffset())});
6824 llvm::sort(Targets,
6825 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6826 return T1.Offset < T2.Offset;
6829 for (auto &T : Targets) {
6830 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6831 Ops.push_back(T.Target);
6834 Ops.push_back(DAG.getRoot()); // Chain
6835 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6836 getCurSDLoc(), MVT::Other, Ops),
6838 DAG.setRoot(N);
6839 setValue(&I, N);
6840 HasTailCall = true;
6841 return;
6844 case Intrinsic::wasm_landingpad_index:
6845 // Information this intrinsic contained has been transferred to
6846 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6847 // delete it now.
6848 return;
6850 case Intrinsic::aarch64_settag:
6851 case Intrinsic::aarch64_settag_zero: {
6852 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6853 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6854 SDValue Val = TSI.EmitTargetCodeForSetTag(
6855 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6856 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6857 ZeroMemory);
6858 DAG.setRoot(Val);
6859 setValue(&I, Val);
6860 return;
6862 case Intrinsic::ptrmask: {
6863 SDValue Ptr = getValue(I.getOperand(0));
6864 SDValue Const = getValue(I.getOperand(1));
6866 EVT DestVT =
6867 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6869 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6870 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6871 return;
6876 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6877 const ConstrainedFPIntrinsic &FPI) {
6878 SDLoc sdl = getCurSDLoc();
6879 unsigned Opcode;
6880 switch (FPI.getIntrinsicID()) {
6881 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6882 case Intrinsic::experimental_constrained_fadd:
6883 Opcode = ISD::STRICT_FADD;
6884 break;
6885 case Intrinsic::experimental_constrained_fsub:
6886 Opcode = ISD::STRICT_FSUB;
6887 break;
6888 case Intrinsic::experimental_constrained_fmul:
6889 Opcode = ISD::STRICT_FMUL;
6890 break;
6891 case Intrinsic::experimental_constrained_fdiv:
6892 Opcode = ISD::STRICT_FDIV;
6893 break;
6894 case Intrinsic::experimental_constrained_frem:
6895 Opcode = ISD::STRICT_FREM;
6896 break;
6897 case Intrinsic::experimental_constrained_fma:
6898 Opcode = ISD::STRICT_FMA;
6899 break;
6900 case Intrinsic::experimental_constrained_fptosi:
6901 Opcode = ISD::STRICT_FP_TO_SINT;
6902 break;
6903 case Intrinsic::experimental_constrained_fptoui:
6904 Opcode = ISD::STRICT_FP_TO_UINT;
6905 break;
6906 case Intrinsic::experimental_constrained_fptrunc:
6907 Opcode = ISD::STRICT_FP_ROUND;
6908 break;
6909 case Intrinsic::experimental_constrained_fpext:
6910 Opcode = ISD::STRICT_FP_EXTEND;
6911 break;
6912 case Intrinsic::experimental_constrained_sqrt:
6913 Opcode = ISD::STRICT_FSQRT;
6914 break;
6915 case Intrinsic::experimental_constrained_pow:
6916 Opcode = ISD::STRICT_FPOW;
6917 break;
6918 case Intrinsic::experimental_constrained_powi:
6919 Opcode = ISD::STRICT_FPOWI;
6920 break;
6921 case Intrinsic::experimental_constrained_sin:
6922 Opcode = ISD::STRICT_FSIN;
6923 break;
6924 case Intrinsic::experimental_constrained_cos:
6925 Opcode = ISD::STRICT_FCOS;
6926 break;
6927 case Intrinsic::experimental_constrained_exp:
6928 Opcode = ISD::STRICT_FEXP;
6929 break;
6930 case Intrinsic::experimental_constrained_exp2:
6931 Opcode = ISD::STRICT_FEXP2;
6932 break;
6933 case Intrinsic::experimental_constrained_log:
6934 Opcode = ISD::STRICT_FLOG;
6935 break;
6936 case Intrinsic::experimental_constrained_log10:
6937 Opcode = ISD::STRICT_FLOG10;
6938 break;
6939 case Intrinsic::experimental_constrained_log2:
6940 Opcode = ISD::STRICT_FLOG2;
6941 break;
6942 case Intrinsic::experimental_constrained_lrint:
6943 Opcode = ISD::STRICT_LRINT;
6944 break;
6945 case Intrinsic::experimental_constrained_llrint:
6946 Opcode = ISD::STRICT_LLRINT;
6947 break;
6948 case Intrinsic::experimental_constrained_rint:
6949 Opcode = ISD::STRICT_FRINT;
6950 break;
6951 case Intrinsic::experimental_constrained_nearbyint:
6952 Opcode = ISD::STRICT_FNEARBYINT;
6953 break;
6954 case Intrinsic::experimental_constrained_maxnum:
6955 Opcode = ISD::STRICT_FMAXNUM;
6956 break;
6957 case Intrinsic::experimental_constrained_minnum:
6958 Opcode = ISD::STRICT_FMINNUM;
6959 break;
6960 case Intrinsic::experimental_constrained_ceil:
6961 Opcode = ISD::STRICT_FCEIL;
6962 break;
6963 case Intrinsic::experimental_constrained_floor:
6964 Opcode = ISD::STRICT_FFLOOR;
6965 break;
6966 case Intrinsic::experimental_constrained_lround:
6967 Opcode = ISD::STRICT_LROUND;
6968 break;
6969 case Intrinsic::experimental_constrained_llround:
6970 Opcode = ISD::STRICT_LLROUND;
6971 break;
6972 case Intrinsic::experimental_constrained_round:
6973 Opcode = ISD::STRICT_FROUND;
6974 break;
6975 case Intrinsic::experimental_constrained_trunc:
6976 Opcode = ISD::STRICT_FTRUNC;
6977 break;
6979 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6980 SDValue Chain = getRoot();
6981 SmallVector<EVT, 4> ValueVTs;
6982 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6983 ValueVTs.push_back(MVT::Other); // Out chain
6985 SDVTList VTs = DAG.getVTList(ValueVTs);
6986 SDValue Result;
6987 if (Opcode == ISD::STRICT_FP_ROUND)
6988 Result = DAG.getNode(Opcode, sdl, VTs,
6989 { Chain, getValue(FPI.getArgOperand(0)),
6990 DAG.getTargetConstant(0, sdl,
6991 TLI.getPointerTy(DAG.getDataLayout())) });
6992 else if (FPI.isUnaryOp())
6993 Result = DAG.getNode(Opcode, sdl, VTs,
6994 { Chain, getValue(FPI.getArgOperand(0)) });
6995 else if (FPI.isTernaryOp())
6996 Result = DAG.getNode(Opcode, sdl, VTs,
6997 { Chain, getValue(FPI.getArgOperand(0)),
6998 getValue(FPI.getArgOperand(1)),
6999 getValue(FPI.getArgOperand(2)) });
7000 else
7001 Result = DAG.getNode(Opcode, sdl, VTs,
7002 { Chain, getValue(FPI.getArgOperand(0)),
7003 getValue(FPI.getArgOperand(1)) });
7005 if (FPI.getExceptionBehavior() !=
7006 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) {
7007 SDNodeFlags Flags;
7008 Flags.setFPExcept(true);
7009 Result->setFlags(Flags);
7012 assert(Result.getNode()->getNumValues() == 2);
7013 SDValue OutChain = Result.getValue(1);
7014 DAG.setRoot(OutChain);
7015 SDValue FPResult = Result.getValue(0);
7016 setValue(&FPI, FPResult);
7019 std::pair<SDValue, SDValue>
7020 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7021 const BasicBlock *EHPadBB) {
7022 MachineFunction &MF = DAG.getMachineFunction();
7023 MachineModuleInfo &MMI = MF.getMMI();
7024 MCSymbol *BeginLabel = nullptr;
7026 if (EHPadBB) {
7027 // Insert a label before the invoke call to mark the try range. This can be
7028 // used to detect deletion of the invoke via the MachineModuleInfo.
7029 BeginLabel = MMI.getContext().createTempSymbol();
7031 // For SjLj, keep track of which landing pads go with which invokes
7032 // so as to maintain the ordering of pads in the LSDA.
7033 unsigned CallSiteIndex = MMI.getCurrentCallSite();
7034 if (CallSiteIndex) {
7035 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7036 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7038 // Now that the call site is handled, stop tracking it.
7039 MMI.setCurrentCallSite(0);
7042 // Both PendingLoads and PendingExports must be flushed here;
7043 // this call might not return.
7044 (void)getRoot();
7045 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7047 CLI.setChain(getRoot());
7049 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7050 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7052 assert((CLI.IsTailCall || Result.second.getNode()) &&
7053 "Non-null chain expected with non-tail call!");
7054 assert((Result.second.getNode() || !Result.first.getNode()) &&
7055 "Null value expected with tail call!");
7057 if (!Result.second.getNode()) {
7058 // As a special case, a null chain means that a tail call has been emitted
7059 // and the DAG root is already updated.
7060 HasTailCall = true;
7062 // Since there's no actual continuation from this block, nothing can be
7063 // relying on us setting vregs for them.
7064 PendingExports.clear();
7065 } else {
7066 DAG.setRoot(Result.second);
7069 if (EHPadBB) {
7070 // Insert a label at the end of the invoke call to mark the try range. This
7071 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7072 MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7073 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7075 // Inform MachineModuleInfo of range.
7076 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7077 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7078 // actually use outlined funclets and their LSDA info style.
7079 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7080 assert(CLI.CS);
7081 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7082 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7083 BeginLabel, EndLabel);
7084 } else if (!isScopedEHPersonality(Pers)) {
7085 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7089 return Result;
7092 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7093 bool isTailCall,
7094 const BasicBlock *EHPadBB) {
7095 auto &DL = DAG.getDataLayout();
7096 FunctionType *FTy = CS.getFunctionType();
7097 Type *RetTy = CS.getType();
7099 TargetLowering::ArgListTy Args;
7100 Args.reserve(CS.arg_size());
7102 const Value *SwiftErrorVal = nullptr;
7103 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7105 // We can't tail call inside a function with a swifterror argument. Lowering
7106 // does not support this yet. It would have to move into the swifterror
7107 // register before the call.
7108 auto *Caller = CS.getInstruction()->getParent()->getParent();
7109 if (TLI.supportSwiftError() &&
7110 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7111 isTailCall = false;
7113 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7114 i != e; ++i) {
7115 TargetLowering::ArgListEntry Entry;
7116 const Value *V = *i;
7118 // Skip empty types
7119 if (V->getType()->isEmptyTy())
7120 continue;
7122 SDValue ArgNode = getValue(V);
7123 Entry.Node = ArgNode; Entry.Ty = V->getType();
7125 Entry.setAttributes(&CS, i - CS.arg_begin());
7127 // Use swifterror virtual register as input to the call.
7128 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7129 SwiftErrorVal = V;
7130 // We find the virtual register for the actual swifterror argument.
7131 // Instead of using the Value, we use the virtual register instead.
7132 Entry.Node = DAG.getRegister(
7133 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7134 EVT(TLI.getPointerTy(DL)));
7137 Args.push_back(Entry);
7139 // If we have an explicit sret argument that is an Instruction, (i.e., it
7140 // might point to function-local memory), we can't meaningfully tail-call.
7141 if (Entry.IsSRet && isa<Instruction>(V))
7142 isTailCall = false;
7145 // Check if target-independent constraints permit a tail call here.
7146 // Target-dependent constraints are checked within TLI->LowerCallTo.
7147 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7148 isTailCall = false;
7150 // Disable tail calls if there is an swifterror argument. Targets have not
7151 // been updated to support tail calls.
7152 if (TLI.supportSwiftError() && SwiftErrorVal)
7153 isTailCall = false;
7155 TargetLowering::CallLoweringInfo CLI(DAG);
7156 CLI.setDebugLoc(getCurSDLoc())
7157 .setChain(getRoot())
7158 .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7159 .setTailCall(isTailCall)
7160 .setConvergent(CS.isConvergent());
7161 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7163 if (Result.first.getNode()) {
7164 const Instruction *Inst = CS.getInstruction();
7165 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7166 setValue(Inst, Result.first);
7169 // The last element of CLI.InVals has the SDValue for swifterror return.
7170 // Here we copy it to a virtual register and update SwiftErrorMap for
7171 // book-keeping.
7172 if (SwiftErrorVal && TLI.supportSwiftError()) {
7173 // Get the last element of InVals.
7174 SDValue Src = CLI.InVals.back();
7175 Register VReg = SwiftError.getOrCreateVRegDefAt(
7176 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7177 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7178 DAG.setRoot(CopyNode);
7182 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7183 SelectionDAGBuilder &Builder) {
7184 // Check to see if this load can be trivially constant folded, e.g. if the
7185 // input is from a string literal.
7186 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7187 // Cast pointer to the type we really want to load.
7188 Type *LoadTy =
7189 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7190 if (LoadVT.isVector())
7191 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7193 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7194 PointerType::getUnqual(LoadTy));
7196 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7197 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7198 return Builder.getValue(LoadCst);
7201 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7202 // still constant memory, the input chain can be the entry node.
7203 SDValue Root;
7204 bool ConstantMemory = false;
7206 // Do not serialize (non-volatile) loads of constant memory with anything.
7207 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7208 Root = Builder.DAG.getEntryNode();
7209 ConstantMemory = true;
7210 } else {
7211 // Do not serialize non-volatile loads against each other.
7212 Root = Builder.DAG.getRoot();
7215 SDValue Ptr = Builder.getValue(PtrVal);
7216 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7217 Ptr, MachinePointerInfo(PtrVal),
7218 /* Alignment = */ 1);
7220 if (!ConstantMemory)
7221 Builder.PendingLoads.push_back(LoadVal.getValue(1));
7222 return LoadVal;
7225 /// Record the value for an instruction that produces an integer result,
7226 /// converting the type where necessary.
7227 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7228 SDValue Value,
7229 bool IsSigned) {
7230 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7231 I.getType(), true);
7232 if (IsSigned)
7233 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7234 else
7235 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7236 setValue(&I, Value);
7239 /// See if we can lower a memcmp call into an optimized form. If so, return
7240 /// true and lower it. Otherwise return false, and it will be lowered like a
7241 /// normal call.
7242 /// The caller already checked that \p I calls the appropriate LibFunc with a
7243 /// correct prototype.
7244 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7245 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7246 const Value *Size = I.getArgOperand(2);
7247 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7248 if (CSize && CSize->getZExtValue() == 0) {
7249 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7250 I.getType(), true);
7251 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7252 return true;
7255 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7256 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7257 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7258 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7259 if (Res.first.getNode()) {
7260 processIntegerCallValue(I, Res.first, true);
7261 PendingLoads.push_back(Res.second);
7262 return true;
7265 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7266 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7267 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7268 return false;
7270 // If the target has a fast compare for the given size, it will return a
7271 // preferred load type for that size. Require that the load VT is legal and
7272 // that the target supports unaligned loads of that type. Otherwise, return
7273 // INVALID.
