[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / Target / X86 / X86AvoidStoreForwardingBlocks.cpp
blob69c6b3356cbb0cb6e51f39d2d269d599495716d0
1 //===- X86AvoidStoreForwardingBlockis.cpp - Avoid HW Store Forward Block --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // If a load follows a store and reloads data that the store has written to
10 // memory, Intel microarchitectures can in many cases forward the data directly
11 // from the store to the load, This "store forwarding" saves cycles by enabling
12 // the load to directly obtain the data instead of accessing the data from
13 // cache or memory.
14 // A "store forward block" occurs in cases that a store cannot be forwarded to
15 // the load. The most typical case of store forward block on Intel Core
16 // microarchitecture that a small store cannot be forwarded to a large load.
17 // The estimated penalty for a store forward block is ~13 cycles.
19 // This pass tries to recognize and handle cases where "store forward block"
20 // is created by the compiler when lowering memcpy calls to a sequence
21 // of a load and a store.
23 // The pass currently only handles cases where memcpy is lowered to
24 // XMM/YMM registers, it tries to break the memcpy into smaller copies.
25 // breaking the memcpy should be possible since there is no atomicity
26 // guarantee for loads and stores to XMM/YMM.
28 // It could be better for performance to solve the problem by loading
29 // to XMM/YMM then inserting the partial store before storing back from XMM/YMM
30 // to memory, but this will result in a more conservative optimization since it
31 // requires we prove that all memory accesses between the blocking store and the
32 // load must alias/don't alias before we can move the store, whereas the
33 // transformation done here is correct regardless to other memory accesses.
34 //===----------------------------------------------------------------------===//
36 #include "X86InstrInfo.h"
37 #include "X86Subtarget.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/MC/MCInstrDesc.h"
51 using namespace llvm;
53 #define DEBUG_TYPE "x86-avoid-SFB"
55 static cl::opt<bool> DisableX86AvoidStoreForwardBlocks(
56 "x86-disable-avoid-SFB", cl::Hidden,
57 cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false));
59 static cl::opt<unsigned> X86AvoidSFBInspectionLimit(
60 "x86-sfb-inspection-limit",
61 cl::desc("X86: Number of instructions backward to "
62 "inspect for store forwarding blocks."),
63 cl::init(20), cl::Hidden);
65 namespace {
67 using DisplacementSizeMap = std::map<int64_t, unsigned>;
69 class X86AvoidSFBPass : public MachineFunctionPass {
70 public:
71 static char ID;
72 X86AvoidSFBPass() : MachineFunctionPass(ID) { }
74 StringRef getPassName() const override {
75 return "X86 Avoid Store Forwarding Blocks";
78 bool runOnMachineFunction(MachineFunction &MF) override;
80 void getAnalysisUsage(AnalysisUsage &AU) const override {
81 MachineFunctionPass::getAnalysisUsage(AU);
82 AU.addRequired<AAResultsWrapperPass>();
85 private:
86 MachineRegisterInfo *MRI;
87 const X86InstrInfo *TII;
88 const X86RegisterInfo *TRI;
89 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2>
90 BlockedLoadsStoresPairs;
91 SmallVector<MachineInstr *, 2> ForRemoval;
92 AliasAnalysis *AA;
94 /// Returns couples of Load then Store to memory which look
95 /// like a memcpy.
96 void findPotentiallylBlockedCopies(MachineFunction &MF);
97 /// Break the memcpy's load and store into smaller copies
98 /// such that each memory load that was blocked by a smaller store
99 /// would now be copied separately.
100 void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst,
101 const DisplacementSizeMap &BlockingStoresDispSizeMap);
102 /// Break a copy of size Size to smaller copies.
