[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
blob9ab1324533f1e7e71110dda8e1524c6c6a7cb535
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39 : TargetLoweringBase(tm) {}
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42 return nullptr;
45 bool TargetLowering::isPositionIndependent() const {
46 return getTargetMachine().isPositionIndependent();
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52 SDValue &Chain) const {
53 const Function &F = DAG.getMachineFunction().getFunction();
55 // Conservatively require the attributes of the call to match those of
56 // the return. Ignore NoAlias and NonNull because they don't affect the
57 // call sequence.
58 AttributeList CallerAttrs = F.getAttributes();
59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
60 .removeAttribute(Attribute::NoAlias)
61 .removeAttribute(Attribute::NonNull)
62 .hasAttributes())
63 return false;
65 // It's not safe to eliminate the sign / zero extension of the return value.
66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68 return false;
70 // Check if the only use is a function return node.
71 return isUsedByReturnOnly(Node, Chain);
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75 const uint32_t *CallerPreservedMask,
76 const SmallVectorImpl<CCValAssign> &ArgLocs,
77 const SmallVectorImpl<SDValue> &OutVals) const {
78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79 const CCValAssign &ArgLoc = ArgLocs[I];
80 if (!ArgLoc.isRegLoc())
81 continue;
82 Register Reg = ArgLoc.getLocReg();
83 // Only look at callee saved registers.
84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85 continue;
86 // Check that we pass the value used for the caller.
87 // (We look for a CopyFromReg reading a virtual register that is used
88 // for the function live-in value of register Reg)
89 SDValue Value = OutVals[I];
90 if (Value->getOpcode() != ISD::CopyFromReg)
91 return false;
92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94 return false;
96 return true;
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
102 unsigned ArgIdx) {
103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
113 Alignment = Call->getParamAlignment(ArgIdx);
114 ByValType = nullptr;
115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
116 ByValType = Call->getParamByValType(ArgIdx);
119 /// Generate a libcall taking the given operands as arguments and returning a
120 /// result of type RetVT.
121 std::pair<SDValue, SDValue>
122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
123 ArrayRef<SDValue> Ops,
124 MakeLibCallOptions CallOptions,
125 const SDLoc &dl) const {
126 TargetLowering::ArgListTy Args;
127 Args.reserve(Ops.size());
129 TargetLowering::ArgListEntry Entry;
130 for (unsigned i = 0; i < Ops.size(); ++i) {
131 SDValue NewOp = Ops[i];
132 Entry.Node = NewOp;
133 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
134 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
135 CallOptions.IsSExt);
136 Entry.IsZExt = !Entry.IsSExt;
138 if (CallOptions.IsSoften &&
139 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
140 Entry.IsSExt = Entry.IsZExt = false;
142 Args.push_back(Entry);
145 if (LC == RTLIB::UNKNOWN_LIBCALL)
146 report_fatal_error("Unsupported library call operation!");
147 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
148 getPointerTy(DAG.getDataLayout()));
150 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
151 TargetLowering::CallLoweringInfo CLI(DAG);
152 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
153 bool zeroExtend = !signExtend;
155 if (CallOptions.IsSoften &&
156 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
157 signExtend = zeroExtend = false;
160 CLI.setDebugLoc(dl)
161 .setChain(DAG.getEntryNode())
162 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
163 .setNoReturn(CallOptions.DoesNotReturn)
164 .setDiscardResult(!CallOptions.IsReturnValueUsed)
165 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
166 .setSExtResult(signExtend)
167 .setZExtResult(zeroExtend);
168 return LowerCallTo(CLI);
171 bool
172 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
173 unsigned Limit, uint64_t Size,
174 unsigned DstAlign, unsigned SrcAlign,
175 bool IsMemset,
176 bool ZeroMemset,
177 bool MemcpyStrSrc,
178 bool AllowOverlap,
179 unsigned DstAS, unsigned SrcAS,
180 const AttributeList &FuncAttributes) const {
181 // If 'SrcAlign' is zero, that means the memory operation does not need to
182 // load the value, i.e. memset or memcpy from constant string. Otherwise,
183 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
184 // is the specified alignment of the memory operation. If it is zero, that
185 // means it's possible to change the alignment of the destination.
186 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
187 // not need to be loaded.
188 if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
189 return false;
191 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
192 IsMemset, ZeroMemset, MemcpyStrSrc,
193 FuncAttributes);
195 if (VT == MVT::Other) {
196 // Use the largest integer type whose alignment constraints are satisfied.
197 // We only need to check DstAlign here as SrcAlign is always greater or
198 // equal to DstAlign (or zero).
199 VT = MVT::i64;
200 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
201 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
202 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
203 assert(VT.isInteger());
205 // Find the largest legal integer type.
206 MVT LVT = MVT::i64;
207 while (!isTypeLegal(LVT))
208 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
209 assert(LVT.isInteger());
211 // If the type we've chosen is larger than the largest legal integer type
212 // then use that instead.
213 if (VT.bitsGT(LVT))
214 VT = LVT;
217 unsigned NumMemOps = 0;
218 while (Size != 0) {
219 unsigned VTSize = VT.getSizeInBits() / 8;
220 while (VTSize > Size) {
221 // For now, only use non-vector load / store's for the left-over pieces.
222 EVT NewVT = VT;
223 unsigned NewVTSize;
225 bool Found = false;
226 if (VT.isVector() || VT.isFloatingPoint()) {
227 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
228 if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
229 isSafeMemOpType(NewVT.getSimpleVT()))
230 Found = true;
231 else if (NewVT == MVT::i64 &&
232 isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
233 isSafeMemOpType(MVT::f64)) {
234 // i64 is usually not legal on 32-bit targets, but f64 may be.
235 NewVT = MVT::f64;
236 Found = true;
240 if (!Found) {
241 do {
242 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
243 if (NewVT == MVT::i8)
244 break;
245 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
247 NewVTSize = NewVT.getSizeInBits() / 8;
249 // If the new VT cannot cover all of the remaining bits, then consider
250 // issuing a (or a pair of) unaligned and overlapping load / store.
251 bool Fast;
252 if (NumMemOps && AllowOverlap && NewVTSize < Size &&
253 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
254 MachineMemOperand::MONone, &Fast) &&
255 Fast)
256 VTSize = Size;
257 else {
258 VT = NewVT;
259 VTSize = NewVTSize;
263 if (++NumMemOps > Limit)
264 return false;
266 MemOps.push_back(VT);
267 Size -= VTSize;
270 return true;
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276 SDValue &NewLHS, SDValue &NewRHS,
277 ISD::CondCode &CCCode,
278 const SDLoc &dl, const SDValue OldLHS,
279 const SDValue OldRHS) const {
280 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
281 && "Unsupported setcc type!");
283 // Expand into one or more soft-fp libcall(s).
284 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
285 bool ShouldInvertCC = false;
286 switch (CCCode) {
287 case ISD::SETEQ:
288 case ISD::SETOEQ:
289 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
290 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
291 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
292 break;
293 case ISD::SETNE:
294 case ISD::SETUNE:
295 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
296 (VT == MVT::f64) ? RTLIB::UNE_F64 :
297 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
298 break;
299 case ISD::SETGE:
300 case ISD::SETOGE:
301 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
302 (VT == MVT::f64) ? RTLIB::OGE_F64 :
303 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
304 break;
305 case ISD::SETLT:
306 case ISD::SETOLT:
307 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
308 (VT == MVT::f64) ? RTLIB::OLT_F64 :
309 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
310 break;
311 case ISD::SETLE:
312 case ISD::SETOLE:
313 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
314 (VT == MVT::f64) ? RTLIB::OLE_F64 :
315 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
316 break;
317 case ISD::SETGT:
318 case ISD::SETOGT:
319 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
320 (VT == MVT::f64) ? RTLIB::OGT_F64 :
321 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
322 break;
323 case ISD::SETUO:
324 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
325 (VT == MVT::f64) ? RTLIB::UO_F64 :
326 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
327 break;
328 case ISD::SETO:
329 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
330 (VT == MVT::f64) ? RTLIB::O_F64 :
331 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
332 break;
333 case ISD::SETONE:
334 // SETONE = SETOLT | SETOGT
335 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
336 (VT == MVT::f64) ? RTLIB::OLT_F64 :
337 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
338 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
339 (VT == MVT::f64) ? RTLIB::OGT_F64 :
340 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
341 break;
342 case ISD::SETUEQ:
343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344 (VT == MVT::f64) ? RTLIB::UO_F64 :
345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
347 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
348 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
349 break;
350 default:
351 // Invert CC for unordered comparisons
352 ShouldInvertCC = true;
353 switch (CCCode) {
354 case ISD::SETULT:
355 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
356 (VT == MVT::f64) ? RTLIB::OGE_F64 :
357 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
358 break;
359 case ISD::SETULE:
360 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
361 (VT == MVT::f64) ? RTLIB::OGT_F64 :
362 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
363 break;
364 case ISD::SETUGT:
365 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
366 (VT == MVT::f64) ? RTLIB::OLE_F64 :
367 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
368 break;
369 case ISD::SETUGE:
370 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
371 (VT == MVT::f64) ? RTLIB::OLT_F64 :
372 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
373 break;
374 default: llvm_unreachable("Do not know how to soften this setcc!");
378 // Use the target specific return value for comparions lib calls.
379 EVT RetVT = getCmpLibcallReturnType();
380 SDValue Ops[2] = {NewLHS, NewRHS};
381 TargetLowering::MakeLibCallOptions CallOptions;
382 EVT OpsVT[2] = { OldLHS.getValueType(),
383 OldRHS.getValueType() };
384 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
385 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first;
386 NewRHS = DAG.getConstant(0, dl, RetVT);
388 CCCode = getCmpLibcallCC(LC1);
389 if (ShouldInvertCC)
390 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
392 if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
393 SDValue Tmp = DAG.getNode(
394 ISD::SETCC, dl,
395 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
396 NewLHS, NewRHS, DAG.getCondCode(CCCode));
397 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first;
398 NewLHS = DAG.getNode(
399 ISD::SETCC, dl,
400 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
401 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
402 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
403 NewRHS = SDValue();
407 /// Return the entry encoding for a jump table in the current function. The
408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
409 unsigned TargetLowering::getJumpTableEncoding() const {
410 // In non-pic modes, just use the address of a block.
411 if (!isPositionIndependent())
412 return MachineJumpTableInfo::EK_BlockAddress;
414 // In PIC mode, if the target supports a GPRel32 directive, use it.
415 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
416 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
418 // Otherwise, use a label difference.
419 return MachineJumpTableInfo::EK_LabelDifference32;
422 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
423 SelectionDAG &DAG) const {
424 // If our PIC model is GP relative, use the global offset table as the base.
425 unsigned JTEncoding = getJumpTableEncoding();
427 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
428 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
429 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
431 return Table;
434 /// This returns the relocation base for the given PIC jumptable, the same as
435 /// getPICJumpTableRelocBase, but as an MCExpr.
436 const MCExpr *
437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
438 unsigned JTI,MCContext &Ctx) const{
439 // The normal PIC reloc base is the label at the start of the jump table.
440 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
443 bool
444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
445 const TargetMachine &TM = getTargetMachine();
446 const GlobalValue *GV = GA->getGlobal();
448 // If the address is not even local to this DSO we will have to load it from
449 // a got and then add the offset.
450 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
451 return false;
453 // If the code is position independent we will have to add a base register.
454 if (isPositionIndependent())
455 return false;
457 // Otherwise we can do it.
458 return true;
461 //===----------------------------------------------------------------------===//
462 // Optimization Methods
463 //===----------------------------------------------------------------------===//
465 /// If the specified instruction has a constant integer operand and there are
466 /// bits set in that constant that are not demanded, then clear those bits and
467 /// return true.
468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
469 TargetLoweringOpt &TLO) const {
470 SDLoc DL(Op);
471 unsigned Opcode = Op.getOpcode();
473 // Do target-specific constant optimization.
474 if (targetShrinkDemandedConstant(Op, Demanded, TLO))
475 return TLO.New.getNode();
477 // FIXME: ISD::SELECT, ISD::SELECT_CC
478 switch (Opcode) {
479 default:
480 break;
481 case ISD::XOR:
482 case ISD::AND:
483 case ISD::OR: {
484 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
485 if (!Op1C)
486 return false;
488 // If this is a 'not' op, don't touch it because that's a canonical form.
489 const APInt &C = Op1C->getAPIntValue();
490 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
491 return false;
493 if (!C.isSubsetOf(Demanded)) {
494 EVT VT = Op.getValueType();
495 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
496 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
497 return TLO.CombineTo(Op, NewOp);
500 break;
504 return false;
507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
509 /// generalized for targets with other types of implicit widening casts.
510 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
511 const APInt &Demanded,
512 TargetLoweringOpt &TLO) const {
513 assert(Op.getNumOperands() == 2 &&
514 "ShrinkDemandedOp only supports binary operators!");
515 assert(Op.getNode()->getNumValues() == 1 &&
516 "ShrinkDemandedOp only supports nodes with one result!");
518 SelectionDAG &DAG = TLO.DAG;
519 SDLoc dl(Op);
521 // Early return, as this function cannot handle vector types.
522 if (Op.getValueType().isVector())
523 return false;
525 // Don't do this if the node has another user, which may require the
526 // full value.
527 if (!Op.getNode()->hasOneUse())
528 return false;
530 // Search for the smallest integer type with free casts to and from
531 // Op's type. For expedience, just check power-of-2 integer types.
532 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
533 unsigned DemandedSize = Demanded.getActiveBits();
534 unsigned SmallVTBits = DemandedSize;
535 if (!isPowerOf2_32(SmallVTBits))
536 SmallVTBits = NextPowerOf2(SmallVTBits);
537 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
538 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
539 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
540 TLI.isZExtFree(SmallVT, Op.getValueType())) {
541 // We found a type with free casts.
542 SDValue X = DAG.getNode(
543 Op.getOpcode(), dl, SmallVT,
544 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
545 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
546 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
547 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
548 return TLO.CombineTo(Op, Z);
551 return false;
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555 DAGCombinerInfo &DCI) const {
556 SelectionDAG &DAG = DCI.DAG;
557 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
558 !DCI.isBeforeLegalizeOps());
559 KnownBits Known;
561 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
562 if (Simplified) {
563 DCI.AddToWorklist(Op.getNode());
564 DCI.CommitTargetLoweringOpt(TLO);
566 return Simplified;
569 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
570 KnownBits &Known,
571 TargetLoweringOpt &TLO,
572 unsigned Depth,
573 bool AssumeSingleUse) const {
574 EVT VT = Op.getValueType();
575 APInt DemandedElts = VT.isVector()
576 ? APInt::getAllOnesValue(VT.getVectorNumElements())
577 : APInt(1, 1);
578 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
579 AssumeSingleUse);
582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
583 // TODO: Under what circumstances can we create nodes? Constant folding?
584 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
585 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
586 SelectionDAG &DAG, unsigned Depth) const {
587 // Limit search depth.
588 if (Depth >= SelectionDAG::MaxRecursionDepth)
589 return SDValue();
591 // Ignore UNDEFs.
592 if (Op.isUndef())
593 return SDValue();
595 // Not demanding any bits/elts from Op.
596 if (DemandedBits == 0 || DemandedElts == 0)
597 return DAG.getUNDEF(Op.getValueType());
599 unsigned NumElts = DemandedElts.getBitWidth();
600 KnownBits LHSKnown, RHSKnown;
601 switch (Op.getOpcode()) {
602 case ISD::BITCAST: {
603 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
604 EVT SrcVT = Src.getValueType();
605 EVT DstVT = Op.getValueType();
606 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
607 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
609 if (NumSrcEltBits == NumDstEltBits)
610 if (SDValue V = SimplifyMultipleUseDemandedBits(
611 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
612 return DAG.getBitcast(DstVT, V);
614 // TODO - bigendian once we have test coverage.
615 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
616 DAG.getDataLayout().isLittleEndian()) {
617 unsigned Scale = NumDstEltBits / NumSrcEltBits;
618 unsigned NumSrcElts = SrcVT.getVectorNumElements();
619 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
620 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
621 for (unsigned i = 0; i != Scale; ++i) {
622 unsigned Offset = i * NumSrcEltBits;
623 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
624 if (!Sub.isNullValue()) {
625 DemandedSrcBits |= Sub;
626 for (unsigned j = 0; j != NumElts; ++j)
627 if (DemandedElts[j])
628 DemandedSrcElts.setBit((j * Scale) + i);
632 if (SDValue V = SimplifyMultipleUseDemandedBits(
633 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
634 return DAG.getBitcast(DstVT, V);
637 // TODO - bigendian once we have test coverage.
638 if ((NumSrcEltBits % NumDstEltBits) == 0 &&
639 DAG.getDataLayout().isLittleEndian()) {
640 unsigned Scale = NumSrcEltBits / NumDstEltBits;
641 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
642 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
643 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
644 for (unsigned i = 0; i != NumElts; ++i)
645 if (DemandedElts[i]) {
646 unsigned Offset = (i % Scale) * NumDstEltBits;
647 DemandedSrcBits.insertBits(DemandedBits, Offset);
648 DemandedSrcElts.setBit(i / Scale);
651 if (SDValue V = SimplifyMultipleUseDemandedBits(
652 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
653 return DAG.getBitcast(DstVT, V);
656 break;
658 case ISD::AND: {
659 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
660 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
662 // If all of the demanded bits are known 1 on one side, return the other.
663 // These bits cannot contribute to the result of the 'and' in this
664 // context.
665 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
666 return Op.getOperand(0);
667 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
668 return Op.getOperand(1);
669 break;
671 case ISD::OR: {
672 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
673 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 // If all of the demanded bits are known zero on one side, return the
676 // other. These bits cannot contribute to the result of the 'or' in this
677 // context.
678 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
679 return Op.getOperand(0);
680 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
681 return Op.getOperand(1);
682 break;
684 case ISD::XOR: {
685 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
686 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 // If all of the demanded bits are known zero on one side, return the
689 // other.
690 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
691 return Op.getOperand(0);
692 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
693 return Op.getOperand(1);
694 break;
696 case ISD::SIGN_EXTEND_INREG: {
697 // If none of the extended bits are demanded, eliminate the sextinreg.
698 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
699 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
700 return Op.getOperand(0);
701 break;
703 case ISD::INSERT_VECTOR_ELT: {
704 // If we don't demand the inserted element, return the base vector.
705 SDValue Vec = Op.getOperand(0);
706 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
707 EVT VecVT = Vec.getValueType();
708 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
709 !DemandedElts[CIdx->getZExtValue()])
710 return Vec;
711 break;
713 case ISD::VECTOR_SHUFFLE: {
714 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
716 // If all the demanded elts are from one operand and are inline,
717 // then we can use the operand directly.
718 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
719 for (unsigned i = 0; i != NumElts; ++i) {
720 int M = ShuffleMask[i];
721 if (M < 0 || !DemandedElts[i])
722 continue;
723 AllUndef = false;
724 IdentityLHS &= (M == (int)i);
725 IdentityRHS &= ((M - NumElts) == i);
728 if (AllUndef)
729 return DAG.getUNDEF(Op.getValueType());
730 if (IdentityLHS)
731 return Op.getOperand(0);
732 if (IdentityRHS)
733 return Op.getOperand(1);
734 break;
736 default:
737 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
738 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
739 Op, DemandedBits, DemandedElts, DAG, Depth))
740 return V;
741 break;
743 return SDValue();
746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
747 /// result of Op are ever used downstream. If we can use this information to
748 /// simplify Op, create a new simplified DAG node and return true, returning the
749 /// original and new nodes in Old and New. Otherwise, analyze the expression and
750 /// return a mask of Known bits for the expression (used to simplify the
751 /// caller). The Known bits may only be accurate for those bits in the
752 /// OriginalDemandedBits and OriginalDemandedElts.
753 bool TargetLowering::SimplifyDemandedBits(
754 SDValue Op, const APInt &OriginalDemandedBits,
755 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
756 unsigned Depth, bool AssumeSingleUse) const {
757 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
758 assert(Op.getScalarValueSizeInBits() == BitWidth &&
759 "Mask size mismatches value type size!");
761 unsigned NumElts = OriginalDemandedElts.getBitWidth();
762 assert((!Op.getValueType().isVector() ||
763 NumElts == Op.getValueType().getVectorNumElements()) &&
764 "Unexpected vector size");
766 APInt DemandedBits = OriginalDemandedBits;
767 APInt DemandedElts = OriginalDemandedElts;
768 SDLoc dl(Op);
769 auto &DL = TLO.DAG.getDataLayout();
771 // Don't know anything.
772 Known = KnownBits(BitWidth);
774 // Undef operand.
775 if (Op.isUndef())
776 return false;
778 if (Op.getOpcode() == ISD::Constant) {
779 // We know all of the bits for a constant!
780 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
781 Known.Zero = ~Known.One;
782 return false;
785 // Other users may use these bits.
786 EVT VT = Op.getValueType();
787 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
788 if (Depth != 0) {
789 // If not at the root, Just compute the Known bits to
790 // simplify things downstream.
791 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
792 return false;
794 // If this is the root being simplified, allow it to have multiple uses,
795 // just set the DemandedBits/Elts to all bits.
796 DemandedBits = APInt::getAllOnesValue(BitWidth);
797 DemandedElts = APInt::getAllOnesValue(NumElts);
798 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
799 // Not demanding any bits/elts from Op.
800 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
801 } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
802 // Limit search depth.
803 return false;
806 KnownBits Known2, KnownOut;
807 switch (Op.getOpcode()) {
808 case ISD::TargetConstant:
809 llvm_unreachable("Can't simplify this node");
810 case ISD::SCALAR_TO_VECTOR: {
811 if (!DemandedElts[0])
812 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
814 KnownBits SrcKnown;
815 SDValue Src = Op.getOperand(0);
816 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
817 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
818 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
819 return true;
820 Known = SrcKnown.zextOrTrunc(BitWidth, false);
821 break;
823 case ISD::BUILD_VECTOR:
824 // Collect the known bits that are shared by every demanded element.
825 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
826 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
827 return false; // Don't fall through, will infinitely loop.
828 case ISD::LOAD: {
829 LoadSDNode *LD = cast<LoadSDNode>(Op);
830 if (getTargetConstantFromLoad(LD)) {
831 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
832 return false; // Don't fall through, will infinitely loop.
834 break;
836 case ISD::INSERT_VECTOR_ELT: {
837 SDValue Vec = Op.getOperand(0);
838 SDValue Scl = Op.getOperand(1);
839 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
840 EVT VecVT = Vec.getValueType();
842 // If index isn't constant, assume we need all vector elements AND the
843 // inserted element.
844 APInt DemandedVecElts(DemandedElts);
845 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
846 unsigned Idx = CIdx->getZExtValue();
847 DemandedVecElts.clearBit(Idx);
849 // Inserted element is not required.
850 if (!DemandedElts[Idx])
851 return TLO.CombineTo(Op, Vec);
854 KnownBits KnownScl;
855 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
856 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
857 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
858 return true;
860 Known = KnownScl.zextOrTrunc(BitWidth, false);
862 KnownBits KnownVec;
863 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
864 Depth + 1))
865 return true;
867 if (!!DemandedVecElts) {
868 Known.One &= KnownVec.One;
869 Known.Zero &= KnownVec.Zero;
872 return false;
874 case ISD::INSERT_SUBVECTOR: {
875 SDValue Base = Op.getOperand(0);
876 SDValue Sub = Op.getOperand(1);
877 EVT SubVT = Sub.getValueType();
878 unsigned NumSubElts = SubVT.getVectorNumElements();
880 // If index isn't constant, assume we need the original demanded base
881 // elements and ALL the inserted subvector elements.
882 APInt BaseElts = DemandedElts;
883 APInt SubElts = APInt::getAllOnesValue(NumSubElts);
884 if (isa<ConstantSDNode>(Op.getOperand(2))) {
885 const APInt &Idx = Op.getConstantOperandAPInt(2);
886 if (Idx.ule(NumElts - NumSubElts)) {
887 unsigned SubIdx = Idx.getZExtValue();
888 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
889 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
893 KnownBits KnownSub, KnownBase;
894 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
895 Depth + 1))
896 return true;
897 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
898 Depth + 1))
899 return true;
901 Known.Zero.setAllBits();
902 Known.One.setAllBits();
903 if (!!SubElts) {
904 Known.One &= KnownSub.One;
905 Known.Zero &= KnownSub.Zero;
907 if (!!BaseElts) {
908 Known.One &= KnownBase.One;
909 Known.Zero &= KnownBase.Zero;
911 break;
913 case ISD::EXTRACT_SUBVECTOR: {
914 // If index isn't constant, assume we need all the source vector elements.
915 SDValue Src = Op.getOperand(0);
916 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
917 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
918 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
919 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
920 // Offset the demanded elts by the subvector index.
921 uint64_t Idx = SubIdx->getZExtValue();
922 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
924 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
925 return true;
926 break;
928 case ISD::CONCAT_VECTORS: {
929 Known.Zero.setAllBits();
930 Known.One.setAllBits();
931 EVT SubVT = Op.getOperand(0).getValueType();
932 unsigned NumSubVecs = Op.getNumOperands();
933 unsigned NumSubElts = SubVT.getVectorNumElements();
934 for (unsigned i = 0; i != NumSubVecs; ++i) {
935 APInt DemandedSubElts =
936 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
937 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
938 Known2, TLO, Depth + 1))
939 return true;
940 // Known bits are shared by every demanded subvector element.
941 if (!!DemandedSubElts) {
942 Known.One &= Known2.One;
943 Known.Zero &= Known2.Zero;
946 break;
948 case ISD::VECTOR_SHUFFLE: {
949 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
951 // Collect demanded elements from shuffle operands..
952 APInt DemandedLHS(NumElts, 0);
953 APInt DemandedRHS(NumElts, 0);
954 for (unsigned i = 0; i != NumElts; ++i) {
955 if (!DemandedElts[i])
956 continue;
957 int M = ShuffleMask[i];
958 if (M < 0) {
959 // For UNDEF elements, we don't know anything about the common state of
960 // the shuffle result.