7274 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7275 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7276 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7277 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7278 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7279 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7280 // TODO: Check alignment of src and dest ptrs.
7281 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7282 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7283 if (!TLI.isTypeLegal(LVT) ||
7284 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7285 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7286 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7289 return LVT;
7292 // This turns into unaligned loads. We only do this if the target natively
7293 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7294 // we'll only produce a small number of byte loads.
7295 MVT LoadVT;
7296 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7297 switch (NumBitsToCompare) {
7298 default:
7299 return false;
7300 case 16:
7301 LoadVT = MVT::i16;
7302 break;
7303 case 32:
7304 LoadVT = MVT::i32;
7305 break;
7306 case 64:
7307 case 128:
7308 case 256:
7309 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7310 break;
7313 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7314 return false;
7316 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7317 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7319 // Bitcast to a wide integer type if the loads are vectors.
7320 if (LoadVT.isVector()) {
7321 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7322 LoadL = DAG.getBitcast(CmpVT, LoadL);
7323 LoadR = DAG.getBitcast(CmpVT, LoadR);
7326 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7327 processIntegerCallValue(I, Cmp, false);
7328 return true;
7331 /// See if we can lower a memchr call into an optimized form. If so, return
7332 /// true and lower it. Otherwise return false, and it will be lowered like a
7333 /// normal call.
7334 /// The caller already checked that \p I calls the appropriate LibFunc with a
7335 /// correct prototype.
7336 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7337 const Value *Src = I.getArgOperand(0);
7338 const Value *Char = I.getArgOperand(1);
7339 const Value *Length = I.getArgOperand(2);
7341 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7342 std::pair<SDValue, SDValue> Res =
7343 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7344 getValue(Src), getValue(Char), getValue(Length),
7345 MachinePointerInfo(Src));
7346 if (Res.first.getNode()) {
7347 setValue(&I, Res.first);
7348 PendingLoads.push_back(Res.second);
7349 return true;
7352 return false;
7355 /// See if we can lower a mempcpy call into an optimized form. If so, return
7356 /// true and lower it. Otherwise return false, and it will be lowered like a
7357 /// normal call.
7358 /// The caller already checked that \p I calls the appropriate LibFunc with a
7359 /// correct prototype.
7360 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7361 SDValue Dst = getValue(I.getArgOperand(0));
7362 SDValue Src = getValue(I.getArgOperand(1));
7363 SDValue Size = getValue(I.getArgOperand(2));
7365 unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7366 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7367 unsigned Align = std::min(DstAlign, SrcAlign);
7368 if (Align == 0) // Alignment of one or both could not be inferred.
7369 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7371 bool isVol = false;
7372 SDLoc sdl = getCurSDLoc();
7374 // In the mempcpy context we need to pass in a false value for isTailCall
7375 // because the return pointer needs to be adjusted by the size of
7376 // the copied memory.
7377 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7378 false, /*isTailCall=*/false,
7379 MachinePointerInfo(I.getArgOperand(0)),
7380 MachinePointerInfo(I.getArgOperand(1)));
7381 assert(MC.getNode() != nullptr &&
7382 "** memcpy should not be lowered as TailCall in mempcpy context **");
7383 DAG.setRoot(MC);
7385 // Check if Size needs to be truncated or extended.
7386 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7388 // Adjust return pointer to point just past the last dst byte.
7389 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7390 Dst, Size);
7391 setValue(&I, DstPlusSize);
7392 return true;
7395 /// See if we can lower a strcpy call into an optimized form. If so, return
7396 /// true and lower it, otherwise return false and it will be lowered like a
7397 /// normal call.
7398 /// The caller already checked that \p I calls the appropriate LibFunc with a
7399 /// correct prototype.
7400 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7401 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7403 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7404 std::pair<SDValue, SDValue> Res =
7405 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7406 getValue(Arg0), getValue(Arg1),
7407 MachinePointerInfo(Arg0),
7408 MachinePointerInfo(Arg1), isStpcpy);
7409 if (Res.first.getNode()) {
7410 setValue(&I, Res.first);
7411 DAG.setRoot(Res.second);
7412 return true;
7415 return false;
7418 /// See if we can lower a strcmp call into an optimized form. If so, return
7419 /// true and lower it, otherwise return false and it will be lowered like a
7420 /// normal call.
7421 /// The caller already checked that \p I calls the appropriate LibFunc with a
7422 /// correct prototype.
7423 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7424 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7426 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7427 std::pair<SDValue, SDValue> Res =
7428 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7429 getValue(Arg0), getValue(Arg1),
7430 MachinePointerInfo(Arg0),
7431 MachinePointerInfo(Arg1));
7432 if (Res.first.getNode()) {
7433 processIntegerCallValue(I, Res.first, true);
7434 PendingLoads.push_back(Res.second);
7435 return true;
7438 return false;
7441 /// See if we can lower a strlen call into an optimized form. If so, return
7442 /// true and lower it, otherwise return false and it will be lowered like a
7443 /// normal call.
7444 /// The caller already checked that \p I calls the appropriate LibFunc with a
7445 /// correct prototype.
7446 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7447 const Value *Arg0 = I.getArgOperand(0);
7449 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7450 std::pair<SDValue, SDValue> Res =
7451 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7452 getValue(Arg0), MachinePointerInfo(Arg0));
7453 if (Res.first.getNode()) {
7454 processIntegerCallValue(I, Res.first, false);
7455 PendingLoads.push_back(Res.second);
7456 return true;
7459 return false;
7462 /// See if we can lower a strnlen call into an optimized form. If so, return
7463 /// true and lower it, otherwise return false and it will be lowered like a
7464 /// normal call.
7465 /// The caller already checked that \p I calls the appropriate LibFunc with a
7466 /// correct prototype.
7467 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7468 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7470 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7471 std::pair<SDValue, SDValue> Res =
7472 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7473 getValue(Arg0), getValue(Arg1),
7474 MachinePointerInfo(Arg0));
7475 if (Res.first.getNode()) {
7476 processIntegerCallValue(I, Res.first, false);
7477 PendingLoads.push_back(Res.second);
7478 return true;
7481 return false;
7484 /// See if we can lower a unary floating-point operation into an SDNode with
7485 /// the specified Opcode. If so, return true and lower it, otherwise return
7486 /// false and it will be lowered like a normal call.
7487 /// The caller already checked that \p I calls the appropriate LibFunc with a
7488 /// correct prototype.
7489 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7490 unsigned Opcode) {
7491 // We already checked this call's prototype; verify it doesn't modify errno.
7492 if (!I.onlyReadsMemory())
7493 return false;
7495 SDValue Tmp = getValue(I.getArgOperand(0));
7496 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7497 return true;
7500 /// See if we can lower a binary floating-point operation into an SDNode with
7501 /// the specified Opcode. If so, return true and lower it. Otherwise return
7502 /// false, and it will be lowered like a normal call.
7503 /// The caller already checked that \p I calls the appropriate LibFunc with a
7504 /// correct prototype.
7505 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7506 unsigned Opcode) {
7507 // We already checked this call's prototype; verify it doesn't modify errno.
7508 if (!I.onlyReadsMemory())
7509 return false;
7511 SDValue Tmp0 = getValue(I.getArgOperand(0));
7512 SDValue Tmp1 = getValue(I.getArgOperand(1));
7513 EVT VT = Tmp0.getValueType();
7514 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7515 return true;
7518 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7519 // Handle inline assembly differently.
7520 if (isa<InlineAsm>(I.getCalledValue())) {
7521 visitInlineAsm(&I);
7522 return;
7525 if (Function *F = I.getCalledFunction()) {
7526 if (F->isDeclaration()) {
7527 // Is this an LLVM intrinsic or a target-specific intrinsic?
7528 unsigned IID = F->getIntrinsicID();
7529 if (!IID)
7530 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7531 IID = II->getIntrinsicID(F);
7533 if (IID) {
7534 visitIntrinsicCall(I, IID);
7535 return;
7539 // Check for well-known libc/libm calls. If the function is internal, it
7540 // can't be a library call. Don't do the check if marked as nobuiltin for
7541 // some reason or the call site requires strict floating point semantics.
7542 LibFunc Func;
7543 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7544 F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7545 LibInfo->hasOptimizedCodeGen(Func)) {
7546 switch (Func) {
7547 default: break;
7548 case LibFunc_copysign:
7549 case LibFunc_copysignf:
7550 case LibFunc_copysignl:
7551 // We already checked this call's prototype; verify it doesn't modify
7552 // errno.
7553 if (I.onlyReadsMemory()) {
7554 SDValue LHS = getValue(I.getArgOperand(0));
7555 SDValue RHS = getValue(I.getArgOperand(1));
7556 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7557 LHS.getValueType(), LHS, RHS));
7558 return;
7560 break;
7561 case LibFunc_fabs:
7562 case LibFunc_fabsf:
7563 case LibFunc_fabsl:
7564 if (visitUnaryFloatCall(I, ISD::FABS))
7565 return;
7566 break;
7567 case LibFunc_fmin:
7568 case LibFunc_fminf:
7569 case LibFunc_fminl:
7570 if (visitBinaryFloatCall(I, ISD::FMINNUM))
7571 return;
7572 break;
7573 case LibFunc_fmax:
7574 case LibFunc_fmaxf:
7575 case LibFunc_fmaxl:
7576 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7577 return;
7578 break;
7579 case LibFunc_sin:
7580 case LibFunc_sinf:
7581 case LibFunc_sinl:
7582 if (visitUnaryFloatCall(I, ISD::FSIN))
7583 return;
7584 break;
7585 case LibFunc_cos:
7586 case LibFunc_cosf:
7587 case LibFunc_cosl:
7588 if (visitUnaryFloatCall(I, ISD::FCOS))
7589 return;
7590 break;
7591 case LibFunc_sqrt:
7592 case LibFunc_sqrtf:
7593 case LibFunc_sqrtl:
7594 case LibFunc_sqrt_finite:
7595 case LibFunc_sqrtf_finite:
7596 case LibFunc_sqrtl_finite:
7597 if (visitUnaryFloatCall(I, ISD::FSQRT))
7598 return;
7599 break;
7600 case LibFunc_floor:
7601 case LibFunc_floorf:
7602 case LibFunc_floorl:
7603 if (visitUnaryFloatCall(I, ISD::FFLOOR))
7604 return;
7605 break;
7606 case LibFunc_nearbyint:
7607 case LibFunc_nearbyintf:
7608 case LibFunc_nearbyintl:
7609 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7610 return;
7611 break;
7612 case LibFunc_ceil:
7613 case LibFunc_ceilf:
7614 case LibFunc_ceill:
7615 if (visitUnaryFloatCall(I, ISD::FCEIL))
7616 return;
7617 break;
7618 case LibFunc_rint:
7619 case LibFunc_rintf:
7620 case LibFunc_rintl:
7621 if (visitUnaryFloatCall(I, ISD::FRINT))
7622 return;
7623 break;
7624 case LibFunc_round:
7625 case LibFunc_roundf:
7626 case LibFunc_roundl:
7627 if (visitUnaryFloatCall(I, ISD::FROUND))
7628 return;
7629 break;
7630 case LibFunc_trunc:
7631 case LibFunc_truncf:
7632 case LibFunc_truncl:
7633 if (visitUnaryFloatCall(I, ISD::FTRUNC))
7634 return;
7635 break;
7636 case LibFunc_log2:
7637 case LibFunc_log2f:
7638 case LibFunc_log2l:
7639 if (visitUnaryFloatCall(I, ISD::FLOG2))
7640 return;
7641 break;
7642 case LibFunc_exp2:
7643 case LibFunc_exp2f:
7644 case LibFunc_exp2l:
7645 if (visitUnaryFloatCall(I, ISD::FEXP2))
7646 return;
7647 break;
7648 case LibFunc_memcmp:
7649 if (visitMemCmpCall(I))
7650 return;
7651 break;
7652 case LibFunc_mempcpy:
7653 if (visitMemPCpyCall(I))
7654 return;
7655 break;
7656 case LibFunc_memchr:
7657 if (visitMemChrCall(I))
7658 return;
7659 break;
7660 case LibFunc_strcpy:
7661 if (visitStrCpyCall(I, false))
7662 return;
7663 break;
7664 case LibFunc_stpcpy:
7665 if (visitStrCpyCall(I, true))
7666 return;
7667 break;
7668 case LibFunc_strcmp:
7669 if (visitStrCmpCall(I))
7670 return;
7671 break;
7672 case LibFunc_strlen:
7673 if (visitStrLenCall(I))
7674 return;
7675 break;
7676 case LibFunc_strnlen:
7677 if (visitStrNLenCall(I))
7678 return;
7679 break;
7684 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7685 // have to do anything here to lower funclet bundles.
7686 assert(!I.hasOperandBundlesOtherThan(
7687 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7688 "Cannot lower calls with arbitrary operand bundles!");
7690 SDValue Callee = getValue(I.getCalledValue());
7692 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7693 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7694 else
7695 // Check if we can potentially perform a tail call. More detailed checking
7696 // is be done within LowerCallTo, after more information about the call is
7697 // known.
7698 LowerCallTo(&I, Callee, I.isTailCall());
7701 namespace {
7703 /// AsmOperandInfo - This contains information for each constraint that we are
7704 /// lowering.
7705 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7706 public:
7707 /// CallOperand - If this is the result output operand or a clobber
7708 /// this is null, otherwise it is the incoming operand to the CallInst.
7709 /// This gets modified as the asm is processed.
7710 SDValue CallOperand;
7712 /// AssignedRegs - If this is a register or register class operand, this
7713 /// contains the set of register corresponding to the operand.
7714 RegsForValue AssignedRegs;
7716 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7717 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7720 /// Whether or not this operand accesses memory
7721 bool hasMemory(const TargetLowering &TLI) const {
7722 // Indirect operand accesses access memory.
7723 if (isIndirect)
7724 return true;
7726 for (const auto &Code : Codes)
7727 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7728 return true;
7730 return false;
7733 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7734 /// corresponds to. If there is no Value* for this operand, it returns
7735 /// MVT::Other.
7736 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7737 const DataLayout &DL) const {
7738 if (!CallOperandVal) return MVT::Other;
7740 if (isa<BasicBlock>(CallOperandVal))
7741 return TLI.getPointerTy(DL);
7743 llvm::Type *OpTy = CallOperandVal->getType();
7745 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7746 // If this is an indirect operand, the operand is a pointer to the
7747 // accessed type.
7748 if (isIndirect) {
7749 PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7750 if (!PtrTy)
7751 report_fatal_error("Indirect operand for inline asm not a pointer!");
7752 OpTy = PtrTy->getElementType();
7755 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7756 if (StructType *STy = dyn_cast<StructType>(OpTy))
7757 if (STy->getNumElements() == 1)
7758 OpTy = STy->getElementType(0);
7760 // If OpTy is not a single value, it may be a struct/union that we
7761 // can tile with integers.
