1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine
&tm
)
39 : TargetLoweringBase(tm
) {}
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode
) const {
45 bool TargetLowering::isPositionIndependent() const {
46 return getTargetMachine().isPositionIndependent();
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG
&DAG
, SDNode
*Node
,
52 SDValue
&Chain
) const {
53 const Function
&F
= DAG
.getMachineFunction().getFunction();
55 // Conservatively require the attributes of the call to match those of
56 // the return. Ignore NoAlias and NonNull because they don't affect the
58 AttributeList CallerAttrs
= F
.getAttributes();
59 if (AttrBuilder(CallerAttrs
, AttributeList::ReturnIndex
)
60 .removeAttribute(Attribute::NoAlias
)
61 .removeAttribute(Attribute::NonNull
)
65 // It's not safe to eliminate the sign / zero extension of the return value.
66 if (CallerAttrs
.hasAttribute(AttributeList::ReturnIndex
, Attribute::ZExt
) ||
67 CallerAttrs
.hasAttribute(AttributeList::ReturnIndex
, Attribute::SExt
))
70 // Check if the only use is a function return node.
71 return isUsedByReturnOnly(Node
, Chain
);
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo
&MRI
,
75 const uint32_t *CallerPreservedMask
,
76 const SmallVectorImpl
<CCValAssign
> &ArgLocs
,
77 const SmallVectorImpl
<SDValue
> &OutVals
) const {
78 for (unsigned I
= 0, E
= ArgLocs
.size(); I
!= E
; ++I
) {
79 const CCValAssign
&ArgLoc
= ArgLocs
[I
];
80 if (!ArgLoc
.isRegLoc())
82 Register Reg
= ArgLoc
.getLocReg();
83 // Only look at callee saved registers.
84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask
, Reg
))
86 // Check that we pass the value used for the caller.
87 // (We look for a CopyFromReg reading a virtual register that is used
88 // for the function live-in value of register Reg)
89 SDValue Value
= OutVals
[I
];
90 if (Value
->getOpcode() != ISD::CopyFromReg
)
92 unsigned ArgReg
= cast
<RegisterSDNode
>(Value
->getOperand(1))->getReg();
93 if (MRI
.getLiveInPhysReg(ArgReg
) != Reg
)
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase
*Call
,
103 IsSExt
= Call
->paramHasAttr(ArgIdx
, Attribute::SExt
);
104 IsZExt
= Call
->paramHasAttr(ArgIdx
, Attribute::ZExt
);
105 IsInReg
= Call
->paramHasAttr(ArgIdx
, Attribute::InReg
);
106 IsSRet
= Call
->paramHasAttr(ArgIdx
, Attribute::StructRet
);
107 IsNest
= Call
->paramHasAttr(ArgIdx
, Attribute::Nest
);
108 IsByVal
= Call
->paramHasAttr(ArgIdx
, Attribute::ByVal
);
109 IsInAlloca
= Call
->paramHasAttr(ArgIdx
, Attribute::InAlloca
);
110 IsReturned
= Call
->paramHasAttr(ArgIdx
, Attribute::Returned
);
111 IsSwiftSelf
= Call
->paramHasAttr(ArgIdx
, Attribute::SwiftSelf
);
112 IsSwiftError
= Call
->paramHasAttr(ArgIdx
, Attribute::SwiftError
);
113 Alignment
= Call
->getParamAlignment(ArgIdx
);
115 if (Call
->paramHasAttr(ArgIdx
, Attribute::ByVal
))
116 ByValType
= Call
->getParamByValType(ArgIdx
);
119 /// Generate a libcall taking the given operands as arguments and returning a
120 /// result of type RetVT.
121 std::pair
<SDValue
, SDValue
>
122 TargetLowering::makeLibCall(SelectionDAG
&DAG
, RTLIB::Libcall LC
, EVT RetVT
,
123 ArrayRef
<SDValue
> Ops
,
124 MakeLibCallOptions CallOptions
,
125 const SDLoc
&dl
) const {
126 TargetLowering::ArgListTy Args
;
127 Args
.reserve(Ops
.size());
129 TargetLowering::ArgListEntry Entry
;
130 for (unsigned i
= 0; i
< Ops
.size(); ++i
) {
131 SDValue NewOp
= Ops
[i
];
133 Entry
.Ty
= Entry
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
134 Entry
.IsSExt
= shouldSignExtendTypeInLibCall(NewOp
.getValueType(),
136 Entry
.IsZExt
= !Entry
.IsSExt
;
138 if (CallOptions
.IsSoften
&&
139 !shouldExtendTypeInLibCall(CallOptions
.OpsVTBeforeSoften
[i
])) {
140 Entry
.IsSExt
= Entry
.IsZExt
= false;
142 Args
.push_back(Entry
);
145 if (LC
== RTLIB::UNKNOWN_LIBCALL
)
146 report_fatal_error("Unsupported library call operation!");
147 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
148 getPointerTy(DAG
.getDataLayout()));
150 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
151 TargetLowering::CallLoweringInfo
CLI(DAG
);
152 bool signExtend
= shouldSignExtendTypeInLibCall(RetVT
, CallOptions
.IsSExt
);
153 bool zeroExtend
= !signExtend
;
155 if (CallOptions
.IsSoften
&&
156 !shouldExtendTypeInLibCall(CallOptions
.RetVTBeforeSoften
)) {
157 signExtend
= zeroExtend
= false;
161 .setChain(DAG
.getEntryNode())
162 .setLibCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
163 .setNoReturn(CallOptions
.DoesNotReturn
)
164 .setDiscardResult(!CallOptions
.IsReturnValueUsed
)
165 .setIsPostTypeLegalization(CallOptions
.IsPostTypeLegalization
)
166 .setSExtResult(signExtend
)
167 .setZExtResult(zeroExtend
);
168 return LowerCallTo(CLI
);
172 TargetLowering::findOptimalMemOpLowering(std::vector
<EVT
> &MemOps
,
173 unsigned Limit
, uint64_t Size
,
174 unsigned DstAlign
, unsigned SrcAlign
,
179 unsigned DstAS
, unsigned SrcAS
,
180 const AttributeList
&FuncAttributes
) const {
181 // If 'SrcAlign' is zero, that means the memory operation does not need to
182 // load the value, i.e. memset or memcpy from constant string. Otherwise,
183 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
184 // is the specified alignment of the memory operation. If it is zero, that
185 // means it's possible to change the alignment of the destination.
186 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
187 // not need to be loaded.
188 if (!(SrcAlign
== 0 || SrcAlign
>= DstAlign
))
191 EVT VT
= getOptimalMemOpType(Size
, DstAlign
, SrcAlign
,
192 IsMemset
, ZeroMemset
, MemcpyStrSrc
,
195 if (VT
== MVT::Other
) {
196 // Use the largest integer type whose alignment constraints are satisfied.
197 // We only need to check DstAlign here as SrcAlign is always greater or
198 // equal to DstAlign (or zero).
200 while (DstAlign
&& DstAlign
< VT
.getSizeInBits() / 8 &&
201 !allowsMisalignedMemoryAccesses(VT
, DstAS
, DstAlign
))
202 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
203 assert(VT
.isInteger());
205 // Find the largest legal integer type.
207 while (!isTypeLegal(LVT
))
208 LVT
= (MVT::SimpleValueType
)(LVT
.SimpleTy
- 1);
209 assert(LVT
.isInteger());
211 // If the type we've chosen is larger than the largest legal integer type
212 // then use that instead.
217 unsigned NumMemOps
= 0;
219 unsigned VTSize
= VT
.getSizeInBits() / 8;
220 while (VTSize
> Size
) {
221 // For now, only use non-vector load / store's for the left-over pieces.
226 if (VT
.isVector() || VT
.isFloatingPoint()) {
227 NewVT
= (VT
.getSizeInBits() > 64) ? MVT::i64
: MVT::i32
;
228 if (isOperationLegalOrCustom(ISD::STORE
, NewVT
) &&
229 isSafeMemOpType(NewVT
.getSimpleVT()))
231 else if (NewVT
== MVT::i64
&&
232 isOperationLegalOrCustom(ISD::STORE
, MVT::f64
) &&
233 isSafeMemOpType(MVT::f64
)) {
234 // i64 is usually not legal on 32-bit targets, but f64 may be.
242 NewVT
= (MVT::SimpleValueType
)(NewVT
.getSimpleVT().SimpleTy
- 1);
243 if (NewVT
== MVT::i8
)
245 } while (!isSafeMemOpType(NewVT
.getSimpleVT()));
247 NewVTSize
= NewVT
.getSizeInBits() / 8;
249 // If the new VT cannot cover all of the remaining bits, then consider
250 // issuing a (or a pair of) unaligned and overlapping load / store.
252 if (NumMemOps
&& AllowOverlap
&& NewVTSize
< Size
&&
253 allowsMisalignedMemoryAccesses(VT
, DstAS
, DstAlign
,
254 MachineMemOperand::MONone
, &Fast
) &&
263 if (++NumMemOps
> Limit
)
266 MemOps
.push_back(VT
);
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG
&DAG
, EVT VT
,
276 SDValue
&NewLHS
, SDValue
&NewRHS
,
277 ISD::CondCode
&CCCode
,
278 const SDLoc
&dl
, const SDValue OldLHS
,
279 const SDValue OldRHS
) const {
280 assert((VT
== MVT::f32
|| VT
== MVT::f64
|| VT
== MVT::f128
|| VT
== MVT::ppcf128
)
281 && "Unsupported setcc type!");
283 // Expand into one or more soft-fp libcall(s).
284 RTLIB::Libcall LC1
= RTLIB::UNKNOWN_LIBCALL
, LC2
= RTLIB::UNKNOWN_LIBCALL
;
285 bool ShouldInvertCC
= false;
289 LC1
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
:
290 (VT
== MVT::f64
) ? RTLIB::OEQ_F64
:
291 (VT
== MVT::f128
) ? RTLIB::OEQ_F128
: RTLIB::OEQ_PPCF128
;
295 LC1
= (VT
== MVT::f32
) ? RTLIB::UNE_F32
:
296 (VT
== MVT::f64
) ? RTLIB::UNE_F64
:
297 (VT
== MVT::f128
) ? RTLIB::UNE_F128
: RTLIB::UNE_PPCF128
;
301 LC1
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
:
302 (VT
== MVT::f64
) ? RTLIB::OGE_F64
:
303 (VT
== MVT::f128
) ? RTLIB::OGE_F128
: RTLIB::OGE_PPCF128
;
307 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
308 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
309 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
313 LC1
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
:
314 (VT
== MVT::f64
) ? RTLIB::OLE_F64
:
315 (VT
== MVT::f128
) ? RTLIB::OLE_F128
: RTLIB::OLE_PPCF128
;
319 LC1
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
320 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
321 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
324 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
:
325 (VT
== MVT::f64
) ? RTLIB::UO_F64
:
326 (VT
== MVT::f128
) ? RTLIB::UO_F128
: RTLIB::UO_PPCF128
;
329 LC1
= (VT
== MVT::f32
) ? RTLIB::O_F32
:
330 (VT
== MVT::f64
) ? RTLIB::O_F64
:
331 (VT
== MVT::f128
) ? RTLIB::O_F128
: RTLIB::O_PPCF128
;
334 // SETONE = SETOLT | SETOGT
335 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
336 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
337 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
338 LC2
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
339 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
340 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
343 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
:
344 (VT
== MVT::f64
) ? RTLIB::UO_F64
:
345 (VT
== MVT::f128
) ? RTLIB::UO_F128
: RTLIB::UO_PPCF128
;
346 LC2
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
:
347 (VT
== MVT::f64
) ? RTLIB::OEQ_F64
:
348 (VT
== MVT::f128
) ? RTLIB::OEQ_F128
: RTLIB::OEQ_PPCF128
;
351 // Invert CC for unordered comparisons
352 ShouldInvertCC
= true;
355 LC1
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
:
356 (VT
== MVT::f64
) ? RTLIB::OGE_F64
:
357 (VT
== MVT::f128
) ? RTLIB::OGE_F128
: RTLIB::OGE_PPCF128
;
360 LC1
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
361 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
362 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
365 LC1
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
:
366 (VT
== MVT::f64
) ? RTLIB::OLE_F64
:
367 (VT
== MVT::f128
) ? RTLIB::OLE_F128
: RTLIB::OLE_PPCF128
;
370 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
371 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
372 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
374 default: llvm_unreachable("Do not know how to soften this setcc!");
378 // Use the target specific return value for comparions lib calls.
379 EVT RetVT
= getCmpLibcallReturnType();
380 SDValue Ops
[2] = {NewLHS
, NewRHS
};
381 TargetLowering::MakeLibCallOptions CallOptions
;
382 EVT OpsVT
[2] = { OldLHS
.getValueType(),
383 OldRHS
.getValueType() };
384 CallOptions
.setTypeListBeforeSoften(OpsVT
, RetVT
, true);
385 NewLHS
= makeLibCall(DAG
, LC1
, RetVT
, Ops
, CallOptions
, dl
).first
;
386 NewRHS
= DAG
.getConstant(0, dl
, RetVT
);
388 CCCode
= getCmpLibcallCC(LC1
);
390 CCCode
= getSetCCInverse(CCCode
, /*isInteger=*/true);
392 if (LC2
!= RTLIB::UNKNOWN_LIBCALL
) {
393 SDValue Tmp
= DAG
.getNode(
395 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), RetVT
),
396 NewLHS
, NewRHS
, DAG
.getCondCode(CCCode
));
397 NewLHS
= makeLibCall(DAG
, LC2
, RetVT
, Ops
, CallOptions
, dl
).first
;
398 NewLHS
= DAG
.getNode(
400 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), RetVT
),
401 NewLHS
, NewRHS
, DAG
.getCondCode(getCmpLibcallCC(LC2
)));
402 NewLHS
= DAG
.getNode(ISD::OR
, dl
, Tmp
.getValueType(), Tmp
, NewLHS
);
407 /// Return the entry encoding for a jump table in the current function. The
408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
409 unsigned TargetLowering::getJumpTableEncoding() const {
410 // In non-pic modes, just use the address of a block.
411 if (!isPositionIndependent())
412 return MachineJumpTableInfo::EK_BlockAddress
;
414 // In PIC mode, if the target supports a GPRel32 directive, use it.
415 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
416 return MachineJumpTableInfo::EK_GPRel32BlockAddress
;
418 // Otherwise, use a label difference.
419 return MachineJumpTableInfo::EK_LabelDifference32
;
422 SDValue
TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
423 SelectionDAG
&DAG
) const {
424 // If our PIC model is GP relative, use the global offset table as the base.
425 unsigned JTEncoding
= getJumpTableEncoding();
427 if ((JTEncoding
== MachineJumpTableInfo::EK_GPRel64BlockAddress
) ||
428 (JTEncoding
== MachineJumpTableInfo::EK_GPRel32BlockAddress
))
429 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG
.getDataLayout()));
434 /// This returns the relocation base for the given PIC jumptable, the same as
435 /// getPICJumpTableRelocBase, but as an MCExpr.
437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
438 unsigned JTI
,MCContext
&Ctx
) const{
439 // The normal PIC reloc base is the label at the start of the jump table.
440 return MCSymbolRefExpr::create(MF
->getJTISymbol(JTI
, Ctx
), Ctx
);
444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
445 const TargetMachine
&TM
= getTargetMachine();
446 const GlobalValue
*GV
= GA
->getGlobal();
448 // If the address is not even local to this DSO we will have to load it from
449 // a got and then add the offset.
450 if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
453 // If the code is position independent we will have to add a base register.
454 if (isPositionIndependent())
457 // Otherwise we can do it.
461 //===----------------------------------------------------------------------===//
462 // Optimization Methods
463 //===----------------------------------------------------------------------===//
465 /// If the specified instruction has a constant integer operand and there are
466 /// bits set in that constant that are not demanded, then clear those bits and
468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op
, const APInt
&Demanded
,
469 TargetLoweringOpt
&TLO
) const {
471 unsigned Opcode
= Op
.getOpcode();
473 // Do target-specific constant optimization.
474 if (targetShrinkDemandedConstant(Op
, Demanded
, TLO
))
475 return TLO
.New
.getNode();
477 // FIXME: ISD::SELECT, ISD::SELECT_CC
484 auto *Op1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
488 // If this is a 'not' op, don't touch it because that's a canonical form.
489 const APInt
&C
= Op1C
->getAPIntValue();
490 if (Opcode
== ISD::XOR
&& Demanded
.isSubsetOf(C
))
493 if (!C
.isSubsetOf(Demanded
)) {
494 EVT VT
= Op
.getValueType();
495 SDValue NewC
= TLO
.DAG
.getConstant(Demanded
& C
, DL
, VT
);
496 SDValue NewOp
= TLO
.DAG
.getNode(Opcode
, DL
, VT
, Op
.getOperand(0), NewC
);
497 return TLO
.CombineTo(Op
, NewOp
);
507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
509 /// generalized for targets with other types of implicit widening casts.
510 bool TargetLowering::ShrinkDemandedOp(SDValue Op
, unsigned BitWidth
,
511 const APInt
&Demanded
,
512 TargetLoweringOpt
&TLO
) const {
513 assert(Op
.getNumOperands() == 2 &&
514 "ShrinkDemandedOp only supports binary operators!");
515 assert(Op
.getNode()->getNumValues() == 1 &&
516 "ShrinkDemandedOp only supports nodes with one result!");
518 SelectionDAG
&DAG
= TLO
.DAG
;
521 // Early return, as this function cannot handle vector types.
522 if (Op
.getValueType().isVector())
525 // Don't do this if the node has another user, which may require the
527 if (!Op
.getNode()->hasOneUse())
530 // Search for the smallest integer type with free casts to and from
531 // Op's type. For expedience, just check power-of-2 integer types.
532 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
533 unsigned DemandedSize
= Demanded
.getActiveBits();
534 unsigned SmallVTBits
= DemandedSize
;
535 if (!isPowerOf2_32(SmallVTBits
))
536 SmallVTBits
= NextPowerOf2(SmallVTBits
);
537 for (; SmallVTBits
< BitWidth
; SmallVTBits
= NextPowerOf2(SmallVTBits
)) {
538 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), SmallVTBits
);
539 if (TLI
.isTruncateFree(Op
.getValueType(), SmallVT
) &&
540 TLI
.isZExtFree(SmallVT
, Op
.getValueType())) {
541 // We found a type with free casts.
542 SDValue X
= DAG
.getNode(
543 Op
.getOpcode(), dl
, SmallVT
,
544 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
, Op
.getOperand(0)),
545 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
, Op
.getOperand(1)));
546 assert(DemandedSize
<= SmallVTBits
&& "Narrowed below demanded bits?");
547 SDValue Z
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(), X
);
548 return TLO
.CombineTo(Op
, Z
);
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
555 DAGCombinerInfo
&DCI
) const {
556 SelectionDAG
&DAG
= DCI
.DAG
;
557 TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
558 !DCI
.isBeforeLegalizeOps());
561 bool Simplified
= SimplifyDemandedBits(Op
, DemandedBits
, Known
, TLO
);
563 DCI
.AddToWorklist(Op
.getNode());
564 DCI
.CommitTargetLoweringOpt(TLO
);
569 bool TargetLowering::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
571 TargetLoweringOpt
&TLO
,
573 bool AssumeSingleUse
) const {
574 EVT VT
= Op
.getValueType();
575 APInt DemandedElts
= VT
.isVector()
576 ? APInt::getAllOnesValue(VT
.getVectorNumElements())
578 return SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
, Known
, TLO
, Depth
,
582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
583 // TODO: Under what circumstances can we create nodes? Constant folding?
584 SDValue
TargetLowering::SimplifyMultipleUseDemandedBits(
585 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
586 SelectionDAG
&DAG
, unsigned Depth
) const {
587 // Limit search depth.
588 if (Depth
>= SelectionDAG::MaxRecursionDepth
)
595 // Not demanding any bits/elts from Op.
596 if (DemandedBits
== 0 || DemandedElts
== 0)
597 return DAG
.getUNDEF(Op
.getValueType());
599 unsigned NumElts
= DemandedElts
.getBitWidth();
600 KnownBits LHSKnown
, RHSKnown
;
601 switch (Op
.getOpcode()) {
603 SDValue Src
= peekThroughBitcasts(Op
.getOperand(0));
604 EVT SrcVT
= Src
.getValueType();
605 EVT DstVT
= Op
.getValueType();
606 unsigned NumSrcEltBits
= SrcVT
.getScalarSizeInBits();
607 unsigned NumDstEltBits
= DstVT
.getScalarSizeInBits();
609 if (NumSrcEltBits
== NumDstEltBits
)
610 if (SDValue V
= SimplifyMultipleUseDemandedBits(
611 Src
, DemandedBits
, DemandedElts
, DAG
, Depth
+ 1))
612 return DAG
.getBitcast(DstVT
, V
);
614 // TODO - bigendian once we have test coverage.
615 if (SrcVT
.isVector() && (NumDstEltBits
% NumSrcEltBits
) == 0 &&
616 DAG
.getDataLayout().isLittleEndian()) {
617 unsigned Scale
= NumDstEltBits
/ NumSrcEltBits
;
618 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
619 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
620 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
621 for (unsigned i
= 0; i
!= Scale
; ++i
) {
622 unsigned Offset
= i
* NumSrcEltBits
;
623 APInt Sub
= DemandedBits
.extractBits(NumSrcEltBits
, Offset
);
624 if (!Sub
.isNullValue()) {
625 DemandedSrcBits
|= Sub
;
626 for (unsigned j
= 0; j
!= NumElts
; ++j
)
628 DemandedSrcElts
.setBit((j
* Scale
) + i
);
632 if (SDValue V
= SimplifyMultipleUseDemandedBits(
633 Src
, DemandedSrcBits
, DemandedSrcElts
, DAG
, Depth
+ 1))
634 return DAG
.getBitcast(DstVT
, V
);
637 // TODO - bigendian once we have test coverage.
638 if ((NumSrcEltBits
% NumDstEltBits
) == 0 &&
639 DAG
.getDataLayout().isLittleEndian()) {
640 unsigned Scale
= NumSrcEltBits
/ NumDstEltBits
;
641 unsigned NumSrcElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
642 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
643 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
644 for (unsigned i
= 0; i
!= NumElts
; ++i
)
645 if (DemandedElts
[i
]) {
646 unsigned Offset
= (i
% Scale
) * NumDstEltBits
;
647 DemandedSrcBits
.insertBits(DemandedBits
, Offset
);
648 DemandedSrcElts
.setBit(i
/ Scale
);
651 if (SDValue V
= SimplifyMultipleUseDemandedBits(
652 Src
, DemandedSrcBits
, DemandedSrcElts
, DAG
, Depth
+ 1))
653 return DAG
.getBitcast(DstVT
, V
);
659 LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
660 RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
662 // If all of the demanded bits are known 1 on one side, return the other.
663 // These bits cannot contribute to the result of the 'and' in this
665 if (DemandedBits
.isSubsetOf(LHSKnown
.Zero
| RHSKnown
.One
))
666 return Op
.getOperand(0);
667 if (DemandedBits
.isSubsetOf(RHSKnown
.Zero
| LHSKnown
.One
))
668 return Op
.getOperand(1);
672 LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
673 RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
675 // If all of the demanded bits are known zero on one side, return the
676 // other. These bits cannot contribute to the result of the 'or' in this
678 if (DemandedBits
.isSubsetOf(LHSKnown
.One
| RHSKnown
.Zero
))
679 return Op
.getOperand(0);
680 if (DemandedBits
.isSubsetOf(RHSKnown
.One
| LHSKnown
.Zero
))
681 return Op
.getOperand(1);
685 LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
686 RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
688 // If all of the demanded bits are known zero on one side, return the
690 if (DemandedBits
.isSubsetOf(RHSKnown
.Zero
))
691 return Op
.getOperand(0);
692 if (DemandedBits
.isSubsetOf(LHSKnown
.Zero
))
693 return Op
.getOperand(1);
696 case ISD::SIGN_EXTEND_INREG
: {
697 // If none of the extended bits are demanded, eliminate the sextinreg.
698 EVT ExVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
699 if (DemandedBits
.getActiveBits() <= ExVT
.getScalarSizeInBits())
700 return Op
.getOperand(0);
703 case ISD::INSERT_VECTOR_ELT
: {
704 // If we don't demand the inserted element, return the base vector.
705 SDValue Vec
= Op
.getOperand(0);
706 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
707 EVT VecVT
= Vec
.getValueType();
708 if (CIdx
&& CIdx
->getAPIntValue().ult(VecVT
.getVectorNumElements()) &&
709 !DemandedElts
[CIdx
->getZExtValue()])
713 case ISD::VECTOR_SHUFFLE
: {
714 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
716 // If all the demanded elts are from one operand and are inline,
717 // then we can use the operand directly.
718 bool AllUndef
= true, IdentityLHS
= true, IdentityRHS
= true;
719 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
720 int M
= ShuffleMask
[i
];
721 if (M
< 0 || !DemandedElts
[i
])
724 IdentityLHS
&= (M
== (int)i
);
725 IdentityRHS
&= ((M
- NumElts
) == i
);
729 return DAG
.getUNDEF(Op
.getValueType());
731 return Op
.getOperand(0);
733 return Op
.getOperand(1);
737 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
)
738 if (SDValue V
= SimplifyMultipleUseDemandedBitsForTargetNode(
739 Op
, DemandedBits
, DemandedElts
, DAG
, Depth
))
746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
747 /// result of Op are ever used downstream. If we can use this information to
748 /// simplify Op, create a new simplified DAG node and return true, returning the
749 /// original and new nodes in Old and New. Otherwise, analyze the expression and
750 /// return a mask of Known bits for the expression (used to simplify the
751 /// caller). The Known bits may only be accurate for those bits in the
752 /// OriginalDemandedBits and OriginalDemandedElts.
753 bool TargetLowering::SimplifyDemandedBits(
754 SDValue Op
, const APInt
&OriginalDemandedBits
,
755 const APInt
&OriginalDemandedElts
, KnownBits
&Known
, TargetLoweringOpt
&TLO
,
756 unsigned Depth
, bool AssumeSingleUse
) const {
757 unsigned BitWidth
= OriginalDemandedBits
.getBitWidth();
758 assert(Op
.getScalarValueSizeInBits() == BitWidth
&&
759 "Mask size mismatches value type size!");
761 unsigned NumElts
= OriginalDemandedElts
.getBitWidth();
762 assert((!Op
.getValueType().isVector() ||
763 NumElts
== Op
.getValueType().getVectorNumElements()) &&
764 "Unexpected vector size");
766 APInt DemandedBits
= OriginalDemandedBits
;
767 APInt DemandedElts
= OriginalDemandedElts
;
769 auto &DL
= TLO
.DAG
.getDataLayout();
771 // Don't know anything.
772 Known
= KnownBits(BitWidth
);
778 if (Op
.getOpcode() == ISD::Constant
) {
779 // We know all of the bits for a constant!
780 Known
.One
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
781 Known
.Zero
= ~Known
.One
;
785 // Other users may use these bits.
786 EVT VT
= Op
.getValueType();
787 if (!Op
.getNode()->hasOneUse() && !AssumeSingleUse
) {
789 // If not at the root, Just compute the Known bits to
790 // simplify things downstream.
791 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
794 // If this is the root being simplified, allow it to have multiple uses,
795 // just set the DemandedBits/Elts to all bits.
796 DemandedBits
= APInt::getAllOnesValue(BitWidth
);
797 DemandedElts
= APInt::getAllOnesValue(NumElts
);
798 } else if (OriginalDemandedBits
== 0 || OriginalDemandedElts
== 0) {
799 // Not demanding any bits/elts from Op.
800 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
801 } else if (Depth
>= SelectionDAG::MaxRecursionDepth
) {
802 // Limit search depth.
806 KnownBits Known2
, KnownOut
;
807 switch (Op
.getOpcode()) {
808 case ISD::TargetConstant
:
809 llvm_unreachable("Can't simplify this node");
810 case ISD::SCALAR_TO_VECTOR
: {
811 if (!DemandedElts
[0])
812 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
815 SDValue Src
= Op
.getOperand(0);
816 unsigned SrcBitWidth
= Src
.getScalarValueSizeInBits();
817 APInt SrcDemandedBits
= DemandedBits
.zextOrSelf(SrcBitWidth
);
818 if (SimplifyDemandedBits(Src
, SrcDemandedBits
, SrcKnown
, TLO
, Depth
+ 1))
820 Known
= SrcKnown
.zextOrTrunc(BitWidth
, false);
823 case ISD::BUILD_VECTOR
:
824 // Collect the known bits that are shared by every demanded element.
825 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
826 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
827 return false; // Don't fall through, will infinitely loop.
829 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
830 if (getTargetConstantFromLoad(LD
)) {
831 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
832 return false; // Don't fall through, will infinitely loop.
836 case ISD::INSERT_VECTOR_ELT
: {
837 SDValue Vec
= Op
.getOperand(0);
838 SDValue Scl
= Op
.getOperand(1);
839 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
840 EVT VecVT
= Vec
.getValueType();
842 // If index isn't constant, assume we need all vector elements AND the
844 APInt
DemandedVecElts(DemandedElts
);
845 if (CIdx
&& CIdx
->getAPIntValue().ult(VecVT
.getVectorNumElements())) {
846 unsigned Idx
= CIdx
->getZExtValue();
847 DemandedVecElts
.clearBit(Idx
);
849 // Inserted element is not required.
850 if (!DemandedElts
[Idx
])
851 return TLO
.CombineTo(Op
, Vec
);
855 unsigned NumSclBits
= Scl
.getScalarValueSizeInBits();
856 APInt DemandedSclBits
= DemandedBits
.zextOrTrunc(NumSclBits
);
857 if (SimplifyDemandedBits(Scl
, DemandedSclBits
, KnownScl
, TLO
, Depth
+ 1))
860 Known
= KnownScl
.zextOrTrunc(BitWidth
, false);
863 if (SimplifyDemandedBits(Vec
, DemandedBits
, DemandedVecElts
, KnownVec
, TLO
,
867 if (!!DemandedVecElts
) {
868 Known
.One
&= KnownVec
.One
;
869 Known
.Zero
&= KnownVec
.Zero
;
874 case ISD::INSERT_SUBVECTOR
: {
875 SDValue Base
= Op
.getOperand(0);
876 SDValue Sub
= Op
.getOperand(1);
877 EVT SubVT
= Sub
.getValueType();
878 unsigned NumSubElts
= SubVT
.getVectorNumElements();
880 // If index isn't constant, assume we need the original demanded base
881 // elements and ALL the inserted subvector elements.
882 APInt BaseElts
= DemandedElts
;
883 APInt SubElts
= APInt::getAllOnesValue(NumSubElts
);
884 if (isa
<ConstantSDNode
>(Op
.getOperand(2))) {
885 const APInt
&Idx
= Op
.getConstantOperandAPInt(2);
886 if (Idx
.ule(NumElts
- NumSubElts
)) {
887 unsigned SubIdx
= Idx
.getZExtValue();
888 SubElts
= DemandedElts
.extractBits(NumSubElts
, SubIdx
);
889 BaseElts
.insertBits(APInt::getNullValue(NumSubElts
), SubIdx
);
893 KnownBits KnownSub
, KnownBase
;
894 if (SimplifyDemandedBits(Sub
, DemandedBits
, SubElts
, KnownSub
, TLO
,
897 if (SimplifyDemandedBits(Base
, DemandedBits
, BaseElts
, KnownBase
, TLO
,
901 Known
.Zero
.setAllBits();
902 Known
.One
.setAllBits();
904 Known
.One
&= KnownSub
.One
;
905 Known
.Zero
&= KnownSub
.Zero
;
908 Known
.One
&= KnownBase
.One
;
909 Known
.Zero
&= KnownBase
.Zero
;
913 case ISD::EXTRACT_SUBVECTOR
: {
914 // If index isn't constant, assume we need all the source vector elements.
915 SDValue Src
= Op
.getOperand(0);
916 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
917 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
918 APInt SrcElts
= APInt::getAllOnesValue(NumSrcElts
);
919 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
920 // Offset the demanded elts by the subvector index.
921 uint64_t Idx
= SubIdx
->getZExtValue();
922 SrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
924 if (SimplifyDemandedBits(Src
, DemandedBits
, SrcElts
, Known
, TLO
, Depth
+ 1))
928 case ISD::CONCAT_VECTORS
: {
929 Known
.Zero
.setAllBits();
930 Known
.One
.setAllBits();
931 EVT SubVT
= Op
.getOperand(0).getValueType();
932 unsigned NumSubVecs
= Op
.getNumOperands();
933 unsigned NumSubElts
= SubVT
.getVectorNumElements();
934 for (unsigned i
= 0; i
!= NumSubVecs
; ++i
) {
935 APInt DemandedSubElts
=
936 DemandedElts
.extractBits(NumSubElts
, i
* NumSubElts
);
937 if (SimplifyDemandedBits(Op
.getOperand(i
), DemandedBits
, DemandedSubElts
,
938 Known2
, TLO
, Depth
+ 1))
940 // Known bits are shared by every demanded subvector element.
941 if (!!DemandedSubElts
) {
942 Known
.One
&= Known2
.One
;
943 Known
.Zero
&= Known2
.Zero
;
948 case ISD::VECTOR_SHUFFLE
: {
949 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
951 // Collect demanded elements from shuffle operands..
952 APInt
DemandedLHS(NumElts
, 0);
953 APInt
DemandedRHS(NumElts
, 0);
954 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
955 if (!DemandedElts
[i
])
957 int M
= ShuffleMask
[i
];
959 // For UNDEF elements, we don't know anything about the common state of
960 // the shuffle result.
961 DemandedLHS
.clearAllBits();
962 DemandedRHS
.clearAllBits();
965 assert(0 <= M
&& M
< (int)(2 * NumElts
) && "Shuffle index out of range");
966 if (M
< (int)NumElts
)
967 DemandedLHS
.setBit(M
);
969 DemandedRHS
.setBit(M
- NumElts
);
972 if (!!DemandedLHS
|| !!DemandedRHS
) {
973 SDValue Op0
= Op
.getOperand(0);
974 SDValue Op1
= Op
.getOperand(1);
976 Known
.Zero
.setAllBits();
977 Known
.One
.setAllBits();
979 if (SimplifyDemandedBits(Op0
, DemandedBits
, DemandedLHS
, Known2
, TLO
,
982 Known
.One
&= Known2
.One
;
983 Known
.Zero
&= Known2
.Zero
;
986 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedRHS
, Known2
, TLO
,
989 Known
.One
&= Known2
.One
;
990 Known
.Zero
&= Known2
.Zero
;
993 // Attempt to avoid multi-use ops if we don't need anything from them.
994 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
995 Op0
, DemandedBits
, DemandedLHS
, TLO
.DAG
, Depth
+ 1);
996 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
997 Op1
, DemandedBits
, DemandedRHS
, TLO
.DAG
, Depth
+ 1);
998 if (DemandedOp0
|| DemandedOp1
) {
999 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1000 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1001 SDValue NewOp
= TLO
.DAG
.getVectorShuffle(VT
, dl
, Op0
, Op1
, ShuffleMask
);
1002 return TLO
.CombineTo(Op
, NewOp
);
1008 SDValue Op0
= Op
.getOperand(0);
1009 SDValue Op1
= Op
.getOperand(1);
1011 // If the RHS is a constant, check to see if the LHS would be zero without
1012 // using the bits from the RHS. Below, we use knowledge about the RHS to
1013 // simplify the LHS, here we're using information from the LHS to simplify
1015 if (ConstantSDNode
*RHSC
= isConstOrConstSplat(Op1
)) {
1016 // Do not increment Depth here; that can cause an infinite loop.
1017 KnownBits LHSKnown
= TLO
.DAG
.computeKnownBits(Op0
, DemandedElts
, Depth
);
1018 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1019 if ((LHSKnown
.Zero
& DemandedBits
) ==
1020 (~RHSC
->getAPIntValue() & DemandedBits
))
1021 return TLO
.CombineTo(Op
, Op0
);
1023 // If any of the set bits in the RHS are known zero on the LHS, shrink
1025 if (ShrinkDemandedConstant(Op
, ~LHSKnown
.Zero
& DemandedBits
, TLO
))
1028 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1029 // constant, but if this 'and' is only clearing bits that were just set by
1030 // the xor, then this 'and' can be eliminated by shrinking the mask of
1031 // the xor. For example, for a 32-bit X:
1032 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1033 if (isBitwiseNot(Op0
) && Op0
.hasOneUse() &&
1034 LHSKnown
.One
== ~RHSC
->getAPIntValue()) {
1035 SDValue Xor
= TLO
.DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
.getOperand(0), Op1
);
1036 return TLO
.CombineTo(Op
, Xor
);
1040 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
1043 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1044 if (SimplifyDemandedBits(Op0
, ~Known
.Zero
& DemandedBits
, DemandedElts
,
1045 Known2
, TLO
, Depth
+ 1))
1047 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1049 // Attempt to avoid multi-use ops if we don't need anything from them.
1050 if (!DemandedBits
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1051 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1052 Op0
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1053 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1054 Op1
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1055 if (DemandedOp0
|| DemandedOp1
) {
1056 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1057 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1058 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
);
1059 return TLO
.CombineTo(Op
, NewOp
);
1063 // If all of the demanded bits are known one on one side, return the other.
