1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements sparse conditional constant propagation and merging:
11 // Specifically, this:
12 // * Assumes values are constant unless proven otherwise
13 // * Assumes BasicBlocks are dead unless proven otherwise
14 // * Proves values to be constant, and replaces them with constants
15 // * Proves conditional branches to be unconditional
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Scalar/SCCP.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/GlobalsModRef.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueLattice.h"
34 #include "llvm/Analysis/ValueLatticeUtils.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstVisitor.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/PredicateInfo.h"
65 #define DEBUG_TYPE "sccp"
67 STATISTIC(NumInstRemoved
, "Number of instructions removed");
68 STATISTIC(NumDeadBlocks
, "Number of basic blocks unreachable");
70 STATISTIC(IPNumInstRemoved
, "Number of instructions removed by IPSCCP");
71 STATISTIC(IPNumArgsElimed
,"Number of arguments constant propagated by IPSCCP");
72 STATISTIC(IPNumGlobalConst
, "Number of globals found to be constant by IPSCCP");
76 /// LatticeVal class - This class represents the different lattice values that
77 /// an LLVM value may occupy. It is a simple class with value semantics.
81 /// unknown - This LLVM Value has no known value yet.
84 /// constant - This LLVM Value has a specific constant value.
87 /// forcedconstant - This LLVM Value was thought to be undef until
88 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
89 /// with another (different) constant, it goes to overdefined, instead of
93 /// overdefined - This instruction is not known to be constant, and we know
98 /// Val: This stores the current lattice value along with the Constant* for
99 /// the constant if this is a 'constant' or 'forcedconstant' value.
100 PointerIntPair
<Constant
*, 2, LatticeValueTy
> Val
;
102 LatticeValueTy
getLatticeValue() const {
107 LatticeVal() : Val(nullptr, unknown
) {}
109 bool isUnknown() const { return getLatticeValue() == unknown
; }
111 bool isConstant() const {
112 return getLatticeValue() == constant
|| getLatticeValue() == forcedconstant
;
115 bool isOverdefined() const { return getLatticeValue() == overdefined
; }
117 Constant
*getConstant() const {
118 assert(isConstant() && "Cannot get the constant of a non-constant!");
119 return Val
.getPointer();
122 /// markOverdefined - Return true if this is a change in status.
123 bool markOverdefined() {
127 Val
.setInt(overdefined
);
131 /// markConstant - Return true if this is a change in status.
132 bool markConstant(Constant
*V
) {
133 if (getLatticeValue() == constant
) { // Constant but not forcedconstant.
134 assert(getConstant() == V
&& "Marking constant with different value");
139 Val
.setInt(constant
);
140 assert(V
&& "Marking constant with NULL");
143 assert(getLatticeValue() == forcedconstant
&&
144 "Cannot move from overdefined to constant!");
145 // Stay at forcedconstant if the constant is the same.
146 if (V
== getConstant()) return false;
148 // Otherwise, we go to overdefined. Assumptions made based on the
149 // forced value are possibly wrong. Assuming this is another constant
150 // could expose a contradiction.
151 Val
.setInt(overdefined
);
156 /// getConstantInt - If this is a constant with a ConstantInt value, return it
157 /// otherwise return null.
158 ConstantInt
*getConstantInt() const {
160 return dyn_cast
<ConstantInt
>(getConstant());
164 /// getBlockAddress - If this is a constant with a BlockAddress value, return
165 /// it, otherwise return null.
166 BlockAddress
*getBlockAddress() const {
168 return dyn_cast
<BlockAddress
>(getConstant());
172 void markForcedConstant(Constant
*V
) {
173 assert(isUnknown() && "Can't force a defined value!");
174 Val
.setInt(forcedconstant
);
178 ValueLatticeElement
toValueLattice() const {
180 return ValueLatticeElement::getOverdefined();
182 return ValueLatticeElement::get(getConstant());
183 return ValueLatticeElement();
187 //===----------------------------------------------------------------------===//
189 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
190 /// Constant Propagation.
192 class SCCPSolver
: public InstVisitor
<SCCPSolver
> {
193 const DataLayout
&DL
;
194 std::function
<const TargetLibraryInfo
&(Function
&)> GetTLI
;
195 SmallPtrSet
<BasicBlock
*, 8> BBExecutable
; // The BBs that are executable.
196 DenseMap
<Value
*, LatticeVal
> ValueState
; // The state each value is in.
197 // The state each parameter is in.
198 DenseMap
<Value
*, ValueLatticeElement
> ParamState
;
200 /// StructValueState - This maintains ValueState for values that have
201 /// StructType, for example for formal arguments, calls, insertelement, etc.
202 DenseMap
<std::pair
<Value
*, unsigned>, LatticeVal
> StructValueState
;
204 /// GlobalValue - If we are tracking any values for the contents of a global
205 /// variable, we keep a mapping from the constant accessor to the element of
206 /// the global, to the currently known value. If the value becomes
207 /// overdefined, it's entry is simply removed from this map.
208 DenseMap
<GlobalVariable
*, LatticeVal
> TrackedGlobals
;
210 /// TrackedRetVals - If we are tracking arguments into and the return
211 /// value out of a function, it will have an entry in this map, indicating
212 /// what the known return value for the function is.
213 MapVector
<Function
*, LatticeVal
> TrackedRetVals
;
215 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
216 /// that return multiple values.
217 MapVector
<std::pair
<Function
*, unsigned>, LatticeVal
> TrackedMultipleRetVals
;
219 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
220 /// represented here for efficient lookup.
221 SmallPtrSet
<Function
*, 16> MRVFunctionsTracked
;
223 /// MustTailFunctions - Each function here is a callee of non-removable
224 /// musttail call site.
225 SmallPtrSet
<Function
*, 16> MustTailCallees
;
227 /// TrackingIncomingArguments - This is the set of functions for whose
228 /// arguments we make optimistic assumptions about and try to prove as
230 SmallPtrSet
<Function
*, 16> TrackingIncomingArguments
;
232 /// The reason for two worklists is that overdefined is the lowest state
233 /// on the lattice, and moving things to overdefined as fast as possible
234 /// makes SCCP converge much faster.
236 /// By having a separate worklist, we accomplish this because everything
237 /// possibly overdefined will become overdefined at the soonest possible
239 SmallVector
<Value
*, 64> OverdefinedInstWorkList
;
240 SmallVector
<Value
*, 64> InstWorkList
;
242 // The BasicBlock work list
243 SmallVector
<BasicBlock
*, 64> BBWorkList
;
245 /// KnownFeasibleEdges - Entries in this set are edges which have already had
246 /// PHI nodes retriggered.