7762 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7763 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7764 switch (BitSize) {
7765 default: break;
7766 case 1:
7767 case 8:
7768 case 16:
7769 case 32:
7770 case 64:
7771 case 128:
7772 OpTy = IntegerType::get(Context, BitSize);
7773 break;
7777 return TLI.getValueType(DL, OpTy, true);
7781 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7783 } // end anonymous namespace
7785 /// Make sure that the output operand \p OpInfo and its corresponding input
7786 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7787 /// out).
7788 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7789 SDISelAsmOperandInfo &MatchingOpInfo,
7790 SelectionDAG &DAG) {
7791 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7792 return;
7794 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7795 const auto &TLI = DAG.getTargetLoweringInfo();
7797 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7798 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7799 OpInfo.ConstraintVT);
7800 std::pair<unsigned, const TargetRegisterClass *> InputRC =
7801 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7802 MatchingOpInfo.ConstraintVT);
7803 if ((OpInfo.ConstraintVT.isInteger() !=
7804 MatchingOpInfo.ConstraintVT.isInteger()) ||
7805 (MatchRC.second != InputRC.second)) {
7806 // FIXME: error out in a more elegant fashion
7807 report_fatal_error("Unsupported asm: input constraint"
7808 " with a matching output constraint of"
7809 " incompatible type!");
7811 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7814 /// Get a direct memory input to behave well as an indirect operand.
7815 /// This may introduce stores, hence the need for a \p Chain.
7816 /// \return The (possibly updated) chain.
7817 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7818 SDISelAsmOperandInfo &OpInfo,
7819 SelectionDAG &DAG) {
7820 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7822 // If we don't have an indirect input, put it in the constpool if we can,
7823 // otherwise spill it to a stack slot.
7824 // TODO: This isn't quite right. We need to handle these according to
7825 // the addressing mode that the constraint wants. Also, this may take
7826 // an additional register for the computation and we don't want that
7827 // either.
7829 // If the operand is a float, integer, or vector constant, spill to a
7830 // constant pool entry to get its address.
7831 const Value *OpVal = OpInfo.CallOperandVal;
7832 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7833 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7834 OpInfo.CallOperand = DAG.getConstantPool(
7835 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7836 return Chain;
7839 // Otherwise, create a stack slot and emit a store to it before the asm.
7840 Type *Ty = OpVal->getType();
7841 auto &DL = DAG.getDataLayout();
7842 uint64_t TySize = DL.getTypeAllocSize(Ty);
7843 unsigned Align = DL.getPrefTypeAlignment(Ty);
7844 MachineFunction &MF = DAG.getMachineFunction();
7845 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7846 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7847 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7848 MachinePointerInfo::getFixedStack(MF, SSFI),
7849 TLI.getMemValueType(DL, Ty));
7850 OpInfo.CallOperand = StackSlot;
7852 return Chain;
7855 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7856 /// specified operand. We prefer to assign virtual registers, to allow the
7857 /// register allocator to handle the assignment process. However, if the asm
7858 /// uses features that we can't model on machineinstrs, we have SDISel do the
7859 /// allocation. This produces generally horrible, but correct, code.
7861 /// OpInfo describes the operand
7862 /// RefOpInfo describes the matching operand if any, the operand otherwise
7863 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7864 SDISelAsmOperandInfo &OpInfo,
7865 SDISelAsmOperandInfo &RefOpInfo) {
7866 LLVMContext &Context = *DAG.getContext();
7867 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7869 MachineFunction &MF = DAG.getMachineFunction();
7870 SmallVector<unsigned, 4> Regs;
7871 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7873 // No work to do for memory operations.
7874 if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7875 return;
7877 // If this is a constraint for a single physreg, or a constraint for a
7878 // register class, find it.
7879 unsigned AssignedReg;
7880 const TargetRegisterClass *RC;
7881 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7882 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7883 // RC is unset only on failure. Return immediately.
7884 if (!RC)
7885 return;
7887 // Get the actual register value type. This is important, because the user
7888 // may have asked for (e.g.) the AX register in i32 type. We need to
7889 // remember that AX is actually i16 to get the right extension.
7890 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7892 if (OpInfo.ConstraintVT != MVT::Other) {
7893 // If this is an FP operand in an integer register (or visa versa), or more
7894 // generally if the operand value disagrees with the register class we plan
7895 // to stick it in, fix the operand type.
7897 // If this is an input value, the bitcast to the new type is done now.
7898 // Bitcast for output value is done at the end of visitInlineAsm().
7899 if ((OpInfo.Type == InlineAsm::isOutput ||
7900 OpInfo.Type == InlineAsm::isInput) &&
7901 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7902 // Try to convert to the first EVT that the reg class contains. If the
7903 // types are identical size, use a bitcast to convert (e.g. two differing
7904 // vector types). Note: output bitcast is done at the end of
7905 // visitInlineAsm().
7906 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7907 // Exclude indirect inputs while they are unsupported because the code
7908 // to perform the load is missing and thus OpInfo.CallOperand still
7909 // refers to the input address rather than the pointed-to value.
7910 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7911 OpInfo.CallOperand =
7912 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7913 OpInfo.ConstraintVT = RegVT;
7914 // If the operand is an FP value and we want it in integer registers,
7915 // use the corresponding integer type. This turns an f64 value into
7916 // i64, which can be passed with two i32 values on a 32-bit machine.
7917 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7918 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7919 if (OpInfo.Type == InlineAsm::isInput)
7920 OpInfo.CallOperand =
7921 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7922 OpInfo.ConstraintVT = VT;
7927 // No need to allocate a matching input constraint since the constraint it's
7928 // matching to has already been allocated.
7929 if (OpInfo.isMatchingInputConstraint())
7930 return;
7932 EVT ValueVT = OpInfo.ConstraintVT;
7933 if (OpInfo.ConstraintVT == MVT::Other)
7934 ValueVT = RegVT;
7936 // Initialize NumRegs.
7937 unsigned NumRegs = 1;
7938 if (OpInfo.ConstraintVT != MVT::Other)
7939 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7941 // If this is a constraint for a specific physical register, like {r17},
7942 // assign it now.
7944 // If this associated to a specific register, initialize iterator to correct
7945 // place. If virtual, make sure we have enough registers
7947 // Initialize iterator if necessary
7948 TargetRegisterClass::iterator I = RC->begin();
7949 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7951 // Do not check for single registers.
7952 if (AssignedReg) {
7953 for (; *I != AssignedReg; ++I)
7954 assert(I != RC->end() && "AssignedReg should be member of RC");
7957 for (; NumRegs; --NumRegs, ++I) {
7958 assert(I != RC->end() && "Ran out of registers to allocate!");
7959 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7960 Regs.push_back(R);
7963 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7966 static unsigned
7967 findMatchingInlineAsmOperand(unsigned OperandNo,
7968 const std::vector<SDValue> &AsmNodeOperands) {
7969 // Scan until we find the definition we already emitted of this operand.
7970 unsigned CurOp = InlineAsm::Op_FirstOperand;
7971 for (; OperandNo; --OperandNo) {
7972 // Advance to the next operand.
7973 unsigned OpFlag =
7974 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7975 assert((InlineAsm::isRegDefKind(OpFlag) ||
7976 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7977 InlineAsm::isMemKind(OpFlag)) &&
7978 "Skipped past definitions?");
7979 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7981 return CurOp;
7984 namespace {
7986 class ExtraFlags {
7987 unsigned Flags = 0;
7989 public:
7990 explicit ExtraFlags(ImmutableCallSite CS) {
7991 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7992 if (IA->hasSideEffects())
7993 Flags |= InlineAsm::Extra_HasSideEffects;
7994 if (IA->isAlignStack())
7995 Flags |= InlineAsm::Extra_IsAlignStack;
7996 if (CS.isConvergent())
7997 Flags |= InlineAsm::Extra_IsConvergent;
7998 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8001 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8002 // Ideally, we would only check against memory constraints. However, the
8003 // meaning of an Other constraint can be target-specific and we can't easily
8004 // reason about it. Therefore, be conservative and set MayLoad/MayStore
8005 // for Other constraints as well.
8006 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8007 OpInfo.ConstraintType == TargetLowering::C_Other) {
8008 if (OpInfo.Type == InlineAsm::isInput)
8009 Flags |= InlineAsm::Extra_MayLoad;
8010 else if (OpInfo.Type == InlineAsm::isOutput)
8011 Flags |= InlineAsm::Extra_MayStore;
8012 else if (OpInfo.Type == InlineAsm::isClobber)
8013 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8017 unsigned get() const { return Flags; }
8020 } // end anonymous namespace
8022 /// visitInlineAsm - Handle a call to an InlineAsm object.
8023 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8024 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8026 /// ConstraintOperands - Information about all of the constraints.
8027 SDISelAsmOperandInfoVector ConstraintOperands;
8029 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8030 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8031 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8033 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8034 // AsmDialect, MayLoad, MayStore).
8035 bool HasSideEffect = IA->hasSideEffects();
8036 ExtraFlags ExtraInfo(CS);
8038 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
8039 unsigned ResNo = 0; // ResNo - The result number of the next output.
8040 for (auto &T : TargetConstraints) {
8041 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8042 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8044 // Compute the value type for each operand.
8045 if (OpInfo.Type == InlineAsm::isInput ||
8046 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8047 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8049 // Process the call argument. BasicBlocks are labels, currently appearing
8050 // only in asm's.
8051 const Instruction *I = CS.getInstruction();
8052 if (isa<CallBrInst>(I) &&
8053 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8054 cast<CallBrInst>(I)->getNumIndirectDests())) {
8055 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8056 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8057 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8058 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8059 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8060 } else {
8061 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8064 OpInfo.ConstraintVT =
8065 OpInfo
8066 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8067 .getSimpleVT();
8068 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8069 // The return value of the call is this value. As such, there is no
8070 // corresponding argument.
8071 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8072 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8073 OpInfo.ConstraintVT = TLI.getSimpleValueType(
8074 DAG.getDataLayout(), STy->getElementType(ResNo));
8075 } else {
8076 assert(ResNo == 0 && "Asm only has one result!");
8077 OpInfo.ConstraintVT =
8078 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8080 ++ResNo;
8081 } else {
8082 OpInfo.ConstraintVT = MVT::Other;
8085 if (!HasSideEffect)
8086 HasSideEffect = OpInfo.hasMemory(TLI);
8088 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8089 // FIXME: Could we compute this on OpInfo rather than T?
8091 // Compute the constraint code and ConstraintType to use.
8092 TLI.ComputeConstraintToUse(T, SDValue());
8094 if (T.ConstraintType == TargetLowering::C_Immediate &&
8095 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8096 // We've delayed emitting a diagnostic like the "n" constraint because
8097 // inlining could cause an integer showing up.
8098 return emitInlineAsmError(
8099 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8100 "integer constant expression");
8102 ExtraInfo.update(T);
8106 // We won't need to flush pending loads if this asm doesn't touch
8107 // memory and is nonvolatile.
8108 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8110 bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8111 if (IsCallBr) {
8112 // If this is a callbr we need to flush pending exports since inlineasm_br
8113 // is a terminator. We need to do this before nodes are glued to
8114 // the inlineasm_br node.
8115 Chain = getControlRoot();
8118 // Second pass over the constraints: compute which constraint option to use.
8119 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8120 // If this is an output operand with a matching input operand, look up the
8121 // matching input. If their types mismatch, e.g. one is an integer, the
8122 // other is floating point, or their sizes are different, flag it as an
8123 // error.
8124 if (OpInfo.hasMatchingInput()) {
8125 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8126 patchMatchingInput(OpInfo, Input, DAG);
8129 // Compute the constraint code and ConstraintType to use.
8130 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8132 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8133 OpInfo.Type == InlineAsm::isClobber)
8134 continue;
8136 // If this is a memory input, and if the operand is not indirect, do what we
8137 // need to provide an address for the memory input.
8138 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8139 !OpInfo.isIndirect) {
8140 assert((OpInfo.isMultipleAlternative ||
8141 (OpInfo.Type == InlineAsm::isInput)) &&
8142 "Can only indirectify direct input operands!");
8144 // Memory operands really want the address of the value.
8145 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8147 // There is no longer a Value* corresponding to this operand.
8148 OpInfo.CallOperandVal = nullptr;
8150 // It is now an indirect operand.
8151 OpInfo.isIndirect = true;
8156 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8157 std::vector<SDValue> AsmNodeOperands;
8158 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
8159 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8160 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8162 // If we have a !srcloc metadata node associated with it, we want to attach
8163 // this to the ultimately generated inline asm machineinstr. To do this, we
8164 // pass in the third operand as this (potentially null) inline asm MDNode.
8165 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8166 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8168 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8169 // bits as operand 3.
8170 AsmNodeOperands.push_back(DAG.getTargetConstant(
8171 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8173 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8174 // this, assign virtual and physical registers for inputs and otput.
8175 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8176 // Assign Registers.
8177 SDISelAsmOperandInfo &RefOpInfo =
8178 OpInfo.isMatchingInputConstraint()
8179 ? ConstraintOperands[OpInfo.getMatchedOperand()]
8180 : OpInfo;
8181 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8183 switch (OpInfo.Type) {
8184 case InlineAsm::isOutput:
8185 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8186 ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8187 OpInfo.ConstraintType == TargetLowering::C_Other) &&
8188 OpInfo.isIndirect)) {
8189 unsigned ConstraintID =
8190 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8191 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8192 "Failed to convert memory constraint code to constraint id.");
8194 // Add information to the INLINEASM node to know about this output.
8195 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8196 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8197 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8198 MVT::i32));
8199 AsmNodeOperands.push_back(OpInfo.CallOperand);
8200 break;
8201 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8202 OpInfo.ConstraintType == TargetLowering::C_Other) &&
8203 !OpInfo.isIndirect) ||
8204 OpInfo.ConstraintType == TargetLowering::C_Register ||
8205 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8206 // Otherwise, this outputs to a register (directly for C_Register /
8207 // C_RegisterClass, and a target-defined fashion for
8208 // C_Immediate/C_Other). Find a register that we can use.
8209 if (OpInfo.AssignedRegs.Regs.empty()) {
8210 emitInlineAsmError(
8211 CS, "couldn't allocate output register for constraint '" +
8212 Twine(OpInfo.ConstraintCode) + "'");
8213 return;
8216 // Add information to the INLINEASM node to know that this register is
8217 // set.
8218 OpInfo.AssignedRegs.AddInlineAsmOperands(
8219 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8220 : InlineAsm::Kind_RegDef,
8221 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8223 break;
8225 case InlineAsm::isInput: {
8226 SDValue InOperandVal = OpInfo.CallOperand;
8228 if (OpInfo.isMatchingInputConstraint()) {
8229 // If this is required to match an output register we have already set,
8230 // just use its register.
