[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / Transforms / Scalar / SCCP.cpp
blob10fbdc8aacd2fdb462d72922958d6399f4e27a3c
1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sparse conditional constant propagation and merging:
11 // Specifically, this:
12 // * Assumes values are constant unless proven otherwise
13 // * Assumes BasicBlocks are dead unless proven otherwise
14 // * Proves values to be constant, and replaces them with constants
15 // * Proves conditional branches to be unconditional
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Scalar/SCCP.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/GlobalsModRef.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueLattice.h"
34 #include "llvm/Analysis/ValueLatticeUtils.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstVisitor.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/PredicateInfo.h"
59 #include <cassert>
60 #include <utility>
61 #include <vector>
63 using namespace llvm;
65 #define DEBUG_TYPE "sccp"
67 STATISTIC(NumInstRemoved, "Number of instructions removed");
68 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
70 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
71 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
72 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
74 namespace {
76 /// LatticeVal class - This class represents the different lattice values that
77 /// an LLVM value may occupy. It is a simple class with value semantics.
78 ///
79 class LatticeVal {
80 enum LatticeValueTy {
81 /// unknown - This LLVM Value has no known value yet.
82 unknown,
84 /// constant - This LLVM Value has a specific constant value.
85 constant,
87 /// forcedconstant - This LLVM Value was thought to be undef until
88 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
89 /// with another (different) constant, it goes to overdefined, instead of
90 /// asserting.
91 forcedconstant,
93 /// overdefined - This instruction is not known to be constant, and we know
94 /// it has a value.
95 overdefined
98 /// Val: This stores the current lattice value along with the Constant* for
99 /// the constant if this is a 'constant' or 'forcedconstant' value.
100 PointerIntPair<Constant *, 2, LatticeValueTy> Val;
102 LatticeValueTy getLatticeValue() const {
103 return Val.getInt();
106 public:
107 LatticeVal() : Val(nullptr, unknown) {}
109 bool isUnknown() const { return getLatticeValue() == unknown; }
111 bool isConstant() const {
112 return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
115 bool isOverdefined() const { return getLatticeValue() == overdefined; }
117 Constant *getConstant() const {
118 assert(isConstant() && "Cannot get the constant of a non-constant!");
119 return Val.getPointer();
122 /// markOverdefined - Return true if this is a change in status.
123 bool markOverdefined() {
124 if (isOverdefined())
125 return false;
127 Val.setInt(overdefined);
128 return true;
131 /// markConstant - Return true if this is a change in status.
132 bool markConstant(Constant *V) {
133 if (getLatticeValue() == constant) { // Constant but not forcedconstant.
134 assert(getConstant() == V && "Marking constant with different value");
135 return false;
138 if (isUnknown()) {
139 Val.setInt(constant);
140 assert(V && "Marking constant with NULL");
141 Val.setPointer(V);
142 } else {
143 assert(getLatticeValue() == forcedconstant &&
144 "Cannot move from overdefined to constant!");
145 // Stay at forcedconstant if the constant is the same.
146 if (V == getConstant()) return false;
148 // Otherwise, we go to overdefined. Assumptions made based on the
149 // forced value are possibly wrong. Assuming this is another constant
150 // could expose a contradiction.
151 Val.setInt(overdefined);
153 return true;
156 /// getConstantInt - If this is a constant with a ConstantInt value, return it
157 /// otherwise return null.
158 ConstantInt *getConstantInt() const {
159 if (isConstant())
160 return dyn_cast<ConstantInt>(getConstant());
161 return nullptr;
164 /// getBlockAddress - If this is a constant with a BlockAddress value, return
165 /// it, otherwise return null.
166 BlockAddress *getBlockAddress() const {
167 if (isConstant())
168 return dyn_cast<BlockAddress>(getConstant());
169 return nullptr;
172 void markForcedConstant(Constant *V) {
173 assert(isUnknown() && "Can't force a defined value!");
174 Val.setInt(forcedconstant);
175 Val.setPointer(V);
178 ValueLatticeElement toValueLattice() const {
179 if (isOverdefined())
180 return ValueLatticeElement::getOverdefined();
181 if (isConstant())
182 return ValueLatticeElement::get(getConstant());
183 return ValueLatticeElement();
187 //===----------------------------------------------------------------------===//
189 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
190 /// Constant Propagation.
192 class SCCPSolver : public InstVisitor<SCCPSolver> {
193 const DataLayout &DL;
194 std::function<const TargetLibraryInfo &(Function &)> GetTLI;
195 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
196 DenseMap<Value *, LatticeVal> ValueState; // The state each value is in.
197 // The state each parameter is in.
198 DenseMap<Value *, ValueLatticeElement> ParamState;
200 /// StructValueState - This maintains ValueState for values that have
201 /// StructType, for example for formal arguments, calls, insertelement, etc.
202 DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState;
204 /// GlobalValue - If we are tracking any values for the contents of a global
205 /// variable, we keep a mapping from the constant accessor to the element of
206 /// the global, to the currently known value. If the value becomes
207 /// overdefined, it's entry is simply removed from this map.
208 DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals;
210 /// TrackedRetVals - If we are tracking arguments into and the return
211 /// value out of a function, it will have an entry in this map, indicating
212 /// what the known return value for the function is.
213 MapVector<Function *, LatticeVal> TrackedRetVals;
215 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
216 /// that return multiple values.
217 MapVector<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals;
219 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
220 /// represented here for efficient lookup.
221 SmallPtrSet<Function *, 16> MRVFunctionsTracked;
223 /// MustTailFunctions - Each function here is a callee of non-removable
224 /// musttail call site.
225 SmallPtrSet<Function *, 16> MustTailCallees;
227 /// TrackingIncomingArguments - This is the set of functions for whose
228 /// arguments we make optimistic assumptions about and try to prove as
229 /// constants.
230 SmallPtrSet<Function *, 16> TrackingIncomingArguments;
232 /// The reason for two worklists is that overdefined is the lowest state
233 /// on the lattice, and moving things to overdefined as fast as possible
234 /// makes SCCP converge much faster.
236 /// By having a separate worklist, we accomplish this because everything
237 /// possibly overdefined will become overdefined at the soonest possible
238 /// point.
239 SmallVector<Value *, 64> OverdefinedInstWorkList;
240 SmallVector<Value *, 64> InstWorkList;
242 // The BasicBlock work list
243 SmallVector<BasicBlock *, 64> BBWorkList;
245 /// KnownFeasibleEdges - Entries in this set are edges which have already had
246 /// PHI nodes retriggered.
247 using Edge = std::pair<BasicBlock *, BasicBlock *>;
248 DenseSet<Edge> KnownFeasibleEdges;
250 DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
251 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
253 public:
254 void addAnalysis(Function &F, AnalysisResultsForFn A) {
255 AnalysisResults.insert({&F, std::move(A)});
258 const PredicateBase *getPredicateInfoFor(Instruction *I) {
259 auto A = AnalysisResults.find(I->getParent()->getParent());
260 if (A == AnalysisResults.end())
261 return nullptr;
262 return A->second.PredInfo->getPredicateInfoFor(I);
265 DomTreeUpdater getDTU(Function &F) {
266 auto A = AnalysisResults.find(&F);
267 assert(A != AnalysisResults.end() && "Need analysis results for function.");
268 return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
271 SCCPSolver(const DataLayout &DL,
272 std::function<const TargetLibraryInfo &(Function &)> GetTLI)
273 : DL(DL), GetTLI(std::move(GetTLI)) {}
275 /// MarkBlockExecutable - This method can be used by clients to mark all of
276 /// the blocks that are known to be intrinsically live in the processed unit.
278 /// This returns true if the block was not considered live before.
279 bool MarkBlockExecutable(BasicBlock *BB) {
280 if (!BBExecutable.insert(BB).second)
281 return false;
282 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
283 BBWorkList.push_back(BB); // Add the block to the work list!
284 return true;
287 /// TrackValueOfGlobalVariable - Clients can use this method to
288 /// inform the SCCPSolver that it should track loads and stores to the
289 /// specified global variable if it can. This is only legal to call if
290 /// performing Interprocedural SCCP.
291 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
292 // We only track the contents of scalar globals.
293 if (GV->getValueType()->isSingleValueType()) {
294 LatticeVal &IV = TrackedGlobals[GV];
295 if (!isa<UndefValue>(GV->getInitializer()))
296 IV.markConstant(GV->getInitializer());
300 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
301 /// and out of the specified function (which cannot have its address taken),
302 /// this method must be called.
303 void AddTrackedFunction(Function *F) {
304 // Add an entry, F -> undef.
305 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
306 MRVFunctionsTracked.insert(F);
307 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
308 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
309 LatticeVal()));
310 } else
311 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
314 /// AddMustTailCallee - If the SCCP solver finds that this function is called
315 /// from non-removable musttail call site.
316 void AddMustTailCallee(Function *F) {
317 MustTailCallees.insert(F);
320 /// Returns true if the given function is called from non-removable musttail
321 /// call site.