103 void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm,
104 MachineInstr *StoreInst, int64_t StDispImm,
105 int64_t LMMOffset, int64_t SMMOffset);
107 void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp,
108 MachineInstr *StoreInst, unsigned NStoreOpcode,
109 int64_t StoreDisp, unsigned Size, int64_t LMMOffset,
110 int64_t SMMOffset);
112 bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const;
114 unsigned getRegSizeInBytes(MachineInstr *Inst);
117 } // end anonymous namespace
119 char X86AvoidSFBPass::ID = 0;
121 INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking",
122 false, false)
123 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
124 INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false,
125 false)
127 FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() {
128 return new X86AvoidSFBPass();
131 static bool isXMMLoadOpcode(unsigned Opcode) {
132 return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm ||
133 Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm ||
134 Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm ||
135 Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm ||
136 Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm ||
137 Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm ||
138 Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm ||
139 Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm;
141 static bool isYMMLoadOpcode(unsigned Opcode) {
142 return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm ||
143 Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm ||
144 Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm ||
145 Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm ||
146 Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm ||
147 Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm ||
148 Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm;
151 static bool isPotentialBlockedMemCpyLd(unsigned Opcode) {
152 return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode);
155 static bool isPotentialBlockedMemCpyPair(int LdOpcode, int StOpcode) {
156 switch (LdOpcode) {
157 case X86::MOVUPSrm:
158 case X86::MOVAPSrm:
159 return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr;
160 case X86::VMOVUPSrm:
161 case X86::VMOVAPSrm:
162 return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr;
163 case X86::VMOVUPDrm:
164 case X86::VMOVAPDrm:
165 return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr;
166 case X86::VMOVDQUrm:
167 case X86::VMOVDQArm:
168 return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr;
169 case X86::VMOVUPSZ128rm:
170 case X86::VMOVAPSZ128rm:
171 return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr;
172 case X86::VMOVUPDZ128rm:
173 case X86::VMOVAPDZ128rm:
174 return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr;
175 case X86::VMOVUPSYrm:
176 case X86::VMOVAPSYrm:
177 return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr;
178 case X86::VMOVUPDYrm:
179 case X86::VMOVAPDYrm:
180 return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr;
181 case X86::VMOVDQUYrm:
182 case X86::VMOVDQAYrm:
183 return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr;
184 case X86::VMOVUPSZ256rm:
185 case X86::VMOVAPSZ256rm:
186 return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr;
187 case X86::VMOVUPDZ256rm:
188 case X86::VMOVAPDZ256rm:
189 return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr;
190 case X86::VMOVDQU64Z128rm:
191 case X86::VMOVDQA64Z128rm:
192 return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr;
193 case X86::VMOVDQU32Z128rm:
194 case X86::VMOVDQA32Z128rm:
195 return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr;
196 case X86::VMOVDQU64Z256rm:
197 case X86::VMOVDQA64Z256rm:
198 return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr;
199 case X86::VMOVDQU32Z256rm:
200 case X86::VMOVDQA32Z256rm:
201 return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr;
202 default:
203 return false;
207 static bool isPotentialBlockingStoreInst(int Opcode, int LoadOpcode) {
208 bool PBlock = false;
209 PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 ||
210 Opcode == X86::MOV32mr || Opcode == X86::MOV32mi ||