8231 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8232 AsmNodeOperands);
8233 unsigned OpFlag =
8234 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8235 if (InlineAsm::isRegDefKind(OpFlag) ||
8236 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8237 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8238 if (OpInfo.isIndirect) {
8239 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8240 emitInlineAsmError(CS, "inline asm not supported yet:"
8241 " don't know how to handle tied "
8242 "indirect register inputs");
8243 return;
8246 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8247 SmallVector<unsigned, 4> Regs;
8249 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8250 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8251 MachineRegisterInfo &RegInfo =
8252 DAG.getMachineFunction().getRegInfo();
8253 for (unsigned i = 0; i != NumRegs; ++i)
8254 Regs.push_back(RegInfo.createVirtualRegister(RC));
8255 } else {
8256 emitInlineAsmError(CS, "inline asm error: This value type register "
8257 "class is not natively supported!");
8258 return;
8261 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8263 SDLoc dl = getCurSDLoc();
8264 // Use the produced MatchedRegs object to
8265 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8266 CS.getInstruction());
8267 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8268 true, OpInfo.getMatchedOperand(), dl,
8269 DAG, AsmNodeOperands);
8270 break;
8273 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8274 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8275 "Unexpected number of operands");
8276 // Add information to the INLINEASM node to know about this input.
8277 // See InlineAsm.h isUseOperandTiedToDef.
8278 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8279 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8280 OpInfo.getMatchedOperand());
8281 AsmNodeOperands.push_back(DAG.getTargetConstant(
8282 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8283 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8284 break;
8287 // Treat indirect 'X' constraint as memory.
8288 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8289 OpInfo.ConstraintType == TargetLowering::C_Other) &&
8290 OpInfo.isIndirect)
8291 OpInfo.ConstraintType = TargetLowering::C_Memory;
8293 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8294 OpInfo.ConstraintType == TargetLowering::C_Other) {
8295 std::vector<SDValue> Ops;
8296 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8297 Ops, DAG);
8298 if (Ops.empty()) {
8299 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8300 if (isa<ConstantSDNode>(InOperandVal)) {
8301 emitInlineAsmError(CS, "value out of range for constraint '" +
8302 Twine(OpInfo.ConstraintCode) + "'");
8303 return;
8306 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8307 Twine(OpInfo.ConstraintCode) + "'");
8308 return;
8311 // Add information to the INLINEASM node to know about this input.
8312 unsigned ResOpType =
8313 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8314 AsmNodeOperands.push_back(DAG.getTargetConstant(
8315 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8316 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8317 break;
8320 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8321 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8322 assert(InOperandVal.getValueType() ==
8323 TLI.getPointerTy(DAG.getDataLayout()) &&
8324 "Memory operands expect pointer values");
8326 unsigned ConstraintID =
8327 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8328 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8329 "Failed to convert memory constraint code to constraint id.");
8331 // Add information to the INLINEASM node to know about this input.
8332 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8333 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8334 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8335 getCurSDLoc(),
8336 MVT::i32));
8337 AsmNodeOperands.push_back(InOperandVal);
8338 break;
8341 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8342 OpInfo.ConstraintType == TargetLowering::C_Register ||
8343 OpInfo.ConstraintType == TargetLowering::C_Immediate) &&
8344 "Unknown constraint type!");
8346 // TODO: Support this.
8347 if (OpInfo.isIndirect) {
8348 emitInlineAsmError(
8349 CS, "Don't know how to handle indirect register inputs yet "
8350 "for constraint '" +
8351 Twine(OpInfo.ConstraintCode) + "'");
8352 return;
8355 // Copy the input into the appropriate registers.
8356 if (OpInfo.AssignedRegs.Regs.empty()) {
8357 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8358 Twine(OpInfo.ConstraintCode) + "'");
8359 return;
8362 SDLoc dl = getCurSDLoc();
8364 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8365 Chain, &Flag, CS.getInstruction());
8367 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8368 dl, DAG, AsmNodeOperands);
8369 break;
8371 case InlineAsm::isClobber:
8372 // Add the clobbered value to the operand list, so that the register
8373 // allocator is aware that the physreg got clobbered.
8374 if (!OpInfo.AssignedRegs.Regs.empty())
8375 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8376 false, 0, getCurSDLoc(), DAG,
8377 AsmNodeOperands);
8378 break;
8382 // Finish up input operands. Set the input chain and add the flag last.
8383 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8384 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8386 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8387 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8388 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8389 Flag = Chain.getValue(1);
8391 // Do additional work to generate outputs.
8393 SmallVector<EVT, 1> ResultVTs;
8394 SmallVector<SDValue, 1> ResultValues;
8395 SmallVector<SDValue, 8> OutChains;
8397 llvm::Type *CSResultType = CS.getType();
8398 ArrayRef<Type *> ResultTypes;
8399 if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8400 ResultTypes = StructResult->elements();
8401 else if (!CSResultType->isVoidTy())
8402 ResultTypes = makeArrayRef(CSResultType);
8404 auto CurResultType = ResultTypes.begin();
8405 auto handleRegAssign = [&](SDValue V) {
8406 assert(CurResultType != ResultTypes.end() && "Unexpected value");
8407 assert((*CurResultType)->isSized() && "Unexpected unsized type");
8408 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8409 ++CurResultType;
8410 // If the type of the inline asm call site return value is different but has
8411 // same size as the type of the asm output bitcast it. One example of this
8412 // is for vectors with different width / number of elements. This can
8413 // happen for register classes that can contain multiple different value
8414 // types. The preg or vreg allocated may not have the same VT as was
8415 // expected.
8417 // This can also happen for a return value that disagrees with the register
8418 // class it is put in, eg. a double in a general-purpose register on a
8419 // 32-bit machine.
8420 if (ResultVT != V.getValueType() &&
8421 ResultVT.getSizeInBits() == V.getValueSizeInBits())
8422 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8423 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8424 V.getValueType().isInteger()) {
8425 // If a result value was tied to an input value, the computed result
8426 // may have a wider width than the expected result. Extract the
8427 // relevant portion.
8428 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8430 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8431 ResultVTs.push_back(ResultVT);
8432 ResultValues.push_back(V);
8435 // Deal with output operands.
8436 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8437 if (OpInfo.Type == InlineAsm::isOutput) {
8438 SDValue Val;
8439 // Skip trivial output operands.
8440 if (OpInfo.AssignedRegs.Regs.empty())
8441 continue;
8443 switch (OpInfo.ConstraintType) {
8444 case TargetLowering::C_Register:
8445 case TargetLowering::C_RegisterClass:
8446 Val = OpInfo.AssignedRegs.getCopyFromRegs(
8447 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8448 break;
8449 case TargetLowering::C_Immediate:
8450 case TargetLowering::C_Other:
8451 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8452 OpInfo, DAG);
8453 break;
8454 case TargetLowering::C_Memory:
8455 break; // Already handled.
8456 case TargetLowering::C_Unknown:
8457 assert(false && "Unexpected unknown constraint");
8460 // Indirect output manifest as stores. Record output chains.
8461 if (OpInfo.isIndirect) {
8462 const Value *Ptr = OpInfo.CallOperandVal;
8463 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8464 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8465 MachinePointerInfo(Ptr));
8466 OutChains.push_back(Store);
8467 } else {
8468 // generate CopyFromRegs to associated registers.
8469 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8470 if (Val.getOpcode() == ISD::MERGE_VALUES) {
8471 for (const SDValue &V : Val->op_values())
8472 handleRegAssign(V);
8473 } else
8474 handleRegAssign(Val);
8479 // Set results.
8480 if (!ResultValues.empty()) {
8481 assert(CurResultType == ResultTypes.end() &&
8482 "Mismatch in number of ResultTypes");
8483 assert(ResultValues.size() == ResultTypes.size() &&
8484 "Mismatch in number of output operands in asm result");
8486 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8487 DAG.getVTList(ResultVTs), ResultValues);
8488 setValue(CS.getInstruction(), V);
8491 // Collect store chains.
8492 if (!OutChains.empty())
8493 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8495 // Only Update Root if inline assembly has a memory effect.
8496 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8497 DAG.setRoot(Chain);
8500 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8501 const Twine &Message) {
8502 LLVMContext &Ctx = *DAG.getContext();
8503 Ctx.emitError(CS.getInstruction(), Message);
8505 // Make sure we leave the DAG in a valid state
8506 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8507 SmallVector<EVT, 1> ValueVTs;
8508 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8510 if (ValueVTs.empty())
8511 return;
8513 SmallVector<SDValue, 1> Ops;
8514 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8515 Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8517 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8520 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8521 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8522 MVT::Other, getRoot(),
8523 getValue(I.getArgOperand(0)),
8524 DAG.getSrcValue(I.getArgOperand(0))));
8527 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8528 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8529 const DataLayout &DL = DAG.getDataLayout();
8530 SDValue V = DAG.getVAArg(
8531 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8532 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8533 DL.getABITypeAlignment(I.getType()));
8534 DAG.setRoot(V.getValue(1));
8536 if (I.getType()->isPointerTy())
8537 V = DAG.getPtrExtOrTrunc(
8538 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8539 setValue(&I, V);
8542 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8543 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8544 MVT::Other, getRoot(),
8545 getValue(I.getArgOperand(0)),
8546 DAG.getSrcValue(I.getArgOperand(0))));
8549 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8550 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8551 MVT::Other, getRoot(),
8552 getValue(I.getArgOperand(0)),
8553 getValue(I.getArgOperand(1)),
8554 DAG.getSrcValue(I.getArgOperand(0)),
8555 DAG.getSrcValue(I.getArgOperand(1))));
8558 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8559 const Instruction &I,
8560 SDValue Op) {
8561 const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8562 if (!Range)
8563 return Op;
8565 ConstantRange CR = getConstantRangeFromMetadata(*Range);
8566 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8567 return Op;
8569 APInt Lo = CR.getUnsignedMin();
8570 if (!Lo.isMinValue())
8571 return Op;
8573 APInt Hi = CR.getUnsignedMax();
8574 unsigned Bits = std::max(Hi.getActiveBits(),
8575 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8579 SDLoc SL = getCurSDLoc();
8581 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8582 DAG.getValueType(SmallVT));
8583 unsigned NumVals = Op.getNode()->getNumValues();
8584 if (NumVals == 1)
8585 return ZExt;
8587 SmallVector<SDValue, 4> Ops;
8589 Ops.push_back(ZExt);
8590 for (unsigned I = 1; I != NumVals; ++I)
8591 Ops.push_back(Op.getValue(I));
8593 return DAG.getMergeValues(Ops, SL);
8596 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8597 /// the call being lowered.
8599 /// This is a helper for lowering intrinsics that follow a target calling
8600 /// convention or require stack pointer adjustment. Only a subset of the
8601 /// intrinsic's operands need to participate in the calling convention.
8602 void SelectionDAGBuilder::populateCallLoweringInfo(
8603 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8604 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8605 bool IsPatchPoint) {
8606 TargetLowering::ArgListTy Args;
8607 Args.reserve(NumArgs);
8609 // Populate the argument list.
8610 // Attributes for args start at offset 1, after the return attribute.
8611 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8612 ArgI != ArgE; ++ArgI) {
8613 const Value *V = Call->getOperand(ArgI);
8615 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8617 TargetLowering::ArgListEntry Entry;
8618 Entry.Node = getValue(V);
8619 Entry.Ty = V->getType();
8620 Entry.setAttributes(Call, ArgI);
8621 Args.push_back(Entry);
8624 CLI.setDebugLoc(getCurSDLoc())
8625 .setChain(getRoot())
8626 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8627 .setDiscardResult(Call->use_empty())
8628 .setIsPatchPoint(IsPatchPoint);
8631 /// Add a stack map intrinsic call's live variable operands to a stackmap
8632 /// or patchpoint target node's operand list.
8634 /// Constants are converted to TargetConstants purely as an optimization to
8635 /// avoid constant materialization and register allocation.
8637 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8638 /// generate addess computation nodes, and so FinalizeISel can convert the
8639 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8640 /// address materialization and register allocation, but may also be required
8641 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8642 /// alloca in the entry block, then the runtime may assume that the alloca's
8643 /// StackMap location can be read immediately after compilation and that the
8644 /// location is valid at any point during execution (this is similar to the
8645 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8646 /// only available in a register, then the runtime would need to trap when
8647 /// execution reaches the StackMap in order to read the alloca's location.
8648 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8649 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8650 SelectionDAGBuilder &Builder) {
8651 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8652 SDValue OpVal = Builder.getValue(CS.getArgument(i));
8653 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8654 Ops.push_back(
8655 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8656 Ops.push_back(
8657 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8658 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8659 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8660 Ops.push_back(Builder.DAG.getTargetFrameIndex(
8661 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8662 } else
8663 Ops.push_back(OpVal);
8667 /// Lower llvm.experimental.stackmap directly to its target opcode.
8668 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8669 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8670 // [live variables...])
8672 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8674 SDValue Chain, InFlag, Callee, NullPtr;
8675 SmallVector<SDValue, 32> Ops;
8677 SDLoc DL = getCurSDLoc();
8678 Callee = getValue(CI.getCalledValue());
8679 NullPtr = DAG.getIntPtrConstant(0, DL, true);
8681 // The stackmap intrinsic only records the live variables (the arguemnts
8682 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8683 // intrinsic, this won't be lowered to a function call. This means we don't
8684 // have to worry about calling conventions and target specific lowering code.
8685 // Instead we perform the call lowering right here.
8687 // chain, flag = CALLSEQ_START(chain, 0, 0)
8688 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8689 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8691 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8692 InFlag = Chain.getValue(1);
8694 // Add the <id> and <numBytes> constants.
8695 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8696 Ops.push_back(DAG.getTargetConstant(
8697 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8698 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8699 Ops.push_back(DAG.getTargetConstant(
8700 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8701 MVT::i32));
8703 // Push live variables for the stack map.
8704 addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8706 // We are not pushing any register mask info here on the operands list,
8707 // because the stackmap doesn't clobber anything.
8709 // Push the chain and the glue flag.
8710 Ops.push_back(Chain);
8711 Ops.push_back(InFlag);
8713 // Create the STACKMAP node.
8714 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8715 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8716 Chain = SDValue(SM, 0);
8717 InFlag = Chain.getValue(1);
8719 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8721 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8723 // Set the root to the target-lowered call chain.
8724 DAG.setRoot(Chain);
8726 // Inform the Frame Information that we have a stackmap in this function.
8727 FuncInfo.MF->getFrameInfo().setHasStackMap();
8730 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8731 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8732 const BasicBlock *EHPadBB) {
8733 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8734 // i32 <numBytes>,
8735 // i8* <target>,
8736 // i32 <numArgs>,
8737 // [Args...],
8738 // [live variables...])
8740 CallingConv::ID CC = CS.getCallingConv();
8741 bool IsAnyRegCC = CC == CallingConv::AnyReg;
8742 bool HasDef = !CS->getType()->isVoidTy();
8743 SDLoc dl = getCurSDLoc();
8744 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8746 // Handle immediate and symbolic callees.
8747 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8748 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8749 /*isTarget=*/true);
8750 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8751 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8752 SDLoc(SymbolicCallee),
8753 SymbolicCallee->getValueType(0));
8755 // Get the real number of arguments participating in the call <numArgs>
8756 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8757 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8759 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8760 // Intrinsics include all meta-operands up to but not including CC.
