[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / Transforms / IPO / ArgumentPromotion.cpp
blobdd9f74a881ee35a74adaacf375038d2596e64145
1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments. In
10 // practice, this means looking for internal functions that have pointer
11 // arguments. If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value. This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded. Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently. This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
29 //===----------------------------------------------------------------------===//
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/CGSCCPassManager.h"
45 #include "llvm/Analysis/CallGraph.h"
46 #include "llvm/Analysis/CallGraphSCCPass.h"
47 #include "llvm/Analysis/LazyCallGraph.h"
48 #include "llvm/Analysis/Loads.h"
49 #include "llvm/Analysis/MemoryLocation.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/IRBuilder.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/NoFolder.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <string>
86 #include <utility>
87 #include <vector>
89 using namespace llvm;
91 #define DEBUG_TYPE "argpromotion"
93 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
94 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
95 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
96 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
98 /// A vector used to hold the indices of a single GEP instruction
99 using IndicesVector = std::vector<uint64_t>;
101 /// DoPromotion - This method actually performs the promotion of the specified
102 /// arguments, and returns the new function. At this point, we know that it's
103 /// safe to do so.
104 static Function *
105 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
106 SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
107 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
108 ReplaceCallSite) {
109 // Start by computing a new prototype for the function, which is the same as
110 // the old function, but has modified arguments.
111 FunctionType *FTy = F->getFunctionType();
112 std::vector<Type *> Params;
114 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
116 // ScalarizedElements - If we are promoting a pointer that has elements
117 // accessed out of it, keep track of which elements are accessed so that we
118 // can add one argument for each.
120 // Arguments that are directly loaded will have a zero element value here, to
121 // handle cases where there are both a direct load and GEP accesses.
122 std::map<Argument *, ScalarizeTable> ScalarizedElements;
124 // OriginalLoads - Keep track of a representative load instruction from the
125 // original function so that we can tell the alias analysis implementation
126 // what the new GEP/Load instructions we are inserting look like.
127 // We need to keep the original loads for each argument and the elements
128 // of the argument that are accessed.
129 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
131 // Attribute - Keep track of the parameter attributes for the arguments
132 // that we are *not* promoting. For the ones that we do promote, the parameter
133 // attributes are lost
134 SmallVector<AttributeSet, 8> ArgAttrVec;
135 AttributeList PAL = F->getAttributes();
137 // First, determine the new argument list
138 unsigned ArgNo = 0;
139 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
140 ++I, ++ArgNo) {
141 if (ByValArgsToTransform.count(&*I)) {
142 // Simple byval argument? Just add all the struct element types.
143 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
144 StructType *STy = cast<StructType>(AgTy);
145 Params.insert(Params.end(), STy->element_begin(), STy->element_end());
146 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
147 AttributeSet());
148 ++NumByValArgsPromoted;
149 } else if (!ArgsToPromote.count(&*I)) {
150 // Unchanged argument
151 Params.push_back(I->getType());
152 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
153 } else if (I->use_empty()) {
154 // Dead argument (which are always marked as promotable)
155 ++NumArgumentsDead;
157 // There may be remaining metadata uses of the argument for things like
158 // llvm.dbg.value. Replace them with undef.
159 I->replaceAllUsesWith(UndefValue::get(I->getType()));
160 } else {
161 // Okay, this is being promoted. This means that the only uses are loads
162 // or GEPs which are only used by loads
164 // In this table, we will track which indices are loaded from the argument
165 // (where direct loads are tracked as no indices).
166 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
167 for (User *U : I->users()) {
168 Instruction *UI = cast<Instruction>(U);
169 Type *SrcTy;
170 if (LoadInst *L = dyn_cast<LoadInst>(UI))
171 SrcTy = L->getType();
172 else
173 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
174 IndicesVector Indices;
175 Indices.reserve(UI->getNumOperands() - 1);
176 // Since loads will only have a single operand, and GEPs only a single
177 // non-index operand, this will record direct loads without any indices,
178 // and gep+loads with the GEP indices.
179 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
180 II != IE; ++II)
181 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
182 // GEPs with a single 0 index can be merged with direct loads
183 if (Indices.size() == 1 && Indices.front() == 0)
184 Indices.clear();
185 ArgIndices.insert(std::make_pair(SrcTy, Indices));
186 LoadInst *OrigLoad;
187 if (LoadInst *L = dyn_cast<LoadInst>(UI))
188 OrigLoad = L;
189 else
190 // Take any load, we will use it only to update Alias Analysis
191 OrigLoad = cast<LoadInst>(UI->user_back());
192 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
195 // Add a parameter to the function for each element passed in.