1064 // These bits cannot contribute to the result of the 'and'.
1065 if (DemandedBits
.isSubsetOf(Known2
.Zero
| Known
.One
))
1066 return TLO
.CombineTo(Op
, Op0
);
1067 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.One
))
1068 return TLO
.CombineTo(Op
, Op1
);
1069 // If all of the demanded bits in the inputs are known zeros, return zero.
1070 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.Zero
))
1071 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, dl
, VT
));
1072 // If the RHS is a constant, see if we can simplify it.
1073 if (ShrinkDemandedConstant(Op
, ~Known2
.Zero
& DemandedBits
, TLO
))
1075 // If the operation can be done in a smaller type, do so.
1076 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1079 // Output known-1 bits are only known if set in both the LHS & RHS.
1080 Known
.One
&= Known2
.One
;
1081 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1082 Known
.Zero
|= Known2
.Zero
;
1086 SDValue Op0
= Op
.getOperand(0);
1087 SDValue Op1
= Op
.getOperand(1);
1089 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
1092 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1093 if (SimplifyDemandedBits(Op0
, ~Known
.One
& DemandedBits
, DemandedElts
,
1094 Known2
, TLO
, Depth
+ 1))
1096 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1098 // Attempt to avoid multi-use ops if we don't need anything from them.
1099 if (!DemandedBits
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1100 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1101 Op0
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1102 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1103 Op1
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1104 if (DemandedOp0
|| DemandedOp1
) {
1105 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1106 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1107 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
);
1108 return TLO
.CombineTo(Op
, NewOp
);
1112 // If all of the demanded bits are known zero on one side, return the other.
1113 // These bits cannot contribute to the result of the 'or'.
1114 if (DemandedBits
.isSubsetOf(Known2
.One
| Known
.Zero
))
1115 return TLO
.CombineTo(Op
, Op0
);
1116 if (DemandedBits
.isSubsetOf(Known
.One
| Known2
.Zero
))
1117 return TLO
.CombineTo(Op
, Op1
);
1118 // If the RHS is a constant, see if we can simplify it.
1119 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1121 // If the operation can be done in a smaller type, do so.
1122 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1125 // Output known-0 bits are only known if clear in both the LHS & RHS.
1126 Known
.Zero
&= Known2
.Zero
;
1127 // Output known-1 are known to be set if set in either the LHS | RHS.
1128 Known
.One
|= Known2
.One
;
1132 SDValue Op0
= Op
.getOperand(0);
1133 SDValue Op1
= Op
.getOperand(1);
1135 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
1138 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1139 if (SimplifyDemandedBits(Op0
, DemandedBits
, DemandedElts
, Known2
, TLO
,
1142 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1144 // Attempt to avoid multi-use ops if we don't need anything from them.
1145 if (!DemandedBits
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1146 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1147 Op0
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1148 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1149 Op1
, DemandedBits
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1150 if (DemandedOp0
|| DemandedOp1
) {
1151 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1152 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1153 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
);
1154 return TLO
.CombineTo(Op
, NewOp
);
1158 // If all of the demanded bits are known zero on one side, return the other.
1159 // These bits cannot contribute to the result of the 'xor'.
1160 if (DemandedBits
.isSubsetOf(Known
.Zero
))
1161 return TLO
.CombineTo(Op
, Op0
);
1162 if (DemandedBits
.isSubsetOf(Known2
.Zero
))
1163 return TLO
.CombineTo(Op
, Op1
);
1164 // If the operation can be done in a smaller type, do so.
1165 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1168 // If all of the unknown bits are known to be zero on one side or the other
1169 // (but not both) turn this into an *inclusive* or.
1170 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1171 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.Zero
))
1172 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::OR
, dl
, VT
, Op0
, Op1
));
1174 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1175 KnownOut
.Zero
= (Known
.Zero
& Known2
.Zero
) | (Known
.One
& Known2
.One
);
1176 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1177 KnownOut
.One
= (Known
.Zero
& Known2
.One
) | (Known
.One
& Known2
.Zero
);
1179 if (ConstantSDNode
*C
= isConstOrConstSplat(Op1
)) {
1180 // If one side is a constant, and all of the known set bits on the other
1181 // side are also set in the constant, turn this into an AND, as we know
1182 // the bits will be cleared.
1183 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1184 // NB: it is okay if more bits are known than are requested
1185 if (C
->getAPIntValue() == Known2
.One
) {
1187 TLO
.DAG
.getConstant(~C
->getAPIntValue() & DemandedBits
, dl
, VT
);
1188 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::AND
, dl
, VT
, Op0
, ANDC
));
1191 // If the RHS is a constant, see if we can change it. Don't alter a -1
1192 // constant because that's a 'not' op, and that is better for combining
1194 if (!C
->isAllOnesValue()) {
1195 if (DemandedBits
.isSubsetOf(C
->getAPIntValue())) {
1196 // We're flipping all demanded bits. Flip the undemanded bits too.
1197 SDValue New
= TLO
.DAG
.getNOT(dl
, Op0
, VT
);
1198 return TLO
.CombineTo(Op
, New
);
1200 // If we can't turn this into a 'not', try to shrink the constant.
1201 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1206 Known
= std::move(KnownOut
);
1210 if (SimplifyDemandedBits(Op
.getOperand(2), DemandedBits
, Known
, TLO
,
1213 if (SimplifyDemandedBits(Op
.getOperand(1), DemandedBits
, Known2
, TLO
,
1216 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1217 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1219 // If the operands are constants, see if we can simplify them.
1220 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1223 // Only known if known in both the LHS and RHS.
1224 Known
.One
&= Known2
.One
;
1225 Known
.Zero
&= Known2
.Zero
;
1227 case ISD::SELECT_CC
:
1228 if (SimplifyDemandedBits(Op
.getOperand(3), DemandedBits
, Known
, TLO
,
1231 if (SimplifyDemandedBits(Op
.getOperand(2), DemandedBits
, Known2
, TLO
,
1234 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1235 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
1237 // If the operands are constants, see if we can simplify them.
1238 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
1241 // Only known if known in both the LHS and RHS.
1242 Known
.One
&= Known2
.One
;
1243 Known
.Zero
&= Known2
.Zero
;
1246 SDValue Op0
= Op
.getOperand(0);
1247 SDValue Op1
= Op
.getOperand(1);
1248 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
1249 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1250 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1251 // -1, we may be able to bypass the setcc.
1252 if (DemandedBits
.isSignMask() &&
1253 Op0
.getScalarValueSizeInBits() == BitWidth
&&
1254 getBooleanContents(VT
) ==
1255 BooleanContent::ZeroOrNegativeOneBooleanContent
) {
1256 // If we're testing X < 0, then this compare isn't needed - just use X!
1257 // FIXME: We're limiting to integer types here, but this should also work
1258 // if we don't care about FP signed-zero. The use of SETLT with FP means
1259 // that we don't care about NaNs.
1260 if (CC
== ISD::SETLT
&& Op1
.getValueType().isInteger() &&
1261 (isNullConstant(Op1
) || ISD::isBuildVectorAllZeros(Op1
.getNode())))
1262 return TLO
.CombineTo(Op
, Op0
);
1264 // TODO: Should we check for other forms of sign-bit comparisons?
1265 // Examples: X <= -1, X >= 0
1267 if (getBooleanContents(Op0
.getValueType()) ==
1268 TargetLowering::ZeroOrOneBooleanContent
&&
1270 Known
.Zero
.setBitsFrom(1);
1274 SDValue Op0
= Op
.getOperand(0);
1275 SDValue Op1
= Op
.getOperand(1);
1277 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1278 // If the shift count is an invalid immediate, don't do anything.
1279 if (SA
->getAPIntValue().uge(BitWidth
))
1282 unsigned ShAmt
= SA
->getZExtValue();
1284 return TLO
.CombineTo(Op
, Op0
);
1286 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1287 // single shift. We can do this if the bottom bits (which are shifted
1288 // out) are never demanded.
1289 // TODO - support non-uniform vector amounts.
1290 if (Op0
.getOpcode() == ISD::SRL
) {
1291 if (!DemandedBits
.intersects(APInt::getLowBitsSet(BitWidth
, ShAmt
))) {
1292 if (ConstantSDNode
*SA2
=
1293 isConstOrConstSplat(Op0
.getOperand(1), DemandedElts
)) {
1294 if (SA2
->getAPIntValue().ult(BitWidth
)) {
1295 unsigned C1
= SA2
->getZExtValue();
1296 unsigned Opc
= ISD::SHL
;
1297 int Diff
= ShAmt
- C1
;
1303 SDValue NewSA
= TLO
.DAG
.getConstant(Diff
, dl
, Op1
.getValueType());
1304 return TLO
.CombineTo(
1305 Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Op0
.getOperand(0), NewSA
));
1311 if (SimplifyDemandedBits(Op0
, DemandedBits
.lshr(ShAmt
), DemandedElts
,
1312 Known
, TLO
, Depth
+ 1))
1315 // Try shrinking the operation as long as the shift amount will still be
1317 if ((ShAmt
< DemandedBits
.getActiveBits()) &&
1318 ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1321 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1322 // are not demanded. This will likely allow the anyext to be folded away.
1323 if (Op0
.getOpcode() == ISD::ANY_EXTEND
) {
1324 SDValue InnerOp
= Op0
.getOperand(0);
1325 EVT InnerVT
= InnerOp
.getValueType();
1326 unsigned InnerBits
= InnerVT
.getScalarSizeInBits();
1327 if (ShAmt
< InnerBits
&& DemandedBits
.getActiveBits() <= InnerBits
&&
1328 isTypeDesirableForOp(ISD::SHL
, InnerVT
)) {
1329 EVT ShTy
= getShiftAmountTy(InnerVT
, DL
);
1330 if (!APInt(BitWidth
, ShAmt
).isIntN(ShTy
.getSizeInBits()))
1333 TLO
.DAG
.getNode(ISD::SHL
, dl
, InnerVT
, InnerOp
,
1334 TLO
.DAG
.getConstant(ShAmt
, dl
, ShTy
));
1335 return TLO
.CombineTo(
1336 Op
, TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, NarrowShl
));
1338 // Repeat the SHL optimization above in cases where an extension
1339 // intervenes: (shl (anyext (shr x, c1)), c2) to
1340 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1341 // aren't demanded (as above) and that the shifted upper c1 bits of
1342 // x aren't demanded.
1343 if (Op0
.hasOneUse() && InnerOp
.getOpcode() == ISD::SRL
&&
1344 InnerOp
.hasOneUse()) {
1345 if (ConstantSDNode
*SA2
=
1346 isConstOrConstSplat(InnerOp
.getOperand(1))) {
1347 unsigned InnerShAmt
= SA2
->getLimitedValue(InnerBits
);
1348 if (InnerShAmt
< ShAmt
&& InnerShAmt
< InnerBits
&&
1349 DemandedBits
.getActiveBits() <=
1350 (InnerBits
- InnerShAmt
+ ShAmt
) &&
1351 DemandedBits
.countTrailingZeros() >= ShAmt
) {
1352 SDValue NewSA
= TLO
.DAG
.getConstant(ShAmt
- InnerShAmt
, dl
,
1353 Op1
.getValueType());
1354 SDValue NewExt
= TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
,
1355 InnerOp
.getOperand(0));
1356 return TLO
.CombineTo(
1357 Op
, TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, NewExt
, NewSA
));
1363 Known
.Zero
<<= ShAmt
;
1364 Known
.One
<<= ShAmt
;
1365 // low bits known zero.
1366 Known
.Zero
.setLowBits(ShAmt
);
1371 SDValue Op0
= Op
.getOperand(0);
1372 SDValue Op1
= Op
.getOperand(1);
1374 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1375 // If the shift count is an invalid immediate, don't do anything.
1376 if (SA
->getAPIntValue().uge(BitWidth
))
1379 unsigned ShAmt
= SA
->getZExtValue();
1381 return TLO
.CombineTo(Op
, Op0
);
1383 EVT ShiftVT
= Op1
.getValueType();
1384 APInt InDemandedMask
= (DemandedBits
<< ShAmt
);
1386 // If the shift is exact, then it does demand the low bits (and knows that
1388 if (Op
->getFlags().hasExact())
1389 InDemandedMask
.setLowBits(ShAmt
);
1391 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1392 // single shift. We can do this if the top bits (which are shifted out)
1393 // are never demanded.
1394 // TODO - support non-uniform vector amounts.
1395 if (Op0
.getOpcode() == ISD::SHL
) {
1396 if (ConstantSDNode
*SA2
=
1397 isConstOrConstSplat(Op0
.getOperand(1), DemandedElts
)) {
1398 if (!DemandedBits
.intersects(
1399 APInt::getHighBitsSet(BitWidth
, ShAmt
))) {
1400 if (SA2
->getAPIntValue().ult(BitWidth
)) {
1401 unsigned C1
= SA2
->getZExtValue();
1402 unsigned Opc
= ISD::SRL
;
1403 int Diff
= ShAmt
- C1
;
1409 SDValue NewSA
= TLO
.DAG
.getConstant(Diff
, dl
, ShiftVT
);
1410 return TLO
.CombineTo(
1411 Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Op0
.getOperand(0), NewSA
));
1417 // Compute the new bits that are at the top now.
1418 if (SimplifyDemandedBits(Op0
, InDemandedMask
, DemandedElts
, Known
, TLO
,
1421 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1422 Known
.Zero
.lshrInPlace(ShAmt
);
1423 Known
.One
.lshrInPlace(ShAmt
);
1425 Known
.Zero
.setHighBits(ShAmt
); // High bits known zero.
1430 SDValue Op0
= Op
.getOperand(0);
1431 SDValue Op1
= Op
.getOperand(1);
1433 // If this is an arithmetic shift right and only the low-bit is set, we can
1434 // always convert this into a logical shr, even if the shift amount is
1435 // variable. The low bit of the shift cannot be an input sign bit unless
1436 // the shift amount is >= the size of the datatype, which is undefined.
1437 if (DemandedBits
.isOneValue())
1438 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, Op1
));
1440 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1441 // If the shift count is an invalid immediate, don't do anything.
1442 if (SA
->getAPIntValue().uge(BitWidth
))
1445 unsigned ShAmt
= SA
->getZExtValue();
1447 return TLO
.CombineTo(Op
, Op0
);
1449 APInt InDemandedMask
= (DemandedBits
<< ShAmt
);
1451 // If the shift is exact, then it does demand the low bits (and knows that
1453 if (Op
->getFlags().hasExact())
1454 InDemandedMask
.setLowBits(ShAmt
);
1456 // If any of the demanded bits are produced by the sign extension, we also
1457 // demand the input sign bit.
1458 if (DemandedBits
.countLeadingZeros() < ShAmt
)
1459 InDemandedMask
.setSignBit();
1461 if (SimplifyDemandedBits(Op0
, InDemandedMask
, DemandedElts
, Known
, TLO
,
1464 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1465 Known
.Zero
.lshrInPlace(ShAmt
);
1466 Known
.One
.lshrInPlace(ShAmt
);
1468 // If the input sign bit is known to be zero, or if none of the top bits
1469 // are demanded, turn this into an unsigned shift right.
1470 if (Known
.Zero
[BitWidth
- ShAmt
- 1] ||
1471 DemandedBits
.countLeadingZeros() >= ShAmt
) {
1473 Flags
.setExact(Op
->getFlags().hasExact());
1474 return TLO
.CombineTo(
1475 Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, Op1
, Flags
));
1478 int Log2
= DemandedBits
.exactLogBase2();
1480 // The bit must come from the sign.
1482 TLO
.DAG
.getConstant(BitWidth
- 1 - Log2
, dl
, Op1
.getValueType());
1483 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, NewSA
));
1486 if (Known
.One
[BitWidth
- ShAmt
- 1])
1487 // New bits are known one.
1488 Known
.One
.setHighBits(ShAmt
);
1494 SDValue Op0
= Op
.getOperand(0);
1495 SDValue Op1
= Op
.getOperand(1);
1496 SDValue Op2
= Op
.getOperand(2);
1497 bool IsFSHL
= (Op
.getOpcode() == ISD::FSHL
);
1499 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op2
, DemandedElts
)) {
1500 unsigned Amt
= SA
->getAPIntValue().urem(BitWidth
);
1502 // For fshl, 0-shift returns the 1st arg.
1503 // For fshr, 0-shift returns the 2nd arg.
1505 if (SimplifyDemandedBits(IsFSHL
? Op0
: Op1
, DemandedBits
, DemandedElts
,
1506 Known
, TLO
, Depth
+ 1))
1511 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1512 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1513 APInt Demanded0
= DemandedBits
.lshr(IsFSHL
? Amt
: (BitWidth
- Amt
));
1514 APInt Demanded1
= DemandedBits
<< (IsFSHL
? (BitWidth
- Amt
) : Amt
);
1515 if (SimplifyDemandedBits(Op0
, Demanded0
, DemandedElts
, Known2
, TLO
,
1518 if (SimplifyDemandedBits(Op1
, Demanded1
, DemandedElts
, Known
, TLO
,
1522 Known2
.One
<<= (IsFSHL
? Amt
: (BitWidth
- Amt
));
1523 Known2
.Zero
<<= (IsFSHL
? Amt
: (BitWidth
- Amt
));
1524 Known
.One
.lshrInPlace(IsFSHL
? (BitWidth
- Amt
) : Amt
);
1525 Known
.Zero
.lshrInPlace(IsFSHL
? (BitWidth
- Amt
) : Amt
);
1526 Known
.One
|= Known2
.One
;
1527 Known
.Zero
|= Known2
.Zero
;
1531 case ISD::BITREVERSE
: {
1532 SDValue Src
= Op
.getOperand(0);
1533 APInt DemandedSrcBits
= DemandedBits
.reverseBits();
1534 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedElts
, Known2
, TLO
,
1537 Known
.One
= Known2
.One
.reverseBits();
1538 Known
.Zero
= Known2
.Zero
.reverseBits();
1541 case ISD::SIGN_EXTEND_INREG
: {
1542 SDValue Op0
= Op
.getOperand(0);
1543 EVT ExVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1544 unsigned ExVTBits
= ExVT
.getScalarSizeInBits();
1546 // If we only care about the highest bit, don't bother shifting right.
1547 if (DemandedBits
.isSignMask()) {
1548 unsigned NumSignBits
= TLO
.DAG
.ComputeNumSignBits(Op0
);
1549 bool AlreadySignExtended
= NumSignBits
>= BitWidth
- ExVTBits
+ 1;
1550 // However if the input is already sign extended we expect the sign
1551 // extension to be dropped altogether later and do not simplify.
1552 if (!AlreadySignExtended
) {
1553 // Compute the correct shift amount type, which must be getShiftAmountTy
1554 // for scalar types after legalization.
1555 EVT ShiftAmtTy
= VT
;
1556 if (TLO
.LegalTypes() && !ShiftAmtTy
.isVector())
1557 ShiftAmtTy
= getShiftAmountTy(ShiftAmtTy
, DL
);
1560 TLO
.DAG
.getConstant(BitWidth
- ExVTBits
, dl
, ShiftAmtTy
);
1561 return TLO
.CombineTo(Op
,
1562 TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, Op0
, ShiftAmt
));
1566 // If none of the extended bits are demanded, eliminate the sextinreg.
1567 if (DemandedBits
.getActiveBits() <= ExVTBits
)
1568 return TLO
.CombineTo(Op
, Op0
);
1570 APInt InputDemandedBits
= DemandedBits
.getLoBits(ExVTBits
);
1572 // Since the sign extended bits are demanded, we know that the sign
1574 InputDemandedBits
.setBit(ExVTBits
- 1);
1576 if (SimplifyDemandedBits(Op0
, InputDemandedBits
, Known
, TLO
, Depth
+ 1))
1578 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1580 // If the sign bit of the input is known set or clear, then we know the
1581 // top bits of the result.
1583 // If the input sign bit is known zero, convert this into a zero extension.
1584 if (Known
.Zero
[ExVTBits
- 1])
1585 return TLO
.CombineTo(
1586 Op
, TLO
.DAG
.getZeroExtendInReg(Op0
, dl
, ExVT
.getScalarType()));
1588 APInt Mask
= APInt::getLowBitsSet(BitWidth
, ExVTBits
);
1589 if (Known
.One
[ExVTBits
- 1]) { // Input sign bit known set
1590 Known
.One
.setBitsFrom(ExVTBits
);
1592 } else { // Input sign bit unknown
1598 case ISD::BUILD_PAIR
: {
1599 EVT HalfVT
= Op
.getOperand(0).getValueType();
1600 unsigned HalfBitWidth
= HalfVT
.getScalarSizeInBits();
1602 APInt MaskLo
= DemandedBits
.getLoBits(HalfBitWidth
).trunc(HalfBitWidth
);
1603 APInt MaskHi
= DemandedBits
.getHiBits(HalfBitWidth
).trunc(HalfBitWidth
);
1605 KnownBits KnownLo
, KnownHi
;
1607 if (SimplifyDemandedBits(Op
.getOperand(0), MaskLo
, KnownLo
, TLO
, Depth
+ 1))
1610 if (SimplifyDemandedBits(Op
.getOperand(1), MaskHi
, KnownHi
, TLO
, Depth
+ 1))
1613 Known
.Zero
= KnownLo
.Zero
.zext(BitWidth
) |
1614 KnownHi
.Zero
.zext(BitWidth
).shl(HalfBitWidth
);
1616 Known
.One
= KnownLo
.One
.zext(BitWidth
) |
1617 KnownHi
.One
.zext(BitWidth
).shl(HalfBitWidth
);
1620 case ISD::ZERO_EXTEND
:
1621 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
1622 SDValue Src
= Op
.getOperand(0);
1623 EVT SrcVT
= Src
.getValueType();
1624 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1625 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1626 bool IsVecInReg
= Op
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
;
1628 // If none of the top bits are demanded, convert this into an any_extend.
1629 if (DemandedBits
.getActiveBits() <= InBits
) {
1630 // If we only need the non-extended bits of the bottom element
1631 // then we can just bitcast to the result.
1632 if (IsVecInReg
&& DemandedElts
== 1 &&
1633 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1634 TLO
.DAG
.getDataLayout().isLittleEndian())
1635 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1638 IsVecInReg
? ISD::ANY_EXTEND_VECTOR_INREG
: ISD::ANY_EXTEND
;
1639 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1640 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1643 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1644 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1645 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1648 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1649 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1650 Known
= Known
.zext(BitWidth
, true /* ExtendedBitsAreKnownZero */);
1653 case ISD::SIGN_EXTEND
:
1654 case ISD::SIGN_EXTEND_VECTOR_INREG
: {
1655 SDValue Src
= Op
.getOperand(0);
1656 EVT SrcVT
= Src
.getValueType();
1657 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1658 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1659 bool IsVecInReg
= Op
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
;
1661 // If none of the top bits are demanded, convert this into an any_extend.
1662 if (DemandedBits
.getActiveBits() <= InBits
) {
1663 // If we only need the non-extended bits of the bottom element
1664 // then we can just bitcast to the result.
1665 if (IsVecInReg
&& DemandedElts
== 1 &&
1666 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1667 TLO
.DAG
.getDataLayout().isLittleEndian())
1668 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1671 IsVecInReg
? ISD::ANY_EXTEND_VECTOR_INREG
: ISD::ANY_EXTEND
;
1672 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1673 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1676 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1677 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1679 // Since some of the sign extended bits are demanded, we know that the sign
1681 InDemandedBits
.setBit(InBits
- 1);
1683 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1686 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1687 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1689 // If the sign bit is known one, the top bits match.
1690 Known
= Known
.sext(BitWidth
);
1692 // If the sign bit is known zero, convert this to a zero extend.
1693 if (Known
.isNonNegative()) {
1695 IsVecInReg
? ISD::ZERO_EXTEND_VECTOR_INREG
: ISD::ZERO_EXTEND
;
1696 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1697 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1701 case ISD::ANY_EXTEND
:
1702 case ISD::ANY_EXTEND_VECTOR_INREG
: {
1703 SDValue Src
= Op
.getOperand(0);
1704 EVT SrcVT
= Src
.getValueType();
1705 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1706 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1707 bool IsVecInReg
= Op
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
;
1709 // If we only need the bottom element then we can just bitcast.
1710 // TODO: Handle ANY_EXTEND?
1711 if (IsVecInReg
&& DemandedElts
== 1 &&
1712 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1713 TLO
.DAG
.getDataLayout().isLittleEndian())
1714 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1716 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1717 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1718 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1721 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1722 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1723 Known
= Known
.zext(BitWidth
, false /* => any extend */);
1726 case ISD::TRUNCATE
: {
1727 SDValue Src
= Op
.getOperand(0);
1729 // Simplify the input, using demanded bit information, and compute the known
1730 // zero/one bits live out.
1731 unsigned OperandBitWidth
= Src
.getScalarValueSizeInBits();
1732 APInt TruncMask
= DemandedBits
.zext(OperandBitWidth
);
1733 if (SimplifyDemandedBits(Src
, TruncMask
, Known
, TLO
, Depth
+ 1))
1735 Known
= Known
.trunc(BitWidth
);
1737 // Attempt to avoid multi-use ops if we don't need anything from them.
1738 if (SDValue NewSrc
= SimplifyMultipleUseDemandedBits(
1739 Src
, TruncMask
, DemandedElts
, TLO
.DAG
, Depth
+ 1))
1740 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, NewSrc
));
1742 // If the input is only used by this truncate, see if we can shrink it based
1743 // on the known demanded bits.
1744 if (Src
.getNode()->hasOneUse()) {
1745 switch (Src
.getOpcode()) {
1749 // Shrink SRL by a constant if none of the high bits shifted in are
1751 if (TLO
.LegalTypes() && !isTypeDesirableForOp(ISD::SRL
, VT
))
1752 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1756 auto *ShAmt
= dyn_cast
<ConstantSDNode
>(Src
.getOperand(1));
1757 if (!ShAmt
|| ShAmt
->getAPIntValue().uge(BitWidth
))
1760 SDValue Shift
= Src
.getOperand(1);
1761 uint64_t ShVal
= ShAmt
->getZExtValue();
1763 if (TLO
.LegalTypes())
1764 Shift
= TLO
.DAG
.getConstant(ShVal
, dl
, getShiftAmountTy(VT
, DL
));
1767 APInt::getHighBitsSet(OperandBitWidth
, OperandBitWidth
- BitWidth
);
1768 HighBits
.lshrInPlace(ShVal
);
1769 HighBits
= HighBits
.trunc(BitWidth
);
1771 if (!(HighBits
& DemandedBits
)) {
1772 // None of the shifted in bits are needed. Add a truncate of the
1773 // shift input, then shift it.
1775 TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Src
.getOperand(0));
1776 return TLO
.CombineTo(
1777 Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, NewTrunc
, Shift
));
1783 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1786 case ISD::AssertZext
: {
1787 // AssertZext demands all of the high bits, plus any of the low bits
1788 // demanded by its users.
1789 EVT ZVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1790 APInt InMask
= APInt::getLowBitsSet(BitWidth
, ZVT
.getSizeInBits());
1791 if (SimplifyDemandedBits(Op
.getOperand(0), ~InMask
| DemandedBits
, Known
,
1794 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1796 Known
.Zero
|= ~InMask
;
1799 case ISD::EXTRACT_VECTOR_ELT
: {
1800 SDValue Src
= Op
.getOperand(0);
1801 SDValue Idx
= Op
.getOperand(1);
1802 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
1803 unsigned EltBitWidth
= Src
.getScalarValueSizeInBits();
1805 // Demand the bits from every vector element without a constant index.
1806 APInt DemandedSrcElts
= APInt::getAllOnesValue(NumSrcElts
);
1807 if (auto *CIdx
= dyn_cast
<ConstantSDNode
>(Idx
))
1808 if (CIdx
->getAPIntValue().ult(NumSrcElts
))
1809 DemandedSrcElts
= APInt::getOneBitSet(NumSrcElts
, CIdx
->getZExtValue());
1811 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1812 // anything about the extended bits.
1813 APInt DemandedSrcBits
= DemandedBits
;
1814 if (BitWidth
> EltBitWidth
)
1815 DemandedSrcBits
= DemandedSrcBits
.trunc(EltBitWidth
);
1817 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
, Known2
, TLO
,
1822 if (BitWidth
> EltBitWidth
)
1823 Known
= Known
.zext(BitWidth
, false /* => any extend */);
1826 case ISD::BITCAST
: {
1827 SDValue Src
= Op
.getOperand(0);
1828 EVT SrcVT
= Src
.getValueType();
1829 unsigned NumSrcEltBits
= SrcVT
.getScalarSizeInBits();
1831 // If this is an FP->Int bitcast and if the sign bit is the only
1832 // thing demanded, turn this into a FGETSIGN.
1833 if (!TLO
.LegalOperations() && !VT
.isVector() && !SrcVT
.isVector() &&
1834 DemandedBits
== APInt::getSignMask(Op
.getValueSizeInBits()) &&
1835 SrcVT
.isFloatingPoint()) {
1836 bool OpVTLegal
= isOperationLegalOrCustom(ISD::FGETSIGN
, VT
);
1837 bool i32Legal
= isOperationLegalOrCustom(ISD::FGETSIGN
, MVT::i32
);
1838 if ((OpVTLegal
|| i32Legal
) && VT
.isSimple() && SrcVT
!= MVT::f16
&&
1839 SrcVT
!= MVT::f128
) {
1840 // Cannot eliminate/lower SHL for f128 yet.
1841 EVT Ty
= OpVTLegal
? VT
: MVT::i32
;
1842 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1843 // place. We expect the SHL to be eliminated by other optimizations.
1844 SDValue Sign
= TLO
.DAG
.getNode(ISD::FGETSIGN
, dl
, Ty
, Src
);
1845 unsigned OpVTSizeInBits
= Op
.getValueSizeInBits();
1846 if (!OpVTLegal
&& OpVTSizeInBits
> 32)
1847 Sign
= TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Sign
);
1848 unsigned ShVal
= Op
.getValueSizeInBits() - 1;
1849 SDValue ShAmt
= TLO
.DAG
.getConstant(ShVal
, dl
, VT
);
1850 return TLO
.CombineTo(Op
,
1851 TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, Sign
, ShAmt
));
1855 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1856 // Demand the elt/bit if any of the original elts/bits are demanded.
1857 // TODO - bigendian once we have test coverage.
1858 if (SrcVT
.isVector() && (BitWidth
% NumSrcEltBits
) == 0 &&
1859 TLO
.DAG
.getDataLayout().isLittleEndian()) {
1860 unsigned Scale
= BitWidth
/ NumSrcEltBits
;
1861 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
1862 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
1863 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
1864 for (unsigned i
= 0; i
!= Scale
; ++i
) {
1865 unsigned Offset
= i
* NumSrcEltBits
;
1866 APInt Sub
= DemandedBits
.extractBits(NumSrcEltBits
, Offset
);
1867 if (!Sub
.isNullValue()) {
1868 DemandedSrcBits
|= Sub
;
1869 for (unsigned j
= 0; j
!= NumElts
; ++j
)
1870 if (DemandedElts
[j
])
1871 DemandedSrcElts
.setBit((j
* Scale
) + i
);
1875 APInt KnownSrcUndef
, KnownSrcZero
;
1876 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, KnownSrcUndef
,
1877 KnownSrcZero
, TLO
, Depth
+ 1))
1880 KnownBits KnownSrcBits
;
1881 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
,
1882 KnownSrcBits
, TLO
, Depth
+ 1))
1884 } else if ((NumSrcEltBits
% BitWidth
) == 0 &&
1885 TLO
.DAG
.getDataLayout().isLittleEndian()) {
1886 unsigned Scale
= NumSrcEltBits
/ BitWidth
;
1887 unsigned NumSrcElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1888 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
1889 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
1890 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1891 if (DemandedElts
[i
]) {
1892 unsigned Offset
= (i
% Scale
) * BitWidth
;
1893 DemandedSrcBits
.insertBits(DemandedBits
, Offset
);
1894 DemandedSrcElts
.setBit(i
/ Scale
);
1897 if (SrcVT
.isVector()) {
1898 APInt KnownSrcUndef
, KnownSrcZero
;
1899 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, KnownSrcUndef
,
1900 KnownSrcZero
, TLO
, Depth
+ 1))
1904 KnownBits KnownSrcBits
;
1905 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
,
1906 KnownSrcBits
, TLO
, Depth
+ 1))
1910 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
1911 // recursive call where Known may be useful to the caller.
1913 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
1921 // Add, Sub, and Mul don't demand any bits in positions beyond that
1922 // of the highest bit demanded of them.
1923 SDValue Op0
= Op
.getOperand(0), Op1
= Op
.getOperand(1);
1924 SDNodeFlags Flags
= Op
.getNode()->getFlags();
1925 unsigned DemandedBitsLZ
= DemandedBits
.countLeadingZeros();
1926 APInt LoMask
= APInt::getLowBitsSet(BitWidth
, BitWidth
- DemandedBitsLZ
);
1927 if (SimplifyDemandedBits(Op0
, LoMask
, DemandedElts
, Known2
, TLO
,
1929 SimplifyDemandedBits(Op1
, LoMask
, DemandedElts
, Known2
, TLO
,
1931 // See if the operation should be performed at a smaller bit width.
1932 ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
)) {
1933 if (Flags
.hasNoSignedWrap() || Flags
.hasNoUnsignedWrap()) {
1934 // Disable the nsw and nuw flags. We can no longer guarantee that we
1935 // won't wrap after simplification.
1936 Flags
.setNoSignedWrap(false);
1937 Flags
.setNoUnsignedWrap(false);
1939 TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
, Flags
);
1940 return TLO
.CombineTo(Op
, NewOp
);
1945 // Attempt to avoid multi-use ops if we don't need anything from them.
1946 if (!LoMask
.isAllOnesValue() || !DemandedElts
.isAllOnesValue()) {
1947 SDValue DemandedOp0
= SimplifyMultipleUseDemandedBits(
1948 Op0
, LoMask
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1949 SDValue DemandedOp1
= SimplifyMultipleUseDemandedBits(
1950 Op1
, LoMask
, DemandedElts
, TLO
.DAG
, Depth
+ 1);
1951 if (DemandedOp0
|| DemandedOp1
) {
1952 Flags
.setNoSignedWrap(false);
1953 Flags
.setNoUnsignedWrap(false);
1954 Op0
= DemandedOp0
? DemandedOp0
: Op0
;
1955 Op1
= DemandedOp1
? DemandedOp1
: Op1
;
1957 TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
, Flags
);
1958 return TLO
.CombineTo(Op
, NewOp
);
1962 // If we have a constant operand, we may be able to turn it into -1 if we
1963 // do not demand the high bits. This can make the constant smaller to
1964 // encode, allow more general folding, or match specialized instruction
1965 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1966 // is probably not useful (and could be detrimental).
1967 ConstantSDNode
*C
= isConstOrConstSplat(Op1
);
1968 APInt HighMask
= APInt::getHighBitsSet(BitWidth
, DemandedBitsLZ
);
1969 if (C
&& !C
->isAllOnesValue() && !C
->isOne() &&
1970 (C
->getAPIntValue() | HighMask
).isAllOnesValue()) {
1971 SDValue Neg1
= TLO
.DAG
.getAllOnesConstant(dl
, VT
);
1972 // Disable the nsw and nuw flags. We can no longer guarantee that we
1973 // won't wrap after simplification.
1974 Flags
.setNoSignedWrap(false);
1975 Flags
.setNoUnsignedWrap(false);
1976 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Neg1
, Flags
);
1977 return TLO
.CombineTo(Op
, NewOp
);
1983 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
1984 if (SimplifyDemandedBitsForTargetNode(Op
, DemandedBits
, DemandedElts
,
1990 // Just use computeKnownBits to compute output bits.
1991 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
1995 // If we know the value of all of the demanded bits, return this as a
1997 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known
.One
)) {
1998 // Avoid folding to a constant if any OpaqueConstant is involved.
1999 const SDNode
*N
= Op
.getNode();
2000 for (SDNodeIterator I
= SDNodeIterator::begin(N
),
2001 E
= SDNodeIterator::end(N
);
2004 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
2008 // TODO: Handle float bits as well.
2010 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(Known
.One
, dl
, VT
));
2016 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op
,
2017 const APInt
&DemandedElts
,
2020 DAGCombinerInfo
&DCI
) const {
2021 SelectionDAG
&DAG
= DCI
.DAG
;
2022 TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
2023 !DCI
.isBeforeLegalizeOps());
2026 SimplifyDemandedVectorElts(Op
, DemandedElts
, KnownUndef
, KnownZero
, TLO
);
2028 DCI
.AddToWorklist(Op
.getNode());
2029 DCI
.CommitTargetLoweringOpt(TLO
);
2035 /// Given a vector binary operation and known undefined elements for each input
2036 /// operand, compute whether each element of the output is undefined.