247 using Edge
= std::pair
<BasicBlock
*, BasicBlock
*>;
248 DenseSet
<Edge
> KnownFeasibleEdges
;
250 DenseMap
<Function
*, AnalysisResultsForFn
> AnalysisResults
;
251 DenseMap
<Value
*, SmallPtrSet
<User
*, 2>> AdditionalUsers
;
254 void addAnalysis(Function
&F
, AnalysisResultsForFn A
) {
255 AnalysisResults
.insert({&F
, std::move(A
)});
258 const PredicateBase
*getPredicateInfoFor(Instruction
*I
) {
259 auto A
= AnalysisResults
.find(I
->getParent()->getParent());
260 if (A
== AnalysisResults
.end())
262 return A
->second
.PredInfo
->getPredicateInfoFor(I
);
265 DomTreeUpdater
getDTU(Function
&F
) {
266 auto A
= AnalysisResults
.find(&F
);
267 assert(A
!= AnalysisResults
.end() && "Need analysis results for function.");
268 return {A
->second
.DT
, A
->second
.PDT
, DomTreeUpdater::UpdateStrategy::Lazy
};
271 SCCPSolver(const DataLayout
&DL
,
272 std::function
<const TargetLibraryInfo
&(Function
&)> GetTLI
)
273 : DL(DL
), GetTLI(std::move(GetTLI
)) {}
275 /// MarkBlockExecutable - This method can be used by clients to mark all of
276 /// the blocks that are known to be intrinsically live in the processed unit.
278 /// This returns true if the block was not considered live before.
279 bool MarkBlockExecutable(BasicBlock
*BB
) {
280 if (!BBExecutable
.insert(BB
).second
)
282 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB
->getName() << '\n');
283 BBWorkList
.push_back(BB
); // Add the block to the work list!
287 /// TrackValueOfGlobalVariable - Clients can use this method to
288 /// inform the SCCPSolver that it should track loads and stores to the
289 /// specified global variable if it can. This is only legal to call if
290 /// performing Interprocedural SCCP.
291 void TrackValueOfGlobalVariable(GlobalVariable
*GV
) {
292 // We only track the contents of scalar globals.
293 if (GV
->getValueType()->isSingleValueType()) {
294 LatticeVal
&IV
= TrackedGlobals
[GV
];
295 if (!isa
<UndefValue
>(GV
->getInitializer()))
296 IV
.markConstant(GV
->getInitializer());
300 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
301 /// and out of the specified function (which cannot have its address taken),
302 /// this method must be called.
303 void AddTrackedFunction(Function
*F
) {
304 // Add an entry, F -> undef.
305 if (auto *STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
306 MRVFunctionsTracked
.insert(F
);
307 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
308 TrackedMultipleRetVals
.insert(std::make_pair(std::make_pair(F
, i
),
311 TrackedRetVals
.insert(std::make_pair(F
, LatticeVal()));
314 /// AddMustTailCallee - If the SCCP solver finds that this function is called
315 /// from non-removable musttail call site.
316 void AddMustTailCallee(Function
*F
) {
317 MustTailCallees
.insert(F
);
320 /// Returns true if the given function is called from non-removable musttail
322 bool isMustTailCallee(Function
*F
) {
323 return MustTailCallees
.count(F
);
326 void AddArgumentTrackedFunction(Function
*F
) {
327 TrackingIncomingArguments
.insert(F
);
330 /// Returns true if the given function is in the solver's set of
331 /// argument-tracked functions.
332 bool isArgumentTrackedFunction(Function
*F
) {
333 return TrackingIncomingArguments
.count(F
);
336 /// Solve - Solve for constants and executable blocks.
339 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
340 /// that branches on undef values cannot reach any of their successors.
341 /// However, this is not a safe assumption. After we solve dataflow, this
342 /// method should be use to handle this. If this returns true, the solver
344 bool ResolvedUndefsIn(Function
&F
);
346 bool isBlockExecutable(BasicBlock
*BB
) const {
347 return BBExecutable
.count(BB
);
350 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
351 // block to the 'To' basic block is currently feasible.
352 bool isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
);
354 std::vector
<LatticeVal
> getStructLatticeValueFor(Value
*V
) const {
355 std::vector
<LatticeVal
> StructValues
;
356 auto *STy
= dyn_cast
<StructType
>(V
->getType());
357 assert(STy
&& "getStructLatticeValueFor() can be called only on structs");
358 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
359 auto I
= StructValueState
.find(std::make_pair(V
, i
));
360 assert(I
!= StructValueState
.end() && "Value not in valuemap!");
361 StructValues
.push_back(I
->second
);
366 const LatticeVal
&getLatticeValueFor(Value
*V
) const {
367 assert(!V
->getType()->isStructTy() &&
368 "Should use getStructLatticeValueFor");
369 DenseMap
<Value
*, LatticeVal
>::const_iterator I
= ValueState
.find(V
);
370 assert(I
!= ValueState
.end() &&
371 "V not found in ValueState nor Paramstate map!");
375 /// getTrackedRetVals - Get the inferred return value map.
376 const MapVector
<Function
*, LatticeVal
> &getTrackedRetVals() {
377 return TrackedRetVals
;
380 /// getTrackedGlobals - Get and return the set of inferred initializers for
381 /// global variables.
382 const DenseMap
<GlobalVariable
*, LatticeVal
> &getTrackedGlobals() {
383 return TrackedGlobals
;
386 /// getMRVFunctionsTracked - Get the set of functions which return multiple
387 /// values tracked by the pass.
388 const SmallPtrSet
<Function
*, 16> getMRVFunctionsTracked() {
389 return MRVFunctionsTracked
;
392 /// getMustTailCallees - Get the set of functions which are called
393 /// from non-removable musttail call sites.
394 const SmallPtrSet
<Function
*, 16> getMustTailCallees() {
395 return MustTailCallees
;
398 /// markOverdefined - Mark the specified value overdefined. This
399 /// works with both scalars and structs.
400 void markOverdefined(Value
*V
) {
401 if (auto *STy
= dyn_cast
<StructType
>(V
->getType()))
402 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
403 markOverdefined(getStructValueState(V
, i
), V
);
405 markOverdefined(ValueState
[V
], V
);
408 // isStructLatticeConstant - Return true if all the lattice values
409 // corresponding to elements of the structure are not overdefined,
411 bool isStructLatticeConstant(Function
*F
, StructType
*STy
) {
412 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
413 const auto &It
= TrackedMultipleRetVals
.find(std::make_pair(F
, i
));
414 assert(It
!= TrackedMultipleRetVals
.end());
415 LatticeVal LV
= It
->second
;
416 if (LV
.isOverdefined())
423 // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined
424 void pushToWorkList(LatticeVal
&IV
, Value
*V
) {
425 if (IV
.isOverdefined())
426 return OverdefinedInstWorkList
.push_back(V
);
427 InstWorkList
.push_back(V
);
430 // markConstant - Make a value be marked as "constant". If the value
431 // is not already a constant, add it to the instruction work list so that
432 // the users of the instruction are updated later.
433 bool markConstant(LatticeVal
&IV
, Value
*V
, Constant
*C
) {
434 if (!IV
.markConstant(C
)) return false;
435 LLVM_DEBUG(dbgs() << "markConstant: " << *C
<< ": " << *V
<< '\n');
436 pushToWorkList(IV
, V
);
440 bool markConstant(Value
*V
, Constant
*C
) {
441 assert(!V
->getType()->isStructTy() && "structs should use mergeInValue");
442 return markConstant(ValueState
[V
], V
, C
);
445 void markForcedConstant(Value
*V
, Constant
*C
) {
446 assert(!V
->getType()->isStructTy() && "structs should use mergeInValue");
447 LatticeVal
&IV
= ValueState
[V
];
448 IV
.markForcedConstant(C
);
449 LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C
<< ": " << *V
<< '\n');
450 pushToWorkList(IV
, V
);
453 // markOverdefined - Make a value be marked as "overdefined". If the
454 // value is not already overdefined, add it to the overdefined instruction
455 // work list so that the users of the instruction are updated later.