196 for (const auto &ArgIndex : ArgIndices) {
197 // not allowed to dereference ->begin() if size() is 0
198 Params.push_back(GetElementPtrInst::getIndexedType(
199 cast<PointerType>(I->getType()->getScalarType())->getElementType(),
200 ArgIndex.second));
201 ArgAttrVec.push_back(AttributeSet());
202 assert(Params.back());
205 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
206 ++NumArgumentsPromoted;
207 else
208 ++NumAggregatesPromoted;
212 Type *RetTy = FTy->getReturnType();
214 // Construct the new function type using the new arguments.
215 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
217 // Create the new function body and insert it into the module.
218 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
219 F->getName());
220 NF->copyAttributesFrom(F);
222 // Patch the pointer to LLVM function in debug info descriptor.
223 NF->setSubprogram(F->getSubprogram());
224 F->setSubprogram(nullptr);
226 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
227 << "From: " << *F);
229 // Recompute the parameter attributes list based on the new arguments for
230 // the function.
231 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
232 PAL.getRetAttributes(), ArgAttrVec));
233 ArgAttrVec.clear();
235 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
236 NF->takeName(F);
238 // Loop over all of the callers of the function, transforming the call sites
239 // to pass in the loaded pointers.
241 SmallVector<Value *, 16> Args;
242 while (!F->use_empty()) {
243 CallSite CS(F->user_back());
244 assert(CS.getCalledFunction() == F);
245 Instruction *Call = CS.getInstruction();
246 const AttributeList &CallPAL = CS.getAttributes();
247 IRBuilder<NoFolder> IRB(Call);
249 // Loop over the operands, inserting GEP and loads in the caller as
250 // appropriate.
251 CallSite::arg_iterator AI = CS.arg_begin();
252 ArgNo = 0;
253 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
254 ++I, ++AI, ++ArgNo)
255 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
256 Args.push_back(*AI); // Unmodified argument
257 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
258 } else if (ByValArgsToTransform.count(&*I)) {
259 // Emit a GEP and load for each element of the struct.
260 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
261 StructType *STy = cast<StructType>(AgTy);
262 Value *Idxs[2] = {
263 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
264 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
265 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
266 auto *Idx =
267 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
268 // TODO: Tell AA about the new values?
269 Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
270 Idx->getName() + ".val"));
271 ArgAttrVec.push_back(AttributeSet());
273 } else if (!I->use_empty()) {
274 // Non-dead argument: insert GEPs and loads as appropriate.
275 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
276 // Store the Value* version of the indices in here, but declare it now
277 // for reuse.
278 std::vector<Value *> Ops;
279 for (const auto &ArgIndex : ArgIndices) {
280 Value *V = *AI;
281 LoadInst *OrigLoad =
282 OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
283 if (!ArgIndex.second.empty()) {
284 Ops.reserve(ArgIndex.second.size());
285 Type *ElTy = V->getType();
286 for (auto II : ArgIndex.second) {
287 // Use i32 to index structs, and i64 for others (pointers/arrays).
288 // This satisfies GEP constraints.
289 Type *IdxTy =
290 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
291 : Type::getInt64Ty(F->getContext()));
292 Ops.push_back(ConstantInt::get(IdxTy, II));
293 // Keep track of the type we're currently indexing.
294 if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
295 ElTy = ElPTy->getElementType();
296 else
297 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
299 // And create a GEP to extract those indices.
300 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
301 Ops.clear();
303 // Since we're replacing a load make sure we take the alignment
304 // of the previous load.
305 LoadInst *newLoad =
306 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
307 newLoad->setAlignment(MaybeAlign(OrigLoad->getAlignment()));
308 // Transfer the AA info too.
309 AAMDNodes AAInfo;
310 OrigLoad->getAAMetadata(AAInfo);
311 newLoad->setAAMetadata(AAInfo);
313 Args.push_back(newLoad);
314 ArgAttrVec.push_back(AttributeSet());
318 // Push any varargs arguments on the list.