2037 static APInt
getKnownUndefForVectorBinop(SDValue BO
, SelectionDAG
&DAG
,
2038 const APInt
&UndefOp0
,
2039 const APInt
&UndefOp1
) {
2040 EVT VT
= BO
.getValueType();
2041 assert(DAG
.getTargetLoweringInfo().isBinOp(BO
.getOpcode()) && VT
.isVector() &&
2042 "Vector binop only");
2044 EVT EltVT
= VT
.getVectorElementType();
2045 unsigned NumElts
= VT
.getVectorNumElements();
2046 assert(UndefOp0
.getBitWidth() == NumElts
&&
2047 UndefOp1
.getBitWidth() == NumElts
&& "Bad type for undef analysis");
2049 auto getUndefOrConstantElt
= [&](SDValue V
, unsigned Index
,
2050 const APInt
&UndefVals
) {
2051 if (UndefVals
[Index
])
2052 return DAG
.getUNDEF(EltVT
);
2054 if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(V
)) {
2055 // Try hard to make sure that the getNode() call is not creating temporary
2056 // nodes. Ignore opaque integers because they do not constant fold.
2057 SDValue Elt
= BV
->getOperand(Index
);
2058 auto *C
= dyn_cast
<ConstantSDNode
>(Elt
);
2059 if (isa
<ConstantFPSDNode
>(Elt
) || Elt
.isUndef() || (C
&& !C
->isOpaque()))
2066 APInt KnownUndef
= APInt::getNullValue(NumElts
);
2067 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2068 // If both inputs for this element are either constant or undef and match
2069 // the element type, compute the constant/undef result for this element of
2071 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2072 // not handle FP constants. The code within getNode() should be refactored
2073 // to avoid the danger of creating a bogus temporary node here.
2074 SDValue C0
= getUndefOrConstantElt(BO
.getOperand(0), i
, UndefOp0
);
2075 SDValue C1
= getUndefOrConstantElt(BO
.getOperand(1), i
, UndefOp1
);
2076 if (C0
&& C1
&& C0
.getValueType() == EltVT
&& C1
.getValueType() == EltVT
)
2077 if (DAG
.getNode(BO
.getOpcode(), SDLoc(BO
), EltVT
, C0
, C1
).isUndef())
2078 KnownUndef
.setBit(i
);
2083 bool TargetLowering::SimplifyDemandedVectorElts(
2084 SDValue Op
, const APInt
&OriginalDemandedElts
, APInt
&KnownUndef
,
2085 APInt
&KnownZero
, TargetLoweringOpt
&TLO
, unsigned Depth
,
2086 bool AssumeSingleUse
) const {
2087 EVT VT
= Op
.getValueType();
2088 APInt DemandedElts
= OriginalDemandedElts
;
2089 unsigned NumElts
= DemandedElts
.getBitWidth();
2090 assert(VT
.isVector() && "Expected vector op");
2091 assert(VT
.getVectorNumElements() == NumElts
&&
2092 "Mask size mismatches value type element count!");
2094 KnownUndef
= KnownZero
= APInt::getNullValue(NumElts
);
2098 KnownUndef
.setAllBits();
2102 // If Op has other users, assume that all elements are needed.
2103 if (!Op
.getNode()->hasOneUse() && !AssumeSingleUse
)
2104 DemandedElts
.setAllBits();
2106 // Not demanding any elements from Op.
2107 if (DemandedElts
== 0) {
2108 KnownUndef
.setAllBits();
2109 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
2112 // Limit search depth.
2113 if (Depth
>= SelectionDAG::MaxRecursionDepth
)
2117 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
2119 switch (Op
.getOpcode()) {
2120 case ISD::SCALAR_TO_VECTOR
: {
2121 if (!DemandedElts
[0]) {
2122 KnownUndef
.setAllBits();
2123 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
2125 KnownUndef
.setHighBits(NumElts
- 1);
2128 case ISD::BITCAST
: {
2129 SDValue Src
= Op
.getOperand(0);
2130 EVT SrcVT
= Src
.getValueType();
2132 // We only handle vectors here.
2133 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2134 if (!SrcVT
.isVector())
2137 // Fast handling of 'identity' bitcasts.
2138 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
2139 if (NumSrcElts
== NumElts
)
2140 return SimplifyDemandedVectorElts(Src
, DemandedElts
, KnownUndef
,
2141 KnownZero
, TLO
, Depth
+ 1);
2143 APInt SrcZero
, SrcUndef
;
2144 APInt SrcDemandedElts
= APInt::getNullValue(NumSrcElts
);
2146 // Bitcast from 'large element' src vector to 'small element' vector, we
2147 // must demand a source element if any DemandedElt maps to it.
2148 if ((NumElts
% NumSrcElts
) == 0) {
2149 unsigned Scale
= NumElts
/ NumSrcElts
;
2150 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2151 if (DemandedElts
[i
])
2152 SrcDemandedElts
.setBit(i
/ Scale
);
2154 if (SimplifyDemandedVectorElts(Src
, SrcDemandedElts
, SrcUndef
, SrcZero
,
2158 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2159 // of the large element.
2160 // TODO - bigendian once we have test coverage.
2161 if (TLO
.DAG
.getDataLayout().isLittleEndian()) {
2162 unsigned SrcEltSizeInBits
= SrcVT
.getScalarSizeInBits();
2163 APInt SrcDemandedBits
= APInt::getNullValue(SrcEltSizeInBits
);
2164 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2165 if (DemandedElts
[i
]) {
2166 unsigned Ofs
= (i
% Scale
) * EltSizeInBits
;
2167 SrcDemandedBits
.setBits(Ofs
, Ofs
+ EltSizeInBits
);
2171 if (SimplifyDemandedBits(Src
, SrcDemandedBits
, Known
, TLO
, Depth
+ 1))
2175 // If the src element is zero/undef then all the output elements will be -
2176 // only demanded elements are guaranteed to be correct.
2177 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
) {
2178 if (SrcDemandedElts
[i
]) {
2180 KnownZero
.setBits(i
* Scale
, (i
+ 1) * Scale
);
2182 KnownUndef
.setBits(i
* Scale
, (i
+ 1) * Scale
);
2187 // Bitcast from 'small element' src vector to 'large element' vector, we
2188 // demand all smaller source elements covered by the larger demanded element
2190 if ((NumSrcElts
% NumElts
) == 0) {
2191 unsigned Scale
= NumSrcElts
/ NumElts
;
2192 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2193 if (DemandedElts
[i
])
2194 SrcDemandedElts
.setBits(i
* Scale
, (i
+ 1) * Scale
);
2196 if (SimplifyDemandedVectorElts(Src
, SrcDemandedElts
, SrcUndef
, SrcZero
,
2200 // If all the src elements covering an output element are zero/undef, then
2201 // the output element will be as well, assuming it was demanded.
2202 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2203 if (DemandedElts
[i
]) {
2204 if (SrcZero
.extractBits(Scale
, i
* Scale
).isAllOnesValue())
2205 KnownZero
.setBit(i
);
2206 if (SrcUndef
.extractBits(Scale
, i
* Scale
).isAllOnesValue())
2207 KnownUndef
.setBit(i
);
2213 case ISD::BUILD_VECTOR
: {
2214 // Check all elements and simplify any unused elements with UNDEF.
2215 if (!DemandedElts
.isAllOnesValue()) {
2216 // Don't simplify BROADCASTS.
2217 if (llvm::any_of(Op
->op_values(),
2218 [&](SDValue Elt
) { return Op
.getOperand(0) != Elt
; })) {
2219 SmallVector
<SDValue
, 32> Ops(Op
->op_begin(), Op
->op_end());
2220 bool Updated
= false;
2221 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2222 if (!DemandedElts
[i
] && !Ops
[i
].isUndef()) {
2223 Ops
[i
] = TLO
.DAG
.getUNDEF(Ops
[0].getValueType());
2224 KnownUndef
.setBit(i
);
2229 return TLO
.CombineTo(Op
, TLO
.DAG
.getBuildVector(VT
, DL
, Ops
));
2232 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2233 SDValue SrcOp
= Op
.getOperand(i
);
2234 if (SrcOp
.isUndef()) {
2235 KnownUndef
.setBit(i
);
2236 } else if (EltSizeInBits
== SrcOp
.getScalarValueSizeInBits() &&
2237 (isNullConstant(SrcOp
) || isNullFPConstant(SrcOp
))) {
2238 KnownZero
.setBit(i
);
2243 case ISD::CONCAT_VECTORS
: {
2244 EVT SubVT
= Op
.getOperand(0).getValueType();
2245 unsigned NumSubVecs
= Op
.getNumOperands();
2246 unsigned NumSubElts
= SubVT
.getVectorNumElements();
2247 for (unsigned i
= 0; i
!= NumSubVecs
; ++i
) {
2248 SDValue SubOp
= Op
.getOperand(i
);
2249 APInt SubElts
= DemandedElts
.extractBits(NumSubElts
, i
* NumSubElts
);
2250 APInt SubUndef
, SubZero
;
2251 if (SimplifyDemandedVectorElts(SubOp
, SubElts
, SubUndef
, SubZero
, TLO
,
2254 KnownUndef
.insertBits(SubUndef
, i
* NumSubElts
);
2255 KnownZero
.insertBits(SubZero
, i
* NumSubElts
);
2259 case ISD::INSERT_SUBVECTOR
: {
2260 if (!isa
<ConstantSDNode
>(Op
.getOperand(2)))
2262 SDValue Base
= Op
.getOperand(0);
2263 SDValue Sub
= Op
.getOperand(1);
2264 EVT SubVT
= Sub
.getValueType();
2265 unsigned NumSubElts
= SubVT
.getVectorNumElements();
2266 const APInt
&Idx
= Op
.getConstantOperandAPInt(2);
2267 if (Idx
.ugt(NumElts
- NumSubElts
))
2269 unsigned SubIdx
= Idx
.getZExtValue();
2270 APInt SubElts
= DemandedElts
.extractBits(NumSubElts
, SubIdx
);
2271 APInt SubUndef
, SubZero
;
2272 if (SimplifyDemandedVectorElts(Sub
, SubElts
, SubUndef
, SubZero
, TLO
,
2275 APInt BaseElts
= DemandedElts
;
2276 BaseElts
.insertBits(APInt::getNullValue(NumSubElts
), SubIdx
);
2278 // If none of the base operand elements are demanded, replace it with undef.
2279 if (!BaseElts
&& !Base
.isUndef())
2280 return TLO
.CombineTo(Op
,
2281 TLO
.DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
,
2282 TLO
.DAG
.getUNDEF(VT
),
2286 if (SimplifyDemandedVectorElts(Base
, BaseElts
, KnownUndef
, KnownZero
, TLO
,
2289 KnownUndef
.insertBits(SubUndef
, SubIdx
);
2290 KnownZero
.insertBits(SubZero
, SubIdx
);
2293 case ISD::EXTRACT_SUBVECTOR
: {
2294 SDValue Src
= Op
.getOperand(0);
2295 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2296 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2297 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
2298 // Offset the demanded elts by the subvector index.
2299 uint64_t Idx
= SubIdx
->getZExtValue();
2300 APInt SrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
2301 APInt SrcUndef
, SrcZero
;
2302 if (SimplifyDemandedVectorElts(Src
, SrcElts
, SrcUndef
, SrcZero
, TLO
,
2305 KnownUndef
= SrcUndef
.extractBits(NumElts
, Idx
);
2306 KnownZero
= SrcZero
.extractBits(NumElts
, Idx
);
2310 case ISD::INSERT_VECTOR_ELT
: {
2311 SDValue Vec
= Op
.getOperand(0);
2312 SDValue Scl
= Op
.getOperand(1);
2313 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
2315 // For a legal, constant insertion index, if we don't need this insertion
2316 // then strip it, else remove it from the demanded elts.
2317 if (CIdx
&& CIdx
->getAPIntValue().ult(NumElts
)) {
2318 unsigned Idx
= CIdx
->getZExtValue();
2319 if (!DemandedElts
[Idx
])
2320 return TLO
.CombineTo(Op
, Vec
);
2322 APInt
DemandedVecElts(DemandedElts
);
2323 DemandedVecElts
.clearBit(Idx
);
2324 if (SimplifyDemandedVectorElts(Vec
, DemandedVecElts
, KnownUndef
,
2325 KnownZero
, TLO
, Depth
+ 1))
2328 KnownUndef
.clearBit(Idx
);
2330 KnownUndef
.setBit(Idx
);
2332 KnownZero
.clearBit(Idx
);
2333 if (isNullConstant(Scl
) || isNullFPConstant(Scl
))
2334 KnownZero
.setBit(Idx
);
2338 APInt VecUndef
, VecZero
;
2339 if (SimplifyDemandedVectorElts(Vec
, DemandedElts
, VecUndef
, VecZero
, TLO
,
2342 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2345 case ISD::VSELECT
: {
2346 // Try to transform the select condition based on the current demanded
2348 // TODO: If a condition element is undef, we can choose from one arm of the
2349 // select (and if one arm is undef, then we can propagate that to the
2351 // TODO - add support for constant vselect masks (see IR version of this).
2352 APInt UnusedUndef
, UnusedZero
;
2353 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UnusedUndef
,
2354 UnusedZero
, TLO
, Depth
+ 1))
2357 // See if we can simplify either vselect operand.
2358 APInt
DemandedLHS(DemandedElts
);
2359 APInt
DemandedRHS(DemandedElts
);
2360 APInt UndefLHS
, ZeroLHS
;
2361 APInt UndefRHS
, ZeroRHS
;
2362 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedLHS
, UndefLHS
,
2363 ZeroLHS
, TLO
, Depth
+ 1))
2365 if (SimplifyDemandedVectorElts(Op
.getOperand(2), DemandedRHS
, UndefRHS
,
2366 ZeroRHS
, TLO
, Depth
+ 1))
2369 KnownUndef
= UndefLHS
& UndefRHS
;
2370 KnownZero
= ZeroLHS
& ZeroRHS
;
2373 case ISD::VECTOR_SHUFFLE
: {
2374 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
2376 // Collect demanded elements from shuffle operands..
2377 APInt
DemandedLHS(NumElts
, 0);
2378 APInt
DemandedRHS(NumElts
, 0);
2379 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2380 int M
= ShuffleMask
[i
];
2381 if (M
< 0 || !DemandedElts
[i
])
2383 assert(0 <= M
&& M
< (int)(2 * NumElts
) && "Shuffle index out of range");
2384 if (M
< (int)NumElts
)
2385 DemandedLHS
.setBit(M
);
2387 DemandedRHS
.setBit(M
- NumElts
);
2390 // See if we can simplify either shuffle operand.
2391 APInt UndefLHS
, ZeroLHS
;
2392 APInt UndefRHS
, ZeroRHS
;
2393 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedLHS
, UndefLHS
,
2394 ZeroLHS
, TLO
, Depth
+ 1))
2396 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedRHS
, UndefRHS
,
2397 ZeroRHS
, TLO
, Depth
+ 1))
2400 // Simplify mask using undef elements from LHS/RHS.
2401 bool Updated
= false;
2402 bool IdentityLHS
= true, IdentityRHS
= true;
2403 SmallVector
<int, 32> NewMask(ShuffleMask
.begin(), ShuffleMask
.end());
2404 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2405 int &M
= NewMask
[i
];
2408 if (!DemandedElts
[i
] || (M
< (int)NumElts
&& UndefLHS
[M
]) ||
2409 (M
>= (int)NumElts
&& UndefRHS
[M
- NumElts
])) {
2413 IdentityLHS
&= (M
< 0) || (M
== (int)i
);
2414 IdentityRHS
&= (M
< 0) || ((M
- NumElts
) == i
);
2417 // Update legal shuffle masks based on demanded elements if it won't reduce
2418 // to Identity which can cause premature removal of the shuffle mask.
2419 if (Updated
&& !IdentityLHS
&& !IdentityRHS
&& !TLO
.LegalOps
) {
2420 SDValue LegalShuffle
=
2421 buildLegalVectorShuffle(VT
, DL
, Op
.getOperand(0), Op
.getOperand(1),
2424 return TLO
.CombineTo(Op
, LegalShuffle
);
2427 // Propagate undef/zero elements from LHS/RHS.
2428 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2429 int M
= ShuffleMask
[i
];
2431 KnownUndef
.setBit(i
);
2432 } else if (M
< (int)NumElts
) {
2434 KnownUndef
.setBit(i
);
2436 KnownZero
.setBit(i
);
2438 if (UndefRHS
[M
- NumElts
])
2439 KnownUndef
.setBit(i
);
2440 if (ZeroRHS
[M
- NumElts
])
2441 KnownZero
.setBit(i
);
2446 case ISD::ANY_EXTEND_VECTOR_INREG
:
2447 case ISD::SIGN_EXTEND_VECTOR_INREG
:
2448 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
2449 APInt SrcUndef
, SrcZero
;
2450 SDValue Src
= Op
.getOperand(0);
2451 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2452 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
);
2453 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, SrcUndef
, SrcZero
, TLO
,
2456 KnownZero
= SrcZero
.zextOrTrunc(NumElts
);
2457 KnownUndef
= SrcUndef
.zextOrTrunc(NumElts
);
2459 if (Op
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
&&
2460 Op
.getValueSizeInBits() == Src
.getValueSizeInBits() &&
2461 DemandedSrcElts
== 1 && TLO
.DAG
.getDataLayout().isLittleEndian()) {
2462 // aext - if we just need the bottom element then we can bitcast.
2463 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
2466 if (Op
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) {
2467 // zext(undef) upper bits are guaranteed to be zero.
2468 if (DemandedElts
.isSubsetOf(KnownUndef
))
2469 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, SDLoc(Op
), VT
));
2470 KnownUndef
.clearAllBits();
2475 // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2476 // MAX, saturated math, etc.
2486 APInt UndefRHS
, ZeroRHS
;
2487 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, UndefRHS
,
2488 ZeroRHS
, TLO
, Depth
+ 1))
2490 APInt UndefLHS
, ZeroLHS
;
2491 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UndefLHS
,
2492 ZeroLHS
, TLO
, Depth
+ 1))
2495 KnownZero
= ZeroLHS
& ZeroRHS
;
2496 KnownUndef
= getKnownUndefForVectorBinop(Op
, TLO
.DAG
, UndefLHS
, UndefRHS
);
2504 APInt UndefRHS
, ZeroRHS
;
2505 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, UndefRHS
,
2506 ZeroRHS
, TLO
, Depth
+ 1))
2508 APInt UndefLHS
, ZeroLHS
;
2509 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UndefLHS
,
2510 ZeroLHS
, TLO
, Depth
+ 1))
2513 KnownZero
= ZeroLHS
;
2514 KnownUndef
= UndefLHS
& UndefRHS
; // TODO: use getKnownUndefForVectorBinop?
2519 APInt SrcUndef
, SrcZero
;
2520 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, SrcUndef
,
2521 SrcZero
, TLO
, Depth
+ 1))
2523 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, KnownUndef
,
2524 KnownZero
, TLO
, Depth
+ 1))
2527 // If either side has a zero element, then the result element is zero, even
2528 // if the other is an UNDEF.
2529 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2530 // and then handle 'and' nodes with the rest of the binop opcodes.
2531 KnownZero
|= SrcZero
;
2532 KnownUndef
&= SrcUndef
;
2533 KnownUndef
&= ~KnownZero
;
2537 case ISD::SIGN_EXTEND
:
2538 case ISD::ZERO_EXTEND
:
2539 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, KnownUndef
,
2540 KnownZero
, TLO
, Depth
+ 1))
2543 if (Op
.getOpcode() == ISD::ZERO_EXTEND
) {
2544 // zext(undef) upper bits are guaranteed to be zero.
2545 if (DemandedElts
.isSubsetOf(KnownUndef
))
2546 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, SDLoc(Op
), VT
));
2547 KnownUndef
.clearAllBits();
2551 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
2552 if (SimplifyDemandedVectorEltsForTargetNode(Op
, DemandedElts
, KnownUndef
,
2553 KnownZero
, TLO
, Depth
))
2557 APInt DemandedBits
= APInt::getAllOnesValue(EltSizeInBits
);
2558 if (SimplifyDemandedBits(Op
, DemandedBits
, OriginalDemandedElts
, Known
,
2559 TLO
, Depth
, AssumeSingleUse
))
2565 assert((KnownUndef
& KnownZero
) == 0 && "Elements flagged as undef AND zero");
2567 // Constant fold all undef cases.
2568 // TODO: Handle zero cases as well.
2569 if (DemandedElts
.isSubsetOf(KnownUndef
))
2570 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
2575 /// Determine which of the bits specified in Mask are known to be either zero or
2576 /// one and return them in the Known.
2577 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
2579 const APInt
&DemandedElts
,
2580 const SelectionDAG
&DAG
,
2581 unsigned Depth
) const {
2582 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2583 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2584 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2585 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2586 "Should use MaskedValueIsZero if you don't know whether Op"
2587 " is a target node!");
2591 void TargetLowering::computeKnownBitsForTargetInstr(
2592 GISelKnownBits
&Analysis
, Register R
, KnownBits
&Known
,
2593 const APInt
&DemandedElts
, const MachineRegisterInfo
&MRI
,
2594 unsigned Depth
) const {
2598 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op
,
2600 const APInt
&DemandedElts
,
2601 const SelectionDAG
&DAG
,
2602 unsigned Depth
) const {
2603 assert(isa
<FrameIndexSDNode
>(Op
) && "expected FrameIndex");
2605 if (unsigned Align
= DAG
.InferPtrAlignment(Op
)) {
2606 // The low bits are known zero if the pointer is aligned.
2607 Known
.Zero
.setLowBits(Log2_32(Align
));
2611 /// This method can be implemented by targets that want to expose additional
2612 /// information about sign bits to the DAG Combiner.
2613 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
2615 const SelectionDAG
&,
2616 unsigned Depth
) const {
2617 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2618 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2619 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2620 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2621 "Should use ComputeNumSignBits if you don't know whether Op"
2622 " is a target node!");
2626 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2627 SDValue Op
, const APInt
&DemandedElts
, APInt
&KnownUndef
, APInt
&KnownZero
,
2628 TargetLoweringOpt
&TLO
, unsigned Depth
) const {
2629 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2630 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2631 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2632 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2633 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2634 " is a target node!");
2638 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2639 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
2640 KnownBits
&Known
, TargetLoweringOpt
&TLO
, unsigned Depth
) const {
2641 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2642 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2643 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2644 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2645 "Should use SimplifyDemandedBits if you don't know whether Op"
2646 " is a target node!");
2647 computeKnownBitsForTargetNode(Op
, Known
, DemandedElts
, TLO
.DAG
, Depth
);
2651 SDValue
TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2652 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
2653 SelectionDAG
&DAG
, unsigned Depth
) const {
2655 (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2656 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2657 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2658 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2659 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2660 " is a target node!");
2665 TargetLowering::buildLegalVectorShuffle(EVT VT
, const SDLoc
&DL
, SDValue N0
,
2666 SDValue N1
, MutableArrayRef
<int> Mask
,
2667 SelectionDAG
&DAG
) const {
2668 bool LegalMask
= isShuffleMaskLegal(Mask
, VT
);
2671 ShuffleVectorSDNode::commuteMask(Mask
);
2672 LegalMask
= isShuffleMaskLegal(Mask
, VT
);
2678 return DAG
.getVectorShuffle(VT
, DL
, N0
, N1
, Mask
);
2681 const Constant
*TargetLowering::getTargetConstantFromLoad(LoadSDNode
*) const {
2685 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
2686 const SelectionDAG
&DAG
,
2688 unsigned Depth
) const {
2689 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2690 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2691 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2692 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2693 "Should use isKnownNeverNaN if you don't know whether Op"
2694 " is a target node!");
2698 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2699 // work with truncating build vectors and vectors with elements of less than
2701 bool TargetLowering::isConstTrueVal(const SDNode
*N
) const {
2706 if (auto *CN
= dyn_cast
<ConstantSDNode
>(N
)) {
2707 CVal
= CN
->getAPIntValue();
2708 } else if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
2709 auto *CN
= BV
->getConstantSplatNode();
2713 // If this is a truncating build vector, truncate the splat value.
2714 // Otherwise, we may fail to match the expected values below.
2715 unsigned BVEltWidth
= BV
->getValueType(0).getScalarSizeInBits();
2716 CVal
= CN
->getAPIntValue();
2717 if (BVEltWidth
< CVal
.getBitWidth())
2718 CVal
= CVal
.trunc(BVEltWidth
);
2723 switch (getBooleanContents(N
->getValueType(0))) {
2724 case UndefinedBooleanContent
:
2726 case ZeroOrOneBooleanContent
:
2727 return CVal
.isOneValue();
2728 case ZeroOrNegativeOneBooleanContent
:
2729 return CVal
.isAllOnesValue();
2732 llvm_unreachable("Invalid boolean contents");
2735 bool TargetLowering::isConstFalseVal(const SDNode
*N
) const {
2739 const ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
);
2741 const BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
);
2745 // Only interested in constant splats, we don't care about undef
2746 // elements in identifying boolean constants and getConstantSplatNode
2747 // returns NULL if all ops are undef;
2748 CN
= BV
->getConstantSplatNode();
2753 if (getBooleanContents(N
->getValueType(0)) == UndefinedBooleanContent
)
2754 return !CN
->getAPIntValue()[0];
2756 return CN
->isNullValue();
2759 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode
*N
, EVT VT
,
2764 TargetLowering::BooleanContent Cnt
= getBooleanContents(VT
);
2766 case TargetLowering::ZeroOrOneBooleanContent
:
2767 // An extended value of 1 is always true, unless its original type is i1,
2768 // in which case it will be sign extended to -1.
2769 return (N
->isOne() && !SExt
) || (SExt
&& (N
->getValueType(0) != MVT::i1
));
2770 case TargetLowering::UndefinedBooleanContent
:
2771 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2772 return N
->isAllOnesValue() && SExt
;
2774 llvm_unreachable("Unexpected enumeration.");
2777 /// This helper function of SimplifySetCC tries to optimize the comparison when
2778 /// either operand of the SetCC node is a bitwise-and instruction.
2779 SDValue
TargetLowering::foldSetCCWithAnd(EVT VT
, SDValue N0
, SDValue N1
,
2780 ISD::CondCode Cond
, const SDLoc
&DL
,
2781 DAGCombinerInfo
&DCI
) const {
2782 // Match these patterns in any of their permutations:
2785 if (N1
.getOpcode() == ISD::AND
&& N0
.getOpcode() != ISD::AND
)
2788 EVT OpVT
= N0
.getValueType();
2789 if (N0
.getOpcode() != ISD::AND
|| !OpVT
.isInteger() ||
2790 (Cond
!= ISD::SETEQ
&& Cond
!= ISD::SETNE
))
2794 if (N0
.getOperand(0) == N1
) {
2795 X
= N0
.getOperand(1);
2796 Y
= N0
.getOperand(0);
2797 } else if (N0
.getOperand(1) == N1
) {
2798 X
= N0
.getOperand(0);
2799 Y
= N0
.getOperand(1);
2804 SelectionDAG
&DAG
= DCI
.DAG
;
2805 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
2806 if (DAG
.isKnownToBeAPowerOfTwo(Y
)) {
2807 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2808 // Note that where Y is variable and is known to have at most one bit set
2809 // (for example, if it is Z & 1) we cannot do this; the expressions are not
2810 // equivalent when Y == 0.
2811 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2812 if (DCI
.isBeforeLegalizeOps() ||
2813 isCondCodeLegal(Cond
, N0
.getSimpleValueType()))
2814 return DAG
.getSetCC(DL
, VT
, N0
, Zero
, Cond
);
2815 } else if (N0
.hasOneUse() && hasAndNotCompare(Y
)) {
2816 // If the target supports an 'and-not' or 'and-complement' logic operation,
2817 // try to use that to make a comparison operation more efficient.
2818 // But don't do this transform if the mask is a single bit because there are
2819 // more efficient ways to deal with that case (for example, 'bt' on x86 or
2820 // 'rlwinm' on PPC).
2822 // Bail out if the compare operand that we want to turn into a zero is
2823 // already a zero (otherwise, infinite loop).
2824 auto *YConst
= dyn_cast
<ConstantSDNode
>(Y
);
2825 if (YConst
&& YConst
->isNullValue())
2828 // Transform this into: ~X & Y == 0.
2829 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, OpVT
);
2830 SDValue NewAnd
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, NotX
, Y
);
2831 return DAG
.getSetCC(DL
, VT
, NewAnd
, Zero
, Cond
);
2837 /// There are multiple IR patterns that could be checking whether certain
2838 /// truncation of a signed number would be lossy or not. The pattern which is
2839 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2840 /// We are looking for the following pattern: (KeptBits is a constant)
2841 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2842 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2843 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
2844 /// We will unfold it into the natural trunc+sext pattern:
2845 /// ((%x << C) a>> C) dstcond %x
2846 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
2847 SDValue
TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2848 EVT SCCVT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
, DAGCombinerInfo
&DCI
,
2849 const SDLoc
&DL
) const {
2850 // We must be comparing with a constant.
2852 if (!(C1
= dyn_cast
<ConstantSDNode
>(N1
)))
2855 // N0 should be: add %x, (1 << (KeptBits-1))
2856 if (N0
->getOpcode() != ISD::ADD
)
2859 // And we must be 'add'ing a constant.
2860 ConstantSDNode
*C01
;
2861 if (!(C01
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1))))
2864 SDValue X
= N0
->getOperand(0);
2865 EVT XVT
= X
.getValueType();
2867 // Validate constants ...
2869 APInt I1
= C1
->getAPIntValue();
2871 ISD::CondCode NewCond
;
2872 if (Cond
== ISD::CondCode::SETULT
) {
2873 NewCond
= ISD::CondCode::SETEQ
;
2874 } else if (Cond
== ISD::CondCode::SETULE
) {
2875 NewCond
= ISD::CondCode::SETEQ
;
2876 // But need to 'canonicalize' the constant.
2878 } else if (Cond
== ISD::CondCode::SETUGT
) {
2879 NewCond
= ISD::CondCode::SETNE
;
2880 // But need to 'canonicalize' the constant.
2882 } else if (Cond
== ISD::CondCode::SETUGE
) {
2883 NewCond
= ISD::CondCode::SETNE
;
2887 APInt I01
= C01
->getAPIntValue();
2889 auto checkConstants
= [&I1
, &I01
]() -> bool {
2890 // Both of them must be power-of-two, and the constant from setcc is bigger.
2891 return I1
.ugt(I01
) && I1
.isPowerOf2() && I01
.isPowerOf2();
2894 if (checkConstants()) {
2895 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
2897 // What if we invert constants? (and the target predicate)
2900 NewCond
= getSetCCInverse(NewCond
, /*isInteger=*/true);
2901 if (!checkConstants())
2903 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
2906 // They are power-of-two, so which bit is set?
2907 const unsigned KeptBits
= I1
.logBase2();
2908 const unsigned KeptBitsMinusOne
= I01
.logBase2();
2911 if (KeptBits
!= (KeptBitsMinusOne
+ 1))
2913 assert(KeptBits
> 0 && KeptBits
< XVT
.getSizeInBits() && "unreachable");
2915 // We don't want to do this in every single case.
2916 SelectionDAG
&DAG
= DCI
.DAG
;
2917 if (!DAG
.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2921 const unsigned MaskedBits
= XVT
.getSizeInBits() - KeptBits
;
2922 assert(MaskedBits
> 0 && MaskedBits
< XVT
.getSizeInBits() && "unreachable");
2924 // Unfold into: ((%x << C) a>> C) cond %x
2925 // Where 'cond' will be either 'eq' or 'ne'.
2926 SDValue ShiftAmt
= DAG
.getConstant(MaskedBits
, DL
, XVT
);
2927 SDValue T0
= DAG
.getNode(ISD::SHL
, DL
, XVT
, X
, ShiftAmt
);
2928 SDValue T1
= DAG
.getNode(ISD::SRA
, DL
, XVT
, T0
, ShiftAmt
);
2929 SDValue T2
= DAG
.getSetCC(DL
, SCCVT
, T1
, X
, NewCond
);
2934 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
2935 SDValue
TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2936 EVT SCCVT
, SDValue N0
, SDValue N1C
, ISD::CondCode Cond
,
2937 DAGCombinerInfo
&DCI
, const SDLoc
&DL
) const {
2938 assert(isConstOrConstSplat(N1C
) &&
2939 isConstOrConstSplat(N1C
)->getAPIntValue().isNullValue() &&
2940 "Should be a comparison with 0.");
2941 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2942 "Valid only for [in]equality comparisons.");
2944 unsigned NewShiftOpcode
;
2947 SelectionDAG
&DAG
= DCI
.DAG
;
2948 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2950 // Look for '(C l>>/<< Y)'.
2951 auto Match
= [&NewShiftOpcode
, &X
, &C
, &Y
, &TLI
, &DAG
](SDValue V
) {
2952 // The shift should be one-use.
2955 unsigned OldShiftOpcode
= V
.getOpcode();
2956 switch (OldShiftOpcode
) {
2958 NewShiftOpcode
= ISD::SRL
;
2961 NewShiftOpcode
= ISD::SHL
;
2964 return false; // must be a logical shift.
2966 // We should be shifting a constant.
2967 // FIXME: best to use isConstantOrConstantVector().
2968 C
= V
.getOperand(0);
2969 ConstantSDNode
*CC
=
2970 isConstOrConstSplat(C
, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2973 Y
= V
.getOperand(1);
2975 ConstantSDNode
*XC
=
2976 isConstOrConstSplat(X
, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2977 return TLI
.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2978 X
, XC
, CC
, Y
, OldShiftOpcode
, NewShiftOpcode
, DAG
);
2981 // LHS of comparison should be an one-use 'and'.
2982 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
2985 X
= N0
.getOperand(0);
2986 SDValue Mask
= N0
.getOperand(1);
2988 // 'and' is commutative!
2995 EVT VT
= X
.getValueType();
2998 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2999 SDValue T0
= DAG
.getNode(NewShiftOpcode
, DL
, VT
, X
, Y
);
3000 SDValue T1
= DAG
.getNode(ISD::AND
, DL
, VT
, T0
, C
);
3001 SDValue T2
= DAG
.getSetCC(DL
, SCCVT
, T1
, N1C
, Cond
);
3005 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3006 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3007 /// handle the commuted versions of these patterns.
3008 SDValue
TargetLowering::foldSetCCWithBinOp(EVT VT
, SDValue N0
, SDValue N1
,
3009 ISD::CondCode Cond
, const SDLoc
&DL
,
3010 DAGCombinerInfo
&DCI
) const {
3011 unsigned BOpcode
= N0
.getOpcode();
3012 assert((BOpcode
== ISD::ADD
|| BOpcode
== ISD::SUB
|| BOpcode
== ISD::XOR
) &&
3013 "Unexpected binop");
3014 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) && "Unexpected condcode");
3016 // (X + Y) == X --> Y == 0
3017 // (X - Y) == X --> Y == 0
3018 // (X ^ Y) == X --> Y == 0
3019 SelectionDAG
&DAG
= DCI
.DAG
;
3020 EVT OpVT
= N0
.getValueType();
3021 SDValue X
= N0
.getOperand(0);
3022 SDValue Y
= N0
.getOperand(1);
3024 return DAG
.getSetCC(DL
, VT
, Y
, DAG
.getConstant(0, DL
, OpVT
), Cond
);
3029 // (X + Y) == Y --> X == 0
3030 // (X ^ Y) == Y --> X == 0
3031 if (BOpcode
== ISD::ADD
|| BOpcode
== ISD::XOR
)
3032 return DAG
.getSetCC(DL
, VT
, X
, DAG
.getConstant(0, DL
, OpVT
), Cond
);
3034 // The shift would not be valid if the operands are boolean (i1).
3035 if (!N0
.hasOneUse() || OpVT
.getScalarSizeInBits() == 1)
3038 // (X - Y) == Y --> X == Y << 1
3039 EVT ShiftVT
= getShiftAmountTy(OpVT
, DAG
.getDataLayout(),
3040 !DCI
.isBeforeLegalize());
3041 SDValue One
= DAG
.getConstant(1, DL
, ShiftVT
);
3042 SDValue YShl1
= DAG
.getNode(ISD::SHL
, DL
, N1
.getValueType(), Y
, One
);
3043 if (!DCI
.isCalledByLegalizer())
3044 DCI
.AddToWorklist(YShl1
.getNode());
3045 return DAG
.getSetCC(DL
, VT
, X
, YShl1
, Cond
);
3048 /// Try to simplify a setcc built with the specified operands and cc. If it is
3049 /// unable to simplify it, return a null SDValue.
3050 SDValue
TargetLowering::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
3051 ISD::CondCode Cond
, bool foldBooleans
,
3052 DAGCombinerInfo
&DCI
,
3053 const SDLoc
&dl
) const {
3054 SelectionDAG
&DAG
= DCI
.DAG
;
3055 EVT OpVT
= N0
.getValueType();
3057 // Constant fold or commute setcc.
3058 if (SDValue Fold
= DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
))
3061 // Ensure that the constant occurs on the RHS and fold constant comparisons.
3062 // TODO: Handle non-splat vector constants. All undef causes trouble.
3063 ISD::CondCode SwappedCC
= ISD::getSetCCSwappedOperands(Cond
);
3064 if (isConstOrConstSplat(N0
) &&
3065 (DCI
.isBeforeLegalizeOps() ||
3066 isCondCodeLegal(SwappedCC
, N0
.getSimpleValueType())))
3067 return DAG
.getSetCC(dl
, VT
, N1
, N0
, SwappedCC
);
3069 // If we have a subtract with the same 2 non-constant operands as this setcc
3070 // -- but in reverse order -- then try to commute the operands of this setcc
3071 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3072 // instruction on some targets.