322 bool isMustTailCallee(Function *F) {
323 return MustTailCallees.count(F);
326 void AddArgumentTrackedFunction(Function *F) {
327 TrackingIncomingArguments.insert(F);
330 /// Returns true if the given function is in the solver's set of
331 /// argument-tracked functions.
332 bool isArgumentTrackedFunction(Function *F) {
333 return TrackingIncomingArguments.count(F);
336 /// Solve - Solve for constants and executable blocks.
337 void Solve();
339 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
340 /// that branches on undef values cannot reach any of their successors.
341 /// However, this is not a safe assumption. After we solve dataflow, this
342 /// method should be use to handle this. If this returns true, the solver
343 /// should be rerun.
344 bool ResolvedUndefsIn(Function &F);
346 bool isBlockExecutable(BasicBlock *BB) const {
347 return BBExecutable.count(BB);
350 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
351 // block to the 'To' basic block is currently feasible.
352 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
354 std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
355 std::vector<LatticeVal> StructValues;
356 auto *STy = dyn_cast<StructType>(V->getType());
357 assert(STy && "getStructLatticeValueFor() can be called only on structs");
358 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
359 auto I = StructValueState.find(std::make_pair(V, i));
360 assert(I != StructValueState.end() && "Value not in valuemap!");
361 StructValues.push_back(I->second);
363 return StructValues;
366 const LatticeVal &getLatticeValueFor(Value *V) const {
367 assert(!V->getType()->isStructTy() &&
368 "Should use getStructLatticeValueFor");
369 DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V);
370 assert(I != ValueState.end() &&
371 "V not found in ValueState nor Paramstate map!");
372 return I->second;
375 /// getTrackedRetVals - Get the inferred return value map.
376 const MapVector<Function*, LatticeVal> &getTrackedRetVals() {
377 return TrackedRetVals;
380 /// getTrackedGlobals - Get and return the set of inferred initializers for
381 /// global variables.
382 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
383 return TrackedGlobals;
386 /// getMRVFunctionsTracked - Get the set of functions which return multiple
387 /// values tracked by the pass.
388 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
389 return MRVFunctionsTracked;
392 /// getMustTailCallees - Get the set of functions which are called
393 /// from non-removable musttail call sites.
394 const SmallPtrSet<Function *, 16> getMustTailCallees() {
395 return MustTailCallees;
398 /// markOverdefined - Mark the specified value overdefined. This
399 /// works with both scalars and structs.
400 void markOverdefined(Value *V) {
401 if (auto *STy = dyn_cast<StructType>(V->getType()))
402 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
403 markOverdefined(getStructValueState(V, i), V);
404 else
405 markOverdefined(ValueState[V], V);
408 // isStructLatticeConstant - Return true if all the lattice values
409 // corresponding to elements of the structure are not overdefined,
410 // false otherwise.
411 bool isStructLatticeConstant(Function *F, StructType *STy) {
412 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
413 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
414 assert(It != TrackedMultipleRetVals.end());
415 LatticeVal LV = It->second;
416 if (LV.isOverdefined())
417 return false;
419 return true;
422 private:
423 // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined
424 void pushToWorkList(LatticeVal &IV, Value *V) {
425 if (IV.isOverdefined())
426 return OverdefinedInstWorkList.push_back(V);
427 InstWorkList.push_back(V);
430 // markConstant - Make a value be marked as "constant". If the value
431 // is not already a constant, add it to the instruction work list so that
432 // the users of the instruction are updated later.
433 bool markConstant(LatticeVal &IV, Value *V, Constant *C) {
434 if (!IV.markConstant(C)) return false;
435 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
436 pushToWorkList(IV, V);
437 return true;
440 bool markConstant(Value *V, Constant *C) {
441 assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
442 return markConstant(ValueState[V], V, C);
445 void markForcedConstant(Value *V, Constant *C) {
446 assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
447 LatticeVal &IV = ValueState[V];
448 IV.markForcedConstant(C);
449 LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
450 pushToWorkList(IV, V);
453 // markOverdefined - Make a value be marked as "overdefined". If the
454 // value is not already overdefined, add it to the overdefined instruction
455 // work list so that the users of the instruction are updated later.
456 bool markOverdefined(LatticeVal &IV, Value *V) {
457 if (!IV.markOverdefined()) return false;
459 LLVM_DEBUG(dbgs() << "markOverdefined: ";
460 if (auto *F = dyn_cast<Function>(V)) dbgs()
461 << "Function '" << F->getName() << "'\n";
462 else dbgs() << *V << '\n');
463 // Only instructions go on the work list
464 pushToWorkList(IV, V);
465 return true;
468 bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
469 if (IV.isOverdefined() || MergeWithV.isUnknown())
470 return false; // Noop.
471 if (MergeWithV.isOverdefined())
472 return markOverdefined(IV, V);
473 if (IV.isUnknown())
474 return markConstant(IV, V, MergeWithV.getConstant());
475 if (IV.getConstant() != MergeWithV.getConstant())
476 return markOverdefined(IV, V);
477 return false;
480 bool mergeInValue(Value *V, LatticeVal MergeWithV) {
481 assert(!V->getType()->isStructTy() &&
482 "non-structs should use markConstant");
483 return mergeInValue(ValueState[V], V, MergeWithV);
486 /// getValueState - Return the LatticeVal object that corresponds to the
487 /// value. This function handles the case when the value hasn't been seen yet
488 /// by properly seeding constants etc.
489 LatticeVal &getValueState(Value *V) {
490 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
492 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
493 ValueState.insert(std::make_pair(V, LatticeVal()));
494 LatticeVal &LV = I.first->second;
496 if (!I.second)
497 return LV; // Common case, already in the map.
499 if (auto *C = dyn_cast<Constant>(V)) {
500 // Undef values remain unknown.
501 if (!isa<UndefValue>(V))
502 LV.markConstant(C); // Constants are constant
505 // All others are underdefined by default.
506 return LV;
509 ValueLatticeElement &getParamState(Value *V) {
510 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
512 std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool>
513 PI = ParamState.insert(std::make_pair(V, ValueLatticeElement()));
514 ValueLatticeElement &LV = PI.first->second;
515 if (PI.second)
516 LV = getValueState(V).toValueLattice();
518 return LV;
521 /// getStructValueState - Return the LatticeVal object that corresponds to the
522 /// value/field pair. This function handles the case when the value hasn't
523 /// been seen yet by properly seeding constants etc.
524 LatticeVal &getStructValueState(Value *V, unsigned i) {
525 assert(V->getType()->isStructTy() && "Should use getValueState");
526 assert(i < cast<StructType>(V->getType())->getNumElements() &&
527 "Invalid element #");
529 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
530 bool> I = StructValueState.insert(
531 std::make_pair(std::make_pair(V, i), LatticeVal()));
532 LatticeVal &LV = I.first->second;
534 if (!I.second)
535 return LV; // Common case, already in the map.
537 if (auto *C = dyn_cast<Constant>(V)) {
538 Constant *Elt = C->getAggregateElement(i);
540 if (!Elt)
541 LV.markOverdefined(); // Unknown sort of constant.
542 else if (isa<UndefValue>(Elt))
543 ; // Undef values remain unknown.
544 else
545 LV.markConstant(Elt); // Constants are constant.
548 // All others are underdefined by default.
549 return LV;
552 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
553 /// work list if it is not already executable.
554 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
555 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
556 return false; // This edge is already known to be executable!
558 if (!MarkBlockExecutable(Dest)) {
559 // If the destination is already executable, we just made an *edge*
560 // feasible that wasn't before. Revisit the PHI nodes in the block
561 // because they have potentially new operands.
562 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
563 << " -> " << Dest->getName() << '\n');
565 for (PHINode &PN : Dest->phis())
566 visitPHINode(PN);
568 return true;
571 // getFeasibleSuccessors - Return a vector of booleans to indicate which
572 // successors are reachable from a given terminator instruction.
573 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
575 // OperandChangedState - This method is invoked on all of the users of an
576 // instruction that was just changed state somehow. Based on this
577 // information, we need to update the specified user of this instruction.
578 void OperandChangedState(Instruction *I) {
579 if (BBExecutable.count(I->getParent())) // Inst is executable?
580 visit(*I);
583 // Add U as additional user of V.
584 void addAdditionalUser(Value *V, User *U) {
585 auto Iter = AdditionalUsers.insert({V, {}});
586 Iter.first->second.insert(U);
589 // Mark I's users as changed, including AdditionalUsers.
590 void markUsersAsChanged(Value *I) {
591 for (User *U : I->users())
592 if (auto *UI = dyn_cast<Instruction>(U))
593 OperandChangedState(UI);
595 auto Iter = AdditionalUsers.find(I);
596 if (Iter != AdditionalUsers.end()) {
597 for (User *U : Iter->second)
598 if (auto *UI = dyn_cast<Instruction>(U))
599 OperandChangedState(UI);
603 private:
604 friend class InstVisitor<SCCPSolver>;
606 // visit implementations - Something changed in this instruction. Either an
607 // operand made a transition, or the instruction is newly executable. Change
608 // the value type of I to reflect these changes if appropriate.