319 for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
320 Args.push_back(*AI);
321 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
324 SmallVector<OperandBundleDef, 1> OpBundles;
325 CS.getOperandBundlesAsDefs(OpBundles);
327 CallSite NewCS;
328 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
329 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
330 Args, OpBundles, "", Call);
331 } else {
332 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
333 NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
334 NewCS = NewCall;
336 NewCS.setCallingConv(CS.getCallingConv());
337 NewCS.setAttributes(
338 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
339 CallPAL.getRetAttributes(), ArgAttrVec));
340 NewCS->setDebugLoc(Call->getDebugLoc());
341 uint64_t W;
342 if (Call->extractProfTotalWeight(W))
343 NewCS->setProfWeight(W);
344 Args.clear();
345 ArgAttrVec.clear();
347 // Update the callgraph to know that the callsite has been transformed.
348 if (ReplaceCallSite)
349 (*ReplaceCallSite)(CS, NewCS);
351 if (!Call->use_empty()) {
352 Call->replaceAllUsesWith(NewCS.getInstruction());
353 NewCS->takeName(Call);
356 // Finally, remove the old call from the program, reducing the use-count of
357 // F.
358 Call->eraseFromParent();
361 const DataLayout &DL = F->getParent()->getDataLayout();
363 // Since we have now created the new function, splice the body of the old
364 // function right into the new function, leaving the old rotting hulk of the
365 // function empty.
366 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
368 // Loop over the argument list, transferring uses of the old arguments over to
369 // the new arguments, also transferring over the names as well.
370 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
371 I2 = NF->arg_begin();
372 I != E; ++I) {
373 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
374 // If this is an unmodified argument, move the name and users over to the
375 // new version.
376 I->replaceAllUsesWith(&*I2);
377 I2->takeName(&*I);
378 ++I2;
379 continue;
382 if (ByValArgsToTransform.count(&*I)) {
383 // In the callee, we create an alloca, and store each of the new incoming
384 // arguments into the alloca.
385 Instruction *InsertPt = &NF->begin()->front();
387 // Just add all the struct element types.
388 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
389 Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
390 I->getParamAlignment(), "", InsertPt);
391 StructType *STy = cast<StructType>(AgTy);
392 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
393 nullptr};
395 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
396 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
397 Value *Idx = GetElementPtrInst::Create(
398 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
399 InsertPt);
400 I2->setName(I->getName() + "." + Twine(i));
401 new StoreInst(&*I2++, Idx, InsertPt);
404 // Anything that used the arg should now use the alloca.
405 I->replaceAllUsesWith(TheAlloca);
406 TheAlloca->takeName(&*I);
408 // If the alloca is used in a call, we must clear the tail flag since
409 // the callee now uses an alloca from the caller.
410 for (User *U : TheAlloca->users()) {
411 CallInst *Call = dyn_cast<CallInst>(U);
412 if (!Call)
413 continue;
414 Call->setTailCall(false);
416 continue;
419 if (I->use_empty())
420 continue;
422 // Otherwise, if we promoted this argument, then all users are load
423 // instructions (or GEPs with only load users), and all loads should be
424 // using the new argument that we added.
425 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
427 while (!I->use_empty()) {
428 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
429 assert(ArgIndices.begin()->second.empty() &&
430 "Load element should sort to front!");
431 I2->setName(I->getName() + ".val");
432 LI->replaceAllUsesWith(&*I2);
433 LI->eraseFromParent();
434 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
435 << "' in function '" << F->getName() << "'\n");
436 } else {
437 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
438 IndicesVector Operands;
439 Operands.reserve(GEP->getNumIndices());
440 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
441 II != IE; ++II)
442 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
444 // GEPs with a single 0 index can be merged with direct loads
445 if (Operands.size() == 1 && Operands.front() == 0)
446 Operands.clear();
448 Function::arg_iterator TheArg = I2;
449 for (ScalarizeTable::iterator It = ArgIndices.begin();
450 It->second != Operands; ++It, ++TheArg) {
451 assert(It != ArgIndices.end() && "GEP not handled??");
454 std::string NewName = I->getName();
455 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
456 NewName += "." + utostr(Operands[i]);
458 NewName += ".val";
459 TheArg->setName(NewName);
461 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
462 << "' of function '" << NF->getName() << "'\n");
464 // All of the uses must be load instructions. Replace them all with
465 // the argument specified by ArgNo.
466 while (!GEP->use_empty()) {
467 LoadInst *L = cast<LoadInst>(GEP->user_back());
468 L->replaceAllUsesWith(&*TheArg);
469 L->eraseFromParent();
471 GEP->eraseFromParent();
475 // Increment I2 past all of the arguments added for this promoted pointer.