8761 unsigned NumMetaOpers = PatchPointOpers::CCPos;
8762 assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8763 "Not enough arguments provided to the patchpoint intrinsic");
8765 // For AnyRegCC the arguments are lowered later on manually.
8766 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8767 Type *ReturnTy =
8768 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8770 TargetLowering::CallLoweringInfo CLI(DAG);
8771 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8772 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8773 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8775 SDNode *CallEnd = Result.second.getNode();
8776 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8777 CallEnd = CallEnd->getOperand(0).getNode();
8779 /// Get a call instruction from the call sequence chain.
8780 /// Tail calls are not allowed.
8781 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8782 "Expected a callseq node.");
8783 SDNode *Call = CallEnd->getOperand(0).getNode();
8784 bool HasGlue = Call->getGluedNode();
8786 // Replace the target specific call node with the patchable intrinsic.
8787 SmallVector<SDValue, 8> Ops;
8789 // Add the <id> and <numBytes> constants.
8790 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8791 Ops.push_back(DAG.getTargetConstant(
8792 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8793 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8794 Ops.push_back(DAG.getTargetConstant(
8795 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8796 MVT::i32));
8798 // Add the callee.
8799 Ops.push_back(Callee);
8801 // Adjust <numArgs> to account for any arguments that have been passed on the
8802 // stack instead.
8803 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8804 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8805 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8806 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8808 // Add the calling convention
8809 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8811 // Add the arguments we omitted previously. The register allocator should
8812 // place these in any free register.
8813 if (IsAnyRegCC)
8814 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8815 Ops.push_back(getValue(CS.getArgument(i)));
8817 // Push the arguments from the call instruction up to the register mask.
8818 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8819 Ops.append(Call->op_begin() + 2, e);
8821 // Push live variables for the stack map.
8822 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8824 // Push the register mask info.
8825 if (HasGlue)
8826 Ops.push_back(*(Call->op_end()-2));
8827 else
8828 Ops.push_back(*(Call->op_end()-1));
8830 // Push the chain (this is originally the first operand of the call, but
8831 // becomes now the last or second to last operand).
8832 Ops.push_back(*(Call->op_begin()));
8834 // Push the glue flag (last operand).
8835 if (HasGlue)
8836 Ops.push_back(*(Call->op_end()-1));
8838 SDVTList NodeTys;
8839 if (IsAnyRegCC && HasDef) {
8840 // Create the return types based on the intrinsic definition
8841 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8842 SmallVector<EVT, 3> ValueVTs;
8843 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8844 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8846 // There is always a chain and a glue type at the end
8847 ValueVTs.push_back(MVT::Other);
8848 ValueVTs.push_back(MVT::Glue);
8849 NodeTys = DAG.getVTList(ValueVTs);
8850 } else
8851 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8853 // Replace the target specific call node with a PATCHPOINT node.
8854 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8855 dl, NodeTys, Ops);
8857 // Update the NodeMap.
8858 if (HasDef) {
8859 if (IsAnyRegCC)
8860 setValue(CS.getInstruction(), SDValue(MN, 0));
8861 else
8862 setValue(CS.getInstruction(), Result.first);
8865 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8866 // call sequence. Furthermore the location of the chain and glue can change
8867 // when the AnyReg calling convention is used and the intrinsic returns a
8868 // value.
8869 if (IsAnyRegCC && HasDef) {
8870 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8871 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8872 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8873 } else
8874 DAG.ReplaceAllUsesWith(Call, MN);
8875 DAG.DeleteNode(Call);
8877 // Inform the Frame Information that we have a patchpoint in this function.
8878 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8881 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8882 unsigned Intrinsic) {
8883 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8884 SDValue Op1 = getValue(I.getArgOperand(0));
8885 SDValue Op2;
8886 if (I.getNumArgOperands() > 1)
8887 Op2 = getValue(I.getArgOperand(1));
8888 SDLoc dl = getCurSDLoc();
8889 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8890 SDValue Res;
8891 FastMathFlags FMF;
8892 if (isa<FPMathOperator>(I))
8893 FMF = I.getFastMathFlags();
8895 switch (Intrinsic) {
8896 case Intrinsic::experimental_vector_reduce_v2_fadd:
8897 if (FMF.allowReassoc())
8898 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8899 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8900 else
8901 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8902 break;
8903 case Intrinsic::experimental_vector_reduce_v2_fmul:
8904 if (FMF.allowReassoc())
8905 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8906 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8907 else
8908 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8909 break;
8910 case Intrinsic::experimental_vector_reduce_add:
8911 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8912 break;
8913 case Intrinsic::experimental_vector_reduce_mul:
8914 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8915 break;
8916 case Intrinsic::experimental_vector_reduce_and:
8917 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8918 break;
8919 case Intrinsic::experimental_vector_reduce_or:
8920 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8921 break;
8922 case Intrinsic::experimental_vector_reduce_xor:
8923 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8924 break;
8925 case Intrinsic::experimental_vector_reduce_smax:
8926 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8927 break;
8928 case Intrinsic::experimental_vector_reduce_smin:
8929 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8930 break;
8931 case Intrinsic::experimental_vector_reduce_umax:
8932 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8933 break;
8934 case Intrinsic::experimental_vector_reduce_umin:
8935 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8936 break;
8937 case Intrinsic::experimental_vector_reduce_fmax:
8938 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8939 break;
8940 case Intrinsic::experimental_vector_reduce_fmin:
8941 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8942 break;
8943 default:
8944 llvm_unreachable("Unhandled vector reduce intrinsic");
8946 setValue(&I, Res);
8949 /// Returns an AttributeList representing the attributes applied to the return
8950 /// value of the given call.
8951 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8952 SmallVector<Attribute::AttrKind, 2> Attrs;
8953 if (CLI.RetSExt)
8954 Attrs.push_back(Attribute::SExt);
8955 if (CLI.RetZExt)
8956 Attrs.push_back(Attribute::ZExt);
8957 if (CLI.IsInReg)
8958 Attrs.push_back(Attribute::InReg);
8960 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8961 Attrs);
8964 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8965 /// implementation, which just calls LowerCall.
8966 /// FIXME: When all targets are
8967 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8968 std::pair<SDValue, SDValue>
8969 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8970 // Handle the incoming return values from the call.
8971 CLI.Ins.clear();
8972 Type *OrigRetTy = CLI.RetTy;
8973 SmallVector<EVT, 4> RetTys;
8974 SmallVector<uint64_t, 4> Offsets;
8975 auto &DL = CLI.DAG.getDataLayout();
8976 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8978 if (CLI.IsPostTypeLegalization) {
8979 // If we are lowering a libcall after legalization, split the return type.
8980 SmallVector<EVT, 4> OldRetTys;
8981 SmallVector<uint64_t, 4> OldOffsets;
8982 RetTys.swap(OldRetTys);
8983 Offsets.swap(OldOffsets);
8985 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8986 EVT RetVT = OldRetTys[i];
8987 uint64_t Offset = OldOffsets[i];
8988 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8989 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8990 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8991 RetTys.append(NumRegs, RegisterVT);
8992 for (unsigned j = 0; j != NumRegs; ++j)
8993 Offsets.push_back(Offset + j * RegisterVTByteSZ);
8997 SmallVector<ISD::OutputArg, 4> Outs;
8998 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9000 bool CanLowerReturn =
9001 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9002 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9004 SDValue DemoteStackSlot;
9005 int DemoteStackIdx = -100;
9006 if (!CanLowerReturn) {
9007 // FIXME: equivalent assert?
9008 // assert(!CS.hasInAllocaArgument() &&
9009 // "sret demotion is incompatible with inalloca");
9010 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9011 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9012 MachineFunction &MF = CLI.DAG.getMachineFunction();
9013 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9014 Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9015 DL.getAllocaAddrSpace());
9017 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9018 ArgListEntry Entry;
9019 Entry.Node = DemoteStackSlot;
9020 Entry.Ty = StackSlotPtrType;
9021 Entry.IsSExt = false;
9022 Entry.IsZExt = false;
9023 Entry.IsInReg = false;
9024 Entry.IsSRet = true;
9025 Entry.IsNest = false;
9026 Entry.IsByVal = false;
9027 Entry.IsReturned = false;
9028 Entry.IsSwiftSelf = false;
9029 Entry.IsSwiftError = false;
9030 Entry.Alignment = Align;
9031 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9032 CLI.NumFixedArgs += 1;
9033 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9035 // sret demotion isn't compatible with tail-calls, since the sret argument
9036 // points into the callers stack frame.
9037 CLI.IsTailCall = false;
9038 } else {
9039 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9040 CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9041 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9042 ISD::ArgFlagsTy Flags;
9043 if (NeedsRegBlock) {
9044 Flags.setInConsecutiveRegs();
9045 if (I == RetTys.size() - 1)
9046 Flags.setInConsecutiveRegsLast();
9048 EVT VT = RetTys[I];
9049 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9050 CLI.CallConv, VT);
9051 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9052 CLI.CallConv, VT);
9053 for (unsigned i = 0; i != NumRegs; ++i) {
9054 ISD::InputArg MyFlags;
9055 MyFlags.Flags = Flags;
9056 MyFlags.VT = RegisterVT;
9057 MyFlags.ArgVT = VT;
9058 MyFlags.Used = CLI.IsReturnValueUsed;
9059 if (CLI.RetTy->isPointerTy()) {
9060 MyFlags.Flags.setPointer();
9061 MyFlags.Flags.setPointerAddrSpace(
9062 cast<PointerType>(CLI.RetTy)->getAddressSpace());
9064 if (CLI.RetSExt)
9065 MyFlags.Flags.setSExt();
9066 if (CLI.RetZExt)
9067 MyFlags.Flags.setZExt();
9068 if (CLI.IsInReg)
9069 MyFlags.Flags.setInReg();
9070 CLI.Ins.push_back(MyFlags);
9075 // We push in swifterror return as the last element of CLI.Ins.
9076 ArgListTy &Args = CLI.getArgs();
9077 if (supportSwiftError()) {
9078 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9079 if (Args[i].IsSwiftError) {
9080 ISD::InputArg MyFlags;
9081 MyFlags.VT = getPointerTy(DL);
9082 MyFlags.ArgVT = EVT(getPointerTy(DL));
9083 MyFlags.Flags.setSwiftError();
9084 CLI.Ins.push_back(MyFlags);
9089 // Handle all of the outgoing arguments.
9090 CLI.Outs.clear();
9091 CLI.OutVals.clear();
9092 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9093 SmallVector<EVT, 4> ValueVTs;
9094 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9095 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9096 Type *FinalType = Args[i].Ty;
9097 if (Args[i].IsByVal)
9098 FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9099 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9100 FinalType, CLI.CallConv, CLI.IsVarArg);
9101 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9102 ++Value) {
9103 EVT VT = ValueVTs[Value];
9104 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9105 SDValue Op = SDValue(Args[i].Node.getNode(),
9106 Args[i].Node.getResNo() + Value);
9107 ISD::ArgFlagsTy Flags;
9109 // Certain targets (such as MIPS), may have a different ABI alignment
9110 // for a type depending on the context. Give the target a chance to
9111 // specify the alignment it wants.
9112 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9114 if (Args[i].Ty->isPointerTy()) {
9115 Flags.setPointer();
9116 Flags.setPointerAddrSpace(
9117 cast<PointerType>(Args[i].Ty)->getAddressSpace());
9119 if (Args[i].IsZExt)
9120 Flags.setZExt();
9121 if (Args[i].IsSExt)
9122 Flags.setSExt();
9123 if (Args[i].IsInReg) {
9124 // If we are using vectorcall calling convention, a structure that is
9125 // passed InReg - is surely an HVA
9126 if (CLI.CallConv == CallingConv::X86_VectorCall &&
9127 isa<StructType>(FinalType)) {
9128 // The first value of a structure is marked
9129 if (0 == Value)
9130 Flags.setHvaStart();
9131 Flags.setHva();
9133 // Set InReg Flag
9134 Flags.setInReg();
9136 if (Args[i].IsSRet)
9137 Flags.setSRet();
9138 if (Args[i].IsSwiftSelf)
9139 Flags.setSwiftSelf();
9140 if (Args[i].IsSwiftError)
9141 Flags.setSwiftError();
9142 if (Args[i].IsByVal)
9143 Flags.setByVal();
9144 if (Args[i].IsInAlloca) {
9145 Flags.setInAlloca();
9146 // Set the byval flag for CCAssignFn callbacks that don't know about
9147 // inalloca. This way we can know how many bytes we should've allocated
9148 // and how many bytes a callee cleanup function will pop. If we port
9149 // inalloca to more targets, we'll have to add custom inalloca handling
9150 // in the various CC lowering callbacks.
9151 Flags.setByVal();
9153 if (Args[i].IsByVal || Args[i].IsInAlloca) {
9154 PointerType *Ty = cast<PointerType>(Args[i].Ty);
9155 Type *ElementTy = Ty->getElementType();
9157 unsigned FrameSize = DL.getTypeAllocSize(
9158 Args[i].ByValType ? Args[i].ByValType : ElementTy);
9159 Flags.setByValSize(FrameSize);
9161 // info is not there but there are cases it cannot get right.
9162 unsigned FrameAlign;
9163 if (Args[i].Alignment)
9164 FrameAlign = Args[i].Alignment;
9165 else
9166 FrameAlign = getByValTypeAlignment(ElementTy, DL);
9167 Flags.setByValAlign(Align(FrameAlign));
9169 if (Args[i].IsNest)
9170 Flags.setNest();
9171 if (NeedsRegBlock)
9172 Flags.setInConsecutiveRegs();
9173 Flags.setOrigAlign(OriginalAlignment);
9175 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9176 CLI.CallConv, VT);
9177 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9178 CLI.CallConv, VT);
9179 SmallVector<SDValue, 4> Parts(NumParts);
9180 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9182 if (Args[i].IsSExt)
9183 ExtendKind = ISD::SIGN_EXTEND;
9184 else if (Args[i].IsZExt)
9185 ExtendKind = ISD::ZERO_EXTEND;
9187 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9188 // for now.
9189 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9190 CanLowerReturn) {
9191 assert((CLI.RetTy == Args[i].Ty ||
9192 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9193 CLI.RetTy->getPointerAddressSpace() ==
9194 Args[i].Ty->getPointerAddressSpace())) &&
9195 RetTys.size() == NumValues && "unexpected use of 'returned'");
9196 // Before passing 'returned' to the target lowering code, ensure that
9197 // either the register MVT and the actual EVT are the same size or that
9198 // the return value and argument are extended in the same way; in these
9199 // cases it's safe to pass the argument register value unchanged as the
9200 // return register value (although it's at the target's option whether
9201 // to do so)
9202 // TODO: allow code generation to take advantage of partially preserved
9203 // registers rather than clobbering the entire register when the
9204 // parameter extension method is not compatible with the return
9205 // extension method
9206 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9207 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9208 CLI.RetZExt == Args[i].IsZExt))
9209 Flags.setReturned();
9212 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9213 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9215 for (unsigned j = 0; j != NumParts; ++j) {
9216 // if it isn't first piece, alignment must be 1
9217 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9218 i < CLI.NumFixedArgs,
9219 i, j*Parts[j].getValueType().getStoreSize());
9220 if (NumParts > 1 && j == 0)
9221 MyFlags.Flags.setSplit();
9222 else if (j != 0) {
9223 MyFlags.Flags.setOrigAlign(Align::None());
9224 if (j == NumParts - 1)
9225 MyFlags.Flags.setSplitEnd();
9228 CLI.Outs.push_back(MyFlags);
9229 CLI.OutVals.push_back(Parts[j]);
9232 if (NeedsRegBlock && Value == NumValues - 1)
9233 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9237 SmallVector<SDValue, 4> InVals;
9238 CLI.Chain = LowerCall(CLI, InVals);
9240 // Update CLI.InVals to use outside of this function.