609 void visitPHINode(PHINode &I);
611 // Terminators
613 void visitReturnInst(ReturnInst &I);
614 void visitTerminator(Instruction &TI);
616 void visitCastInst(CastInst &I);
617 void visitSelectInst(SelectInst &I);
618 void visitUnaryOperator(Instruction &I);
619 void visitBinaryOperator(Instruction &I);
620 void visitCmpInst(CmpInst &I);
621 void visitExtractValueInst(ExtractValueInst &EVI);
622 void visitInsertValueInst(InsertValueInst &IVI);
624 void visitCatchSwitchInst(CatchSwitchInst &CPI) {
625 markOverdefined(&CPI);
626 visitTerminator(CPI);
629 // Instructions that cannot be folded away.
631 void visitStoreInst (StoreInst &I);
632 void visitLoadInst (LoadInst &I);
633 void visitGetElementPtrInst(GetElementPtrInst &I);
635 void visitCallInst (CallInst &I) {
636 visitCallSite(&I);
639 void visitInvokeInst (InvokeInst &II) {
640 visitCallSite(&II);
641 visitTerminator(II);
644 void visitCallBrInst (CallBrInst &CBI) {
645 visitCallSite(&CBI);
646 visitTerminator(CBI);
649 void visitCallSite (CallSite CS);
650 void visitResumeInst (ResumeInst &I) { /*returns void*/ }
651 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
652 void visitFenceInst (FenceInst &I) { /*returns void*/ }
654 void visitInstruction(Instruction &I) {
655 // All the instructions we don't do any special handling for just
656 // go to overdefined.
657 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
658 markOverdefined(&I);
662 } // end anonymous namespace
664 // getFeasibleSuccessors - Return a vector of booleans to indicate which
665 // successors are reachable from a given terminator instruction.
666 void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
667 SmallVectorImpl<bool> &Succs) {
668 Succs.resize(TI.getNumSuccessors());
669 if (auto *BI = dyn_cast<BranchInst>(&TI)) {
670 if (BI->isUnconditional()) {
671 Succs[0] = true;
672 return;
675 LatticeVal BCValue = getValueState(BI->getCondition());
676 ConstantInt *CI = BCValue.getConstantInt();
677 if (!CI) {
678 // Overdefined condition variables, and branches on unfoldable constant
679 // conditions, mean the branch could go either way.
680 if (!BCValue.isUnknown())
681 Succs[0] = Succs[1] = true;
682 return;
685 // Constant condition variables mean the branch can only go a single way.
686 Succs[CI->isZero()] = true;
687 return;
690 // Unwinding instructions successors are always executable.
691 if (TI.isExceptionalTerminator()) {
692 Succs.assign(TI.getNumSuccessors(), true);
693 return;
696 if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
697 if (!SI->getNumCases()) {
698 Succs[0] = true;
699 return;
701 LatticeVal SCValue = getValueState(SI->getCondition());
702 ConstantInt *CI = SCValue.getConstantInt();
704 if (!CI) { // Overdefined or unknown condition?
705 // All destinations are executable!
706 if (!SCValue.isUnknown())
707 Succs.assign(TI.getNumSuccessors(), true);
708 return;
711 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
712 return;
715 // In case of indirect branch and its address is a blockaddress, we mark
716 // the target as executable.
717 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
718 // Casts are folded by visitCastInst.
719 LatticeVal IBRValue = getValueState(IBR->getAddress());
720 BlockAddress *Addr = IBRValue.getBlockAddress();
721 if (!Addr) { // Overdefined or unknown condition?
722 // All destinations are executable!
723 if (!IBRValue.isUnknown())
724 Succs.assign(TI.getNumSuccessors(), true);
725 return;
728 BasicBlock* T = Addr->getBasicBlock();
729 assert(Addr->getFunction() == T->getParent() &&
730 "Block address of a different function ?");
731 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
732 // This is the target.
733 if (IBR->getDestination(i) == T) {
734 Succs[i] = true;
735 return;
739 // If we didn't find our destination in the IBR successor list, then we
740 // have undefined behavior. Its ok to assume no successor is executable.
741 return;
744 // In case of callbr, we pessimistically assume that all successors are
745 // feasible.
746 if (isa<CallBrInst>(&TI)) {
747 Succs.assign(TI.getNumSuccessors(), true);
748 return;
751 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
752 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
755 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
756 // block to the 'To' basic block is currently feasible.
757 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
758 // Check if we've called markEdgeExecutable on the edge yet. (We could
759 // be more aggressive and try to consider edges which haven't been marked
760 // yet, but there isn't any need.)
761 return KnownFeasibleEdges.count(Edge(From, To));
764 // visit Implementations - Something changed in this instruction, either an
765 // operand made a transition, or the instruction is newly executable. Change
766 // the value type of I to reflect these changes if appropriate. This method
767 // makes sure to do the following actions:
769 // 1. If a phi node merges two constants in, and has conflicting value coming
770 // from different branches, or if the PHI node merges in an overdefined
771 // value, then the PHI node becomes overdefined.
772 // 2. If a phi node merges only constants in, and they all agree on value, the
773 // PHI node becomes a constant value equal to that.
774 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
775 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
776 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
777 // 6. If a conditional branch has a value that is constant, make the selected
778 // destination executable
779 // 7. If a conditional branch has a value that is overdefined, make all
780 // successors executable.
781 void SCCPSolver::visitPHINode(PHINode &PN) {
782 // If this PN returns a struct, just mark the result overdefined.
783 // TODO: We could do a lot better than this if code actually uses this.
784 if (PN.getType()->isStructTy())
785 return (void)markOverdefined(&PN);
787 if (getValueState(&PN).isOverdefined())
788 return; // Quick exit
790 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
791 // and slow us down a lot. Just mark them overdefined.
792 if (PN.getNumIncomingValues() > 64)
793 return (void)markOverdefined(&PN);
795 // Look at all of the executable operands of the PHI node. If any of them
796 // are overdefined, the PHI becomes overdefined as well. If they are all
797 // constant, and they agree with each other, the PHI becomes the identical
798 // constant. If they are constant and don't agree, the PHI is overdefined.
799 // If there are no executable operands, the PHI remains unknown.
800 Constant *OperandVal = nullptr;
801 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
802 LatticeVal IV = getValueState(PN.getIncomingValue(i));
803 if (IV.isUnknown()) continue; // Doesn't influence PHI node.
805 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
806 continue;
808 if (IV.isOverdefined()) // PHI node becomes overdefined!
809 return (void)markOverdefined(&PN);
811 if (!OperandVal) { // Grab the first value.
812 OperandVal = IV.getConstant();
813 continue;
816 // There is already a reachable operand. If we conflict with it,
817 // then the PHI node becomes overdefined. If we agree with it, we
818 // can continue on.
820 // Check to see if there are two different constants merging, if so, the PHI
821 // node is overdefined.
822 if (IV.getConstant() != OperandVal)
823 return (void)markOverdefined(&PN);
826 // If we exited the loop, this means that the PHI node only has constant
827 // arguments that agree with each other(and OperandVal is the constant) or
828 // OperandVal is null because there are no defined incoming arguments. If
829 // this is the case, the PHI remains unknown.
830 if (OperandVal)
831 markConstant(&PN, OperandVal); // Acquire operand value
834 void SCCPSolver::visitReturnInst(ReturnInst &I) {
835 if (I.getNumOperands() == 0) return; // ret void
837 Function *F = I.getParent()->getParent();
838 Value *ResultOp = I.getOperand(0);
840 // If we are tracking the return value of this function, merge it in.
841 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
842 MapVector<Function*, LatticeVal>::iterator TFRVI =
843 TrackedRetVals.find(F);
844 if (TFRVI != TrackedRetVals.end()) {
845 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
846 return;
850 // Handle functions that return multiple values.
851 if (!TrackedMultipleRetVals.empty()) {
852 if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
853 if (MRVFunctionsTracked.count(F))
854 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
855 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
856 getStructValueState(ResultOp, i));
860 void SCCPSolver::visitTerminator(Instruction &TI) {
861 SmallVector<bool, 16> SuccFeasible;
862 getFeasibleSuccessors(TI, SuccFeasible);
864 BasicBlock *BB = TI.getParent();
866 // Mark all feasible successors executable.
867 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
868 if (SuccFeasible[i])
869 markEdgeExecutable(BB, TI.getSuccessor(i));
872 void SCCPSolver::visitCastInst(CastInst &I) {
873 LatticeVal OpSt = getValueState(I.getOperand(0));
874 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
875 markOverdefined(&I);
876 else if (OpSt.isConstant()) {
877 // Fold the constant as we build.
878 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
879 I.getType(), DL);
880 if (isa<UndefValue>(C))
881 return;
882 // Propagate constant value
883 markConstant(&I, C);
887 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
888 // If this returns a struct, mark all elements over defined, we don't track
889 // structs in structs.