476 std::advance(I2, ArgIndices.size());
479 return NF;
482 /// Return true if we can prove that all callees pass in a valid pointer for the
483 /// specified function argument.
484 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
485 Function *Callee = Arg->getParent();
486 const DataLayout &DL = Callee->getParent()->getDataLayout();
488 unsigned ArgNo = Arg->getArgNo();
490 // Look at all call sites of the function. At this point we know we only have
491 // direct callees.
492 for (User *U : Callee->users()) {
493 CallSite CS(U);
494 assert(CS && "Should only have direct calls!");
496 if (!isDereferenceablePointer(CS.getArgument(ArgNo), Ty, DL))
497 return false;
499 return true;
502 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
503 /// that is greater than or equal to the size of prefix, and each of the
504 /// elements in Prefix is the same as the corresponding elements in Longer.
506 /// This means it also returns true when Prefix and Longer are equal!
507 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
508 if (Prefix.size() > Longer.size())
509 return false;
510 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
513 /// Checks if Indices, or a prefix of Indices, is in Set.
514 static bool prefixIn(const IndicesVector &Indices,
515 std::set<IndicesVector> &Set) {
516 std::set<IndicesVector>::iterator Low;
517 Low = Set.upper_bound(Indices);
518 if (Low != Set.begin())
519 Low--;
520 // Low is now the last element smaller than or equal to Indices. This means
521 // it points to a prefix of Indices (possibly Indices itself), if such
522 // prefix exists.
524 // This load is safe if any prefix of its operands is safe to load.
525 return Low != Set.end() && isPrefix(*Low, Indices);
528 /// Mark the given indices (ToMark) as safe in the given set of indices
529 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
530 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
531 /// already. Furthermore, any indices that Indices is itself a prefix of, are
532 /// removed from Safe (since they are implicitely safe because of Indices now).
533 static void markIndicesSafe(const IndicesVector &ToMark,
534 std::set<IndicesVector> &Safe) {
535 std::set<IndicesVector>::iterator Low;
536 Low = Safe.upper_bound(ToMark);
537 // Guard against the case where Safe is empty
538 if (Low != Safe.begin())
539 Low--;
540 // Low is now the last element smaller than or equal to Indices. This
541 // means it points to a prefix of Indices (possibly Indices itself), if
542 // such prefix exists.
543 if (Low != Safe.end()) {
544 if (isPrefix(*Low, ToMark))
545 // If there is already a prefix of these indices (or exactly these
546 // indices) marked a safe, don't bother adding these indices
547 return;
549 // Increment Low, so we can use it as a "insert before" hint
550 ++Low;
552 // Insert
553 Low = Safe.insert(Low, ToMark);
554 ++Low;
555 // If there we're a prefix of longer index list(s), remove those
556 std::set<IndicesVector>::iterator End = Safe.end();
557 while (Low != End && isPrefix(ToMark, *Low)) {
558 std::set<IndicesVector>::iterator Remove = Low;
559 ++Low;
560 Safe.erase(Remove);
564 /// isSafeToPromoteArgument - As you might guess from the name of this method,
565 /// it checks to see if it is both safe and useful to promote the argument.
566 /// This method limits promotion of aggregates to only promote up to three
567 /// elements of the aggregate in order to avoid exploding the number of
568 /// arguments passed in.
569 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
570 unsigned MaxElements) {
571 using GEPIndicesSet = std::set<IndicesVector>;
573 // Quick exit for unused arguments
574 if (Arg->use_empty())
575 return true;
577 // We can only promote this argument if all of the uses are loads, or are GEP
578 // instructions (with constant indices) that are subsequently loaded.
580 // Promoting the argument causes it to be loaded in the caller
581 // unconditionally. This is only safe if we can prove that either the load
582 // would have happened in the callee anyway (ie, there is a load in the entry
583 // block) or the pointer passed in at every call site is guaranteed to be
584 // valid.
585 // In the former case, invalid loads can happen, but would have happened
586 // anyway, in the latter case, invalid loads won't happen. This prevents us
587 // from introducing an invalid load that wouldn't have happened in the
588 // original code.
590 // This set will contain all sets of indices that are loaded in the entry
591 // block, and thus are safe to unconditionally load in the caller.
592 GEPIndicesSet SafeToUnconditionallyLoad;
594 // This set contains all the sets of indices that we are planning to promote.