456 bool markOverdefined(LatticeVal
&IV
, Value
*V
) {
457 if (!IV
.markOverdefined()) return false;
459 LLVM_DEBUG(dbgs() << "markOverdefined: ";
460 if (auto *F
= dyn_cast
<Function
>(V
)) dbgs()
461 << "Function '" << F
->getName() << "'\n";
462 else dbgs() << *V
<< '\n');
463 // Only instructions go on the work list
464 pushToWorkList(IV
, V
);
468 bool mergeInValue(LatticeVal
&IV
, Value
*V
, LatticeVal MergeWithV
) {
469 if (IV
.isOverdefined() || MergeWithV
.isUnknown())
470 return false; // Noop.
471 if (MergeWithV
.isOverdefined())
472 return markOverdefined(IV
, V
);
474 return markConstant(IV
, V
, MergeWithV
.getConstant());
475 if (IV
.getConstant() != MergeWithV
.getConstant())
476 return markOverdefined(IV
, V
);
480 bool mergeInValue(Value
*V
, LatticeVal MergeWithV
) {
481 assert(!V
->getType()->isStructTy() &&
482 "non-structs should use markConstant");
483 return mergeInValue(ValueState
[V
], V
, MergeWithV
);
486 /// getValueState - Return the LatticeVal object that corresponds to the
487 /// value. This function handles the case when the value hasn't been seen yet
488 /// by properly seeding constants etc.
489 LatticeVal
&getValueState(Value
*V
) {
490 assert(!V
->getType()->isStructTy() && "Should use getStructValueState");
492 std::pair
<DenseMap
<Value
*, LatticeVal
>::iterator
, bool> I
=
493 ValueState
.insert(std::make_pair(V
, LatticeVal()));
494 LatticeVal
&LV
= I
.first
->second
;
497 return LV
; // Common case, already in the map.
499 if (auto *C
= dyn_cast
<Constant
>(V
)) {
500 // Undef values remain unknown.
501 if (!isa
<UndefValue
>(V
))
502 LV
.markConstant(C
); // Constants are constant
505 // All others are underdefined by default.
509 ValueLatticeElement
&getParamState(Value
*V
) {
510 assert(!V
->getType()->isStructTy() && "Should use getStructValueState");
512 std::pair
<DenseMap
<Value
*, ValueLatticeElement
>::iterator
, bool>
513 PI
= ParamState
.insert(std::make_pair(V
, ValueLatticeElement()));
514 ValueLatticeElement
&LV
= PI
.first
->second
;
516 LV
= getValueState(V
).toValueLattice();
521 /// getStructValueState - Return the LatticeVal object that corresponds to the
522 /// value/field pair. This function handles the case when the value hasn't
523 /// been seen yet by properly seeding constants etc.
524 LatticeVal
&getStructValueState(Value
*V
, unsigned i
) {
525 assert(V
->getType()->isStructTy() && "Should use getValueState");
526 assert(i
< cast
<StructType
>(V
->getType())->getNumElements() &&
527 "Invalid element #");
529 std::pair
<DenseMap
<std::pair
<Value
*, unsigned>, LatticeVal
>::iterator
,
530 bool> I
= StructValueState
.insert(
531 std::make_pair(std::make_pair(V
, i
), LatticeVal()));
532 LatticeVal
&LV
= I
.first
->second
;
535 return LV
; // Common case, already in the map.
537 if (auto *C
= dyn_cast
<Constant
>(V
)) {
538 Constant
*Elt
= C
->getAggregateElement(i
);
541 LV
.markOverdefined(); // Unknown sort of constant.
542 else if (isa
<UndefValue
>(Elt
))
543 ; // Undef values remain unknown.
545 LV
.markConstant(Elt
); // Constants are constant.
548 // All others are underdefined by default.
552 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
553 /// work list if it is not already executable.
554 bool markEdgeExecutable(BasicBlock
*Source
, BasicBlock
*Dest
) {
555 if (!KnownFeasibleEdges
.insert(Edge(Source
, Dest
)).second
)
556 return false; // This edge is already known to be executable!
558 if (!MarkBlockExecutable(Dest
)) {
559 // If the destination is already executable, we just made an *edge*
560 // feasible that wasn't before. Revisit the PHI nodes in the block
561 // because they have potentially new operands.
562 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source
->getName()
563 << " -> " << Dest
->getName() << '\n');
565 for (PHINode
&PN
: Dest
->phis())
571 // getFeasibleSuccessors - Return a vector of booleans to indicate which
572 // successors are reachable from a given terminator instruction.
573 void getFeasibleSuccessors(Instruction
&TI
, SmallVectorImpl
<bool> &Succs
);
575 // OperandChangedState - This method is invoked on all of the users of an
576 // instruction that was just changed state somehow. Based on this
577 // information, we need to update the specified user of this instruction.
578 void OperandChangedState(Instruction
*I
) {
579 if (BBExecutable
.count(I
->getParent())) // Inst is executable?
583 // Add U as additional user of V.
584 void addAdditionalUser(Value
*V
, User
*U
) {
585 auto Iter
= AdditionalUsers
.insert({V
, {}});
586 Iter
.first
->second
.insert(U
);
589 // Mark I's users as changed, including AdditionalUsers.
590 void markUsersAsChanged(Value
*I
) {
591 for (User
*U
: I
->users())
592 if (auto *UI
= dyn_cast
<Instruction
>(U
))
593 OperandChangedState(UI
);
595 auto Iter
= AdditionalUsers
.find(I
);
596 if (Iter
!= AdditionalUsers
.end()) {
597 for (User
*U
: Iter
->second
)
598 if (auto *UI
= dyn_cast
<Instruction
>(U
))
599 OperandChangedState(UI
);
604 friend class InstVisitor
<SCCPSolver
>;
606 // visit implementations - Something changed in this instruction. Either an
607 // operand made a transition, or the instruction is newly executable. Change
608 // the value type of I to reflect these changes if appropriate.
609 void visitPHINode(PHINode
&I
);
613 void visitReturnInst(ReturnInst
&I
);
614 void visitTerminator(Instruction
&TI
);
616 void visitCastInst(CastInst
&I
);
617 void visitSelectInst(SelectInst
&I
);
618 void visitUnaryOperator(Instruction
&I
);
619 void visitBinaryOperator(Instruction
&I
);
620 void visitCmpInst(CmpInst
&I
);
621 void visitExtractValueInst(ExtractValueInst
&EVI
);
622 void visitInsertValueInst(InsertValueInst
&IVI
);
624 void visitCatchSwitchInst(CatchSwitchInst
&CPI
) {
625 markOverdefined(&CPI
);
626 visitTerminator(CPI
);
629 // Instructions that cannot be folded away.