890 if (EVI.getType()->isStructTy())
891 return (void)markOverdefined(&EVI);
893 // If this is extracting from more than one level of struct, we don't know.
894 if (EVI.getNumIndices() != 1)
895 return (void)markOverdefined(&EVI);
897 Value *AggVal = EVI.getAggregateOperand();
898 if (AggVal->getType()->isStructTy()) {
899 unsigned i = *EVI.idx_begin();
900 LatticeVal EltVal = getStructValueState(AggVal, i);
901 mergeInValue(getValueState(&EVI), &EVI, EltVal);
902 } else {
903 // Otherwise, must be extracting from an array.
904 return (void)markOverdefined(&EVI);
908 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
909 auto *STy = dyn_cast<StructType>(IVI.getType());
910 if (!STy)
911 return (void)markOverdefined(&IVI);
913 // If this has more than one index, we can't handle it, drive all results to
914 // undef.
915 if (IVI.getNumIndices() != 1)
916 return (void)markOverdefined(&IVI);
918 Value *Aggr = IVI.getAggregateOperand();
919 unsigned Idx = *IVI.idx_begin();
921 // Compute the result based on what we're inserting.
922 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
923 // This passes through all values that aren't the inserted element.
924 if (i != Idx) {
925 LatticeVal EltVal = getStructValueState(Aggr, i);
926 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
927 continue;
930 Value *Val = IVI.getInsertedValueOperand();
931 if (Val->getType()->isStructTy())
932 // We don't track structs in structs.
933 markOverdefined(getStructValueState(&IVI, i), &IVI);
934 else {
935 LatticeVal InVal = getValueState(Val);
936 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
941 void SCCPSolver::visitSelectInst(SelectInst &I) {
942 // If this select returns a struct, just mark the result overdefined.
943 // TODO: We could do a lot better than this if code actually uses this.
944 if (I.getType()->isStructTy())
945 return (void)markOverdefined(&I);
947 LatticeVal CondValue = getValueState(I.getCondition());
948 if (CondValue.isUnknown())
949 return;
951 if (ConstantInt *CondCB = CondValue.getConstantInt()) {
952 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
953 mergeInValue(&I, getValueState(OpVal));
954 return;
957 // Otherwise, the condition is overdefined or a constant we can't evaluate.
958 // See if we can produce something better than overdefined based on the T/F
959 // value.
960 LatticeVal TVal = getValueState(I.getTrueValue());
961 LatticeVal FVal = getValueState(I.getFalseValue());
963 // select ?, C, C -> C.
964 if (TVal.isConstant() && FVal.isConstant() &&
965 TVal.getConstant() == FVal.getConstant())
966 return (void)markConstant(&I, FVal.getConstant());
968 if (TVal.isUnknown()) // select ?, undef, X -> X.
969 return (void)mergeInValue(&I, FVal);
970 if (FVal.isUnknown()) // select ?, X, undef -> X.
971 return (void)mergeInValue(&I, TVal);
972 markOverdefined(&I);
975 // Handle Unary Operators.
976 void SCCPSolver::visitUnaryOperator(Instruction &I) {
977 LatticeVal V0State = getValueState(I.getOperand(0));
979 LatticeVal &IV = ValueState[&I];
980 if (IV.isOverdefined()) return;
982 if (V0State.isConstant()) {
983 Constant *C = ConstantExpr::get(I.getOpcode(), V0State.getConstant());
985 // op Y -> undef.
986 if (isa<UndefValue>(C))
987 return;
988 return (void)markConstant(IV, &I, C);
991 // If something is undef, wait for it to resolve.
992 if (!V0State.isOverdefined())
993 return;
995 markOverdefined(&I);
998 // Handle Binary Operators.
999 void SCCPSolver::visitBinaryOperator(Instruction &I) {
1000 LatticeVal V1State = getValueState(I.getOperand(0));
1001 LatticeVal V2State = getValueState(I.getOperand(1));
1003 LatticeVal &IV = ValueState[&I];
1004 if (IV.isOverdefined()) return;
1006 if (V1State.isConstant() && V2State.isConstant()) {
1007 Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
1008 V2State.getConstant());
1009 // X op Y -> undef.
1010 if (isa<UndefValue>(C))
1011 return;
1012 return (void)markConstant(IV, &I, C);
1015 // If something is undef, wait for it to resolve.
1016 if (!V1State.isOverdefined() && !V2State.isOverdefined())
1017 return;
1019 // Otherwise, one of our operands is overdefined. Try to produce something
1020 // better than overdefined with some tricks.
1021 // If this is 0 / Y, it doesn't matter that the second operand is
1022 // overdefined, and we can replace it with zero.
1023 if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv)
1024 if (V1State.isConstant() && V1State.getConstant()->isNullValue())
1025 return (void)markConstant(IV, &I, V1State.getConstant());
1027 // If this is:
1028 // -> AND/MUL with 0
1029 // -> OR with -1
1030 // it doesn't matter that the other operand is overdefined.
1031 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul ||
1032 I.getOpcode() == Instruction::Or) {
1033 LatticeVal *NonOverdefVal = nullptr;
1034 if (!V1State.isOverdefined())
1035 NonOverdefVal = &V1State;
1036 else if (!V2State.isOverdefined())
1037 NonOverdefVal = &V2State;
1039 if (NonOverdefVal) {
1040 if (NonOverdefVal->isUnknown())
1041 return;
1043 if (I.getOpcode() == Instruction::And ||
1044 I.getOpcode() == Instruction::Mul) {
1045 // X and 0 = 0
1046 // X * 0 = 0
1047 if (NonOverdefVal->getConstant()->isNullValue())
1048 return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
1049 } else {
1050 // X or -1 = -1
1051 if (ConstantInt *CI = NonOverdefVal->getConstantInt())
1052 if (CI->isMinusOne())
1053 return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
1058 markOverdefined(&I);
1061 // Handle ICmpInst instruction.
1062 void SCCPSolver::visitCmpInst(CmpInst &I) {
1063 // Do not cache this lookup, getValueState calls later in the function might
1064 // invalidate the reference.
1065 if (ValueState[&I].isOverdefined()) return;
1067 Value *Op1 = I.getOperand(0);
1068 Value *Op2 = I.getOperand(1);
1070 // For parameters, use ParamState which includes constant range info if
1071 // available.
1072 auto V1Param = ParamState.find(Op1);
1073 ValueLatticeElement V1State = (V1Param != ParamState.end())
1074 ? V1Param->second
1075 : getValueState(Op1).toValueLattice();
1077 auto V2Param = ParamState.find(Op2);
1078 ValueLatticeElement V2State = V2Param != ParamState.end()
1079 ? V2Param->second
1080 : getValueState(Op2).toValueLattice();
1082 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
1083 if (C) {
1084 if (isa<UndefValue>(C))
1085 return;
1086 LatticeVal CV;
1087 CV.markConstant(C);
1088 mergeInValue(&I, CV);
1089 return;
1092 // If operands are still unknown, wait for it to resolve.
1093 if (!V1State.isOverdefined() && !V2State.isOverdefined() &&
1094 !ValueState[&I].isConstant())
1095 return;
1097 markOverdefined(&I);
1100 // Handle getelementptr instructions. If all operands are constants then we
1101 // can turn this into a getelementptr ConstantExpr.
1102 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1103 if (ValueState[&I].isOverdefined()) return;
1105 SmallVector<Constant*, 8> Operands;
1106 Operands.reserve(I.getNumOperands());
1108 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1109 LatticeVal State = getValueState(I.getOperand(i));
1110 if (State.isUnknown())
1111 return; // Operands are not resolved yet.
1113 if (State.isOverdefined())
1114 return (void)markOverdefined(&I);
1116 assert(State.isConstant() && "Unknown state!");
1117 Operands.push_back(State.getConstant());
1120 Constant *Ptr = Operands[0];
1121 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1122 Constant *C =
1123 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1124 if (isa<UndefValue>(C))
1125 return;
1126 markConstant(&I, C);
1129 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1130 // If this store is of a struct, ignore it.
1131 if (SI.getOperand(0)->getType()->isStructTy())
1132 return;
1134 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1135 return;
1137 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1138 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1139 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1141 // Get the value we are storing into the global, then merge it.
1142 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1143 if (I->second.isOverdefined())
1144 TrackedGlobals.erase(I); // No need to keep tracking this!
1147 // Handle load instructions. If the operand is a constant pointer to a constant
1148 // global, we can replace the load with the loaded constant value!
1149 void SCCPSolver::visitLoadInst(LoadInst &I) {
1150 // If this load is of a struct, just mark the result overdefined.
1151 if (I.getType()->isStructTy())
1152 return (void)markOverdefined(&I);
1154 LatticeVal PtrVal = getValueState(I.getOperand(0));
1155 if (PtrVal.isUnknown()) return; // The pointer is not resolved yet!