211 Opcode == X86::MOV16mr || Opcode == X86::MOV16mi ||
212 Opcode == X86::MOV8mr || Opcode == X86::MOV8mi;
213 if (isYMMLoadOpcode(LoadOpcode))
214 PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr ||
215 Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr ||
216 Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr ||
217 Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr ||
218 Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr ||
219 Opcode == X86::VMOVDQU64Z128mr ||
220 Opcode == X86::VMOVDQA64Z128mr ||
221 Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr;
222 return PBlock;
225 static const int MOV128SZ = 16;
226 static const int MOV64SZ = 8;
227 static const int MOV32SZ = 4;
228 static const int MOV16SZ = 2;
229 static const int MOV8SZ = 1;
231 static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) {
232 switch (LoadOpcode) {
233 case X86::VMOVUPSYrm:
234 case X86::VMOVAPSYrm:
235 return X86::VMOVUPSrm;
236 case X86::VMOVUPDYrm:
237 case X86::VMOVAPDYrm:
238 return X86::VMOVUPDrm;
239 case X86::VMOVDQUYrm:
240 case X86::VMOVDQAYrm:
241 return X86::VMOVDQUrm;
242 case X86::VMOVUPSZ256rm:
243 case X86::VMOVAPSZ256rm:
244 return X86::VMOVUPSZ128rm;
245 case X86::VMOVUPDZ256rm:
246 case X86::VMOVAPDZ256rm:
247 return X86::VMOVUPDZ128rm;
248 case X86::VMOVDQU64Z256rm:
249 case X86::VMOVDQA64Z256rm:
250 return X86::VMOVDQU64Z128rm;
251 case X86::VMOVDQU32Z256rm:
252 case X86::VMOVDQA32Z256rm:
253 return X86::VMOVDQU32Z128rm;
254 default:
255 llvm_unreachable("Unexpected Load Instruction Opcode");
257 return 0;
260 static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) {
261 switch (StoreOpcode) {
262 case X86::VMOVUPSYmr:
263 case X86::VMOVAPSYmr:
264 return X86::VMOVUPSmr;
265 case X86::VMOVUPDYmr:
266 case X86::VMOVAPDYmr:
267 return X86::VMOVUPDmr;
268 case X86::VMOVDQUYmr:
269 case X86::VMOVDQAYmr:
270 return X86::VMOVDQUmr;
271 case X86::VMOVUPSZ256mr:
272 case X86::VMOVAPSZ256mr:
273 return X86::VMOVUPSZ128mr;
274 case X86::VMOVUPDZ256mr:
275 case X86::VMOVAPDZ256mr:
276 return X86::VMOVUPDZ128mr;
277 case X86::VMOVDQU64Z256mr:
278 case X86::VMOVDQA64Z256mr:
279 return X86::VMOVDQU64Z128mr;
280 case X86::VMOVDQU32Z256mr:
281 case X86::VMOVDQA32Z256mr:
282 return X86::VMOVDQU32Z128mr;
283 default:
284 llvm_unreachable("Unexpected Load Instruction Opcode");
286 return 0;
289 static int getAddrOffset(MachineInstr *MI) {
290 const MCInstrDesc &Descl = MI->getDesc();
291 int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags);
292 assert(AddrOffset != -1 && "Expected Memory Operand");
293 AddrOffset += X86II::getOperandBias(Descl);
294 return AddrOffset;
297 static MachineOperand &getBaseOperand(MachineInstr *MI) {
298 int AddrOffset = getAddrOffset(MI);
299 return MI->getOperand(AddrOffset + X86::AddrBaseReg);
302 static MachineOperand &getDispOperand(MachineInstr *MI) {
303 int AddrOffset = getAddrOffset(MI);
304 return MI->getOperand(AddrOffset + X86::AddrDisp);
307 // Relevant addressing modes contain only base register and immediate
308 // displacement or frameindex and immediate displacement.
309 // TODO: Consider expanding to other addressing modes in the future
310 static bool isRelevantAddressingMode(MachineInstr *MI) {
311 int AddrOffset = getAddrOffset(MI);
312 MachineOperand &Base = getBaseOperand(MI);
313 MachineOperand &Disp = getDispOperand(MI);
314 MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt);
315 MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg);
316 MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg);
318 if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI()))
319 return false;
320 if (!Disp.isImm())
321 return false;
322 if (Scale.getImm() != 1)
323 return false;
324 if (!(Index.isReg() && Index.getReg() == X86::NoRegister))
325 return false;
326 if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister))
327 return false;
328 return true;
331 // Collect potentially blocking stores.
332 // Limit the number of instructions backwards we want to inspect
333 // since the effect of store block won't be visible if the store
334 // and load instructions have enough instructions in between to
335 // keep the core busy.