961 DemandedLHS.clearAllBits();
962 DemandedRHS.clearAllBits();
963 break;
965 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
966 if (M < (int)NumElts)
967 DemandedLHS.setBit(M);
968 else
969 DemandedRHS.setBit(M - NumElts);
972 if (!!DemandedLHS || !!DemandedRHS) {
973 SDValue Op0 = Op.getOperand(0);
974 SDValue Op1 = Op.getOperand(1);
976 Known.Zero.setAllBits();
977 Known.One.setAllBits();
978 if (!!DemandedLHS) {
979 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
980 Depth + 1))
981 return true;
982 Known.One &= Known2.One;
983 Known.Zero &= Known2.Zero;
985 if (!!DemandedRHS) {
986 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
987 Depth + 1))
988 return true;
989 Known.One &= Known2.One;
990 Known.Zero &= Known2.Zero;
993 // Attempt to avoid multi-use ops if we don't need anything from them.
994 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
995 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
996 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
997 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
998 if (DemandedOp0 || DemandedOp1) {
999 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1000 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1001 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1002 return TLO.CombineTo(Op, NewOp);
1005 break;
1007 case ISD::AND: {
1008 SDValue Op0 = Op.getOperand(0);
1009 SDValue Op1 = Op.getOperand(1);
1011 // If the RHS is a constant, check to see if the LHS would be zero without
1012 // using the bits from the RHS. Below, we use knowledge about the RHS to
1013 // simplify the LHS, here we're using information from the LHS to simplify
1014 // the RHS.
1015 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1016 // Do not increment Depth here; that can cause an infinite loop.
1017 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1018 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1019 if ((LHSKnown.Zero & DemandedBits) ==
1020 (~RHSC->getAPIntValue() & DemandedBits))
1021 return TLO.CombineTo(Op, Op0);
1023 // If any of the set bits in the RHS are known zero on the LHS, shrink
1024 // the constant.
1025 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1026 return true;
1028 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1029 // constant, but if this 'and' is only clearing bits that were just set by
1030 // the xor, then this 'and' can be eliminated by shrinking the mask of
1031 // the xor. For example, for a 32-bit X:
1032 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1033 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1034 LHSKnown.One == ~RHSC->getAPIntValue()) {
1035 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1036 return TLO.CombineTo(Op, Xor);
1040 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1041 Depth + 1))
1042 return true;
1043 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1044 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1045 Known2, TLO, Depth + 1))
1046 return true;
1047 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1049 // Attempt to avoid multi-use ops if we don't need anything from them.
1050 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1051 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1052 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1053 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1054 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1055 if (DemandedOp0 || DemandedOp1) {
1056 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1057 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1058 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1059 return TLO.CombineTo(Op, NewOp);
1063 // If all of the demanded bits are known one on one side, return the other.
1064 // These bits cannot contribute to the result of the 'and'.
1065 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1066 return TLO.CombineTo(Op, Op0);
1067 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1068 return TLO.CombineTo(Op, Op1);
1069 // If all of the demanded bits in the inputs are known zeros, return zero.
1070 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1071 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1072 // If the RHS is a constant, see if we can simplify it.
1073 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1074 return true;
1075 // If the operation can be done in a smaller type, do so.
1076 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1077 return true;
1079 // Output known-1 bits are only known if set in both the LHS & RHS.
1080 Known.One &= Known2.One;
1081 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1082 Known.Zero |= Known2.Zero;
1083 break;
1085 case ISD::OR: {
1086 SDValue Op0 = Op.getOperand(0);
1087 SDValue Op1 = Op.getOperand(1);
1089 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1090 Depth + 1))
1091 return true;
1092 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1093 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1094 Known2, TLO, Depth + 1))
1095 return true;
1096 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1098 // Attempt to avoid multi-use ops if we don't need anything from them.
1099 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1100 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1101 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1102 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1103 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1104 if (DemandedOp0 || DemandedOp1) {
1105 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1106 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1107 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1108 return TLO.CombineTo(Op, NewOp);
1112 // If all of the demanded bits are known zero on one side, return the other.
1113 // These bits cannot contribute to the result of the 'or'.
1114 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1115 return TLO.CombineTo(Op, Op0);
1116 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1117 return TLO.CombineTo(Op, Op1);
1118 // If the RHS is a constant, see if we can simplify it.
1119 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1120 return true;
1121 // If the operation can be done in a smaller type, do so.
1122 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1123 return true;
1125 // Output known-0 bits are only known if clear in both the LHS & RHS.
1126 Known.Zero &= Known2.Zero;
1127 // Output known-1 are known to be set if set in either the LHS | RHS.
1128 Known.One |= Known2.One;
1129 break;
1131 case ISD::XOR: {
1132 SDValue Op0 = Op.getOperand(0);
1133 SDValue Op1 = Op.getOperand(1);
1135 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1136 Depth + 1))
1137 return true;
1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1140 Depth + 1))
1141 return true;
1142 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1144 // Attempt to avoid multi-use ops if we don't need anything from them.
1145 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1146 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1147 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1148 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1149 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150 if (DemandedOp0 || DemandedOp1) {
1151 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1152 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1153 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1154 return TLO.CombineTo(Op, NewOp);
1158 // If all of the demanded bits are known zero on one side, return the other.
1159 // These bits cannot contribute to the result of the 'xor'.
1160 if (DemandedBits.isSubsetOf(Known.Zero))
1161 return TLO.CombineTo(Op, Op0);
1162 if (DemandedBits.isSubsetOf(Known2.Zero))
1163 return TLO.CombineTo(Op, Op1);
1164 // If the operation can be done in a smaller type, do so.
1165 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1166 return true;
1168 // If all of the unknown bits are known to be zero on one side or the other
1169 // (but not both) turn this into an *inclusive* or.
1170 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1171 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1172 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1174 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1175 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1176 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1177 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1179 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1180 // If one side is a constant, and all of the known set bits on the other
1181 // side are also set in the constant, turn this into an AND, as we know
1182 // the bits will be cleared.
1183 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1184 // NB: it is okay if more bits are known than are requested
1185 if (C->getAPIntValue() == Known2.One) {
1186 SDValue ANDC =
1187 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1188 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1191 // If the RHS is a constant, see if we can change it. Don't alter a -1
1192 // constant because that's a 'not' op, and that is better for combining
1193 // and codegen.
1194 if (!C->isAllOnesValue()) {
1195 if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1196 // We're flipping all demanded bits. Flip the undemanded bits too.
1197 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1198 return TLO.CombineTo(Op, New);
1200 // If we can't turn this into a 'not', try to shrink the constant.
1201 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1202 return true;
1206 Known = std::move(KnownOut);
1207 break;
1209 case ISD::SELECT:
1210 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1211 Depth + 1))
1212 return true;
1213 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1214 Depth + 1))
1215 return true;
1216 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1217 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1219 // If the operands are constants, see if we can simplify them.
1220 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1221 return true;
1223 // Only known if known in both the LHS and RHS.
1224 Known.One &= Known2.One;
1225 Known.Zero &= Known2.Zero;
1226 break;
1227 case ISD::SELECT_CC:
1228 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1229 Depth + 1))
1230 return true;
1231 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1232 Depth + 1))
1233 return true;
1234 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1235 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1237 // If the operands are constants, see if we can simplify them.
1238 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1239 return true;
1241 // Only known if known in both the LHS and RHS.
1242 Known.One &= Known2.One;
1243 Known.Zero &= Known2.Zero;
1244 break;
1245 case ISD::SETCC: {
1246 SDValue Op0 = Op.getOperand(0);
1247 SDValue Op1 = Op.getOperand(1);
1248 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1249 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1250 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1251 // -1, we may be able to bypass the setcc.
1252 if (DemandedBits.isSignMask() &&
1253 Op0.getScalarValueSizeInBits() == BitWidth &&
1254 getBooleanContents(VT) ==
1255 BooleanContent::ZeroOrNegativeOneBooleanContent) {
1256 // If we're testing X < 0, then this compare isn't needed - just use X!
1257 // FIXME: We're limiting to integer types here, but this should also work
1258 // if we don't care about FP signed-zero. The use of SETLT with FP means
1259 // that we don't care about NaNs.
1260 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1261 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1262 return TLO.CombineTo(Op, Op0);
1264 // TODO: Should we check for other forms of sign-bit comparisons?
1265 // Examples: X <= -1, X >= 0
1267 if (getBooleanContents(Op0.getValueType()) ==
1268 TargetLowering::ZeroOrOneBooleanContent &&
1269 BitWidth > 1)
1270 Known.Zero.setBitsFrom(1);
1271 break;
1273 case ISD::SHL: {
1274 SDValue Op0 = Op.getOperand(0);
1275 SDValue Op1 = Op.getOperand(1);
1277 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1278 // If the shift count is an invalid immediate, don't do anything.
1279 if (SA->getAPIntValue().uge(BitWidth))
1280 break;
1282 unsigned ShAmt = SA->getZExtValue();
1283 if (ShAmt == 0)
1284 return TLO.CombineTo(Op, Op0);
1286 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1287 // single shift. We can do this if the bottom bits (which are shifted
1288 // out) are never demanded.
1289 // TODO - support non-uniform vector amounts.
1290 if (Op0.getOpcode() == ISD::SRL) {
1291 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1292 if (ConstantSDNode *SA2 =
1293 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1294 if (SA2->getAPIntValue().ult(BitWidth)) {
1295 unsigned C1 = SA2->getZExtValue();
1296 unsigned Opc = ISD::SHL;
1297 int Diff = ShAmt - C1;
1298 if (Diff < 0) {
1299 Diff = -Diff;
1300 Opc = ISD::SRL;
1303 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1304 return TLO.CombineTo(
1305 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1311 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1312 Known, TLO, Depth + 1))
1313 return true;
1315 // Try shrinking the operation as long as the shift amount will still be
1316 // in range.
1317 if ((ShAmt < DemandedBits.getActiveBits()) &&
1318 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1319 return true;
1321 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1322 // are not demanded. This will likely allow the anyext to be folded away.
1323 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1324 SDValue InnerOp = Op0.getOperand(0);
1325 EVT InnerVT = InnerOp.getValueType();
1326 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1327 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1328 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1329 EVT ShTy = getShiftAmountTy(InnerVT, DL);
1330 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1331 ShTy = InnerVT;
1332 SDValue NarrowShl =
1333 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1334 TLO.DAG.getConstant(ShAmt, dl, ShTy));
1335 return TLO.CombineTo(
1336 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1338 // Repeat the SHL optimization above in cases where an extension
1339 // intervenes: (shl (anyext (shr x, c1)), c2) to
1340 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1341 // aren't demanded (as above) and that the shifted upper c1 bits of
1342 // x aren't demanded.
1343 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1344 InnerOp.hasOneUse()) {
1345 if (ConstantSDNode *SA2 =
1346 isConstOrConstSplat(InnerOp.getOperand(1))) {
1347 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1348 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1349 DemandedBits.getActiveBits() <=
1350 (InnerBits - InnerShAmt + ShAmt) &&
1351 DemandedBits.countTrailingZeros() >= ShAmt) {
1352 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1353 Op1.getValueType());
1354 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1355 InnerOp.getOperand(0));
1356 return TLO.CombineTo(
1357 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1363 Known.Zero <<= ShAmt;
1364 Known.One <<= ShAmt;
1365 // low bits known zero.
1366 Known.Zero.setLowBits(ShAmt);
1368 break;
1370 case ISD::SRL: {
1371 SDValue Op0 = Op.getOperand(0);
1372 SDValue Op1 = Op.getOperand(1);
1374 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1375 // If the shift count is an invalid immediate, don't do anything.
1376 if (SA->getAPIntValue().uge(BitWidth))
1377 break;
1379 unsigned ShAmt = SA->getZExtValue();
1380 if (ShAmt == 0)
1381 return TLO.CombineTo(Op, Op0);
1383 EVT ShiftVT = Op1.getValueType();
1384 APInt InDemandedMask = (DemandedBits << ShAmt);
1386 // If the shift is exact, then it does demand the low bits (and knows that
1387 // they are zero).
1388 if (Op->getFlags().hasExact())
1389 InDemandedMask.setLowBits(ShAmt);
1391 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1392 // single shift. We can do this if the top bits (which are shifted out)
1393 // are never demanded.
1394 // TODO - support non-uniform vector amounts.
1395 if (Op0.getOpcode() == ISD::SHL) {
1396 if (ConstantSDNode *SA2 =
1397 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1398 if (!DemandedBits.intersects(
1399 APInt::getHighBitsSet(BitWidth, ShAmt))) {
1400 if (SA2->getAPIntValue().ult(BitWidth)) {
1401 unsigned C1 = SA2->getZExtValue();
1402 unsigned Opc = ISD::SRL;
1403 int Diff = ShAmt - C1;
1404 if (Diff < 0) {
1405 Diff = -Diff;
1406 Opc = ISD::SHL;
1409 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1410 return TLO.CombineTo(
1411 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1417 // Compute the new bits that are at the top now.
1418 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1419 Depth + 1))
1420 return true;
1421 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1422 Known.Zero.lshrInPlace(ShAmt);
1423 Known.One.lshrInPlace(ShAmt);
1425 Known.Zero.setHighBits(ShAmt); // High bits known zero.
1427 break;
1429 case ISD::SRA: {
1430 SDValue Op0 = Op.getOperand(0);
1431 SDValue Op1 = Op.getOperand(1);
1433 // If this is an arithmetic shift right and only the low-bit is set, we can
1434 // always convert this into a logical shr, even if the shift amount is
1435 // variable. The low bit of the shift cannot be an input sign bit unless
1436 // the shift amount is >= the size of the datatype, which is undefined.
1437 if (DemandedBits.isOneValue())
1438 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1440 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1441 // If the shift count is an invalid immediate, don't do anything.
1442 if (SA->getAPIntValue().uge(BitWidth))
1443 break;
1445 unsigned ShAmt = SA->getZExtValue();
1446 if (ShAmt == 0)
1447 return TLO.CombineTo(Op, Op0);
1449 APInt InDemandedMask = (DemandedBits << ShAmt);
1451 // If the shift is exact, then it does demand the low bits (and knows that
1452 // they are zero).
1453 if (Op->getFlags().hasExact())
1454 InDemandedMask.setLowBits(ShAmt);
1456 // If any of the demanded bits are produced by the sign extension, we also
1457 // demand the input sign bit.
1458 if (DemandedBits.countLeadingZeros() < ShAmt)
1459 InDemandedMask.setSignBit();
1461 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1462 Depth + 1))
1463 return true;
1464 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1465 Known.Zero.lshrInPlace(ShAmt);
1466 Known.One.lshrInPlace(ShAmt);
1468 // If the input sign bit is known to be zero, or if none of the top bits
1469 // are demanded, turn this into an unsigned shift right.
1470 if (Known.Zero[BitWidth - ShAmt - 1] ||
1471 DemandedBits.countLeadingZeros() >= ShAmt) {
1472 SDNodeFlags Flags;
1473 Flags.setExact(Op->getFlags().hasExact());
1474 return TLO.CombineTo(
1475 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1478 int Log2 = DemandedBits.exactLogBase2();
1479 if (Log2 >= 0) {
1480 // The bit must come from the sign.
1481 SDValue NewSA =
1482 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1483 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1486 if (Known.One[BitWidth - ShAmt - 1])
1487 // New bits are known one.
1488 Known.One.setHighBits(ShAmt);
1490 break;
1492 case ISD::FSHL:
1493 case ISD::FSHR: {
1494 SDValue Op0 = Op.getOperand(0);
1495 SDValue Op1 = Op.getOperand(1);
1496 SDValue Op2 = Op.getOperand(2);
1497 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1499 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1500 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1502 // For fshl, 0-shift returns the 1st arg.
1503 // For fshr, 0-shift returns the 2nd arg.
1504 if (Amt == 0) {
1505 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1506 Known, TLO, Depth + 1))
1507 return true;
1508 break;
1511 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1512 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1513 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1514 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1515 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1516 Depth + 1))
1517 return true;
1518 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1519 Depth + 1))
1520 return true;
1522 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1523 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1524 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1525 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1526 Known.One |= Known2.One;
1527 Known.Zero |= Known2.Zero;
1529 break;
1531 case ISD::BITREVERSE: {
1532 SDValue Src = Op.getOperand(0);
1533 APInt DemandedSrcBits = DemandedBits.reverseBits();
1534 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1535 Depth + 1))
1536 return true;
1537 Known.One = Known2.One.reverseBits();
1538 Known.Zero = Known2.Zero.reverseBits();
1539 break;
1541 case ISD::SIGN_EXTEND_INREG: {
1542 SDValue Op0 = Op.getOperand(0);
1543 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1544 unsigned ExVTBits = ExVT.getScalarSizeInBits();
1546 // If we only care about the highest bit, don't bother shifting right.
1547 if (DemandedBits.isSignMask()) {
1548 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1549 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1550 // However if the input is already sign extended we expect the sign
1551 // extension to be dropped altogether later and do not simplify.
1552 if (!AlreadySignExtended) {
1553 // Compute the correct shift amount type, which must be getShiftAmountTy
1554 // for scalar types after legalization.
1555 EVT ShiftAmtTy = VT;
1556 if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1557 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1559 SDValue ShiftAmt =
1560 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1561 return TLO.CombineTo(Op,
1562 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1566 // If none of the extended bits are demanded, eliminate the sextinreg.
1567 if (DemandedBits.getActiveBits() <= ExVTBits)
1568 return TLO.CombineTo(Op, Op0);
1570 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1572 // Since the sign extended bits are demanded, we know that the sign
1573 // bit is demanded.
1574 InputDemandedBits.setBit(ExVTBits - 1);
1576 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1577 return true;
1578 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1580 // If the sign bit of the input is known set or clear, then we know the
1581 // top bits of the result.
1583 // If the input sign bit is known zero, convert this into a zero extension.
1584 if (Known.Zero[ExVTBits - 1])
1585 return TLO.CombineTo(
1586 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1588 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1589 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1590 Known.One.setBitsFrom(ExVTBits);
1591 Known.Zero &= Mask;
1592 } else { // Input sign bit unknown
1593 Known.Zero &= Mask;
1594 Known.One &= Mask;
1596 break;
1598 case ISD::BUILD_PAIR: {
1599 EVT HalfVT = Op.getOperand(0).getValueType();
1600 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1602 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1603 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1605 KnownBits KnownLo, KnownHi;
1607 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1608 return true;
1610 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1611 return true;
1613 Known.Zero = KnownLo.Zero.zext(BitWidth) |
1614 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1616 Known.One = KnownLo.One.zext(BitWidth) |
1617 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1618 break;
1620 case ISD::ZERO_EXTEND:
1621 case ISD::ZERO_EXTEND_VECTOR_INREG: {
1622 SDValue Src = Op.getOperand(0);
1623 EVT SrcVT = Src.getValueType();
1624 unsigned InBits = SrcVT.getScalarSizeInBits();
1625 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1626 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1628 // If none of the top bits are demanded, convert this into an any_extend.
1629 if (DemandedBits.getActiveBits() <= InBits) {
1630 // If we only need the non-extended bits of the bottom element
1631 // then we can just bitcast to the result.
1632 if (IsVecInReg && DemandedElts == 1 &&
1633 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1634 TLO.DAG.getDataLayout().isLittleEndian())
1635 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1637 unsigned Opc =
1638 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1639 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1640 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1643 APInt InDemandedBits = DemandedBits.trunc(InBits);
1644 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1645 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1646 Depth + 1))
1647 return true;
1648 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1649 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1650 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1651 break;
1653 case ISD::SIGN_EXTEND:
1654 case ISD::SIGN_EXTEND_VECTOR_INREG: {
1655 SDValue Src = Op.getOperand(0);
1656 EVT SrcVT = Src.getValueType();
1657 unsigned InBits = SrcVT.getScalarSizeInBits();
1658 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1659 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1661 // If none of the top bits are demanded, convert this into an any_extend.
1662 if (DemandedBits.getActiveBits() <= InBits) {
1663 // If we only need the non-extended bits of the bottom element
1664 // then we can just bitcast to the result.
1665 if (IsVecInReg && DemandedElts == 1 &&
1666 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1667 TLO.DAG.getDataLayout().isLittleEndian())
1668 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1670 unsigned Opc =
1671 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1672 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1673 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1676 APInt InDemandedBits = DemandedBits.trunc(InBits);
1677 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1679 // Since some of the sign extended bits are demanded, we know that the sign
1680 // bit is demanded.
1681 InDemandedBits.setBit(InBits - 1);
1683 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1684 Depth + 1))
1685 return true;
1686 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1687 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1689 // If the sign bit is known one, the top bits match.
1690 Known = Known.sext(BitWidth);
1692 // If the sign bit is known zero, convert this to a zero extend.
1693 if (Known.isNonNegative()) {
1694 unsigned Opc =
1695 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1696 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1697 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1699 break;
1701 case ISD::ANY_EXTEND:
1702 case ISD::ANY_EXTEND_VECTOR_INREG: {
1703 SDValue Src = Op.getOperand(0);
1704 EVT SrcVT = Src.getValueType();
1705 unsigned InBits = SrcVT.getScalarSizeInBits();
1706 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1707 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1709 // If we only need the bottom element then we can just bitcast.
1710 // TODO: Handle ANY_EXTEND?
1711 if (IsVecInReg && DemandedElts == 1 &&
1712 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1713 TLO.DAG.getDataLayout().isLittleEndian())
1714 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1716 APInt InDemandedBits = DemandedBits.trunc(InBits);
1717 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1718 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1719 Depth + 1))
1720 return true;
1721 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1722 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1723 Known = Known.zext(BitWidth, false /* => any extend */);
1724 break;
1726 case ISD::TRUNCATE: {
1727 SDValue Src = Op.getOperand(0);
1729 // Simplify the input, using demanded bit information, and compute the known
1730 // zero/one bits live out.
1731 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1732 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1733 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1734 return true;
1735 Known = Known.trunc(BitWidth);
1737 // Attempt to avoid multi-use ops if we don't need anything from them.
1738 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1739 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1740 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1742 // If the input is only used by this truncate, see if we can shrink it based
1743 // on the known demanded bits.
1744 if (Src.getNode()->hasOneUse()) {
1745 switch (Src.getOpcode()) {
1746 default:
1747 break;
1748 case ISD::SRL:
1749 // Shrink SRL by a constant if none of the high bits shifted in are
1750 // demanded.
1751 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1752 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1753 // undesirable.
1754 break;
1756 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1757 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1758 break;
1760 SDValue Shift = Src.getOperand(1);
1761 uint64_t ShVal = ShAmt->getZExtValue();
1763 if (TLO.LegalTypes())
1764 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1766 APInt HighBits =
1767 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1768 HighBits.lshrInPlace(ShVal);
1769 HighBits = HighBits.trunc(BitWidth);
1771 if (!(HighBits & DemandedBits)) {
1772 // None of the shifted in bits are needed. Add a truncate of the
1773 // shift input, then shift it.
1774 SDValue NewTrunc =
1775 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1776 return TLO.CombineTo(
1777 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1779 break;
1783 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1784 break;
1786 case ISD::AssertZext: {
1787 // AssertZext demands all of the high bits, plus any of the low bits
1788 // demanded by its users.
1789 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1790 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1791 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1792 TLO, Depth + 1))
1793 return true;
1794 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1796 Known.Zero |= ~InMask;
1797 break;
1799 case ISD::EXTRACT_VECTOR_ELT: {
1800 SDValue Src = Op.getOperand(0);
1801 SDValue Idx = Op.getOperand(1);
1802 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1803 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1805 // Demand the bits from every vector element without a constant index.
1806 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1807 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1808 if (CIdx->getAPIntValue().ult(NumSrcElts))
1809 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1811 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1812 // anything about the extended bits.
1813 APInt DemandedSrcBits = DemandedBits;
1814 if (BitWidth > EltBitWidth)
1815 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1817 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1818 Depth + 1))
1819 return true;
1821 Known = Known2;
1822 if (BitWidth > EltBitWidth)
1823 Known = Known.zext(BitWidth, false /* => any extend */);
1824 break;
1826 case ISD::BITCAST: {
1827 SDValue Src = Op.getOperand(0);
1828 EVT SrcVT = Src.getValueType();
1829 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1831 // If this is an FP->Int bitcast and if the sign bit is the only
1832 // thing demanded, turn this into a FGETSIGN.
1833 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1834 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1835 SrcVT.isFloatingPoint()) {
1836 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1837 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1838 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1839 SrcVT != MVT::f128) {
1840 // Cannot eliminate/lower SHL for f128 yet.
1841 EVT Ty = OpVTLegal ? VT : MVT::i32;
1842 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1843 // place. We expect the SHL to be eliminated by other optimizations.
1844 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1845 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1846 if (!OpVTLegal && OpVTSizeInBits > 32)
1847 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1848 unsigned ShVal = Op.getValueSizeInBits() - 1;
1849 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1850 return TLO.CombineTo(Op,
1851 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1855 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1856 // Demand the elt/bit if any of the original elts/bits are demanded.
1857 // TODO - bigendian once we have test coverage.
1858 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1859 TLO.DAG.getDataLayout().isLittleEndian()) {
1860 unsigned Scale = BitWidth / NumSrcEltBits;
1861 unsigned NumSrcElts = SrcVT.getVectorNumElements();
1862 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1863 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1864 for (unsigned i = 0; i != Scale; ++i) {
1865 unsigned Offset = i * NumSrcEltBits;
1866 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1867 if (!Sub.isNullValue()) {
1868 DemandedSrcBits |= Sub;
1869 for (unsigned j = 0; j != NumElts; ++j)
1870 if (DemandedElts[j])
1871 DemandedSrcElts.setBit((j * Scale) + i);
1875 APInt KnownSrcUndef, KnownSrcZero;
1876 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1877 KnownSrcZero, TLO, Depth + 1))
1878 return true;
1880 KnownBits KnownSrcBits;
1881 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1882 KnownSrcBits, TLO, Depth + 1))
1883 return true;
1884 } else if ((NumSrcEltBits % BitWidth) == 0 &&
1885 TLO.DAG.getDataLayout().isLittleEndian()) {
1886 unsigned Scale = NumSrcEltBits / BitWidth;
1887 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1888 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1889 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1890 for (unsigned i = 0; i != NumElts; ++i)
1891 if (DemandedElts[i]) {
1892 unsigned Offset = (i % Scale) * BitWidth;
1893 DemandedSrcBits.insertBits(DemandedBits, Offset);
1894 DemandedSrcElts.setBit(i / Scale);
1897 if (SrcVT.isVector()) {
1898 APInt KnownSrcUndef, KnownSrcZero;
1899 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1900 KnownSrcZero, TLO, Depth + 1))
1901 return true;
1904 KnownBits KnownSrcBits;
1905 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1906 KnownSrcBits, TLO, Depth + 1))
1907 return true;
1910 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
1911 // recursive call where Known may be useful to the caller.