631 void visitStoreInst (StoreInst
&I
);
632 void visitLoadInst (LoadInst
&I
);
633 void visitGetElementPtrInst(GetElementPtrInst
&I
);
635 void visitCallInst (CallInst
&I
) {
639 void visitInvokeInst (InvokeInst
&II
) {
644 void visitCallBrInst (CallBrInst
&CBI
) {
646 visitTerminator(CBI
);
649 void visitCallSite (CallSite CS
);
650 void visitResumeInst (ResumeInst
&I
) { /*returns void*/ }
651 void visitUnreachableInst(UnreachableInst
&I
) { /*returns void*/ }
652 void visitFenceInst (FenceInst
&I
) { /*returns void*/ }
654 void visitInstruction(Instruction
&I
) {
655 // All the instructions we don't do any special handling for just
656 // go to overdefined.
657 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I
<< '\n');
662 } // end anonymous namespace
664 // getFeasibleSuccessors - Return a vector of booleans to indicate which
665 // successors are reachable from a given terminator instruction.
666 void SCCPSolver::getFeasibleSuccessors(Instruction
&TI
,
667 SmallVectorImpl
<bool> &Succs
) {
668 Succs
.resize(TI
.getNumSuccessors());
669 if (auto *BI
= dyn_cast
<BranchInst
>(&TI
)) {
670 if (BI
->isUnconditional()) {
675 LatticeVal BCValue
= getValueState(BI
->getCondition());
676 ConstantInt
*CI
= BCValue
.getConstantInt();
678 // Overdefined condition variables, and branches on unfoldable constant
679 // conditions, mean the branch could go either way.
680 if (!BCValue
.isUnknown())
681 Succs
[0] = Succs
[1] = true;
685 // Constant condition variables mean the branch can only go a single way.
686 Succs
[CI
->isZero()] = true;
690 // Unwinding instructions successors are always executable.
691 if (TI
.isExceptionalTerminator()) {
692 Succs
.assign(TI
.getNumSuccessors(), true);
696 if (auto *SI
= dyn_cast
<SwitchInst
>(&TI
)) {
697 if (!SI
->getNumCases()) {
701 LatticeVal SCValue
= getValueState(SI
->getCondition());
702 ConstantInt
*CI
= SCValue
.getConstantInt();
704 if (!CI
) { // Overdefined or unknown condition?
705 // All destinations are executable!
706 if (!SCValue
.isUnknown())
707 Succs
.assign(TI
.getNumSuccessors(), true);
711 Succs
[SI
->findCaseValue(CI
)->getSuccessorIndex()] = true;
715 // In case of indirect branch and its address is a blockaddress, we mark
716 // the target as executable.
717 if (auto *IBR
= dyn_cast
<IndirectBrInst
>(&TI
)) {
718 // Casts are folded by visitCastInst.
719 LatticeVal IBRValue
= getValueState(IBR
->getAddress());
720 BlockAddress
*Addr
= IBRValue
.getBlockAddress();
721 if (!Addr
) { // Overdefined or unknown condition?
722 // All destinations are executable!
723 if (!IBRValue
.isUnknown())
724 Succs
.assign(TI
.getNumSuccessors(), true);
728 BasicBlock
* T
= Addr
->getBasicBlock();
729 assert(Addr
->getFunction() == T
->getParent() &&
730 "Block address of a different function ?");
731 for (unsigned i
= 0; i
< IBR
->getNumSuccessors(); ++i
) {
732 // This is the target.
733 if (IBR
->getDestination(i
) == T
) {
739 // If we didn't find our destination in the IBR successor list, then we
740 // have undefined behavior. Its ok to assume no successor is executable.
744 // In case of callbr, we pessimistically assume that all successors are
746 if (isa
<CallBrInst
>(&TI
)) {
747 Succs
.assign(TI
.getNumSuccessors(), true);
751 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI
<< '\n');
752 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
755 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
756 // block to the 'To' basic block is currently feasible.
757 bool SCCPSolver::isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
) {
758 // Check if we've called markEdgeExecutable on the edge yet. (We could
759 // be more aggressive and try to consider edges which haven't been marked
760 // yet, but there isn't any need.)
761 return KnownFeasibleEdges
.count(Edge(From
, To
));
764 // visit Implementations - Something changed in this instruction, either an
765 // operand made a transition, or the instruction is newly executable. Change
766 // the value type of I to reflect these changes if appropriate. This method
767 // makes sure to do the following actions:
769 // 1. If a phi node merges two constants in, and has conflicting value coming
770 // from different branches, or if the PHI node merges in an overdefined
771 // value, then the PHI node becomes overdefined.
772 // 2. If a phi node merges only constants in, and they all agree on value, the
773 // PHI node becomes a constant value equal to that.
774 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
775 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
776 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
777 // 6. If a conditional branch has a value that is constant, make the selected
778 // destination executable
779 // 7. If a conditional branch has a value that is overdefined, make all
780 // successors executable.
781 void SCCPSolver::visitPHINode(PHINode
&PN
) {
782 // If this PN returns a struct, just mark the result overdefined.
783 // TODO: We could do a lot better than this if code actually uses this.
784 if (PN
.getType()->isStructTy())
785 return (void)markOverdefined(&PN
);
787 if (getValueState(&PN
).isOverdefined())
788 return; // Quick exit
790 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
791 // and slow us down a lot. Just mark them overdefined.
792 if (PN
.getNumIncomingValues() > 64)
793 return (void)markOverdefined(&PN
);
795 // Look at all of the executable operands of the PHI node. If any of them
796 // are overdefined, the PHI becomes overdefined as well. If they are all
797 // constant, and they agree with each other, the PHI becomes the identical
798 // constant. If they are constant and don't agree, the PHI is overdefined.
799 // If there are no executable operands, the PHI remains unknown.
800 Constant
*OperandVal
= nullptr;
801 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
802 LatticeVal IV
= getValueState(PN
.getIncomingValue(i
));
803 if (IV
.isUnknown()) continue; // Doesn't influence PHI node.
805 if (!isEdgeFeasible(PN
.getIncomingBlock(i
), PN
.getParent()))
808 if (IV
.isOverdefined()) // PHI node becomes overdefined!
809 return (void)markOverdefined(&PN
);
811 if (!OperandVal
) { // Grab the first value.
812 OperandVal
= IV
.getConstant();
816 // There is already a reachable operand. If we conflict with it,
817 // then the PHI node becomes overdefined. If we agree with it, we
820 // Check to see if there are two different constants merging, if so, the PHI
821 // node is overdefined.
822 if (IV
.getConstant() != OperandVal
)
823 return (void)markOverdefined(&PN
);
826 // If we exited the loop, this means that the PHI node only has constant
827 // arguments that agree with each other(and OperandVal is the constant) or
828 // OperandVal is null because there are no defined incoming arguments. If
829 // this is the case, the PHI remains unknown.
831 markConstant(&PN
, OperandVal
); // Acquire operand value
834 void SCCPSolver::visitReturnInst(ReturnInst
&I
) {
835 if (I
.getNumOperands() == 0) return; // ret void
837 Function
*F
= I
.getParent()->getParent();
838 Value
*ResultOp
= I
.getOperand(0);
840 // If we are tracking the return value of this function, merge it in.