9241 CLI.InVals = InVals;
9243 // Verify that the target's LowerCall behaved as expected.
9244 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9245 "LowerCall didn't return a valid chain!");
9246 assert((!CLI.IsTailCall || InVals.empty()) &&
9247 "LowerCall emitted a return value for a tail call!");
9248 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9249 "LowerCall didn't emit the correct number of values!");
9251 // For a tail call, the return value is merely live-out and there aren't
9252 // any nodes in the DAG representing it. Return a special value to
9253 // indicate that a tail call has been emitted and no more Instructions
9254 // should be processed in the current block.
9255 if (CLI.IsTailCall) {
9256 CLI.DAG.setRoot(CLI.Chain);
9257 return std::make_pair(SDValue(), SDValue());
9260 #ifndef NDEBUG
9261 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9262 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9263 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9264 "LowerCall emitted a value with the wrong type!");
9266 #endif
9268 SmallVector<SDValue, 4> ReturnValues;
9269 if (!CanLowerReturn) {
9270 // The instruction result is the result of loading from the
9271 // hidden sret parameter.
9272 SmallVector<EVT, 1> PVTs;
9273 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9275 ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9276 assert(PVTs.size() == 1 && "Pointers should fit in one register");
9277 EVT PtrVT = PVTs[0];
9279 unsigned NumValues = RetTys.size();
9280 ReturnValues.resize(NumValues);
9281 SmallVector<SDValue, 4> Chains(NumValues);
9283 // An aggregate return value cannot wrap around the address space, so
9284 // offsets to its parts don't wrap either.
9285 SDNodeFlags Flags;
9286 Flags.setNoUnsignedWrap(true);
9288 for (unsigned i = 0; i < NumValues; ++i) {
9289 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9290 CLI.DAG.getConstant(Offsets[i], CLI.DL,
9291 PtrVT), Flags);
9292 SDValue L = CLI.DAG.getLoad(
9293 RetTys[i], CLI.DL, CLI.Chain, Add,
9294 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9295 DemoteStackIdx, Offsets[i]),
9296 /* Alignment = */ 1);
9297 ReturnValues[i] = L;
9298 Chains[i] = L.getValue(1);
9301 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9302 } else {
9303 // Collect the legal value parts into potentially illegal values
9304 // that correspond to the original function's return values.
9305 Optional<ISD::NodeType> AssertOp;
9306 if (CLI.RetSExt)
9307 AssertOp = ISD::AssertSext;
9308 else if (CLI.RetZExt)
9309 AssertOp = ISD::AssertZext;
9310 unsigned CurReg = 0;
9311 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9312 EVT VT = RetTys[I];
9313 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9314 CLI.CallConv, VT);
9315 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9316 CLI.CallConv, VT);
9318 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9319 NumRegs, RegisterVT, VT, nullptr,
9320 CLI.CallConv, AssertOp));
9321 CurReg += NumRegs;
9324 // For a function returning void, there is no return value. We can't create
9325 // such a node, so we just return a null return value in that case. In
9326 // that case, nothing will actually look at the value.
9327 if (ReturnValues.empty())
9328 return std::make_pair(SDValue(), CLI.Chain);
9331 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9332 CLI.DAG.getVTList(RetTys), ReturnValues);
9333 return std::make_pair(Res, CLI.Chain);
9336 void TargetLowering::LowerOperationWrapper(SDNode *N,
9337 SmallVectorImpl<SDValue> &Results,
9338 SelectionDAG &DAG) const {
9339 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9340 Results.push_back(Res);
9343 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9344 llvm_unreachable("LowerOperation not implemented for this target!");
9347 void
9348 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9349 SDValue Op = getNonRegisterValue(V);
9350 assert((Op.getOpcode() != ISD::CopyFromReg ||
9351 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9352 "Copy from a reg to the same reg!");
9353 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9355 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9356 // If this is an InlineAsm we have to match the registers required, not the
9357 // notional registers required by the type.
9359 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9360 None); // This is not an ABI copy.
9361 SDValue Chain = DAG.getEntryNode();
9363 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9364 FuncInfo.PreferredExtendType.end())
9365 ? ISD::ANY_EXTEND
9366 : FuncInfo.PreferredExtendType[V];
9367 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9368 PendingExports.push_back(Chain);
9371 #include "llvm/CodeGen/SelectionDAGISel.h"
9373 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9374 /// entry block, return true. This includes arguments used by switches, since
9375 /// the switch may expand into multiple basic blocks.
9376 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9377 // With FastISel active, we may be splitting blocks, so force creation
9378 // of virtual registers for all non-dead arguments.
9379 if (FastISel)
9380 return A->use_empty();
9382 const BasicBlock &Entry = A->getParent()->front();
9383 for (const User *U : A->users())
9384 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9385 return false; // Use not in entry block.
9387 return true;
9390 using ArgCopyElisionMapTy =
9391 DenseMap<const Argument *,
9392 std::pair<const AllocaInst *, const StoreInst *>>;
9394 /// Scan the entry block of the function in FuncInfo for arguments that look
9395 /// like copies into a local alloca. Record any copied arguments in
9396 /// ArgCopyElisionCandidates.
9397 static void
9398 findArgumentCopyElisionCandidates(const DataLayout &DL,
9399 FunctionLoweringInfo *FuncInfo,
9400 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9401 // Record the state of every static alloca used in the entry block. Argument
9402 // allocas are all used in the entry block, so we need approximately as many
9403 // entries as we have arguments.
9404 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9405 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9406 unsigned NumArgs = FuncInfo->Fn->arg_size();
9407 StaticAllocas.reserve(NumArgs * 2);
9409 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9410 if (!V)
9411 return nullptr;
9412 V = V->stripPointerCasts();
9413 const auto *AI = dyn_cast<AllocaInst>(V);
9414 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9415 return nullptr;
9416 auto Iter = StaticAllocas.insert({AI, Unknown});
9417 return &Iter.first->second;
9420 // Look for stores of arguments to static allocas. Look through bitcasts and
9421 // GEPs to handle type coercions, as long as the alloca is fully initialized
9422 // by the store. Any non-store use of an alloca escapes it and any subsequent
9423 // unanalyzed store might write it.
9424 // FIXME: Handle structs initialized with multiple stores.
9425 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9426 // Look for stores, and handle non-store uses conservatively.
9427 const auto *SI = dyn_cast<StoreInst>(&I);
9428 if (!SI) {
9429 // We will look through cast uses, so ignore them completely.
9430 if (I.isCast())
9431 continue;
9432 // Ignore debug info intrinsics, they don't escape or store to allocas.
9433 if (isa<DbgInfoIntrinsic>(I))
9434 continue;
9435 // This is an unknown instruction. Assume it escapes or writes to all
9436 // static alloca operands.
9437 for (const Use &U : I.operands()) {
9438 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9439 *Info = StaticAllocaInfo::Clobbered;
9441 continue;
9444 // If the stored value is a static alloca, mark it as escaped.
9445 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9446 *Info = StaticAllocaInfo::Clobbered;
9448 // Check if the destination is a static alloca.
9449 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9450 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9451 if (!Info)
9452 continue;
9453 const AllocaInst *AI = cast<AllocaInst>(Dst);
9455 // Skip allocas that have been initialized or clobbered.
9456 if (*Info != StaticAllocaInfo::Unknown)
9457 continue;
9459 // Check if the stored value is an argument, and that this store fully
9460 // initializes the alloca. Don't elide copies from the same argument twice.
9461 const Value *Val = SI->getValueOperand()->stripPointerCasts();
9462 const auto *Arg = dyn_cast<Argument>(Val);
9463 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9464 Arg->getType()->isEmptyTy() ||
9465 DL.getTypeStoreSize(Arg->getType()) !=
9466 DL.getTypeAllocSize(AI->getAllocatedType()) ||
9467 ArgCopyElisionCandidates.count(Arg)) {
9468 *Info = StaticAllocaInfo::Clobbered;
9469 continue;
9472 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9473 << '\n');
9475 // Mark this alloca and store for argument copy elision.
9476 *Info = StaticAllocaInfo::Elidable;
9477 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9479 // Stop scanning if we've seen all arguments. This will happen early in -O0
9480 // builds, which is useful, because -O0 builds have large entry blocks and
9481 // many allocas.
9482 if (ArgCopyElisionCandidates.size() == NumArgs)
9483 break;
9487 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9488 /// ArgVal is a load from a suitable fixed stack object.
9489 static void tryToElideArgumentCopy(
9490 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9491 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9492 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9493 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9494 SDValue ArgVal, bool &ArgHasUses) {
9495 // Check if this is a load from a fixed stack object.
9496 auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9497 if (!LNode)
9498 return;
9499 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9500 if (!FINode)
9501 return;
9503 // Check that the fixed stack object is the right size and alignment.
9504 // Look at the alignment that the user wrote on the alloca instead of looking
9505 // at the stack object.
9506 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9507 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9508 const AllocaInst *AI = ArgCopyIter->second.first;
9509 int FixedIndex = FINode->getIndex();
9510 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9511 int OldIndex = AllocaIndex;
9512 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9513 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9514 LLVM_DEBUG(
9515 dbgs() << " argument copy elision failed due to bad fixed stack "
9516 "object size\n");
9517 return;
9519 unsigned RequiredAlignment = AI->getAlignment();
9520 if (!RequiredAlignment) {
9521 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9522 AI->getAllocatedType());
9524 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9525 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
9526 "greater than stack argument alignment ("
9527 << RequiredAlignment << " vs "
9528 << MFI.getObjectAlignment(FixedIndex) << ")\n");
9529 return;
9532 // Perform the elision. Delete the old stack object and replace its only use
9533 // in the variable info map. Mark the stack object as mutable.
9534 LLVM_DEBUG({
9535 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9536 << " Replacing frame index " << OldIndex << " with " << FixedIndex
9537 << '\n';
9539 MFI.RemoveStackObject(OldIndex);
9540 MFI.setIsImmutableObjectIndex(FixedIndex, false);
9541 AllocaIndex = FixedIndex;
9542 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9543 Chains.push_back(ArgVal.getValue(1));
9545 // Avoid emitting code for the store implementing the copy.
9546 const StoreInst *SI = ArgCopyIter->second.second;
9547 ElidedArgCopyInstrs.insert(SI);
9549 // Check for uses of the argument again so that we can avoid exporting ArgVal
9550 // if it is't used by anything other than the store.
9551 for (const Value *U : Arg.users()) {
9552 if (U != SI) {
9553 ArgHasUses = true;
9554 break;
9559 void SelectionDAGISel::LowerArguments(const Function &F) {
9560 SelectionDAG &DAG = SDB->DAG;
9561 SDLoc dl = SDB->getCurSDLoc();
9562 const DataLayout &DL = DAG.getDataLayout();
9563 SmallVector<ISD::InputArg, 16> Ins;
9565 if (!FuncInfo->CanLowerReturn) {
9566 // Put in an sret pointer parameter before all the other parameters.
9567 SmallVector<EVT, 1> ValueVTs;
9568 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9569 F.getReturnType()->getPointerTo(
9570 DAG.getDataLayout().getAllocaAddrSpace()),
9571 ValueVTs);
9573 // NOTE: Assuming that a pointer will never break down to more than one VT
9574 // or one register.
9575 ISD::ArgFlagsTy Flags;
9576 Flags.setSRet();
9577 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9578 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9579 ISD::InputArg::NoArgIndex, 0);
9580 Ins.push_back(RetArg);
9583 // Look for stores of arguments to static allocas. Mark such arguments with a
9584 // flag to ask the target to give us the memory location of that argument if
9585 // available.
9586 ArgCopyElisionMapTy ArgCopyElisionCandidates;
9587 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9589 // Set up the incoming argument description vector.
9590 for (const Argument &Arg : F.args()) {
9591 unsigned ArgNo = Arg.getArgNo();
9592 SmallVector<EVT, 4> ValueVTs;
9593 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9594 bool isArgValueUsed = !Arg.use_empty();
9595 unsigned PartBase = 0;
9596 Type *FinalType = Arg.getType();
9597 if (Arg.hasAttribute(Attribute::ByVal))
9598 FinalType = Arg.getParamByValType();
9599 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9600 FinalType, F.getCallingConv(), F.isVarArg());
9601 for (unsigned Value = 0, NumValues = ValueVTs.size();
9602 Value != NumValues; ++Value) {
9603 EVT VT = ValueVTs[Value];
9604 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9605 ISD::ArgFlagsTy Flags;
9607 // Certain targets (such as MIPS), may have a different ABI alignment
9608 // for a type depending on the context. Give the target a chance to
9609 // specify the alignment it wants.
9610 const Align OriginalAlignment(
9611 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9613 if (Arg.getType()->isPointerTy()) {
9614 Flags.setPointer();
9615 Flags.setPointerAddrSpace(
9616 cast<PointerType>(Arg.getType())->getAddressSpace());
9618 if (Arg.hasAttribute(Attribute::ZExt))
9619 Flags.setZExt();
9620 if (Arg.hasAttribute(Attribute::SExt))
9621 Flags.setSExt();
9622 if (Arg.hasAttribute(Attribute::InReg)) {
9623 // If we are using vectorcall calling convention, a structure that is
9624 // passed InReg - is surely an HVA
9625 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9626 isa<StructType>(Arg.getType())) {
9627 // The first value of a structure is marked
9628 if (0 == Value)
9629 Flags.setHvaStart();
9630 Flags.setHva();
9632 // Set InReg Flag
9633 Flags.setInReg();
9635 if (Arg.hasAttribute(Attribute::StructRet))
9636 Flags.setSRet();
9637 if (Arg.hasAttribute(Attribute::SwiftSelf))
9638 Flags.setSwiftSelf();
9639 if (Arg.hasAttribute(Attribute::SwiftError))
9640 Flags.setSwiftError();
9641 if (Arg.hasAttribute(Attribute::ByVal))
9642 Flags.setByVal();
9643 if (Arg.hasAttribute(Attribute::InAlloca)) {
9644 Flags.setInAlloca();
9645 // Set the byval flag for CCAssignFn callbacks that don't know about
9646 // inalloca. This way we can know how many bytes we should've allocated
9647 // and how many bytes a callee cleanup function will pop. If we port
9648 // inalloca to more targets, we'll have to add custom inalloca handling
9649 // in the various CC lowering callbacks.