336 static SmallVector<MachineInstr *, 2>
337 findPotentialBlockers(MachineInstr *LoadInst) {
338 SmallVector<MachineInstr *, 2> PotentialBlockers;
339 unsigned BlockCount = 0;
340 const unsigned InspectionLimit = X86AvoidSFBInspectionLimit;
341 for (auto PBInst = std::next(MachineBasicBlock::reverse_iterator(LoadInst)),
342 E = LoadInst->getParent()->rend();
343 PBInst != E; ++PBInst) {
344 if (PBInst->isMetaInstruction())
345 continue;
346 BlockCount++;
347 if (BlockCount >= InspectionLimit)
348 break;
349 MachineInstr &MI = *PBInst;
350 if (MI.getDesc().isCall())
351 return PotentialBlockers;
352 PotentialBlockers.push_back(&MI);
354 // If we didn't get to the instructions limit try predecessing blocks.
355 // Ideally we should traverse the predecessor blocks in depth with some
356 // coloring algorithm, but for now let's just look at the first order
357 // predecessors.
358 if (BlockCount < InspectionLimit) {
359 MachineBasicBlock *MBB = LoadInst->getParent();
360 int LimitLeft = InspectionLimit - BlockCount;
361 for (MachineBasicBlock::pred_iterator PB = MBB->pred_begin(),
362 PE = MBB->pred_end();
363 PB != PE; ++PB) {
364 MachineBasicBlock *PMBB = *PB;
365 int PredCount = 0;
366 for (MachineBasicBlock::reverse_iterator PBInst = PMBB->rbegin(),
367 PME = PMBB->rend();
368 PBInst != PME; ++PBInst) {
369 if (PBInst->isMetaInstruction())
370 continue;
371 PredCount++;
372 if (PredCount >= LimitLeft)
373 break;
374 if (PBInst->getDesc().isCall())
375 break;
376 PotentialBlockers.push_back(&*PBInst);
380 return PotentialBlockers;
383 void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode,
384 int64_t LoadDisp, MachineInstr *StoreInst,
385 unsigned NStoreOpcode, int64_t StoreDisp,
386 unsigned Size, int64_t LMMOffset,
387 int64_t SMMOffset) {
388 MachineOperand &LoadBase = getBaseOperand(LoadInst);
389 MachineOperand &StoreBase = getBaseOperand(StoreInst);
390 MachineBasicBlock *MBB = LoadInst->getParent();
391 MachineMemOperand *LMMO = *LoadInst->memoperands_begin();
392 MachineMemOperand *SMMO = *StoreInst->memoperands_begin();
394 Register Reg1 = MRI->createVirtualRegister(
395 TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent())));
396 MachineInstr *NewLoad =
397 BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode),
398 Reg1)
399 .add(LoadBase)
400 .addImm(1)
401 .addReg(X86::NoRegister)
402 .addImm(LoadDisp)
403 .addReg(X86::NoRegister)
404 .addMemOperand(
405 MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size));
406 if (LoadBase.isReg())
407 getBaseOperand(NewLoad).setIsKill(false);
408 LLVM_DEBUG(NewLoad->dump());
409 // If the load and store are consecutive, use the loadInst location to
410 // reduce register pressure.