841 if (!TrackedRetVals
.empty() && !ResultOp
->getType()->isStructTy()) {
842 MapVector
<Function
*, LatticeVal
>::iterator TFRVI
=
843 TrackedRetVals
.find(F
);
844 if (TFRVI
!= TrackedRetVals
.end()) {
845 mergeInValue(TFRVI
->second
, F
, getValueState(ResultOp
));
850 // Handle functions that return multiple values.
851 if (!TrackedMultipleRetVals
.empty()) {
852 if (auto *STy
= dyn_cast
<StructType
>(ResultOp
->getType()))
853 if (MRVFunctionsTracked
.count(F
))
854 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
855 mergeInValue(TrackedMultipleRetVals
[std::make_pair(F
, i
)], F
,
856 getStructValueState(ResultOp
, i
));
860 void SCCPSolver::visitTerminator(Instruction
&TI
) {
861 SmallVector
<bool, 16> SuccFeasible
;
862 getFeasibleSuccessors(TI
, SuccFeasible
);
864 BasicBlock
*BB
= TI
.getParent();
866 // Mark all feasible successors executable.
867 for (unsigned i
= 0, e
= SuccFeasible
.size(); i
!= e
; ++i
)
869 markEdgeExecutable(BB
, TI
.getSuccessor(i
));
872 void SCCPSolver::visitCastInst(CastInst
&I
) {
873 LatticeVal OpSt
= getValueState(I
.getOperand(0));
874 if (OpSt
.isOverdefined()) // Inherit overdefinedness of operand
876 else if (OpSt
.isConstant()) {
877 // Fold the constant as we build.
878 Constant
*C
= ConstantFoldCastOperand(I
.getOpcode(), OpSt
.getConstant(),
880 if (isa
<UndefValue
>(C
))
882 // Propagate constant value
887 void SCCPSolver::visitExtractValueInst(ExtractValueInst
&EVI
) {
888 // If this returns a struct, mark all elements over defined, we don't track
889 // structs in structs.
890 if (EVI
.getType()->isStructTy())
891 return (void)markOverdefined(&EVI
);
893 // If this is extracting from more than one level of struct, we don't know.
894 if (EVI
.getNumIndices() != 1)
895 return (void)markOverdefined(&EVI
);
897 Value
*AggVal
= EVI
.getAggregateOperand();
898 if (AggVal
->getType()->isStructTy()) {
899 unsigned i
= *EVI
.idx_begin();
900 LatticeVal EltVal
= getStructValueState(AggVal
, i
);
901 mergeInValue(getValueState(&EVI
), &EVI
, EltVal
);
903 // Otherwise, must be extracting from an array.
904 return (void)markOverdefined(&EVI
);
908 void SCCPSolver::visitInsertValueInst(InsertValueInst
&IVI
) {
909 auto *STy
= dyn_cast
<StructType
>(IVI
.getType());
911 return (void)markOverdefined(&IVI
);
913 // If this has more than one index, we can't handle it, drive all results to
915 if (IVI
.getNumIndices() != 1)
916 return (void)markOverdefined(&IVI
);
918 Value
*Aggr
= IVI
.getAggregateOperand();
919 unsigned Idx
= *IVI
.idx_begin();
921 // Compute the result based on what we're inserting.
922 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
923 // This passes through all values that aren't the inserted element.
925 LatticeVal EltVal
= getStructValueState(Aggr
, i
);
926 mergeInValue(getStructValueState(&IVI
, i
), &IVI
, EltVal
);
930 Value
*Val
= IVI
.getInsertedValueOperand();
931 if (Val
->getType()->isStructTy())
932 // We don't track structs in structs.
933 markOverdefined(getStructValueState(&IVI
, i
), &IVI
);
935 LatticeVal InVal
= getValueState(Val
);
936 mergeInValue(getStructValueState(&IVI
, i
), &IVI
, InVal
);
941 void SCCPSolver::visitSelectInst(SelectInst
&I
) {
942 // If this select returns a struct, just mark the result overdefined.
943 // TODO: We could do a lot better than this if code actually uses this.
944 if (I
.getType()->isStructTy())
945 return (void)markOverdefined(&I
);
947 LatticeVal CondValue
= getValueState(I
.getCondition());
948 if (CondValue
.isUnknown())
951 if (ConstantInt
*CondCB
= CondValue
.getConstantInt()) {
952 Value
*OpVal
= CondCB
->isZero() ? I
.getFalseValue() : I
.getTrueValue();
953 mergeInValue(&I
, getValueState(OpVal
));
957 // Otherwise, the condition is overdefined or a constant we can't evaluate.
958 // See if we can produce something better than overdefined based on the T/F
960 LatticeVal TVal
= getValueState(I
.getTrueValue());
961 LatticeVal FVal
= getValueState(I
.getFalseValue());
963 // select ?, C, C -> C.
964 if (TVal
.isConstant() && FVal
.isConstant() &&
965 TVal
.getConstant() == FVal
.getConstant())
966 return (void)markConstant(&I
, FVal
.getConstant());
968 if (TVal
.isUnknown()) // select ?, undef, X -> X.
969 return (void)mergeInValue(&I
, FVal
);
970 if (FVal
.isUnknown()) // select ?, X, undef -> X.
971 return (void)mergeInValue(&I
, TVal
);
975 // Handle Unary Operators.
976 void SCCPSolver::visitUnaryOperator(Instruction
&I
) {
977 LatticeVal V0State
= getValueState(I
.getOperand(0));
979 LatticeVal
&IV
= ValueState
[&I
];
980 if (IV
.isOverdefined()) return;
982 if (V0State
.isConstant()) {
983 Constant
*C
= ConstantExpr::get(I
.getOpcode(), V0State
.getConstant());
986 if (isa
<UndefValue
>(C
))
988 return (void)markConstant(IV
, &I
, C
);
991 // If something is undef, wait for it to resolve.
992 if (!V0State
.isOverdefined())
998 // Handle Binary Operators.
999 void SCCPSolver::visitBinaryOperator(Instruction
&I
) {
1000 LatticeVal V1State
= getValueState(I
.getOperand(0));
1001 LatticeVal V2State
= getValueState(I
.getOperand(1));
1003 LatticeVal
&IV
= ValueState
[&I
];
1004 if (IV
.isOverdefined()) return;
1006 if (V1State
.isConstant() && V2State
.isConstant()) {
1007 Constant
*C
= ConstantExpr::get(I
.getOpcode(), V1State
.getConstant(),
1008 V2State
.getConstant());
1010 if (isa
<UndefValue
>(C
))
1012 return (void)markConstant(IV
, &I
, C
);
1015 // If something is undef, wait for it to resolve.
1016 if (!V1State
.isOverdefined() && !V2State
.isOverdefined())
1019 // Otherwise, one of our operands is overdefined. Try to produce something
1020 // better than overdefined with some tricks.
1021 // If this is 0 / Y, it doesn't matter that the second operand is
1022 // overdefined, and we can replace it with zero.
1023 if (I
.getOpcode() == Instruction::UDiv
|| I
.getOpcode() == Instruction::SDiv
)
1024 if (V1State
.isConstant() && V1State
.getConstant()->isNullValue())
1025 return (void)markConstant(IV
, &I
, V1State
.getConstant());
1028 // -> AND/MUL with 0
1030 // it doesn't matter that the other operand is overdefined.