1912 if (Depth > 0) {
1913 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1914 return false;
1916 break;
1918 case ISD::ADD:
1919 case ISD::MUL:
1920 case ISD::SUB: {
1921 // Add, Sub, and Mul don't demand any bits in positions beyond that
1922 // of the highest bit demanded of them.
1923 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1924 SDNodeFlags Flags = Op.getNode()->getFlags();
1925 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1926 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1927 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1928 Depth + 1) ||
1929 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1930 Depth + 1) ||
1931 // See if the operation should be performed at a smaller bit width.
1932 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1933 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1934 // Disable the nsw and nuw flags. We can no longer guarantee that we
1935 // won't wrap after simplification.
1936 Flags.setNoSignedWrap(false);
1937 Flags.setNoUnsignedWrap(false);
1938 SDValue NewOp =
1939 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1940 return TLO.CombineTo(Op, NewOp);
1942 return true;
1945 // Attempt to avoid multi-use ops if we don't need anything from them.
1946 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1947 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1948 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1949 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1950 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1951 if (DemandedOp0 || DemandedOp1) {
1952 Flags.setNoSignedWrap(false);
1953 Flags.setNoUnsignedWrap(false);
1954 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1955 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1956 SDValue NewOp =
1957 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1958 return TLO.CombineTo(Op, NewOp);
1962 // If we have a constant operand, we may be able to turn it into -1 if we
1963 // do not demand the high bits. This can make the constant smaller to
1964 // encode, allow more general folding, or match specialized instruction
1965 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1966 // is probably not useful (and could be detrimental).
1967 ConstantSDNode *C = isConstOrConstSplat(Op1);
1968 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1969 if (C && !C->isAllOnesValue() && !C->isOne() &&
1970 (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1971 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1972 // Disable the nsw and nuw flags. We can no longer guarantee that we
1973 // won't wrap after simplification.
1974 Flags.setNoSignedWrap(false);
1975 Flags.setNoUnsignedWrap(false);
1976 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1977 return TLO.CombineTo(Op, NewOp);
1980 LLVM_FALLTHROUGH;
1982 default:
1983 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1984 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1985 Known, TLO, Depth))
1986 return true;
1987 break;
1990 // Just use computeKnownBits to compute output bits.
1991 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1992 break;
1995 // If we know the value of all of the demanded bits, return this as a
1996 // constant.
1997 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1998 // Avoid folding to a constant if any OpaqueConstant is involved.
1999 const SDNode *N = Op.getNode();
2000 for (SDNodeIterator I = SDNodeIterator::begin(N),
2001 E = SDNodeIterator::end(N);
2002 I != E; ++I) {
2003 SDNode *Op = *I;
2004 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2005 if (C->isOpaque())
2006 return false;
2008 // TODO: Handle float bits as well.
2009 if (VT.isInteger())
2010 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2013 return false;
2016 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2017 const APInt &DemandedElts,
2018 APInt &KnownUndef,
2019 APInt &KnownZero,
2020 DAGCombinerInfo &DCI) const {
2021 SelectionDAG &DAG = DCI.DAG;
2022 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2023 !DCI.isBeforeLegalizeOps());
2025 bool Simplified =
2026 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2027 if (Simplified) {
2028 DCI.AddToWorklist(Op.getNode());
2029 DCI.CommitTargetLoweringOpt(TLO);
2032 return Simplified;
2035 /// Given a vector binary operation and known undefined elements for each input
2036 /// operand, compute whether each element of the output is undefined.
2037 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2038 const APInt &UndefOp0,
2039 const APInt &UndefOp1) {
2040 EVT VT = BO.getValueType();
2041 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2042 "Vector binop only");
2044 EVT EltVT = VT.getVectorElementType();
2045 unsigned NumElts = VT.getVectorNumElements();
2046 assert(UndefOp0.getBitWidth() == NumElts &&
2047 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2049 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2050 const APInt &UndefVals) {
2051 if (UndefVals[Index])
2052 return DAG.getUNDEF(EltVT);
2054 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2055 // Try hard to make sure that the getNode() call is not creating temporary
2056 // nodes. Ignore opaque integers because they do not constant fold.
2057 SDValue Elt = BV->getOperand(Index);
2058 auto *C = dyn_cast<ConstantSDNode>(Elt);
2059 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2060 return Elt;
2063 return SDValue();
2066 APInt KnownUndef = APInt::getNullValue(NumElts);
2067 for (unsigned i = 0; i != NumElts; ++i) {
2068 // If both inputs for this element are either constant or undef and match
2069 // the element type, compute the constant/undef result for this element of
2070 // the vector.
2071 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2072 // not handle FP constants. The code within getNode() should be refactored
2073 // to avoid the danger of creating a bogus temporary node here.
2074 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2075 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2076 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2077 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2078 KnownUndef.setBit(i);
2080 return KnownUndef;
2083 bool TargetLowering::SimplifyDemandedVectorElts(
2084 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2085 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2086 bool AssumeSingleUse) const {
2087 EVT VT = Op.getValueType();
2088 APInt DemandedElts = OriginalDemandedElts;
2089 unsigned NumElts = DemandedElts.getBitWidth();
2090 assert(VT.isVector() && "Expected vector op");
2091 assert(VT.getVectorNumElements() == NumElts &&
2092 "Mask size mismatches value type element count!");
2094 KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2096 // Undef operand.
2097 if (Op.isUndef()) {
2098 KnownUndef.setAllBits();
2099 return false;
2102 // If Op has other users, assume that all elements are needed.
2103 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2104 DemandedElts.setAllBits();
2106 // Not demanding any elements from Op.
2107 if (DemandedElts == 0) {
2108 KnownUndef.setAllBits();
2109 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2112 // Limit search depth.
2113 if (Depth >= SelectionDAG::MaxRecursionDepth)
2114 return false;
2116 SDLoc DL(Op);
2117 unsigned EltSizeInBits = VT.getScalarSizeInBits();
2119 switch (Op.getOpcode()) {
2120 case ISD::SCALAR_TO_VECTOR: {
2121 if (!DemandedElts[0]) {
2122 KnownUndef.setAllBits();
2123 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2125 KnownUndef.setHighBits(NumElts - 1);
2126 break;
2128 case ISD::BITCAST: {
2129 SDValue Src = Op.getOperand(0);
2130 EVT SrcVT = Src.getValueType();
2132 // We only handle vectors here.
2133 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2134 if (!SrcVT.isVector())
2135 break;
2137 // Fast handling of 'identity' bitcasts.
2138 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2139 if (NumSrcElts == NumElts)
2140 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2141 KnownZero, TLO, Depth + 1);
2143 APInt SrcZero, SrcUndef;
2144 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2146 // Bitcast from 'large element' src vector to 'small element' vector, we
2147 // must demand a source element if any DemandedElt maps to it.
2148 if ((NumElts % NumSrcElts) == 0) {
2149 unsigned Scale = NumElts / NumSrcElts;
2150 for (unsigned i = 0; i != NumElts; ++i)
2151 if (DemandedElts[i])
2152 SrcDemandedElts.setBit(i / Scale);
2154 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2155 TLO, Depth + 1))
2156 return true;
2158 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2159 // of the large element.
2160 // TODO - bigendian once we have test coverage.
2161 if (TLO.DAG.getDataLayout().isLittleEndian()) {
2162 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2163 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2164 for (unsigned i = 0; i != NumElts; ++i)
2165 if (DemandedElts[i]) {
2166 unsigned Ofs = (i % Scale) * EltSizeInBits;
2167 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2170 KnownBits Known;
2171 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2172 return true;
2175 // If the src element is zero/undef then all the output elements will be -
2176 // only demanded elements are guaranteed to be correct.
2177 for (unsigned i = 0; i != NumSrcElts; ++i) {
2178 if (SrcDemandedElts[i]) {
2179 if (SrcZero[i])
2180 KnownZero.setBits(i * Scale, (i + 1) * Scale);
2181 if (SrcUndef[i])
2182 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2187 // Bitcast from 'small element' src vector to 'large element' vector, we
2188 // demand all smaller source elements covered by the larger demanded element
2189 // of this vector.
2190 if ((NumSrcElts % NumElts) == 0) {
2191 unsigned Scale = NumSrcElts / NumElts;
2192 for (unsigned i = 0; i != NumElts; ++i)
2193 if (DemandedElts[i])
2194 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2196 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2197 TLO, Depth + 1))
2198 return true;
2200 // If all the src elements covering an output element are zero/undef, then
2201 // the output element will be as well, assuming it was demanded.
2202 for (unsigned i = 0; i != NumElts; ++i) {
2203 if (DemandedElts[i]) {
2204 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2205 KnownZero.setBit(i);
2206 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2207 KnownUndef.setBit(i);
2211 break;
2213 case ISD::BUILD_VECTOR: {
2214 // Check all elements and simplify any unused elements with UNDEF.
2215 if (!DemandedElts.isAllOnesValue()) {
2216 // Don't simplify BROADCASTS.
2217 if (llvm::any_of(Op->op_values(),
2218 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2219 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2220 bool Updated = false;
2221 for (unsigned i = 0; i != NumElts; ++i) {
2222 if (!DemandedElts[i] && !Ops[i].isUndef()) {
2223 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2224 KnownUndef.setBit(i);
2225 Updated = true;
2228 if (Updated)
2229 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2232 for (unsigned i = 0; i != NumElts; ++i) {
2233 SDValue SrcOp = Op.getOperand(i);
2234 if (SrcOp.isUndef()) {
2235 KnownUndef.setBit(i);
2236 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2237 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2238 KnownZero.setBit(i);
2241 break;
2243 case ISD::CONCAT_VECTORS: {
2244 EVT SubVT = Op.getOperand(0).getValueType();
2245 unsigned NumSubVecs = Op.getNumOperands();
2246 unsigned NumSubElts = SubVT.getVectorNumElements();
2247 for (unsigned i = 0; i != NumSubVecs; ++i) {
2248 SDValue SubOp = Op.getOperand(i);
2249 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2250 APInt SubUndef, SubZero;
2251 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2252 Depth + 1))
2253 return true;
2254 KnownUndef.insertBits(SubUndef, i * NumSubElts);
2255 KnownZero.insertBits(SubZero, i * NumSubElts);
2257 break;
2259 case ISD::INSERT_SUBVECTOR: {
2260 if (!isa<ConstantSDNode>(Op.getOperand(2)))
2261 break;
2262 SDValue Base = Op.getOperand(0);
2263 SDValue Sub = Op.getOperand(1);
2264 EVT SubVT = Sub.getValueType();
2265 unsigned NumSubElts = SubVT.getVectorNumElements();
2266 const APInt &Idx = Op.getConstantOperandAPInt(2);
2267 if (Idx.ugt(NumElts - NumSubElts))
2268 break;
2269 unsigned SubIdx = Idx.getZExtValue();
2270 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2271 APInt SubUndef, SubZero;
2272 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2273 Depth + 1))
2274 return true;
2275 APInt BaseElts = DemandedElts;
2276 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2278 // If none of the base operand elements are demanded, replace it with undef.
2279 if (!BaseElts && !Base.isUndef())
2280 return TLO.CombineTo(Op,
2281 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2282 TLO.DAG.getUNDEF(VT),
2283 Op.getOperand(1),
2284 Op.getOperand(2)));
2286 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2287 Depth + 1))
2288 return true;
2289 KnownUndef.insertBits(SubUndef, SubIdx);
2290 KnownZero.insertBits(SubZero, SubIdx);
2291 break;
2293 case ISD::EXTRACT_SUBVECTOR: {
2294 SDValue Src = Op.getOperand(0);
2295 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2296 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2297 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2298 // Offset the demanded elts by the subvector index.
2299 uint64_t Idx = SubIdx->getZExtValue();
2300 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2301 APInt SrcUndef, SrcZero;
2302 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2303 Depth + 1))
2304 return true;
2305 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2306 KnownZero = SrcZero.extractBits(NumElts, Idx);
2308 break;
2310 case ISD::INSERT_VECTOR_ELT: {
2311 SDValue Vec = Op.getOperand(0);
2312 SDValue Scl = Op.getOperand(1);
2313 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2315 // For a legal, constant insertion index, if we don't need this insertion
2316 // then strip it, else remove it from the demanded elts.
2317 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2318 unsigned Idx = CIdx->getZExtValue();
2319 if (!DemandedElts[Idx])
2320 return TLO.CombineTo(Op, Vec);
2322 APInt DemandedVecElts(DemandedElts);
2323 DemandedVecElts.clearBit(Idx);
2324 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2325 KnownZero, TLO, Depth + 1))
2326 return true;
2328 KnownUndef.clearBit(Idx);
2329 if (Scl.isUndef())
2330 KnownUndef.setBit(Idx);
2332 KnownZero.clearBit(Idx);
2333 if (isNullConstant(Scl) || isNullFPConstant(Scl))
2334 KnownZero.setBit(Idx);
2335 break;
2338 APInt VecUndef, VecZero;
2339 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2340 Depth + 1))
2341 return true;
2342 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2343 break;
2345 case ISD::VSELECT: {
2346 // Try to transform the select condition based on the current demanded
2347 // elements.
2348 // TODO: If a condition element is undef, we can choose from one arm of the
2349 // select (and if one arm is undef, then we can propagate that to the
2350 // result).
2351 // TODO - add support for constant vselect masks (see IR version of this).
2352 APInt UnusedUndef, UnusedZero;
2353 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2354 UnusedZero, TLO, Depth + 1))
2355 return true;
2357 // See if we can simplify either vselect operand.
2358 APInt DemandedLHS(DemandedElts);
2359 APInt DemandedRHS(DemandedElts);
2360 APInt UndefLHS, ZeroLHS;
2361 APInt UndefRHS, ZeroRHS;
2362 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2363 ZeroLHS, TLO, Depth + 1))
2364 return true;
2365 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2366 ZeroRHS, TLO, Depth + 1))
2367 return true;
2369 KnownUndef = UndefLHS & UndefRHS;
2370 KnownZero = ZeroLHS & ZeroRHS;
2371 break;
2373 case ISD::VECTOR_SHUFFLE: {
2374 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2376 // Collect demanded elements from shuffle operands..
2377 APInt DemandedLHS(NumElts, 0);
2378 APInt DemandedRHS(NumElts, 0);
2379 for (unsigned i = 0; i != NumElts; ++i) {
2380 int M = ShuffleMask[i];
2381 if (M < 0 || !DemandedElts[i])
2382 continue;
2383 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2384 if (M < (int)NumElts)
2385 DemandedLHS.setBit(M);
2386 else
2387 DemandedRHS.setBit(M - NumElts);
2390 // See if we can simplify either shuffle operand.
2391 APInt UndefLHS, ZeroLHS;
2392 APInt UndefRHS, ZeroRHS;
2393 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2394 ZeroLHS, TLO, Depth + 1))
2395 return true;
2396 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2397 ZeroRHS, TLO, Depth + 1))
2398 return true;
2400 // Simplify mask using undef elements from LHS/RHS.
2401 bool Updated = false;
2402 bool IdentityLHS = true, IdentityRHS = true;
2403 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2404 for (unsigned i = 0; i != NumElts; ++i) {
2405 int &M = NewMask[i];
2406 if (M < 0)
2407 continue;
2408 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2409 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2410 Updated = true;
2411 M = -1;
2413 IdentityLHS &= (M < 0) || (M == (int)i);
2414 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2417 // Update legal shuffle masks based on demanded elements if it won't reduce
2418 // to Identity which can cause premature removal of the shuffle mask.
2419 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2420 SDValue LegalShuffle =
2421 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2422 NewMask, TLO.DAG);
2423 if (LegalShuffle)
2424 return TLO.CombineTo(Op, LegalShuffle);
2427 // Propagate undef/zero elements from LHS/RHS.
2428 for (unsigned i = 0; i != NumElts; ++i) {
2429 int M = ShuffleMask[i];
2430 if (M < 0) {
2431 KnownUndef.setBit(i);
2432 } else if (M < (int)NumElts) {
2433 if (UndefLHS[M])
2434 KnownUndef.setBit(i);
2435 if (ZeroLHS[M])
2436 KnownZero.setBit(i);
2437 } else {
2438 if (UndefRHS[M - NumElts])
2439 KnownUndef.setBit(i);
2440 if (ZeroRHS[M - NumElts])
2441 KnownZero.setBit(i);
2444 break;
2446 case ISD::ANY_EXTEND_VECTOR_INREG:
2447 case ISD::SIGN_EXTEND_VECTOR_INREG:
2448 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2449 APInt SrcUndef, SrcZero;
2450 SDValue Src = Op.getOperand(0);
2451 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2452 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2453 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2454 Depth + 1))
2455 return true;
2456 KnownZero = SrcZero.zextOrTrunc(NumElts);
2457 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2459 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2460 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2461 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2462 // aext - if we just need the bottom element then we can bitcast.
2463 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2466 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2467 // zext(undef) upper bits are guaranteed to be zero.
2468 if (DemandedElts.isSubsetOf(KnownUndef))
2469 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2470 KnownUndef.clearAllBits();
2472 break;
2475 // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2476 // MAX, saturated math, etc.
2477 case ISD::OR:
2478 case ISD::XOR:
2479 case ISD::ADD:
2480 case ISD::SUB:
2481 case ISD::FADD:
2482 case ISD::FSUB:
2483 case ISD::FMUL:
2484 case ISD::FDIV:
2485 case ISD::FREM: {
2486 APInt UndefRHS, ZeroRHS;
2487 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2488 ZeroRHS, TLO, Depth + 1))
2489 return true;
2490 APInt UndefLHS, ZeroLHS;
2491 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2492 ZeroLHS, TLO, Depth + 1))
2493 return true;
2495 KnownZero = ZeroLHS & ZeroRHS;
2496 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2497 break;
2499 case ISD::SHL:
2500 case ISD::SRL:
2501 case ISD::SRA:
2502 case ISD::ROTL:
2503 case ISD::ROTR: {
2504 APInt UndefRHS, ZeroRHS;
2505 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2506 ZeroRHS, TLO, Depth + 1))
2507 return true;
2508 APInt UndefLHS, ZeroLHS;
2509 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2510 ZeroLHS, TLO, Depth + 1))
2511 return true;
2513 KnownZero = ZeroLHS;
2514 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2515 break;
2517 case ISD::MUL:
2518 case ISD::AND: {
2519 APInt SrcUndef, SrcZero;
2520 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2521 SrcZero, TLO, Depth + 1))
2522 return true;
2523 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2524 KnownZero, TLO, Depth + 1))
2525 return true;
2527 // If either side has a zero element, then the result element is zero, even
2528 // if the other is an UNDEF.
2529 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2530 // and then handle 'and' nodes with the rest of the binop opcodes.
2531 KnownZero |= SrcZero;
2532 KnownUndef &= SrcUndef;
2533 KnownUndef &= ~KnownZero;
2534 break;
2536 case ISD::TRUNCATE:
2537 case ISD::SIGN_EXTEND:
2538 case ISD::ZERO_EXTEND:
2539 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2540 KnownZero, TLO, Depth + 1))
2541 return true;
2543 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2544 // zext(undef) upper bits are guaranteed to be zero.
2545 if (DemandedElts.isSubsetOf(KnownUndef))
2546 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2547 KnownUndef.clearAllBits();
2549 break;
2550 default: {
2551 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2552 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2553 KnownZero, TLO, Depth))
2554 return true;
2555 } else {
2556 KnownBits Known;
2557 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2558 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2559 TLO, Depth, AssumeSingleUse))
2560 return true;
2562 break;
2565 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2567 // Constant fold all undef cases.
2568 // TODO: Handle zero cases as well.
2569 if (DemandedElts.isSubsetOf(KnownUndef))
2570 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2572 return false;
2575 /// Determine which of the bits specified in Mask are known to be either zero or
2576 /// one and return them in the Known.
2577 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2578 KnownBits &Known,
2579 const APInt &DemandedElts,
2580 const SelectionDAG &DAG,
2581 unsigned Depth) const {
2582 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2583 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2584 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2585 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2586 "Should use MaskedValueIsZero if you don't know whether Op"
2587 " is a target node!");
2588 Known.resetAll();
2591 void TargetLowering::computeKnownBitsForTargetInstr(
2592 GISelKnownBits &Analysis, Register R, KnownBits &Known,
2593 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2594 unsigned Depth) const {
2595 Known.resetAll();
2598 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2599 KnownBits &Known,
2600 const APInt &DemandedElts,
2601 const SelectionDAG &DAG,
2602 unsigned Depth) const {
2603 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2605 if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2606 // The low bits are known zero if the pointer is aligned.
2607 Known.Zero.setLowBits(Log2_32(Align));
2611 /// This method can be implemented by targets that want to expose additional
2612 /// information about sign bits to the DAG Combiner.
2613 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2614 const APInt &,
2615 const SelectionDAG &,
2616 unsigned Depth) const {
2617 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2618 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2619 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2620 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2621 "Should use ComputeNumSignBits if you don't know whether Op"
2622 " is a target node!");
2623 return 1;
2626 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2627 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2628 TargetLoweringOpt &TLO, unsigned Depth) const {
2629 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2630 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2631 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2632 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2633 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2634 " is a target node!");
2635 return false;
2638 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2639 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2640 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2641 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2642 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2643 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2644 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2645 "Should use SimplifyDemandedBits if you don't know whether Op"
2646 " is a target node!");
2647 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2648 return false;
2651 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2652 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2653 SelectionDAG &DAG, unsigned Depth) const {
2654 assert(
2655 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2656 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2657 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2658 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2659 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2660 " is a target node!");
2661 return SDValue();
2664 SDValue
2665 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2666 SDValue N1, MutableArrayRef<int> Mask,
2667 SelectionDAG &DAG) const {
2668 bool LegalMask = isShuffleMaskLegal(Mask, VT);
2669 if (!LegalMask) {
2670 std::swap(N0, N1);
2671 ShuffleVectorSDNode::commuteMask(Mask);
2672 LegalMask = isShuffleMaskLegal(Mask, VT);
2675 if (!LegalMask)
2676 return SDValue();
2678 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2681 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2682 return nullptr;
2685 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2686 const SelectionDAG &DAG,
2687 bool SNaN,
2688 unsigned Depth) const {
2689 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2690 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2691 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2692 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2693 "Should use isKnownNeverNaN if you don't know whether Op"
2694 " is a target node!");
2695 return false;
2698 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2699 // work with truncating build vectors and vectors with elements of less than
2700 // 8 bits.
2701 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2702 if (!N)
2703 return false;
2705 APInt CVal;
2706 if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2707 CVal = CN->getAPIntValue();
2708 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2709 auto *CN = BV->getConstantSplatNode();
2710 if (!CN)
2711 return false;
2713 // If this is a truncating build vector, truncate the splat value.
2714 // Otherwise, we may fail to match the expected values below.
2715 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2716 CVal = CN->getAPIntValue();
2717 if (BVEltWidth < CVal.getBitWidth())
2718 CVal = CVal.trunc(BVEltWidth);
2719 } else {
2720 return false;
2723 switch (getBooleanContents(N->getValueType(0))) {
2724 case UndefinedBooleanContent:
2725 return CVal[0];
2726 case ZeroOrOneBooleanContent:
2727 return CVal.isOneValue();
2728 case ZeroOrNegativeOneBooleanContent:
2729 return CVal.isAllOnesValue();
2732 llvm_unreachable("Invalid boolean contents");
2735 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2736 if (!N)
2737 return false;
2739 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2740 if (!CN) {
2741 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2742 if (!BV)
2743 return false;
2745 // Only interested in constant splats, we don't care about undef
2746 // elements in identifying boolean constants and getConstantSplatNode
2747 // returns NULL if all ops are undef;
2748 CN = BV->getConstantSplatNode();
2749 if (!CN)
2750 return false;
2753 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2754 return !CN->getAPIntValue()[0];
2756 return CN->isNullValue();
2759 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2760 bool SExt) const {
2761 if (VT == MVT::i1)
2762 return N->isOne();
2764 TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2765 switch (Cnt) {
2766 case TargetLowering::ZeroOrOneBooleanContent:
2767 // An extended value of 1 is always true, unless its original type is i1,
2768 // in which case it will be sign extended to -1.
2769 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2770 case TargetLowering::UndefinedBooleanContent:
2771 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2772 return N->isAllOnesValue() && SExt;
2774 llvm_unreachable("Unexpected enumeration.");
2777 /// This helper function of SimplifySetCC tries to optimize the comparison when
2778 /// either operand of the SetCC node is a bitwise-and instruction.
2779 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2780 ISD::CondCode Cond, const SDLoc &DL,
2781 DAGCombinerInfo &DCI) const {
2782 // Match these patterns in any of their permutations:
2783 // (X & Y) == Y
2784 // (X & Y) != Y
2785 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2786 std::swap(N0, N1);
2788 EVT OpVT = N0.getValueType();
2789 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2790 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2791 return SDValue();
2793 SDValue X, Y;
2794 if (N0.getOperand(0) == N1) {
2795 X = N0.getOperand(1);
2796 Y = N0.getOperand(0);
2797 } else if (N0.getOperand(1) == N1) {
2798 X = N0.getOperand(0);
2799 Y = N0.getOperand(1);
2800 } else {
2801 return SDValue();
2804 SelectionDAG &DAG = DCI.DAG;
2805 SDValue Zero = DAG.getConstant(0, DL, OpVT);
2806 if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2807 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2808 // Note that where Y is variable and is known to have at most one bit set
2809 // (for example, if it is Z & 1) we cannot do this; the expressions are not
2810 // equivalent when Y == 0.