3073 if (!isConstOrConstSplat(N0
) && !isConstOrConstSplat(N1
) &&
3074 (DCI
.isBeforeLegalizeOps() ||
3075 isCondCodeLegal(SwappedCC
, N0
.getSimpleValueType())) &&
3076 DAG
.getNodeIfExists(ISD::SUB
, DAG
.getVTList(OpVT
), { N1
, N0
} ) &&
3077 !DAG
.getNodeIfExists(ISD::SUB
, DAG
.getVTList(OpVT
), { N0
, N1
} ))
3078 return DAG
.getSetCC(dl
, VT
, N1
, N0
, SwappedCC
);
3080 if (auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
3081 const APInt
&C1
= N1C
->getAPIntValue();
3083 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3084 // equality comparison, then we're just comparing whether X itself is
3086 if (N0
.getOpcode() == ISD::SRL
&& (C1
.isNullValue() || C1
.isOneValue()) &&
3087 N0
.getOperand(0).getOpcode() == ISD::CTLZ
&&
3088 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
3089 const APInt
&ShAmt
= N0
.getConstantOperandAPInt(1);
3090 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3091 ShAmt
== Log2_32(N0
.getValueSizeInBits())) {
3092 if ((C1
== 0) == (Cond
== ISD::SETEQ
)) {
3093 // (srl (ctlz x), 5) == 0 -> X != 0
3094 // (srl (ctlz x), 5) != 1 -> X != 0
3097 // (srl (ctlz x), 5) != 0 -> X == 0
3098 // (srl (ctlz x), 5) == 1 -> X == 0
3101 SDValue Zero
= DAG
.getConstant(0, dl
, N0
.getValueType());
3102 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0).getOperand(0),
3108 // Look through truncs that don't change the value of a ctpop.
3109 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::TRUNCATE
)
3110 CTPOP
= N0
.getOperand(0);
3112 if (CTPOP
.hasOneUse() && CTPOP
.getOpcode() == ISD::CTPOP
&&
3114 N0
.getValueSizeInBits() > Log2_32_Ceil(CTPOP
.getValueSizeInBits()))) {
3115 EVT CTVT
= CTPOP
.getValueType();
3116 SDValue CTOp
= CTPOP
.getOperand(0);
3118 // (ctpop x) u< 2 -> (x & x-1) == 0
3119 // (ctpop x) u> 1 -> (x & x-1) != 0
3120 if ((Cond
== ISD::SETULT
&& C1
== 2) || (Cond
== ISD::SETUGT
&& C1
== 1)){
3121 SDValue NegOne
= DAG
.getAllOnesConstant(dl
, CTVT
);
3122 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, CTVT
, CTOp
, NegOne
);
3123 SDValue And
= DAG
.getNode(ISD::AND
, dl
, CTVT
, CTOp
, Add
);
3124 ISD::CondCode CC
= Cond
== ISD::SETULT
? ISD::SETEQ
: ISD::SETNE
;
3125 return DAG
.getSetCC(dl
, VT
, And
, DAG
.getConstant(0, dl
, CTVT
), CC
);
3128 // If ctpop is not supported, expand a power-of-2 comparison based on it.
3129 if (C1
== 1 && !isOperationLegalOrCustom(ISD::CTPOP
, CTVT
) &&
3130 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3131 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3132 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3133 SDValue Zero
= DAG
.getConstant(0, dl
, CTVT
);
3134 SDValue NegOne
= DAG
.getAllOnesConstant(dl
, CTVT
);
3135 ISD::CondCode InvCond
= ISD::getSetCCInverse(Cond
, true);
3136 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, CTVT
, CTOp
, NegOne
);
3137 SDValue And
= DAG
.getNode(ISD::AND
, dl
, CTVT
, CTOp
, Add
);
3138 SDValue LHS
= DAG
.getSetCC(dl
, VT
, CTOp
, Zero
, InvCond
);
3139 SDValue RHS
= DAG
.getSetCC(dl
, VT
, And
, Zero
, Cond
);
3140 unsigned LogicOpcode
= Cond
== ISD::SETEQ
? ISD::AND
: ISD::OR
;
3141 return DAG
.getNode(LogicOpcode
, dl
, VT
, LHS
, RHS
);
3145 // (zext x) == C --> x == (trunc C)
3146 // (sext x) == C --> x == (trunc C)
3147 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3148 DCI
.isBeforeLegalize() && N0
->hasOneUse()) {
3149 unsigned MinBits
= N0
.getValueSizeInBits();
3151 bool Signed
= false;
3152 if (N0
->getOpcode() == ISD::ZERO_EXTEND
) {
3154 MinBits
= N0
->getOperand(0).getValueSizeInBits();
3155 PreExt
= N0
->getOperand(0);
3156 } else if (N0
->getOpcode() == ISD::AND
) {
3157 // DAGCombine turns costly ZExts into ANDs
3158 if (auto *C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1)))
3159 if ((C
->getAPIntValue()+1).isPowerOf2()) {
3160 MinBits
= C
->getAPIntValue().countTrailingOnes();
3161 PreExt
= N0
->getOperand(0);
3163 } else if (N0
->getOpcode() == ISD::SIGN_EXTEND
) {
3165 MinBits
= N0
->getOperand(0).getValueSizeInBits();
3166 PreExt
= N0
->getOperand(0);
3168 } else if (auto *LN0
= dyn_cast
<LoadSDNode
>(N0
)) {
3169 // ZEXTLOAD / SEXTLOAD
3170 if (LN0
->getExtensionType() == ISD::ZEXTLOAD
) {
3171 MinBits
= LN0
->getMemoryVT().getSizeInBits();
3173 } else if (LN0
->getExtensionType() == ISD::SEXTLOAD
) {
3175 MinBits
= LN0
->getMemoryVT().getSizeInBits();
3180 // Figure out how many bits we need to preserve this constant.
3181 unsigned ReqdBits
= Signed
?
3182 C1
.getBitWidth() - C1
.getNumSignBits() + 1 :
3185 // Make sure we're not losing bits from the constant.
3187 MinBits
< C1
.getBitWidth() &&
3188 MinBits
>= ReqdBits
) {
3189 EVT MinVT
= EVT::getIntegerVT(*DAG
.getContext(), MinBits
);
3190 if (isTypeDesirableForOp(ISD::SETCC
, MinVT
)) {
3191 // Will get folded away.
3192 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, dl
, MinVT
, PreExt
);
3193 if (MinBits
== 1 && C1
== 1)
3194 // Invert the condition.
3195 return DAG
.getSetCC(dl
, VT
, Trunc
, DAG
.getConstant(0, dl
, MVT::i1
),
3196 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3197 SDValue C
= DAG
.getConstant(C1
.trunc(MinBits
), dl
, MinVT
);
3198 return DAG
.getSetCC(dl
, VT
, Trunc
, C
, Cond
);
3201 // If truncating the setcc operands is not desirable, we can still
3202 // simplify the expression in some cases:
3203 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3204 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3205 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3206 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3207 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3208 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3209 SDValue TopSetCC
= N0
->getOperand(0);
3210 unsigned N0Opc
= N0
->getOpcode();
3211 bool SExt
= (N0Opc
== ISD::SIGN_EXTEND
);
3212 if (TopSetCC
.getValueType() == MVT::i1
&& VT
== MVT::i1
&&
3213 TopSetCC
.getOpcode() == ISD::SETCC
&&
3214 (N0Opc
== ISD::ZERO_EXTEND
|| N0Opc
== ISD::SIGN_EXTEND
) &&
3215 (isConstFalseVal(N1C
) ||
3216 isExtendedTrueVal(N1C
, N0
->getValueType(0), SExt
))) {
3218 bool Inverse
= (N1C
->isNullValue() && Cond
== ISD::SETEQ
) ||
3219 (!N1C
->isNullValue() && Cond
== ISD::SETNE
);
3224 ISD::CondCode InvCond
= ISD::getSetCCInverse(
3225 cast
<CondCodeSDNode
>(TopSetCC
.getOperand(2))->get(),
3226 TopSetCC
.getOperand(0).getValueType().isInteger());
3227 return DAG
.getSetCC(dl
, VT
, TopSetCC
.getOperand(0),
3228 TopSetCC
.getOperand(1),
3234 // If the LHS is '(and load, const)', the RHS is 0, the test is for
3235 // equality or unsigned, and all 1 bits of the const are in the same
3236 // partial word, see if we can shorten the load.
3237 if (DCI
.isBeforeLegalize() &&
3238 !ISD::isSignedIntSetCC(Cond
) &&
3239 N0
.getOpcode() == ISD::AND
&& C1
== 0 &&
3240 N0
.getNode()->hasOneUse() &&
3241 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
3242 N0
.getOperand(0).getNode()->hasOneUse() &&
3243 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
3244 LoadSDNode
*Lod
= cast
<LoadSDNode
>(N0
.getOperand(0));
3246 unsigned bestWidth
= 0, bestOffset
= 0;
3247 if (Lod
->isSimple() && Lod
->isUnindexed()) {
3248 unsigned origWidth
= N0
.getValueSizeInBits();
3249 unsigned maskWidth
= origWidth
;
3250 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3251 // 8 bits, but have to be careful...
3252 if (Lod
->getExtensionType() != ISD::NON_EXTLOAD
)
3253 origWidth
= Lod
->getMemoryVT().getSizeInBits();
3254 const APInt
&Mask
= N0
.getConstantOperandAPInt(1);
3255 for (unsigned width
= origWidth
/ 2; width
>=8; width
/= 2) {
3256 APInt newMask
= APInt::getLowBitsSet(maskWidth
, width
);
3257 for (unsigned offset
=0; offset
<origWidth
/width
; offset
++) {
3258 if (Mask
.isSubsetOf(newMask
)) {
3259 if (DAG
.getDataLayout().isLittleEndian())
3260 bestOffset
= (uint64_t)offset
* (width
/8);
3262 bestOffset
= (origWidth
/width
- offset
- 1) * (width
/8);
3263 bestMask
= Mask
.lshr(offset
* (width
/8) * 8);
3272 EVT newVT
= EVT::getIntegerVT(*DAG
.getContext(), bestWidth
);
3273 if (newVT
.isRound() &&
3274 shouldReduceLoadWidth(Lod
, ISD::NON_EXTLOAD
, newVT
)) {
3275 EVT PtrType
= Lod
->getOperand(1).getValueType();
3276 SDValue Ptr
= Lod
->getBasePtr();
3277 if (bestOffset
!= 0)
3278 Ptr
= DAG
.getNode(ISD::ADD
, dl
, PtrType
, Lod
->getBasePtr(),
3279 DAG
.getConstant(bestOffset
, dl
, PtrType
));
3280 unsigned NewAlign
= MinAlign(Lod
->getAlignment(), bestOffset
);
3281 SDValue NewLoad
= DAG
.getLoad(
3282 newVT
, dl
, Lod
->getChain(), Ptr
,
3283 Lod
->getPointerInfo().getWithOffset(bestOffset
), NewAlign
);
3284 return DAG
.getSetCC(dl
, VT
,
3285 DAG
.getNode(ISD::AND
, dl
, newVT
, NewLoad
,
3286 DAG
.getConstant(bestMask
.trunc(bestWidth
),
3288 DAG
.getConstant(0LL, dl
, newVT
), Cond
);
3293 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3294 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
3295 unsigned InSize
= N0
.getOperand(0).getValueSizeInBits();
3297 // If the comparison constant has bits in the upper part, the
3298 // zero-extended value could never match.
3299 if (C1
.intersects(APInt::getHighBitsSet(C1
.getBitWidth(),
3300 C1
.getBitWidth() - InSize
))) {
3305 return DAG
.getConstant(0, dl
, VT
);
3309 return DAG
.getConstant(1, dl
, VT
);
3312 // True if the sign bit of C1 is set.
3313 return DAG
.getConstant(C1
.isNegative(), dl
, VT
);
3316 // True if the sign bit of C1 isn't set.
3317 return DAG
.getConstant(C1
.isNonNegative(), dl
, VT
);
3323 // Otherwise, we can perform the comparison with the low bits.
3331 EVT newVT
= N0
.getOperand(0).getValueType();
3332 if (DCI
.isBeforeLegalizeOps() ||
3333 (isOperationLegal(ISD::SETCC
, newVT
) &&
3334 isCondCodeLegal(Cond
, newVT
.getSimpleVT()))) {
3336 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), newVT
);
3337 SDValue NewConst
= DAG
.getConstant(C1
.trunc(InSize
), dl
, newVT
);
3339 SDValue NewSetCC
= DAG
.getSetCC(dl
, NewSetCCVT
, N0
.getOperand(0),
3341 return DAG
.getBoolExtOrTrunc(NewSetCC
, dl
, VT
, N0
.getValueType());
3346 break; // todo, be more careful with signed comparisons
3348 } else if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3349 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3350 EVT ExtSrcTy
= cast
<VTSDNode
>(N0
.getOperand(1))->getVT();
3351 unsigned ExtSrcTyBits
= ExtSrcTy
.getSizeInBits();
3352 EVT ExtDstTy
= N0
.getValueType();
3353 unsigned ExtDstTyBits
= ExtDstTy
.getSizeInBits();
3355 // If the constant doesn't fit into the number of bits for the source of
3356 // the sign extension, it is impossible for both sides to be equal.
3357 if (C1
.getMinSignedBits() > ExtSrcTyBits
)
3358 return DAG
.getConstant(Cond
== ISD::SETNE
, dl
, VT
);
3361 EVT Op0Ty
= N0
.getOperand(0).getValueType();
3362 if (Op0Ty
== ExtSrcTy
) {
3363 ZextOp
= N0
.getOperand(0);
3365 APInt Imm
= APInt::getLowBitsSet(ExtDstTyBits
, ExtSrcTyBits
);
3366 ZextOp
= DAG
.getNode(ISD::AND
, dl
, Op0Ty
, N0
.getOperand(0),
3367 DAG
.getConstant(Imm
, dl
, Op0Ty
));
3369 if (!DCI
.isCalledByLegalizer())
3370 DCI
.AddToWorklist(ZextOp
.getNode());
3371 // Otherwise, make this a use of a zext.
3372 return DAG
.getSetCC(dl
, VT
, ZextOp
,
3373 DAG
.getConstant(C1
& APInt::getLowBitsSet(
3378 } else if ((N1C
->isNullValue() || N1C
->isOne()) &&
3379 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3380 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
3381 if (N0
.getOpcode() == ISD::SETCC
&&
3382 isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType())) {
3383 bool TrueWhenTrue
= (Cond
== ISD::SETEQ
) ^ (!N1C
->isOne());
3385 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, N0
);
3386 // Invert the condition.
3387 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
3388 CC
= ISD::getSetCCInverse(CC
,
3389 N0
.getOperand(0).getValueType().isInteger());
3390 if (DCI
.isBeforeLegalizeOps() ||
3391 isCondCodeLegal(CC
, N0
.getOperand(0).getSimpleValueType()))
3392 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N0
.getOperand(1), CC
);
3395 if ((N0
.getOpcode() == ISD::XOR
||
3396 (N0
.getOpcode() == ISD::AND
&&
3397 N0
.getOperand(0).getOpcode() == ISD::XOR
&&
3398 N0
.getOperand(1) == N0
.getOperand(0).getOperand(1))) &&
3399 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
3400 cast
<ConstantSDNode
>(N0
.getOperand(1))->isOne()) {
3401 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3402 // can only do this if the top bits are known zero.
3403 unsigned BitWidth
= N0
.getValueSizeInBits();
3404 if (DAG
.MaskedValueIsZero(N0
,
3405 APInt::getHighBitsSet(BitWidth
,
3407 // Okay, get the un-inverted input value.
3409 if (N0
.getOpcode() == ISD::XOR
) {
3410 Val
= N0
.getOperand(0);
3412 assert(N0
.getOpcode() == ISD::AND
&&
3413 N0
.getOperand(0).getOpcode() == ISD::XOR
);
3414 // ((X^1)&1)^1 -> X & 1
3415 Val
= DAG
.getNode(ISD::AND
, dl
, N0
.getValueType(),
3416 N0
.getOperand(0).getOperand(0),
3420 return DAG
.getSetCC(dl
, VT
, Val
, N1
,
3421 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3423 } else if (N1C
->isOne() &&
3425 getBooleanContents(N0
->getValueType(0)) ==
3426 ZeroOrOneBooleanContent
)) {
3428 if (Op0
.getOpcode() == ISD::TRUNCATE
)
3429 Op0
= Op0
.getOperand(0);
3431 if ((Op0
.getOpcode() == ISD::XOR
) &&
3432 Op0
.getOperand(0).getOpcode() == ISD::SETCC
&&
3433 Op0
.getOperand(1).getOpcode() == ISD::SETCC
) {
3434 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3435 Cond
= (Cond
== ISD::SETEQ
) ? ISD::SETNE
: ISD::SETEQ
;
3436 return DAG
.getSetCC(dl
, VT
, Op0
.getOperand(0), Op0
.getOperand(1),
3439 if (Op0
.getOpcode() == ISD::AND
&&
3440 isa
<ConstantSDNode
>(Op0
.getOperand(1)) &&
3441 cast
<ConstantSDNode
>(Op0
.getOperand(1))->isOne()) {
3442 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3443 if (Op0
.getValueType().bitsGT(VT
))
3444 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
3445 DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op0
.getOperand(0)),
3446 DAG
.getConstant(1, dl
, VT
));
3447 else if (Op0
.getValueType().bitsLT(VT
))
3448 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
3449 DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Op0
.getOperand(0)),
3450 DAG
.getConstant(1, dl
, VT
));
3452 return DAG
.getSetCC(dl
, VT
, Op0
,
3453 DAG
.getConstant(0, dl
, Op0
.getValueType()),
3454 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3456 if (Op0
.getOpcode() == ISD::AssertZext
&&
3457 cast
<VTSDNode
>(Op0
.getOperand(1))->getVT() == MVT::i1
)
3458 return DAG
.getSetCC(dl
, VT
, Op0
,
3459 DAG
.getConstant(0, dl
, Op0
.getValueType()),
3460 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3465 // icmp eq/ne (urem %x, %y), 0
3466 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3468 if (N0
.getOpcode() == ISD::UREM
&& N1C
->isNullValue() &&
3469 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3470 KnownBits XKnown
= DAG
.computeKnownBits(N0
.getOperand(0));
3471 KnownBits YKnown
= DAG
.computeKnownBits(N0
.getOperand(1));
3472 if (XKnown
.countMaxPopulation() == 1 && YKnown
.countMinPopulation() >= 2)
3473 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
, Cond
);
3477 optimizeSetCCOfSignedTruncationCheck(VT
, N0
, N1
, Cond
, DCI
, dl
))
3481 // These simplifications apply to splat vectors as well.
3482 // TODO: Handle more splat vector cases.
3483 if (auto *N1C
= isConstOrConstSplat(N1
)) {
3484 const APInt
&C1
= N1C
->getAPIntValue();
3486 APInt MinVal
, MaxVal
;
3487 unsigned OperandBitSize
= N1C
->getValueType(0).getScalarSizeInBits();
3488 if (ISD::isSignedIntSetCC(Cond
)) {
3489 MinVal
= APInt::getSignedMinValue(OperandBitSize
);
3490 MaxVal
= APInt::getSignedMaxValue(OperandBitSize
);
3492 MinVal
= APInt::getMinValue(OperandBitSize
);
3493 MaxVal
= APInt::getMaxValue(OperandBitSize
);
3496 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3497 if (Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) {
3498 // X >= MIN --> true
3500 return DAG
.getBoolConstant(true, dl
, VT
, OpVT
);
3502 if (!VT
.isVector()) { // TODO: Support this for vectors.
3503 // X >= C0 --> X > (C0 - 1)
3505 ISD::CondCode NewCC
= (Cond
== ISD::SETGE
) ? ISD::SETGT
: ISD::SETUGT
;
3506 if ((DCI
.isBeforeLegalizeOps() ||
3507 isCondCodeLegal(NewCC
, VT
.getSimpleVT())) &&
3508 (!N1C
->isOpaque() || (C
.getBitWidth() <= 64 &&
3509 isLegalICmpImmediate(C
.getSExtValue())))) {
3510 return DAG
.getSetCC(dl
, VT
, N0
,
3511 DAG
.getConstant(C
, dl
, N1
.getValueType()),
3517 if (Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) {
3518 // X <= MAX --> true
3520 return DAG
.getBoolConstant(true, dl
, VT
, OpVT
);
3522 // X <= C0 --> X < (C0 + 1)
3523 if (!VT
.isVector()) { // TODO: Support this for vectors.
3525 ISD::CondCode NewCC
= (Cond
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETULT
;
3526 if ((DCI
.isBeforeLegalizeOps() ||
3527 isCondCodeLegal(NewCC
, VT
.getSimpleVT())) &&
3528 (!N1C
->isOpaque() || (C
.getBitWidth() <= 64 &&
3529 isLegalICmpImmediate(C
.getSExtValue())))) {
3530 return DAG
.getSetCC(dl
, VT
, N0
,
3531 DAG
.getConstant(C
, dl
, N1
.getValueType()),
3537 if (Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) {
3539 return DAG
.getBoolConstant(false, dl
, VT
, OpVT
); // X < MIN --> false
3541 // TODO: Support this for vectors after legalize ops.
3542 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3543 // Canonicalize setlt X, Max --> setne X, Max
3545 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
3547 // If we have setult X, 1, turn it into seteq X, 0
3549 return DAG
.getSetCC(dl
, VT
, N0
,
3550 DAG
.getConstant(MinVal
, dl
, N0
.getValueType()),
3555 if (Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) {
3557 return DAG
.getBoolConstant(false, dl
, VT
, OpVT
); // X > MAX --> false
3559 // TODO: Support this for vectors after legalize ops.
3560 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3561 // Canonicalize setgt X, Min --> setne X, Min
3563 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
3565 // If we have setugt X, Max-1, turn it into seteq X, Max
3567 return DAG
.getSetCC(dl
, VT
, N0
,
3568 DAG
.getConstant(MaxVal
, dl
, N0
.getValueType()),
3573 if (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) {
3574 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
3575 if (C1
.isNullValue())
3576 if (SDValue CC
= optimizeSetCCByHoistingAndByConstFromLogicalShift(
3577 VT
, N0
, N1
, Cond
, DCI
, dl
))
3581 // If we have "setcc X, C0", check to see if we can shrink the immediate
3583 // TODO: Support this for vectors after legalize ops.
3584 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3585 // SETUGT X, SINTMAX -> SETLT X, 0
3586 if (Cond
== ISD::SETUGT
&&
3587 C1
== APInt::getSignedMaxValue(OperandBitSize
))
3588 return DAG
.getSetCC(dl
, VT
, N0
,
3589 DAG
.getConstant(0, dl
, N1
.getValueType()),
3592 // SETULT X, SINTMIN -> SETGT X, -1
3593 if (Cond
== ISD::SETULT
&&
3594 C1
== APInt::getSignedMinValue(OperandBitSize
)) {
3595 SDValue ConstMinusOne
=
3596 DAG
.getConstant(APInt::getAllOnesValue(OperandBitSize
), dl
,
3598 return DAG
.getSetCC(dl
, VT
, N0
, ConstMinusOne
, ISD::SETGT
);
3603 // Back to non-vector simplifications.
3604 // TODO: Can we do these for vector splats?
3605 if (auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
3606 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3607 const APInt
&C1
= N1C
->getAPIntValue();
3608 EVT ShValTy
= N0
.getValueType();
3610 // Fold bit comparisons when we can.
3611 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3612 (VT
== ShValTy
|| (isTypeLegal(VT
) && VT
.bitsLE(ShValTy
))) &&
3613 N0
.getOpcode() == ISD::AND
) {
3614 auto &DL
= DAG
.getDataLayout();
3615 if (auto *AndRHS
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3616 EVT ShiftTy
= getShiftAmountTy(ShValTy
, DL
, !DCI
.isBeforeLegalize());
3617 if (Cond
== ISD::SETNE
&& C1
== 0) {// (X & 8) != 0 --> (X & 8) >> 3
3618 // Perform the xform if the AND RHS is a single bit.
3619 unsigned ShCt
= AndRHS
->getAPIntValue().logBase2();
3620 if (AndRHS
->getAPIntValue().isPowerOf2() &&
3621 ShCt
<= TLI
.getShiftAmountThreshold(ShValTy
)) {
3622 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
3623 DAG
.getNode(ISD::SRL
, dl
, ShValTy
, N0
,
3624 DAG
.getConstant(ShCt
, dl
, ShiftTy
)));
3626 } else if (Cond
== ISD::SETEQ
&& C1
== AndRHS
->getAPIntValue()) {
3627 // (X & 8) == 8 --> (X & 8) >> 3
3628 // Perform the xform if C1 is a single bit.
3629 unsigned ShCt
= C1
.logBase2();
3630 if (C1
.isPowerOf2() &&
3631 ShCt
<= TLI
.getShiftAmountThreshold(ShValTy
)) {
3632 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
3633 DAG
.getNode(ISD::SRL
, dl
, ShValTy
, N0
,
3634 DAG
.getConstant(ShCt
, dl
, ShiftTy
)));
3640 if (C1
.getMinSignedBits() <= 64 &&
3641 !isLegalICmpImmediate(C1
.getSExtValue())) {
3642 // (X & -256) == 256 -> (X >> 8) == 1
3643 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3644 N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
3645 if (auto *AndRHS
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3646 const APInt
&AndRHSC
= AndRHS
->getAPIntValue();
3647 if ((-AndRHSC
).isPowerOf2() && (AndRHSC
& C1
) == C1
) {
3648 unsigned ShiftBits
= AndRHSC
.countTrailingZeros();
3649 auto &DL
= DAG
.getDataLayout();
3650 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3651 !DCI
.isBeforeLegalize());
3652 EVT CmpTy
= N0
.getValueType();
3653 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, CmpTy
, N0
.getOperand(0),
3654 DAG
.getConstant(ShiftBits
, dl
,
3656 SDValue CmpRHS
= DAG
.getConstant(C1
.lshr(ShiftBits
), dl
, CmpTy
);
3657 return DAG
.getSetCC(dl
, VT
, Shift
, CmpRHS
, Cond
);
3660 } else if (Cond
== ISD::SETULT
|| Cond
== ISD::SETUGE
||
3661 Cond
== ISD::SETULE
|| Cond
== ISD::SETUGT
) {
3662 bool AdjOne
= (Cond
== ISD::SETULE
|| Cond
== ISD::SETUGT
);
3663 // X < 0x100000000 -> (X >> 32) < 1
3664 // X >= 0x100000000 -> (X >> 32) >= 1
3665 // X <= 0x0ffffffff -> (X >> 32) < 1
3666 // X > 0x0ffffffff -> (X >> 32) >= 1
3669 ISD::CondCode NewCond
= Cond
;
3671 ShiftBits
= C1
.countTrailingOnes();
3673 NewCond
= (Cond
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
3675 ShiftBits
= C1
.countTrailingZeros();
3677 NewC
.lshrInPlace(ShiftBits
);
3678 if (ShiftBits
&& NewC
.getMinSignedBits() <= 64 &&
3679 isLegalICmpImmediate(NewC
.getSExtValue())) {
3680 auto &DL
= DAG
.getDataLayout();
3681 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3682 !DCI
.isBeforeLegalize());
3683 EVT CmpTy
= N0
.getValueType();
3684 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, CmpTy
, N0
,
3685 DAG
.getConstant(ShiftBits
, dl
, ShiftTy
));
3686 SDValue CmpRHS
= DAG
.getConstant(NewC
, dl
, CmpTy
);
3687 return DAG
.getSetCC(dl
, VT
, Shift
, CmpRHS
, NewCond
);
3693 if (!isa
<ConstantFPSDNode
>(N0
) && isa
<ConstantFPSDNode
>(N1
)) {
3694 auto *CFP
= cast
<ConstantFPSDNode
>(N1
);
3695 assert(!CFP
->getValueAPF().isNaN() && "Unexpected NaN value");
3697 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
3698 // constant if knowing that the operand is non-nan is enough. We prefer to
3699 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3701 if (Cond
== ISD::SETO
|| Cond
== ISD::SETUO
)
3702 return DAG
.getSetCC(dl
, VT
, N0
, N0
, Cond
);
3704 // setcc (fneg x), C -> setcc swap(pred) x, -C
3705 if (N0
.getOpcode() == ISD::FNEG
) {
3706 ISD::CondCode SwapCond
= ISD::getSetCCSwappedOperands(Cond
);
3707 if (DCI
.isBeforeLegalizeOps() ||
3708 isCondCodeLegal(SwapCond
, N0
.getSimpleValueType())) {
3709 SDValue NegN1
= DAG
.getNode(ISD::FNEG
, dl
, N0
.getValueType(), N1
);
3710 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), NegN1
, SwapCond
);
3714 // If the condition is not legal, see if we can find an equivalent one
3716 if (!isCondCodeLegal(Cond
, N0
.getSimpleValueType())) {
3717 // If the comparison was an awkward floating-point == or != and one of
3718 // the comparison operands is infinity or negative infinity, convert the
3719 // condition to a less-awkward <= or >=.
3720 if (CFP
->getValueAPF().isInfinity()) {
3721 if (CFP
->getValueAPF().isNegative()) {
3722 if (Cond
== ISD::SETOEQ
&&
3723 isCondCodeLegal(ISD::SETOLE
, N0
.getSimpleValueType()))
3724 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLE
);
3725 if (Cond
== ISD::SETUEQ
&&
3726 isCondCodeLegal(ISD::SETOLE
, N0
.getSimpleValueType()))
3727 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULE
);
3728 if (Cond
== ISD::SETUNE
&&
3729 isCondCodeLegal(ISD::SETUGT
, N0
.getSimpleValueType()))
3730 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGT
);
3731 if (Cond
== ISD::SETONE
&&
3732 isCondCodeLegal(ISD::SETUGT
, N0
.getSimpleValueType()))
3733 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGT
);
3735 if (Cond
== ISD::SETOEQ
&&
3736 isCondCodeLegal(ISD::SETOGE
, N0
.getSimpleValueType()))
3737 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGE
);
3738 if (Cond
== ISD::SETUEQ
&&
3739 isCondCodeLegal(ISD::SETOGE
, N0
.getSimpleValueType()))
3740 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGE
);
3741 if (Cond
== ISD::SETUNE
&&
3742 isCondCodeLegal(ISD::SETULT
, N0
.getSimpleValueType()))
3743 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULT
);
3744 if (Cond
== ISD::SETONE
&&
3745 isCondCodeLegal(ISD::SETULT
, N0
.getSimpleValueType()))
3746 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLT
);
3753 // The sext(setcc()) => setcc() optimization relies on the appropriate
3754 // constant being emitted.
3755 assert(!N0
.getValueType().isInteger() &&
3756 "Integer types should be handled by FoldSetCC");
3758 bool EqTrue
= ISD::isTrueWhenEqual(Cond
);
3759 unsigned UOF
= ISD::getUnorderedFlavor(Cond
);
3760 if (UOF
== 2) // FP operators that are undefined on NaNs.
3761 return DAG
.getBoolConstant(EqTrue
, dl
, VT
, OpVT
);
3762 if (UOF
== unsigned(EqTrue
))
3763 return DAG
.getBoolConstant(EqTrue
, dl
, VT
, OpVT
);
3764 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
3765 // if it is not already.
3766 ISD::CondCode NewCond
= UOF
== 0 ? ISD::SETO
: ISD::SETUO
;
3767 if (NewCond
!= Cond
&&
3768 (DCI
.isBeforeLegalizeOps() ||
3769 isCondCodeLegal(NewCond
, N0
.getSimpleValueType())))
3770 return DAG
.getSetCC(dl
, VT
, N0
, N1
, NewCond
);
3773 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3774 N0
.getValueType().isInteger()) {
3775 if (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::SUB
||
3776 N0
.getOpcode() == ISD::XOR
) {
3777 // Simplify (X+Y) == (X+Z) --> Y == Z
3778 if (N0
.getOpcode() == N1
.getOpcode()) {
3779 if (N0
.getOperand(0) == N1
.getOperand(0))
3780 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(1), Cond
);
3781 if (N0
.getOperand(1) == N1
.getOperand(1))
3782 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(0), Cond
);
3783 if (isCommutativeBinOp(N0
.getOpcode())) {
3784 // If X op Y == Y op X, try other combinations.
3785 if (N0
.getOperand(0) == N1
.getOperand(1))
3786 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(0),
3788 if (N0
.getOperand(1) == N1
.getOperand(0))
3789 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(1),
3794 // If RHS is a legal immediate value for a compare instruction, we need
3795 // to be careful about increasing register pressure needlessly.
3796 bool LegalRHSImm
= false;
3798 if (auto *RHSC
= dyn_cast
<ConstantSDNode
>(N1
)) {
3799 if (auto *LHSR
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3800 // Turn (X+C1) == C2 --> X == C2-C1
3801 if (N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse()) {
3802 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
3803 DAG
.getConstant(RHSC
->getAPIntValue()-
3804 LHSR
->getAPIntValue(),
3805 dl
, N0
.getValueType()), Cond
);
3808 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3809 if (N0
.getOpcode() == ISD::XOR
)
3810 // If we know that all of the inverted bits are zero, don't bother
3811 // performing the inversion.
3812 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), ~LHSR
->getAPIntValue()))
3814 DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
3815 DAG
.getConstant(LHSR
->getAPIntValue() ^
3816 RHSC
->getAPIntValue(),
3817 dl
, N0
.getValueType()),
3821 // Turn (C1-X) == C2 --> X == C1-C2
3822 if (auto *SUBC
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0))) {
3823 if (N0
.getOpcode() == ISD::SUB
&& N0
.getNode()->hasOneUse()) {
3825 DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
3826 DAG
.getConstant(SUBC
->getAPIntValue() -
3827 RHSC
->getAPIntValue(),
3828 dl
, N0
.getValueType()),
3833 // Could RHSC fold directly into a compare?
3834 if (RHSC
->getValueType(0).getSizeInBits() <= 64)
3835 LegalRHSImm
= isLegalICmpImmediate(RHSC
->getSExtValue());
3838 // (X+Y) == X --> Y == 0 and similar folds.
3839 // Don't do this if X is an immediate that can fold into a cmp
3840 // instruction and X+Y has other uses. It could be an induction variable
3841 // chain, and the transform would increase register pressure.
3842 if (!LegalRHSImm
|| N0
.hasOneUse())
3843 if (SDValue V
= foldSetCCWithBinOp(VT
, N0
, N1
, Cond
, dl
, DCI
))
3847 if (N1
.getOpcode() == ISD::ADD
|| N1
.getOpcode() == ISD::SUB
||
3848 N1
.getOpcode() == ISD::XOR
)
3849 if (SDValue V
= foldSetCCWithBinOp(VT
, N1
, N0
, Cond
, dl
, DCI
))
3852 if (SDValue V
= foldSetCCWithAnd(VT
, N0
, N1
, Cond
, dl
, DCI
))
3856 // Fold remainder of division by a constant.
3857 if ((N0
.getOpcode() == ISD::UREM
|| N0
.getOpcode() == ISD::SREM
) &&
3858 N0
.hasOneUse() && (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3859 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3861 // When division is cheap or optimizing for minimum size,
3862 // fall through to DIVREM creation by skipping this fold.
3863 if (!isIntDivCheap(VT
, Attr
) && !Attr
.hasFnAttribute(Attribute::MinSize
)) {
3864 if (N0
.getOpcode() == ISD::UREM
) {
3865 if (SDValue Folded
= buildUREMEqFold(VT
, N0
, N1
, Cond
, DCI
, dl
))
3867 } else if (N0
.getOpcode() == ISD::SREM
) {
3868 if (SDValue Folded
= buildSREMEqFold(VT
, N0
, N1
, Cond
, DCI
, dl
))
3874 // Fold away ALL boolean setcc's.
3875 if (N0
.getValueType().getScalarType() == MVT::i1
&& foldBooleans
) {
3878 default: llvm_unreachable("Unknown integer setcc!");
3879 case ISD::SETEQ
: // X == Y -> ~(X^Y)
3880 Temp
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, N0
, N1
);
3881 N0
= DAG
.getNOT(dl
, Temp
, OpVT
);
3882 if (!DCI
.isCalledByLegalizer())
3883 DCI
.AddToWorklist(Temp
.getNode());
3885 case ISD::SETNE
: // X != Y --> (X^Y)
3886 N0
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, N0
, N1
);
3888 case ISD::SETGT
: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
3889 case ISD::SETULT
: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
3890 Temp
= DAG
.getNOT(dl
, N0
, OpVT
);
3891 N0
= DAG
.getNode(ISD::AND
, dl
, OpVT
, N1
, Temp
);
3892 if (!DCI
.isCalledByLegalizer())
3893 DCI
.AddToWorklist(Temp
.getNode());
3895 case ISD::SETLT
: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
3896 case ISD::SETUGT
: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
3897 Temp
= DAG
.getNOT(dl
, N1
, OpVT
);
3898 N0
= DAG
.getNode(ISD::AND
, dl
, OpVT
, N0
, Temp
);
3899 if (!DCI
.isCalledByLegalizer())
3900 DCI
.AddToWorklist(Temp
.getNode());
3902 case ISD::SETULE
: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
3903 case ISD::SETGE
: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
3904 Temp
= DAG
.getNOT(dl
, N0
, OpVT
);
3905 N0
= DAG
.getNode(ISD::OR
, dl
, OpVT
, N1
, Temp
);
3906 if (!DCI
.isCalledByLegalizer())
3907 DCI
.AddToWorklist(Temp
.getNode());
3909 case ISD::SETUGE
: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
3910 case ISD::SETLE
: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
3911 Temp
= DAG
.getNOT(dl
, N1
, OpVT
);
3912 N0
= DAG
.getNode(ISD::OR
, dl
, OpVT
, N0
, Temp
);
3915 if (VT
.getScalarType() != MVT::i1
) {
3916 if (!DCI
.isCalledByLegalizer())
3917 DCI
.AddToWorklist(N0
.getNode());
3918 // FIXME: If running after legalize, we probably can't do this.