1157 LatticeVal &IV = ValueState[&I];
1158 if (IV.isOverdefined()) return;
1160 if (!PtrVal.isConstant() || I.isVolatile())
1161 return (void)markOverdefined(IV, &I);
1163 Constant *Ptr = PtrVal.getConstant();
1165 // load null is undefined.
1166 if (isa<ConstantPointerNull>(Ptr)) {
1167 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1168 return (void)markOverdefined(IV, &I);
1169 else
1170 return;
1173 // Transform load (constant global) into the value loaded.
1174 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1175 if (!TrackedGlobals.empty()) {
1176 // If we are tracking this global, merge in the known value for it.
1177 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1178 TrackedGlobals.find(GV);
1179 if (It != TrackedGlobals.end()) {
1180 mergeInValue(IV, &I, It->second);
1181 return;
1186 // Transform load from a constant into a constant if possible.
1187 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1188 if (isa<UndefValue>(C))
1189 return;
1190 return (void)markConstant(IV, &I, C);
1193 // Otherwise we cannot say for certain what value this load will produce.
1194 // Bail out.
1195 markOverdefined(IV, &I);
1198 void SCCPSolver::visitCallSite(CallSite CS) {
1199 Function *F = CS.getCalledFunction();
1200 Instruction *I = CS.getInstruction();
1202 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1203 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1204 if (ValueState[I].isOverdefined())
1205 return;
1207 auto *PI = getPredicateInfoFor(I);
1208 if (!PI)
1209 return;
1211 Value *CopyOf = I->getOperand(0);
1212 auto *PBranch = dyn_cast<PredicateBranch>(PI);
1213 if (!PBranch) {
1214 mergeInValue(ValueState[I], I, getValueState(CopyOf));
1215 return;
1218 Value *Cond = PBranch->Condition;
1220 // Everything below relies on the condition being a comparison.
1221 auto *Cmp = dyn_cast<CmpInst>(Cond);
1222 if (!Cmp) {
1223 mergeInValue(ValueState[I], I, getValueState(CopyOf));
1224 return;
1227 Value *CmpOp0 = Cmp->getOperand(0);
1228 Value *CmpOp1 = Cmp->getOperand(1);
1229 if (CopyOf != CmpOp0 && CopyOf != CmpOp1) {
1230 mergeInValue(ValueState[I], I, getValueState(CopyOf));
1231 return;
1234 if (CmpOp0 != CopyOf)
1235 std::swap(CmpOp0, CmpOp1);
1237 LatticeVal OriginalVal = getValueState(CopyOf);
1238 LatticeVal EqVal = getValueState(CmpOp1);
1239 LatticeVal &IV = ValueState[I];
1240 if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) {
1241 addAdditionalUser(CmpOp1, I);
1242 if (OriginalVal.isConstant())
1243 mergeInValue(IV, I, OriginalVal);
1244 else
1245 mergeInValue(IV, I, EqVal);
1246 return;
1248 if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) {
1249 addAdditionalUser(CmpOp1, I);
1250 if (OriginalVal.isConstant())
1251 mergeInValue(IV, I, OriginalVal);
1252 else
1253 mergeInValue(IV, I, EqVal);
1254 return;
1257 return (void)mergeInValue(IV, I, getValueState(CopyOf));
1261 // The common case is that we aren't tracking the callee, either because we
1262 // are not doing interprocedural analysis or the callee is indirect, or is
1263 // external. Handle these cases first.
1264 if (!F || F->isDeclaration()) {
1265 CallOverdefined:
1266 // Void return and not tracking callee, just bail.
1267 if (I->getType()->isVoidTy()) return;
1269 // Otherwise, if we have a single return value case, and if the function is
1270 // a declaration, maybe we can constant fold it.
1271 if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1272 canConstantFoldCallTo(cast<CallBase>(CS.getInstruction()), F)) {
1273 SmallVector<Constant*, 8> Operands;
1274 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1275 AI != E; ++AI) {
1276 if (AI->get()->getType()->isStructTy())
1277 return markOverdefined(I); // Can't handle struct args.
1278 LatticeVal State = getValueState(*AI);
1280 if (State.isUnknown())
1281 return; // Operands are not resolved yet.
1282 if (State.isOverdefined())
1283 return (void)markOverdefined(I);
1284 assert(State.isConstant() && "Unknown state!");
1285 Operands.push_back(State.getConstant());
1288 if (getValueState(I).isOverdefined())
1289 return;
1291 // If we can constant fold this, mark the result of the call as a
1292 // constant.
1293 if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), F,
1294 Operands, &GetTLI(*F))) {
1295 // call -> undef.
1296 if (isa<UndefValue>(C))
1297 return;
1298 return (void)markConstant(I, C);
1302 // Otherwise, we don't know anything about this call, mark it overdefined.
1303 return (void)markOverdefined(I);
1306 // If this is a local function that doesn't have its address taken, mark its
1307 // entry block executable and merge in the actual arguments to the call into
1308 // the formal arguments of the function.
1309 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1310 MarkBlockExecutable(&F->front());
1312 // Propagate information from this call site into the callee.
1313 CallSite::arg_iterator CAI = CS.arg_begin();
1314 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1315 AI != E; ++AI, ++CAI) {
1316 // If this argument is byval, and if the function is not readonly, there
1317 // will be an implicit copy formed of the input aggregate.
1318 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1319 markOverdefined(&*AI);
1320 continue;
1323 if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1324 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1325 LatticeVal CallArg = getStructValueState(*CAI, i);
1326 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
1328 } else {
1329 // Most other parts of the Solver still only use the simpler value
1330 // lattice, so we propagate changes for parameters to both lattices.
1331 LatticeVal ConcreteArgument = getValueState(*CAI);
1332 bool ParamChanged =
1333 getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL);
1334 bool ValueChanged = mergeInValue(&*AI, ConcreteArgument);
1335 // Add argument to work list, if the state of a parameter changes but
1336 // ValueState does not change (because it is already overdefined there),
1337 // We have to take changes in ParamState into account, as it is used
1338 // when evaluating Cmp instructions.
1339 if (!ValueChanged && ParamChanged)
1340 pushToWorkList(ValueState[&*AI], &*AI);
1345 // If this is a single/zero retval case, see if we're tracking the function.
1346 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1347 if (!MRVFunctionsTracked.count(F))
1348 goto CallOverdefined; // Not tracking this callee.
1350 // If we are tracking this callee, propagate the result of the function
1351 // into this call site.
1352 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1353 mergeInValue(getStructValueState(I, i), I,
1354 TrackedMultipleRetVals[std::make_pair(F, i)]);
1355 } else {
1356 MapVector<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1357 if (TFRVI == TrackedRetVals.end())
1358 goto CallOverdefined; // Not tracking this callee.
1360 // If so, propagate the return value of the callee into this call result.
1361 mergeInValue(I, TFRVI->second);
1365 void SCCPSolver::Solve() {
1366 // Process the work lists until they are empty!
1367 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1368 !OverdefinedInstWorkList.empty()) {
1369 // Process the overdefined instruction's work list first, which drives other
1370 // things to overdefined more quickly.
1371 while (!OverdefinedInstWorkList.empty()) {
1372 Value *I = OverdefinedInstWorkList.pop_back_val();
1374 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1376 // "I" got into the work list because it either made the transition from
1377 // bottom to constant, or to overdefined.
1379 // Anything on this worklist that is overdefined need not be visited
1380 // since all of its users will have already been marked as overdefined
1381 // Update all of the users of this instruction's value.
1383 markUsersAsChanged(I);
1386 // Process the instruction work list.
1387 while (!InstWorkList.empty()) {
1388 Value *I = InstWorkList.pop_back_val();
1390 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1392 // "I" got into the work list because it made the transition from undef to
1393 // constant.
1395 // Anything on this worklist that is overdefined need not be visited
1396 // since all of its users will have already been marked as overdefined.
1397 // Update all of the users of this instruction's value.
1399 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1400 markUsersAsChanged(I);
1403 // Process the basic block work list.
1404 while (!BBWorkList.empty()) {
1405 BasicBlock *BB = BBWorkList.back();
1406 BBWorkList.pop_back();
1408 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1410 // Notify all instructions in this basic block that they are newly
1411 // executable.
1412 visit(BB);
1417 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1418 /// that branches on undef values cannot reach any of their successors.
1419 /// However, this is not a safe assumption. After we solve dataflow, this
1420 /// method should be use to handle this. If this returns true, the solver
1421 /// should be rerun.
1423 /// This method handles this by finding an unresolved branch and marking it one
1424 /// of the edges from the block as being feasible, even though the condition
1425 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1426 /// CFG and only slightly pessimizes the analysis results (by marking one,
1427 /// potentially infeasible, edge feasible). This cannot usefully modify the
1428 /// constraints on the condition of the branch, as that would impact other users
1429 /// of the value.
1431 /// This scan also checks for values that use undefs, whose results are actually
1432 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1433 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1434 /// even if X isn't defined.