595 // This makes it possible to limit the number of arguments added.
596 GEPIndicesSet ToPromote;
598 // If the pointer is always valid, any load with first index 0 is valid.
600 if (ByValTy)
601 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
603 // Whenever a new underlying type for the operand is found, make sure it's
604 // consistent with the GEPs and loads we've already seen and, if necessary,
605 // use it to see if all incoming pointers are valid (which implies the 0-index
606 // is safe).
607 Type *BaseTy = ByValTy;
608 auto UpdateBaseTy = [&](Type *NewBaseTy) {
609 if (BaseTy)
610 return BaseTy == NewBaseTy;
612 BaseTy = NewBaseTy;
613 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
614 assert(SafeToUnconditionallyLoad.empty());
615 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
618 return true;
621 // First, iterate the entry block and mark loads of (geps of) arguments as
622 // safe.
623 BasicBlock &EntryBlock = Arg->getParent()->front();
624 // Declare this here so we can reuse it
625 IndicesVector Indices;
626 for (Instruction &I : EntryBlock)
627 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
628 Value *V = LI->getPointerOperand();
629 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
630 V = GEP->getPointerOperand();
631 if (V == Arg) {
632 // This load actually loads (part of) Arg? Check the indices then.
633 Indices.reserve(GEP->getNumIndices());
634 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
635 II != IE; ++II)
636 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
637 Indices.push_back(CI->getSExtValue());
638 else
639 // We found a non-constant GEP index for this argument? Bail out
640 // right away, can't promote this argument at all.
641 return false;
643 if (!UpdateBaseTy(GEP->getSourceElementType()))
644 return false;
646 // Indices checked out, mark them as safe
647 markIndicesSafe(Indices, SafeToUnconditionallyLoad);
648 Indices.clear();
650 } else if (V == Arg) {
651 // Direct loads are equivalent to a GEP with a single 0 index.
652 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
654 if (BaseTy && LI->getType() != BaseTy)
655 return false;
657 BaseTy = LI->getType();
661 // Now, iterate all uses of the argument to see if there are any uses that are
662 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
663 SmallVector<LoadInst *, 16> Loads;
664 IndicesVector Operands;
665 for (Use &U : Arg->uses()) {
666 User *UR = U.getUser();
667 Operands.clear();
668 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
669 // Don't hack volatile/atomic loads
670 if (!LI->isSimple())
671 return false;
672 Loads.push_back(LI);
673 // Direct loads are equivalent to a GEP with a zero index and then a load.
674 Operands.push_back(0);
676 if (!UpdateBaseTy(LI->getType()))
677 return false;
678 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
679 if (GEP->use_empty()) {
680 // Dead GEP's cause trouble later. Just remove them if we run into
681 // them.
682 GEP->eraseFromParent();
683 // TODO: This runs the above loop over and over again for dead GEPs
684 // Couldn't we just do increment the UI iterator earlier and erase the
685 // use?
686 return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements);
689 if (!UpdateBaseTy(GEP->getSourceElementType()))
690 return false;
692 // Ensure that all of the indices are constants.
693 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
694 ++i)
695 if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
696 Operands.push_back(C->getSExtValue());
697 else
698 return false; // Not a constant operand GEP!
700 // Ensure that the only users of the GEP are load instructions.
701 for (User *GEPU : GEP->users())
702 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
703 // Don't hack volatile/atomic loads
704 if (!LI->isSimple())
705 return false;
706 Loads.push_back(LI);
707 } else {
708 // Other uses than load?
709 return false;
711 } else {
712 return false; // Not a load or a GEP.
715 // Now, see if it is safe to promote this load / loads of this GEP. Loading
716 // is safe if Operands, or a prefix of Operands, is marked as safe.
717 if (!prefixIn(Operands, SafeToUnconditionallyLoad))
718 return false;
720 // See if we are already promoting a load with these indices. If not, check
721 // to make sure that we aren't promoting too many elements. If so, nothing
722 // to do.
723 if (ToPromote.find(Operands) == ToPromote.end()) {
724 if (MaxElements > 0 && ToPromote.size() == MaxElements) {
725 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
726 << Arg->getName()
727 << "' because it would require adding more "
728 << "than " << MaxElements
729 << " arguments to the function.\n");
730 // We limit aggregate promotion to only promoting up to a fixed number
731 // of elements of the aggregate.