3919 ISD::NodeType ExtendCode
= getExtendForContent(getBooleanContents(OpVT
));
3920 N0
= DAG
.getNode(ExtendCode
, dl
, VT
, N0
);
3925 // Could not fold it.
3929 /// Returns true (and the GlobalValue and the offset) if the node is a
3930 /// GlobalAddress + offset.
3931 bool TargetLowering::isGAPlusOffset(SDNode
*WN
, const GlobalValue
*&GA
,
3932 int64_t &Offset
) const {
3934 SDNode
*N
= unwrapAddress(SDValue(WN
, 0)).getNode();
3936 if (auto *GASD
= dyn_cast
<GlobalAddressSDNode
>(N
)) {
3937 GA
= GASD
->getGlobal();
3938 Offset
+= GASD
->getOffset();
3942 if (N
->getOpcode() == ISD::ADD
) {
3943 SDValue N1
= N
->getOperand(0);
3944 SDValue N2
= N
->getOperand(1);
3945 if (isGAPlusOffset(N1
.getNode(), GA
, Offset
)) {
3946 if (auto *V
= dyn_cast
<ConstantSDNode
>(N2
)) {
3947 Offset
+= V
->getSExtValue();
3950 } else if (isGAPlusOffset(N2
.getNode(), GA
, Offset
)) {
3951 if (auto *V
= dyn_cast
<ConstantSDNode
>(N1
)) {
3952 Offset
+= V
->getSExtValue();
3961 SDValue
TargetLowering::PerformDAGCombine(SDNode
*N
,
3962 DAGCombinerInfo
&DCI
) const {
3963 // Default implementation: no optimization.
3967 //===----------------------------------------------------------------------===//
3968 // Inline Assembler Implementation Methods
3969 //===----------------------------------------------------------------------===//
3971 TargetLowering::ConstraintType
3972 TargetLowering::getConstraintType(StringRef Constraint
) const {
3973 unsigned S
= Constraint
.size();
3976 switch (Constraint
[0]) {
3979 return C_RegisterClass
;
3981 case 'o': // offsetable
3982 case 'V': // not offsetable
3984 case 'n': // Simple Integer
3985 case 'E': // Floating Point Constant
3986 case 'F': // Floating Point Constant
3988 case 'i': // Simple Integer or Relocatable Constant
3989 case 's': // Relocatable Constant
3990 case 'p': // Address.
3991 case 'X': // Allow ANY value.
3992 case 'I': // Target registers.
4006 if (S
> 1 && Constraint
[0] == '{' && Constraint
[S
- 1] == '}') {
4007 if (S
== 8 && Constraint
.substr(1, 6) == "memory") // "{memory}"
4014 /// Try to replace an X constraint, which matches anything, with another that
4015 /// has more specific requirements based on the type of the corresponding
4017 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
4018 if (ConstraintVT
.isInteger())
4020 if (ConstraintVT
.isFloatingPoint())
4021 return "f"; // works for many targets
4025 SDValue
TargetLowering::LowerAsmOutputForConstraint(
4026 SDValue
&Chain
, SDValue
&Flag
, SDLoc DL
, const AsmOperandInfo
&OpInfo
,
4027 SelectionDAG
&DAG
) const {
4031 /// Lower the specified operand into the Ops vector.
4032 /// If it is invalid, don't add anything to Ops.
4033 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
4034 std::string
&Constraint
,
4035 std::vector
<SDValue
> &Ops
,
4036 SelectionDAG
&DAG
) const {
4038 if (Constraint
.length() > 1) return;
4040 char ConstraintLetter
= Constraint
[0];
4041 switch (ConstraintLetter
) {
4043 case 'X': // Allows any operand; labels (basic block) use this.
4044 if (Op
.getOpcode() == ISD::BasicBlock
||
4045 Op
.getOpcode() == ISD::TargetBlockAddress
) {
4050 case 'i': // Simple Integer or Relocatable Constant
4051 case 'n': // Simple Integer
4052 case 's': { // Relocatable Constant
4054 GlobalAddressSDNode
*GA
;
4056 BlockAddressSDNode
*BA
;
4057 uint64_t Offset
= 0;
4059 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4060 // etc., since getelementpointer is variadic. We can't use
4061 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4062 // while in this case the GA may be furthest from the root node which is
4063 // likely an ISD::ADD.
4065 if ((GA
= dyn_cast
<GlobalAddressSDNode
>(Op
)) && ConstraintLetter
!= 'n') {
4066 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(), SDLoc(Op
),
4067 GA
->getValueType(0),
4068 Offset
+ GA
->getOffset()));
4070 } else if ((C
= dyn_cast
<ConstantSDNode
>(Op
)) &&
4071 ConstraintLetter
!= 's') {
4072 // gcc prints these as sign extended. Sign extend value to 64 bits
4073 // now; without this it would get ZExt'd later in
4074 // ScheduleDAGSDNodes::EmitNode, which is very generic.
4075 bool IsBool
= C
->getConstantIntValue()->getBitWidth() == 1;
4076 BooleanContent BCont
= getBooleanContents(MVT::i64
);
4077 ISD::NodeType ExtOpc
= IsBool
? getExtendForContent(BCont
)
4079 int64_t ExtVal
= ExtOpc
== ISD::ZERO_EXTEND
? C
->getZExtValue()
4080 : C
->getSExtValue();
4081 Ops
.push_back(DAG
.getTargetConstant(Offset
+ ExtVal
,
4082 SDLoc(C
), MVT::i64
));
4084 } else if ((BA
= dyn_cast
<BlockAddressSDNode
>(Op
)) &&
4085 ConstraintLetter
!= 'n') {
4086 Ops
.push_back(DAG
.getTargetBlockAddress(
4087 BA
->getBlockAddress(), BA
->getValueType(0),
4088 Offset
+ BA
->getOffset(), BA
->getTargetFlags()));
4091 const unsigned OpCode
= Op
.getOpcode();
4092 if (OpCode
== ISD::ADD
|| OpCode
== ISD::SUB
) {
4093 if ((C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))))
4094 Op
= Op
.getOperand(1);
4095 // Subtraction is not commutative.
4096 else if (OpCode
== ISD::ADD
&&
4097 (C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))))
4098 Op
= Op
.getOperand(0);
4101 Offset
+= (OpCode
== ISD::ADD
? 1 : -1) * C
->getSExtValue();
4112 std::pair
<unsigned, const TargetRegisterClass
*>
4113 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*RI
,
4114 StringRef Constraint
,
4116 if (Constraint
.empty() || Constraint
[0] != '{')
4117 return std::make_pair(0u, static_cast<TargetRegisterClass
*>(nullptr));
4118 assert(*(Constraint
.end() - 1) == '}' && "Not a brace enclosed constraint?");
4120 // Remove the braces from around the name.
4121 StringRef
RegName(Constraint
.data() + 1, Constraint
.size() - 2);
4123 std::pair
<unsigned, const TargetRegisterClass
*> R
=
4124 std::make_pair(0u, static_cast<const TargetRegisterClass
*>(nullptr));
4126 // Figure out which register class contains this reg.
4127 for (const TargetRegisterClass
*RC
: RI
->regclasses()) {
4128 // If none of the value types for this register class are valid, we
4129 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4130 if (!isLegalRC(*RI
, *RC
))
4133 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
4135 if (RegName
.equals_lower(RI
->getRegAsmName(*I
))) {
4136 std::pair
<unsigned, const TargetRegisterClass
*> S
=
4137 std::make_pair(*I
, RC
);
4139 // If this register class has the requested value type, return it,
4140 // otherwise keep searching and return the first class found
4141 // if no other is found which explicitly has the requested type.
4142 if (RI
->isTypeLegalForClass(*RC
, VT
))
4153 //===----------------------------------------------------------------------===//
4154 // Constraint Selection.
4156 /// Return true of this is an input operand that is a matching constraint like
4158 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4159 assert(!ConstraintCode
.empty() && "No known constraint!");
4160 return isdigit(static_cast<unsigned char>(ConstraintCode
[0]));
4163 /// If this is an input matching constraint, this method returns the output
4164 /// operand it matches.
4165 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4166 assert(!ConstraintCode
.empty() && "No known constraint!");
4167 return atoi(ConstraintCode
.c_str());
4170 /// Split up the constraint string from the inline assembly value into the
4171 /// specific constraints and their prefixes, and also tie in the associated
4173 /// If this returns an empty vector, and if the constraint string itself
4174 /// isn't empty, there was an error parsing.
4175 TargetLowering::AsmOperandInfoVector
4176 TargetLowering::ParseConstraints(const DataLayout
&DL
,
4177 const TargetRegisterInfo
*TRI
,
4178 ImmutableCallSite CS
) const {
4179 /// Information about all of the constraints.
4180 AsmOperandInfoVector ConstraintOperands
;
4181 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
4182 unsigned maCount
= 0; // Largest number of multiple alternative constraints.
4184 // Do a prepass over the constraints, canonicalizing them, and building up the
4185 // ConstraintOperands list.
4186 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
4187 unsigned ResNo
= 0; // ResNo - The result number of the next output.
4189 for (InlineAsm::ConstraintInfo
&CI
: IA
->ParseConstraints()) {
4190 ConstraintOperands
.emplace_back(std::move(CI
));
4191 AsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
4193 // Update multiple alternative constraint count.
4194 if (OpInfo
.multipleAlternatives
.size() > maCount
)
4195 maCount
= OpInfo
.multipleAlternatives
.size();
4197 OpInfo
.ConstraintVT
= MVT::Other
;
4199 // Compute the value type for each operand.
4200 switch (OpInfo
.Type
) {
4201 case InlineAsm::isOutput
:
4202 // Indirect outputs just consume an argument.
4203 if (OpInfo
.isIndirect
) {
4204 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
4208 // The return value of the call is this value. As such, there is no
4209 // corresponding argument.
4210 assert(!CS
.getType()->isVoidTy() &&
4212 if (StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
4213 OpInfo
.ConstraintVT
=
4214 getSimpleValueType(DL
, STy
->getElementType(ResNo
));
4216 assert(ResNo
== 0 && "Asm only has one result!");
4217 OpInfo
.ConstraintVT
= getSimpleValueType(DL
, CS
.getType());
4221 case InlineAsm::isInput
:
4222 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
4224 case InlineAsm::isClobber
:
4229 if (OpInfo
.CallOperandVal
) {
4230 llvm::Type
*OpTy
= OpInfo
.CallOperandVal
->getType();
4231 if (OpInfo
.isIndirect
) {
4232 llvm::PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
4234 report_fatal_error("Indirect operand for inline asm not a pointer!");
4235 OpTy
= PtrTy
->getElementType();
4238 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4239 if (StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
4240 if (STy
->getNumElements() == 1)
4241 OpTy
= STy
->getElementType(0);
4243 // If OpTy is not a single value, it may be a struct/union that we
4244 // can tile with integers.
4245 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
4246 unsigned BitSize
= DL
.getTypeSizeInBits(OpTy
);
4255 OpInfo
.ConstraintVT
=
4256 MVT::getVT(IntegerType::get(OpTy
->getContext(), BitSize
), true);
4259 } else if (PointerType
*PT
= dyn_cast
<PointerType
>(OpTy
)) {
4260 unsigned PtrSize
= DL
.getPointerSizeInBits(PT
->getAddressSpace());
4261 OpInfo
.ConstraintVT
= MVT::getIntegerVT(PtrSize
);
4263 OpInfo
.ConstraintVT
= MVT::getVT(OpTy
, true);
4268 // If we have multiple alternative constraints, select the best alternative.
4269 if (!ConstraintOperands
.empty()) {
4271 unsigned bestMAIndex
= 0;
4272 int bestWeight
= -1;
4273 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
4276 // Compute the sums of the weights for each alternative, keeping track
4277 // of the best (highest weight) one so far.
4278 for (maIndex
= 0; maIndex
< maCount
; ++maIndex
) {
4280 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
4281 cIndex
!= eIndex
; ++cIndex
) {
4282 AsmOperandInfo
&OpInfo
= ConstraintOperands
[cIndex
];
4283 if (OpInfo
.Type
== InlineAsm::isClobber
)
4286 // If this is an output operand with a matching input operand,
4287 // look up the matching input. If their types mismatch, e.g. one
4288 // is an integer, the other is floating point, or their sizes are
4289 // different, flag it as an maCantMatch.
4290 if (OpInfo
.hasMatchingInput()) {
4291 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
4292 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
4293 if ((OpInfo
.ConstraintVT
.isInteger() !=
4294 Input
.ConstraintVT
.isInteger()) ||
4295 (OpInfo
.ConstraintVT
.getSizeInBits() !=
4296 Input
.ConstraintVT
.getSizeInBits())) {
4297 weightSum
= -1; // Can't match.
4302 weight
= getMultipleConstraintMatchWeight(OpInfo
, maIndex
);
4307 weightSum
+= weight
;
4310 if (weightSum
> bestWeight
) {
4311 bestWeight
= weightSum
;
4312 bestMAIndex
= maIndex
;
4316 // Now select chosen alternative in each constraint.
4317 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
4318 cIndex
!= eIndex
; ++cIndex
) {
4319 AsmOperandInfo
&cInfo
= ConstraintOperands
[cIndex
];
4320 if (cInfo
.Type
== InlineAsm::isClobber
)
4322 cInfo
.selectAlternative(bestMAIndex
);
4327 // Check and hook up tied operands, choose constraint code to use.
4328 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
4329 cIndex
!= eIndex
; ++cIndex
) {
4330 AsmOperandInfo
&OpInfo
= ConstraintOperands
[cIndex
];
4332 // If this is an output operand with a matching input operand, look up the
4333 // matching input. If their types mismatch, e.g. one is an integer, the
4334 // other is floating point, or their sizes are different, flag it as an
4336 if (OpInfo
.hasMatchingInput()) {
4337 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
4339 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
4340 std::pair
<unsigned, const TargetRegisterClass
*> MatchRC
=
4341 getRegForInlineAsmConstraint(TRI
, OpInfo
.ConstraintCode
,
4342 OpInfo
.ConstraintVT
);
4343 std::pair
<unsigned, const TargetRegisterClass
*> InputRC
=
4344 getRegForInlineAsmConstraint(TRI
, Input
.ConstraintCode
,
4345 Input
.ConstraintVT
);
4346 if ((OpInfo
.ConstraintVT
.isInteger() !=
4347 Input
.ConstraintVT
.isInteger()) ||
4348 (MatchRC
.second
!= InputRC
.second
)) {
4349 report_fatal_error("Unsupported asm: input constraint"
4350 " with a matching output constraint of"
4351 " incompatible type!");
4357 return ConstraintOperands
;
4360 /// Return an integer indicating how general CT is.
4361 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT
) {
4363 case TargetLowering::C_Immediate
:
4364 case TargetLowering::C_Other
:
4365 case TargetLowering::C_Unknown
:
4367 case TargetLowering::C_Register
:
4369 case TargetLowering::C_RegisterClass
:
4371 case TargetLowering::C_Memory
:
4374 llvm_unreachable("Invalid constraint type");
4377 /// Examine constraint type and operand type and determine a weight value.
4378 /// This object must already have been set up with the operand type
4379 /// and the current alternative constraint selected.
4380 TargetLowering::ConstraintWeight
4381 TargetLowering::getMultipleConstraintMatchWeight(
4382 AsmOperandInfo
&info
, int maIndex
) const {
4383 InlineAsm::ConstraintCodeVector
*rCodes
;
4384 if (maIndex
>= (int)info
.multipleAlternatives
.size())
4385 rCodes
= &info
.Codes
;
4387 rCodes
= &info
.multipleAlternatives
[maIndex
].Codes
;
4388 ConstraintWeight BestWeight
= CW_Invalid
;
4390 // Loop over the options, keeping track of the most general one.
4391 for (unsigned i
= 0, e
= rCodes
->size(); i
!= e
; ++i
) {
4392 ConstraintWeight weight
=
4393 getSingleConstraintMatchWeight(info
, (*rCodes
)[i
].c_str());
4394 if (weight
> BestWeight
)
4395 BestWeight
= weight
;
4401 /// Examine constraint type and operand type and determine a weight value.
4402 /// This object must already have been set up with the operand type
4403 /// and the current alternative constraint selected.
4404 TargetLowering::ConstraintWeight
4405 TargetLowering::getSingleConstraintMatchWeight(
4406 AsmOperandInfo
&info
, const char *constraint
) const {
4407 ConstraintWeight weight
= CW_Invalid
;
4408 Value
*CallOperandVal
= info
.CallOperandVal
;
4409 // If we don't have a value, we can't do a match,
4410 // but allow it at the lowest weight.
4411 if (!CallOperandVal
)
4413 // Look at the constraint type.
4414 switch (*constraint
) {
4415 case 'i': // immediate integer.
4416 case 'n': // immediate integer with a known value.
4417 if (isa
<ConstantInt
>(CallOperandVal
))
4418 weight
= CW_Constant
;
4420 case 's': // non-explicit intregal immediate.
4421 if (isa
<GlobalValue
>(CallOperandVal
))
4422 weight
= CW_Constant
;
4424 case 'E': // immediate float if host format.
4425 case 'F': // immediate float.
4426 if (isa
<ConstantFP
>(CallOperandVal
))
4427 weight
= CW_Constant
;
4429 case '<': // memory operand with autodecrement.
4430 case '>': // memory operand with autoincrement.
4431 case 'm': // memory operand.
4432 case 'o': // offsettable memory operand
4433 case 'V': // non-offsettable memory operand
4436 case 'r': // general register.
4437 case 'g': // general register, memory operand or immediate integer.
4438 // note: Clang converts "g" to "imr".
4439 if (CallOperandVal
->getType()->isIntegerTy())
4440 weight
= CW_Register
;
4442 case 'X': // any operand.
4444 weight
= CW_Default
;
4450 /// If there are multiple different constraints that we could pick for this
4451 /// operand (e.g. "imr") try to pick the 'best' one.
4452 /// This is somewhat tricky: constraints fall into four classes:
4453 /// Other -> immediates and magic values
4454 /// Register -> one specific register
4455 /// RegisterClass -> a group of regs
4456 /// Memory -> memory
4457 /// Ideally, we would pick the most specific constraint possible: if we have
4458 /// something that fits into a register, we would pick it. The problem here
4459 /// is that if we have something that could either be in a register or in
4460 /// memory that use of the register could cause selection of *other*
4461 /// operands to fail: they might only succeed if we pick memory. Because of
4462 /// this the heuristic we use is:
4464 /// 1) If there is an 'other' constraint, and if the operand is valid for
4465 /// that constraint, use it. This makes us take advantage of 'i'
4466 /// constraints when available.
4467 /// 2) Otherwise, pick the most general constraint present. This prefers
4468 /// 'm' over 'r', for example.
4470 static void ChooseConstraint(TargetLowering::AsmOperandInfo
&OpInfo
,
4471 const TargetLowering
&TLI
,
4472 SDValue Op
, SelectionDAG
*DAG
) {
4473 assert(OpInfo
.Codes
.size() > 1 && "Doesn't have multiple constraint options");
4474 unsigned BestIdx
= 0;
4475 TargetLowering::ConstraintType BestType
= TargetLowering::C_Unknown
;
4476 int BestGenerality
= -1;
4478 // Loop over the options, keeping track of the most general one.
4479 for (unsigned i
= 0, e
= OpInfo
.Codes
.size(); i
!= e
; ++i
) {
4480 TargetLowering::ConstraintType CType
=
4481 TLI
.getConstraintType(OpInfo
.Codes
[i
]);
4483 // If this is an 'other' or 'immediate' constraint, see if the operand is
4484 // valid for it. For example, on X86 we might have an 'rI' constraint. If
4485 // the operand is an integer in the range [0..31] we want to use I (saving a
4486 // load of a register), otherwise we must use 'r'.
4487 if ((CType
== TargetLowering::C_Other
||
4488 CType
== TargetLowering::C_Immediate
) && Op
.getNode()) {
4489 assert(OpInfo
.Codes
[i
].size() == 1 &&
4490 "Unhandled multi-letter 'other' constraint");
4491 std::vector
<SDValue
> ResultOps
;
4492 TLI
.LowerAsmOperandForConstraint(Op
, OpInfo
.Codes
[i
],
4494 if (!ResultOps
.empty()) {
4501 // Things with matching constraints can only be registers, per gcc
4502 // documentation. This mainly affects "g" constraints.
4503 if (CType
== TargetLowering::C_Memory
&& OpInfo
.hasMatchingInput())
4506 // This constraint letter is more general than the previous one, use it.
4507 int Generality
= getConstraintGenerality(CType
);
4508 if (Generality
> BestGenerality
) {
4511 BestGenerality
= Generality
;
4515 OpInfo
.ConstraintCode
= OpInfo
.Codes
[BestIdx
];
4516 OpInfo
.ConstraintType
= BestType
;
4519 /// Determines the constraint code and constraint type to use for the specific
4520 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4521 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
4523 SelectionDAG
*DAG
) const {
4524 assert(!OpInfo
.Codes
.empty() && "Must have at least one constraint");
4526 // Single-letter constraints ('r') are very common.
4527 if (OpInfo
.Codes
.size() == 1) {
4528 OpInfo
.ConstraintCode
= OpInfo
.Codes
[0];
4529 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
4531 ChooseConstraint(OpInfo
, *this, Op
, DAG
);
4534 // 'X' matches anything.
4535 if (OpInfo
.ConstraintCode
== "X" && OpInfo
.CallOperandVal
) {
4536 // Labels and constants are handled elsewhere ('X' is the only thing
4537 // that matches labels). For Functions, the type here is the type of
4538 // the result, which is not what we want to look at; leave them alone.
4539 Value
*v
= OpInfo
.CallOperandVal
;
4540 if (isa
<BasicBlock
>(v
) || isa
<ConstantInt
>(v
) || isa
<Function
>(v
)) {
4541 OpInfo
.CallOperandVal
= v
;
4545 if (Op
.getNode() && Op
.getOpcode() == ISD::TargetBlockAddress
)
4548 // Otherwise, try to resolve it to something we know about by looking at
4549 // the actual operand type.
4550 if (const char *Repl
= LowerXConstraint(OpInfo
.ConstraintVT
)) {
4551 OpInfo
.ConstraintCode
= Repl
;
4552 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
4557 /// Given an exact SDIV by a constant, create a multiplication
4558 /// with the multiplicative inverse of the constant.
4559 static SDValue
BuildExactSDIV(const TargetLowering
&TLI
, SDNode
*N
,
4560 const SDLoc
&dl
, SelectionDAG
&DAG
,
4561 SmallVectorImpl
<SDNode
*> &Created
) {
4562 SDValue Op0
= N
->getOperand(0);
4563 SDValue Op1
= N
->getOperand(1);
4564 EVT VT
= N
->getValueType(0);
4565 EVT SVT
= VT
.getScalarType();
4566 EVT ShVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
4567 EVT ShSVT
= ShVT
.getScalarType();
4569 bool UseSRA
= false;
4570 SmallVector
<SDValue
, 16> Shifts
, Factors
;
4572 auto BuildSDIVPattern
= [&](ConstantSDNode
*C
) {
4573 if (C
->isNullValue())
4575 APInt Divisor
= C
->getAPIntValue();
4576 unsigned Shift
= Divisor
.countTrailingZeros();
4578 Divisor
.ashrInPlace(Shift
);
4581 // Calculate the multiplicative inverse, using Newton's method.
4583 APInt Factor
= Divisor
;
4584 while ((t
= Divisor
* Factor
) != 1)
4585 Factor
*= APInt(Divisor
.getBitWidth(), 2) - t
;
4586 Shifts
.push_back(DAG
.getConstant(Shift
, dl
, ShSVT
));
4587 Factors
.push_back(DAG
.getConstant(Factor
, dl
, SVT
));
4591 // Collect all magic values from the build vector.
4592 if (!ISD::matchUnaryPredicate(Op1
, BuildSDIVPattern
))
4595 SDValue Shift
, Factor
;
4596 if (VT
.isVector()) {
4597 Shift
= DAG
.getBuildVector(ShVT
, dl
, Shifts
);
4598 Factor
= DAG
.getBuildVector(VT
, dl
, Factors
);
4601 Factor
= Factors
[0];
4606 // Shift the value upfront if it is even, so the LSB is one.
4608 // TODO: For UDIV use SRL instead of SRA.
4610 Flags
.setExact(true);
4611 Res
= DAG
.getNode(ISD::SRA
, dl
, VT
, Res
, Shift
, Flags
);
4612 Created
.push_back(Res
.getNode());
4615 return DAG
.getNode(ISD::MUL
, dl
, VT
, Res
, Factor
);
4618 SDValue
TargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
4620 SmallVectorImpl
<SDNode
*> &Created
) const {
4621 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4622 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4623 if (TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4624 return SDValue(N
, 0); // Lower SDIV as SDIV
4628 /// Given an ISD::SDIV node expressing a divide by constant,
4629 /// return a DAG expression to select that will generate the same value by
4630 /// multiplying by a magic number.
4631 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4632 SDValue
TargetLowering::BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
,
4633 bool IsAfterLegalization
,
4634 SmallVectorImpl
<SDNode
*> &Created
) const {
4636 EVT VT
= N
->getValueType(0);
4637 EVT SVT
= VT
.getScalarType();
4638 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4639 EVT ShSVT
= ShVT
.getScalarType();
4640 unsigned EltBits
= VT
.getScalarSizeInBits();
4642 // Check to see if we can do this.
4643 // FIXME: We should be more aggressive here.
4644 if (!isTypeLegal(VT
))
4647 // If the sdiv has an 'exact' bit we can use a simpler lowering.
4648 if (N
->getFlags().hasExact())
4649 return BuildExactSDIV(*this, N
, dl
, DAG
, Created
);
4651 SmallVector
<SDValue
, 16> MagicFactors
, Factors
, Shifts
, ShiftMasks
;
4653 auto BuildSDIVPattern
= [&](ConstantSDNode
*C
) {
4654 if (C
->isNullValue())
4657 const APInt
&Divisor
= C
->getAPIntValue();
4658 APInt::ms magics
= Divisor
.magic();
4659 int NumeratorFactor
= 0;
4662 if (Divisor
.isOneValue() || Divisor
.isAllOnesValue()) {
4663 // If d is +1/-1, we just multiply the numerator by +1/-1.
4664 NumeratorFactor
= Divisor
.getSExtValue();
4668 } else if (Divisor
.isStrictlyPositive() && magics
.m
.isNegative()) {
4669 // If d > 0 and m < 0, add the numerator.
4670 NumeratorFactor
= 1;
4671 } else if (Divisor
.isNegative() && magics
.m
.isStrictlyPositive()) {
4672 // If d < 0 and m > 0, subtract the numerator.
4673 NumeratorFactor
= -1;
4676 MagicFactors
.push_back(DAG
.getConstant(magics
.m
, dl
, SVT
));
4677 Factors
.push_back(DAG
.getConstant(NumeratorFactor
, dl
, SVT
));
4678 Shifts
.push_back(DAG
.getConstant(magics
.s
, dl
, ShSVT
));
4679 ShiftMasks
.push_back(DAG
.getConstant(ShiftMask
, dl
, SVT
));
4683 SDValue N0
= N
->getOperand(0);
4684 SDValue N1
= N
->getOperand(1);
4686 // Collect the shifts / magic values from each element.
4687 if (!ISD::matchUnaryPredicate(N1
, BuildSDIVPattern
))
4690 SDValue MagicFactor
, Factor
, Shift
, ShiftMask
;
4691 if (VT
.isVector()) {
4692 MagicFactor
= DAG
.getBuildVector(VT
, dl
, MagicFactors
);
4693 Factor
= DAG
.getBuildVector(VT
, dl
, Factors
);
4694 Shift
= DAG
.getBuildVector(ShVT
, dl
, Shifts
);
4695 ShiftMask
= DAG
.getBuildVector(VT
, dl
, ShiftMasks
);
4697 MagicFactor
= MagicFactors
[0];
4698 Factor
= Factors
[0];
4700 ShiftMask
= ShiftMasks
[0];
4703 // Multiply the numerator (operand 0) by the magic value.
4704 // FIXME: We should support doing a MUL in a wider type.
4706 if (IsAfterLegalization
? isOperationLegal(ISD::MULHS
, VT
)
4707 : isOperationLegalOrCustom(ISD::MULHS
, VT
))
4708 Q
= DAG
.getNode(ISD::MULHS
, dl
, VT
, N0
, MagicFactor
);
4709 else if (IsAfterLegalization
? isOperationLegal(ISD::SMUL_LOHI
, VT
)
4710 : isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
)) {
4712 DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
), N0
, MagicFactor
);
4713 Q
= SDValue(LoHi
.getNode(), 1);
4715 return SDValue(); // No mulhs or equivalent.
4716 Created
.push_back(Q
.getNode());
4718 // (Optionally) Add/subtract the numerator using Factor.
4719 Factor
= DAG
.getNode(ISD::MUL
, dl
, VT
, N0
, Factor
);
4720 Created
.push_back(Factor
.getNode());
4721 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, Factor
);
4722 Created
.push_back(Q
.getNode());
4724 // Shift right algebraic by shift value.
4725 Q
= DAG
.getNode(ISD::SRA
, dl
, VT
, Q
, Shift
);
4726 Created
.push_back(Q
.getNode());
4728 // Extract the sign bit, mask it and add it to the quotient.
4729 SDValue SignShift
= DAG
.getConstant(EltBits
- 1, dl
, ShVT
);
4730 SDValue T
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, SignShift
);
4731 Created
.push_back(T
.getNode());
4732 T
= DAG
.getNode(ISD::AND
, dl
, VT
, T
, ShiftMask
);
4733 Created
.push_back(T
.getNode());
4734 return DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, T
);
4737 /// Given an ISD::UDIV node expressing a divide by constant,
4738 /// return a DAG expression to select that will generate the same value by
4739 /// multiplying by a magic number.
4740 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4741 SDValue
TargetLowering::BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
,
4742 bool IsAfterLegalization
,
4743 SmallVectorImpl
<SDNode
*> &Created
) const {
4745 EVT VT
= N
->getValueType(0);
4746 EVT SVT
= VT
.getScalarType();
4747 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4748 EVT ShSVT
= ShVT
.getScalarType();
4749 unsigned EltBits
= VT
.getScalarSizeInBits();
4751 // Check to see if we can do this.
4752 // FIXME: We should be more aggressive here.
4753 if (!isTypeLegal(VT
))
4756 bool UseNPQ
= false;
4757 SmallVector
<SDValue
, 16> PreShifts
, PostShifts
, MagicFactors
, NPQFactors
;
4759 auto BuildUDIVPattern
= [&](ConstantSDNode
*C
) {
4760 if (C
->isNullValue())
4762 // FIXME: We should use a narrower constant when the upper
4763 // bits are known to be zero.
4764 APInt Divisor
= C
->getAPIntValue();
4765 APInt::mu magics
= Divisor
.magicu();
4766 unsigned PreShift
= 0, PostShift
= 0;
4768 // If the divisor is even, we can avoid using the expensive fixup by
4769 // shifting the divided value upfront.
4770 if (magics
.a
!= 0 && !Divisor
[0]) {
4771 PreShift
= Divisor
.countTrailingZeros();
4772 // Get magic number for the shifted divisor.
4773 magics
= Divisor
.lshr(PreShift
).magicu(PreShift
);
4774 assert(magics
.a
== 0 && "Should use cheap fixup now");
4777 APInt Magic
= magics
.m
;
4780 if (magics
.a
== 0 || Divisor
.isOneValue()) {
4781 assert(magics
.s
< Divisor
.getBitWidth() &&
4782 "We shouldn't generate an undefined shift!");
4783 PostShift
= magics
.s
;
4786 PostShift
= magics
.s
- 1;
4790 PreShifts
.push_back(DAG
.getConstant(PreShift
, dl
, ShSVT
));
4791 MagicFactors
.push_back(DAG
.getConstant(Magic
, dl
, SVT
));
4792 NPQFactors
.push_back(
4793 DAG
.getConstant(SelNPQ
? APInt::getOneBitSet(EltBits
, EltBits
- 1)
4794 : APInt::getNullValue(EltBits
),
4796 PostShifts
.push_back(DAG
.getConstant(PostShift
, dl
, ShSVT
));
4801 SDValue N0
= N
->getOperand(0);
4802 SDValue N1
= N
->getOperand(1);
4804 // Collect the shifts/magic values from each element.
4805 if (!ISD::matchUnaryPredicate(N1
, BuildUDIVPattern
))
4808 SDValue PreShift
, PostShift
, MagicFactor
, NPQFactor
;
4809 if (VT
.isVector()) {
4810 PreShift
= DAG
.getBuildVector(ShVT
, dl
, PreShifts
);
4811 MagicFactor
= DAG
.getBuildVector(VT
, dl
, MagicFactors
);
4812 NPQFactor
= DAG
.getBuildVector(VT
, dl
, NPQFactors
);
4813 PostShift
= DAG
.getBuildVector(ShVT
, dl
, PostShifts
);
4815 PreShift
= PreShifts
[0];
4816 MagicFactor
= MagicFactors
[0];
4817 PostShift
= PostShifts
[0];
4821 Q
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, PreShift
);
4822 Created
.push_back(Q
.getNode());
4824 // FIXME: We should support doing a MUL in a wider type.
4825 auto GetMULHU
= [&](SDValue X
, SDValue Y
) {
4826 if (IsAfterLegalization
? isOperationLegal(ISD::MULHU
, VT
)
4827 : isOperationLegalOrCustom(ISD::MULHU
, VT
))
4828 return DAG
.getNode(ISD::MULHU
, dl
, VT
, X
, Y
);
4829 if (IsAfterLegalization
? isOperationLegal(ISD::UMUL_LOHI
, VT
)
4830 : isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
)) {
4832 DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
), X
, Y
);
4833 return SDValue(LoHi
.getNode(), 1);
4835 return SDValue(); // No mulhu or equivalent
4838 // Multiply the numerator (operand 0) by the magic value.
4839 Q
= GetMULHU(Q
, MagicFactor
);
4843 Created
.push_back(Q
.getNode());
4846 SDValue NPQ
= DAG
.getNode(ISD::SUB
, dl
, VT
, N0
, Q
);
4847 Created
.push_back(NPQ
.getNode());
4849 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4850 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4852 NPQ
= GetMULHU(NPQ
, NPQFactor
);
4854 NPQ
= DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
, DAG
.getConstant(1, dl
, ShVT
));
4856 Created
.push_back(NPQ
.getNode());
4858 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, NPQ
, Q
);
4859 Created
.push_back(Q
.getNode());
4862 Q
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, PostShift
);
4863 Created
.push_back(Q
.getNode());
4865 SDValue One
= DAG
.getConstant(1, dl
, VT
);
4866 SDValue IsOne
= DAG
.getSetCC(dl
, VT
, N1
, One
, ISD::SETEQ
);
4867 return DAG
.getSelect(dl
, VT
, IsOne
, N0
, Q
);
4870 /// If all values in Values that *don't* match the predicate are same 'splat'
4871 /// value, then replace all values with that splat value.
4872 /// Else, if AlternativeReplacement was provided, then replace all values that
4873 /// do match predicate with AlternativeReplacement value.
4875 turnVectorIntoSplatVector(MutableArrayRef
<SDValue
> Values
,
4876 std::function
<bool(SDValue
)> Predicate
,
4877 SDValue AlternativeReplacement
= SDValue()) {
4878 SDValue Replacement
;
4879 // Is there a value for which the Predicate does *NOT* match? What is it?
4880 auto SplatValue
= llvm::find_if_not(Values
, Predicate
);
4881 if (SplatValue
!= Values
.end()) {
4882 // Does Values consist only of SplatValue's and values matching Predicate?
4883 if (llvm::all_of(Values
, [Predicate
, SplatValue
](SDValue Value
) {
4884 return Value
== *SplatValue
|| Predicate(Value
);
4885 })) // Then we shall replace values matching predicate with SplatValue.
4886 Replacement
= *SplatValue
;
4889 // Oops, we did not find the "baseline" splat value.
4890 if (!AlternativeReplacement
)
4891 return; // Nothing to do.
4892 // Let's replace with provided value then.
4893 Replacement
= AlternativeReplacement
;
4895 std::replace_if(Values
.begin(), Values
.end(), Predicate
, Replacement
);
4898 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4899 /// where the divisor is constant and the comparison target is zero,
4900 /// return a DAG expression that will generate the same comparison result
4901 /// using only multiplications, additions and shifts/rotations.
4902 /// Ref: "Hacker's Delight" 10-17.