1435 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1436 for (BasicBlock &BB : F) {
1437 if (!BBExecutable.count(&BB))
1438 continue;
1440 for (Instruction &I : BB) {
1441 // Look for instructions which produce undef values.
1442 if (I.getType()->isVoidTy()) continue;
1444 if (auto *STy = dyn_cast<StructType>(I.getType())) {
1445 // Only a few things that can be structs matter for undef.
1447 // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1448 if (CallSite CS = CallSite(&I))
1449 if (Function *F = CS.getCalledFunction())
1450 if (MRVFunctionsTracked.count(F))
1451 continue;
1453 // extractvalue and insertvalue don't need to be marked; they are
1454 // tracked as precisely as their operands.
1455 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1456 continue;
1458 // Send the results of everything else to overdefined. We could be
1459 // more precise than this but it isn't worth bothering.
1460 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1461 LatticeVal &LV = getStructValueState(&I, i);
1462 if (LV.isUnknown())
1463 markOverdefined(LV, &I);
1465 continue;
1468 LatticeVal &LV = getValueState(&I);
1469 if (!LV.isUnknown())
1470 continue;
1472 // There are two reasons a call can have an undef result
1473 // 1. It could be tracked.
1474 // 2. It could be constant-foldable.
1475 // Because of the way we solve return values, tracked calls must
1476 // never be marked overdefined in ResolvedUndefsIn.
1477 if (CallSite CS = CallSite(&I)) {
1478 if (Function *F = CS.getCalledFunction())
1479 if (TrackedRetVals.count(F))
1480 continue;
1482 // If the call is constant-foldable, we mark it overdefined because
1483 // we do not know what return values are valid.
1484 markOverdefined(&I);
1485 return true;
1488 // extractvalue is safe; check here because the argument is a struct.
1489 if (isa<ExtractValueInst>(I))
1490 continue;
1492 // Compute the operand LatticeVals, for convenience below.
1493 // Anything taking a struct is conservatively assumed to require
1494 // overdefined markings.
1495 if (I.getOperand(0)->getType()->isStructTy()) {
1496 markOverdefined(&I);
1497 return true;
1499 LatticeVal Op0LV = getValueState(I.getOperand(0));
1500 LatticeVal Op1LV;
1501 if (I.getNumOperands() == 2) {
1502 if (I.getOperand(1)->getType()->isStructTy()) {
1503 markOverdefined(&I);
1504 return true;
1507 Op1LV = getValueState(I.getOperand(1));
1509 // If this is an instructions whose result is defined even if the input is
1510 // not fully defined, propagate the information.
1511 Type *ITy = I.getType();
1512 switch (I.getOpcode()) {
1513 case Instruction::Add:
1514 case Instruction::Sub:
1515 case Instruction::Trunc:
1516 case Instruction::FPTrunc:
1517 case Instruction::BitCast:
1518 break; // Any undef -> undef
1519 case Instruction::FSub:
1520 case Instruction::FAdd:
1521 case Instruction::FMul:
1522 case Instruction::FDiv:
1523 case Instruction::FRem:
1524 // Floating-point binary operation: be conservative.
1525 if (Op0LV.isUnknown() && Op1LV.isUnknown())
1526 markForcedConstant(&I, Constant::getNullValue(ITy));
1527 else
1528 markOverdefined(&I);
1529 return true;
1530 case Instruction::FNeg:
1531 break; // fneg undef -> undef
1532 case Instruction::ZExt:
1533 case Instruction::SExt:
1534 case Instruction::FPToUI:
1535 case Instruction::FPToSI:
1536 case Instruction::FPExt:
1537 case Instruction::PtrToInt:
1538 case Instruction::IntToPtr:
1539 case Instruction::SIToFP:
1540 case Instruction::UIToFP:
1541 // undef -> 0; some outputs are impossible
1542 markForcedConstant(&I, Constant::getNullValue(ITy));
1543 return true;
1544 case Instruction::Mul:
1545 case Instruction::And:
1546 // Both operands undef -> undef
1547 if (Op0LV.isUnknown() && Op1LV.isUnknown())
1548 break;
1549 // undef * X -> 0. X could be zero.
1550 // undef & X -> 0. X could be zero.
1551 markForcedConstant(&I, Constant::getNullValue(ITy));
1552 return true;
1553 case Instruction::Or:
1554 // Both operands undef -> undef
1555 if (Op0LV.isUnknown() && Op1LV.isUnknown())
1556 break;
1557 // undef | X -> -1. X could be -1.
1558 markForcedConstant(&I, Constant::getAllOnesValue(ITy));
1559 return true;
1560 case Instruction::Xor:
1561 // undef ^ undef -> 0; strictly speaking, this is not strictly
1562 // necessary, but we try to be nice to people who expect this
1563 // behavior in simple cases
1564 if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
1565 markForcedConstant(&I, Constant::getNullValue(ITy));
1566 return true;
1568 // undef ^ X -> undef
1569 break;
1570 case Instruction::SDiv:
1571 case Instruction::UDiv:
1572 case Instruction::SRem:
1573 case Instruction::URem:
1574 // X / undef -> undef. No change.
1575 // X % undef -> undef. No change.
1576 if (Op1LV.isUnknown()) break;
1578 // X / 0 -> undef. No change.
1579 // X % 0 -> undef. No change.
1580 if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
1581 break;
1583 // undef / X -> 0. X could be maxint.
1584 // undef % X -> 0. X could be 1.
1585 markForcedConstant(&I, Constant::getNullValue(ITy));
1586 return true;
1587 case Instruction::AShr:
1588 // X >>a undef -> undef.
1589 if (Op1LV.isUnknown()) break;
1591 // Shifting by the bitwidth or more is undefined.
1592 if (Op1LV.isConstant()) {
1593 if (auto *ShiftAmt = Op1LV.getConstantInt())
1594 if (ShiftAmt->getLimitedValue() >=
1595 ShiftAmt->getType()->getScalarSizeInBits())
1596 break;
1599 // undef >>a X -> 0
1600 markForcedConstant(&I, Constant::getNullValue(ITy));
1601 return true;
1602 case Instruction::LShr:
1603 case Instruction::Shl:
1604 // X << undef -> undef.
1605 // X >> undef -> undef.
1606 if (Op1LV.isUnknown()) break;
1608 // Shifting by the bitwidth or more is undefined.
1609 if (Op1LV.isConstant()) {
1610 if (auto *ShiftAmt = Op1LV.getConstantInt())
1611 if (ShiftAmt->getLimitedValue() >=
1612 ShiftAmt->getType()->getScalarSizeInBits())
1613 break;
1616 // undef << X -> 0
1617 // undef >> X -> 0
1618 markForcedConstant(&I, Constant::getNullValue(ITy));
1619 return true;
1620 case Instruction::Select:
1621 Op1LV = getValueState(I.getOperand(1));
1622 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1623 if (Op0LV.isUnknown()) {
1624 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1625 Op1LV = getValueState(I.getOperand(2));
1626 } else if (Op1LV.isUnknown()) {
1627 // c ? undef : undef -> undef. No change.
1628 Op1LV = getValueState(I.getOperand(2));
1629 if (Op1LV.isUnknown())
1630 break;
1631 // Otherwise, c ? undef : x -> x.
1632 } else {
1633 // Leave Op1LV as Operand(1)'s LatticeValue.
1636 if (Op1LV.isConstant())
1637 markForcedConstant(&I, Op1LV.getConstant());
1638 else
1639 markOverdefined(&I);
1640 return true;
1641 case Instruction::Load:
1642 // A load here means one of two things: a load of undef from a global,
1643 // a load from an unknown pointer. Either way, having it return undef
1644 // is okay.
1645 break;
1646 case Instruction::ICmp:
1647 // X == undef -> undef. Other comparisons get more complicated.
1648 Op0LV = getValueState(I.getOperand(0));
1649 Op1LV = getValueState(I.getOperand(1));
1651 if ((Op0LV.isUnknown() || Op1LV.isUnknown()) &&
1652 cast<ICmpInst>(&I)->isEquality())
1653 break;
1654 markOverdefined(&I);
1655 return true;
1656 case Instruction::Call:
1657 case Instruction::Invoke:
1658 case Instruction::CallBr:
1659 llvm_unreachable("Call-like instructions should have be handled early");
1660 default:
1661 // If we don't know what should happen here, conservatively mark it
1662 // overdefined.
1663 markOverdefined(&I);
1664 return true;
1668 // Check to see if we have a branch or switch on an undefined value. If so
1669 // we force the branch to go one way or the other to make the successor
1670 // values live. It doesn't really matter which way we force it.
1671 Instruction *TI = BB.getTerminator();
1672 if (auto *BI = dyn_cast<BranchInst>(TI)) {
1673 if (!BI->isConditional()) continue;
1674 if (!getValueState(BI->getCondition()).isUnknown())
1675 continue;
1677 // If the input to SCCP is actually branch on undef, fix the undef to
1678 // false.