411 MachineInstr *StInst = StoreInst;
412 auto PrevInstrIt = skipDebugInstructionsBackward(
413 std::prev(MachineBasicBlock::instr_iterator(StoreInst)),
414 MBB->instr_begin());
415 if (PrevInstrIt.getNodePtr() == LoadInst)
416 StInst = LoadInst;
417 MachineInstr *NewStore =
418 BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode))
419 .add(StoreBase)
420 .addImm(1)
421 .addReg(X86::NoRegister)
422 .addImm(StoreDisp)
423 .addReg(X86::NoRegister)
424 .addReg(Reg1)
425 .addMemOperand(
426 MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size));
427 if (StoreBase.isReg())
428 getBaseOperand(NewStore).setIsKill(false);
429 MachineOperand &StoreSrcVReg = StoreInst->getOperand(X86::AddrNumOperands);
430 assert(StoreSrcVReg.isReg() && "Expected virtual register");
431 NewStore->getOperand(X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill());
432 LLVM_DEBUG(NewStore->dump());
435 void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst,
436 int64_t LdDispImm, MachineInstr *StoreInst,
437 int64_t StDispImm, int64_t LMMOffset,
438 int64_t SMMOffset) {
439 int LdDisp = LdDispImm;
440 int StDisp = StDispImm;
441 while (Size > 0) {
442 if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) {
443 Size = Size - MOV128SZ;
444 buildCopy(LoadInst, getYMMtoXMMLoadOpcode(LoadInst->getOpcode()), LdDisp,
445 StoreInst, getYMMtoXMMStoreOpcode(StoreInst->getOpcode()),
446 StDisp, MOV128SZ, LMMOffset, SMMOffset);
447 LdDisp += MOV128SZ;
448 StDisp += MOV128SZ;
449 LMMOffset += MOV128SZ;
450 SMMOffset += MOV128SZ;
451 continue;
453 if (Size - MOV64SZ >= 0) {
454 Size = Size - MOV64SZ;
455 buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp,
456 MOV64SZ, LMMOffset, SMMOffset);
457 LdDisp += MOV64SZ;
458 StDisp += MOV64SZ;
459 LMMOffset += MOV64SZ;
460 SMMOffset += MOV64SZ;
461 continue;
463 if (Size - MOV32SZ >= 0) {
464 Size = Size - MOV32SZ;
465 buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp,
466 MOV32SZ, LMMOffset, SMMOffset);
467 LdDisp += MOV32SZ;
468 StDisp += MOV32SZ;
469 LMMOffset += MOV32SZ;
470 SMMOffset += MOV32SZ;
471 continue;
473 if (Size - MOV16SZ >= 0) {
474 Size = Size - MOV16SZ;
475 buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp,
476 MOV16SZ, LMMOffset, SMMOffset);
477 LdDisp += MOV16SZ;
478 StDisp += MOV16SZ;
479 LMMOffset += MOV16SZ;
480 SMMOffset += MOV16SZ;
481 continue;
483 if (Size - MOV8SZ >= 0) {
484 Size = Size - MOV8SZ;
485 buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp,
486 MOV8SZ, LMMOffset, SMMOffset);
487 LdDisp += MOV8SZ;
488 StDisp += MOV8SZ;
489 LMMOffset += MOV8SZ;
490 SMMOffset += MOV8SZ;
491 continue;
494 assert(Size == 0 && "Wrong size division");
497 static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) {
498 MachineOperand &LoadBase = getBaseOperand(LoadInst);
499 MachineOperand &StoreBase = getBaseOperand(StoreInst);
500 auto StorePrevNonDbgInstr = skipDebugInstructionsBackward(
501 std::prev(MachineBasicBlock::instr_iterator(StoreInst)),
502 LoadInst->getParent()->instr_begin()).getNodePtr();
503 if (LoadBase.isReg()) {
504 MachineInstr *LastLoad = LoadInst->getPrevNode();
505 // If the original load and store to xmm/ymm were consecutive
506 // then the partial copies were also created in
507 // a consecutive order to reduce register pressure,
508 // and the location of the last load is before the last store.
509 if (StorePrevNonDbgInstr == LoadInst)
510 LastLoad = LoadInst->getPrevNode()->getPrevNode();
511 getBaseOperand(LastLoad).setIsKill(LoadBase.isKill());
513 if (StoreBase.isReg()) {
514 MachineInstr *StInst = StoreInst;
515 if (StorePrevNonDbgInstr == LoadInst)
516 StInst = LoadInst;
517 getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill());
521 bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1,
522 const MachineMemOperand &Op2) const {
523 if (!Op1.getValue() || !Op2.getValue())
524 return true;
526 int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset());
527 int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset;
528 int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset;
530 AliasResult AAResult =
531 AA->alias(MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()),
532 MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo()));
533 return AAResult != NoAlias;
536 void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) {
537 for (auto &MBB : MF)
538 for (auto &MI : MBB) {
539 if (!isPotentialBlockedMemCpyLd(MI.getOpcode()))
540 continue;
541 int DefVR = MI.getOperand(0).getReg();
542 if (!MRI->hasOneNonDBGUse(DefVR))
543 continue;
544 for (auto UI = MRI->use_nodbg_begin(DefVR), UE = MRI->use_nodbg_end();
545 UI != UE;) {
546 MachineOperand &StoreMO = *UI++;
547 MachineInstr &StoreMI = *StoreMO.getParent();
548 // Skip cases where the memcpy may overlap.