9650 Flags.setByVal();
9652 if (F.getCallingConv() == CallingConv::X86_INTR) {
9653 // IA Interrupt passes frame (1st parameter) by value in the stack.
9654 if (ArgNo == 0)
9655 Flags.setByVal();
9657 if (Flags.isByVal() || Flags.isInAlloca()) {
9658 Type *ElementTy = Arg.getParamByValType();
9660 // For ByVal, size and alignment should be passed from FE. BE will
9661 // guess if this info is not there but there are cases it cannot get
9662 // right.
9663 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9664 Flags.setByValSize(FrameSize);
9666 unsigned FrameAlign;
9667 if (Arg.getParamAlignment())
9668 FrameAlign = Arg.getParamAlignment();
9669 else
9670 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9671 Flags.setByValAlign(Align(FrameAlign));
9673 if (Arg.hasAttribute(Attribute::Nest))
9674 Flags.setNest();
9675 if (NeedsRegBlock)
9676 Flags.setInConsecutiveRegs();
9677 Flags.setOrigAlign(OriginalAlignment);
9678 if (ArgCopyElisionCandidates.count(&Arg))
9679 Flags.setCopyElisionCandidate();
9680 if (Arg.hasAttribute(Attribute::Returned))
9681 Flags.setReturned();
9683 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9684 *CurDAG->getContext(), F.getCallingConv(), VT);
9685 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9686 *CurDAG->getContext(), F.getCallingConv(), VT);
9687 for (unsigned i = 0; i != NumRegs; ++i) {
9688 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9689 ArgNo, PartBase+i*RegisterVT.getStoreSize());
9690 if (NumRegs > 1 && i == 0)
9691 MyFlags.Flags.setSplit();
9692 // if it isn't first piece, alignment must be 1
9693 else if (i > 0) {
9694 MyFlags.Flags.setOrigAlign(Align::None());
9695 if (i == NumRegs - 1)
9696 MyFlags.Flags.setSplitEnd();
9698 Ins.push_back(MyFlags);
9700 if (NeedsRegBlock && Value == NumValues - 1)
9701 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9702 PartBase += VT.getStoreSize();
9706 // Call the target to set up the argument values.
9707 SmallVector<SDValue, 8> InVals;
9708 SDValue NewRoot = TLI->LowerFormalArguments(
9709 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9711 // Verify that the target's LowerFormalArguments behaved as expected.
9712 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9713 "LowerFormalArguments didn't return a valid chain!");
9714 assert(InVals.size() == Ins.size() &&
9715 "LowerFormalArguments didn't emit the correct number of values!");
9716 LLVM_DEBUG({
9717 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9718 assert(InVals[i].getNode() &&
9719 "LowerFormalArguments emitted a null value!");
9720 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9721 "LowerFormalArguments emitted a value with the wrong type!");
9725 // Update the DAG with the new chain value resulting from argument lowering.
9726 DAG.setRoot(NewRoot);
9728 // Set up the argument values.
9729 unsigned i = 0;
9730 if (!FuncInfo->CanLowerReturn) {
9731 // Create a virtual register for the sret pointer, and put in a copy
9732 // from the sret argument into it.
9733 SmallVector<EVT, 1> ValueVTs;
9734 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9735 F.getReturnType()->getPointerTo(
9736 DAG.getDataLayout().getAllocaAddrSpace()),
9737 ValueVTs);
9738 MVT VT = ValueVTs[0].getSimpleVT();
9739 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9740 Optional<ISD::NodeType> AssertOp = None;
9741 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9742 nullptr, F.getCallingConv(), AssertOp);
9744 MachineFunction& MF = SDB->DAG.getMachineFunction();
9745 MachineRegisterInfo& RegInfo = MF.getRegInfo();
9746 Register SRetReg =
9747 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9748 FuncInfo->DemoteRegister = SRetReg;
9749 NewRoot =
9750 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9751 DAG.setRoot(NewRoot);
9753 // i indexes lowered arguments. Bump it past the hidden sret argument.
9754 ++i;
9757 SmallVector<SDValue, 4> Chains;
9758 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9759 for (const Argument &Arg : F.args()) {
9760 SmallVector<SDValue, 4> ArgValues;
9761 SmallVector<EVT, 4> ValueVTs;
9762 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9763 unsigned NumValues = ValueVTs.size();
9764 if (NumValues == 0)
9765 continue;
9767 bool ArgHasUses = !Arg.use_empty();
9769 // Elide the copying store if the target loaded this argument from a
9770 // suitable fixed stack object.
9771 if (Ins[i].Flags.isCopyElisionCandidate()) {
9772 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9773 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9774 InVals[i], ArgHasUses);
9777 // If this argument is unused then remember its value. It is used to generate
9778 // debugging information.
9779 bool isSwiftErrorArg =
9780 TLI->supportSwiftError() &&
9781 Arg.hasAttribute(Attribute::SwiftError);
9782 if (!ArgHasUses && !isSwiftErrorArg) {
9783 SDB->setUnusedArgValue(&Arg, InVals[i]);
9785 // Also remember any frame index for use in FastISel.
9786 if (FrameIndexSDNode *FI =
9787 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9788 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9791 for (unsigned Val = 0; Val != NumValues; ++Val) {
9792 EVT VT = ValueVTs[Val];
9793 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9794 F.getCallingConv(), VT);
9795 unsigned NumParts = TLI->getNumRegistersForCallingConv(
9796 *CurDAG->getContext(), F.getCallingConv(), VT);
9798 // Even an apparant 'unused' swifterror argument needs to be returned. So
9799 // we do generate a copy for it that can be used on return from the
9800 // function.
9801 if (ArgHasUses || isSwiftErrorArg) {
9802 Optional<ISD::NodeType> AssertOp;
9803 if (Arg.hasAttribute(Attribute::SExt))
9804 AssertOp = ISD::AssertSext;
9805 else if (Arg.hasAttribute(Attribute::ZExt))
9806 AssertOp = ISD::AssertZext;
9808 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9809 PartVT, VT, nullptr,
9810 F.getCallingConv(), AssertOp));
9813 i += NumParts;
9816 // We don't need to do anything else for unused arguments.
9817 if (ArgValues.empty())
9818 continue;
9820 // Note down frame index.
9821 if (FrameIndexSDNode *FI =
9822 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9823 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9825 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9826 SDB->getCurSDLoc());
9828 SDB->setValue(&Arg, Res);
9829 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9830 // We want to associate the argument with the frame index, among
9831 // involved operands, that correspond to the lowest address. The
9832 // getCopyFromParts function, called earlier, is swapping the order of
9833 // the operands to BUILD_PAIR depending on endianness. The result of
9834 // that swapping is that the least significant bits of the argument will
9835 // be in the first operand of the BUILD_PAIR node, and the most
9836 // significant bits will be in the second operand.
9837 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9838 if (LoadSDNode *LNode =
9839 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9840 if (FrameIndexSDNode *FI =
9841 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9842 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9845 // Analyses past this point are naive and don't expect an assertion.
9846 if (Res.getOpcode() == ISD::AssertZext)
9847 Res = Res.getOperand(0);
9849 // Update the SwiftErrorVRegDefMap.
9850 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9851 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9852 if (Register::isVirtualRegister(Reg))
9853 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9854 Reg);
9857 // If this argument is live outside of the entry block, insert a copy from
9858 // wherever we got it to the vreg that other BB's will reference it as.
9859 if (Res.getOpcode() == ISD::CopyFromReg) {
9860 // If we can, though, try to skip creating an unnecessary vreg.
9861 // FIXME: This isn't very clean... it would be nice to make this more
9862 // general.
9863 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9864 if (Register::isVirtualRegister(Reg)) {
9865 FuncInfo->ValueMap[&Arg] = Reg;
9866 continue;
9869 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9870 FuncInfo->InitializeRegForValue(&Arg);
9871 SDB->CopyToExportRegsIfNeeded(&Arg);
9875 if (!Chains.empty()) {
9876 Chains.push_back(NewRoot);
9877 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9880 DAG.setRoot(NewRoot);
9882 assert(i == InVals.size() && "Argument register count mismatch!");
9884 // If any argument copy elisions occurred and we have debug info, update the
9885 // stale frame indices used in the dbg.declare variable info table.
9886 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9887 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9888 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9889 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9890 if (I != ArgCopyElisionFrameIndexMap.end())
9891 VI.Slot = I->second;
9895 // Finally, if the target has anything special to do, allow it to do so.
9896 EmitFunctionEntryCode();
9899 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
9900 /// ensure constants are generated when needed. Remember the virtual registers
9901 /// that need to be added to the Machine PHI nodes as input. We cannot just
9902 /// directly add them, because expansion might result in multiple MBB's for one
9903 /// BB. As such, the start of the BB might correspond to a different MBB than
9904 /// the end.
9905 void
9906 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9907 const Instruction *TI = LLVMBB->getTerminator();
9909 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9911 // Check PHI nodes in successors that expect a value to be available from this
9912 // block.
9913 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9914 const BasicBlock *SuccBB = TI->getSuccessor(succ);
9915 if (!isa<PHINode>(SuccBB->begin())) continue;
9916 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9918 // If this terminator has multiple identical successors (common for
9919 // switches), only handle each succ once.
9920 if (!SuccsHandled.insert(SuccMBB).second)
9921 continue;
9923 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9925 // At this point we know that there is a 1-1 correspondence between LLVM PHI
9926 // nodes and Machine PHI nodes, but the incoming operands have not been
9927 // emitted yet.
9928 for (const PHINode &PN : SuccBB->phis()) {
9929 // Ignore dead phi's.
9930 if (PN.use_empty())
9931 continue;
9933 // Skip empty types
9934 if (PN.getType()->isEmptyTy())
9935 continue;
9937 unsigned Reg;
9938 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9940 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9941 unsigned &RegOut = ConstantsOut[C];
9942 if (RegOut == 0) {
9943 RegOut = FuncInfo.CreateRegs(C);
9944 CopyValueToVirtualRegister(C, RegOut);
9946 Reg = RegOut;
9947 } else {
9948 DenseMap<const Value *, unsigned>::iterator I =
9949 FuncInfo.ValueMap.find(PHIOp);
9950 if (I != FuncInfo.ValueMap.end())
9951 Reg = I->second;
9952 else {
9953 assert(isa<AllocaInst>(PHIOp) &&
9954 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9955 "Didn't codegen value into a register!??");
9956 Reg = FuncInfo.CreateRegs(PHIOp);
9957 CopyValueToVirtualRegister(PHIOp, Reg);
9961 // Remember that this register needs to added to the machine PHI node as
9962 // the input for this MBB.
9963 SmallVector<EVT, 4> ValueVTs;
9964 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9965 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9966 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9967 EVT VT = ValueVTs[vti];
9968 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9969 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9970 FuncInfo.PHINodesToUpdate.push_back(
9971 std::make_pair(&*MBBI++, Reg + i));
9972 Reg += NumRegisters;
9977 ConstantsOut.clear();
9980 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9981 /// is 0.
9982 MachineBasicBlock *
9983 SelectionDAGBuilder::StackProtectorDescriptor::
9984 AddSuccessorMBB(const BasicBlock *BB,
9985 MachineBasicBlock *ParentMBB,
9986 bool IsLikely,
9987 MachineBasicBlock *SuccMBB) {
9988 // If SuccBB has not been created yet, create it.
9989 if (!SuccMBB) {
9990 MachineFunction *MF = ParentMBB->getParent();
9991 MachineFunction::iterator BBI(ParentMBB);
9992 SuccMBB = MF->CreateMachineBasicBlock(BB);
9993 MF->insert(++BBI, SuccMBB);
9995 // Add it as a successor of ParentMBB.
9996 ParentMBB->addSuccessor(
9997 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9998 return SuccMBB;
10001 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10002 MachineFunction::iterator I(MBB);
10003 if (++I == FuncInfo.MF->end())
10004 return nullptr;
10005 return &*I;
10008 /// During lowering new call nodes can be created (such as memset, etc.).
10009 /// Those will become new roots of the current DAG, but complications arise
10010 /// when they are tail calls. In such cases, the call lowering will update
10011 /// the root, but the builder still needs to know that a tail call has been
10012 /// lowered in order to avoid generating an additional return.
10013 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10014 // If the node is null, we do have a tail call.
10015 if (MaybeTC.getNode() != nullptr)
10016 DAG.setRoot(MaybeTC);
10017 else
10018 HasTailCall = true;
10021 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10022 MachineBasicBlock *SwitchMBB,
10023 MachineBasicBlock *DefaultMBB) {
10024 MachineFunction *CurMF = FuncInfo.MF;
10025 MachineBasicBlock *NextMBB = nullptr;
10026 MachineFunction::iterator BBI(W.MBB);
10027 if (++BBI != FuncInfo.MF->end())
10028 NextMBB = &*BBI;
10030 unsigned Size = W.LastCluster - W.FirstCluster + 1;
10032 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10034 if (Size == 2 && W.MBB == SwitchMBB) {
10035 // If any two of the cases has the same destination, and if one value
10036 // is the same as the other, but has one bit unset that the other has set,
10037 // use bit manipulation to do two compares at once. For example:
10038 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10039 // TODO: This could be extended to merge any 2 cases in switches with 3
10040 // cases.
10041 // TODO: Handle cases where W.CaseBB != SwitchBB.
10042 CaseCluster &Small = *W.FirstCluster;
10043 CaseCluster &Big = *W.LastCluster;
10045 if (Small.Low == Small.High && Big.Low == Big.High &&
10046 Small.MBB == Big.MBB) {
10047 const APInt &SmallValue = Small.Low->getValue();
10048 const APInt &BigValue = Big.Low->getValue();
10050 // Check that there is only one bit different.
10051 APInt CommonBit = BigValue ^ SmallValue;
10052 if (CommonBit.isPowerOf2()) {
10053 SDValue CondLHS = getValue(Cond);
10054 EVT VT = CondLHS.getValueType();
10055 SDLoc DL = getCurSDLoc();
10057 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10058 DAG.getConstant(CommonBit, DL, VT));
10059 SDValue Cond = DAG.getSetCC(
10060 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10061 ISD::SETEQ);
10063 // Update successor info.
10064 // Both Small and Big will jump to Small.BB, so we sum up the
10065 // probabilities.
10066 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10067 if (BPI)
10068 addSuccessorWithProb(
10069 SwitchMBB, DefaultMBB,
10070 // The default destination is the first successor in IR.
10071 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10072 else
10073 addSuccessorWithProb(SwitchMBB, DefaultMBB);
10075 // Insert the true branch.
10076 SDValue BrCond =
10077 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10078 DAG.getBasicBlock(Small.MBB));
10079 // Insert the false branch.