1679 if (isa<UndefValue>(BI->getCondition())) {
1680 BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1681 markEdgeExecutable(&BB, TI->getSuccessor(1));
1682 return true;
1685 // Otherwise, it is a branch on a symbolic value which is currently
1686 // considered to be undef. Make sure some edge is executable, so a
1687 // branch on "undef" always flows somewhere.
1688 // FIXME: Distinguish between dead code and an LLVM "undef" value.
1689 BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
1690 if (markEdgeExecutable(&BB, DefaultSuccessor))
1691 return true;
1693 continue;
1696 if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
1697 // Indirect branch with no successor ?. Its ok to assume it branches
1698 // to no target.
1699 if (IBR->getNumSuccessors() < 1)
1700 continue;
1702 if (!getValueState(IBR->getAddress()).isUnknown())
1703 continue;
1705 // If the input to SCCP is actually branch on undef, fix the undef to
1706 // the first successor of the indirect branch.
1707 if (isa<UndefValue>(IBR->getAddress())) {
1708 IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
1709 markEdgeExecutable(&BB, IBR->getSuccessor(0));
1710 return true;
1713 // Otherwise, it is a branch on a symbolic value which is currently
1714 // considered to be undef. Make sure some edge is executable, so a
1715 // branch on "undef" always flows somewhere.
1716 // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
1717 // we can assume the branch has undefined behavior instead.
1718 BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
1719 if (markEdgeExecutable(&BB, DefaultSuccessor))
1720 return true;
1722 continue;
1725 if (auto *SI = dyn_cast<SwitchInst>(TI)) {
1726 if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown())
1727 continue;
1729 // If the input to SCCP is actually switch on undef, fix the undef to
1730 // the first constant.
1731 if (isa<UndefValue>(SI->getCondition())) {
1732 SI->setCondition(SI->case_begin()->getCaseValue());
1733 markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
1734 return true;
1737 // Otherwise, it is a branch on a symbolic value which is currently
1738 // considered to be undef. Make sure some edge is executable, so a
1739 // branch on "undef" always flows somewhere.
1740 // FIXME: Distinguish between dead code and an LLVM "undef" value.
1741 BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
1742 if (markEdgeExecutable(&BB, DefaultSuccessor))
1743 return true;
1745 continue;
1749 return false;
1752 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
1753 Constant *Const = nullptr;
1754 if (V->getType()->isStructTy()) {
1755 std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
1756 if (llvm::any_of(IVs,
1757 [](const LatticeVal &LV) { return LV.isOverdefined(); }))
1758 return false;
1759 std::vector<Constant *> ConstVals;
1760 auto *ST = cast<StructType>(V->getType());
1761 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1762 LatticeVal V = IVs[i];
1763 ConstVals.push_back(V.isConstant()
1764 ? V.getConstant()
1765 : UndefValue::get(ST->getElementType(i)));
1767 Const = ConstantStruct::get(ST, ConstVals);
1768 } else {
1769 const LatticeVal &IV = Solver.getLatticeValueFor(V);
1770 if (IV.isOverdefined())
1771 return false;
1773 Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
1775 assert(Const && "Constant is nullptr here!");
1777 // Replacing `musttail` instructions with constant breaks `musttail` invariant
1778 // unless the call itself can be removed
1779 CallInst *CI = dyn_cast<CallInst>(V);
1780 if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
1781 CallSite CS(CI);
1782 Function *F = CS.getCalledFunction();
1784 // Don't zap returns of the callee
1785 if (F)
1786 Solver.AddMustTailCallee(F);
1788 LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI
1789 << " as a constant\n");
1790 return false;
1793 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
1795 // Replaces all of the uses of a variable with uses of the constant.
1796 V->replaceAllUsesWith(Const);
1797 return true;
1800 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
1801 // and return true if the function was modified.
1802 static bool runSCCP(Function &F, const DataLayout &DL,
1803 const TargetLibraryInfo *TLI) {
1804 LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1805 SCCPSolver Solver(
1806 DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; });
1808 // Mark the first block of the function as being executable.
1809 Solver.MarkBlockExecutable(&F.front());
1811 // Mark all arguments to the function as being overdefined.
1812 for (Argument &AI : F.args())
1813 Solver.markOverdefined(&AI);
1815 // Solve for constants.
1816 bool ResolvedUndefs = true;
1817 while (ResolvedUndefs) {
1818 Solver.Solve();
1819 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1820 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1823 bool MadeChanges = false;
1825 // If we decided that there are basic blocks that are dead in this function,
1826 // delete their contents now. Note that we cannot actually delete the blocks,
1827 // as we cannot modify the CFG of the function.
1829 for (BasicBlock &BB : F) {
1830 if (!Solver.isBlockExecutable(&BB)) {
1831 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
1833 ++NumDeadBlocks;
1834 NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
1836 MadeChanges = true;
1837 continue;
1840 // Iterate over all of the instructions in a function, replacing them with
1841 // constants if we have found them to be of constant values.
1842 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
1843 Instruction *Inst = &*BI++;
1844 if (Inst->getType()->isVoidTy() || Inst->isTerminator())
1845 continue;
1847 if (tryToReplaceWithConstant(Solver, Inst)) {
1848 if (isInstructionTriviallyDead(Inst))
1849 Inst->eraseFromParent();
1850 // Hey, we just changed something!
1851 MadeChanges = true;
1852 ++NumInstRemoved;
1857 return MadeChanges;
1860 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
1861 const DataLayout &DL = F.getParent()->getDataLayout();
1862 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1863 if (!runSCCP(F, DL, &TLI))
1864 return PreservedAnalyses::all();
1866 auto PA = PreservedAnalyses();
1867 PA.preserve<GlobalsAA>();
1868 PA.preserveSet<CFGAnalyses>();
1869 return PA;
1872 namespace {
1874 //===--------------------------------------------------------------------===//
1876 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1877 /// Sparse Conditional Constant Propagator.
1879 class SCCPLegacyPass : public FunctionPass {
1880 public:
1881 // Pass identification, replacement for typeid
1882 static char ID;
1884 SCCPLegacyPass() : FunctionPass(ID) {
1885 initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
1888 void getAnalysisUsage(AnalysisUsage &AU) const override {
1889 AU.addRequired<TargetLibraryInfoWrapperPass>();
1890 AU.addPreserved<GlobalsAAWrapperPass>();
1891 AU.setPreservesCFG();
1894 // runOnFunction - Run the Sparse Conditional Constant Propagation
1895 // algorithm, and return true if the function was modified.
1896 bool runOnFunction(Function &F) override {
1897 if (skipFunction(F))
1898 return false;
1899 const DataLayout &DL = F.getParent()->getDataLayout();
1900 const TargetLibraryInfo *TLI =
1901 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1902 return runSCCP(F, DL, TLI);
1906 } // end anonymous namespace
1908 char SCCPLegacyPass::ID = 0;
1910 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
1911 "Sparse Conditional Constant Propagation", false, false)
1912 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1913 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
1914 "Sparse Conditional Constant Propagation", false, false)
1916 // createSCCPPass - This is the public interface to this file.
1917 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
1919 static void findReturnsToZap(Function &F,
1920 SmallVector<ReturnInst *, 8> &ReturnsToZap,
1921 SCCPSolver &Solver) {
1922 // We can only do this if we know that nothing else can call the function.
1923 if (!Solver.isArgumentTrackedFunction(&F))
1924 return;
1926 // There is a non-removable musttail call site of this function. Zapping
1927 // returns is not allowed.
1928 if (Solver.isMustTailCallee(&F)) {
1929 LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
1930 << " due to present musttail call of it\n");
1931 return;
1934 assert(
1935 all_of(F.users(),
1936 [&Solver](User *U) {
1937 if (isa<Instruction>(U) &&
1938 !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
1939 return true;
1940 // Non-callsite uses are not impacted by zapping. Also, constant
1941 // uses (like blockaddresses) could stuck around, without being
1942 // used in the underlying IR, meaning we do not have lattice
1943 // values for them.
1944 if (!CallSite(U))
1945 return true;
1946 if (U->getType()->isStructTy()) {
1947 return all_of(
1948 Solver.getStructLatticeValueFor(U),
1949 [](const LatticeVal &LV) { return !LV.isOverdefined(); });
1951 return !Solver.getLatticeValueFor(U).isOverdefined();
1952 }) &&
1953 "We can only zap functions where all live users have a concrete value");
1955 for (BasicBlock &BB : F) {
1956 if (CallInst *CI = BB.getTerminatingMustTailCall()) {
1957 LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
1958 << "musttail call : " << *CI << "\n");
1959 (void)CI;
1960 return;
1963 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1964 if (!isa<UndefValue>(RI->getOperand(0)))
1965 ReturnsToZap.push_back(RI);
1969 // Update the condition for terminators that are branching on indeterminate
1970 // values, forcing them to use a specific edge.
1971 static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) {
1972 BasicBlock *Dest = nullptr;
1973 Constant *C = nullptr;
1974 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1975 if (!isa<ConstantInt>(SI->getCondition())) {
1976 // Indeterminate switch; use first case value.