2811 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2812 if (DCI.isBeforeLegalizeOps() ||
2813 isCondCodeLegal(Cond, N0.getSimpleValueType()))
2814 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2815 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2816 // If the target supports an 'and-not' or 'and-complement' logic operation,
2817 // try to use that to make a comparison operation more efficient.
2818 // But don't do this transform if the mask is a single bit because there are
2819 // more efficient ways to deal with that case (for example, 'bt' on x86 or
2820 // 'rlwinm' on PPC).
2822 // Bail out if the compare operand that we want to turn into a zero is
2823 // already a zero (otherwise, infinite loop).
2824 auto *YConst = dyn_cast<ConstantSDNode>(Y);
2825 if (YConst && YConst->isNullValue())
2826 return SDValue();
2828 // Transform this into: ~X & Y == 0.
2829 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2830 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2831 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2834 return SDValue();
2837 /// There are multiple IR patterns that could be checking whether certain
2838 /// truncation of a signed number would be lossy or not. The pattern which is
2839 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2840 /// We are looking for the following pattern: (KeptBits is a constant)
2841 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2842 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2843 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
2844 /// We will unfold it into the natural trunc+sext pattern:
2845 /// ((%x << C) a>> C) dstcond %x
2846 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
2847 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2848 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2849 const SDLoc &DL) const {
2850 // We must be comparing with a constant.
2851 ConstantSDNode *C1;
2852 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2853 return SDValue();
2855 // N0 should be: add %x, (1 << (KeptBits-1))
2856 if (N0->getOpcode() != ISD::ADD)
2857 return SDValue();
2859 // And we must be 'add'ing a constant.
2860 ConstantSDNode *C01;
2861 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2862 return SDValue();
2864 SDValue X = N0->getOperand(0);
2865 EVT XVT = X.getValueType();
2867 // Validate constants ...
2869 APInt I1 = C1->getAPIntValue();
2871 ISD::CondCode NewCond;
2872 if (Cond == ISD::CondCode::SETULT) {
2873 NewCond = ISD::CondCode::SETEQ;
2874 } else if (Cond == ISD::CondCode::SETULE) {
2875 NewCond = ISD::CondCode::SETEQ;
2876 // But need to 'canonicalize' the constant.
2877 I1 += 1;
2878 } else if (Cond == ISD::CondCode::SETUGT) {
2879 NewCond = ISD::CondCode::SETNE;
2880 // But need to 'canonicalize' the constant.
2881 I1 += 1;
2882 } else if (Cond == ISD::CondCode::SETUGE) {
2883 NewCond = ISD::CondCode::SETNE;
2884 } else
2885 return SDValue();
2887 APInt I01 = C01->getAPIntValue();
2889 auto checkConstants = [&I1, &I01]() -> bool {
2890 // Both of them must be power-of-two, and the constant from setcc is bigger.
2891 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2894 if (checkConstants()) {
2895 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
2896 } else {
2897 // What if we invert constants? (and the target predicate)
2898 I1.negate();
2899 I01.negate();
2900 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2901 if (!checkConstants())
2902 return SDValue();
2903 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
2906 // They are power-of-two, so which bit is set?
2907 const unsigned KeptBits = I1.logBase2();
2908 const unsigned KeptBitsMinusOne = I01.logBase2();
2910 // Magic!
2911 if (KeptBits != (KeptBitsMinusOne + 1))
2912 return SDValue();
2913 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2915 // We don't want to do this in every single case.
2916 SelectionDAG &DAG = DCI.DAG;
2917 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2918 XVT, KeptBits))
2919 return SDValue();
2921 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2922 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2924 // Unfold into: ((%x << C) a>> C) cond %x
2925 // Where 'cond' will be either 'eq' or 'ne'.
2926 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2927 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2928 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2929 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2931 return T2;
2934 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
2935 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2936 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2937 DAGCombinerInfo &DCI, const SDLoc &DL) const {
2938 assert(isConstOrConstSplat(N1C) &&
2939 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2940 "Should be a comparison with 0.");
2941 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2942 "Valid only for [in]equality comparisons.");
2944 unsigned NewShiftOpcode;
2945 SDValue X, C, Y;
2947 SelectionDAG &DAG = DCI.DAG;
2948 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2950 // Look for '(C l>>/<< Y)'.
2951 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2952 // The shift should be one-use.
2953 if (!V.hasOneUse())
2954 return false;
2955 unsigned OldShiftOpcode = V.getOpcode();
2956 switch (OldShiftOpcode) {
2957 case ISD::SHL:
2958 NewShiftOpcode = ISD::SRL;
2959 break;
2960 case ISD::SRL:
2961 NewShiftOpcode = ISD::SHL;
2962 break;
2963 default:
2964 return false; // must be a logical shift.
2966 // We should be shifting a constant.
2967 // FIXME: best to use isConstantOrConstantVector().
2968 C = V.getOperand(0);
2969 ConstantSDNode *CC =
2970 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2971 if (!CC)
2972 return false;
2973 Y = V.getOperand(1);
2975 ConstantSDNode *XC =
2976 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2977 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2978 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2981 // LHS of comparison should be an one-use 'and'.
2982 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2983 return SDValue();
2985 X = N0.getOperand(0);
2986 SDValue Mask = N0.getOperand(1);
2988 // 'and' is commutative!
2989 if (!Match(Mask)) {
2990 std::swap(X, Mask);
2991 if (!Match(Mask))
2992 return SDValue();
2995 EVT VT = X.getValueType();
2997 // Produce:
2998 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2999 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3000 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3001 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3002 return T2;
3005 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3006 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3007 /// handle the commuted versions of these patterns.
3008 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3009 ISD::CondCode Cond, const SDLoc &DL,
3010 DAGCombinerInfo &DCI) const {
3011 unsigned BOpcode = N0.getOpcode();
3012 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3013 "Unexpected binop");
3014 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3016 // (X + Y) == X --> Y == 0
3017 // (X - Y) == X --> Y == 0
3018 // (X ^ Y) == X --> Y == 0
3019 SelectionDAG &DAG = DCI.DAG;
3020 EVT OpVT = N0.getValueType();
3021 SDValue X = N0.getOperand(0);
3022 SDValue Y = N0.getOperand(1);
3023 if (X == N1)
3024 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3026 if (Y != N1)
3027 return SDValue();
3029 // (X + Y) == Y --> X == 0
3030 // (X ^ Y) == Y --> X == 0
3031 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3032 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3034 // The shift would not be valid if the operands are boolean (i1).
3035 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3036 return SDValue();
3038 // (X - Y) == Y --> X == Y << 1
3039 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3040 !DCI.isBeforeLegalize());
3041 SDValue One = DAG.getConstant(1, DL, ShiftVT);
3042 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3043 if (!DCI.isCalledByLegalizer())
3044 DCI.AddToWorklist(YShl1.getNode());
3045 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3048 /// Try to simplify a setcc built with the specified operands and cc. If it is
3049 /// unable to simplify it, return a null SDValue.
3050 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3051 ISD::CondCode Cond, bool foldBooleans,
3052 DAGCombinerInfo &DCI,
3053 const SDLoc &dl) const {
3054 SelectionDAG &DAG = DCI.DAG;
3055 EVT OpVT = N0.getValueType();
3057 // Constant fold or commute setcc.
3058 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3059 return Fold;
3061 // Ensure that the constant occurs on the RHS and fold constant comparisons.
3062 // TODO: Handle non-splat vector constants. All undef causes trouble.
3063 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3064 if (isConstOrConstSplat(N0) &&
3065 (DCI.isBeforeLegalizeOps() ||
3066 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3067 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3069 // If we have a subtract with the same 2 non-constant operands as this setcc
3070 // -- but in reverse order -- then try to commute the operands of this setcc
3071 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3072 // instruction on some targets.
3073 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3074 (DCI.isBeforeLegalizeOps() ||
3075 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3076 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3077 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3078 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3080 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3081 const APInt &C1 = N1C->getAPIntValue();
3083 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3084 // equality comparison, then we're just comparing whether X itself is
3085 // zero.
3086 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3087 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3088 N0.getOperand(1).getOpcode() == ISD::Constant) {
3089 const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3090 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3091 ShAmt == Log2_32(N0.getValueSizeInBits())) {
3092 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3093 // (srl (ctlz x), 5) == 0 -> X != 0
3094 // (srl (ctlz x), 5) != 1 -> X != 0
3095 Cond = ISD::SETNE;
3096 } else {
3097 // (srl (ctlz x), 5) != 0 -> X == 0
3098 // (srl (ctlz x), 5) == 1 -> X == 0
3099 Cond = ISD::SETEQ;
3101 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3102 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3103 Zero, Cond);
3107 SDValue CTPOP = N0;
3108 // Look through truncs that don't change the value of a ctpop.
3109 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3110 CTPOP = N0.getOperand(0);
3112 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3113 (N0 == CTPOP ||
3114 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3115 EVT CTVT = CTPOP.getValueType();
3116 SDValue CTOp = CTPOP.getOperand(0);
3118 // (ctpop x) u< 2 -> (x & x-1) == 0
3119 // (ctpop x) u> 1 -> (x & x-1) != 0
3120 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3121 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3122 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3123 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3124 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3125 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3128 // If ctpop is not supported, expand a power-of-2 comparison based on it.
3129 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3130 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3131 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3132 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3133 SDValue Zero = DAG.getConstant(0, dl, CTVT);
3134 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3135 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3136 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3137 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3138 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3139 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3140 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3141 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3145 // (zext x) == C --> x == (trunc C)
3146 // (sext x) == C --> x == (trunc C)
3147 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3148 DCI.isBeforeLegalize() && N0->hasOneUse()) {
3149 unsigned MinBits = N0.getValueSizeInBits();
3150 SDValue PreExt;
3151 bool Signed = false;
3152 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3153 // ZExt
3154 MinBits = N0->getOperand(0).getValueSizeInBits();
3155 PreExt = N0->getOperand(0);
3156 } else if (N0->getOpcode() == ISD::AND) {
3157 // DAGCombine turns costly ZExts into ANDs
3158 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3159 if ((C->getAPIntValue()+1).isPowerOf2()) {
3160 MinBits = C->getAPIntValue().countTrailingOnes();
3161 PreExt = N0->getOperand(0);
3163 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3164 // SExt
3165 MinBits = N0->getOperand(0).getValueSizeInBits();
3166 PreExt = N0->getOperand(0);
3167 Signed = true;
3168 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3169 // ZEXTLOAD / SEXTLOAD
3170 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3171 MinBits = LN0->getMemoryVT().getSizeInBits();
3172 PreExt = N0;
3173 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3174 Signed = true;
3175 MinBits = LN0->getMemoryVT().getSizeInBits();
3176 PreExt = N0;
3180 // Figure out how many bits we need to preserve this constant.
3181 unsigned ReqdBits = Signed ?
3182 C1.getBitWidth() - C1.getNumSignBits() + 1 :
3183 C1.getActiveBits();
3185 // Make sure we're not losing bits from the constant.
3186 if (MinBits > 0 &&
3187 MinBits < C1.getBitWidth() &&
3188 MinBits >= ReqdBits) {
3189 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3190 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3191 // Will get folded away.
3192 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3193 if (MinBits == 1 && C1 == 1)
3194 // Invert the condition.
3195 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3196 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3197 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3198 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3201 // If truncating the setcc operands is not desirable, we can still
3202 // simplify the expression in some cases:
3203 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3204 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3205 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3206 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3207 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3208 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3209 SDValue TopSetCC = N0->getOperand(0);
3210 unsigned N0Opc = N0->getOpcode();
3211 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3212 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3213 TopSetCC.getOpcode() == ISD::SETCC &&
3214 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3215 (isConstFalseVal(N1C) ||
3216 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3218 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3219 (!N1C->isNullValue() && Cond == ISD::SETNE);
3221 if (!Inverse)
3222 return TopSetCC;
3224 ISD::CondCode InvCond = ISD::getSetCCInverse(
3225 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3226 TopSetCC.getOperand(0).getValueType().isInteger());
3227 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3228 TopSetCC.getOperand(1),
3229 InvCond);
3234 // If the LHS is '(and load, const)', the RHS is 0, the test is for
3235 // equality or unsigned, and all 1 bits of the const are in the same
3236 // partial word, see if we can shorten the load.
3237 if (DCI.isBeforeLegalize() &&
3238 !ISD::isSignedIntSetCC(Cond) &&
3239 N0.getOpcode() == ISD::AND && C1 == 0 &&
3240 N0.getNode()->hasOneUse() &&
3241 isa<LoadSDNode>(N0.getOperand(0)) &&
3242 N0.getOperand(0).getNode()->hasOneUse() &&
3243 isa<ConstantSDNode>(N0.getOperand(1))) {
3244 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3245 APInt bestMask;
3246 unsigned bestWidth = 0, bestOffset = 0;
3247 if (Lod->isSimple() && Lod->isUnindexed()) {
3248 unsigned origWidth = N0.getValueSizeInBits();
3249 unsigned maskWidth = origWidth;
3250 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3251 // 8 bits, but have to be careful...
3252 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3253 origWidth = Lod->getMemoryVT().getSizeInBits();
3254 const APInt &Mask = N0.getConstantOperandAPInt(1);
3255 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3256 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3257 for (unsigned offset=0; offset<origWidth/width; offset++) {
3258 if (Mask.isSubsetOf(newMask)) {
3259 if (DAG.getDataLayout().isLittleEndian())
3260 bestOffset = (uint64_t)offset * (width/8);
3261 else
3262 bestOffset = (origWidth/width - offset - 1) * (width/8);
3263 bestMask = Mask.lshr(offset * (width/8) * 8);
3264 bestWidth = width;
3265 break;
3267 newMask <<= width;
3271 if (bestWidth) {
3272 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3273 if (newVT.isRound() &&
3274 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3275 EVT PtrType = Lod->getOperand(1).getValueType();
3276 SDValue Ptr = Lod->getBasePtr();
3277 if (bestOffset != 0)
3278 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3279 DAG.getConstant(bestOffset, dl, PtrType));
3280 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3281 SDValue NewLoad = DAG.getLoad(
3282 newVT, dl, Lod->getChain(), Ptr,
3283 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3284 return DAG.getSetCC(dl, VT,
3285 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3286 DAG.getConstant(bestMask.trunc(bestWidth),
3287 dl, newVT)),
3288 DAG.getConstant(0LL, dl, newVT), Cond);
3293 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3294 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3295 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3297 // If the comparison constant has bits in the upper part, the
3298 // zero-extended value could never match.
3299 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3300 C1.getBitWidth() - InSize))) {
3301 switch (Cond) {
3302 case ISD::SETUGT:
3303 case ISD::SETUGE:
3304 case ISD::SETEQ:
3305 return DAG.getConstant(0, dl, VT);
3306 case ISD::SETULT:
3307 case ISD::SETULE:
3308 case ISD::SETNE:
3309 return DAG.getConstant(1, dl, VT);
3310 case ISD::SETGT:
3311 case ISD::SETGE:
3312 // True if the sign bit of C1 is set.
3313 return DAG.getConstant(C1.isNegative(), dl, VT);
3314 case ISD::SETLT:
3315 case ISD::SETLE:
3316 // True if the sign bit of C1 isn't set.
3317 return DAG.getConstant(C1.isNonNegative(), dl, VT);
3318 default:
3319 break;
3323 // Otherwise, we can perform the comparison with the low bits.
3324 switch (Cond) {
3325 case ISD::SETEQ:
3326 case ISD::SETNE:
3327 case ISD::SETUGT:
3328 case ISD::SETUGE:
3329 case ISD::SETULT:
3330 case ISD::SETULE: {
3331 EVT newVT = N0.getOperand(0).getValueType();
3332 if (DCI.isBeforeLegalizeOps() ||
3333 (isOperationLegal(ISD::SETCC, newVT) &&
3334 isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3335 EVT NewSetCCVT =
3336 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3337 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3339 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3340 NewConst, Cond);
3341 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3343 break;
3345 default:
3346 break; // todo, be more careful with signed comparisons
3348 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3349 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3350 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3351 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3352 EVT ExtDstTy = N0.getValueType();
3353 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3355 // If the constant doesn't fit into the number of bits for the source of
3356 // the sign extension, it is impossible for both sides to be equal.
3357 if (C1.getMinSignedBits() > ExtSrcTyBits)
3358 return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3360 SDValue ZextOp;
3361 EVT Op0Ty = N0.getOperand(0).getValueType();
3362 if (Op0Ty == ExtSrcTy) {
3363 ZextOp = N0.getOperand(0);
3364 } else {
3365 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3366 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3367 DAG.getConstant(Imm, dl, Op0Ty));
3369 if (!DCI.isCalledByLegalizer())
3370 DCI.AddToWorklist(ZextOp.getNode());
3371 // Otherwise, make this a use of a zext.
3372 return DAG.getSetCC(dl, VT, ZextOp,
3373 DAG.getConstant(C1 & APInt::getLowBitsSet(
3374 ExtDstTyBits,
3375 ExtSrcTyBits),
3376 dl, ExtDstTy),
3377 Cond);
3378 } else if ((N1C->isNullValue() || N1C->isOne()) &&
3379 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3380 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
3381 if (N0.getOpcode() == ISD::SETCC &&
3382 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
3383 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3384 if (TrueWhenTrue)
3385 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3386 // Invert the condition.
3387 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3388 CC = ISD::getSetCCInverse(CC,
3389 N0.getOperand(0).getValueType().isInteger());
3390 if (DCI.isBeforeLegalizeOps() ||
3391 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3392 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3395 if ((N0.getOpcode() == ISD::XOR ||
3396 (N0.getOpcode() == ISD::AND &&
3397 N0.getOperand(0).getOpcode() == ISD::XOR &&
3398 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3399 isa<ConstantSDNode>(N0.getOperand(1)) &&
3400 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3401 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3402 // can only do this if the top bits are known zero.
3403 unsigned BitWidth = N0.getValueSizeInBits();
3404 if (DAG.MaskedValueIsZero(N0,
3405 APInt::getHighBitsSet(BitWidth,
3406 BitWidth-1))) {
3407 // Okay, get the un-inverted input value.
3408 SDValue Val;
3409 if (N0.getOpcode() == ISD::XOR) {
3410 Val = N0.getOperand(0);
3411 } else {
3412 assert(N0.getOpcode() == ISD::AND &&
3413 N0.getOperand(0).getOpcode() == ISD::XOR);
3414 // ((X^1)&1)^1 -> X & 1
3415 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3416 N0.getOperand(0).getOperand(0),
3417 N0.getOperand(1));
3420 return DAG.getSetCC(dl, VT, Val, N1,
3421 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3423 } else if (N1C->isOne() &&
3424 (VT == MVT::i1 ||
3425 getBooleanContents(N0->getValueType(0)) ==
3426 ZeroOrOneBooleanContent)) {
3427 SDValue Op0 = N0;
3428 if (Op0.getOpcode() == ISD::TRUNCATE)
3429 Op0 = Op0.getOperand(0);
3431 if ((Op0.getOpcode() == ISD::XOR) &&
3432 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3433 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3434 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3435 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3436 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3437 Cond);
3439 if (Op0.getOpcode() == ISD::AND &&
3440 isa<ConstantSDNode>(Op0.getOperand(1)) &&
3441 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3442 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3443 if (Op0.getValueType().bitsGT(VT))
3444 Op0 = DAG.getNode(ISD::AND, dl, VT,
3445 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3446 DAG.getConstant(1, dl, VT));
3447 else if (Op0.getValueType().bitsLT(VT))
3448 Op0 = DAG.getNode(ISD::AND, dl, VT,
3449 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3450 DAG.getConstant(1, dl, VT));
3452 return DAG.getSetCC(dl, VT, Op0,
3453 DAG.getConstant(0, dl, Op0.getValueType()),
3454 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3456 if (Op0.getOpcode() == ISD::AssertZext &&
3457 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3458 return DAG.getSetCC(dl, VT, Op0,
3459 DAG.getConstant(0, dl, Op0.getValueType()),
3460 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3464 // Given:
3465 // icmp eq/ne (urem %x, %y), 0
3466 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3467 // icmp eq/ne %x, 0
3468 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3469 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3470 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3471 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3472 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3473 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3476 if (SDValue V =
3477 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3478 return V;
3481 // These simplifications apply to splat vectors as well.
3482 // TODO: Handle more splat vector cases.
3483 if (auto *N1C = isConstOrConstSplat(N1)) {
3484 const APInt &C1 = N1C->getAPIntValue();
3486 APInt MinVal, MaxVal;
3487 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3488 if (ISD::isSignedIntSetCC(Cond)) {
3489 MinVal = APInt::getSignedMinValue(OperandBitSize);
3490 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3491 } else {
3492 MinVal = APInt::getMinValue(OperandBitSize);
3493 MaxVal = APInt::getMaxValue(OperandBitSize);
3496 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3497 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3498 // X >= MIN --> true
3499 if (C1 == MinVal)
3500 return DAG.getBoolConstant(true, dl, VT, OpVT);
3502 if (!VT.isVector()) { // TODO: Support this for vectors.
3503 // X >= C0 --> X > (C0 - 1)
3504 APInt C = C1 - 1;
3505 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3506 if ((DCI.isBeforeLegalizeOps() ||
3507 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3508 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3509 isLegalICmpImmediate(C.getSExtValue())))) {
3510 return DAG.getSetCC(dl, VT, N0,
3511 DAG.getConstant(C, dl, N1.getValueType()),
3512 NewCC);
3517 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3518 // X <= MAX --> true
3519 if (C1 == MaxVal)
3520 return DAG.getBoolConstant(true, dl, VT, OpVT);
3522 // X <= C0 --> X < (C0 + 1)
3523 if (!VT.isVector()) { // TODO: Support this for vectors.
3524 APInt C = C1 + 1;
3525 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3526 if ((DCI.isBeforeLegalizeOps() ||
3527 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3528 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3529 isLegalICmpImmediate(C.getSExtValue())))) {
3530 return DAG.getSetCC(dl, VT, N0,
3531 DAG.getConstant(C, dl, N1.getValueType()),
3532 NewCC);
3537 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3538 if (C1 == MinVal)
3539 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3541 // TODO: Support this for vectors after legalize ops.
3542 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3543 // Canonicalize setlt X, Max --> setne X, Max
3544 if (C1 == MaxVal)
3545 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3547 // If we have setult X, 1, turn it into seteq X, 0
3548 if (C1 == MinVal+1)
3549 return DAG.getSetCC(dl, VT, N0,
3550 DAG.getConstant(MinVal, dl, N0.getValueType()),
3551 ISD::SETEQ);
3555 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3556 if (C1 == MaxVal)
3557 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3559 // TODO: Support this for vectors after legalize ops.
3560 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3561 // Canonicalize setgt X, Min --> setne X, Min
3562 if (C1 == MinVal)
3563 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3565 // If we have setugt X, Max-1, turn it into seteq X, Max
3566 if (C1 == MaxVal-1)
3567 return DAG.getSetCC(dl, VT, N0,
3568 DAG.getConstant(MaxVal, dl, N0.getValueType()),
3569 ISD::SETEQ);
3573 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3574 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
3575 if (C1.isNullValue())
3576 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3577 VT, N0, N1, Cond, DCI, dl))
3578 return CC;
3581 // If we have "setcc X, C0", check to see if we can shrink the immediate
3582 // by changing cc.
3583 // TODO: Support this for vectors after legalize ops.
3584 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3585 // SETUGT X, SINTMAX -> SETLT X, 0
3586 if (Cond == ISD::SETUGT &&
3587 C1 == APInt::getSignedMaxValue(OperandBitSize))
3588 return DAG.getSetCC(dl, VT, N0,
3589 DAG.getConstant(0, dl, N1.getValueType()),
3590 ISD::SETLT);
3592 // SETULT X, SINTMIN -> SETGT X, -1
3593 if (Cond == ISD::SETULT &&
3594 C1 == APInt::getSignedMinValue(OperandBitSize)) {
3595 SDValue ConstMinusOne =
3596 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3597 N1.getValueType());
3598 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3603 // Back to non-vector simplifications.
3604 // TODO: Can we do these for vector splats?
3605 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3606 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3607 const APInt &C1 = N1C->getAPIntValue();
3608 EVT ShValTy = N0.getValueType();
3610 // Fold bit comparisons when we can.
3611 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3612 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3613 N0.getOpcode() == ISD::AND) {
3614 auto &DL = DAG.getDataLayout();
3615 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3616 EVT ShiftTy = getShiftAmountTy(ShValTy, DL, !DCI.isBeforeLegalize());
3617 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
3618 // Perform the xform if the AND RHS is a single bit.
3619 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3620 if (AndRHS->getAPIntValue().isPowerOf2() &&
3621 ShCt <= TLI.getShiftAmountThreshold(ShValTy)) {
3622 return DAG.getNode(ISD::TRUNCATE, dl, VT,
3623 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3624 DAG.getConstant(ShCt, dl, ShiftTy)));
3626 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3627 // (X & 8) == 8 --> (X & 8) >> 3
3628 // Perform the xform if C1 is a single bit.