1031 if (I
.getOpcode() == Instruction::And
|| I
.getOpcode() == Instruction::Mul
||
1032 I
.getOpcode() == Instruction::Or
) {
1033 LatticeVal
*NonOverdefVal
= nullptr;
1034 if (!V1State
.isOverdefined())
1035 NonOverdefVal
= &V1State
;
1036 else if (!V2State
.isOverdefined())
1037 NonOverdefVal
= &V2State
;
1039 if (NonOverdefVal
) {
1040 if (NonOverdefVal
->isUnknown())
1043 if (I
.getOpcode() == Instruction::And
||
1044 I
.getOpcode() == Instruction::Mul
) {
1047 if (NonOverdefVal
->getConstant()->isNullValue())
1048 return (void)markConstant(IV
, &I
, NonOverdefVal
->getConstant());
1051 if (ConstantInt
*CI
= NonOverdefVal
->getConstantInt())
1052 if (CI
->isMinusOne())
1053 return (void)markConstant(IV
, &I
, NonOverdefVal
->getConstant());
1058 markOverdefined(&I
);
1061 // Handle ICmpInst instruction.
1062 void SCCPSolver::visitCmpInst(CmpInst
&I
) {
1063 // Do not cache this lookup, getValueState calls later in the function might
1064 // invalidate the reference.
1065 if (ValueState
[&I
].isOverdefined()) return;
1067 Value
*Op1
= I
.getOperand(0);
1068 Value
*Op2
= I
.getOperand(1);
1070 // For parameters, use ParamState which includes constant range info if
1072 auto V1Param
= ParamState
.find(Op1
);
1073 ValueLatticeElement V1State
= (V1Param
!= ParamState
.end())
1075 : getValueState(Op1
).toValueLattice();
1077 auto V2Param
= ParamState
.find(Op2
);
1078 ValueLatticeElement V2State
= V2Param
!= ParamState
.end()
1080 : getValueState(Op2
).toValueLattice();
1082 Constant
*C
= V1State
.getCompare(I
.getPredicate(), I
.getType(), V2State
);
1084 if (isa
<UndefValue
>(C
))
1088 mergeInValue(&I
, CV
);
1092 // If operands are still unknown, wait for it to resolve.
1093 if (!V1State
.isOverdefined() && !V2State
.isOverdefined() &&
1094 !ValueState
[&I
].isConstant())
1097 markOverdefined(&I
);
1100 // Handle getelementptr instructions. If all operands are constants then we
1101 // can turn this into a getelementptr ConstantExpr.
1102 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst
&I
) {
1103 if (ValueState
[&I
].isOverdefined()) return;
1105 SmallVector
<Constant
*, 8> Operands
;
1106 Operands
.reserve(I
.getNumOperands());
1108 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1109 LatticeVal State
= getValueState(I
.getOperand(i
));
1110 if (State
.isUnknown())
1111 return; // Operands are not resolved yet.
1113 if (State
.isOverdefined())
1114 return (void)markOverdefined(&I
);
1116 assert(State
.isConstant() && "Unknown state!");
1117 Operands
.push_back(State
.getConstant());
1120 Constant
*Ptr
= Operands
[0];
1121 auto Indices
= makeArrayRef(Operands
.begin() + 1, Operands
.end());
1123 ConstantExpr::getGetElementPtr(I
.getSourceElementType(), Ptr
, Indices
);
1124 if (isa
<UndefValue
>(C
))
1126 markConstant(&I
, C
);
1129 void SCCPSolver::visitStoreInst(StoreInst
&SI
) {
1130 // If this store is of a struct, ignore it.
1131 if (SI
.getOperand(0)->getType()->isStructTy())
1134 if (TrackedGlobals
.empty() || !isa
<GlobalVariable
>(SI
.getOperand(1)))
1137 GlobalVariable
*GV
= cast
<GlobalVariable
>(SI
.getOperand(1));
1138 DenseMap
<GlobalVariable
*, LatticeVal
>::iterator I
= TrackedGlobals
.find(GV
);
1139 if (I
== TrackedGlobals
.end() || I
->second
.isOverdefined()) return;
1141 // Get the value we are storing into the global, then merge it.
1142 mergeInValue(I
->second
, GV
, getValueState(SI
.getOperand(0)));
1143 if (I
->second
.isOverdefined())
1144 TrackedGlobals
.erase(I
); // No need to keep tracking this!
1147 // Handle load instructions. If the operand is a constant pointer to a constant
1148 // global, we can replace the load with the loaded constant value!
1149 void SCCPSolver::visitLoadInst(LoadInst
&I
) {
1150 // If this load is of a struct, just mark the result overdefined.
1151 if (I
.getType()->isStructTy())
1152 return (void)markOverdefined(&I
);
1154 LatticeVal PtrVal
= getValueState(I
.getOperand(0));
1155 if (PtrVal
.isUnknown()) return; // The pointer is not resolved yet!
1157 LatticeVal
&IV
= ValueState
[&I
];
1158 if (IV
.isOverdefined()) return;
1160 if (!PtrVal
.isConstant() || I
.isVolatile())
1161 return (void)markOverdefined(IV
, &I
);
1163 Constant
*Ptr
= PtrVal
.getConstant();
1165 // load null is undefined.
1166 if (isa
<ConstantPointerNull
>(Ptr
)) {
1167 if (NullPointerIsDefined(I
.getFunction(), I
.getPointerAddressSpace()))
1168 return (void)markOverdefined(IV
, &I
);
1173 // Transform load (constant global) into the value loaded.
1174 if (auto *GV
= dyn_cast
<GlobalVariable
>(Ptr
)) {
1175 if (!TrackedGlobals
.empty()) {
1176 // If we are tracking this global, merge in the known value for it.
1177 DenseMap
<GlobalVariable
*, LatticeVal
>::iterator It
=
1178 TrackedGlobals
.find(GV
);
1179 if (It
!= TrackedGlobals
.end()) {
1180 mergeInValue(IV
, &I
, It
->second
);
1186 // Transform load from a constant into a constant if possible.
1187 if (Constant
*C
= ConstantFoldLoadFromConstPtr(Ptr
, I
.getType(), DL
)) {
1188 if (isa
<UndefValue
>(C
))
1190 return (void)markConstant(IV
, &I
, C
);
1193 // Otherwise we cannot say for certain what value this load will produce.
1195 markOverdefined(IV
, &I
);
1198 void SCCPSolver::visitCallSite(CallSite CS
) {
1199 Function
*F
= CS
.getCalledFunction();
1200 Instruction
*I
= CS
.getInstruction();
1202 if (auto *II
= dyn_cast
<IntrinsicInst
>(I
)) {
1203 if (II
->getIntrinsicID() == Intrinsic::ssa_copy
) {
1204 if (ValueState
[I
].isOverdefined())
1207 auto *PI
= getPredicateInfoFor(I
);
1211 Value
*CopyOf
= I
->getOperand(0);
1212 auto *PBranch
= dyn_cast
<PredicateBranch
>(PI
);
1214 mergeInValue(ValueState
[I
], I
, getValueState(CopyOf
));
1218 Value
*Cond
= PBranch
->Condition
;
1220 // Everything below relies on the condition being a comparison.