1977 Dest = SI->case_begin()->getCaseSuccessor();
1978 C = SI->case_begin()->getCaseValue();
1980 } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1981 if (!isa<ConstantInt>(BI->getCondition())) {
1982 // Indeterminate branch; use false.
1983 Dest = BI->getSuccessor(1);
1984 C = ConstantInt::getFalse(BI->getContext());
1986 } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) {
1987 if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) {
1988 // Indeterminate indirectbr; use successor 0.
1989 Dest = IBR->getSuccessor(0);
1990 C = BlockAddress::get(IBR->getSuccessor(0));
1992 } else {
1993 llvm_unreachable("Unexpected terminator instruction");
1995 if (C) {
1996 assert(Solver.isEdgeFeasible(I->getParent(), Dest) &&
1997 "Didn't find feasible edge?");
1998 (void)Dest;
2000 I->setOperand(0, C);
2004 bool llvm::runIPSCCP(
2005 Module &M, const DataLayout &DL,
2006 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
2007 function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
2008 SCCPSolver Solver(DL, GetTLI);
2010 // Loop over all functions, marking arguments to those with their addresses
2011 // taken or that are external as overdefined.
2012 for (Function &F : M) {
2013 if (F.isDeclaration())
2014 continue;
2016 Solver.addAnalysis(F, getAnalysis(F));
2018 // Determine if we can track the function's return values. If so, add the
2019 // function to the solver's set of return-tracked functions.
2020 if (canTrackReturnsInterprocedurally(&F))
2021 Solver.AddTrackedFunction(&F);
2023 // Determine if we can track the function's arguments. If so, add the
2024 // function to the solver's set of argument-tracked functions.
2025 if (canTrackArgumentsInterprocedurally(&F)) {
2026 Solver.AddArgumentTrackedFunction(&F);
2027 continue;
2030 // Assume the function is called.
2031 Solver.MarkBlockExecutable(&F.front());
2033 // Assume nothing about the incoming arguments.
2034 for (Argument &AI : F.args())
2035 Solver.markOverdefined(&AI);
2038 // Determine if we can track any of the module's global variables. If so, add
2039 // the global variables we can track to the solver's set of tracked global
2040 // variables.
2041 for (GlobalVariable &G : M.globals()) {
2042 G.removeDeadConstantUsers();
2043 if (canTrackGlobalVariableInterprocedurally(&G))
2044 Solver.TrackValueOfGlobalVariable(&G);
2047 // Solve for constants.
2048 bool ResolvedUndefs = true;
2049 Solver.Solve();
2050 while (ResolvedUndefs) {
2051 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
2052 ResolvedUndefs = false;
2053 for (Function &F : M)
2054 if (Solver.ResolvedUndefsIn(F)) {
2055 // We run Solve() after we resolved an undef in a function, because
2056 // we might deduce a fact that eliminates an undef in another function.
2057 Solver.Solve();
2058 ResolvedUndefs = true;
2062 bool MadeChanges = false;
2064 // Iterate over all of the instructions in the module, replacing them with
2065 // constants if we have found them to be of constant values.
2067 for (Function &F : M) {
2068 if (F.isDeclaration())
2069 continue;
2071 SmallVector<BasicBlock *, 512> BlocksToErase;
2073 if (Solver.isBlockExecutable(&F.front()))
2074 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
2075 ++AI) {
2076 if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) {
2077 ++IPNumArgsElimed;
2078 continue;
2082 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2083 if (!Solver.isBlockExecutable(&*BB)) {
2084 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
2085 ++NumDeadBlocks;
2087 MadeChanges = true;
2089 if (&*BB != &F.front())
2090 BlocksToErase.push_back(&*BB);
2091 continue;
2094 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
2095 Instruction *Inst = &*BI++;
2096 if (Inst->getType()->isVoidTy())
2097 continue;
2098 if (tryToReplaceWithConstant(Solver, Inst)) {
2099 if (Inst->isSafeToRemove())
2100 Inst->eraseFromParent();
2101 // Hey, we just changed something!
2102 MadeChanges = true;
2103 ++IPNumInstRemoved;
2108 DomTreeUpdater DTU = Solver.getDTU(F);
2109 // Change dead blocks to unreachable. We do it after replacing constants
2110 // in all executable blocks, because changeToUnreachable may remove PHI
2111 // nodes in executable blocks we found values for. The function's entry
2112 // block is not part of BlocksToErase, so we have to handle it separately.
2113 for (BasicBlock *BB : BlocksToErase) {
2114 NumInstRemoved +=
2115 changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
2116 /*PreserveLCSSA=*/false, &DTU);
2118 if (!Solver.isBlockExecutable(&F.front()))
2119 NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
2120 /*UseLLVMTrap=*/false,
2121 /*PreserveLCSSA=*/false, &DTU);
2123 // Now that all instructions in the function are constant folded,
2124 // use ConstantFoldTerminator to get rid of in-edges, record DT updates and
2125 // delete dead BBs.
2126 for (BasicBlock *DeadBB : BlocksToErase) {
2127 // If there are any PHI nodes in this successor, drop entries for BB now.
2128 for (Value::user_iterator UI = DeadBB->user_begin(),
2129 UE = DeadBB->user_end();
2130 UI != UE;) {
2131 // Grab the user and then increment the iterator early, as the user
2132 // will be deleted. Step past all adjacent uses from the same user.
2133 auto *I = dyn_cast<Instruction>(*UI);
2134 do { ++UI; } while (UI != UE && *UI == I);
2136 // Ignore blockaddress users; BasicBlock's dtor will handle them.
2137 if (!I) continue;
2139 // If we have forced an edge for an indeterminate value, then force the
2140 // terminator to fold to that edge.
2141 forceIndeterminateEdge(I, Solver);
2142 BasicBlock *InstBB = I->getParent();
2143 bool Folded = ConstantFoldTerminator(InstBB,
2144 /*DeleteDeadConditions=*/false,
2145 /*TLI=*/nullptr, &DTU);
2146 assert(Folded &&
2147 "Expect TermInst on constantint or blockaddress to be folded");
2148 (void) Folded;
2149 // If we folded the terminator to an unconditional branch to another
2150 // dead block, replace it with Unreachable, to avoid trying to fold that
2151 // branch again.
2152 BranchInst *BI = cast<BranchInst>(InstBB->getTerminator());
2153 if (BI && BI->isUnconditional() &&
2154 !Solver.isBlockExecutable(BI->getSuccessor(0))) {
2155 InstBB->getTerminator()->eraseFromParent();
2156 new UnreachableInst(InstBB->getContext(), InstBB);
2159 // Mark dead BB for deletion.
2160 DTU.deleteBB(DeadBB);
2163 for (BasicBlock &BB : F) {
2164 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
2165 Instruction *Inst = &*BI++;
2166 if (Solver.getPredicateInfoFor(Inst)) {
2167 if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
2168 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
2169 Value *Op = II->getOperand(0);
2170 Inst->replaceAllUsesWith(Op);
2171 Inst->eraseFromParent();
2179 // If we inferred constant or undef return values for a function, we replaced
2180 // all call uses with the inferred value. This means we don't need to bother
2181 // actually returning anything from the function. Replace all return
2182 // instructions with return undef.
2184 // Do this in two stages: first identify the functions we should process, then
2185 // actually zap their returns. This is important because we can only do this
2186 // if the address of the function isn't taken. In cases where a return is the
2187 // last use of a function, the order of processing functions would affect
2188 // whether other functions are optimizable.
2189 SmallVector<ReturnInst*, 8> ReturnsToZap;
2191 const MapVector<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
2192 for (const auto &I : RV) {
2193 Function *F = I.first;
2194 if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
2195 continue;
2196 findReturnsToZap(*F, ReturnsToZap, Solver);
2199 for (const auto &F : Solver.getMRVFunctionsTracked()) {
2200 assert(F->getReturnType()->isStructTy() &&
2201 "The return type should be a struct");
2202 StructType *STy = cast<StructType>(F->getReturnType());
2203 if (Solver.isStructLatticeConstant(F, STy))
2204 findReturnsToZap(*F, ReturnsToZap, Solver);
2207 // Zap all returns which we've identified as zap to change.
2208 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
2209 Function *F = ReturnsToZap[i]->getParent()->getParent();
2210 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
2213 // If we inferred constant or undef values for globals variables, we can
2214 // delete the global and any stores that remain to it.
2215 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
2216 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
2217 E = TG.end(); I != E; ++I) {
2218 GlobalVariable *GV = I->first;
2219 assert(!I->second.isOverdefined() &&
2220 "Overdefined values should have been taken out of the map!");
2221 LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
2222 << "' is constant!\n");
2223 while (!GV->use_empty()) {
2224 StoreInst *SI = cast<StoreInst>(GV->user_back());
2225 SI->eraseFromParent();
2227 M.getGlobalList().erase(GV);
2228 ++IPNumGlobalConst;
2231 return MadeChanges;