4903 SDValue
TargetLowering::buildUREMEqFold(EVT SETCCVT
, SDValue REMNode
,
4904 SDValue CompTargetNode
,
4906 DAGCombinerInfo
&DCI
,
4907 const SDLoc
&DL
) const {
4908 SmallVector
<SDNode
*, 2> Built
;
4909 if (SDValue Folded
= prepareUREMEqFold(SETCCVT
, REMNode
, CompTargetNode
, Cond
,
4911 for (SDNode
*N
: Built
)
4912 DCI
.AddToWorklist(N
);
4920 TargetLowering::prepareUREMEqFold(EVT SETCCVT
, SDValue REMNode
,
4921 SDValue CompTargetNode
, ISD::CondCode Cond
,
4922 DAGCombinerInfo
&DCI
, const SDLoc
&DL
,
4923 SmallVectorImpl
<SDNode
*> &Created
) const {
4924 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4925 // - D must be constant, with D = D0 * 2^K where D0 is odd
4926 // - P is the multiplicative inverse of D0 modulo 2^W
4927 // - Q = floor(((2^W) - 1) / D)
4928 // where W is the width of the common type of N and D.
4929 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
4930 "Only applicable for (in)equality comparisons.");
4932 SelectionDAG
&DAG
= DCI
.DAG
;
4934 EVT VT
= REMNode
.getValueType();
4935 EVT SVT
= VT
.getScalarType();
4936 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4937 EVT ShSVT
= ShVT
.getScalarType();
4939 // If MUL is unavailable, we cannot proceed in any case.
4940 if (!isOperationLegalOrCustom(ISD::MUL
, VT
))
4943 // TODO: Could support comparing with non-zero too.
4944 ConstantSDNode
*CompTarget
= isConstOrConstSplat(CompTargetNode
);
4945 if (!CompTarget
|| !CompTarget
->isNullValue())
4948 bool HadOneDivisor
= false;
4949 bool AllDivisorsAreOnes
= true;
4950 bool HadEvenDivisor
= false;
4951 bool AllDivisorsArePowerOfTwo
= true;
4952 SmallVector
<SDValue
, 16> PAmts
, KAmts
, QAmts
;
4954 auto BuildUREMPattern
= [&](ConstantSDNode
*C
) {
4955 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4956 if (C
->isNullValue())
4959 const APInt
&D
= C
->getAPIntValue();
4960 // If all divisors are ones, we will prefer to avoid the fold.
4961 HadOneDivisor
|= D
.isOneValue();
4962 AllDivisorsAreOnes
&= D
.isOneValue();
4964 // Decompose D into D0 * 2^K
4965 unsigned K
= D
.countTrailingZeros();
4966 assert((!D
.isOneValue() || (K
== 0)) && "For divisor '1' we won't rotate.");
4967 APInt D0
= D
.lshr(K
);
4969 // D is even if it has trailing zeros.
4970 HadEvenDivisor
|= (K
!= 0);
4971 // D is a power-of-two if D0 is one.
4972 // If all divisors are power-of-two, we will prefer to avoid the fold.
4973 AllDivisorsArePowerOfTwo
&= D0
.isOneValue();
4976 // 2^W requires W + 1 bits, so we have to extend and then truncate.
4977 unsigned W
= D
.getBitWidth();
4978 APInt P
= D0
.zext(W
+ 1)
4979 .multiplicativeInverse(APInt::getSignedMinValue(W
+ 1))
4981 assert(!P
.isNullValue() && "No multiplicative inverse!"); // unreachable
4982 assert((D0
* P
).isOneValue() && "Multiplicative inverse sanity check.");
4984 // Q = floor((2^W - 1) / D)
4985 APInt Q
= APInt::getAllOnesValue(W
).udiv(D
);
4987 assert(APInt::getAllOnesValue(ShSVT
.getSizeInBits()).ugt(K
) &&
4988 "We are expecting that K is always less than all-ones for ShSVT");
4990 // If the divisor is 1 the result can be constant-folded.
4991 if (D
.isOneValue()) {
4992 // Set P and K amount to a bogus values so we can try to splat them.
4995 assert(Q
.isAllOnesValue() &&
4996 "Expecting all-ones comparison for one divisor");
4999 PAmts
.push_back(DAG
.getConstant(P
, DL
, SVT
));
5001 DAG
.getConstant(APInt(ShSVT
.getSizeInBits(), K
), DL
, ShSVT
));
5002 QAmts
.push_back(DAG
.getConstant(Q
, DL
, SVT
));
5006 SDValue N
= REMNode
.getOperand(0);
5007 SDValue D
= REMNode
.getOperand(1);
5009 // Collect the values from each element.
5010 if (!ISD::matchUnaryPredicate(D
, BuildUREMPattern
))
5013 // If this is a urem by a one, avoid the fold since it can be constant-folded.
5014 if (AllDivisorsAreOnes
)
5017 // If this is a urem by a powers-of-two, avoid the fold since it can be
5018 // best implemented as a bit test.
5019 if (AllDivisorsArePowerOfTwo
)
5022 SDValue PVal
, KVal
, QVal
;
5023 if (VT
.isVector()) {
5024 if (HadOneDivisor
) {
5025 // Try to turn PAmts into a splat, since we don't care about the values
5026 // that are currently '0'. If we can't, just keep '0'`s.
5027 turnVectorIntoSplatVector(PAmts
, isNullConstant
);
5028 // Try to turn KAmts into a splat, since we don't care about the values
5029 // that are currently '-1'. If we can't, change them to '0'`s.
5030 turnVectorIntoSplatVector(KAmts
, isAllOnesConstant
,
5031 DAG
.getConstant(0, DL
, ShSVT
));
5034 PVal
= DAG
.getBuildVector(VT
, DL
, PAmts
);
5035 KVal
= DAG
.getBuildVector(ShVT
, DL
, KAmts
);
5036 QVal
= DAG
.getBuildVector(VT
, DL
, QAmts
);
5044 SDValue Op0
= DAG
.getNode(ISD::MUL
, DL
, VT
, N
, PVal
);
5045 Created
.push_back(Op0
.getNode());
5047 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5048 // divisors as a performance improvement, since rotating by 0 is a no-op.
5049 if (HadEvenDivisor
) {
5050 // We need ROTR to do this.
5051 if (!isOperationLegalOrCustom(ISD::ROTR
, VT
))
5054 Flags
.setExact(true);
5055 // UREM: (rotr (mul N, P), K)
5056 Op0
= DAG
.getNode(ISD::ROTR
, DL
, VT
, Op0
, KVal
, Flags
);
5057 Created
.push_back(Op0
.getNode());
5060 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5061 return DAG
.getSetCC(DL
, SETCCVT
, Op0
, QVal
,
5062 ((Cond
== ISD::SETEQ
) ? ISD::SETULE
: ISD::SETUGT
));
5065 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5066 /// where the divisor is constant and the comparison target is zero,
5067 /// return a DAG expression that will generate the same comparison result
5068 /// using only multiplications, additions and shifts/rotations.
5069 /// Ref: "Hacker's Delight" 10-17.
5070 SDValue
TargetLowering::buildSREMEqFold(EVT SETCCVT
, SDValue REMNode
,
5071 SDValue CompTargetNode
,
5073 DAGCombinerInfo
&DCI
,
5074 const SDLoc
&DL
) const {
5075 SmallVector
<SDNode
*, 7> Built
;
5076 if (SDValue Folded
= prepareSREMEqFold(SETCCVT
, REMNode
, CompTargetNode
, Cond
,
5078 assert(Built
.size() <= 7 && "Max size prediction failed.");
5079 for (SDNode
*N
: Built
)
5080 DCI
.AddToWorklist(N
);
5088 TargetLowering::prepareSREMEqFold(EVT SETCCVT
, SDValue REMNode
,
5089 SDValue CompTargetNode
, ISD::CondCode Cond
,
5090 DAGCombinerInfo
&DCI
, const SDLoc
&DL
,
5091 SmallVectorImpl
<SDNode
*> &Created
) const {
5093 // (seteq/ne (srem N, D), 0)
5095 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
5097 // - D must be constant, with D = D0 * 2^K where D0 is odd
5098 // - P is the multiplicative inverse of D0 modulo 2^W
5099 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5100 // - Q = floor((2 * A) / (2^K))
5101 // where W is the width of the common type of N and D.
5102 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
5103 "Only applicable for (in)equality comparisons.");
5105 SelectionDAG
&DAG
= DCI
.DAG
;
5107 EVT VT
= REMNode
.getValueType();
5108 EVT SVT
= VT
.getScalarType();
5109 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5110 EVT ShSVT
= ShVT
.getScalarType();
5112 // If MUL is unavailable, we cannot proceed in any case.
5113 if (!isOperationLegalOrCustom(ISD::MUL
, VT
))
5116 // TODO: Could support comparing with non-zero too.
5117 ConstantSDNode
*CompTarget
= isConstOrConstSplat(CompTargetNode
);
5118 if (!CompTarget
|| !CompTarget
->isNullValue())
5121 bool HadIntMinDivisor
= false;
5122 bool HadOneDivisor
= false;
5123 bool AllDivisorsAreOnes
= true;
5124 bool HadEvenDivisor
= false;
5125 bool NeedToApplyOffset
= false;
5126 bool AllDivisorsArePowerOfTwo
= true;
5127 SmallVector
<SDValue
, 16> PAmts
, AAmts
, KAmts
, QAmts
;
5129 auto BuildSREMPattern
= [&](ConstantSDNode
*C
) {
5130 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5131 if (C
->isNullValue())
5134 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5136 // WARNING: this fold is only valid for positive divisors!
5137 APInt D
= C
->getAPIntValue();
5139 D
.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
5141 HadIntMinDivisor
|= D
.isMinSignedValue();
5143 // If all divisors are ones, we will prefer to avoid the fold.
5144 HadOneDivisor
|= D
.isOneValue();
5145 AllDivisorsAreOnes
&= D
.isOneValue();
5147 // Decompose D into D0 * 2^K
5148 unsigned K
= D
.countTrailingZeros();
5149 assert((!D
.isOneValue() || (K
== 0)) && "For divisor '1' we won't rotate.");
5150 APInt D0
= D
.lshr(K
);
5152 if (!D
.isMinSignedValue()) {
5153 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5154 // we don't care about this lane in this fold, we'll special-handle it.
5155 HadEvenDivisor
|= (K
!= 0);
5158 // D is a power-of-two if D0 is one. This includes INT_MIN.
5159 // If all divisors are power-of-two, we will prefer to avoid the fold.
5160 AllDivisorsArePowerOfTwo
&= D0
.isOneValue();
5163 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5164 unsigned W
= D
.getBitWidth();
5165 APInt P
= D0
.zext(W
+ 1)
5166 .multiplicativeInverse(APInt::getSignedMinValue(W
+ 1))
5168 assert(!P
.isNullValue() && "No multiplicative inverse!"); // unreachable
5169 assert((D0
* P
).isOneValue() && "Multiplicative inverse sanity check.");
5171 // A = floor((2^(W - 1) - 1) / D0) & -2^K
5172 APInt A
= APInt::getSignedMaxValue(W
).udiv(D0
);
5175 if (!D
.isMinSignedValue()) {
5176 // If divisor INT_MIN, then we don't care about this lane in this fold,
5177 // we'll special-handle it.
5178 NeedToApplyOffset
|= A
!= 0;
5181 // Q = floor((2 * A) / (2^K))
5182 APInt Q
= (2 * A
).udiv(APInt::getOneBitSet(W
, K
));
5184 assert(APInt::getAllOnesValue(SVT
.getSizeInBits()).ugt(A
) &&
5185 "We are expecting that A is always less than all-ones for SVT");
5186 assert(APInt::getAllOnesValue(ShSVT
.getSizeInBits()).ugt(K
) &&
5187 "We are expecting that K is always less than all-ones for ShSVT");
5189 // If the divisor is 1 the result can be constant-folded. Likewise, we
5190 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5191 if (D
.isOneValue()) {
5192 // Set P, A and K to a bogus values so we can try to splat them.
5197 // x ?% 1 == 0 <--> true <--> x u<= -1
5201 PAmts
.push_back(DAG
.getConstant(P
, DL
, SVT
));
5202 AAmts
.push_back(DAG
.getConstant(A
, DL
, SVT
));
5204 DAG
.getConstant(APInt(ShSVT
.getSizeInBits(), K
), DL
, ShSVT
));
5205 QAmts
.push_back(DAG
.getConstant(Q
, DL
, SVT
));
5209 SDValue N
= REMNode
.getOperand(0);
5210 SDValue D
= REMNode
.getOperand(1);
5212 // Collect the values from each element.
5213 if (!ISD::matchUnaryPredicate(D
, BuildSREMPattern
))
5216 // If this is a srem by a one, avoid the fold since it can be constant-folded.
5217 if (AllDivisorsAreOnes
)
5220 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5221 // since it can be best implemented as a bit test.
5222 if (AllDivisorsArePowerOfTwo
)
5225 SDValue PVal
, AVal
, KVal
, QVal
;
5226 if (VT
.isVector()) {
5227 if (HadOneDivisor
) {
5228 // Try to turn PAmts into a splat, since we don't care about the values
5229 // that are currently '0'. If we can't, just keep '0'`s.
5230 turnVectorIntoSplatVector(PAmts
, isNullConstant
);
5231 // Try to turn AAmts into a splat, since we don't care about the
5232 // values that are currently '-1'. If we can't, change them to '0'`s.
5233 turnVectorIntoSplatVector(AAmts
, isAllOnesConstant
,
5234 DAG
.getConstant(0, DL
, SVT
));
5235 // Try to turn KAmts into a splat, since we don't care about the values
5236 // that are currently '-1'. If we can't, change them to '0'`s.
5237 turnVectorIntoSplatVector(KAmts
, isAllOnesConstant
,
5238 DAG
.getConstant(0, DL
, ShSVT
));
5241 PVal
= DAG
.getBuildVector(VT
, DL
, PAmts
);
5242 AVal
= DAG
.getBuildVector(VT
, DL
, AAmts
);
5243 KVal
= DAG
.getBuildVector(ShVT
, DL
, KAmts
);
5244 QVal
= DAG
.getBuildVector(VT
, DL
, QAmts
);
5253 SDValue Op0
= DAG
.getNode(ISD::MUL
, DL
, VT
, N
, PVal
);
5254 Created
.push_back(Op0
.getNode());
5256 if (NeedToApplyOffset
) {
5257 // We need ADD to do this.
5258 if (!isOperationLegalOrCustom(ISD::ADD
, VT
))
5261 // (add (mul N, P), A)
5262 Op0
= DAG
.getNode(ISD::ADD
, DL
, VT
, Op0
, AVal
);
5263 Created
.push_back(Op0
.getNode());
5266 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5267 // divisors as a performance improvement, since rotating by 0 is a no-op.
5268 if (HadEvenDivisor
) {
5269 // We need ROTR to do this.
5270 if (!isOperationLegalOrCustom(ISD::ROTR
, VT
))
5273 Flags
.setExact(true);
5274 // SREM: (rotr (add (mul N, P), A), K)
5275 Op0
= DAG
.getNode(ISD::ROTR
, DL
, VT
, Op0
, KVal
, Flags
);
5276 Created
.push_back(Op0
.getNode());
5279 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5281 DAG
.getSetCC(DL
, SETCCVT
, Op0
, QVal
,
5282 ((Cond
== ISD::SETEQ
) ? ISD::SETULE
: ISD::SETUGT
));
5284 // If we didn't have lanes with INT_MIN divisor, then we're done.
5285 if (!HadIntMinDivisor
)
5288 // That fold is only valid for positive divisors. Which effectively means,
5289 // it is invalid for INT_MIN divisors. So if we have such a lane,
5290 // we must fix-up results for said lanes.
5291 assert(VT
.isVector() && "Can/should only get here for vectors.");
5293 if (!isOperationLegalOrCustom(ISD::SETEQ
, VT
) ||
5294 !isOperationLegalOrCustom(ISD::AND
, VT
) ||
5295 !isOperationLegalOrCustom(Cond
, VT
) ||
5296 !isOperationLegalOrCustom(ISD::VSELECT
, VT
))
5299 Created
.push_back(Fold
.getNode());
5301 SDValue IntMin
= DAG
.getConstant(
5302 APInt::getSignedMinValue(SVT
.getScalarSizeInBits()), DL
, VT
);
5303 SDValue IntMax
= DAG
.getConstant(
5304 APInt::getSignedMaxValue(SVT
.getScalarSizeInBits()), DL
, VT
);
5306 DAG
.getConstant(APInt::getNullValue(SVT
.getScalarSizeInBits()), DL
, VT
);
5308 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5309 SDValue DivisorIsIntMin
= DAG
.getSetCC(DL
, SETCCVT
, D
, IntMin
, ISD::SETEQ
);
5310 Created
.push_back(DivisorIsIntMin
.getNode());
5312 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
5313 SDValue Masked
= DAG
.getNode(ISD::AND
, DL
, VT
, N
, IntMax
);
5314 Created
.push_back(Masked
.getNode());
5315 SDValue MaskedIsZero
= DAG
.getSetCC(DL
, SETCCVT
, Masked
, Zero
, Cond
);
5316 Created
.push_back(MaskedIsZero
.getNode());
5318 // To produce final result we need to blend 2 vectors: 'SetCC' and
5319 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5320 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5321 // constant-folded, select can get lowered to a shuffle with constant mask.
5323 DAG
.getNode(ISD::VSELECT
, DL
, VT
, DivisorIsIntMin
, MaskedIsZero
, Fold
);
5328 bool TargetLowering::
5329 verifyReturnAddressArgumentIsConstant(SDValue Op
, SelectionDAG
&DAG
) const {
5330 if (!isa
<ConstantSDNode
>(Op
.getOperand(0))) {
5331 DAG
.getContext()->emitError("argument to '__builtin_return_address' must "
5332 "be a constant integer");
5339 char TargetLowering::isNegatibleForFree(SDValue Op
, SelectionDAG
&DAG
,
5340 bool LegalOperations
, bool ForCodeSize
,
5341 unsigned Depth
) const {
5342 // fneg is removable even if it has multiple uses.
5343 if (Op
.getOpcode() == ISD::FNEG
)
5346 // Don't allow anything with multiple uses unless we know it is free.
5347 EVT VT
= Op
.getValueType();
5348 const SDNodeFlags Flags
= Op
->getFlags();
5349 const TargetOptions
&Options
= DAG
.getTarget().Options
;
5350 if (!Op
.hasOneUse() && !(Op
.getOpcode() == ISD::FP_EXTEND
&&
5351 isFPExtFree(VT
, Op
.getOperand(0).getValueType())))
5354 // Don't recurse exponentially.
5355 if (Depth
> SelectionDAG::MaxRecursionDepth
)
5358 switch (Op
.getOpcode()) {
5359 case ISD::ConstantFP
: {
5360 if (!LegalOperations
)
5363 // Don't invert constant FP values after legalization unless the target says
5364 // the negated constant is legal.
5365 return isOperationLegal(ISD::ConstantFP
, VT
) ||
5366 isFPImmLegal(neg(cast
<ConstantFPSDNode
>(Op
)->getValueAPF()), VT
,
5369 case ISD::BUILD_VECTOR
: {
5370 // Only permit BUILD_VECTOR of constants.
5371 if (llvm::any_of(Op
->op_values(), [&](SDValue N
) {
5372 return !N
.isUndef() && !isa
<ConstantFPSDNode
>(N
);
5375 if (!LegalOperations
)
5377 if (isOperationLegal(ISD::ConstantFP
, VT
) &&
5378 isOperationLegal(ISD::BUILD_VECTOR
, VT
))
5380 return llvm::all_of(Op
->op_values(), [&](SDValue N
) {
5381 return N
.isUndef() ||
5382 isFPImmLegal(neg(cast
<ConstantFPSDNode
>(N
)->getValueAPF()), VT
,
5387 if (!Options
.NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
5390 // After operation legalization, it might not be legal to create new FSUBs.
5391 if (LegalOperations
&& !isOperationLegalOrCustom(ISD::FSUB
, VT
))
5394 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5395 if (char V
= isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
,
5396 ForCodeSize
, Depth
+ 1))
5398 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5399 return isNegatibleForFree(Op
.getOperand(1), DAG
, LegalOperations
,
5400 ForCodeSize
, Depth
+ 1);
5402 // We can't turn -(A-B) into B-A when we honor signed zeros.
5403 if (!Options
.NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
5406 // fold (fneg (fsub A, B)) -> (fsub B, A)
5411 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5412 if (char V
= isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
,
5413 ForCodeSize
, Depth
+ 1))
5416 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5417 if (auto *C
= isConstOrConstSplatFP(Op
.getOperand(1)))
5418 if (C
->isExactlyValue(2.0) && Op
.getOpcode() == ISD::FMUL
)
5421 return isNegatibleForFree(Op
.getOperand(1), DAG
, LegalOperations
,
5422 ForCodeSize
, Depth
+ 1);
5426 if (!Options
.NoSignedZerosFPMath
&& !Flags
.hasNoSignedZeros())
5429 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5430 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5431 char V2
= isNegatibleForFree(Op
.getOperand(2), DAG
, LegalOperations
,
5432 ForCodeSize
, Depth
+ 1);
5436 // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5437 char V0
= isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
,
5438 ForCodeSize
, Depth
+ 1);
5439 char V1
= isNegatibleForFree(Op
.getOperand(1), DAG
, LegalOperations
,
5440 ForCodeSize
, Depth
+ 1);
5441 char V01
= std::max(V0
, V1
);
5442 return V01
? std::max(V01
, V2
) : 0;
5445 case ISD::FP_EXTEND
:
5448 return isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
,
5449 ForCodeSize
, Depth
+ 1);
5455 SDValue
TargetLowering::getNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
5456 bool LegalOperations
,
5458 unsigned Depth
) const {
5459 // fneg is removable even if it has multiple uses.
5460 if (Op
.getOpcode() == ISD::FNEG
)
5461 return Op
.getOperand(0);
5463 assert(Depth
<= SelectionDAG::MaxRecursionDepth
&&
5464 "getNegatedExpression doesn't match isNegatibleForFree");
5465 const SDNodeFlags Flags
= Op
->getFlags();
5467 switch (Op
.getOpcode()) {
5468 case ISD::ConstantFP
: {
5469 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
5471 return DAG
.getConstantFP(V
, SDLoc(Op
), Op
.getValueType());
5473 case ISD::BUILD_VECTOR
: {
5474 SmallVector
<SDValue
, 4> Ops
;
5475 for (SDValue C
: Op
->op_values()) {
5480 APFloat V
= cast
<ConstantFPSDNode
>(C
)->getValueAPF();
5482 Ops
.push_back(DAG
.getConstantFP(V
, SDLoc(Op
), C
.getValueType()));
5484 return DAG
.getBuildVector(Op
.getValueType(), SDLoc(Op
), Ops
);
5487 assert((DAG
.getTarget().Options
.NoSignedZerosFPMath
||
5488 Flags
.hasNoSignedZeros()) &&
5489 "Expected NSZ fp-flag");
5491 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5492 if (isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
, ForCodeSize
,
5494 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
5495 getNegatedExpression(Op
.getOperand(0), DAG
,
5496 LegalOperations
, ForCodeSize
,
5498 Op
.getOperand(1), Flags
);
5499 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5500 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
5501 getNegatedExpression(Op
.getOperand(1), DAG
,
5502 LegalOperations
, ForCodeSize
,
5504 Op
.getOperand(0), Flags
);
5506 // fold (fneg (fsub 0, B)) -> B
5507 if (ConstantFPSDNode
*N0CFP
=
5508 isConstOrConstSplatFP(Op
.getOperand(0), /*AllowUndefs*/ true))
5509 if (N0CFP
->isZero())
5510 return Op
.getOperand(1);
5512 // fold (fneg (fsub A, B)) -> (fsub B, A)
5513 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
5514 Op
.getOperand(1), Op
.getOperand(0), Flags
);
5518 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5519 if (isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
, ForCodeSize
,
5521 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
5522 getNegatedExpression(Op
.getOperand(0), DAG
,
5523 LegalOperations
, ForCodeSize
,
5525 Op
.getOperand(1), Flags
);
5527 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5529 Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(), Op
.getOperand(0),
5530 getNegatedExpression(Op
.getOperand(1), DAG
, LegalOperations
,
5531 ForCodeSize
, Depth
+ 1),
5536 assert((DAG
.getTarget().Options
.NoSignedZerosFPMath
||
5537 Flags
.hasNoSignedZeros()) &&
5538 "Expected NSZ fp-flag");
5540 SDValue Neg2
= getNegatedExpression(Op
.getOperand(2), DAG
, LegalOperations
,
5541 ForCodeSize
, Depth
+ 1);
5543 char V0
= isNegatibleForFree(Op
.getOperand(0), DAG
, LegalOperations
,
5544 ForCodeSize
, Depth
+ 1);
5545 char V1
= isNegatibleForFree(Op
.getOperand(1), DAG
, LegalOperations
,
5546 ForCodeSize
, Depth
+ 1);
5548 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5549 SDValue Neg0
= getNegatedExpression(
5550 Op
.getOperand(0), DAG
, LegalOperations
, ForCodeSize
, Depth
+ 1);
5551 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(), Neg0
,
5552 Op
.getOperand(1), Neg2
, Flags
);
5555 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5556 SDValue Neg1
= getNegatedExpression(Op
.getOperand(1), DAG
, LegalOperations
,
5557 ForCodeSize
, Depth
+ 1);
5558 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
5559 Op
.getOperand(0), Neg1
, Neg2
, Flags
);
5562 case ISD::FP_EXTEND
:
5564 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
5565 getNegatedExpression(Op
.getOperand(0), DAG
,
5566 LegalOperations
, ForCodeSize
,
5569 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(Op
), Op
.getValueType(),
5570 getNegatedExpression(Op
.getOperand(0), DAG
,
5571 LegalOperations
, ForCodeSize
,
5576 llvm_unreachable("Unknown code");
5579 //===----------------------------------------------------------------------===//
5580 // Legalization Utilities
5581 //===----------------------------------------------------------------------===//
5583 bool TargetLowering::expandMUL_LOHI(unsigned Opcode
, EVT VT
, SDLoc dl
,
5584 SDValue LHS
, SDValue RHS
,
5585 SmallVectorImpl
<SDValue
> &Result
,
5586 EVT HiLoVT
, SelectionDAG
&DAG
,
5587 MulExpansionKind Kind
, SDValue LL
,
5588 SDValue LH
, SDValue RL
, SDValue RH
) const {
5589 assert(Opcode
== ISD::MUL
|| Opcode
== ISD::UMUL_LOHI
||
5590 Opcode
== ISD::SMUL_LOHI
);
5592 bool HasMULHS
= (Kind
== MulExpansionKind::Always
) ||
5593 isOperationLegalOrCustom(ISD::MULHS
, HiLoVT
);
5594 bool HasMULHU
= (Kind
== MulExpansionKind::Always
) ||
5595 isOperationLegalOrCustom(ISD::MULHU
, HiLoVT
);
5596 bool HasSMUL_LOHI
= (Kind
== MulExpansionKind::Always
) ||
5597 isOperationLegalOrCustom(ISD::SMUL_LOHI
, HiLoVT
);
5598 bool HasUMUL_LOHI
= (Kind
== MulExpansionKind::Always
) ||
5599 isOperationLegalOrCustom(ISD::UMUL_LOHI
, HiLoVT
);
5601 if (!HasMULHU
&& !HasMULHS
&& !HasUMUL_LOHI
&& !HasSMUL_LOHI
)
5604 unsigned OuterBitSize
= VT
.getScalarSizeInBits();
5605 unsigned InnerBitSize
= HiLoVT
.getScalarSizeInBits();
5606 unsigned LHSSB
= DAG
.ComputeNumSignBits(LHS
);
5607 unsigned RHSSB
= DAG
.ComputeNumSignBits(RHS
);
5609 // LL, LH, RL, and RH must be either all NULL or all set to a value.
5610 assert((LL
.getNode() && LH
.getNode() && RL
.getNode() && RH
.getNode()) ||
5611 (!LL
.getNode() && !LH
.getNode() && !RL
.getNode() && !RH
.getNode()));
5613 SDVTList VTs
= DAG
.getVTList(HiLoVT
, HiLoVT
);
5614 auto MakeMUL_LOHI
= [&](SDValue L
, SDValue R
, SDValue
&Lo
, SDValue
&Hi
,
5615 bool Signed
) -> bool {
5616 if ((Signed
&& HasSMUL_LOHI
) || (!Signed
&& HasUMUL_LOHI
)) {
5617 Lo
= DAG
.getNode(Signed
? ISD::SMUL_LOHI
: ISD::UMUL_LOHI
, dl
, VTs
, L
, R
);
5618 Hi
= SDValue(Lo
.getNode(), 1);
5621 if ((Signed
&& HasMULHS
) || (!Signed
&& HasMULHU
)) {
5622 Lo
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, L
, R
);
5623 Hi
= DAG
.getNode(Signed
? ISD::MULHS
: ISD::MULHU
, dl
, HiLoVT
, L
, R
);
5631 if (!LL
.getNode() && !RL
.getNode() &&
5632 isOperationLegalOrCustom(ISD::TRUNCATE
, HiLoVT
)) {
5633 LL
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, LHS
);
5634 RL
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, RHS
);
5640 APInt HighMask
= APInt::getHighBitsSet(OuterBitSize
, InnerBitSize
);
5641 if (DAG
.MaskedValueIsZero(LHS
, HighMask
) &&
5642 DAG
.MaskedValueIsZero(RHS
, HighMask
)) {
5643 // The inputs are both zero-extended.
5644 if (MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, false)) {
5645 Result
.push_back(Lo
);
5646 Result
.push_back(Hi
);
5647 if (Opcode
!= ISD::MUL
) {
5648 SDValue Zero
= DAG
.getConstant(0, dl
, HiLoVT
);
5649 Result
.push_back(Zero
);
5650 Result
.push_back(Zero
);
5656 if (!VT
.isVector() && Opcode
== ISD::MUL
&& LHSSB
> InnerBitSize
&&
5657 RHSSB
> InnerBitSize
) {
5658 // The input values are both sign-extended.
5659 // TODO non-MUL case?
5660 if (MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, true)) {
5661 Result
.push_back(Lo
);
5662 Result
.push_back(Hi
);
5667 unsigned ShiftAmount
= OuterBitSize
- InnerBitSize
;
5668 EVT ShiftAmountTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5669 if (APInt::getMaxValue(ShiftAmountTy
.getSizeInBits()).ult(ShiftAmount
)) {
5670 // FIXME getShiftAmountTy does not always return a sensible result when VT
5671 // is an illegal type, and so the type may be too small to fit the shift
5672 // amount. Override it with i32. The shift will have to be legalized.
5673 ShiftAmountTy
= MVT::i32
;
5675 SDValue Shift
= DAG
.getConstant(ShiftAmount
, dl
, ShiftAmountTy
);
5677 if (!LH
.getNode() && !RH
.getNode() &&
5678 isOperationLegalOrCustom(ISD::SRL
, VT
) &&
5679 isOperationLegalOrCustom(ISD::TRUNCATE
, HiLoVT
)) {
5680 LH
= DAG
.getNode(ISD::SRL
, dl
, VT
, LHS
, Shift
);
5681 LH
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, LH
);
5682 RH
= DAG
.getNode(ISD::SRL
, dl
, VT
, RHS
, Shift
);
5683 RH
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, RH
);
5689 if (!MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, false))
5692 Result
.push_back(Lo
);
5694 if (Opcode
== ISD::MUL
) {
5695 RH
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, LL
, RH
);
5696 LH
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, LH
, RL
);
5697 Hi
= DAG
.getNode(ISD::ADD
, dl
, HiLoVT
, Hi
, RH
);
5698 Hi
= DAG
.getNode(ISD::ADD
, dl
, HiLoVT
, Hi
, LH
);
5699 Result
.push_back(Hi
);
5703 // Compute the full width result.
5704 auto Merge
= [&](SDValue Lo
, SDValue Hi
) -> SDValue
{
5705 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Lo
);
5706 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Hi
);
5707 Hi
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, Shift
);
5708 return DAG
.getNode(ISD::OR
, dl
, VT
, Lo
, Hi
);
5711 SDValue Next
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Hi
);
5712 if (!MakeMUL_LOHI(LL
, RH
, Lo
, Hi
, false))
5715 // This is effectively the add part of a multiply-add of half-sized operands,
5716 // so it cannot overflow.
5717 Next
= DAG
.getNode(ISD::ADD
, dl
, VT
, Next
, Merge(Lo
, Hi
));
5719 if (!MakeMUL_LOHI(LH
, RL
, Lo
, Hi
, false))
5722 SDValue Zero
= DAG
.getConstant(0, dl
, HiLoVT
);
5723 EVT BoolType
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5725 bool UseGlue
= (isOperationLegalOrCustom(ISD::ADDC
, VT
) &&
5726 isOperationLegalOrCustom(ISD::ADDE
, VT
));
5728 Next
= DAG
.getNode(ISD::ADDC
, dl
, DAG
.getVTList(VT
, MVT::Glue
), Next
,
5731 Next
= DAG
.getNode(ISD::ADDCARRY
, dl
, DAG
.getVTList(VT
, BoolType
), Next
,
5732 Merge(Lo
, Hi
), DAG
.getConstant(0, dl
, BoolType
));
5734 SDValue Carry
= Next
.getValue(1);
5735 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
5736 Next
= DAG
.getNode(ISD::SRL
, dl
, VT
, Next
, Shift
);
5738 if (!MakeMUL_LOHI(LH
, RH
, Lo
, Hi
, Opcode
== ISD::SMUL_LOHI
))
5742 Hi
= DAG
.getNode(ISD::ADDE
, dl
, DAG
.getVTList(HiLoVT
, MVT::Glue
), Hi
, Zero
,
5745 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, DAG
.getVTList(HiLoVT
, BoolType
), Hi
,
5748 Next
= DAG
.getNode(ISD::ADD
, dl
, VT
, Next
, Merge(Lo
, Hi
));
5750 if (Opcode
== ISD::SMUL_LOHI
) {
5751 SDValue NextSub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Next
,
5752 DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, RL
));
5753 Next
= DAG
.getSelectCC(dl
, LH
, Zero
, NextSub
, Next
, ISD::SETLT
);
5755 NextSub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Next
,
5756 DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, LL
));
5757 Next
= DAG
.getSelectCC(dl
, RH
, Zero
, NextSub
, Next
, ISD::SETLT
);
5760 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
5761 Next
= DAG
.getNode(ISD::SRL
, dl
, VT
, Next
, Shift
);
5762 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
5766 bool TargetLowering::expandMUL(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
, EVT HiLoVT
,
5767 SelectionDAG
&DAG
, MulExpansionKind Kind
,
5768 SDValue LL
, SDValue LH
, SDValue RL
,
5770 SmallVector
<SDValue
, 2> Result
;
5771 bool Ok
= expandMUL_LOHI(N
->getOpcode(), N
->getValueType(0), N
,
5772 N
->getOperand(0), N
->getOperand(1), Result
, HiLoVT
,
5773 DAG
, Kind
, LL
, LH
, RL
, RH
);
5775 assert(Result
.size() == 2);
5782 bool TargetLowering::expandFunnelShift(SDNode
*Node
, SDValue
&Result
,
5783 SelectionDAG
&DAG
) const {
5784 EVT VT
= Node
->getValueType(0);
5786 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SHL
, VT
) ||
5787 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
5788 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
5789 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
)))
5792 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5793 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5794 SDValue X
= Node
->getOperand(0);
5795 SDValue Y
= Node
->getOperand(1);
5796 SDValue Z
= Node
->getOperand(2);
5798 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
5799 bool IsFSHL
= Node
->getOpcode() == ISD::FSHL
;
5800 SDLoc
DL(SDValue(Node
, 0));
5802 EVT ShVT
= Z
.getValueType();
5803 SDValue BitWidthC
= DAG
.getConstant(EltSizeInBits
, DL
, ShVT
);
5804 SDValue Zero
= DAG
.getConstant(0, DL
, ShVT
);
5807 if (isPowerOf2_32(EltSizeInBits
)) {
5808 SDValue Mask
= DAG
.getConstant(EltSizeInBits
- 1, DL
, ShVT
);
5809 ShAmt
= DAG
.getNode(ISD::AND
, DL
, ShVT
, Z
, Mask
);
5811 ShAmt
= DAG
.getNode(ISD::UREM
, DL
, ShVT
, Z
, BitWidthC
);
5814 SDValue InvShAmt
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, ShAmt
);
5815 SDValue ShX
= DAG
.getNode(ISD::SHL
, DL
, VT
, X
, IsFSHL
? ShAmt
: InvShAmt
);
5816 SDValue ShY
= DAG
.getNode(ISD::SRL
, DL
, VT
, Y
, IsFSHL
? InvShAmt
: ShAmt
);
5817 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShX
, ShY
);
5819 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5820 // and that is undefined. We must compare and select to avoid UB.
5821 EVT CCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), ShVT
);
5823 // For fshl, 0-shift returns the 1st arg (X).
5824 // For fshr, 0-shift returns the 2nd arg (Y).
5825 SDValue IsZeroShift
= DAG
.getSetCC(DL
, CCVT
, ShAmt
, Zero
, ISD::SETEQ
);
5826 Result
= DAG
.getSelect(DL
, VT
, IsZeroShift
, IsFSHL
? X
: Y
, Or
);
5830 // TODO: Merge with expandFunnelShift.