1221 auto *Cmp
= dyn_cast
<CmpInst
>(Cond
);
1223 mergeInValue(ValueState
[I
], I
, getValueState(CopyOf
));
1227 Value
*CmpOp0
= Cmp
->getOperand(0);
1228 Value
*CmpOp1
= Cmp
->getOperand(1);
1229 if (CopyOf
!= CmpOp0
&& CopyOf
!= CmpOp1
) {
1230 mergeInValue(ValueState
[I
], I
, getValueState(CopyOf
));
1234 if (CmpOp0
!= CopyOf
)
1235 std::swap(CmpOp0
, CmpOp1
);
1237 LatticeVal OriginalVal
= getValueState(CopyOf
);
1238 LatticeVal EqVal
= getValueState(CmpOp1
);
1239 LatticeVal
&IV
= ValueState
[I
];
1240 if (PBranch
->TrueEdge
&& Cmp
->getPredicate() == CmpInst::ICMP_EQ
) {
1241 addAdditionalUser(CmpOp1
, I
);
1242 if (OriginalVal
.isConstant())
1243 mergeInValue(IV
, I
, OriginalVal
);
1245 mergeInValue(IV
, I
, EqVal
);
1248 if (!PBranch
->TrueEdge
&& Cmp
->getPredicate() == CmpInst::ICMP_NE
) {
1249 addAdditionalUser(CmpOp1
, I
);
1250 if (OriginalVal
.isConstant())
1251 mergeInValue(IV
, I
, OriginalVal
);
1253 mergeInValue(IV
, I
, EqVal
);
1257 return (void)mergeInValue(IV
, I
, getValueState(CopyOf
));
1261 // The common case is that we aren't tracking the callee, either because we
1262 // are not doing interprocedural analysis or the callee is indirect, or is
1263 // external. Handle these cases first.
1264 if (!F
|| F
->isDeclaration()) {
1266 // Void return and not tracking callee, just bail.
1267 if (I
->getType()->isVoidTy()) return;
1269 // Otherwise, if we have a single return value case, and if the function is
1270 // a declaration, maybe we can constant fold it.
1271 if (F
&& F
->isDeclaration() && !I
->getType()->isStructTy() &&
1272 canConstantFoldCallTo(cast
<CallBase
>(CS
.getInstruction()), F
)) {
1273 SmallVector
<Constant
*, 8> Operands
;
1274 for (CallSite::arg_iterator AI
= CS
.arg_begin(), E
= CS
.arg_end();
1276 if (AI
->get()->getType()->isStructTy())
1277 return markOverdefined(I
); // Can't handle struct args.
1278 LatticeVal State
= getValueState(*AI
);
1280 if (State
.isUnknown())
1281 return; // Operands are not resolved yet.
1282 if (State
.isOverdefined())
1283 return (void)markOverdefined(I
);
1284 assert(State
.isConstant() && "Unknown state!");
1285 Operands
.push_back(State
.getConstant());
1288 if (getValueState(I
).isOverdefined())
1291 // If we can constant fold this, mark the result of the call as a
1293 if (Constant
*C
= ConstantFoldCall(cast
<CallBase
>(CS
.getInstruction()), F
,
1294 Operands
, &GetTLI(*F
))) {
1296 if (isa
<UndefValue
>(C
))
1298 return (void)markConstant(I
, C
);
1302 // Otherwise, we don't know anything about this call, mark it overdefined.
1303 return (void)markOverdefined(I
);
1306 // If this is a local function that doesn't have its address taken, mark its
1307 // entry block executable and merge in the actual arguments to the call into
1308 // the formal arguments of the function.
1309 if (!TrackingIncomingArguments
.empty() && TrackingIncomingArguments
.count(F
)){
1310 MarkBlockExecutable(&F
->front());
1312 // Propagate information from this call site into the callee.
1313 CallSite::arg_iterator CAI
= CS
.arg_begin();
1314 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1315 AI
!= E
; ++AI
, ++CAI
) {
1316 // If this argument is byval, and if the function is not readonly, there
1317 // will be an implicit copy formed of the input aggregate.
1318 if (AI
->hasByValAttr() && !F
->onlyReadsMemory()) {
1319 markOverdefined(&*AI
);
1323 if (auto *STy
= dyn_cast
<StructType
>(AI
->getType())) {
1324 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1325 LatticeVal CallArg
= getStructValueState(*CAI
, i
);
1326 mergeInValue(getStructValueState(&*AI
, i
), &*AI
, CallArg
);
1329 // Most other parts of the Solver still only use the simpler value
1330 // lattice, so we propagate changes for parameters to both lattices.
1331 LatticeVal ConcreteArgument
= getValueState(*CAI
);
1333 getParamState(&*AI
).mergeIn(ConcreteArgument
.toValueLattice(), DL
);
1334 bool ValueChanged
= mergeInValue(&*AI
, ConcreteArgument
);
1335 // Add argument to work list, if the state of a parameter changes but
1336 // ValueState does not change (because it is already overdefined there),
1337 // We have to take changes in ParamState into account, as it is used
1338 // when evaluating Cmp instructions.
1339 if (!ValueChanged
&& ParamChanged
)
1340 pushToWorkList(ValueState
[&*AI
], &*AI
);
1345 // If this is a single/zero retval case, see if we're tracking the function.
1346 if (auto *STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
1347 if (!MRVFunctionsTracked
.count(F
))
1348 goto CallOverdefined
; // Not tracking this callee.
1350 // If we are tracking this callee, propagate the result of the function
1351 // into this call site.
1352 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
1353 mergeInValue(getStructValueState(I
, i
), I
,
1354 TrackedMultipleRetVals
[std::make_pair(F
, i
)]);
1356 MapVector
<Function
*, LatticeVal
>::iterator TFRVI
= TrackedRetVals
.find(F
);
1357 if (TFRVI
== TrackedRetVals
.end())
1358 goto CallOverdefined
; // Not tracking this callee.
1360 // If so, propagate the return value of the callee into this call result.
1361 mergeInValue(I
, TFRVI
->second
);
1365 void SCCPSolver::Solve() {
1366 // Process the work lists until they are empty!
1367 while (!BBWorkList
.empty() || !InstWorkList
.empty() ||
1368 !OverdefinedInstWorkList
.empty()) {
1369 // Process the overdefined instruction's work list first, which drives other
1370 // things to overdefined more quickly.
1371 while (!OverdefinedInstWorkList
.empty()) {
1372 Value
*I
= OverdefinedInstWorkList
.pop_back_val();
1374 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I
<< '\n');
1376 // "I" got into the work list because it either made the transition from
1377 // bottom to constant, or to overdefined.
1379 // Anything on this worklist that is overdefined need not be visited
1380 // since all of its users will have already been marked as overdefined
1381 // Update all of the users of this instruction's value.
1383 markUsersAsChanged(I
);
1386 // Process the instruction work list.
1387 while (!InstWorkList
.empty()) {
1388 Value
*I
= InstWorkList
.pop_back_val();
1390 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I
<< '\n');
1392 // "I" got into the work list because it made the transition from undef to
1395 // Anything on this worklist that is overdefined need not be visited
1396 // since all of its users will have already been marked as overdefined.
1397 // Update all of the users of this instruction's value.