732 return false;
734 ToPromote.insert(std::move(Operands));
738 if (Loads.empty())
739 return true; // No users, this is a dead argument.
741 // Okay, now we know that the argument is only used by load instructions and
742 // it is safe to unconditionally perform all of them. Use alias analysis to
743 // check to see if the pointer is guaranteed to not be modified from entry of
744 // the function to each of the load instructions.
746 // Because there could be several/many load instructions, remember which
747 // blocks we know to be transparent to the load.
748 df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
750 for (LoadInst *Load : Loads) {
751 // Check to see if the load is invalidated from the start of the block to
752 // the load itself.
753 BasicBlock *BB = Load->getParent();
755 MemoryLocation Loc = MemoryLocation::get(Load);
756 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
757 return false; // Pointer is invalidated!
759 // Now check every path from the entry block to the load for transparency.
760 // To do this, we perform a depth first search on the inverse CFG from the
761 // loading block.
762 for (BasicBlock *P : predecessors(BB)) {
763 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
764 if (AAR.canBasicBlockModify(*TranspBB, Loc))
765 return false;
769 // If the path from the entry of the function to each load is free of
770 // instructions that potentially invalidate the load, we can make the
771 // transformation!
772 return true;
775 /// Checks if a type could have padding bytes.
776 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
777 // There is no size information, so be conservative.
778 if (!type->isSized())
779 return false;
781 // If the alloc size is not equal to the storage size, then there are padding
782 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
783 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
784 return false;
786 if (!isa<CompositeType>(type))
787 return true;
789 // For homogenous sequential types, check for padding within members.
790 if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
791 return isDenselyPacked(seqTy->getElementType(), DL);
793 // Check for padding within and between elements of a struct.
794 StructType *StructTy = cast<StructType>(type);
795 const StructLayout *Layout = DL.getStructLayout(StructTy);
796 uint64_t StartPos = 0;
797 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
798 Type *ElTy = StructTy->getElementType(i);
799 if (!isDenselyPacked(ElTy, DL))
800 return false;
801 if (StartPos != Layout->getElementOffsetInBits(i))
802 return false;
803 StartPos += DL.getTypeAllocSizeInBits(ElTy);
806 return true;
809 /// Checks if the padding bytes of an argument could be accessed.
810 static bool canPaddingBeAccessed(Argument *arg) {
811 assert(arg->hasByValAttr());
813 // Track all the pointers to the argument to make sure they are not captured.
814 SmallPtrSet<Value *, 16> PtrValues;
815 PtrValues.insert(arg);
817 // Track all of the stores.
818 SmallVector<StoreInst *, 16> Stores;
820 // Scan through the uses recursively to make sure the pointer is always used
821 // sanely.
822 SmallVector<Value *, 16> WorkList;
823 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
824 while (!WorkList.empty()) {
825 Value *V = WorkList.back();
826 WorkList.pop_back();
827 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
828 if (PtrValues.insert(V).second)
829 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
830 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
831 Stores.push_back(Store);
832 } else if (!isa<LoadInst>(V)) {
833 return true;
837 // Check to make sure the pointers aren't captured
838 for (StoreInst *Store : Stores)
839 if (PtrValues.count(Store->getValueOperand()))
840 return true;
842 return false;
845 static bool areFunctionArgsABICompatible(
846 const Function &F, const TargetTransformInfo &TTI,
847 SmallPtrSetImpl<Argument *> &ArgsToPromote,
848 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
849 for (const Use &U : F.uses()) {
850 CallSite CS(U.getUser());
851 const Function *Caller = CS.getCaller();
852 const Function *Callee = CS.getCalledFunction();
853 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
854 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
855 return false;
857 return true;
860 /// PromoteArguments - This method checks the specified function to see if there
861 /// are any promotable arguments and if it is safe to promote the function (for
862 /// example, all callers are direct). If safe to promote some arguments, it
863 /// calls the DoPromotion method.
864 static Function *
865 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
866 unsigned MaxElements,
867 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
868 ReplaceCallSite,
869 const TargetTransformInfo &TTI) {
870 // Don't perform argument promotion for naked functions; otherwise we can end
871 // up removing parameters that are seemingly 'not used' as they are referred
872 // to in the assembly.
873 if(F->hasFnAttribute(Attribute::Naked))
874 return nullptr;
876 // Make sure that it is local to this module.