549 if (StoreMI.getParent() == MI.getParent() &&
550 isPotentialBlockedMemCpyPair(MI.getOpcode(), StoreMI.getOpcode()) &&
551 isRelevantAddressingMode(&MI) &&
552 isRelevantAddressingMode(&StoreMI)) {
553 assert(MI.hasOneMemOperand() &&
554 "Expected one memory operand for load instruction");
555 assert(StoreMI.hasOneMemOperand() &&
556 "Expected one memory operand for store instruction");
557 if (!alias(**MI.memoperands_begin(), **StoreMI.memoperands_begin()))
558 BlockedLoadsStoresPairs.push_back(std::make_pair(&MI, &StoreMI));
564 unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) {
565 auto TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI,
566 *LoadInst->getParent()->getParent());
567 return TRI->getRegSizeInBits(*TRC) / 8;
570 void X86AvoidSFBPass::breakBlockedCopies(
571 MachineInstr *LoadInst, MachineInstr *StoreInst,
572 const DisplacementSizeMap &BlockingStoresDispSizeMap) {
573 int64_t LdDispImm = getDispOperand(LoadInst).getImm();
574 int64_t StDispImm = getDispOperand(StoreInst).getImm();
575 int64_t LMMOffset = 0;
576 int64_t SMMOffset = 0;
578 int64_t LdDisp1 = LdDispImm;
579 int64_t LdDisp2 = 0;
580 int64_t StDisp1 = StDispImm;
581 int64_t StDisp2 = 0;
582 unsigned Size1 = 0;
583 unsigned Size2 = 0;
584 int64_t LdStDelta = StDispImm - LdDispImm;
586 for (auto DispSizePair : BlockingStoresDispSizeMap) {
587 LdDisp2 = DispSizePair.first;
588 StDisp2 = DispSizePair.first + LdStDelta;
589 Size2 = DispSizePair.second;
590 // Avoid copying overlapping areas.
591 if (LdDisp2 < LdDisp1) {
592 int OverlapDelta = LdDisp1 - LdDisp2;
593 LdDisp2 += OverlapDelta;
594 StDisp2 += OverlapDelta;
595 Size2 -= OverlapDelta;
597 Size1 = LdDisp2 - LdDisp1;
599 // Build a copy for the point until the current blocking store's
600 // displacement.
601 buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
602 SMMOffset);
603 // Build a copy for the current blocking store.
604 buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1,
605 SMMOffset + Size1);
606 LdDisp1 = LdDisp2 + Size2;
607 StDisp1 = StDisp2 + Size2;
608 LMMOffset += Size1 + Size2;
609 SMMOffset += Size1 + Size2;
611 unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1;
612 buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
613 LMMOffset);
616 static bool hasSameBaseOpValue(MachineInstr *LoadInst,
617 MachineInstr *StoreInst) {
618 MachineOperand &LoadBase = getBaseOperand(LoadInst);
619 MachineOperand &StoreBase = getBaseOperand(StoreInst);
620 if (LoadBase.isReg() != StoreBase.isReg())
621 return false;
622 if (LoadBase.isReg())
623 return LoadBase.getReg() == StoreBase.getReg();
624 return LoadBase.getIndex() == StoreBase.getIndex();
627 static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize,
628 int64_t StoreDispImm, unsigned StoreSize) {
629 return ((StoreDispImm >= LoadDispImm) &&
630 (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize)));
633 // Keep track of all stores blocking a load
634 static void
635 updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap,
636 int64_t DispImm, unsigned Size) {
637 if (BlockingStoresDispSizeMap.count(DispImm)) {
638 // Choose the smallest blocking store starting at this displacement.