3629 unsigned ShCt = C1.logBase2();
3630 if (C1.isPowerOf2() &&
3631 ShCt <= TLI.getShiftAmountThreshold(ShValTy)) {
3632 return DAG.getNode(ISD::TRUNCATE, dl, VT,
3633 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3634 DAG.getConstant(ShCt, dl, ShiftTy)));
3640 if (C1.getMinSignedBits() <= 64 &&
3641 !isLegalICmpImmediate(C1.getSExtValue())) {
3642 // (X & -256) == 256 -> (X >> 8) == 1
3643 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3644 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3645 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3646 const APInt &AndRHSC = AndRHS->getAPIntValue();
3647 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3648 unsigned ShiftBits = AndRHSC.countTrailingZeros();
3649 auto &DL = DAG.getDataLayout();
3650 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3651 !DCI.isBeforeLegalize());
3652 EVT CmpTy = N0.getValueType();
3653 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3654 DAG.getConstant(ShiftBits, dl,
3655 ShiftTy));
3656 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3657 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3660 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3661 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3662 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3663 // X < 0x100000000 -> (X >> 32) < 1
3664 // X >= 0x100000000 -> (X >> 32) >= 1
3665 // X <= 0x0ffffffff -> (X >> 32) < 1
3666 // X > 0x0ffffffff -> (X >> 32) >= 1
3667 unsigned ShiftBits;
3668 APInt NewC = C1;
3669 ISD::CondCode NewCond = Cond;
3670 if (AdjOne) {
3671 ShiftBits = C1.countTrailingOnes();
3672 NewC = NewC + 1;
3673 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3674 } else {
3675 ShiftBits = C1.countTrailingZeros();
3677 NewC.lshrInPlace(ShiftBits);
3678 if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3679 isLegalICmpImmediate(NewC.getSExtValue())) {
3680 auto &DL = DAG.getDataLayout();
3681 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3682 !DCI.isBeforeLegalize());
3683 EVT CmpTy = N0.getValueType();
3684 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3685 DAG.getConstant(ShiftBits, dl, ShiftTy));
3686 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3687 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3693 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3694 auto *CFP = cast<ConstantFPSDNode>(N1);
3695 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3697 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
3698 // constant if knowing that the operand is non-nan is enough. We prefer to
3699 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3700 // materialize 0.0.
3701 if (Cond == ISD::SETO || Cond == ISD::SETUO)
3702 return DAG.getSetCC(dl, VT, N0, N0, Cond);
3704 // setcc (fneg x), C -> setcc swap(pred) x, -C
3705 if (N0.getOpcode() == ISD::FNEG) {
3706 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3707 if (DCI.isBeforeLegalizeOps() ||
3708 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3709 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3710 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3714 // If the condition is not legal, see if we can find an equivalent one
3715 // which is legal.
3716 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3717 // If the comparison was an awkward floating-point == or != and one of
3718 // the comparison operands is infinity or negative infinity, convert the
3719 // condition to a less-awkward <= or >=.
3720 if (CFP->getValueAPF().isInfinity()) {
3721 if (CFP->getValueAPF().isNegative()) {
3722 if (Cond == ISD::SETOEQ &&
3723 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3724 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3725 if (Cond == ISD::SETUEQ &&
3726 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3727 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3728 if (Cond == ISD::SETUNE &&
3729 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3730 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3731 if (Cond == ISD::SETONE &&
3732 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3733 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3734 } else {
3735 if (Cond == ISD::SETOEQ &&
3736 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3737 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3738 if (Cond == ISD::SETUEQ &&
3739 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3740 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3741 if (Cond == ISD::SETUNE &&
3742 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3743 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3744 if (Cond == ISD::SETONE &&
3745 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3746 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3752 if (N0 == N1) {
3753 // The sext(setcc()) => setcc() optimization relies on the appropriate
3754 // constant being emitted.
3755 assert(!N0.getValueType().isInteger() &&
3756 "Integer types should be handled by FoldSetCC");
3758 bool EqTrue = ISD::isTrueWhenEqual(Cond);
3759 unsigned UOF = ISD::getUnorderedFlavor(Cond);
3760 if (UOF == 2) // FP operators that are undefined on NaNs.
3761 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3762 if (UOF == unsigned(EqTrue))
3763 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3764 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
3765 // if it is not already.
3766 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3767 if (NewCond != Cond &&
3768 (DCI.isBeforeLegalizeOps() ||
3769 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3770 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3773 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3774 N0.getValueType().isInteger()) {
3775 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3776 N0.getOpcode() == ISD::XOR) {
3777 // Simplify (X+Y) == (X+Z) --> Y == Z
3778 if (N0.getOpcode() == N1.getOpcode()) {
3779 if (N0.getOperand(0) == N1.getOperand(0))
3780 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3781 if (N0.getOperand(1) == N1.getOperand(1))
3782 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3783 if (isCommutativeBinOp(N0.getOpcode())) {
3784 // If X op Y == Y op X, try other combinations.
3785 if (N0.getOperand(0) == N1.getOperand(1))
3786 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3787 Cond);
3788 if (N0.getOperand(1) == N1.getOperand(0))
3789 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3790 Cond);
3794 // If RHS is a legal immediate value for a compare instruction, we need
3795 // to be careful about increasing register pressure needlessly.
3796 bool LegalRHSImm = false;
3798 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3799 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3800 // Turn (X+C1) == C2 --> X == C2-C1
3801 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3802 return DAG.getSetCC(dl, VT, N0.getOperand(0),
3803 DAG.getConstant(RHSC->getAPIntValue()-
3804 LHSR->getAPIntValue(),
3805 dl, N0.getValueType()), Cond);
3808 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3809 if (N0.getOpcode() == ISD::XOR)
3810 // If we know that all of the inverted bits are zero, don't bother
3811 // performing the inversion.
3812 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3813 return
3814 DAG.getSetCC(dl, VT, N0.getOperand(0),
3815 DAG.getConstant(LHSR->getAPIntValue() ^
3816 RHSC->getAPIntValue(),
3817 dl, N0.getValueType()),
3818 Cond);
3821 // Turn (C1-X) == C2 --> X == C1-C2
3822 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3823 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3824 return
3825 DAG.getSetCC(dl, VT, N0.getOperand(1),
3826 DAG.getConstant(SUBC->getAPIntValue() -
3827 RHSC->getAPIntValue(),
3828 dl, N0.getValueType()),
3829 Cond);
3833 // Could RHSC fold directly into a compare?
3834 if (RHSC->getValueType(0).getSizeInBits() <= 64)
3835 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3838 // (X+Y) == X --> Y == 0 and similar folds.
3839 // Don't do this if X is an immediate that can fold into a cmp
3840 // instruction and X+Y has other uses. It could be an induction variable
3841 // chain, and the transform would increase register pressure.
3842 if (!LegalRHSImm || N0.hasOneUse())
3843 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3844 return V;
3847 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3848 N1.getOpcode() == ISD::XOR)
3849 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3850 return V;
3852 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3853 return V;
3856 // Fold remainder of division by a constant.
3857 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3858 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3859 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3861 // When division is cheap or optimizing for minimum size,
3862 // fall through to DIVREM creation by skipping this fold.
3863 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3864 if (N0.getOpcode() == ISD::UREM) {
3865 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3866 return Folded;
3867 } else if (N0.getOpcode() == ISD::SREM) {
3868 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3869 return Folded;
3874 // Fold away ALL boolean setcc's.
3875 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3876 SDValue Temp;
3877 switch (Cond) {
3878 default: llvm_unreachable("Unknown integer setcc!");
3879 case ISD::SETEQ: // X == Y -> ~(X^Y)
3880 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3881 N0 = DAG.getNOT(dl, Temp, OpVT);
3882 if (!DCI.isCalledByLegalizer())
3883 DCI.AddToWorklist(Temp.getNode());
3884 break;
3885 case ISD::SETNE: // X != Y --> (X^Y)
3886 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3887 break;
3888 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
3889 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
3890 Temp = DAG.getNOT(dl, N0, OpVT);
3891 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3892 if (!DCI.isCalledByLegalizer())
3893 DCI.AddToWorklist(Temp.getNode());
3894 break;
3895 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
3896 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
3897 Temp = DAG.getNOT(dl, N1, OpVT);
3898 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3899 if (!DCI.isCalledByLegalizer())
3900 DCI.AddToWorklist(Temp.getNode());
3901 break;
3902 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
3903 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
3904 Temp = DAG.getNOT(dl, N0, OpVT);
3905 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3906 if (!DCI.isCalledByLegalizer())
3907 DCI.AddToWorklist(Temp.getNode());
3908 break;
3909 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
3910 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
3911 Temp = DAG.getNOT(dl, N1, OpVT);
3912 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3913 break;
3915 if (VT.getScalarType() != MVT::i1) {
3916 if (!DCI.isCalledByLegalizer())
3917 DCI.AddToWorklist(N0.getNode());
3918 // FIXME: If running after legalize, we probably can't do this.
3919 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3920 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3922 return N0;
3925 // Could not fold it.
3926 return SDValue();
3929 /// Returns true (and the GlobalValue and the offset) if the node is a
3930 /// GlobalAddress + offset.
3931 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3932 int64_t &Offset) const {
3934 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3936 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3937 GA = GASD->getGlobal();
3938 Offset += GASD->getOffset();
3939 return true;
3942 if (N->getOpcode() == ISD::ADD) {
3943 SDValue N1 = N->getOperand(0);
3944 SDValue N2 = N->getOperand(1);
3945 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3946 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3947 Offset += V->getSExtValue();
3948 return true;
3950 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3951 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3952 Offset += V->getSExtValue();
3953 return true;
3958 return false;
3961 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3962 DAGCombinerInfo &DCI) const {
3963 // Default implementation: no optimization.
3964 return SDValue();
3967 //===----------------------------------------------------------------------===//
3968 // Inline Assembler Implementation Methods
3969 //===----------------------------------------------------------------------===//
3971 TargetLowering::ConstraintType
3972 TargetLowering::getConstraintType(StringRef Constraint) const {
3973 unsigned S = Constraint.size();
3975 if (S == 1) {
3976 switch (Constraint[0]) {
3977 default: break;
3978 case 'r':
3979 return C_RegisterClass;
3980 case 'm': // memory
3981 case 'o': // offsetable
3982 case 'V': // not offsetable
3983 return C_Memory;
3984 case 'n': // Simple Integer
3985 case 'E': // Floating Point Constant
3986 case 'F': // Floating Point Constant
3987 return C_Immediate;
3988 case 'i': // Simple Integer or Relocatable Constant
3989 case 's': // Relocatable Constant
3990 case 'p': // Address.
3991 case 'X': // Allow ANY value.
3992 case 'I': // Target registers.
3993 case 'J':
3994 case 'K':
3995 case 'L':
3996 case 'M':
3997 case 'N':
3998 case 'O':
3999 case 'P':
4000 case '<':
4001 case '>':
4002 return C_Other;
4006 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4007 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4008 return C_Memory;
4009 return C_Register;
4011 return C_Unknown;
4014 /// Try to replace an X constraint, which matches anything, with another that
4015 /// has more specific requirements based on the type of the corresponding
4016 /// operand.
4017 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4018 if (ConstraintVT.isInteger())
4019 return "r";
4020 if (ConstraintVT.isFloatingPoint())
4021 return "f"; // works for many targets
4022 return nullptr;
4025 SDValue TargetLowering::LowerAsmOutputForConstraint(
4026 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4027 SelectionDAG &DAG) const {
4028 return SDValue();
4031 /// Lower the specified operand into the Ops vector.
4032 /// If it is invalid, don't add anything to Ops.
4033 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4034 std::string &Constraint,
4035 std::vector<SDValue> &Ops,
4036 SelectionDAG &DAG) const {
4038 if (Constraint.length() > 1) return;
4040 char ConstraintLetter = Constraint[0];
4041 switch (ConstraintLetter) {
4042 default: break;
4043 case 'X': // Allows any operand; labels (basic block) use this.
4044 if (Op.getOpcode() == ISD::BasicBlock ||
4045 Op.getOpcode() == ISD::TargetBlockAddress) {
4046 Ops.push_back(Op);
4047 return;
4049 LLVM_FALLTHROUGH;
4050 case 'i': // Simple Integer or Relocatable Constant
4051 case 'n': // Simple Integer
4052 case 's': { // Relocatable Constant
4054 GlobalAddressSDNode *GA;
4055 ConstantSDNode *C;
4056 BlockAddressSDNode *BA;
4057 uint64_t Offset = 0;
4059 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4060 // etc., since getelementpointer is variadic. We can't use
4061 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4062 // while in this case the GA may be furthest from the root node which is
4063 // likely an ISD::ADD.
4064 while (1) {
4065 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4066 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4067 GA->getValueType(0),
4068 Offset + GA->getOffset()));
4069 return;
4070 } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4071 ConstraintLetter != 's') {
4072 // gcc prints these as sign extended. Sign extend value to 64 bits
4073 // now; without this it would get ZExt'd later in
4074 // ScheduleDAGSDNodes::EmitNode, which is very generic.
4075 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4076 BooleanContent BCont = getBooleanContents(MVT::i64);
4077 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4078 : ISD::SIGN_EXTEND;
4079 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4080 : C->getSExtValue();
4081 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4082 SDLoc(C), MVT::i64));
4083 return;
4084 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4085 ConstraintLetter != 'n') {
4086 Ops.push_back(DAG.getTargetBlockAddress(
4087 BA->getBlockAddress(), BA->getValueType(0),
4088 Offset + BA->getOffset(), BA->getTargetFlags()));
4089 return;
4090 } else {
4091 const unsigned OpCode = Op.getOpcode();
4092 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4093 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4094 Op = Op.getOperand(1);
4095 // Subtraction is not commutative.
4096 else if (OpCode == ISD::ADD &&
4097 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4098 Op = Op.getOperand(0);
4099 else
4100 return;
4101 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4102 continue;
4105 return;
4107 break;
4112 std::pair<unsigned, const TargetRegisterClass *>
4113 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4114 StringRef Constraint,
4115 MVT VT) const {
4116 if (Constraint.empty() || Constraint[0] != '{')
4117 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4118 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4120 // Remove the braces from around the name.
4121 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4123 std::pair<unsigned, const TargetRegisterClass *> R =
4124 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4126 // Figure out which register class contains this reg.
4127 for (const TargetRegisterClass *RC : RI->regclasses()) {
4128 // If none of the value types for this register class are valid, we
4129 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4130 if (!isLegalRC(*RI, *RC))
4131 continue;
4133 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4134 I != E; ++I) {
4135 if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4136 std::pair<unsigned, const TargetRegisterClass *> S =
4137 std::make_pair(*I, RC);
4139 // If this register class has the requested value type, return it,
4140 // otherwise keep searching and return the first class found
4141 // if no other is found which explicitly has the requested type.
4142 if (RI->isTypeLegalForClass(*RC, VT))
4143 return S;
4144 if (!R.second)
4145 R = S;
4150 return R;
4153 //===----------------------------------------------------------------------===//
4154 // Constraint Selection.
4156 /// Return true of this is an input operand that is a matching constraint like
4157 /// "4".
4158 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4159 assert(!ConstraintCode.empty() && "No known constraint!");
4160 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4163 /// If this is an input matching constraint, this method returns the output
4164 /// operand it matches.
4165 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4166 assert(!ConstraintCode.empty() && "No known constraint!");
4167 return atoi(ConstraintCode.c_str());
4170 /// Split up the constraint string from the inline assembly value into the
4171 /// specific constraints and their prefixes, and also tie in the associated
4172 /// operand values.
4173 /// If this returns an empty vector, and if the constraint string itself
4174 /// isn't empty, there was an error parsing.
4175 TargetLowering::AsmOperandInfoVector
4176 TargetLowering::ParseConstraints(const DataLayout &DL,
4177 const TargetRegisterInfo *TRI,
4178 ImmutableCallSite CS) const {
4179 /// Information about all of the constraints.
4180 AsmOperandInfoVector ConstraintOperands;
4181 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4182 unsigned maCount = 0; // Largest number of multiple alternative constraints.
4184 // Do a prepass over the constraints, canonicalizing them, and building up the
4185 // ConstraintOperands list.
4186 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4187 unsigned ResNo = 0; // ResNo - The result number of the next output.
4189 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4190 ConstraintOperands.emplace_back(std::move(CI));
4191 AsmOperandInfo &OpInfo = ConstraintOperands.back();
4193 // Update multiple alternative constraint count.
4194 if (OpInfo.multipleAlternatives.size() > maCount)
4195 maCount = OpInfo.multipleAlternatives.size();
4197 OpInfo.ConstraintVT = MVT::Other;
4199 // Compute the value type for each operand.
4200 switch (OpInfo.Type) {
4201 case InlineAsm::isOutput:
4202 // Indirect outputs just consume an argument.
4203 if (OpInfo.isIndirect) {
4204 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4205 break;
4208 // The return value of the call is this value. As such, there is no
4209 // corresponding argument.
4210 assert(!CS.getType()->isVoidTy() &&
4211 "Bad inline asm!");
4212 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4213 OpInfo.ConstraintVT =
4214 getSimpleValueType(DL, STy->getElementType(ResNo));
4215 } else {
4216 assert(ResNo == 0 && "Asm only has one result!");
4217 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4219 ++ResNo;
4220 break;
4221 case InlineAsm::isInput:
4222 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4223 break;
4224 case InlineAsm::isClobber:
4225 // Nothing to do.
4226 break;
4229 if (OpInfo.CallOperandVal) {
4230 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4231 if (OpInfo.isIndirect) {
4232 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4233 if (!PtrTy)
4234 report_fatal_error("Indirect operand for inline asm not a pointer!");
4235 OpTy = PtrTy->getElementType();
4238 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4239 if (StructType *STy = dyn_cast<StructType>(OpTy))
4240 if (STy->getNumElements() == 1)
4241 OpTy = STy->getElementType(0);
4243 // If OpTy is not a single value, it may be a struct/union that we
4244 // can tile with integers.
4245 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4246 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4247 switch (BitSize) {
4248 default: break;
4249 case 1:
4250 case 8:
4251 case 16:
4252 case 32:
4253 case 64:
4254 case 128:
4255 OpInfo.ConstraintVT =
4256 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4257 break;
4259 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4260 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4261 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4262 } else {
4263 OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4268 // If we have multiple alternative constraints, select the best alternative.
4269 if (!ConstraintOperands.empty()) {
4270 if (maCount) {
4271 unsigned bestMAIndex = 0;
4272 int bestWeight = -1;
4273 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
4274 int weight = -1;
4275 unsigned maIndex;
4276 // Compute the sums of the weights for each alternative, keeping track
4277 // of the best (highest weight) one so far.
4278 for (maIndex = 0; maIndex < maCount; ++maIndex) {
4279 int weightSum = 0;
4280 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4281 cIndex != eIndex; ++cIndex) {
4282 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4283 if (OpInfo.Type == InlineAsm::isClobber)
4284 continue;
4286 // If this is an output operand with a matching input operand,
4287 // look up the matching input. If their types mismatch, e.g. one
4288 // is an integer, the other is floating point, or their sizes are
4289 // different, flag it as an maCantMatch.
4290 if (OpInfo.hasMatchingInput()) {
4291 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4292 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4293 if ((OpInfo.ConstraintVT.isInteger() !=
4294 Input.ConstraintVT.isInteger()) ||
4295 (OpInfo.ConstraintVT.getSizeInBits() !=
4296 Input.ConstraintVT.getSizeInBits())) {
4297 weightSum = -1; // Can't match.
4298 break;
4302 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4303 if (weight == -1) {
4304 weightSum = -1;
4305 break;
4307 weightSum += weight;
4309 // Update best.
4310 if (weightSum > bestWeight) {
4311 bestWeight = weightSum;
4312 bestMAIndex = maIndex;
4316 // Now select chosen alternative in each constraint.
4317 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4318 cIndex != eIndex; ++cIndex) {
4319 AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4320 if (cInfo.Type == InlineAsm::isClobber)
4321 continue;
4322 cInfo.selectAlternative(bestMAIndex);
4327 // Check and hook up tied operands, choose constraint code to use.
4328 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4329 cIndex != eIndex; ++cIndex) {
4330 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4332 // If this is an output operand with a matching input operand, look up the
4333 // matching input. If their types mismatch, e.g. one is an integer, the
4334 // other is floating point, or their sizes are different, flag it as an
4335 // error.
4336 if (OpInfo.hasMatchingInput()) {
4337 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4339 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4340 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4341 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4342 OpInfo.ConstraintVT);
4343 std::pair<unsigned, const TargetRegisterClass *> InputRC =
4344 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4345 Input.ConstraintVT);
4346 if ((OpInfo.ConstraintVT.isInteger() !=
4347 Input.ConstraintVT.isInteger()) ||
4348 (MatchRC.second != InputRC.second)) {
4349 report_fatal_error("Unsupported asm: input constraint"
4350 " with a matching output constraint of"
4351 " incompatible type!");
4357 return ConstraintOperands;
4360 /// Return an integer indicating how general CT is.
4361 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4362 switch (CT) {
4363 case TargetLowering::C_Immediate:
4364 case TargetLowering::C_Other:
4365 case TargetLowering::C_Unknown:
4366 return 0;
4367 case TargetLowering::C_Register:
4368 return 1;
4369 case TargetLowering::C_RegisterClass:
4370 return 2;
4371 case TargetLowering::C_Memory:
4372 return 3;
4374 llvm_unreachable("Invalid constraint type");
4377 /// Examine constraint type and operand type and determine a weight value.
4378 /// This object must already have been set up with the operand type
4379 /// and the current alternative constraint selected.
4380 TargetLowering::ConstraintWeight
4381 TargetLowering::getMultipleConstraintMatchWeight(
4382 AsmOperandInfo &info, int maIndex) const {
4383 InlineAsm::ConstraintCodeVector *rCodes;
4384 if (maIndex >= (int)info.multipleAlternatives.size())
4385 rCodes = &info.Codes;
4386 else
4387 rCodes = &info.multipleAlternatives[maIndex].Codes;
4388 ConstraintWeight BestWeight = CW_Invalid;
4390 // Loop over the options, keeping track of the most general one.
4391 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4392 ConstraintWeight weight =
4393 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4394 if (weight > BestWeight)
4395 BestWeight = weight;
4398 return BestWeight;
4401 /// Examine constraint type and operand type and determine a weight value.
4402 /// This object must already have been set up with the operand type
4403 /// and the current alternative constraint selected.
4404 TargetLowering::ConstraintWeight
4405 TargetLowering::getSingleConstraintMatchWeight(
4406 AsmOperandInfo &info, const char *constraint) const {
4407 ConstraintWeight weight = CW_Invalid;
4408 Value *CallOperandVal = info.CallOperandVal;
4409 // If we don't have a value, we can't do a match,
4410 // but allow it at the lowest weight.
4411 if (!CallOperandVal)
4412 return CW_Default;
4413 // Look at the constraint type.
4414 switch (*constraint) {
4415 case 'i': // immediate integer.
4416 case 'n': // immediate integer with a known value.
4417 if (isa<ConstantInt>(CallOperandVal))
4418 weight = CW_Constant;
4419 break;
4420 case 's': // non-explicit intregal immediate.
4421 if (isa<GlobalValue>(CallOperandVal))
4422 weight = CW_Constant;
4423 break;
4424 case 'E': // immediate float if host format.
4425 case 'F': // immediate float.
4426 if (isa<ConstantFP>(CallOperandVal))
4427 weight = CW_Constant;
4428 break;
4429 case '<': // memory operand with autodecrement.
4430 case '>': // memory operand with autoincrement.
4431 case 'm': // memory operand.
4432 case 'o': // offsettable memory operand
4433 case 'V': // non-offsettable memory operand
4434 weight = CW_Memory;
4435 break;
4436 case 'r': // general register.
4437 case 'g': // general register, memory operand or immediate integer.
4438 // note: Clang converts "g" to "imr".
4439 if (CallOperandVal->getType()->isIntegerTy())
4440 weight = CW_Register;
4441 break;
4442 case 'X': // any operand.
4443 default:
4444 weight = CW_Default;
4445 break;
4447 return weight;
4450 /// If there are multiple different constraints that we could pick for this
4451 /// operand (e.g. "imr") try to pick the 'best' one.
4452 /// This is somewhat tricky: constraints fall into four classes:
4453 /// Other -> immediates and magic values
4454 /// Register -> one specific register
4455 /// RegisterClass -> a group of regs
4456 /// Memory -> memory
4457 /// Ideally, we would pick the most specific constraint possible: if we have
4458 /// something that fits into a register, we would pick it. The problem here
4459 /// is that if we have something that could either be in a register or in
4460 /// memory that use of the register could cause selection of *other*
4461 /// operands to fail: they might only succeed if we pick memory. Because of
4462 /// this the heuristic we use is:
4464 /// 1) If there is an 'other' constraint, and if the operand is valid for
4465 /// that constraint, use it. This makes us take advantage of 'i'
4466 /// constraints when available.
4467 /// 2) Otherwise, pick the most general constraint present. This prefers
4468 /// 'm' over 'r', for example.
4470 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4471 const TargetLowering &TLI,
4472 SDValue Op, SelectionDAG *DAG) {
4473 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4474 unsigned BestIdx = 0;
4475 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4476 int BestGenerality = -1;
4478 // Loop over the options, keeping track of the most general one.
4479 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4480 TargetLowering::ConstraintType CType =
4481 TLI.getConstraintType(OpInfo.Codes[i]);
4483 // If this is an 'other' or 'immediate' constraint, see if the operand is
4484 // valid for it. For example, on X86 we might have an 'rI' constraint. If
4485 // the operand is an integer in the range [0..31] we want to use I (saving a
4486 // load of a register), otherwise we must use 'r'.
4487 if ((CType == TargetLowering::C_Other ||
4488 CType == TargetLowering::C_Immediate) && Op.getNode()) {
4489 assert(OpInfo.Codes[i].size() == 1 &&
4490 "Unhandled multi-letter 'other' constraint");
4491 std::vector<SDValue> ResultOps;
4492 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4493 ResultOps, *DAG);
4494 if (!ResultOps.empty()) {
4495 BestType = CType;
4496 BestIdx = i;
4497 break;
4501 // Things with matching constraints can only be registers, per gcc
4502 // documentation. This mainly affects "g" constraints.
4503 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4504 continue;
4506 // This constraint letter is more general than the previous one, use it.
4507 int Generality = getConstraintGenerality(CType);
4508 if (Generality > BestGenerality) {
4509 BestType = CType;
4510 BestIdx = i;
4511 BestGenerality = Generality;
4515 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4516 OpInfo.ConstraintType = BestType;
4519 /// Determines the constraint code and constraint type to use for the specific
4520 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4521 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4522 SDValue Op,
4523 SelectionDAG *DAG) const {
4524 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4526 // Single-letter constraints ('r') are very common.
4527 if (OpInfo.Codes.size() == 1) {
4528 OpInfo.ConstraintCode = OpInfo.Codes[0];
4529 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4530 } else {
4531 ChooseConstraint(OpInfo, *this, Op, DAG);
4534 // 'X' matches anything.