5831 bool TargetLowering::expandROT(SDNode
*Node
, SDValue
&Result
,
5832 SelectionDAG
&DAG
) const {
5833 EVT VT
= Node
->getValueType(0);
5834 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
5835 bool IsLeft
= Node
->getOpcode() == ISD::ROTL
;
5836 SDValue Op0
= Node
->getOperand(0);
5837 SDValue Op1
= Node
->getOperand(1);
5838 SDLoc
DL(SDValue(Node
, 0));
5840 EVT ShVT
= Op1
.getValueType();
5841 SDValue BitWidthC
= DAG
.getConstant(EltSizeInBits
, DL
, ShVT
);
5843 // If a rotate in the other direction is legal, use it.
5844 unsigned RevRot
= IsLeft
? ISD::ROTR
: ISD::ROTL
;
5845 if (isOperationLegal(RevRot
, VT
)) {
5846 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, Op1
);
5847 Result
= DAG
.getNode(RevRot
, DL
, VT
, Op0
, Sub
);
5851 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SHL
, VT
) ||
5852 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
5853 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
5854 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
) ||
5855 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
)))
5859 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5860 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5862 assert(isPowerOf2_32(EltSizeInBits
) && EltSizeInBits
> 1 &&
5863 "Expecting the type bitwidth to be a power of 2");
5864 unsigned ShOpc
= IsLeft
? ISD::SHL
: ISD::SRL
;
5865 unsigned HsOpc
= IsLeft
? ISD::SRL
: ISD::SHL
;
5866 SDValue BitWidthMinusOneC
= DAG
.getConstant(EltSizeInBits
- 1, DL
, ShVT
);
5867 SDValue NegOp1
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, Op1
);
5868 SDValue And0
= DAG
.getNode(ISD::AND
, DL
, ShVT
, Op1
, BitWidthMinusOneC
);
5869 SDValue And1
= DAG
.getNode(ISD::AND
, DL
, ShVT
, NegOp1
, BitWidthMinusOneC
);
5870 Result
= DAG
.getNode(ISD::OR
, DL
, VT
, DAG
.getNode(ShOpc
, DL
, VT
, Op0
, And0
),
5871 DAG
.getNode(HsOpc
, DL
, VT
, Op0
, And1
));
5875 bool TargetLowering::expandFP_TO_SINT(SDNode
*Node
, SDValue
&Result
,
5876 SelectionDAG
&DAG
) const {
5877 unsigned OpNo
= Node
->isStrictFPOpcode() ? 1 : 0;
5878 SDValue Src
= Node
->getOperand(OpNo
);
5879 EVT SrcVT
= Src
.getValueType();
5880 EVT DstVT
= Node
->getValueType(0);
5881 SDLoc
dl(SDValue(Node
, 0));
5883 // FIXME: Only f32 to i64 conversions are supported.
5884 if (SrcVT
!= MVT::f32
|| DstVT
!= MVT::i64
)
5887 if (Node
->isStrictFPOpcode())
5888 // When a NaN is converted to an integer a trap is allowed. We can't
5889 // use this expansion here because it would eliminate that trap. Other
5890 // traps are also allowed and cannot be eliminated. See
5891 // IEEE 754-2008 sec 5.8.
5894 // Expand f32 -> i64 conversion
5895 // This algorithm comes from compiler-rt's implementation of fixsfdi:
5896 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5897 unsigned SrcEltBits
= SrcVT
.getScalarSizeInBits();
5898 EVT IntVT
= SrcVT
.changeTypeToInteger();
5899 EVT IntShVT
= getShiftAmountTy(IntVT
, DAG
.getDataLayout());
5901 SDValue ExponentMask
= DAG
.getConstant(0x7F800000, dl
, IntVT
);
5902 SDValue ExponentLoBit
= DAG
.getConstant(23, dl
, IntVT
);
5903 SDValue Bias
= DAG
.getConstant(127, dl
, IntVT
);
5904 SDValue SignMask
= DAG
.getConstant(APInt::getSignMask(SrcEltBits
), dl
, IntVT
);
5905 SDValue SignLowBit
= DAG
.getConstant(SrcEltBits
- 1, dl
, IntVT
);
5906 SDValue MantissaMask
= DAG
.getConstant(0x007FFFFF, dl
, IntVT
);
5908 SDValue Bits
= DAG
.getNode(ISD::BITCAST
, dl
, IntVT
, Src
);
5910 SDValue ExponentBits
= DAG
.getNode(
5911 ISD::SRL
, dl
, IntVT
, DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, ExponentMask
),
5912 DAG
.getZExtOrTrunc(ExponentLoBit
, dl
, IntShVT
));
5913 SDValue Exponent
= DAG
.getNode(ISD::SUB
, dl
, IntVT
, ExponentBits
, Bias
);
5915 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, IntVT
,
5916 DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, SignMask
),
5917 DAG
.getZExtOrTrunc(SignLowBit
, dl
, IntShVT
));
5918 Sign
= DAG
.getSExtOrTrunc(Sign
, dl
, DstVT
);
5920 SDValue R
= DAG
.getNode(ISD::OR
, dl
, IntVT
,
5921 DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, MantissaMask
),
5922 DAG
.getConstant(0x00800000, dl
, IntVT
));
5924 R
= DAG
.getZExtOrTrunc(R
, dl
, DstVT
);
5926 R
= DAG
.getSelectCC(
5927 dl
, Exponent
, ExponentLoBit
,
5928 DAG
.getNode(ISD::SHL
, dl
, DstVT
, R
,
5930 DAG
.getNode(ISD::SUB
, dl
, IntVT
, Exponent
, ExponentLoBit
),
5932 DAG
.getNode(ISD::SRL
, dl
, DstVT
, R
,
5934 DAG
.getNode(ISD::SUB
, dl
, IntVT
, ExponentLoBit
, Exponent
),
5938 SDValue Ret
= DAG
.getNode(ISD::SUB
, dl
, DstVT
,
5939 DAG
.getNode(ISD::XOR
, dl
, DstVT
, R
, Sign
), Sign
);
5941 Result
= DAG
.getSelectCC(dl
, Exponent
, DAG
.getConstant(0, dl
, IntVT
),
5942 DAG
.getConstant(0, dl
, DstVT
), Ret
, ISD::SETLT
);
5946 bool TargetLowering::expandFP_TO_UINT(SDNode
*Node
, SDValue
&Result
,
5948 SelectionDAG
&DAG
) const {
5949 SDLoc
dl(SDValue(Node
, 0));
5950 unsigned OpNo
= Node
->isStrictFPOpcode() ? 1 : 0;
5951 SDValue Src
= Node
->getOperand(OpNo
);
5953 EVT SrcVT
= Src
.getValueType();
5954 EVT DstVT
= Node
->getValueType(0);
5956 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), SrcVT
);
5958 // Only expand vector types if we have the appropriate vector bit operations.
5959 unsigned SIntOpcode
= Node
->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT
:
5961 if (DstVT
.isVector() && (!isOperationLegalOrCustom(SIntOpcode
, DstVT
) ||
5962 !isOperationLegalOrCustomOrPromote(ISD::XOR
, SrcVT
)))
5965 // If the maximum float value is smaller then the signed integer range,
5966 // the destination signmask can't be represented by the float, so we can
5967 // just use FP_TO_SINT directly.
5968 const fltSemantics
&APFSem
= DAG
.EVTToAPFloatSemantics(SrcVT
);
5969 APFloat
APF(APFSem
, APInt::getNullValue(SrcVT
.getScalarSizeInBits()));
5970 APInt SignMask
= APInt::getSignMask(DstVT
.getScalarSizeInBits());
5971 if (APFloat::opOverflow
&
5972 APF
.convertFromAPInt(SignMask
, false, APFloat::rmNearestTiesToEven
)) {
5973 if (Node
->isStrictFPOpcode()) {
5974 Result
= DAG
.getNode(ISD::STRICT_FP_TO_SINT
, dl
, { DstVT
, MVT::Other
},
5975 { Node
->getOperand(0), Src
});
5976 Chain
= Result
.getValue(1);
5978 Result
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Src
);
5982 SDValue Cst
= DAG
.getConstantFP(APF
, dl
, SrcVT
);
5983 SDValue Sel
= DAG
.getSetCC(dl
, SetCCVT
, Src
, Cst
, ISD::SETLT
);
5985 bool Strict
= Node
->isStrictFPOpcode() ||
5986 shouldUseStrictFP_TO_INT(SrcVT
, DstVT
, /*IsSigned*/ false);
5989 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5990 // signmask then offset (the result of which should be fully representable).
5991 // Sel = Src < 0x8000000000000000
5992 // Val = select Sel, Src, Src - 0x8000000000000000
5993 // Ofs = select Sel, 0, 0x8000000000000000
5994 // Result = fp_to_sint(Val) ^ Ofs
5996 // TODO: Should any fast-math-flags be set for the FSUB?
5998 if (Node
->isStrictFPOpcode())
5999 SrcBiased
= DAG
.getNode(ISD::STRICT_FSUB
, dl
, { SrcVT
, MVT::Other
},
6000 { Node
->getOperand(0), Src
, Cst
});
6002 SrcBiased
= DAG
.getNode(ISD::FSUB
, dl
, SrcVT
, Src
, Cst
);
6003 SDValue Val
= DAG
.getSelect(dl
, SrcVT
, Sel
, Src
, SrcBiased
);
6004 SDValue Ofs
= DAG
.getSelect(dl
, DstVT
, Sel
, DAG
.getConstant(0, dl
, DstVT
),
6005 DAG
.getConstant(SignMask
, dl
, DstVT
));
6007 if (Node
->isStrictFPOpcode()) {
6008 SInt
= DAG
.getNode(ISD::STRICT_FP_TO_SINT
, dl
, { DstVT
, MVT::Other
},
6009 { SrcBiased
.getValue(1), Val
});
6010 Chain
= SInt
.getValue(1);
6012 SInt
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Val
);
6013 Result
= DAG
.getNode(ISD::XOR
, dl
, DstVT
, SInt
, Ofs
);
6015 // Expand based on maximum range of FP_TO_SINT:
6016 // True = fp_to_sint(Src)
6017 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6018 // Result = select (Src < 0x8000000000000000), True, False
6020 SDValue True
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Src
);
6021 // TODO: Should any fast-math-flags be set for the FSUB?
6022 SDValue False
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
,
6023 DAG
.getNode(ISD::FSUB
, dl
, SrcVT
, Src
, Cst
));
6024 False
= DAG
.getNode(ISD::XOR
, dl
, DstVT
, False
,
6025 DAG
.getConstant(SignMask
, dl
, DstVT
));
6026 Result
= DAG
.getSelect(dl
, DstVT
, Sel
, True
, False
);
6031 bool TargetLowering::expandUINT_TO_FP(SDNode
*Node
, SDValue
&Result
,
6032 SelectionDAG
&DAG
) const {
6033 SDValue Src
= Node
->getOperand(0);
6034 EVT SrcVT
= Src
.getValueType();
6035 EVT DstVT
= Node
->getValueType(0);
6037 if (SrcVT
.getScalarType() != MVT::i64
)
6040 SDLoc
dl(SDValue(Node
, 0));
6041 EVT ShiftVT
= getShiftAmountTy(SrcVT
, DAG
.getDataLayout());
6043 if (DstVT
.getScalarType() == MVT::f32
) {
6044 // Only expand vector types if we have the appropriate vector bit
6046 if (SrcVT
.isVector() &&
6047 (!isOperationLegalOrCustom(ISD::SRL
, SrcVT
) ||
6048 !isOperationLegalOrCustom(ISD::FADD
, DstVT
) ||
6049 !isOperationLegalOrCustom(ISD::SINT_TO_FP
, SrcVT
) ||
6050 !isOperationLegalOrCustomOrPromote(ISD::OR
, SrcVT
) ||
6051 !isOperationLegalOrCustomOrPromote(ISD::AND
, SrcVT
)))
6054 // For unsigned conversions, convert them to signed conversions using the
6055 // algorithm from the x86_64 __floatundidf in compiler_rt.
6056 SDValue Fast
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DstVT
, Src
);
6058 SDValue ShiftConst
= DAG
.getConstant(1, dl
, ShiftVT
);
6059 SDValue Shr
= DAG
.getNode(ISD::SRL
, dl
, SrcVT
, Src
, ShiftConst
);
6060 SDValue AndConst
= DAG
.getConstant(1, dl
, SrcVT
);
6061 SDValue And
= DAG
.getNode(ISD::AND
, dl
, SrcVT
, Src
, AndConst
);
6062 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, And
, Shr
);
6064 SDValue SignCvt
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DstVT
, Or
);
6065 SDValue Slow
= DAG
.getNode(ISD::FADD
, dl
, DstVT
, SignCvt
, SignCvt
);
6067 // TODO: This really should be implemented using a branch rather than a
6068 // select. We happen to get lucky and machinesink does the right
6069 // thing most of the time. This would be a good candidate for a
6070 // pseudo-op, or, even better, for whole-function isel.
6072 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), SrcVT
);
6074 SDValue SignBitTest
= DAG
.getSetCC(
6075 dl
, SetCCVT
, Src
, DAG
.getConstant(0, dl
, SrcVT
), ISD::SETLT
);
6076 Result
= DAG
.getSelect(dl
, DstVT
, SignBitTest
, Slow
, Fast
);
6080 if (DstVT
.getScalarType() == MVT::f64
) {
6081 // Only expand vector types if we have the appropriate vector bit
6083 if (SrcVT
.isVector() &&
6084 (!isOperationLegalOrCustom(ISD::SRL
, SrcVT
) ||
6085 !isOperationLegalOrCustom(ISD::FADD
, DstVT
) ||
6086 !isOperationLegalOrCustom(ISD::FSUB
, DstVT
) ||
6087 !isOperationLegalOrCustomOrPromote(ISD::OR
, SrcVT
) ||
6088 !isOperationLegalOrCustomOrPromote(ISD::AND
, SrcVT
)))
6091 // Implementation of unsigned i64 to f64 following the algorithm in
6092 // __floatundidf in compiler_rt. This implementation has the advantage
6093 // of performing rounding correctly, both in the default rounding mode
6094 // and in all alternate rounding modes.
6095 SDValue TwoP52
= DAG
.getConstant(UINT64_C(0x4330000000000000), dl
, SrcVT
);
6096 SDValue TwoP84PlusTwoP52
= DAG
.getConstantFP(
6097 BitsToDouble(UINT64_C(0x4530000000100000)), dl
, DstVT
);
6098 SDValue TwoP84
= DAG
.getConstant(UINT64_C(0x4530000000000000), dl
, SrcVT
);
6099 SDValue LoMask
= DAG
.getConstant(UINT64_C(0x00000000FFFFFFFF), dl
, SrcVT
);
6100 SDValue HiShift
= DAG
.getConstant(32, dl
, ShiftVT
);
6102 SDValue Lo
= DAG
.getNode(ISD::AND
, dl
, SrcVT
, Src
, LoMask
);
6103 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, SrcVT
, Src
, HiShift
);
6104 SDValue LoOr
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, Lo
, TwoP52
);
6105 SDValue HiOr
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, Hi
, TwoP84
);
6106 SDValue LoFlt
= DAG
.getBitcast(DstVT
, LoOr
);
6107 SDValue HiFlt
= DAG
.getBitcast(DstVT
, HiOr
);
6108 SDValue HiSub
= DAG
.getNode(ISD::FSUB
, dl
, DstVT
, HiFlt
, TwoP84PlusTwoP52
);
6109 Result
= DAG
.getNode(ISD::FADD
, dl
, DstVT
, LoFlt
, HiSub
);
6116 SDValue
TargetLowering::expandFMINNUM_FMAXNUM(SDNode
*Node
,
6117 SelectionDAG
&DAG
) const {
6119 unsigned NewOp
= Node
->getOpcode() == ISD::FMINNUM
?
6120 ISD::FMINNUM_IEEE
: ISD::FMAXNUM_IEEE
;
6121 EVT VT
= Node
->getValueType(0);
6122 if (isOperationLegalOrCustom(NewOp
, VT
)) {
6123 SDValue Quiet0
= Node
->getOperand(0);
6124 SDValue Quiet1
= Node
->getOperand(1);
6126 if (!Node
->getFlags().hasNoNaNs()) {
6127 // Insert canonicalizes if it's possible we need to quiet to get correct
6129 if (!DAG
.isKnownNeverSNaN(Quiet0
)) {
6130 Quiet0
= DAG
.getNode(ISD::FCANONICALIZE
, dl
, VT
, Quiet0
,
6133 if (!DAG
.isKnownNeverSNaN(Quiet1
)) {
6134 Quiet1
= DAG
.getNode(ISD::FCANONICALIZE
, dl
, VT
, Quiet1
,
6139 return DAG
.getNode(NewOp
, dl
, VT
, Quiet0
, Quiet1
, Node
->getFlags());
6142 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6143 // instead if there are no NaNs.
6144 if (Node
->getFlags().hasNoNaNs()) {
6145 unsigned IEEE2018Op
=
6146 Node
->getOpcode() == ISD::FMINNUM
? ISD::FMINIMUM
: ISD::FMAXIMUM
;
6147 if (isOperationLegalOrCustom(IEEE2018Op
, VT
)) {
6148 return DAG
.getNode(IEEE2018Op
, dl
, VT
, Node
->getOperand(0),
6149 Node
->getOperand(1), Node
->getFlags());
6156 bool TargetLowering::expandCTPOP(SDNode
*Node
, SDValue
&Result
,
6157 SelectionDAG
&DAG
) const {
6159 EVT VT
= Node
->getValueType(0);
6160 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6161 SDValue Op
= Node
->getOperand(0);
6162 unsigned Len
= VT
.getScalarSizeInBits();
6163 assert(VT
.isInteger() && "CTPOP not implemented for this type.");
6165 // TODO: Add support for irregular type lengths.
6166 if (!(Len
<= 128 && Len
% 8 == 0))
6169 // Only expand vector types if we have the appropriate vector bit operations.
6170 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::ADD
, VT
) ||
6171 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
6172 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
6173 (Len
!= 8 && !isOperationLegalOrCustom(ISD::MUL
, VT
)) ||
6174 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
)))
6177 // This is the "best" algorithm from
6178 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6180 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x55)), dl
, VT
);
6182 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x33)), dl
, VT
);
6184 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x0F)), dl
, VT
);
6186 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x01)), dl
, VT
);
6188 // v = v - ((v >> 1) & 0x55555555...)
6189 Op
= DAG
.getNode(ISD::SUB
, dl
, VT
, Op
,
6190 DAG
.getNode(ISD::AND
, dl
, VT
,
6191 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
6192 DAG
.getConstant(1, dl
, ShVT
)),
6194 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6195 Op
= DAG
.getNode(ISD::ADD
, dl
, VT
, DAG
.getNode(ISD::AND
, dl
, VT
, Op
, Mask33
),
6196 DAG
.getNode(ISD::AND
, dl
, VT
,
6197 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
6198 DAG
.getConstant(2, dl
, ShVT
)),
6200 // v = (v + (v >> 4)) & 0x0F0F0F0F...
6201 Op
= DAG
.getNode(ISD::AND
, dl
, VT
,
6202 DAG
.getNode(ISD::ADD
, dl
, VT
, Op
,
6203 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
6204 DAG
.getConstant(4, dl
, ShVT
))),
6206 // v = (v * 0x01010101...) >> (Len - 8)
6209 DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::MUL
, dl
, VT
, Op
, Mask01
),
6210 DAG
.getConstant(Len
- 8, dl
, ShVT
));
6216 bool TargetLowering::expandCTLZ(SDNode
*Node
, SDValue
&Result
,
6217 SelectionDAG
&DAG
) const {
6219 EVT VT
= Node
->getValueType(0);
6220 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6221 SDValue Op
= Node
->getOperand(0);
6222 unsigned NumBitsPerElt
= VT
.getScalarSizeInBits();
6224 // If the non-ZERO_UNDEF version is supported we can use that instead.
6225 if (Node
->getOpcode() == ISD::CTLZ_ZERO_UNDEF
&&
6226 isOperationLegalOrCustom(ISD::CTLZ
, VT
)) {
6227 Result
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Op
);
6231 // If the ZERO_UNDEF version is supported use that and handle the zero case.
6232 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
6234 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6235 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, dl
, VT
, Op
);
6236 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6237 SDValue SrcIsZero
= DAG
.getSetCC(dl
, SetCCVT
, Op
, Zero
, ISD::SETEQ
);
6238 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT
, SrcIsZero
,
6239 DAG
.getConstant(NumBitsPerElt
, dl
, VT
), CTLZ
);
6243 // Only expand vector types if we have the appropriate vector bit operations.
6244 if (VT
.isVector() && (!isPowerOf2_32(NumBitsPerElt
) ||
6245 !isOperationLegalOrCustom(ISD::CTPOP
, VT
) ||
6246 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
6247 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
)))
6250 // for now, we do this:
6251 // x = x | (x >> 1);
6252 // x = x | (x >> 2);
6254 // x = x | (x >>16);
6255 // x = x | (x >>32); // for 64-bit input
6256 // return popcount(~x);
6258 // Ref: "Hacker's Delight" by Henry Warren
6259 for (unsigned i
= 0; (1U << i
) <= (NumBitsPerElt
/ 2); ++i
) {
6260 SDValue Tmp
= DAG
.getConstant(1ULL << i
, dl
, ShVT
);
6261 Op
= DAG
.getNode(ISD::OR
, dl
, VT
, Op
,
6262 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, Tmp
));
6264 Op
= DAG
.getNOT(dl
, Op
, VT
);
6265 Result
= DAG
.getNode(ISD::CTPOP
, dl
, VT
, Op
);
6269 bool TargetLowering::expandCTTZ(SDNode
*Node
, SDValue
&Result
,
6270 SelectionDAG
&DAG
) const {
6272 EVT VT
= Node
->getValueType(0);
6273 SDValue Op
= Node
->getOperand(0);
6274 unsigned NumBitsPerElt
= VT
.getScalarSizeInBits();
6276 // If the non-ZERO_UNDEF version is supported we can use that instead.
6277 if (Node
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
&&
6278 isOperationLegalOrCustom(ISD::CTTZ
, VT
)) {
6279 Result
= DAG
.getNode(ISD::CTTZ
, dl
, VT
, Op
);
6283 // If the ZERO_UNDEF version is supported use that and handle the zero case.
6284 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
6286 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6287 SDValue CTTZ
= DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, dl
, VT
, Op
);
6288 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6289 SDValue SrcIsZero
= DAG
.getSetCC(dl
, SetCCVT
, Op
, Zero
, ISD::SETEQ
);
6290 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT
, SrcIsZero
,
6291 DAG
.getConstant(NumBitsPerElt
, dl
, VT
), CTTZ
);
6295 // Only expand vector types if we have the appropriate vector bit operations.
6296 if (VT
.isVector() && (!isPowerOf2_32(NumBitsPerElt
) ||
6297 (!isOperationLegalOrCustom(ISD::CTPOP
, VT
) &&
6298 !isOperationLegalOrCustom(ISD::CTLZ
, VT
)) ||
6299 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
6300 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
) ||
6301 !isOperationLegalOrCustomOrPromote(ISD::XOR
, VT
)))
6304 // for now, we use: { return popcount(~x & (x - 1)); }
6305 // unless the target has ctlz but not ctpop, in which case we use:
6306 // { return 32 - nlz(~x & (x-1)); }
6307 // Ref: "Hacker's Delight" by Henry Warren
6308 SDValue Tmp
= DAG
.getNode(
6309 ISD::AND
, dl
, VT
, DAG
.getNOT(dl
, Op
, VT
),
6310 DAG
.getNode(ISD::SUB
, dl
, VT
, Op
, DAG
.getConstant(1, dl
, VT
)));
6312 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6313 if (isOperationLegal(ISD::CTLZ
, VT
) && !isOperationLegal(ISD::CTPOP
, VT
)) {
6315 DAG
.getNode(ISD::SUB
, dl
, VT
, DAG
.getConstant(NumBitsPerElt
, dl
, VT
),
6316 DAG
.getNode(ISD::CTLZ
, dl
, VT
, Tmp
));
6320 Result
= DAG
.getNode(ISD::CTPOP
, dl
, VT
, Tmp
);
6324 bool TargetLowering::expandABS(SDNode
*N
, SDValue
&Result
,
6325 SelectionDAG
&DAG
) const {
6327 EVT VT
= N
->getValueType(0);
6328 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6329 SDValue Op
= N
->getOperand(0);
6331 // Only expand vector types if we have the appropriate vector operations.
6332 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SRA
, VT
) ||
6333 !isOperationLegalOrCustom(ISD::ADD
, VT
) ||
6334 !isOperationLegalOrCustomOrPromote(ISD::XOR
, VT
)))
6338 DAG
.getNode(ISD::SRA
, dl
, VT
, Op
,
6339 DAG
.getConstant(VT
.getScalarSizeInBits() - 1, dl
, ShVT
));
6340 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, VT
, Op
, Shift
);
6341 Result
= DAG
.getNode(ISD::XOR
, dl
, VT
, Add
, Shift
);
6345 SDValue
TargetLowering::scalarizeVectorLoad(LoadSDNode
*LD
,
6346 SelectionDAG
&DAG
) const {
6348 SDValue Chain
= LD
->getChain();
6349 SDValue BasePTR
= LD
->getBasePtr();
6350 EVT SrcVT
= LD
->getMemoryVT();
6351 ISD::LoadExtType ExtType
= LD
->getExtensionType();
6353 unsigned NumElem
= SrcVT
.getVectorNumElements();
6355 EVT SrcEltVT
= SrcVT
.getScalarType();
6356 EVT DstEltVT
= LD
->getValueType(0).getScalarType();
6358 unsigned Stride
= SrcEltVT
.getSizeInBits() / 8;
6359 assert(SrcEltVT
.isByteSized());
6361 SmallVector
<SDValue
, 8> Vals
;
6362 SmallVector
<SDValue
, 8> LoadChains
;
6364 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
6365 SDValue ScalarLoad
=
6366 DAG
.getExtLoad(ExtType
, SL
, DstEltVT
, Chain
, BasePTR
,
6367 LD
->getPointerInfo().getWithOffset(Idx
* Stride
),
6368 SrcEltVT
, MinAlign(LD
->getAlignment(), Idx
* Stride
),
6369 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6371 BasePTR
= DAG
.getObjectPtrOffset(SL
, BasePTR
, Stride
);
6373 Vals
.push_back(ScalarLoad
.getValue(0));
6374 LoadChains
.push_back(ScalarLoad
.getValue(1));
6377 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoadChains
);
6378 SDValue Value
= DAG
.getBuildVector(LD
->getValueType(0), SL
, Vals
);
6380 return DAG
.getMergeValues({Value
, NewChain
}, SL
);
6383 SDValue
TargetLowering::scalarizeVectorStore(StoreSDNode
*ST
,
6384 SelectionDAG
&DAG
) const {
6387 SDValue Chain
= ST
->getChain();
6388 SDValue BasePtr
= ST
->getBasePtr();
6389 SDValue Value
= ST
->getValue();
6390 EVT StVT
= ST
->getMemoryVT();
6392 // The type of the data we want to save
6393 EVT RegVT
= Value
.getValueType();
6394 EVT RegSclVT
= RegVT
.getScalarType();
6396 // The type of data as saved in memory.
6397 EVT MemSclVT
= StVT
.getScalarType();
6399 EVT IdxVT
= getVectorIdxTy(DAG
.getDataLayout());
6400 unsigned NumElem
= StVT
.getVectorNumElements();
6402 // A vector must always be stored in memory as-is, i.e. without any padding
6403 // between the elements, since various code depend on it, e.g. in the
6404 // handling of a bitcast of a vector type to int, which may be done with a
6405 // vector store followed by an integer load. A vector that does not have
6406 // elements that are byte-sized must therefore be stored as an integer
6407 // built out of the extracted vector elements.
6408 if (!MemSclVT
.isByteSized()) {
6409 unsigned NumBits
= StVT
.getSizeInBits();
6410 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
);
6412 SDValue CurrVal
= DAG
.getConstant(0, SL
, IntVT
);
6414 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
6415 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, RegSclVT
, Value
,
6416 DAG
.getConstant(Idx
, SL
, IdxVT
));
6417 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MemSclVT
, Elt
);
6418 SDValue ExtElt
= DAG
.getNode(ISD::ZERO_EXTEND
, SL
, IntVT
, Trunc
);
6419 unsigned ShiftIntoIdx
=
6420 (DAG
.getDataLayout().isBigEndian() ? (NumElem
- 1) - Idx
: Idx
);
6421 SDValue ShiftAmount
=
6422 DAG
.getConstant(ShiftIntoIdx
* MemSclVT
.getSizeInBits(), SL
, IntVT
);
6423 SDValue ShiftedElt
=
6424 DAG
.getNode(ISD::SHL
, SL
, IntVT
, ExtElt
, ShiftAmount
);
6425 CurrVal
= DAG
.getNode(ISD::OR
, SL
, IntVT
, CurrVal
, ShiftedElt
);
6428 return DAG
.getStore(Chain
, SL
, CurrVal
, BasePtr
, ST
->getPointerInfo(),
6429 ST
->getAlignment(), ST
->getMemOperand()->getFlags(),
6433 // Store Stride in bytes
6434 unsigned Stride
= MemSclVT
.getSizeInBits() / 8;
6435 assert(Stride
&& "Zero stride!");
6436 // Extract each of the elements from the original vector and save them into
6437 // memory individually.
6438 SmallVector
<SDValue
, 8> Stores
;
6439 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
6440 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, RegSclVT
, Value
,
6441 DAG
.getConstant(Idx
, SL
, IdxVT
));
6443 SDValue Ptr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, Idx
* Stride
);
6445 // This scalar TruncStore may be illegal, but we legalize it later.
6446 SDValue Store
= DAG
.getTruncStore(
6447 Chain
, SL
, Elt
, Ptr
, ST
->getPointerInfo().getWithOffset(Idx
* Stride
),
6448 MemSclVT
, MinAlign(ST
->getAlignment(), Idx
* Stride
),
6449 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
6451 Stores
.push_back(Store
);
6454 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, Stores
);
6457 std::pair
<SDValue
, SDValue
>
6458 TargetLowering::expandUnalignedLoad(LoadSDNode
*LD
, SelectionDAG
&DAG
) const {
6459 assert(LD
->getAddressingMode() == ISD::UNINDEXED
&&
6460 "unaligned indexed loads not implemented!");
6461 SDValue Chain
= LD
->getChain();
6462 SDValue Ptr
= LD
->getBasePtr();
6463 EVT VT
= LD
->getValueType(0);
6464 EVT LoadedVT
= LD
->getMemoryVT();
6466 auto &MF
= DAG
.getMachineFunction();
6468 if (VT
.isFloatingPoint() || VT
.isVector()) {
6469 EVT intVT
= EVT::getIntegerVT(*DAG
.getContext(), LoadedVT
.getSizeInBits());
6470 if (isTypeLegal(intVT
) && isTypeLegal(LoadedVT
)) {
6471 if (!isOperationLegalOrCustom(ISD::LOAD
, intVT
) &&
6472 LoadedVT
.isVector()) {
6473 // Scalarize the load and let the individual components be handled.
6474 SDValue Scalarized
= scalarizeVectorLoad(LD
, DAG
);
6475 if (Scalarized
->getOpcode() == ISD::MERGE_VALUES
)
6476 return std::make_pair(Scalarized
.getOperand(0), Scalarized
.getOperand(1));
6477 return std::make_pair(Scalarized
.getValue(0), Scalarized
.getValue(1));
6480 // Expand to a (misaligned) integer load of the same size,
6481 // then bitconvert to floating point or vector.
6482 SDValue newLoad
= DAG
.getLoad(intVT
, dl
, Chain
, Ptr
,
6483 LD
->getMemOperand());
6484 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, LoadedVT
, newLoad
);
6486 Result
= DAG
.getNode(VT
.isFloatingPoint() ? ISD::FP_EXTEND
:
6487 ISD::ANY_EXTEND
, dl
, VT
, Result
);
6489 return std::make_pair(Result
, newLoad
.getValue(1));
6492 // Copy the value to a (aligned) stack slot using (unaligned) integer
6493 // loads and stores, then do a (aligned) load from the stack slot.
6494 MVT RegVT
= getRegisterType(*DAG
.getContext(), intVT
);
6495 unsigned LoadedBytes
= LoadedVT
.getStoreSize();
6496 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
6497 unsigned NumRegs
= (LoadedBytes
+ RegBytes
- 1) / RegBytes
;
6499 // Make sure the stack slot is also aligned for the register type.
6500 SDValue StackBase
= DAG
.CreateStackTemporary(LoadedVT
, RegVT
);
6501 auto FrameIndex
= cast
<FrameIndexSDNode
>(StackBase
.getNode())->getIndex();
6502 SmallVector
<SDValue
, 8> Stores
;
6503 SDValue StackPtr
= StackBase
;
6504 unsigned Offset
= 0;
6506 EVT PtrVT
= Ptr
.getValueType();
6507 EVT StackPtrVT
= StackPtr
.getValueType();
6509 SDValue PtrIncrement
= DAG
.getConstant(RegBytes
, dl
, PtrVT
);
6510 SDValue StackPtrIncrement
= DAG
.getConstant(RegBytes
, dl
, StackPtrVT
);
6512 // Do all but one copies using the full register width.
6513 for (unsigned i
= 1; i
< NumRegs
; i
++) {
6514 // Load one integer register's worth from the original location.
6515 SDValue Load
= DAG
.getLoad(
6516 RegVT
, dl
, Chain
, Ptr
, LD
->getPointerInfo().getWithOffset(Offset
),
6517 MinAlign(LD
->getAlignment(), Offset
), LD
->getMemOperand()->getFlags(),
6519 // Follow the load with a store to the stack slot. Remember the store.
6520 Stores
.push_back(DAG
.getStore(
6521 Load
.getValue(1), dl
, Load
, StackPtr
,
6522 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
)));
6523 // Increment the pointers.
6526 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, PtrIncrement
);
6527 StackPtr
= DAG
.getObjectPtrOffset(dl
, StackPtr
, StackPtrIncrement
);
6530 // The last copy may be partial. Do an extending load.
6531 EVT MemVT
= EVT::getIntegerVT(*DAG
.getContext(),
6532 8 * (LoadedBytes
- Offset
));
6534 DAG
.getExtLoad(ISD::EXTLOAD
, dl
, RegVT
, Chain
, Ptr
,
6535 LD
->getPointerInfo().getWithOffset(Offset
), MemVT
,
6536 MinAlign(LD
->getAlignment(), Offset
),
6537 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6538 // Follow the load with a store to the stack slot. Remember the store.
6539 // On big-endian machines this requires a truncating store to ensure
6540 // that the bits end up in the right place.
6541 Stores
.push_back(DAG
.getTruncStore(
6542 Load
.getValue(1), dl
, Load
, StackPtr
,
6543 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
), MemVT
));
6545 // The order of the stores doesn't matter - say it with a TokenFactor.
6546 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
6548 // Finally, perform the original load only redirected to the stack slot.
6549 Load
= DAG
.getExtLoad(LD
->getExtensionType(), dl
, VT
, TF
, StackBase
,
6550 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, 0),
6553 // Callers expect a MERGE_VALUES node.
6554 return std::make_pair(Load
, TF
);
6557 assert(LoadedVT
.isInteger() && !LoadedVT
.isVector() &&
6558 "Unaligned load of unsupported type.");
6560 // Compute the new VT that is half the size of the old one. This is an
6562 unsigned NumBits
= LoadedVT
.getSizeInBits();
6564 NewLoadedVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
/2);
6567 unsigned Alignment
= LD
->getAlignment();
6568 unsigned IncrementSize
= NumBits
/ 8;
6569 ISD::LoadExtType HiExtType
= LD
->getExtensionType();
6571 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6572 if (HiExtType
== ISD::NON_EXTLOAD
)
6573 HiExtType
= ISD::ZEXTLOAD
;
6575 // Load the value in two parts
6577 if (DAG
.getDataLayout().isLittleEndian()) {
6578 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
, LD
->getPointerInfo(),
6579 NewLoadedVT
, Alignment
, LD
->getMemOperand()->getFlags(),
6582 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
6583 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
,
6584 LD
->getPointerInfo().getWithOffset(IncrementSize
),
6585 NewLoadedVT
, MinAlign(Alignment
, IncrementSize
),
6586 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6588 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
, LD
->getPointerInfo(),
6589 NewLoadedVT
, Alignment
, LD
->getMemOperand()->getFlags(),
6592 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
6593 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
,
6594 LD
->getPointerInfo().getWithOffset(IncrementSize
),
6595 NewLoadedVT
, MinAlign(Alignment
, IncrementSize
),
6596 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
6599 // aggregate the two parts
6600 SDValue ShiftAmount
=
6601 DAG
.getConstant(NumBits
, dl
, getShiftAmountTy(Hi
.getValueType(),
6602 DAG
.getDataLayout()));
6603 SDValue Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, ShiftAmount
);
6604 Result
= DAG
.getNode(ISD::OR
, dl
, VT
, Result
, Lo
);
6606 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
6609 return std::make_pair(Result
, TF
);
6612 SDValue
TargetLowering::expandUnalignedStore(StoreSDNode
*ST
,
6613 SelectionDAG
&DAG
) const {
6614 assert(ST
->getAddressingMode() == ISD::UNINDEXED
&&
6615 "unaligned indexed stores not implemented!");
6616 SDValue Chain
= ST
->getChain();
6617 SDValue Ptr
= ST
->getBasePtr();
6618 SDValue Val
= ST
->getValue();
6619 EVT VT
= Val
.getValueType();
6620 int Alignment
= ST
->getAlignment();
6621 auto &MF
= DAG
.getMachineFunction();
6622 EVT StoreMemVT
= ST
->getMemoryVT();
6625 if (StoreMemVT
.isFloatingPoint() || StoreMemVT
.isVector()) {
6626 EVT intVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getSizeInBits());
6627 if (isTypeLegal(intVT
)) {
6628 if (!isOperationLegalOrCustom(ISD::STORE
, intVT
) &&
6629 StoreMemVT
.isVector()) {
6630 // Scalarize the store and let the individual components be handled.