877 if (!F->hasLocalLinkage())
878 return nullptr;
880 // Don't promote arguments for variadic functions. Adding, removing, or
881 // changing non-pack parameters can change the classification of pack
882 // parameters. Frontends encode that classification at the call site in the
883 // IR, while in the callee the classification is determined dynamically based
884 // on the number of registers consumed so far.
885 if (F->isVarArg())
886 return nullptr;
888 // Don't transform functions that receive inallocas, as the transformation may
889 // not be safe depending on calling convention.
890 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
891 return nullptr;
893 // First check: see if there are any pointer arguments! If not, quick exit.
894 SmallVector<Argument *, 16> PointerArgs;
895 for (Argument &I : F->args())
896 if (I.getType()->isPointerTy())
897 PointerArgs.push_back(&I);
898 if (PointerArgs.empty())
899 return nullptr;
901 // Second check: make sure that all callers are direct callers. We can't
902 // transform functions that have indirect callers. Also see if the function
903 // is self-recursive and check that target features are compatible.
904 bool isSelfRecursive = false;
905 for (Use &U : F->uses()) {
906 CallSite CS(U.getUser());
907 // Must be a direct call.
908 if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
909 return nullptr;
911 // Can't change signature of musttail callee
912 if (CS.isMustTailCall())
913 return nullptr;
915 if (CS.getInstruction()->getParent()->getParent() == F)
916 isSelfRecursive = true;
919 // Can't change signature of musttail caller
920 // FIXME: Support promoting whole chain of musttail functions
921 for (BasicBlock &BB : *F)
922 if (BB.getTerminatingMustTailCall())
923 return nullptr;
925 const DataLayout &DL = F->getParent()->getDataLayout();
927 AAResults &AAR = AARGetter(*F);
929 // Check to see which arguments are promotable. If an argument is promotable,
930 // add it to ArgsToPromote.
931 SmallPtrSet<Argument *, 8> ArgsToPromote;
932 SmallPtrSet<Argument *, 8> ByValArgsToTransform;
933 for (Argument *PtrArg : PointerArgs) {
934 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
936 // Replace sret attribute with noalias. This reduces register pressure by
937 // avoiding a register copy.
938 if (PtrArg->hasStructRetAttr()) {
939 unsigned ArgNo = PtrArg->getArgNo();
940 F->removeParamAttr(ArgNo, Attribute::StructRet);
941 F->addParamAttr(ArgNo, Attribute::NoAlias);
942 for (Use &U : F->uses()) {
943 CallSite CS(U.getUser());
944 CS.removeParamAttr(ArgNo, Attribute::StructRet);
945 CS.addParamAttr(ArgNo, Attribute::NoAlias);
949 // If this is a byval argument, and if the aggregate type is small, just
950 // pass the elements, which is always safe, if the passed value is densely
951 // packed or if we can prove the padding bytes are never accessed.
952 bool isSafeToPromote =
953 PtrArg->hasByValAttr() &&
954 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
955 if (isSafeToPromote) {
956 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
957 if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
958 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
959 << PtrArg->getName()
960 << "' because it would require adding more"
961 << " than " << MaxElements
962 << " arguments to the function.\n");
963 continue;
966 // If all the elements are single-value types, we can promote it.
967 bool AllSimple = true;
968 for (const auto *EltTy : STy->elements()) {
969 if (!EltTy->isSingleValueType()) {
970 AllSimple = false;
971 break;
975 // Safe to transform, don't even bother trying to "promote" it.
976 // Passing the elements as a scalar will allow sroa to hack on
977 // the new alloca we introduce.
978 if (AllSimple) {
979 ByValArgsToTransform.insert(PtrArg);
980 continue;
985 // If the argument is a recursive type and we're in a recursive
986 // function, we could end up infinitely peeling the function argument.
987 if (isSelfRecursive) {
988 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
989 bool RecursiveType = false;
990 for (const auto *EltTy : STy->elements()) {
991 if (EltTy == PtrArg->getType()) {
992 RecursiveType = true;
993 break;
996 if (RecursiveType)
997 continue;
1001 // Otherwise, see if we can promote the pointer to its value.
1002 Type *ByValTy =
1003 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
1004 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1005 ArgsToPromote.insert(PtrArg);
1008 // No promotable pointer arguments.
1009 if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1010 return nullptr;
1012 if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
1013 ByValArgsToTransform))
1014 return nullptr;
1016 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1019 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1020 CGSCCAnalysisManager &AM,
1021 LazyCallGraph &CG,
1022 CGSCCUpdateResult &UR) {
1023 bool Changed = false, LocalChange;
1025 // Iterate until we stop promoting from this SCC.