4535 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4536 // Labels and constants are handled elsewhere ('X' is the only thing
4537 // that matches labels). For Functions, the type here is the type of
4538 // the result, which is not what we want to look at; leave them alone.
4539 Value *v = OpInfo.CallOperandVal;
4540 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4541 OpInfo.CallOperandVal = v;
4542 return;
4545 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4546 return;
4548 // Otherwise, try to resolve it to something we know about by looking at
4549 // the actual operand type.
4550 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4551 OpInfo.ConstraintCode = Repl;
4552 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4557 /// Given an exact SDIV by a constant, create a multiplication
4558 /// with the multiplicative inverse of the constant.
4559 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4560 const SDLoc &dl, SelectionDAG &DAG,
4561 SmallVectorImpl<SDNode *> &Created) {
4562 SDValue Op0 = N->getOperand(0);
4563 SDValue Op1 = N->getOperand(1);
4564 EVT VT = N->getValueType(0);
4565 EVT SVT = VT.getScalarType();
4566 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4567 EVT ShSVT = ShVT.getScalarType();
4569 bool UseSRA = false;
4570 SmallVector<SDValue, 16> Shifts, Factors;
4572 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4573 if (C->isNullValue())
4574 return false;
4575 APInt Divisor = C->getAPIntValue();
4576 unsigned Shift = Divisor.countTrailingZeros();
4577 if (Shift) {
4578 Divisor.ashrInPlace(Shift);
4579 UseSRA = true;
4581 // Calculate the multiplicative inverse, using Newton's method.
4582 APInt t;
4583 APInt Factor = Divisor;
4584 while ((t = Divisor * Factor) != 1)
4585 Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4586 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4587 Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4588 return true;
4591 // Collect all magic values from the build vector.
4592 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4593 return SDValue();
4595 SDValue Shift, Factor;
4596 if (VT.isVector()) {
4597 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4598 Factor = DAG.getBuildVector(VT, dl, Factors);
4599 } else {
4600 Shift = Shifts[0];
4601 Factor = Factors[0];
4604 SDValue Res = Op0;
4606 // Shift the value upfront if it is even, so the LSB is one.
4607 if (UseSRA) {
4608 // TODO: For UDIV use SRL instead of SRA.
4609 SDNodeFlags Flags;
4610 Flags.setExact(true);
4611 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4612 Created.push_back(Res.getNode());
4615 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4618 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4619 SelectionDAG &DAG,
4620 SmallVectorImpl<SDNode *> &Created) const {
4621 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4622 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4623 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4624 return SDValue(N, 0); // Lower SDIV as SDIV
4625 return SDValue();
4628 /// Given an ISD::SDIV node expressing a divide by constant,
4629 /// return a DAG expression to select that will generate the same value by
4630 /// multiplying by a magic number.
4631 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4632 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4633 bool IsAfterLegalization,
4634 SmallVectorImpl<SDNode *> &Created) const {
4635 SDLoc dl(N);
4636 EVT VT = N->getValueType(0);
4637 EVT SVT = VT.getScalarType();
4638 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4639 EVT ShSVT = ShVT.getScalarType();
4640 unsigned EltBits = VT.getScalarSizeInBits();
4642 // Check to see if we can do this.
4643 // FIXME: We should be more aggressive here.
4644 if (!isTypeLegal(VT))
4645 return SDValue();
4647 // If the sdiv has an 'exact' bit we can use a simpler lowering.
4648 if (N->getFlags().hasExact())
4649 return BuildExactSDIV(*this, N, dl, DAG, Created);
4651 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4653 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4654 if (C->isNullValue())
4655 return false;
4657 const APInt &Divisor = C->getAPIntValue();
4658 APInt::ms magics = Divisor.magic();
4659 int NumeratorFactor = 0;
4660 int ShiftMask = -1;
4662 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4663 // If d is +1/-1, we just multiply the numerator by +1/-1.
4664 NumeratorFactor = Divisor.getSExtValue();
4665 magics.m = 0;
4666 magics.s = 0;
4667 ShiftMask = 0;
4668 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4669 // If d > 0 and m < 0, add the numerator.
4670 NumeratorFactor = 1;
4671 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4672 // If d < 0 and m > 0, subtract the numerator.
4673 NumeratorFactor = -1;
4676 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4677 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4678 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4679 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4680 return true;
4683 SDValue N0 = N->getOperand(0);
4684 SDValue N1 = N->getOperand(1);
4686 // Collect the shifts / magic values from each element.
4687 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4688 return SDValue();
4690 SDValue MagicFactor, Factor, Shift, ShiftMask;
4691 if (VT.isVector()) {
4692 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4693 Factor = DAG.getBuildVector(VT, dl, Factors);
4694 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4695 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4696 } else {
4697 MagicFactor = MagicFactors[0];
4698 Factor = Factors[0];
4699 Shift = Shifts[0];
4700 ShiftMask = ShiftMasks[0];
4703 // Multiply the numerator (operand 0) by the magic value.
4704 // FIXME: We should support doing a MUL in a wider type.
4705 SDValue Q;
4706 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4707 : isOperationLegalOrCustom(ISD::MULHS, VT))
4708 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4709 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4710 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4711 SDValue LoHi =
4712 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4713 Q = SDValue(LoHi.getNode(), 1);
4714 } else
4715 return SDValue(); // No mulhs or equivalent.
4716 Created.push_back(Q.getNode());
4718 // (Optionally) Add/subtract the numerator using Factor.
4719 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4720 Created.push_back(Factor.getNode());
4721 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4722 Created.push_back(Q.getNode());
4724 // Shift right algebraic by shift value.
4725 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4726 Created.push_back(Q.getNode());
4728 // Extract the sign bit, mask it and add it to the quotient.
4729 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4730 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4731 Created.push_back(T.getNode());
4732 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4733 Created.push_back(T.getNode());
4734 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4737 /// Given an ISD::UDIV node expressing a divide by constant,
4738 /// return a DAG expression to select that will generate the same value by
4739 /// multiplying by a magic number.
4740 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4741 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4742 bool IsAfterLegalization,
4743 SmallVectorImpl<SDNode *> &Created) const {
4744 SDLoc dl(N);
4745 EVT VT = N->getValueType(0);
4746 EVT SVT = VT.getScalarType();
4747 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4748 EVT ShSVT = ShVT.getScalarType();
4749 unsigned EltBits = VT.getScalarSizeInBits();
4751 // Check to see if we can do this.
4752 // FIXME: We should be more aggressive here.
4753 if (!isTypeLegal(VT))
4754 return SDValue();
4756 bool UseNPQ = false;
4757 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4759 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4760 if (C->isNullValue())
4761 return false;
4762 // FIXME: We should use a narrower constant when the upper
4763 // bits are known to be zero.
4764 APInt Divisor = C->getAPIntValue();
4765 APInt::mu magics = Divisor.magicu();
4766 unsigned PreShift = 0, PostShift = 0;
4768 // If the divisor is even, we can avoid using the expensive fixup by
4769 // shifting the divided value upfront.
4770 if (magics.a != 0 && !Divisor[0]) {
4771 PreShift = Divisor.countTrailingZeros();
4772 // Get magic number for the shifted divisor.
4773 magics = Divisor.lshr(PreShift).magicu(PreShift);
4774 assert(magics.a == 0 && "Should use cheap fixup now");
4777 APInt Magic = magics.m;
4779 unsigned SelNPQ;
4780 if (magics.a == 0 || Divisor.isOneValue()) {
4781 assert(magics.s < Divisor.getBitWidth() &&
4782 "We shouldn't generate an undefined shift!");
4783 PostShift = magics.s;
4784 SelNPQ = false;
4785 } else {
4786 PostShift = magics.s - 1;
4787 SelNPQ = true;
4790 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4791 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4792 NPQFactors.push_back(
4793 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4794 : APInt::getNullValue(EltBits),
4795 dl, SVT));
4796 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4797 UseNPQ |= SelNPQ;
4798 return true;
4801 SDValue N0 = N->getOperand(0);
4802 SDValue N1 = N->getOperand(1);
4804 // Collect the shifts/magic values from each element.
4805 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4806 return SDValue();
4808 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4809 if (VT.isVector()) {
4810 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4811 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4812 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4813 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4814 } else {
4815 PreShift = PreShifts[0];
4816 MagicFactor = MagicFactors[0];
4817 PostShift = PostShifts[0];
4820 SDValue Q = N0;
4821 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4822 Created.push_back(Q.getNode());
4824 // FIXME: We should support doing a MUL in a wider type.
4825 auto GetMULHU = [&](SDValue X, SDValue Y) {
4826 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4827 : isOperationLegalOrCustom(ISD::MULHU, VT))
4828 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4829 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4830 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4831 SDValue LoHi =
4832 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4833 return SDValue(LoHi.getNode(), 1);
4835 return SDValue(); // No mulhu or equivalent
4838 // Multiply the numerator (operand 0) by the magic value.
4839 Q = GetMULHU(Q, MagicFactor);
4840 if (!Q)
4841 return SDValue();
4843 Created.push_back(Q.getNode());
4845 if (UseNPQ) {
4846 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4847 Created.push_back(NPQ.getNode());
4849 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4850 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4851 if (VT.isVector())
4852 NPQ = GetMULHU(NPQ, NPQFactor);
4853 else
4854 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4856 Created.push_back(NPQ.getNode());
4858 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4859 Created.push_back(Q.getNode());
4862 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4863 Created.push_back(Q.getNode());
4865 SDValue One = DAG.getConstant(1, dl, VT);
4866 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4867 return DAG.getSelect(dl, VT, IsOne, N0, Q);
4870 /// If all values in Values that *don't* match the predicate are same 'splat'
4871 /// value, then replace all values with that splat value.
4872 /// Else, if AlternativeReplacement was provided, then replace all values that
4873 /// do match predicate with AlternativeReplacement value.
4874 static void
4875 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4876 std::function<bool(SDValue)> Predicate,
4877 SDValue AlternativeReplacement = SDValue()) {
4878 SDValue Replacement;
4879 // Is there a value for which the Predicate does *NOT* match? What is it?
4880 auto SplatValue = llvm::find_if_not(Values, Predicate);
4881 if (SplatValue != Values.end()) {
4882 // Does Values consist only of SplatValue's and values matching Predicate?
4883 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4884 return Value == *SplatValue || Predicate(Value);
4885 })) // Then we shall replace values matching predicate with SplatValue.
4886 Replacement = *SplatValue;
4888 if (!Replacement) {
4889 // Oops, we did not find the "baseline" splat value.
4890 if (!AlternativeReplacement)
4891 return; // Nothing to do.
4892 // Let's replace with provided value then.
4893 Replacement = AlternativeReplacement;
4895 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4898 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4899 /// where the divisor is constant and the comparison target is zero,
4900 /// return a DAG expression that will generate the same comparison result
4901 /// using only multiplications, additions and shifts/rotations.
4902 /// Ref: "Hacker's Delight" 10-17.
4903 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4904 SDValue CompTargetNode,
4905 ISD::CondCode Cond,
4906 DAGCombinerInfo &DCI,
4907 const SDLoc &DL) const {
4908 SmallVector<SDNode *, 2> Built;
4909 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4910 DCI, DL, Built)) {
4911 for (SDNode *N : Built)
4912 DCI.AddToWorklist(N);
4913 return Folded;
4916 return SDValue();
4919 SDValue
4920 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4921 SDValue CompTargetNode, ISD::CondCode Cond,
4922 DAGCombinerInfo &DCI, const SDLoc &DL,
4923 SmallVectorImpl<SDNode *> &Created) const {
4924 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4925 // - D must be constant, with D = D0 * 2^K where D0 is odd
4926 // - P is the multiplicative inverse of D0 modulo 2^W
4927 // - Q = floor(((2^W) - 1) / D)
4928 // where W is the width of the common type of N and D.
4929 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4930 "Only applicable for (in)equality comparisons.");
4932 SelectionDAG &DAG = DCI.DAG;
4934 EVT VT = REMNode.getValueType();
4935 EVT SVT = VT.getScalarType();
4936 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4937 EVT ShSVT = ShVT.getScalarType();
4939 // If MUL is unavailable, we cannot proceed in any case.
4940 if (!isOperationLegalOrCustom(ISD::MUL, VT))
4941 return SDValue();
4943 // TODO: Could support comparing with non-zero too.
4944 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4945 if (!CompTarget || !CompTarget->isNullValue())
4946 return SDValue();
4948 bool HadOneDivisor = false;
4949 bool AllDivisorsAreOnes = true;
4950 bool HadEvenDivisor = false;
4951 bool AllDivisorsArePowerOfTwo = true;
4952 SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4954 auto BuildUREMPattern = [&](ConstantSDNode *C) {
4955 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4956 if (C->isNullValue())
4957 return false;
4959 const APInt &D = C->getAPIntValue();
4960 // If all divisors are ones, we will prefer to avoid the fold.
4961 HadOneDivisor |= D.isOneValue();
4962 AllDivisorsAreOnes &= D.isOneValue();
4964 // Decompose D into D0 * 2^K
4965 unsigned K = D.countTrailingZeros();
4966 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4967 APInt D0 = D.lshr(K);
4969 // D is even if it has trailing zeros.
4970 HadEvenDivisor |= (K != 0);
4971 // D is a power-of-two if D0 is one.
4972 // If all divisors are power-of-two, we will prefer to avoid the fold.
4973 AllDivisorsArePowerOfTwo &= D0.isOneValue();
4975 // P = inv(D0, 2^W)
4976 // 2^W requires W + 1 bits, so we have to extend and then truncate.
4977 unsigned W = D.getBitWidth();
4978 APInt P = D0.zext(W + 1)
4979 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4980 .trunc(W);
4981 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4982 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4984 // Q = floor((2^W - 1) / D)
4985 APInt Q = APInt::getAllOnesValue(W).udiv(D);
4987 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4988 "We are expecting that K is always less than all-ones for ShSVT");
4990 // If the divisor is 1 the result can be constant-folded.
4991 if (D.isOneValue()) {
4992 // Set P and K amount to a bogus values so we can try to splat them.
4993 P = 0;
4994 K = -1;
4995 assert(Q.isAllOnesValue() &&
4996 "Expecting all-ones comparison for one divisor");
4999 PAmts.push_back(DAG.getConstant(P, DL, SVT));
5000 KAmts.push_back(
5001 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5002 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5003 return true;
5006 SDValue N = REMNode.getOperand(0);
5007 SDValue D = REMNode.getOperand(1);
5009 // Collect the values from each element.
5010 if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
5011 return SDValue();
5013 // If this is a urem by a one, avoid the fold since it can be constant-folded.
5014 if (AllDivisorsAreOnes)
5015 return SDValue();
5017 // If this is a urem by a powers-of-two, avoid the fold since it can be
5018 // best implemented as a bit test.
5019 if (AllDivisorsArePowerOfTwo)
5020 return SDValue();
5022 SDValue PVal, KVal, QVal;
5023 if (VT.isVector()) {
5024 if (HadOneDivisor) {
5025 // Try to turn PAmts into a splat, since we don't care about the values
5026 // that are currently '0'. If we can't, just keep '0'`s.
5027 turnVectorIntoSplatVector(PAmts, isNullConstant);
5028 // Try to turn KAmts into a splat, since we don't care about the values
5029 // that are currently '-1'. If we can't, change them to '0'`s.
5030 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5031 DAG.getConstant(0, DL, ShSVT));
5034 PVal = DAG.getBuildVector(VT, DL, PAmts);
5035 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5036 QVal = DAG.getBuildVector(VT, DL, QAmts);
5037 } else {
5038 PVal = PAmts[0];
5039 KVal = KAmts[0];
5040 QVal = QAmts[0];
5043 // (mul N, P)
5044 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5045 Created.push_back(Op0.getNode());
5047 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5048 // divisors as a performance improvement, since rotating by 0 is a no-op.
5049 if (HadEvenDivisor) {
5050 // We need ROTR to do this.
5051 if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5052 return SDValue();
5053 SDNodeFlags Flags;
5054 Flags.setExact(true);
5055 // UREM: (rotr (mul N, P), K)
5056 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5057 Created.push_back(Op0.getNode());
5060 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5061 return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5062 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5065 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5066 /// where the divisor is constant and the comparison target is zero,
5067 /// return a DAG expression that will generate the same comparison result
5068 /// using only multiplications, additions and shifts/rotations.
5069 /// Ref: "Hacker's Delight" 10-17.
5070 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5071 SDValue CompTargetNode,
5072 ISD::CondCode Cond,
5073 DAGCombinerInfo &DCI,
5074 const SDLoc &DL) const {
5075 SmallVector<SDNode *, 7> Built;
5076 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5077 DCI, DL, Built)) {
5078 assert(Built.size() <= 7 && "Max size prediction failed.");
5079 for (SDNode *N : Built)
5080 DCI.AddToWorklist(N);
5081 return Folded;
5084 return SDValue();
5087 SDValue
5088 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5089 SDValue CompTargetNode, ISD::CondCode Cond,
5090 DAGCombinerInfo &DCI, const SDLoc &DL,
5091 SmallVectorImpl<SDNode *> &Created) const {
5092 // Fold:
5093 // (seteq/ne (srem N, D), 0)
5094 // To:
5095 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
5097 // - D must be constant, with D = D0 * 2^K where D0 is odd
5098 // - P is the multiplicative inverse of D0 modulo 2^W
5099 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5100 // - Q = floor((2 * A) / (2^K))
5101 // where W is the width of the common type of N and D.
5102 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5103 "Only applicable for (in)equality comparisons.");
5105 SelectionDAG &DAG = DCI.DAG;
5107 EVT VT = REMNode.getValueType();
5108 EVT SVT = VT.getScalarType();
5109 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5110 EVT ShSVT = ShVT.getScalarType();
5112 // If MUL is unavailable, we cannot proceed in any case.
5113 if (!isOperationLegalOrCustom(ISD::MUL, VT))
5114 return SDValue();
5116 // TODO: Could support comparing with non-zero too.
5117 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5118 if (!CompTarget || !CompTarget->isNullValue())
5119 return SDValue();
5121 bool HadIntMinDivisor = false;
5122 bool HadOneDivisor = false;
5123 bool AllDivisorsAreOnes = true;
5124 bool HadEvenDivisor = false;
5125 bool NeedToApplyOffset = false;
5126 bool AllDivisorsArePowerOfTwo = true;
5127 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5129 auto BuildSREMPattern = [&](ConstantSDNode *C) {
5130 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5131 if (C->isNullValue())
5132 return false;
5134 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5136 // WARNING: this fold is only valid for positive divisors!
5137 APInt D = C->getAPIntValue();
5138 if (D.isNegative())
5139 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
5141 HadIntMinDivisor |= D.isMinSignedValue();
5143 // If all divisors are ones, we will prefer to avoid the fold.
5144 HadOneDivisor |= D.isOneValue();
5145 AllDivisorsAreOnes &= D.isOneValue();
5147 // Decompose D into D0 * 2^K
5148 unsigned K = D.countTrailingZeros();
5149 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5150 APInt D0 = D.lshr(K);
5152 if (!D.isMinSignedValue()) {
5153 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5154 // we don't care about this lane in this fold, we'll special-handle it.
5155 HadEvenDivisor |= (K != 0);
5158 // D is a power-of-two if D0 is one. This includes INT_MIN.
5159 // If all divisors are power-of-two, we will prefer to avoid the fold.
5160 AllDivisorsArePowerOfTwo &= D0.isOneValue();
5162 // P = inv(D0, 2^W)
5163 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5164 unsigned W = D.getBitWidth();
5165 APInt P = D0.zext(W + 1)
5166 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5167 .trunc(W);
5168 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5169 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5171 // A = floor((2^(W - 1) - 1) / D0) & -2^K
5172 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5173 A.clearLowBits(K);
5175 if (!D.isMinSignedValue()) {
5176 // If divisor INT_MIN, then we don't care about this lane in this fold,
5177 // we'll special-handle it.
5178 NeedToApplyOffset |= A != 0;
5181 // Q = floor((2 * A) / (2^K))
5182 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5184 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5185 "We are expecting that A is always less than all-ones for SVT");
5186 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5187 "We are expecting that K is always less than all-ones for ShSVT");
5189 // If the divisor is 1 the result can be constant-folded. Likewise, we
5190 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5191 if (D.isOneValue()) {
5192 // Set P, A and K to a bogus values so we can try to splat them.
5193 P = 0;
5194 A = -1;
5195 K = -1;
5197 // x ?% 1 == 0 <--> true <--> x u<= -1
5198 Q = -1;
5201 PAmts.push_back(DAG.getConstant(P, DL, SVT));
5202 AAmts.push_back(DAG.getConstant(A, DL, SVT));
5203 KAmts.push_back(
5204 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5205 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5206 return true;
5209 SDValue N = REMNode.getOperand(0);
5210 SDValue D = REMNode.getOperand(1);
5212 // Collect the values from each element.
5213 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5214 return SDValue();
5216 // If this is a srem by a one, avoid the fold since it can be constant-folded.
5217 if (AllDivisorsAreOnes)
5218 return SDValue();
5220 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5221 // since it can be best implemented as a bit test.
5222 if (AllDivisorsArePowerOfTwo)
5223 return SDValue();
5225 SDValue PVal, AVal, KVal, QVal;
5226 if (VT.isVector()) {
5227 if (HadOneDivisor) {
5228 // Try to turn PAmts into a splat, since we don't care about the values
5229 // that are currently '0'. If we can't, just keep '0'`s.
5230 turnVectorIntoSplatVector(PAmts, isNullConstant);
5231 // Try to turn AAmts into a splat, since we don't care about the
5232 // values that are currently '-1'. If we can't, change them to '0'`s.
5233 turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5234 DAG.getConstant(0, DL, SVT));
5235 // Try to turn KAmts into a splat, since we don't care about the values
5236 // that are currently '-1'. If we can't, change them to '0'`s.
5237 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5238 DAG.getConstant(0, DL, ShSVT));
5241 PVal = DAG.getBuildVector(VT, DL, PAmts);
5242 AVal = DAG.getBuildVector(VT, DL, AAmts);
5243 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5244 QVal = DAG.getBuildVector(VT, DL, QAmts);
5245 } else {
5246 PVal = PAmts[0];
5247 AVal = AAmts[0];
5248 KVal = KAmts[0];
5249 QVal = QAmts[0];
5252 // (mul N, P)
5253 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5254 Created.push_back(Op0.getNode());
5256 if (NeedToApplyOffset) {
5257 // We need ADD to do this.
5258 if (!isOperationLegalOrCustom(ISD::ADD, VT))
5259 return SDValue();
5261 // (add (mul N, P), A)
5262 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5263 Created.push_back(Op0.getNode());
5266 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5267 // divisors as a performance improvement, since rotating by 0 is a no-op.
5268 if (HadEvenDivisor) {
5269 // We need ROTR to do this.
5270 if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5271 return SDValue();
5272 SDNodeFlags Flags;
5273 Flags.setExact(true);
5274 // SREM: (rotr (add (mul N, P), A), K)
5275 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5276 Created.push_back(Op0.getNode());
5279 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5280 SDValue Fold =
5281 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5282 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5284 // If we didn't have lanes with INT_MIN divisor, then we're done.
5285 if (!HadIntMinDivisor)
5286 return Fold;
5288 // That fold is only valid for positive divisors. Which effectively means,
5289 // it is invalid for INT_MIN divisors. So if we have such a lane,
5290 // we must fix-up results for said lanes.
5291 assert(VT.isVector() && "Can/should only get here for vectors.");
5293 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5294 !isOperationLegalOrCustom(ISD::AND, VT) ||
5295 !isOperationLegalOrCustom(Cond, VT) ||
5296 !isOperationLegalOrCustom(ISD::VSELECT, VT))
5297 return SDValue();
5299 Created.push_back(Fold.getNode());
5301 SDValue IntMin = DAG.getConstant(
5302 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5303 SDValue IntMax = DAG.getConstant(
5304 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5305 SDValue Zero =
5306 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5308 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5309 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5310 Created.push_back(DivisorIsIntMin.getNode());
5312 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
5313 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5314 Created.push_back(Masked.getNode());
5315 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5316 Created.push_back(MaskedIsZero.getNode());
5318 // To produce final result we need to blend 2 vectors: 'SetCC' and
5319 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5320 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5321 // constant-folded, select can get lowered to a shuffle with constant mask.
5322 SDValue Blended =
5323 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5325 return Blended;
5328 bool TargetLowering::
5329 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5330 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5331 DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5332 "be a constant integer");
5333 return true;
5336 return false;
5339 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
5340 bool LegalOperations, bool ForCodeSize,
5341 unsigned Depth) const {
5342 // fneg is removable even if it has multiple uses.
5343 if (Op.getOpcode() == ISD::FNEG)
5344 return 2;
5346 // Don't allow anything with multiple uses unless we know it is free.
5347 EVT VT = Op.getValueType();
5348 const SDNodeFlags Flags = Op->getFlags();
5349 const TargetOptions &Options = DAG.getTarget().Options;
5350 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5351 isFPExtFree(VT, Op.getOperand(0).getValueType())))
5352 return 0;
5354 // Don't recurse exponentially.
5355 if (Depth > SelectionDAG::MaxRecursionDepth)
5356 return 0;
5358 switch (Op.getOpcode()) {
5359 case ISD::ConstantFP: {
5360 if (!LegalOperations)
5361 return 1;
5363 // Don't invert constant FP values after legalization unless the target says
5364 // the negated constant is legal.
5365 return isOperationLegal(ISD::ConstantFP, VT) ||
5366 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5367 ForCodeSize);
5369 case ISD::BUILD_VECTOR: {
5370 // Only permit BUILD_VECTOR of constants.
5371 if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5372 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5374 return 0;
5375 if (!LegalOperations)
5376 return 1;
5377 if (isOperationLegal(ISD::ConstantFP, VT) &&
5378 isOperationLegal(ISD::BUILD_VECTOR, VT))
5379 return 1;
5380 return llvm::all_of(Op->op_values(), [&](SDValue N) {
5381 return N.isUndef() ||
5382 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5383 ForCodeSize);
5386 case ISD::FADD:
5387 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5388 return 0;
5390 // After operation legalization, it might not be legal to create new FSUBs.