639 if (BlockingStoresDispSizeMap[DispImm] > Size)
640 BlockingStoresDispSizeMap[DispImm] = Size;
642 } else
643 BlockingStoresDispSizeMap[DispImm] = Size;
646 // Remove blocking stores contained in each other.
647 static void
648 removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) {
649 if (BlockingStoresDispSizeMap.size() <= 1)
650 return;
652 SmallVector<std::pair<int64_t, unsigned>, 0> DispSizeStack;
653 for (auto DispSizePair : BlockingStoresDispSizeMap) {
654 int64_t CurrDisp = DispSizePair.first;
655 unsigned CurrSize = DispSizePair.second;
656 while (DispSizeStack.size()) {
657 int64_t PrevDisp = DispSizeStack.back().first;
658 unsigned PrevSize = DispSizeStack.back().second;
659 if (CurrDisp + CurrSize > PrevDisp + PrevSize)
660 break;
661 DispSizeStack.pop_back();
663 DispSizeStack.push_back(DispSizePair);
665 BlockingStoresDispSizeMap.clear();
666 for (auto Disp : DispSizeStack)
667 BlockingStoresDispSizeMap.insert(Disp);
670 bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) {
671 bool Changed = false;
673 if (DisableX86AvoidStoreForwardBlocks || skipFunction(MF.getFunction()) ||
674 !MF.getSubtarget<X86Subtarget>().is64Bit())
675 return false;
677 MRI = &MF.getRegInfo();
678 assert(MRI->isSSA() && "Expected MIR to be in SSA form");
679 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
680 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
681 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
682 LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";);
683 // Look for a load then a store to XMM/YMM which look like a memcpy
684 findPotentiallylBlockedCopies(MF);
686 for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) {
687 MachineInstr *LoadInst = LoadStoreInstPair.first;
688 int64_t LdDispImm = getDispOperand(LoadInst).getImm();
689 DisplacementSizeMap BlockingStoresDispSizeMap;
691 SmallVector<MachineInstr *, 2> PotentialBlockers =
692 findPotentialBlockers(LoadInst);
693 for (auto PBInst : PotentialBlockers) {
694 if (!isPotentialBlockingStoreInst(PBInst->getOpcode(),
695 LoadInst->getOpcode()) ||
696 !isRelevantAddressingMode(PBInst))
697 continue;
698 int64_t PBstDispImm = getDispOperand(PBInst).getImm();
699 assert(PBInst->hasOneMemOperand() && "Expected One Memory Operand");
700 unsigned PBstSize = (*PBInst->memoperands_begin())->getSize();
701 // This check doesn't cover all cases, but it will suffice for now.
702 // TODO: take branch probability into consideration, if the blocking
703 // store is in an unreached block, breaking the memcopy could lose
704 // performance.
705 if (hasSameBaseOpValue(LoadInst, PBInst) &&
706 isBlockingStore(LdDispImm, getRegSizeInBytes(LoadInst), PBstDispImm,
707 PBstSize))
708 updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, PBstDispImm,
709 PBstSize);
712 if (BlockingStoresDispSizeMap.empty())
713 continue;
715 // We found a store forward block, break the memcpy's load and store
716 // into smaller copies such that each smaller store that was causing
717 // a store block would now be copied separately.
718 MachineInstr *StoreInst = LoadStoreInstPair.second;
719 LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n");
720 LLVM_DEBUG(LoadInst->dump());
721 LLVM_DEBUG(StoreInst->dump());
722 LLVM_DEBUG(dbgs() << "Replaced with:\n");
723 removeRedundantBlockingStores(BlockingStoresDispSizeMap);
724 breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap);
725 updateKillStatus(LoadInst, StoreInst);
726 ForRemoval.push_back(LoadInst);
727 ForRemoval.push_back(StoreInst);
729 for (auto RemovedInst : ForRemoval) {
730 RemovedInst->eraseFromParent();
732 ForRemoval.clear();
733 BlockedLoadsStoresPairs.clear();
734 LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";);
736 return Changed;