1026 do {
1027 LocalChange = false;
1029 for (LazyCallGraph::Node &N : C) {
1030 Function &OldF = N.getFunction();
1032 FunctionAnalysisManager &FAM =
1033 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1034 // FIXME: This lambda must only be used with this function. We should
1035 // skip the lambda and just get the AA results directly.
1036 auto AARGetter = [&](Function &F) -> AAResults & {
1037 assert(&F == &OldF && "Called with an unexpected function!");
1038 return FAM.getResult<AAManager>(F);
1041 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1042 Function *NewF =
1043 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1044 if (!NewF)
1045 continue;
1046 LocalChange = true;
1048 // Directly substitute the functions in the call graph. Note that this
1049 // requires the old function to be completely dead and completely
1050 // replaced by the new function. It does no call graph updates, it merely
1051 // swaps out the particular function mapped to a particular node in the
1052 // graph.
1053 C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1054 OldF.eraseFromParent();
1057 Changed |= LocalChange;
1058 } while (LocalChange);
1060 if (!Changed)
1061 return PreservedAnalyses::all();
1063 return PreservedAnalyses::none();
1066 namespace {
1068 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1069 struct ArgPromotion : public CallGraphSCCPass {
1070 // Pass identification, replacement for typeid
1071 static char ID;
1073 explicit ArgPromotion(unsigned MaxElements = 3)
1074 : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1075 initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1078 void getAnalysisUsage(AnalysisUsage &AU) const override {
1079 AU.addRequired<AssumptionCacheTracker>();
1080 AU.addRequired<TargetLibraryInfoWrapperPass>();
1081 AU.addRequired<TargetTransformInfoWrapperPass>();
1082 getAAResultsAnalysisUsage(AU);
1083 CallGraphSCCPass::getAnalysisUsage(AU);
1086 bool runOnSCC(CallGraphSCC &SCC) override;
1088 private:
1089 using llvm::Pass::doInitialization;
1091 bool doInitialization(CallGraph &CG) override;
1093 /// The maximum number of elements to expand, or 0 for unlimited.
1094 unsigned MaxElements;
1097 } // end anonymous namespace
1099 char ArgPromotion::ID = 0;
1101 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1102 "Promote 'by reference' arguments to scalars", false,
1103 false)
1104 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1105 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1107 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1108 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1109 "Promote 'by reference' arguments to scalars", false, false)
1111 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1112 return new ArgPromotion(MaxElements);
1115 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1116 if (skipSCC(SCC))
1117 return false;
1119 // Get the callgraph information that we need to update to reflect our
1120 // changes.
1121 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1123 LegacyAARGetter AARGetter(*this);
1125 bool Changed = false, LocalChange;
1127 // Iterate until we stop promoting from this SCC.
1128 do {
1129 LocalChange = false;
1130 // Attempt to promote arguments from all functions in this SCC.
1131 for (CallGraphNode *OldNode : SCC) {
1132 Function *OldF = OldNode->getFunction();
1133 if (!OldF)
1134 continue;
1136 auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1137 Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1138 CallGraphNode *NewCalleeNode =
1139 CG.getOrInsertFunction(NewCS.getCalledFunction());
1140 CallGraphNode *CallerNode = CG[Caller];
1141 CallerNode->replaceCallEdge(*cast<CallBase>(OldCS.getInstruction()),
1142 *cast<CallBase>(NewCS.getInstruction()),
1143 NewCalleeNode);
1146 const TargetTransformInfo &TTI =
1147 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1148 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1149 {ReplaceCallSite}, TTI)) {
1150 LocalChange = true;
1152 // Update the call graph for the newly promoted function.
1153 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1154 NewNode->stealCalledFunctionsFrom(OldNode);
1155 if (OldNode->getNumReferences() == 0)
1156 delete CG.removeFunctionFromModule(OldNode);
1157 else
1158 OldF->setLinkage(Function::ExternalLinkage);
1160 // And updat ethe SCC we're iterating as well.
1161 SCC.ReplaceNode(OldNode, NewNode);
1164 // Remember that we changed something.
1165 Changed |= LocalChange;
1166 } while (LocalChange);
1168 return Changed;
1171 bool ArgPromotion::doInitialization(CallGraph &CG) {
1172 return CallGraphSCCPass::doInitialization(CG);