6631 SDValue Result
= scalarizeVectorStore(ST
, DAG
);
6634 // Expand to a bitconvert of the value to the integer type of the
6635 // same size, then a (misaligned) int store.
6636 // FIXME: Does not handle truncating floating point stores!
6637 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, intVT
, Val
);
6638 Result
= DAG
.getStore(Chain
, dl
, Result
, Ptr
, ST
->getPointerInfo(),
6639 Alignment
, ST
->getMemOperand()->getFlags());
6642 // Do a (aligned) store to a stack slot, then copy from the stack slot
6643 // to the final destination using (unaligned) integer loads and stores.
6644 MVT RegVT
= getRegisterType(
6646 EVT::getIntegerVT(*DAG
.getContext(), StoreMemVT
.getSizeInBits()));
6647 EVT PtrVT
= Ptr
.getValueType();
6648 unsigned StoredBytes
= StoreMemVT
.getStoreSize();
6649 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
6650 unsigned NumRegs
= (StoredBytes
+ RegBytes
- 1) / RegBytes
;
6652 // Make sure the stack slot is also aligned for the register type.
6653 SDValue StackPtr
= DAG
.CreateStackTemporary(StoreMemVT
, RegVT
);
6654 auto FrameIndex
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
6656 // Perform the original store, only redirected to the stack slot.
6657 SDValue Store
= DAG
.getTruncStore(
6658 Chain
, dl
, Val
, StackPtr
,
6659 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, 0), StoreMemVT
);
6661 EVT StackPtrVT
= StackPtr
.getValueType();
6663 SDValue PtrIncrement
= DAG
.getConstant(RegBytes
, dl
, PtrVT
);
6664 SDValue StackPtrIncrement
= DAG
.getConstant(RegBytes
, dl
, StackPtrVT
);
6665 SmallVector
<SDValue
, 8> Stores
;
6666 unsigned Offset
= 0;
6668 // Do all but one copies using the full register width.
6669 for (unsigned i
= 1; i
< NumRegs
; i
++) {
6670 // Load one integer register's worth from the stack slot.
6671 SDValue Load
= DAG
.getLoad(
6672 RegVT
, dl
, Store
, StackPtr
,
6673 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
));
6674 // Store it to the final location. Remember the store.
6675 Stores
.push_back(DAG
.getStore(Load
.getValue(1), dl
, Load
, Ptr
,
6676 ST
->getPointerInfo().getWithOffset(Offset
),
6677 MinAlign(ST
->getAlignment(), Offset
),
6678 ST
->getMemOperand()->getFlags()));
6679 // Increment the pointers.
6681 StackPtr
= DAG
.getObjectPtrOffset(dl
, StackPtr
, StackPtrIncrement
);
6682 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, PtrIncrement
);
6685 // The last store may be partial. Do a truncating store. On big-endian
6686 // machines this requires an extending load from the stack slot to ensure
6687 // that the bits are in the right place.
6689 EVT::getIntegerVT(*DAG
.getContext(), 8 * (StoredBytes
- Offset
));
6691 // Load from the stack slot.
6692 SDValue Load
= DAG
.getExtLoad(
6693 ISD::EXTLOAD
, dl
, RegVT
, Store
, StackPtr
,
6694 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
), LoadMemVT
);
6697 DAG
.getTruncStore(Load
.getValue(1), dl
, Load
, Ptr
,
6698 ST
->getPointerInfo().getWithOffset(Offset
), LoadMemVT
,
6699 MinAlign(ST
->getAlignment(), Offset
),
6700 ST
->getMemOperand()->getFlags(), ST
->getAAInfo()));
6701 // The order of the stores doesn't matter - say it with a TokenFactor.
6702 SDValue Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
6706 assert(StoreMemVT
.isInteger() && !StoreMemVT
.isVector() &&
6707 "Unaligned store of unknown type.");
6708 // Get the half-size VT
6709 EVT NewStoredVT
= StoreMemVT
.getHalfSizedIntegerVT(*DAG
.getContext());
6710 int NumBits
= NewStoredVT
.getSizeInBits();
6711 int IncrementSize
= NumBits
/ 8;
6713 // Divide the stored value in two parts.
6714 SDValue ShiftAmount
= DAG
.getConstant(
6715 NumBits
, dl
, getShiftAmountTy(Val
.getValueType(), DAG
.getDataLayout()));
6717 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, VT
, Val
, ShiftAmount
);
6719 // Store the two parts
6720 SDValue Store1
, Store2
;
6721 Store1
= DAG
.getTruncStore(Chain
, dl
,
6722 DAG
.getDataLayout().isLittleEndian() ? Lo
: Hi
,
6723 Ptr
, ST
->getPointerInfo(), NewStoredVT
, Alignment
,
6724 ST
->getMemOperand()->getFlags());
6726 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
6727 Alignment
= MinAlign(Alignment
, IncrementSize
);
6728 Store2
= DAG
.getTruncStore(
6729 Chain
, dl
, DAG
.getDataLayout().isLittleEndian() ? Hi
: Lo
, Ptr
,
6730 ST
->getPointerInfo().getWithOffset(IncrementSize
), NewStoredVT
, Alignment
,
6731 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
6734 DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Store1
, Store2
);
6739 TargetLowering::IncrementMemoryAddress(SDValue Addr
, SDValue Mask
,
6740 const SDLoc
&DL
, EVT DataVT
,
6742 bool IsCompressedMemory
) const {
6744 EVT AddrVT
= Addr
.getValueType();
6745 EVT MaskVT
= Mask
.getValueType();
6746 assert(DataVT
.getVectorNumElements() == MaskVT
.getVectorNumElements() &&
6747 "Incompatible types of Data and Mask");
6748 if (IsCompressedMemory
) {
6749 // Incrementing the pointer according to number of '1's in the mask.
6750 EVT MaskIntVT
= EVT::getIntegerVT(*DAG
.getContext(), MaskVT
.getSizeInBits());
6751 SDValue MaskInIntReg
= DAG
.getBitcast(MaskIntVT
, Mask
);
6752 if (MaskIntVT
.getSizeInBits() < 32) {
6753 MaskInIntReg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, MaskInIntReg
);
6754 MaskIntVT
= MVT::i32
;
6757 // Count '1's with POPCNT.
6758 Increment
= DAG
.getNode(ISD::CTPOP
, DL
, MaskIntVT
, MaskInIntReg
);
6759 Increment
= DAG
.getZExtOrTrunc(Increment
, DL
, AddrVT
);
6760 // Scale is an element size in bytes.
6761 SDValue Scale
= DAG
.getConstant(DataVT
.getScalarSizeInBits() / 8, DL
,
6763 Increment
= DAG
.getNode(ISD::MUL
, DL
, AddrVT
, Increment
, Scale
);
6765 Increment
= DAG
.getConstant(DataVT
.getStoreSize(), DL
, AddrVT
);
6767 return DAG
.getNode(ISD::ADD
, DL
, AddrVT
, Addr
, Increment
);
6770 static SDValue
clampDynamicVectorIndex(SelectionDAG
&DAG
,
6774 if (isa
<ConstantSDNode
>(Idx
))
6777 EVT IdxVT
= Idx
.getValueType();
6778 unsigned NElts
= VecVT
.getVectorNumElements();
6779 if (isPowerOf2_32(NElts
)) {
6780 APInt Imm
= APInt::getLowBitsSet(IdxVT
.getSizeInBits(),
6782 return DAG
.getNode(ISD::AND
, dl
, IdxVT
, Idx
,
6783 DAG
.getConstant(Imm
, dl
, IdxVT
));
6786 return DAG
.getNode(ISD::UMIN
, dl
, IdxVT
, Idx
,
6787 DAG
.getConstant(NElts
- 1, dl
, IdxVT
));
6790 SDValue
TargetLowering::getVectorElementPointer(SelectionDAG
&DAG
,
6791 SDValue VecPtr
, EVT VecVT
,
6792 SDValue Index
) const {
6794 // Make sure the index type is big enough to compute in.
6795 Index
= DAG
.getZExtOrTrunc(Index
, dl
, VecPtr
.getValueType());
6797 EVT EltVT
= VecVT
.getVectorElementType();
6799 // Calculate the element offset and add it to the pointer.
6800 unsigned EltSize
= EltVT
.getSizeInBits() / 8; // FIXME: should be ABI size.
6801 assert(EltSize
* 8 == EltVT
.getSizeInBits() &&
6802 "Converting bits to bytes lost precision");
6804 Index
= clampDynamicVectorIndex(DAG
, Index
, VecVT
, dl
);
6806 EVT IdxVT
= Index
.getValueType();
6808 Index
= DAG
.getNode(ISD::MUL
, dl
, IdxVT
, Index
,
6809 DAG
.getConstant(EltSize
, dl
, IdxVT
));
6810 return DAG
.getNode(ISD::ADD
, dl
, IdxVT
, VecPtr
, Index
);
6813 //===----------------------------------------------------------------------===//
6814 // Implementation of Emulated TLS Model
6815 //===----------------------------------------------------------------------===//
6817 SDValue
TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode
*GA
,
6818 SelectionDAG
&DAG
) const {
6819 // Access to address of TLS varialbe xyz is lowered to a function call:
6820 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6821 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
6822 PointerType
*VoidPtrType
= Type::getInt8PtrTy(*DAG
.getContext());
6827 std::string NameString
= ("__emutls_v." + GA
->getGlobal()->getName()).str();
6828 Module
*VariableModule
= const_cast<Module
*>(GA
->getGlobal()->getParent());
6829 StringRef
EmuTlsVarName(NameString
);
6830 GlobalVariable
*EmuTlsVar
= VariableModule
->getNamedGlobal(EmuTlsVarName
);
6831 assert(EmuTlsVar
&& "Cannot find EmuTlsVar ");
6832 Entry
.Node
= DAG
.getGlobalAddress(EmuTlsVar
, dl
, PtrVT
);
6833 Entry
.Ty
= VoidPtrType
;
6834 Args
.push_back(Entry
);
6836 SDValue EmuTlsGetAddr
= DAG
.getExternalSymbol("__emutls_get_address", PtrVT
);
6838 TargetLowering::CallLoweringInfo
CLI(DAG
);
6839 CLI
.setDebugLoc(dl
).setChain(DAG
.getEntryNode());
6840 CLI
.setLibCallee(CallingConv::C
, VoidPtrType
, EmuTlsGetAddr
, std::move(Args
));
6841 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
6843 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6844 // At last for X86 targets, maybe good for other targets too?
6845 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
6846 MFI
.setAdjustsStack(true); // Is this only for X86 target?
6847 MFI
.setHasCalls(true);
6849 assert((GA
->getOffset() == 0) &&
6850 "Emulated TLS must have zero offset in GlobalAddressSDNode");
6851 return CallResult
.first
;
6854 SDValue
TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op
,
6855 SelectionDAG
&DAG
) const {
6856 assert((Op
->getOpcode() == ISD::SETCC
) && "Input has to be a SETCC node.");
6859 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
6861 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
6862 if (C
->isNullValue() && CC
== ISD::SETEQ
) {
6863 EVT VT
= Op
.getOperand(0).getValueType();
6864 SDValue Zext
= Op
.getOperand(0);
6865 if (VT
.bitsLT(MVT::i32
)) {
6867 Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Op
.getOperand(0));
6869 unsigned Log2b
= Log2_32(VT
.getSizeInBits());
6870 SDValue Clz
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Zext
);
6871 SDValue Scc
= DAG
.getNode(ISD::SRL
, dl
, VT
, Clz
,
6872 DAG
.getConstant(Log2b
, dl
, MVT::i32
));
6873 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Scc
);
6879 SDValue
TargetLowering::expandAddSubSat(SDNode
*Node
, SelectionDAG
&DAG
) const {
6880 unsigned Opcode
= Node
->getOpcode();
6881 SDValue LHS
= Node
->getOperand(0);
6882 SDValue RHS
= Node
->getOperand(1);
6883 EVT VT
= LHS
.getValueType();
6886 assert(VT
== RHS
.getValueType() && "Expected operands to be the same type");
6887 assert(VT
.isInteger() && "Expected operands to be integers");
6889 // usub.sat(a, b) -> umax(a, b) - b
6890 if (Opcode
== ISD::USUBSAT
&& isOperationLegalOrCustom(ISD::UMAX
, VT
)) {
6891 SDValue Max
= DAG
.getNode(ISD::UMAX
, dl
, VT
, LHS
, RHS
);
6892 return DAG
.getNode(ISD::SUB
, dl
, VT
, Max
, RHS
);
6895 if (Opcode
== ISD::UADDSAT
&& isOperationLegalOrCustom(ISD::UMIN
, VT
)) {
6896 SDValue InvRHS
= DAG
.getNOT(dl
, RHS
, VT
);
6897 SDValue Min
= DAG
.getNode(ISD::UMIN
, dl
, VT
, LHS
, InvRHS
);
6898 return DAG
.getNode(ISD::ADD
, dl
, VT
, Min
, RHS
);
6901 unsigned OverflowOp
;
6904 OverflowOp
= ISD::SADDO
;
6907 OverflowOp
= ISD::UADDO
;
6910 OverflowOp
= ISD::SSUBO
;
6913 OverflowOp
= ISD::USUBO
;
6916 llvm_unreachable("Expected method to receive signed or unsigned saturation "
6917 "addition or subtraction node.");
6920 unsigned BitWidth
= LHS
.getScalarValueSizeInBits();
6921 EVT BoolVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6922 SDValue Result
= DAG
.getNode(OverflowOp
, dl
, DAG
.getVTList(VT
, BoolVT
),
6924 SDValue SumDiff
= Result
.getValue(0);
6925 SDValue Overflow
= Result
.getValue(1);
6926 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6927 SDValue AllOnes
= DAG
.getAllOnesConstant(dl
, VT
);
6929 if (Opcode
== ISD::UADDSAT
) {
6930 if (getBooleanContents(VT
) == ZeroOrNegativeOneBooleanContent
) {
6931 // (LHS + RHS) | OverflowMask
6932 SDValue OverflowMask
= DAG
.getSExtOrTrunc(Overflow
, dl
, VT
);
6933 return DAG
.getNode(ISD::OR
, dl
, VT
, SumDiff
, OverflowMask
);
6935 // Overflow ? 0xffff.... : (LHS + RHS)
6936 return DAG
.getSelect(dl
, VT
, Overflow
, AllOnes
, SumDiff
);
6937 } else if (Opcode
== ISD::USUBSAT
) {
6938 if (getBooleanContents(VT
) == ZeroOrNegativeOneBooleanContent
) {
6939 // (LHS - RHS) & ~OverflowMask
6940 SDValue OverflowMask
= DAG
.getSExtOrTrunc(Overflow
, dl
, VT
);
6941 SDValue Not
= DAG
.getNOT(dl
, OverflowMask
, VT
);
6942 return DAG
.getNode(ISD::AND
, dl
, VT
, SumDiff
, Not
);
6944 // Overflow ? 0 : (LHS - RHS)
6945 return DAG
.getSelect(dl
, VT
, Overflow
, Zero
, SumDiff
);
6947 // SatMax -> Overflow && SumDiff < 0
6948 // SatMin -> Overflow && SumDiff >= 0
6949 APInt MinVal
= APInt::getSignedMinValue(BitWidth
);
6950 APInt MaxVal
= APInt::getSignedMaxValue(BitWidth
);
6951 SDValue SatMin
= DAG
.getConstant(MinVal
, dl
, VT
);
6952 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
6953 SDValue SumNeg
= DAG
.getSetCC(dl
, BoolVT
, SumDiff
, Zero
, ISD::SETLT
);
6954 Result
= DAG
.getSelect(dl
, VT
, SumNeg
, SatMax
, SatMin
);
6955 return DAG
.getSelect(dl
, VT
, Overflow
, Result
, SumDiff
);
6960 TargetLowering::expandFixedPointMul(SDNode
*Node
, SelectionDAG
&DAG
) const {
6961 assert((Node
->getOpcode() == ISD::SMULFIX
||
6962 Node
->getOpcode() == ISD::UMULFIX
||
6963 Node
->getOpcode() == ISD::SMULFIXSAT
||
6964 Node
->getOpcode() == ISD::UMULFIXSAT
) &&
6965 "Expected a fixed point multiplication opcode");
6968 SDValue LHS
= Node
->getOperand(0);
6969 SDValue RHS
= Node
->getOperand(1);
6970 EVT VT
= LHS
.getValueType();
6971 unsigned Scale
= Node
->getConstantOperandVal(2);
6972 bool Saturating
= (Node
->getOpcode() == ISD::SMULFIXSAT
||
6973 Node
->getOpcode() == ISD::UMULFIXSAT
);
6974 bool Signed
= (Node
->getOpcode() == ISD::SMULFIX
||
6975 Node
->getOpcode() == ISD::SMULFIXSAT
);
6976 EVT BoolVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6977 unsigned VTSize
= VT
.getScalarSizeInBits();
6980 // [us]mul.fix(a, b, 0) -> mul(a, b)
6982 if (isOperationLegalOrCustom(ISD::MUL
, VT
))
6983 return DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
6984 } else if (Signed
&& isOperationLegalOrCustom(ISD::SMULO
, VT
)) {
6986 DAG
.getNode(ISD::SMULO
, dl
, DAG
.getVTList(VT
, BoolVT
), LHS
, RHS
);
6987 SDValue Product
= Result
.getValue(0);
6988 SDValue Overflow
= Result
.getValue(1);
6989 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6991 APInt MinVal
= APInt::getSignedMinValue(VTSize
);
6992 APInt MaxVal
= APInt::getSignedMaxValue(VTSize
);
6993 SDValue SatMin
= DAG
.getConstant(MinVal
, dl
, VT
);
6994 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
6995 SDValue ProdNeg
= DAG
.getSetCC(dl
, BoolVT
, Product
, Zero
, ISD::SETLT
);
6996 Result
= DAG
.getSelect(dl
, VT
, ProdNeg
, SatMax
, SatMin
);
6997 return DAG
.getSelect(dl
, VT
, Overflow
, Result
, Product
);
6998 } else if (!Signed
&& isOperationLegalOrCustom(ISD::UMULO
, VT
)) {
7000 DAG
.getNode(ISD::UMULO
, dl
, DAG
.getVTList(VT
, BoolVT
), LHS
, RHS
);
7001 SDValue Product
= Result
.getValue(0);
7002 SDValue Overflow
= Result
.getValue(1);
7004 APInt MaxVal
= APInt::getMaxValue(VTSize
);
7005 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
7006 return DAG
.getSelect(dl
, VT
, Overflow
, SatMax
, Product
);
7010 assert(((Signed
&& Scale
< VTSize
) || (!Signed
&& Scale
<= VTSize
)) &&
7011 "Expected scale to be less than the number of bits if signed or at "
7012 "most the number of bits if unsigned.");
7013 assert(LHS
.getValueType() == RHS
.getValueType() &&
7014 "Expected both operands to be the same type");
7016 // Get the upper and lower bits of the result.
7018 unsigned LoHiOp
= Signed
? ISD::SMUL_LOHI
: ISD::UMUL_LOHI
;
7019 unsigned HiOp
= Signed
? ISD::MULHS
: ISD::MULHU
;
7020 if (isOperationLegalOrCustom(LoHiOp
, VT
)) {
7021 SDValue Result
= DAG
.getNode(LoHiOp
, dl
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
7022 Lo
= Result
.getValue(0);
7023 Hi
= Result
.getValue(1);
7024 } else if (isOperationLegalOrCustom(HiOp
, VT
)) {
7025 Lo
= DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
7026 Hi
= DAG
.getNode(HiOp
, dl
, VT
, LHS
, RHS
);
7027 } else if (VT
.isVector()) {
7030 report_fatal_error("Unable to expand fixed point multiplication.");
7033 if (Scale
== VTSize
)
7034 // Result is just the top half since we'd be shifting by the width of the
7035 // operand. Overflow impossible so this works for both UMULFIX and
7039 // The result will need to be shifted right by the scale since both operands
7040 // are scaled. The result is given to us in 2 halves, so we only want part of
7041 // both in the result.
7042 EVT ShiftTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
7043 SDValue Result
= DAG
.getNode(ISD::FSHR
, dl
, VT
, Hi
, Lo
,
7044 DAG
.getConstant(Scale
, dl
, ShiftTy
));
7049 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7050 // widened multiplication) aren't all zeroes.
7052 // Saturate to max if ((Hi >> Scale) != 0),
7053 // which is the same as if (Hi > ((1 << Scale) - 1))
7054 APInt MaxVal
= APInt::getMaxValue(VTSize
);
7055 SDValue LowMask
= DAG
.getConstant(APInt::getLowBitsSet(VTSize
, Scale
),
7057 Result
= DAG
.getSelectCC(dl
, Hi
, LowMask
,
7058 DAG
.getConstant(MaxVal
, dl
, VT
), Result
,
7064 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7065 // widened multiplication) aren't all ones or all zeroes.
7067 SDValue SatMin
= DAG
.getConstant(APInt::getSignedMinValue(VTSize
), dl
, VT
);
7068 SDValue SatMax
= DAG
.getConstant(APInt::getSignedMaxValue(VTSize
), dl
, VT
);
7071 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, VT
, Lo
,
7072 DAG
.getConstant(VTSize
- 1, dl
, ShiftTy
));
7073 SDValue Overflow
= DAG
.getSetCC(dl
, BoolVT
, Hi
, Sign
, ISD::SETNE
);
7074 // Saturated to SatMin if wide product is negative, and SatMax if wide
7075 // product is positive ...
7076 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
7077 SDValue ResultIfOverflow
= DAG
.getSelectCC(dl
, Hi
, Zero
, SatMin
, SatMax
,
7079 // ... but only if we overflowed.
7080 return DAG
.getSelect(dl
, VT
, Overflow
, ResultIfOverflow
, Result
);
7083 // We handled Scale==0 above so all the bits to examine is in Hi.
7085 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7086 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7087 SDValue LowMask
= DAG
.getConstant(APInt::getLowBitsSet(VTSize
, Scale
- 1),
7089 Result
= DAG
.getSelectCC(dl
, Hi
, LowMask
, SatMax
, Result
, ISD::SETGT
);
7090 // Saturate to min if (Hi >> (Scale - 1)) < -1),
7091 // which is the same as if (HI < (-1 << (Scale - 1))
7093 DAG
.getConstant(APInt::getHighBitsSet(VTSize
, VTSize
- Scale
+ 1),
7095 Result
= DAG
.getSelectCC(dl
, Hi
, HighMask
, SatMin
, Result
, ISD::SETLT
);
7099 void TargetLowering::expandUADDSUBO(
7100 SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
, SelectionDAG
&DAG
) const {
7102 SDValue LHS
= Node
->getOperand(0);
7103 SDValue RHS
= Node
->getOperand(1);
7104 bool IsAdd
= Node
->getOpcode() == ISD::UADDO
;
7106 // If ADD/SUBCARRY is legal, use that instead.
7107 unsigned OpcCarry
= IsAdd
? ISD::ADDCARRY
: ISD::SUBCARRY
;
7108 if (isOperationLegalOrCustom(OpcCarry
, Node
->getValueType(0))) {
7109 SDValue CarryIn
= DAG
.getConstant(0, dl
, Node
->getValueType(1));
7110 SDValue NodeCarry
= DAG
.getNode(OpcCarry
, dl
, Node
->getVTList(),
7111 { LHS
, RHS
, CarryIn
});
7112 Result
= SDValue(NodeCarry
.getNode(), 0);
7113 Overflow
= SDValue(NodeCarry
.getNode(), 1);
7117 Result
= DAG
.getNode(IsAdd
? ISD::ADD
: ISD::SUB
, dl
,
7118 LHS
.getValueType(), LHS
, RHS
);
7120 EVT ResultType
= Node
->getValueType(1);
7121 EVT SetCCType
= getSetCCResultType(
7122 DAG
.getDataLayout(), *DAG
.getContext(), Node
->getValueType(0));
7123 ISD::CondCode CC
= IsAdd
? ISD::SETULT
: ISD::SETUGT
;
7124 SDValue SetCC
= DAG
.getSetCC(dl
, SetCCType
, Result
, LHS
, CC
);
7125 Overflow
= DAG
.getBoolExtOrTrunc(SetCC
, dl
, ResultType
, ResultType
);
7128 void TargetLowering::expandSADDSUBO(
7129 SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
, SelectionDAG
&DAG
) const {
7131 SDValue LHS
= Node
->getOperand(0);
7132 SDValue RHS
= Node
->getOperand(1);
7133 bool IsAdd
= Node
->getOpcode() == ISD::SADDO
;
7135 Result
= DAG
.getNode(IsAdd
? ISD::ADD
: ISD::SUB
, dl
,
7136 LHS
.getValueType(), LHS
, RHS
);
7138 EVT ResultType
= Node
->getValueType(1);
7139 EVT OType
= getSetCCResultType(
7140 DAG
.getDataLayout(), *DAG
.getContext(), Node
->getValueType(0));
7142 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7143 unsigned OpcSat
= IsAdd
? ISD::SADDSAT
: ISD::SSUBSAT
;
7144 if (isOperationLegalOrCustom(OpcSat
, LHS
.getValueType())) {
7145 SDValue Sat
= DAG
.getNode(OpcSat
, dl
, LHS
.getValueType(), LHS
, RHS
);
7146 SDValue SetCC
= DAG
.getSetCC(dl
, OType
, Result
, Sat
, ISD::SETNE
);
7147 Overflow
= DAG
.getBoolExtOrTrunc(SetCC
, dl
, ResultType
, ResultType
);
7151 SDValue Zero
= DAG
.getConstant(0, dl
, LHS
.getValueType());
7153 // For an addition, the result should be less than one of the operands (LHS)
7154 // if and only if the other operand (RHS) is negative, otherwise there will
7156 // For a subtraction, the result should be less than one of the operands
7157 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7158 // otherwise there will be overflow.
7159 SDValue ResultLowerThanLHS
= DAG
.getSetCC(dl
, OType
, Result
, LHS
, ISD::SETLT
);
7160 SDValue ConditionRHS
=
7161 DAG
.getSetCC(dl
, OType
, RHS
, Zero
, IsAdd
? ISD::SETLT
: ISD::SETGT
);
7163 Overflow
= DAG
.getBoolExtOrTrunc(
7164 DAG
.getNode(ISD::XOR
, dl
, OType
, ConditionRHS
, ResultLowerThanLHS
), dl
,
7165 ResultType
, ResultType
);
7168 bool TargetLowering::expandMULO(SDNode
*Node
, SDValue
&Result
,
7169 SDValue
&Overflow
, SelectionDAG
&DAG
) const {
7171 EVT VT
= Node
->getValueType(0);
7172 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
7173 SDValue LHS
= Node
->getOperand(0);
7174 SDValue RHS
= Node
->getOperand(1);
7175 bool isSigned
= Node
->getOpcode() == ISD::SMULO
;
7177 // For power-of-two multiplications we can use a simpler shift expansion.
7178 if (ConstantSDNode
*RHSC
= isConstOrConstSplat(RHS
)) {
7179 const APInt
&C
= RHSC
->getAPIntValue();
7180 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7181 if (C
.isPowerOf2()) {
7182 // smulo(x, signed_min) is same as umulo(x, signed_min).
7183 bool UseArithShift
= isSigned
&& !C
.isMinSignedValue();
7184 EVT ShiftAmtTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
7185 SDValue ShiftAmt
= DAG
.getConstant(C
.logBase2(), dl
, ShiftAmtTy
);
7186 Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, LHS
, ShiftAmt
);
7187 Overflow
= DAG
.getSetCC(dl
, SetCCVT
,
7188 DAG
.getNode(UseArithShift
? ISD::SRA
: ISD::SRL
,
7189 dl
, VT
, Result
, ShiftAmt
),
7195 EVT WideVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getScalarSizeInBits() * 2);
7197 WideVT
= EVT::getVectorVT(*DAG
.getContext(), WideVT
,
7198 VT
.getVectorNumElements());
7202 static const unsigned Ops
[2][3] =
7203 { { ISD::MULHU
, ISD::UMUL_LOHI
, ISD::ZERO_EXTEND
},
7204 { ISD::MULHS
, ISD::SMUL_LOHI
, ISD::SIGN_EXTEND
}};
7205 if (isOperationLegalOrCustom(Ops
[isSigned
][0], VT
)) {
7206 BottomHalf
= DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
7207 TopHalf
= DAG
.getNode(Ops
[isSigned
][0], dl
, VT
, LHS
, RHS
);
7208 } else if (isOperationLegalOrCustom(Ops
[isSigned
][1], VT
)) {
7209 BottomHalf
= DAG
.getNode(Ops
[isSigned
][1], dl
, DAG
.getVTList(VT
, VT
), LHS
,
7211 TopHalf
= BottomHalf
.getValue(1);
7212 } else if (isTypeLegal(WideVT
)) {
7213 LHS
= DAG
.getNode(Ops
[isSigned
][2], dl
, WideVT
, LHS
);
7214 RHS
= DAG
.getNode(Ops
[isSigned
][2], dl
, WideVT
, RHS
);
7215 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, WideVT
, LHS
, RHS
);
7216 BottomHalf
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Mul
);
7217 SDValue ShiftAmt
= DAG
.getConstant(VT
.getScalarSizeInBits(), dl
,
7218 getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
7219 TopHalf
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
7220 DAG
.getNode(ISD::SRL
, dl
, WideVT
, Mul
, ShiftAmt
));
7225 // We can fall back to a libcall with an illegal type for the MUL if we
7226 // have a libcall big enough.
7227 // Also, we can fall back to a division in some cases, but that's a big
7228 // performance hit in the general case.
7229 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
7230 if (WideVT
== MVT::i16
)
7231 LC
= RTLIB::MUL_I16
;
7232 else if (WideVT
== MVT::i32
)
7233 LC
= RTLIB::MUL_I32
;
7234 else if (WideVT
== MVT::i64
)
7235 LC
= RTLIB::MUL_I64
;
7236 else if (WideVT
== MVT::i128
)
7237 LC
= RTLIB::MUL_I128
;
7238 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Cannot expand this operation!");
7243 // The high part is obtained by SRA'ing all but one of the bits of low
7245 unsigned LoSize
= VT
.getSizeInBits();
7247 DAG
.getNode(ISD::SRA
, dl
, VT
, LHS
,
7248 DAG
.getConstant(LoSize
- 1, dl
,
7249 getPointerTy(DAG
.getDataLayout())));
7251 DAG
.getNode(ISD::SRA
, dl
, VT
, RHS
,
7252 DAG
.getConstant(LoSize
- 1, dl
,
7253 getPointerTy(DAG
.getDataLayout())));
7255 HiLHS
= DAG
.getConstant(0, dl
, VT
);
7256 HiRHS
= DAG
.getConstant(0, dl
, VT
);
7259 // Here we're passing the 2 arguments explicitly as 4 arguments that are
7260 // pre-lowered to the correct types. This all depends upon WideVT not
7261 // being a legal type for the architecture and thus has to be split to
7264 TargetLowering::MakeLibCallOptions CallOptions
;
7265 CallOptions
.setSExt(isSigned
);
7266 CallOptions
.setIsPostTypeLegalization(true);
7267 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG
.getDataLayout())) {
7268 // Halves of WideVT are packed into registers in different order
7269 // depending on platform endianness. This is usually handled by
7270 // the C calling convention, but we can't defer to it in
7272 SDValue Args
[] = { LHS
, HiLHS
, RHS
, HiRHS
};
7273 Ret
= makeLibCall(DAG
, LC
, WideVT
, Args
, CallOptions
, dl
).first
;
7275 SDValue Args
[] = { HiLHS
, LHS
, HiRHS
, RHS
};
7276 Ret
= makeLibCall(DAG
, LC
, WideVT
, Args
, CallOptions
, dl
).first
;
7278 assert(Ret
.getOpcode() == ISD::MERGE_VALUES
&&
7279 "Ret value is a collection of constituent nodes holding result.");
7280 if (DAG
.getDataLayout().isLittleEndian()) {
7282 BottomHalf
= Ret
.getOperand(0);
7283 TopHalf
= Ret
.getOperand(1);
7285 BottomHalf
= Ret
.getOperand(1);
7286 TopHalf
= Ret
.getOperand(0);
7290 Result
= BottomHalf
;
7292 SDValue ShiftAmt
= DAG
.getConstant(
7293 VT
.getScalarSizeInBits() - 1, dl
,
7294 getShiftAmountTy(BottomHalf
.getValueType(), DAG
.getDataLayout()));
7295 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, VT
, BottomHalf
, ShiftAmt
);
7296 Overflow
= DAG
.getSetCC(dl
, SetCCVT
, TopHalf
, Sign
, ISD::SETNE
);
7298 Overflow
= DAG
.getSetCC(dl
, SetCCVT
, TopHalf
,
7299 DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
7302 // Truncate the result if SetCC returns a larger type than needed.
7303 EVT RType
= Node
->getValueType(1);
7304 if (RType
.getSizeInBits() < Overflow
.getValueSizeInBits())
7305 Overflow
= DAG
.getNode(ISD::TRUNCATE
, dl
, RType
, Overflow
);
7307 assert(RType
.getSizeInBits() == Overflow
.getValueSizeInBits() &&
7308 "Unexpected result type for S/UMULO legalization");
7312 SDValue
TargetLowering::expandVecReduce(SDNode
*Node
, SelectionDAG
&DAG
) const {
7314 bool NoNaN
= Node
->getFlags().hasNoNaNs();
7315 unsigned BaseOpcode
= 0;
7316 switch (Node
->getOpcode()) {
7317 default: llvm_unreachable("Expected VECREDUCE opcode");
7318 case ISD::VECREDUCE_FADD
: BaseOpcode
= ISD::FADD
; break;
7319 case ISD::VECREDUCE_FMUL
: BaseOpcode
= ISD::FMUL
; break;
7320 case ISD::VECREDUCE_ADD
: BaseOpcode
= ISD::ADD
; break;
7321 case ISD::VECREDUCE_MUL
: BaseOpcode
= ISD::MUL
; break;
7322 case ISD::VECREDUCE_AND
: BaseOpcode
= ISD::AND
; break;
7323 case ISD::VECREDUCE_OR
: BaseOpcode
= ISD::OR
; break;
7324 case ISD::VECREDUCE_XOR
: BaseOpcode
= ISD::XOR
; break;
7325 case ISD::VECREDUCE_SMAX
: BaseOpcode
= ISD::SMAX
; break;
7326 case ISD::VECREDUCE_SMIN
: BaseOpcode
= ISD::SMIN
; break;
7327 case ISD::VECREDUCE_UMAX
: BaseOpcode
= ISD::UMAX
; break;
7328 case ISD::VECREDUCE_UMIN
: BaseOpcode
= ISD::UMIN
; break;
7329 case ISD::VECREDUCE_FMAX
:
7330 BaseOpcode
= NoNaN
? ISD::FMAXNUM
: ISD::FMAXIMUM
;
7332 case ISD::VECREDUCE_FMIN
:
7333 BaseOpcode
= NoNaN
? ISD::FMINNUM
: ISD::FMINIMUM
;
7337 SDValue Op
= Node
->getOperand(0);
7338 EVT VT
= Op
.getValueType();
7340 // Try to use a shuffle reduction for power of two vectors.
7341 if (VT
.isPow2VectorType()) {
7342 while (VT
.getVectorNumElements() > 1) {
7343 EVT HalfVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
7344 if (!isOperationLegalOrCustom(BaseOpcode
, HalfVT
))
7348 std::tie(Lo
, Hi
) = DAG
.SplitVector(Op
, dl
);
7349 Op
= DAG
.getNode(BaseOpcode
, dl
, HalfVT
, Lo
, Hi
);
7354 EVT EltVT
= VT
.getVectorElementType();
7355 unsigned NumElts
= VT
.getVectorNumElements();
7357 SmallVector
<SDValue
, 8> Ops
;
7358 DAG
.ExtractVectorElements(Op
, Ops
, 0, NumElts
);
7360 SDValue Res
= Ops
[0];
7361 for (unsigned i
= 1; i
< NumElts
; i
++)
7362 Res
= DAG
.getNode(BaseOpcode
, dl
, EltVT
, Res
, Ops
[i
], Node
->getFlags());
7364 // Result type may be wider than element type.
7365 if (EltVT
!= Node
->getValueType(0))
7366 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Node
->getValueType(0), Res
);