5391 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5392 return 0;
5394 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5395 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5396 ForCodeSize, Depth + 1))
5397 return V;
5398 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5399 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5400 ForCodeSize, Depth + 1);
5401 case ISD::FSUB:
5402 // We can't turn -(A-B) into B-A when we honor signed zeros.
5403 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5404 return 0;
5406 // fold (fneg (fsub A, B)) -> (fsub B, A)
5407 return 1;
5409 case ISD::FMUL:
5410 case ISD::FDIV:
5411 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5412 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5413 ForCodeSize, Depth + 1))
5414 return V;
5416 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5417 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5418 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5419 return 0;
5421 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5422 ForCodeSize, Depth + 1);
5424 case ISD::FMA:
5425 case ISD::FMAD: {
5426 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5427 return 0;
5429 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5430 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5431 char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations,
5432 ForCodeSize, Depth + 1);
5433 if (!V2)
5434 return 0;
5436 // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5437 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5438 ForCodeSize, Depth + 1);
5439 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5440 ForCodeSize, Depth + 1);
5441 char V01 = std::max(V0, V1);
5442 return V01 ? std::max(V01, V2) : 0;
5445 case ISD::FP_EXTEND:
5446 case ISD::FP_ROUND:
5447 case ISD::FSIN:
5448 return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5449 ForCodeSize, Depth + 1);
5452 return 0;
5455 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5456 bool LegalOperations,
5457 bool ForCodeSize,
5458 unsigned Depth) const {
5459 // fneg is removable even if it has multiple uses.
5460 if (Op.getOpcode() == ISD::FNEG)
5461 return Op.getOperand(0);
5463 assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5464 "getNegatedExpression doesn't match isNegatibleForFree");
5465 const SDNodeFlags Flags = Op->getFlags();
5467 switch (Op.getOpcode()) {
5468 case ISD::ConstantFP: {
5469 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5470 V.changeSign();
5471 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5473 case ISD::BUILD_VECTOR: {
5474 SmallVector<SDValue, 4> Ops;
5475 for (SDValue C : Op->op_values()) {
5476 if (C.isUndef()) {
5477 Ops.push_back(C);
5478 continue;
5480 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5481 V.changeSign();
5482 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5484 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5486 case ISD::FADD:
5487 assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5488 Flags.hasNoSignedZeros()) &&
5489 "Expected NSZ fp-flag");
5491 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5492 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5493 Depth + 1))
5494 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5495 getNegatedExpression(Op.getOperand(0), DAG,
5496 LegalOperations, ForCodeSize,
5497 Depth + 1),
5498 Op.getOperand(1), Flags);
5499 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5500 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5501 getNegatedExpression(Op.getOperand(1), DAG,
5502 LegalOperations, ForCodeSize,
5503 Depth + 1),
5504 Op.getOperand(0), Flags);
5505 case ISD::FSUB:
5506 // fold (fneg (fsub 0, B)) -> B
5507 if (ConstantFPSDNode *N0CFP =
5508 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5509 if (N0CFP->isZero())
5510 return Op.getOperand(1);
5512 // fold (fneg (fsub A, B)) -> (fsub B, A)
5513 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5514 Op.getOperand(1), Op.getOperand(0), Flags);
5516 case ISD::FMUL:
5517 case ISD::FDIV:
5518 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5519 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5520 Depth + 1))
5521 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5522 getNegatedExpression(Op.getOperand(0), DAG,
5523 LegalOperations, ForCodeSize,
5524 Depth + 1),
5525 Op.getOperand(1), Flags);
5527 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5528 return DAG.getNode(
5529 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5530 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5531 ForCodeSize, Depth + 1),
5532 Flags);
5534 case ISD::FMA:
5535 case ISD::FMAD: {
5536 assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5537 Flags.hasNoSignedZeros()) &&
5538 "Expected NSZ fp-flag");
5540 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5541 ForCodeSize, Depth + 1);
5543 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5544 ForCodeSize, Depth + 1);
5545 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5546 ForCodeSize, Depth + 1);
5547 if (V0 >= V1) {
5548 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5549 SDValue Neg0 = getNegatedExpression(
5550 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5551 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5552 Op.getOperand(1), Neg2, Flags);
5555 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5556 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5557 ForCodeSize, Depth + 1);
5558 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5559 Op.getOperand(0), Neg1, Neg2, Flags);
5562 case ISD::FP_EXTEND:
5563 case ISD::FSIN:
5564 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5565 getNegatedExpression(Op.getOperand(0), DAG,
5566 LegalOperations, ForCodeSize,
5567 Depth + 1));
5568 case ISD::FP_ROUND:
5569 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5570 getNegatedExpression(Op.getOperand(0), DAG,
5571 LegalOperations, ForCodeSize,
5572 Depth + 1),
5573 Op.getOperand(1));
5576 llvm_unreachable("Unknown code");
5579 //===----------------------------------------------------------------------===//
5580 // Legalization Utilities
5581 //===----------------------------------------------------------------------===//
5583 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5584 SDValue LHS, SDValue RHS,
5585 SmallVectorImpl<SDValue> &Result,
5586 EVT HiLoVT, SelectionDAG &DAG,
5587 MulExpansionKind Kind, SDValue LL,
5588 SDValue LH, SDValue RL, SDValue RH) const {
5589 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5590 Opcode == ISD::SMUL_LOHI);
5592 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5593 isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5594 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5595 isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5596 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5597 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5598 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5599 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5601 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5602 return false;
5604 unsigned OuterBitSize = VT.getScalarSizeInBits();
5605 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5606 unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5607 unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5609 // LL, LH, RL, and RH must be either all NULL or all set to a value.
5610 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5611 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5613 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5614 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5615 bool Signed) -> bool {
5616 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5617 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5618 Hi = SDValue(Lo.getNode(), 1);
5619 return true;
5621 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5622 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5623 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5624 return true;
5626 return false;
5629 SDValue Lo, Hi;
5631 if (!LL.getNode() && !RL.getNode() &&
5632 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5633 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5634 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5637 if (!LL.getNode())
5638 return false;
5640 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5641 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5642 DAG.MaskedValueIsZero(RHS, HighMask)) {
5643 // The inputs are both zero-extended.
5644 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5645 Result.push_back(Lo);
5646 Result.push_back(Hi);
5647 if (Opcode != ISD::MUL) {
5648 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5649 Result.push_back(Zero);
5650 Result.push_back(Zero);
5652 return true;
5656 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5657 RHSSB > InnerBitSize) {
5658 // The input values are both sign-extended.
5659 // TODO non-MUL case?
5660 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5661 Result.push_back(Lo);
5662 Result.push_back(Hi);
5663 return true;
5667 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5668 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5669 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5670 // FIXME getShiftAmountTy does not always return a sensible result when VT
5671 // is an illegal type, and so the type may be too small to fit the shift
5672 // amount. Override it with i32. The shift will have to be legalized.
5673 ShiftAmountTy = MVT::i32;
5675 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5677 if (!LH.getNode() && !RH.getNode() &&
5678 isOperationLegalOrCustom(ISD::SRL, VT) &&
5679 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5680 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5681 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5682 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5683 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5686 if (!LH.getNode())
5687 return false;
5689 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5690 return false;
5692 Result.push_back(Lo);
5694 if (Opcode == ISD::MUL) {
5695 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5696 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5697 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5698 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5699 Result.push_back(Hi);
5700 return true;
5703 // Compute the full width result.
5704 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5705 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5706 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5707 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5708 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5711 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5712 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5713 return false;
5715 // This is effectively the add part of a multiply-add of half-sized operands,
5716 // so it cannot overflow.
5717 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5719 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5720 return false;
5722 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5723 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5725 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5726 isOperationLegalOrCustom(ISD::ADDE, VT));
5727 if (UseGlue)
5728 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5729 Merge(Lo, Hi));
5730 else
5731 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5732 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5734 SDValue Carry = Next.getValue(1);
5735 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5736 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5738 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5739 return false;
5741 if (UseGlue)
5742 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5743 Carry);
5744 else
5745 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5746 Zero, Carry);
5748 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5750 if (Opcode == ISD::SMUL_LOHI) {
5751 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5752 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5753 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5755 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5756 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5757 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5760 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5761 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5762 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5763 return true;
5766 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5767 SelectionDAG &DAG, MulExpansionKind Kind,
5768 SDValue LL, SDValue LH, SDValue RL,
5769 SDValue RH) const {
5770 SmallVector<SDValue, 2> Result;
5771 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5772 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5773 DAG, Kind, LL, LH, RL, RH);
5774 if (Ok) {
5775 assert(Result.size() == 2);
5776 Lo = Result[0];
5777 Hi = Result[1];
5779 return Ok;
5782 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5783 SelectionDAG &DAG) const {
5784 EVT VT = Node->getValueType(0);
5786 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5787 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5788 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5789 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5790 return false;
5792 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5793 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5794 SDValue X = Node->getOperand(0);
5795 SDValue Y = Node->getOperand(1);
5796 SDValue Z = Node->getOperand(2);
5798 unsigned EltSizeInBits = VT.getScalarSizeInBits();
5799 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5800 SDLoc DL(SDValue(Node, 0));
5802 EVT ShVT = Z.getValueType();
5803 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5804 SDValue Zero = DAG.getConstant(0, DL, ShVT);
5806 SDValue ShAmt;
5807 if (isPowerOf2_32(EltSizeInBits)) {
5808 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5809 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5810 } else {
5811 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5814 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5815 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5816 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5817 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5819 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5820 // and that is undefined. We must compare and select to avoid UB.
5821 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5823 // For fshl, 0-shift returns the 1st arg (X).
5824 // For fshr, 0-shift returns the 2nd arg (Y).
5825 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5826 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5827 return true;
5830 // TODO: Merge with expandFunnelShift.
5831 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5832 SelectionDAG &DAG) const {
5833 EVT VT = Node->getValueType(0);
5834 unsigned EltSizeInBits = VT.getScalarSizeInBits();
5835 bool IsLeft = Node->getOpcode() == ISD::ROTL;
5836 SDValue Op0 = Node->getOperand(0);
5837 SDValue Op1 = Node->getOperand(1);
5838 SDLoc DL(SDValue(Node, 0));
5840 EVT ShVT = Op1.getValueType();
5841 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5843 // If a rotate in the other direction is legal, use it.
5844 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5845 if (isOperationLegal(RevRot, VT)) {
5846 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5847 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5848 return true;
5851 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5852 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5853 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5854 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5855 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5856 return false;
5858 // Otherwise,
5859 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5860 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5862 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5863 "Expecting the type bitwidth to be a power of 2");
5864 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5865 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5866 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5867 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5868 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5869 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5870 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5871 DAG.getNode(HsOpc, DL, VT, Op0, And1));
5872 return true;
5875 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5876 SelectionDAG &DAG) const {
5877 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5878 SDValue Src = Node->getOperand(OpNo);
5879 EVT SrcVT = Src.getValueType();
5880 EVT DstVT = Node->getValueType(0);
5881 SDLoc dl(SDValue(Node, 0));
5883 // FIXME: Only f32 to i64 conversions are supported.
5884 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5885 return false;
5887 if (Node->isStrictFPOpcode())
5888 // When a NaN is converted to an integer a trap is allowed. We can't
5889 // use this expansion here because it would eliminate that trap. Other
5890 // traps are also allowed and cannot be eliminated. See
5891 // IEEE 754-2008 sec 5.8.
5892 return false;
5894 // Expand f32 -> i64 conversion
5895 // This algorithm comes from compiler-rt's implementation of fixsfdi:
5896 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5897 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5898 EVT IntVT = SrcVT.changeTypeToInteger();
5899 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5901 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5902 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5903 SDValue Bias = DAG.getConstant(127, dl, IntVT);
5904 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5905 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5906 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5908 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5910 SDValue ExponentBits = DAG.getNode(
5911 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5912 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5913 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5915 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5916 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5917 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5918 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5920 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5921 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5922 DAG.getConstant(0x00800000, dl, IntVT));
5924 R = DAG.getZExtOrTrunc(R, dl, DstVT);
5926 R = DAG.getSelectCC(
5927 dl, Exponent, ExponentLoBit,
5928 DAG.getNode(ISD::SHL, dl, DstVT, R,
5929 DAG.getZExtOrTrunc(
5930 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5931 dl, IntShVT)),
5932 DAG.getNode(ISD::SRL, dl, DstVT, R,
5933 DAG.getZExtOrTrunc(
5934 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5935 dl, IntShVT)),
5936 ISD::SETGT);
5938 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5939 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5941 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5942 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5943 return true;
5946 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5947 SDValue &Chain,
5948 SelectionDAG &DAG) const {
5949 SDLoc dl(SDValue(Node, 0));
5950 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5951 SDValue Src = Node->getOperand(OpNo);
5953 EVT SrcVT = Src.getValueType();
5954 EVT DstVT = Node->getValueType(0);
5955 EVT SetCCVT =
5956 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5958 // Only expand vector types if we have the appropriate vector bit operations.
5959 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
5960 ISD::FP_TO_SINT;
5961 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
5962 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5963 return false;
5965 // If the maximum float value is smaller then the signed integer range,
5966 // the destination signmask can't be represented by the float, so we can
5967 // just use FP_TO_SINT directly.
5968 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5969 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5970 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5971 if (APFloat::opOverflow &
5972 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5973 if (Node->isStrictFPOpcode()) {
5974 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
5975 { Node->getOperand(0), Src });
5976 Chain = Result.getValue(1);
5977 } else
5978 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5979 return true;
5982 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5983 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5985 bool Strict = Node->isStrictFPOpcode() ||
5986 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5988 if (Strict) {
5989 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5990 // signmask then offset (the result of which should be fully representable).
5991 // Sel = Src < 0x8000000000000000
5992 // Val = select Sel, Src, Src - 0x8000000000000000
5993 // Ofs = select Sel, 0, 0x8000000000000000
5994 // Result = fp_to_sint(Val) ^ Ofs
5996 // TODO: Should any fast-math-flags be set for the FSUB?
5997 SDValue SrcBiased;
5998 if (Node->isStrictFPOpcode())
5999 SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6000 { Node->getOperand(0), Src, Cst });
6001 else
6002 SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst);
6003 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased);
6004 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
6005 DAG.getConstant(SignMask, dl, DstVT));
6006 SDValue SInt;
6007 if (Node->isStrictFPOpcode()) {
6008 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6009 { SrcBiased.getValue(1), Val });
6010 Chain = SInt.getValue(1);
6011 } else
6012 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6013 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs);
6014 } else {
6015 // Expand based on maximum range of FP_TO_SINT:
6016 // True = fp_to_sint(Src)
6017 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6018 // Result = select (Src < 0x8000000000000000), True, False
6020 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6021 // TODO: Should any fast-math-flags be set for the FSUB?
6022 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6023 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6024 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6025 DAG.getConstant(SignMask, dl, DstVT));
6026 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6028 return true;
6031 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6032 SelectionDAG &DAG) const {
6033 SDValue Src = Node->getOperand(0);
6034 EVT SrcVT = Src.getValueType();
6035 EVT DstVT = Node->getValueType(0);
6037 if (SrcVT.getScalarType() != MVT::i64)
6038 return false;
6040 SDLoc dl(SDValue(Node, 0));
6041 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6043 if (DstVT.getScalarType() == MVT::f32) {
6044 // Only expand vector types if we have the appropriate vector bit
6045 // operations.
6046 if (SrcVT.isVector() &&
6047 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6048 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6049 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
6050 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6051 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6052 return false;
6054 // For unsigned conversions, convert them to signed conversions using the
6055 // algorithm from the x86_64 __floatundidf in compiler_rt.
6056 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
6058 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
6059 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
6060 SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
6061 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
6062 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
6064 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
6065 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
6067 // TODO: This really should be implemented using a branch rather than a
6068 // select. We happen to get lucky and machinesink does the right
6069 // thing most of the time. This would be a good candidate for a
6070 // pseudo-op, or, even better, for whole-function isel.
6071 EVT SetCCVT =
6072 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6074 SDValue SignBitTest = DAG.getSetCC(
6075 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
6076 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
6077 return true;
6080 if (DstVT.getScalarType() == MVT::f64) {
6081 // Only expand vector types if we have the appropriate vector bit
6082 // operations.
6083 if (SrcVT.isVector() &&
6084 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6085 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6086 !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6087 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6088 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6089 return false;
6091 // Implementation of unsigned i64 to f64 following the algorithm in
6092 // __floatundidf in compiler_rt. This implementation has the advantage
6093 // of performing rounding correctly, both in the default rounding mode
6094 // and in all alternate rounding modes.
6095 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6096 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6097 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6098 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6099 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6100 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6102 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6103 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6104 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6105 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6106 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6107 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6108 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6109 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6110 return true;
6113 return false;
6116 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6117 SelectionDAG &DAG) const {
6118 SDLoc dl(Node);
6119 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6120 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6121 EVT VT = Node->getValueType(0);
6122 if (isOperationLegalOrCustom(NewOp, VT)) {
6123 SDValue Quiet0 = Node->getOperand(0);
6124 SDValue Quiet1 = Node->getOperand(1);
6126 if (!Node->getFlags().hasNoNaNs()) {
6127 // Insert canonicalizes if it's possible we need to quiet to get correct
6128 // sNaN behavior.
6129 if (!DAG.isKnownNeverSNaN(Quiet0)) {
6130 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6131 Node->getFlags());
6133 if (!DAG.isKnownNeverSNaN(Quiet1)) {
6134 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6135 Node->getFlags());
6139 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6142 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6143 // instead if there are no NaNs.
6144 if (Node->getFlags().hasNoNaNs()) {
6145 unsigned IEEE2018Op =
6146 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6147 if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6148 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6149 Node->getOperand(1), Node->getFlags());
6153 return SDValue();
6156 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6157 SelectionDAG &DAG) const {
6158 SDLoc dl(Node);
6159 EVT VT = Node->getValueType(0);
6160 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6161 SDValue Op = Node->getOperand(0);
6162 unsigned Len = VT.getScalarSizeInBits();
6163 assert(VT.isInteger() && "CTPOP not implemented for this type.");
6165 // TODO: Add support for irregular type lengths.
6166 if (!(Len <= 128 && Len % 8 == 0))
6167 return false;
6169 // Only expand vector types if we have the appropriate vector bit operations.
6170 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6171 !isOperationLegalOrCustom(ISD::SUB, VT) ||
6172 !isOperationLegalOrCustom(ISD::SRL, VT) ||
6173 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6174 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6175 return false;
6177 // This is the "best" algorithm from
6178 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6179 SDValue Mask55 =
6180 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6181 SDValue Mask33 =
6182 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6183 SDValue Mask0F =
6184 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6185 SDValue Mask01 =
6186 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6188 // v = v - ((v >> 1) & 0x55555555...)
6189 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6190 DAG.getNode(ISD::AND, dl, VT,
6191 DAG.getNode(ISD::SRL, dl, VT, Op,
6192 DAG.getConstant(1, dl, ShVT)),
6193 Mask55));
6194 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6195 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6196 DAG.getNode(ISD::AND, dl, VT,
6197 DAG.getNode(ISD::SRL, dl, VT, Op,
6198 DAG.getConstant(2, dl, ShVT)),
6199 Mask33));
6200 // v = (v + (v >> 4)) & 0x0F0F0F0F...
6201 Op = DAG.getNode(ISD::AND, dl, VT,
6202 DAG.getNode(ISD::ADD, dl, VT, Op,
6203 DAG.getNode(ISD::SRL, dl, VT, Op,
6204 DAG.getConstant(4, dl, ShVT))),
6205 Mask0F);
6206 // v = (v * 0x01010101...) >> (Len - 8)
6207 if (Len > 8)
6208 Op =
6209 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6210 DAG.getConstant(Len - 8, dl, ShVT));
6212 Result = Op;
6213 return true;
6216 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6217 SelectionDAG &DAG) const {
6218 SDLoc dl(Node);
6219 EVT VT = Node->getValueType(0);
6220 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6221 SDValue Op = Node->getOperand(0);
6222 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6224 // If the non-ZERO_UNDEF version is supported we can use that instead.
6225 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6226 isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6227 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6228 return true;
6231 // If the ZERO_UNDEF version is supported use that and handle the zero case.
6232 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6233 EVT SetCCVT =
6234 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6235 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6236 SDValue Zero = DAG.getConstant(0, dl, VT);
6237 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6238 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6239 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6240 return true;
6243 // Only expand vector types if we have the appropriate vector bit operations.
6244 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6245 !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6246 !isOperationLegalOrCustom(ISD::SRL, VT) ||
6247 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6248 return false;
6250 // for now, we do this:
6251 // x = x | (x >> 1);
6252 // x = x | (x >> 2);
6253 // ...
6254 // x = x | (x >>16);
6255 // x = x | (x >>32); // for 64-bit input
6256 // return popcount(~x);
6258 // Ref: "Hacker's Delight" by Henry Warren
6259 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6260 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6261 Op = DAG.getNode(ISD::OR, dl, VT, Op,
6262 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6264 Op = DAG.getNOT(dl, Op, VT);
6265 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6266 return true;
6269 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6270 SelectionDAG &DAG) const {
6271 SDLoc dl(Node);
6272 EVT VT = Node->getValueType(0);
6273 SDValue Op = Node->getOperand(0);
6274 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6276 // If the non-ZERO_UNDEF version is supported we can use that instead.
6277 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6278 isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6279 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6280 return true;
6283 // If the ZERO_UNDEF version is supported use that and handle the zero case.
6284 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6285 EVT SetCCVT =
6286 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6287 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6288 SDValue Zero = DAG.getConstant(0, dl, VT);
6289 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6290 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6291 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6292 return true;
6295 // Only expand vector types if we have the appropriate vector bit operations.
6296 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6297 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6298 !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6299 !isOperationLegalOrCustom(ISD::SUB, VT) ||
6300 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6301 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6302 return false;
6304 // for now, we use: { return popcount(~x & (x - 1)); }
6305 // unless the target has ctlz but not ctpop, in which case we use:
6306 // { return 32 - nlz(~x & (x-1)); }
6307 // Ref: "Hacker's Delight" by Henry Warren
6308 SDValue Tmp = DAG.getNode(
6309 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6310 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6312 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6313 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6314 Result =
6315 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6316 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6317 return true;
6320 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6321 return true;
6324 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6325 SelectionDAG &DAG) const {
6326 SDLoc dl(N);
6327 EVT VT = N->getValueType(0);
6328 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6329 SDValue Op = N->getOperand(0);
6331 // Only expand vector types if we have the appropriate vector operations.
6332 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6333 !isOperationLegalOrCustom(ISD::ADD, VT) ||
6334 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6335 return false;
6337 SDValue Shift =
6338 DAG.getNode(ISD::SRA, dl, VT, Op,
6339 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6340 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6341 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6342 return true;
6345 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6346 SelectionDAG &DAG) const {
6347 SDLoc SL(LD);
6348 SDValue Chain = LD->getChain();
6349 SDValue BasePTR = LD->getBasePtr();
6350 EVT SrcVT = LD->getMemoryVT();
6351 ISD::LoadExtType ExtType = LD->getExtensionType();
6353 unsigned NumElem = SrcVT.getVectorNumElements();
6355 EVT SrcEltVT = SrcVT.getScalarType();
6356 EVT DstEltVT = LD->getValueType(0).getScalarType();
6358 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6359 assert(SrcEltVT.isByteSized());
6361 SmallVector<SDValue, 8> Vals;
6362 SmallVector<SDValue, 8> LoadChains;
6364 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6365 SDValue ScalarLoad =
6366 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6367 LD->getPointerInfo().getWithOffset(Idx * Stride),
6368 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6369 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6371 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6373 Vals.push_back(ScalarLoad.getValue(0));
6374 LoadChains.push_back(ScalarLoad.getValue(1));
6377 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6378 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6380 return DAG.getMergeValues({Value, NewChain}, SL);
6383 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6384 SelectionDAG &DAG) const {
6385 SDLoc SL(ST);
6387 SDValue Chain = ST->getChain();
6388 SDValue BasePtr = ST->getBasePtr();
6389 SDValue Value = ST->getValue();
6390 EVT StVT = ST->getMemoryVT();
6392 // The type of the data we want to save
6393 EVT RegVT = Value.getValueType();
6394 EVT RegSclVT = RegVT.getScalarType();
6396 // The type of data as saved in memory.
6397 EVT MemSclVT = StVT.getScalarType();
6399 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6400 unsigned NumElem = StVT.getVectorNumElements();
6402 // A vector must always be stored in memory as-is, i.e. without any padding
6403 // between the elements, since various code depend on it, e.g. in the
6404 // handling of a bitcast of a vector type to int, which may be done with a
6405 // vector store followed by an integer load. A vector that does not have
6406 // elements that are byte-sized must therefore be stored as an integer
6407 // built out of the extracted vector elements.
6408 if (!MemSclVT.isByteSized()) {
6409 unsigned NumBits = StVT.getSizeInBits();
6410 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6412 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6414 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6415 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6416 DAG.getConstant(Idx, SL, IdxVT));
6417 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6418 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6419 unsigned ShiftIntoIdx =
6420 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6421 SDValue ShiftAmount =
6422 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6423 SDValue ShiftedElt =
6424 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6425 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6428 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6429 ST->getAlignment(), ST->getMemOperand()->getFlags(),
6430 ST->getAAInfo());
6433 // Store Stride in bytes
6434 unsigned Stride = MemSclVT.getSizeInBits() / 8;
6435 assert(Stride && "Zero stride!");
6436 // Extract each of the elements from the original vector and save them into
6437 // memory individually.
6438 SmallVector<SDValue, 8> Stores;
6439 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6440 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6441 DAG.getConstant(Idx, SL, IdxVT));
6443 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6445 // This scalar TruncStore may be illegal, but we legalize it later.