10080 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10081 DAG.getBasicBlock(DefaultMBB));
10083 DAG.setRoot(BrCond);
10084 return;
10089 if (TM.getOptLevel() != CodeGenOpt::None) {
10090 // Here, we order cases by probability so the most likely case will be
10091 // checked first. However, two clusters can have the same probability in
10092 // which case their relative ordering is non-deterministic. So we use Low
10093 // as a tie-breaker as clusters are guaranteed to never overlap.
10094 llvm::sort(W.FirstCluster, W.LastCluster + 1,
10095 [](const CaseCluster &a, const CaseCluster &b) {
10096 return a.Prob != b.Prob ?
10097 a.Prob > b.Prob :
10098 a.Low->getValue().slt(b.Low->getValue());
10101 // Rearrange the case blocks so that the last one falls through if possible
10102 // without changing the order of probabilities.
10103 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10104 --I;
10105 if (I->Prob > W.LastCluster->Prob)
10106 break;
10107 if (I->Kind == CC_Range && I->MBB == NextMBB) {
10108 std::swap(*I, *W.LastCluster);
10109 break;
10114 // Compute total probability.
10115 BranchProbability DefaultProb = W.DefaultProb;
10116 BranchProbability UnhandledProbs = DefaultProb;
10117 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10118 UnhandledProbs += I->Prob;
10120 MachineBasicBlock *CurMBB = W.MBB;
10121 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10122 bool FallthroughUnreachable = false;
10123 MachineBasicBlock *Fallthrough;
10124 if (I == W.LastCluster) {
10125 // For the last cluster, fall through to the default destination.
10126 Fallthrough = DefaultMBB;
10127 FallthroughUnreachable = isa<UnreachableInst>(
10128 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10129 } else {
10130 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10131 CurMF->insert(BBI, Fallthrough);
10132 // Put Cond in a virtual register to make it available from the new blocks.
10133 ExportFromCurrentBlock(Cond);
10135 UnhandledProbs -= I->Prob;
10137 switch (I->Kind) {
10138 case CC_JumpTable: {
10139 // FIXME: Optimize away range check based on pivot comparisons.
10140 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10141 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10143 // The jump block hasn't been inserted yet; insert it here.
10144 MachineBasicBlock *JumpMBB = JT->MBB;
10145 CurMF->insert(BBI, JumpMBB);
10147 auto JumpProb = I->Prob;
10148 auto FallthroughProb = UnhandledProbs;
10150 // If the default statement is a target of the jump table, we evenly
10151 // distribute the default probability to successors of CurMBB. Also
10152 // update the probability on the edge from JumpMBB to Fallthrough.
10153 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10154 SE = JumpMBB->succ_end();
10155 SI != SE; ++SI) {
10156 if (*SI == DefaultMBB) {
10157 JumpProb += DefaultProb / 2;
10158 FallthroughProb -= DefaultProb / 2;
10159 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10160 JumpMBB->normalizeSuccProbs();
10161 break;
10165 if (FallthroughUnreachable) {
10166 // Skip the range check if the fallthrough block is unreachable.
10167 JTH->OmitRangeCheck = true;
10170 if (!JTH->OmitRangeCheck)
10171 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10172 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10173 CurMBB->normalizeSuccProbs();
10175 // The jump table header will be inserted in our current block, do the
10176 // range check, and fall through to our fallthrough block.
10177 JTH->HeaderBB = CurMBB;
10178 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10180 // If we're in the right place, emit the jump table header right now.
10181 if (CurMBB == SwitchMBB) {
10182 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10183 JTH->Emitted = true;
10185 break;
10187 case CC_BitTests: {
10188 // FIXME: Optimize away range check based on pivot comparisons.
10189 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10191 // The bit test blocks haven't been inserted yet; insert them here.
10192 for (BitTestCase &BTC : BTB->Cases)
10193 CurMF->insert(BBI, BTC.ThisBB);
10195 // Fill in fields of the BitTestBlock.
10196 BTB->Parent = CurMBB;
10197 BTB->Default = Fallthrough;
10199 BTB->DefaultProb = UnhandledProbs;
10200 // If the cases in bit test don't form a contiguous range, we evenly
10201 // distribute the probability on the edge to Fallthrough to two
10202 // successors of CurMBB.
10203 if (!BTB->ContiguousRange) {
10204 BTB->Prob += DefaultProb / 2;
10205 BTB->DefaultProb -= DefaultProb / 2;
10208 if (FallthroughUnreachable) {
10209 // Skip the range check if the fallthrough block is unreachable.
10210 BTB->OmitRangeCheck = true;
10213 // If we're in the right place, emit the bit test header right now.
10214 if (CurMBB == SwitchMBB) {
10215 visitBitTestHeader(*BTB, SwitchMBB);
10216 BTB->Emitted = true;
10218 break;
10220 case CC_Range: {
10221 const Value *RHS, *LHS, *MHS;
10222 ISD::CondCode CC;
10223 if (I->Low == I->High) {
10224 // Check Cond == I->Low.
10225 CC = ISD::SETEQ;
10226 LHS = Cond;
10227 RHS=I->Low;
10228 MHS = nullptr;
10229 } else {
10230 // Check I->Low <= Cond <= I->High.
10231 CC = ISD::SETLE;
10232 LHS = I->Low;
10233 MHS = Cond;
10234 RHS = I->High;
10237 // If Fallthrough is unreachable, fold away the comparison.
10238 if (FallthroughUnreachable)
10239 CC = ISD::SETTRUE;
10241 // The false probability is the sum of all unhandled cases.
10242 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10243 getCurSDLoc(), I->Prob, UnhandledProbs);
10245 if (CurMBB == SwitchMBB)
10246 visitSwitchCase(CB, SwitchMBB);
10247 else
10248 SL->SwitchCases.push_back(CB);
10250 break;
10253 CurMBB = Fallthrough;
10257 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10258 CaseClusterIt First,
10259 CaseClusterIt Last) {
10260 return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10261 if (X.Prob != CC.Prob)
10262 return X.Prob > CC.Prob;
10264 // Ties are broken by comparing the case value.
10265 return X.Low->getValue().slt(CC.Low->getValue());
10269 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10270 const SwitchWorkListItem &W,
10271 Value *Cond,
10272 MachineBasicBlock *SwitchMBB) {
10273 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10274 "Clusters not sorted?");
10276 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10278 // Balance the tree based on branch probabilities to create a near-optimal (in
10279 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10280 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10281 CaseClusterIt LastLeft = W.FirstCluster;
10282 CaseClusterIt FirstRight = W.LastCluster;
10283 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10284 auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10286 // Move LastLeft and FirstRight towards each other from opposite directions to
10287 // find a partitioning of the clusters which balances the probability on both
10288 // sides. If LeftProb and RightProb are equal, alternate which side is
10289 // taken to ensure 0-probability nodes are distributed evenly.
10290 unsigned I = 0;
10291 while (LastLeft + 1 < FirstRight) {
10292 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10293 LeftProb += (++LastLeft)->Prob;
10294 else
10295 RightProb += (--FirstRight)->Prob;
10296 I++;
10299 while (true) {
10300 // Our binary search tree differs from a typical BST in that ours can have up
10301 // to three values in each leaf. The pivot selection above doesn't take that
10302 // into account, which means the tree might require more nodes and be less
10303 // efficient. We compensate for this here.
10305 unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10306 unsigned NumRight = W.LastCluster - FirstRight + 1;
10308 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10309 // If one side has less than 3 clusters, and the other has more than 3,
10310 // consider taking a cluster from the other side.
10312 if (NumLeft < NumRight) {
10313 // Consider moving the first cluster on the right to the left side.
10314 CaseCluster &CC = *FirstRight;
10315 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10316 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10317 if (LeftSideRank <= RightSideRank) {
10318 // Moving the cluster to the left does not demote it.
10319 ++LastLeft;
10320 ++FirstRight;
10321 continue;
10323 } else {
10324 assert(NumRight < NumLeft);
10325 // Consider moving the last element on the left to the right side.
10326 CaseCluster &CC = *LastLeft;
10327 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10328 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10329 if (RightSideRank <= LeftSideRank) {
10330 // Moving the cluster to the right does not demot it.
10331 --LastLeft;
10332 --FirstRight;
10333 continue;
10337 break;
10340 assert(LastLeft + 1 == FirstRight);
10341 assert(LastLeft >= W.FirstCluster);
10342 assert(FirstRight <= W.LastCluster);
10344 // Use the first element on the right as pivot since we will make less-than
10345 // comparisons against it.
10346 CaseClusterIt PivotCluster = FirstRight;
10347 assert(PivotCluster > W.FirstCluster);
10348 assert(PivotCluster <= W.LastCluster);
10350 CaseClusterIt FirstLeft = W.FirstCluster;
10351 CaseClusterIt LastRight = W.LastCluster;
10353 const ConstantInt *Pivot = PivotCluster->Low;
10355 // New blocks will be inserted immediately after the current one.
10356 MachineFunction::iterator BBI(W.MBB);
10357 ++BBI;
10359 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10360 // we can branch to its destination directly if it's squeezed exactly in
10361 // between the known lower bound and Pivot - 1.
10362 MachineBasicBlock *LeftMBB;
10363 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10364 FirstLeft->Low == W.GE &&
10365 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10366 LeftMBB = FirstLeft->MBB;
10367 } else {
10368 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10369 FuncInfo.MF->insert(BBI, LeftMBB);
10370 WorkList.push_back(
10371 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10372 // Put Cond in a virtual register to make it available from the new blocks.
10373 ExportFromCurrentBlock(Cond);
10376 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10377 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10378 // directly if RHS.High equals the current upper bound.
10379 MachineBasicBlock *RightMBB;
10380 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10381 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10382 RightMBB = FirstRight->MBB;
10383 } else {
10384 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10385 FuncInfo.MF->insert(BBI, RightMBB);
10386 WorkList.push_back(
10387 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10388 // Put Cond in a virtual register to make it available from the new blocks.
10389 ExportFromCurrentBlock(Cond);
10392 // Create the CaseBlock record that will be used to lower the branch.
10393 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10394 getCurSDLoc(), LeftProb, RightProb);
10396 if (W.MBB == SwitchMBB)
10397 visitSwitchCase(CB, SwitchMBB);
10398 else
10399 SL->SwitchCases.push_back(CB);
10402 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10403 // from the swith statement.
10404 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10405 BranchProbability PeeledCaseProb) {
10406 if (PeeledCaseProb == BranchProbability::getOne())
10407 return BranchProbability::getZero();
10408 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10410 uint32_t Numerator = CaseProb.getNumerator();
10411 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10412 return BranchProbability(Numerator, std::max(Numerator, Denominator));
10415 // Try to peel the top probability case if it exceeds the threshold.
10416 // Return current MachineBasicBlock for the switch statement if the peeling
10417 // does not occur.
10418 // If the peeling is performed, return the newly created MachineBasicBlock
10419 // for the peeled switch statement. Also update Clusters to remove the peeled
10420 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10421 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10422 const SwitchInst &SI, CaseClusterVector &Clusters,
10423 BranchProbability &PeeledCaseProb) {
10424 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10425 // Don't perform if there is only one cluster or optimizing for size.
10426 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10427 TM.getOptLevel() == CodeGenOpt::None ||
10428 SwitchMBB->getParent()->getFunction().hasMinSize())
10429 return SwitchMBB;
10431 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10432 unsigned PeeledCaseIndex = 0;
10433 bool SwitchPeeled = false;
10434 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10435 CaseCluster &CC = Clusters[Index];
10436 if (CC.Prob < TopCaseProb)
10437 continue;
10438 TopCaseProb = CC.Prob;
10439 PeeledCaseIndex = Index;
10440 SwitchPeeled = true;
10442 if (!SwitchPeeled)
10443 return SwitchMBB;
10445 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10446 << TopCaseProb << "\n");
10448 // Record the MBB for the peeled switch statement.
10449 MachineFunction::iterator BBI(SwitchMBB);
10450 ++BBI;
10451 MachineBasicBlock *PeeledSwitchMBB =
10452 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10453 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10455 ExportFromCurrentBlock(SI.getCondition());
10456 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10457 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10458 nullptr, nullptr, TopCaseProb.getCompl()};
10459 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10461 Clusters.erase(PeeledCaseIt);
10462 for (CaseCluster &CC : Clusters) {
10463 LLVM_DEBUG(
10464 dbgs() << "Scale the probablity for one cluster, before scaling: "
10465 << CC.Prob << "\n");
10466 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10467 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10469 PeeledCaseProb = TopCaseProb;
10470 return PeeledSwitchMBB;
10473 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10474 // Extract cases from the switch.
10475 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10476 CaseClusterVector Clusters;
10477 Clusters.reserve(SI.getNumCases());
10478 for (auto I : SI.cases()) {
10479 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10480 const ConstantInt *CaseVal = I.getCaseValue();
10481 BranchProbability Prob =
10482 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10483 : BranchProbability(1, SI.getNumCases() + 1);
10484 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10487 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10489 // Cluster adjacent cases with the same destination. We do this at all
10490 // optimization levels because it's cheap to do and will make codegen faster
10491 // if there are many clusters.
10492 sortAndRangeify(Clusters);
10494 // The branch probablity of the peeled case.
10495 BranchProbability PeeledCaseProb = BranchProbability::getZero();
10496 MachineBasicBlock *PeeledSwitchMBB =
10497 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10499 // If there is only the default destination, jump there directly.
10500 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10501 if (Clusters.empty()) {
10502 assert(PeeledSwitchMBB == SwitchMBB);
10503 SwitchMBB->addSuccessor(DefaultMBB);
10504 if (DefaultMBB != NextBlock(SwitchMBB)) {
10505 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10506 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10508 return;
10511 SL->findJumpTables(Clusters, &SI, DefaultMBB);
10512 SL->findBitTestClusters(Clusters, &SI);
10514 LLVM_DEBUG({
10515 dbgs() << "Case clusters: ";
10516 for (const CaseCluster &C : Clusters) {
10517 if (C.Kind == CC_JumpTable)
10518 dbgs() << "JT:";
10519 if (C.Kind == CC_BitTests)
10520 dbgs() << "BT:";
10522 C.Low->getValue().print(dbgs(), true);
10523 if (C.Low != C.High) {
10524 dbgs() << '-';
10525 C.High->getValue().print(dbgs(), true);
10527 dbgs() << ' ';
10529 dbgs() << '\n';
10532 assert(!Clusters.empty());
10533 SwitchWorkList WorkList;
10534 CaseClusterIt First = Clusters.begin();
10535 CaseClusterIt Last = Clusters.end() - 1;
10536 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10537 // Scale the branchprobability for DefaultMBB if the peel occurs and
10538 // DefaultMBB is not replaced.
10539 if (PeeledCaseProb != BranchProbability::getZero() &&
10540 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10541 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10542 WorkList.push_back(
10543 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10545 while (!WorkList.empty()) {
10546 SwitchWorkListItem W = WorkList.back();
10547 WorkList.pop_back();
10548 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10550 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10551 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10552 // For optimized builds, lower large range as a balanced binary tree.
10553 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10554 continue;
10557 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);