6446 SDValue Store = DAG.getTruncStore(
6447 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6448 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6449 ST->getMemOperand()->getFlags(), ST->getAAInfo());
6451 Stores.push_back(Store);
6454 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6457 std::pair<SDValue, SDValue>
6458 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6459 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6460 "unaligned indexed loads not implemented!");
6461 SDValue Chain = LD->getChain();
6462 SDValue Ptr = LD->getBasePtr();
6463 EVT VT = LD->getValueType(0);
6464 EVT LoadedVT = LD->getMemoryVT();
6465 SDLoc dl(LD);
6466 auto &MF = DAG.getMachineFunction();
6468 if (VT.isFloatingPoint() || VT.isVector()) {
6469 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6470 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6471 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6472 LoadedVT.isVector()) {
6473 // Scalarize the load and let the individual components be handled.
6474 SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
6475 if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
6476 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
6477 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
6480 // Expand to a (misaligned) integer load of the same size,
6481 // then bitconvert to floating point or vector.
6482 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6483 LD->getMemOperand());
6484 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6485 if (LoadedVT != VT)
6486 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6487 ISD::ANY_EXTEND, dl, VT, Result);
6489 return std::make_pair(Result, newLoad.getValue(1));
6492 // Copy the value to a (aligned) stack slot using (unaligned) integer
6493 // loads and stores, then do a (aligned) load from the stack slot.
6494 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6495 unsigned LoadedBytes = LoadedVT.getStoreSize();
6496 unsigned RegBytes = RegVT.getSizeInBits() / 8;
6497 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6499 // Make sure the stack slot is also aligned for the register type.
6500 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6501 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6502 SmallVector<SDValue, 8> Stores;
6503 SDValue StackPtr = StackBase;
6504 unsigned Offset = 0;
6506 EVT PtrVT = Ptr.getValueType();
6507 EVT StackPtrVT = StackPtr.getValueType();
6509 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6510 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6512 // Do all but one copies using the full register width.
6513 for (unsigned i = 1; i < NumRegs; i++) {
6514 // Load one integer register's worth from the original location.
6515 SDValue Load = DAG.getLoad(
6516 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6517 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6518 LD->getAAInfo());
6519 // Follow the load with a store to the stack slot. Remember the store.
6520 Stores.push_back(DAG.getStore(
6521 Load.getValue(1), dl, Load, StackPtr,
6522 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6523 // Increment the pointers.
6524 Offset += RegBytes;
6526 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6527 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6530 // The last copy may be partial. Do an extending load.
6531 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6532 8 * (LoadedBytes - Offset));
6533 SDValue Load =
6534 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6535 LD->getPointerInfo().getWithOffset(Offset), MemVT,
6536 MinAlign(LD->getAlignment(), Offset),
6537 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6538 // Follow the load with a store to the stack slot. Remember the store.
6539 // On big-endian machines this requires a truncating store to ensure
6540 // that the bits end up in the right place.
6541 Stores.push_back(DAG.getTruncStore(
6542 Load.getValue(1), dl, Load, StackPtr,
6543 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6545 // The order of the stores doesn't matter - say it with a TokenFactor.
6546 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6548 // Finally, perform the original load only redirected to the stack slot.
6549 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6550 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6551 LoadedVT);
6553 // Callers expect a MERGE_VALUES node.
6554 return std::make_pair(Load, TF);
6557 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6558 "Unaligned load of unsupported type.");
6560 // Compute the new VT that is half the size of the old one. This is an
6561 // integer MVT.
6562 unsigned NumBits = LoadedVT.getSizeInBits();
6563 EVT NewLoadedVT;
6564 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6565 NumBits >>= 1;
6567 unsigned Alignment = LD->getAlignment();
6568 unsigned IncrementSize = NumBits / 8;
6569 ISD::LoadExtType HiExtType = LD->getExtensionType();
6571 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6572 if (HiExtType == ISD::NON_EXTLOAD)
6573 HiExtType = ISD::ZEXTLOAD;
6575 // Load the value in two parts
6576 SDValue Lo, Hi;
6577 if (DAG.getDataLayout().isLittleEndian()) {
6578 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6579 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6580 LD->getAAInfo());
6582 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6583 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6584 LD->getPointerInfo().getWithOffset(IncrementSize),
6585 NewLoadedVT, MinAlign(Alignment, IncrementSize),
6586 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6587 } else {
6588 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6589 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6590 LD->getAAInfo());
6592 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6593 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6594 LD->getPointerInfo().getWithOffset(IncrementSize),
6595 NewLoadedVT, MinAlign(Alignment, IncrementSize),
6596 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6599 // aggregate the two parts
6600 SDValue ShiftAmount =
6601 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6602 DAG.getDataLayout()));
6603 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6604 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6606 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6607 Hi.getValue(1));
6609 return std::make_pair(Result, TF);
6612 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6613 SelectionDAG &DAG) const {
6614 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6615 "unaligned indexed stores not implemented!");
6616 SDValue Chain = ST->getChain();
6617 SDValue Ptr = ST->getBasePtr();
6618 SDValue Val = ST->getValue();
6619 EVT VT = Val.getValueType();
6620 int Alignment = ST->getAlignment();
6621 auto &MF = DAG.getMachineFunction();
6622 EVT StoreMemVT = ST->getMemoryVT();
6624 SDLoc dl(ST);
6625 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6626 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6627 if (isTypeLegal(intVT)) {
6628 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6629 StoreMemVT.isVector()) {
6630 // Scalarize the store and let the individual components be handled.
6631 SDValue Result = scalarizeVectorStore(ST, DAG);
6632 return Result;
6634 // Expand to a bitconvert of the value to the integer type of the
6635 // same size, then a (misaligned) int store.
6636 // FIXME: Does not handle truncating floating point stores!
6637 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6638 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6639 Alignment, ST->getMemOperand()->getFlags());
6640 return Result;
6642 // Do a (aligned) store to a stack slot, then copy from the stack slot
6643 // to the final destination using (unaligned) integer loads and stores.
6644 MVT RegVT = getRegisterType(
6645 *DAG.getContext(),
6646 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6647 EVT PtrVT = Ptr.getValueType();
6648 unsigned StoredBytes = StoreMemVT.getStoreSize();
6649 unsigned RegBytes = RegVT.getSizeInBits() / 8;
6650 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6652 // Make sure the stack slot is also aligned for the register type.
6653 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6654 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6656 // Perform the original store, only redirected to the stack slot.
6657 SDValue Store = DAG.getTruncStore(
6658 Chain, dl, Val, StackPtr,
6659 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6661 EVT StackPtrVT = StackPtr.getValueType();
6663 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6664 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6665 SmallVector<SDValue, 8> Stores;
6666 unsigned Offset = 0;
6668 // Do all but one copies using the full register width.
6669 for (unsigned i = 1; i < NumRegs; i++) {
6670 // Load one integer register's worth from the stack slot.
6671 SDValue Load = DAG.getLoad(
6672 RegVT, dl, Store, StackPtr,
6673 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6674 // Store it to the final location. Remember the store.
6675 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6676 ST->getPointerInfo().getWithOffset(Offset),
6677 MinAlign(ST->getAlignment(), Offset),
6678 ST->getMemOperand()->getFlags()));
6679 // Increment the pointers.
6680 Offset += RegBytes;
6681 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6682 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6685 // The last store may be partial. Do a truncating store. On big-endian
6686 // machines this requires an extending load from the stack slot to ensure
6687 // that the bits are in the right place.
6688 EVT LoadMemVT =
6689 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6691 // Load from the stack slot.
6692 SDValue Load = DAG.getExtLoad(
6693 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6694 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6696 Stores.push_back(
6697 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6698 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6699 MinAlign(ST->getAlignment(), Offset),
6700 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6701 // The order of the stores doesn't matter - say it with a TokenFactor.
6702 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6703 return Result;
6706 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6707 "Unaligned store of unknown type.");
6708 // Get the half-size VT
6709 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6710 int NumBits = NewStoredVT.getSizeInBits();
6711 int IncrementSize = NumBits / 8;
6713 // Divide the stored value in two parts.
6714 SDValue ShiftAmount = DAG.getConstant(
6715 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6716 SDValue Lo = Val;
6717 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6719 // Store the two parts
6720 SDValue Store1, Store2;
6721 Store1 = DAG.getTruncStore(Chain, dl,
6722 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6723 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6724 ST->getMemOperand()->getFlags());
6726 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6727 Alignment = MinAlign(Alignment, IncrementSize);
6728 Store2 = DAG.getTruncStore(
6729 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6730 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6731 ST->getMemOperand()->getFlags(), ST->getAAInfo());
6733 SDValue Result =
6734 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6735 return Result;
6738 SDValue
6739 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6740 const SDLoc &DL, EVT DataVT,
6741 SelectionDAG &DAG,
6742 bool IsCompressedMemory) const {
6743 SDValue Increment;
6744 EVT AddrVT = Addr.getValueType();
6745 EVT MaskVT = Mask.getValueType();
6746 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6747 "Incompatible types of Data and Mask");
6748 if (IsCompressedMemory) {
6749 // Incrementing the pointer according to number of '1's in the mask.
6750 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6751 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6752 if (MaskIntVT.getSizeInBits() < 32) {
6753 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6754 MaskIntVT = MVT::i32;
6757 // Count '1's with POPCNT.
6758 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6759 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6760 // Scale is an element size in bytes.
6761 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6762 AddrVT);
6763 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6764 } else
6765 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6767 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6770 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6771 SDValue Idx,
6772 EVT VecVT,
6773 const SDLoc &dl) {
6774 if (isa<ConstantSDNode>(Idx))
6775 return Idx;
6777 EVT IdxVT = Idx.getValueType();
6778 unsigned NElts = VecVT.getVectorNumElements();
6779 if (isPowerOf2_32(NElts)) {
6780 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6781 Log2_32(NElts));
6782 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6783 DAG.getConstant(Imm, dl, IdxVT));
6786 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6787 DAG.getConstant(NElts - 1, dl, IdxVT));
6790 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6791 SDValue VecPtr, EVT VecVT,
6792 SDValue Index) const {
6793 SDLoc dl(Index);
6794 // Make sure the index type is big enough to compute in.
6795 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6797 EVT EltVT = VecVT.getVectorElementType();
6799 // Calculate the element offset and add it to the pointer.
6800 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6801 assert(EltSize * 8 == EltVT.getSizeInBits() &&
6802 "Converting bits to bytes lost precision");
6804 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6806 EVT IdxVT = Index.getValueType();
6808 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6809 DAG.getConstant(EltSize, dl, IdxVT));
6810 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6813 //===----------------------------------------------------------------------===//
6814 // Implementation of Emulated TLS Model
6815 //===----------------------------------------------------------------------===//
6817 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6818 SelectionDAG &DAG) const {
6819 // Access to address of TLS varialbe xyz is lowered to a function call:
6820 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6821 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6822 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6823 SDLoc dl(GA);
6825 ArgListTy Args;
6826 ArgListEntry Entry;
6827 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6828 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6829 StringRef EmuTlsVarName(NameString);
6830 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6831 assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6832 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6833 Entry.Ty = VoidPtrType;
6834 Args.push_back(Entry);
6836 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6838 TargetLowering::CallLoweringInfo CLI(DAG);
6839 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6840 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6841 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6843 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6844 // At last for X86 targets, maybe good for other targets too?
6845 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6846 MFI.setAdjustsStack(true); // Is this only for X86 target?
6847 MFI.setHasCalls(true);
6849 assert((GA->getOffset() == 0) &&
6850 "Emulated TLS must have zero offset in GlobalAddressSDNode");
6851 return CallResult.first;
6854 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6855 SelectionDAG &DAG) const {
6856 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6857 if (!isCtlzFast())
6858 return SDValue();
6859 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6860 SDLoc dl(Op);
6861 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6862 if (C->isNullValue() && CC == ISD::SETEQ) {
6863 EVT VT = Op.getOperand(0).getValueType();
6864 SDValue Zext = Op.getOperand(0);
6865 if (VT.bitsLT(MVT::i32)) {
6866 VT = MVT::i32;
6867 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6869 unsigned Log2b = Log2_32(VT.getSizeInBits());
6870 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6871 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6872 DAG.getConstant(Log2b, dl, MVT::i32));
6873 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6876 return SDValue();
6879 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6880 unsigned Opcode = Node->getOpcode();
6881 SDValue LHS = Node->getOperand(0);
6882 SDValue RHS = Node->getOperand(1);
6883 EVT VT = LHS.getValueType();
6884 SDLoc dl(Node);
6886 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6887 assert(VT.isInteger() && "Expected operands to be integers");
6889 // usub.sat(a, b) -> umax(a, b) - b
6890 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6891 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6892 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6895 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6896 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6897 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6898 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6901 unsigned OverflowOp;
6902 switch (Opcode) {
6903 case ISD::SADDSAT:
6904 OverflowOp = ISD::SADDO;
6905 break;
6906 case ISD::UADDSAT:
6907 OverflowOp = ISD::UADDO;
6908 break;
6909 case ISD::SSUBSAT:
6910 OverflowOp = ISD::SSUBO;
6911 break;
6912 case ISD::USUBSAT:
6913 OverflowOp = ISD::USUBO;
6914 break;
6915 default:
6916 llvm_unreachable("Expected method to receive signed or unsigned saturation "
6917 "addition or subtraction node.");
6920 unsigned BitWidth = LHS.getScalarValueSizeInBits();
6921 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6922 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6923 LHS, RHS);
6924 SDValue SumDiff = Result.getValue(0);
6925 SDValue Overflow = Result.getValue(1);
6926 SDValue Zero = DAG.getConstant(0, dl, VT);
6927 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6929 if (Opcode == ISD::UADDSAT) {
6930 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6931 // (LHS + RHS) | OverflowMask
6932 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6933 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6935 // Overflow ? 0xffff.... : (LHS + RHS)
6936 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6937 } else if (Opcode == ISD::USUBSAT) {
6938 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6939 // (LHS - RHS) & ~OverflowMask
6940 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6941 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6942 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6944 // Overflow ? 0 : (LHS - RHS)
6945 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6946 } else {
6947 // SatMax -> Overflow && SumDiff < 0
6948 // SatMin -> Overflow && SumDiff >= 0
6949 APInt MinVal = APInt::getSignedMinValue(BitWidth);
6950 APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6951 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6952 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6953 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6954 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6955 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6959 SDValue
6960 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6961 assert((Node->getOpcode() == ISD::SMULFIX ||
6962 Node->getOpcode() == ISD::UMULFIX ||
6963 Node->getOpcode() == ISD::SMULFIXSAT ||
6964 Node->getOpcode() == ISD::UMULFIXSAT) &&
6965 "Expected a fixed point multiplication opcode");
6967 SDLoc dl(Node);
6968 SDValue LHS = Node->getOperand(0);
6969 SDValue RHS = Node->getOperand(1);
6970 EVT VT = LHS.getValueType();
6971 unsigned Scale = Node->getConstantOperandVal(2);
6972 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
6973 Node->getOpcode() == ISD::UMULFIXSAT);
6974 bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
6975 Node->getOpcode() == ISD::SMULFIXSAT);
6976 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6977 unsigned VTSize = VT.getScalarSizeInBits();
6979 if (!Scale) {
6980 // [us]mul.fix(a, b, 0) -> mul(a, b)
6981 if (!Saturating) {
6982 if (isOperationLegalOrCustom(ISD::MUL, VT))
6983 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6984 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6985 SDValue Result =
6986 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6987 SDValue Product = Result.getValue(0);
6988 SDValue Overflow = Result.getValue(1);
6989 SDValue Zero = DAG.getConstant(0, dl, VT);
6991 APInt MinVal = APInt::getSignedMinValue(VTSize);
6992 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6993 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6994 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6995 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6996 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
6997 return DAG.getSelect(dl, VT, Overflow, Result, Product);
6998 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
6999 SDValue Result =
7000 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7001 SDValue Product = Result.getValue(0);
7002 SDValue Overflow = Result.getValue(1);
7004 APInt MaxVal = APInt::getMaxValue(VTSize);
7005 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7006 return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7010 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7011 "Expected scale to be less than the number of bits if signed or at "
7012 "most the number of bits if unsigned.");
7013 assert(LHS.getValueType() == RHS.getValueType() &&
7014 "Expected both operands to be the same type");
7016 // Get the upper and lower bits of the result.
7017 SDValue Lo, Hi;
7018 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7019 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7020 if (isOperationLegalOrCustom(LoHiOp, VT)) {
7021 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7022 Lo = Result.getValue(0);
7023 Hi = Result.getValue(1);
7024 } else if (isOperationLegalOrCustom(HiOp, VT)) {
7025 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7026 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7027 } else if (VT.isVector()) {
7028 return SDValue();
7029 } else {
7030 report_fatal_error("Unable to expand fixed point multiplication.");
7033 if (Scale == VTSize)
7034 // Result is just the top half since we'd be shifting by the width of the
7035 // operand. Overflow impossible so this works for both UMULFIX and
7036 // UMULFIXSAT.
7037 return Hi;
7039 // The result will need to be shifted right by the scale since both operands
7040 // are scaled. The result is given to us in 2 halves, so we only want part of
7041 // both in the result.
7042 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7043 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7044 DAG.getConstant(Scale, dl, ShiftTy));
7045 if (!Saturating)
7046 return Result;
7048 if (!Signed) {
7049 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7050 // widened multiplication) aren't all zeroes.
7052 // Saturate to max if ((Hi >> Scale) != 0),
7053 // which is the same as if (Hi > ((1 << Scale) - 1))
7054 APInt MaxVal = APInt::getMaxValue(VTSize);
7055 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7056 dl, VT);
7057 Result = DAG.getSelectCC(dl, Hi, LowMask,
7058 DAG.getConstant(MaxVal, dl, VT), Result,
7059 ISD::SETUGT);
7061 return Result;
7064 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7065 // widened multiplication) aren't all ones or all zeroes.
7067 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7068 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7070 if (Scale == 0) {
7071 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7072 DAG.getConstant(VTSize - 1, dl, ShiftTy));
7073 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7074 // Saturated to SatMin if wide product is negative, and SatMax if wide
7075 // product is positive ...
7076 SDValue Zero = DAG.getConstant(0, dl, VT);
7077 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7078 ISD::SETLT);
7079 // ... but only if we overflowed.
7080 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7083 // We handled Scale==0 above so all the bits to examine is in Hi.
7085 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7086 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7087 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7088 dl, VT);
7089 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7090 // Saturate to min if (Hi >> (Scale - 1)) < -1),
7091 // which is the same as if (HI < (-1 << (Scale - 1))
7092 SDValue HighMask =
7093 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7094 dl, VT);
7095 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7096 return Result;
7099 void TargetLowering::expandUADDSUBO(
7100 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7101 SDLoc dl(Node);
7102 SDValue LHS = Node->getOperand(0);
7103 SDValue RHS = Node->getOperand(1);
7104 bool IsAdd = Node->getOpcode() == ISD::UADDO;
7106 // If ADD/SUBCARRY is legal, use that instead.
7107 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7108 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7109 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7110 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7111 { LHS, RHS, CarryIn });
7112 Result = SDValue(NodeCarry.getNode(), 0);
7113 Overflow = SDValue(NodeCarry.getNode(), 1);
7114 return;
7117 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7118 LHS.getValueType(), LHS, RHS);
7120 EVT ResultType = Node->getValueType(1);
7121 EVT SetCCType = getSetCCResultType(
7122 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7123 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7124 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7125 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7128 void TargetLowering::expandSADDSUBO(
7129 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7130 SDLoc dl(Node);
7131 SDValue LHS = Node->getOperand(0);
7132 SDValue RHS = Node->getOperand(1);
7133 bool IsAdd = Node->getOpcode() == ISD::SADDO;
7135 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7136 LHS.getValueType(), LHS, RHS);
7138 EVT ResultType = Node->getValueType(1);
7139 EVT OType = getSetCCResultType(
7140 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7142 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7143 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7144 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7145 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7146 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7147 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7148 return;
7151 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7153 // For an addition, the result should be less than one of the operands (LHS)
7154 // if and only if the other operand (RHS) is negative, otherwise there will
7155 // be overflow.
7156 // For a subtraction, the result should be less than one of the operands
7157 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7158 // otherwise there will be overflow.
7159 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7160 SDValue ConditionRHS =
7161 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7163 Overflow = DAG.getBoolExtOrTrunc(
7164 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7165 ResultType, ResultType);
7168 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7169 SDValue &Overflow, SelectionDAG &DAG) const {
7170 SDLoc dl(Node);
7171 EVT VT = Node->getValueType(0);
7172 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7173 SDValue LHS = Node->getOperand(0);
7174 SDValue RHS = Node->getOperand(1);
7175 bool isSigned = Node->getOpcode() == ISD::SMULO;
7177 // For power-of-two multiplications we can use a simpler shift expansion.
7178 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7179 const APInt &C = RHSC->getAPIntValue();
7180 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7181 if (C.isPowerOf2()) {
7182 // smulo(x, signed_min) is same as umulo(x, signed_min).
7183 bool UseArithShift = isSigned && !C.isMinSignedValue();
7184 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7185 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7186 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7187 Overflow = DAG.getSetCC(dl, SetCCVT,
7188 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7189 dl, VT, Result, ShiftAmt),
7190 LHS, ISD::SETNE);
7191 return true;
7195 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7196 if (VT.isVector())
7197 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7198 VT.getVectorNumElements());
7200 SDValue BottomHalf;
7201 SDValue TopHalf;
7202 static const unsigned Ops[2][3] =
7203 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7204 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7205 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7206 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7207 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7208 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7209 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7210 RHS);
7211 TopHalf = BottomHalf.getValue(1);
7212 } else if (isTypeLegal(WideVT)) {
7213 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7214 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7215 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7216 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7217 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7218 getShiftAmountTy(WideVT, DAG.getDataLayout()));
7219 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7220 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7221 } else {
7222 if (VT.isVector())
7223 return false;
7225 // We can fall back to a libcall with an illegal type for the MUL if we
7226 // have a libcall big enough.
7227 // Also, we can fall back to a division in some cases, but that's a big
7228 // performance hit in the general case.
7229 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7230 if (WideVT == MVT::i16)
7231 LC = RTLIB::MUL_I16;
7232 else if (WideVT == MVT::i32)
7233 LC = RTLIB::MUL_I32;
7234 else if (WideVT == MVT::i64)
7235 LC = RTLIB::MUL_I64;
7236 else if (WideVT == MVT::i128)
7237 LC = RTLIB::MUL_I128;
7238 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7240 SDValue HiLHS;
7241 SDValue HiRHS;
7242 if (isSigned) {
7243 // The high part is obtained by SRA'ing all but one of the bits of low
7244 // part.
7245 unsigned LoSize = VT.getSizeInBits();
7246 HiLHS =
7247 DAG.getNode(ISD::SRA, dl, VT, LHS,
7248 DAG.getConstant(LoSize - 1, dl,
7249 getPointerTy(DAG.getDataLayout())));
7250 HiRHS =
7251 DAG.getNode(ISD::SRA, dl, VT, RHS,
7252 DAG.getConstant(LoSize - 1, dl,
7253 getPointerTy(DAG.getDataLayout())));
7254 } else {
7255 HiLHS = DAG.getConstant(0, dl, VT);
7256 HiRHS = DAG.getConstant(0, dl, VT);
7259 // Here we're passing the 2 arguments explicitly as 4 arguments that are
7260 // pre-lowered to the correct types. This all depends upon WideVT not
7261 // being a legal type for the architecture and thus has to be split to
7262 // two arguments.
7263 SDValue Ret;
7264 TargetLowering::MakeLibCallOptions CallOptions;
7265 CallOptions.setSExt(isSigned);
7266 CallOptions.setIsPostTypeLegalization(true);
7267 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7268 // Halves of WideVT are packed into registers in different order
7269 // depending on platform endianness. This is usually handled by
7270 // the C calling convention, but we can't defer to it in
7271 // the legalizer.
7272 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7273 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7274 } else {
7275 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7276 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7278 assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7279 "Ret value is a collection of constituent nodes holding result.");
7280 if (DAG.getDataLayout().isLittleEndian()) {
7281 // Same as above.
7282 BottomHalf = Ret.getOperand(0);
7283 TopHalf = Ret.getOperand(1);
7284 } else {
7285 BottomHalf = Ret.getOperand(1);
7286 TopHalf = Ret.getOperand(0);
7290 Result = BottomHalf;
7291 if (isSigned) {
7292 SDValue ShiftAmt = DAG.getConstant(
7293 VT.getScalarSizeInBits() - 1, dl,
7294 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7295 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7296 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7297 } else {
7298 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7299 DAG.getConstant(0, dl, VT), ISD::SETNE);
7302 // Truncate the result if SetCC returns a larger type than needed.
7303 EVT RType = Node->getValueType(1);
7304 if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7305 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7307 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7308 "Unexpected result type for S/UMULO legalization");
7309 return true;
7312 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7313 SDLoc dl(Node);
7314 bool NoNaN = Node->getFlags().hasNoNaNs();
7315 unsigned BaseOpcode = 0;
7316 switch (Node->getOpcode()) {
7317 default: llvm_unreachable("Expected VECREDUCE opcode");
7318 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7319 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7320 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break;
7321 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
7322 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
7323 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
7324 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
7325 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7326 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7327 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7328 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7329 case ISD::VECREDUCE_FMAX:
7330 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7331 break;
7332 case ISD::VECREDUCE_FMIN:
7333 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7334 break;
7337 SDValue Op = Node->getOperand(0);
7338 EVT VT = Op.getValueType();
7340 // Try to use a shuffle reduction for power of two vectors.
7341 if (VT.isPow2VectorType()) {
7342 while (VT.getVectorNumElements() > 1) {
7343 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7344 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7345 break;
7347 SDValue Lo, Hi;
7348 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7349 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7350 VT = HalfVT;
7354 EVT EltVT = VT.getVectorElementType();
7355 unsigned NumElts = VT.getVectorNumElements();
7357 SmallVector<SDValue, 8> Ops;
7358 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7360 SDValue Res = Ops[0];
7361 for (unsigned i = 1; i < NumElts; i++)
7362 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7364 // Result type may be wider than element type.
7365 if (EltVT != Node->getValueType(0))
7366 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7367 return Res;