1399 if (I
->getType()->isStructTy() || !getValueState(I
).isOverdefined())
1400 markUsersAsChanged(I
);
1403 // Process the basic block work list.
1404 while (!BBWorkList
.empty()) {
1405 BasicBlock
*BB
= BBWorkList
.back();
1406 BBWorkList
.pop_back();
1408 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB
<< '\n');
1410 // Notify all instructions in this basic block that they are newly
1417 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1418 /// that branches on undef values cannot reach any of their successors.
1419 /// However, this is not a safe assumption. After we solve dataflow, this
1420 /// method should be use to handle this. If this returns true, the solver
1421 /// should be rerun.
1423 /// This method handles this by finding an unresolved branch and marking it one
1424 /// of the edges from the block as being feasible, even though the condition
1425 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1426 /// CFG and only slightly pessimizes the analysis results (by marking one,
1427 /// potentially infeasible, edge feasible). This cannot usefully modify the
1428 /// constraints on the condition of the branch, as that would impact other users
1431 /// This scan also checks for values that use undefs, whose results are actually
1432 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1433 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1434 /// even if X isn't defined.
1435 bool SCCPSolver::ResolvedUndefsIn(Function
&F
) {
1436 for (BasicBlock
&BB
: F
) {
1437 if (!BBExecutable
.count(&BB
))
1440 for (Instruction
&I
: BB
) {
1441 // Look for instructions which produce undef values.
1442 if (I
.getType()->isVoidTy()) continue;
1444 if (auto *STy
= dyn_cast
<StructType
>(I
.getType())) {
1445 // Only a few things that can be structs matter for undef.
1447 // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1448 if (CallSite CS
= CallSite(&I
))
1449 if (Function
*F
= CS
.getCalledFunction())
1450 if (MRVFunctionsTracked
.count(F
))
1453 // extractvalue and insertvalue don't need to be marked; they are
1454 // tracked as precisely as their operands.
1455 if (isa
<ExtractValueInst
>(I
) || isa
<InsertValueInst
>(I
))
1458 // Send the results of everything else to overdefined. We could be
1459 // more precise than this but it isn't worth bothering.
1460 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1461 LatticeVal
&LV
= getStructValueState(&I
, i
);
1463 markOverdefined(LV
, &I
);
1468 LatticeVal
&LV
= getValueState(&I
);
1469 if (!LV
.isUnknown())
1472 // There are two reasons a call can have an undef result
1473 // 1. It could be tracked.
1474 // 2. It could be constant-foldable.
1475 // Because of the way we solve return values, tracked calls must
1476 // never be marked overdefined in ResolvedUndefsIn.
1477 if (CallSite CS
= CallSite(&I
)) {
1478 if (Function
*F
= CS
.getCalledFunction())
1479 if (TrackedRetVals
.count(F
))
1482 // If the call is constant-foldable, we mark it overdefined because
1483 // we do not know what return values are valid.
1484 markOverdefined(&I
);
1488 // extractvalue is safe; check here because the argument is a struct.
1489 if (isa
<ExtractValueInst
>(I
))
1492 // Compute the operand LatticeVals, for convenience below.
1493 // Anything taking a struct is conservatively assumed to require
1494 // overdefined markings.
1495 if (I
.getOperand(0)->getType()->isStructTy()) {
1496 markOverdefined(&I
);
1499 LatticeVal Op0LV
= getValueState(I
.getOperand(0));
1501 if (I
.getNumOperands() == 2) {
1502 if (I
.getOperand(1)->getType()->isStructTy()) {
1503 markOverdefined(&I
);
1507 Op1LV
= getValueState(I
.getOperand(1));
1509 // If this is an instructions whose result is defined even if the input is
1510 // not fully defined, propagate the information.
1511 Type
*ITy
= I
.getType();
1512 switch (I
.getOpcode()) {
1513 case Instruction::Add
:
1514 case Instruction::Sub
:
1515 case Instruction::Trunc
:
1516 case Instruction::FPTrunc
:
1517 case Instruction::BitCast
:
1518 break; // Any undef -> undef
1519 case Instruction::FSub
:
1520 case Instruction::FAdd
:
1521 case Instruction::FMul
:
1522 case Instruction::FDiv
:
1523 case Instruction::FRem
:
1524 // Floating-point binary operation: be conservative.
1525 if (Op0LV
.isUnknown() && Op1LV
.isUnknown())
1526 markForcedConstant(&I
, Constant::getNullValue(ITy
));
1528 markOverdefined(&I
);
1530 case Instruction::FNeg
:
1531 break; // fneg undef -> undef
1532 case Instruction::ZExt
:
1533 case Instruction::SExt
:
1534 case Instruction::FPToUI
:
1535 case Instruction::FPToSI
:
1536 case Instruction::FPExt
:
1537 case Instruction::PtrToInt
:
1538 case Instruction::IntToPtr
:
1539 case Instruction::SIToFP
:
1540 case Instruction::UIToFP
:
1541 // undef -> 0; some outputs are impossible
1542 markForcedConstant(&I
, Constant::getNullValue(ITy
));
1544 case Instruction::Mul
:
1545 case Instruction::And
:
1546 // Both operands undef -> undef
1547 if (Op0LV
.isUnknown() && Op1LV
.isUnknown())
1549 // undef * X -> 0. X could be zero.
1550 // undef & X -> 0. X could be zero.
1551 markForcedConstant(&I
, Constant::getNullValue(ITy
));
1553 case Instruction::Or
:
1554 // Both operands undef -> undef
1555 if (Op0LV
.isUnknown() && Op1LV
.isUnknown())
1557 // undef | X -> -1. X could be -1.
1558 markForcedConstant(&I
, Constant::getAllOnesValue(ITy
));
1560 case Instruction::Xor
:
1561 // undef ^ undef -> 0; strictly speaking, this is not strictly
1562 // necessary, but we try to be nice to people who expect this
1563 // behavior in simple cases
1564 if (Op0LV
.isUnknown() && Op1LV
.isUnknown()) {
1565 markForcedConstant(&I
, Constant::getNullValue(ITy
));
1568 // undef ^ X -> undef
1570 case Instruction::SDiv
:
1571 case Instruction::UDiv
:
1572 case Instruction::SRem
:
1573 case Instruction::URem
:
1574 // X / undef -> undef. No change.
1575 // X % undef -> undef. No change.
1576 if (Op1LV
.isUnknown()) break;
1578 // X / 0 -> undef. No change.
1579 // X % 0 -> undef. No change.
1580 if (Op1LV
.isConstant() && Op1LV
.getConstant()->isZeroValue())
1583 // undef / X -> 0. X could be maxint.
1584 // undef % X -> 0. X could be 1.
1585 markForcedConstant(&I
, Constant::getNullValue(ITy
));
1587 case Instruction::AShr
:
1588 // X >>a undef -> undef.
1589 if (Op1LV
.isUnknown()) break;
1591 // Shifting by the bitwidth or more is undefined.
1592 if (Op1LV
.isConstant()) {
1593 if (auto *ShiftAmt
= Op1LV
.getConstantInt())
1594 if (ShiftAmt
->getLimitedValue() >=
1595 ShiftAmt
->getType()->getScalarSizeInBits())
1600 markForcedConstant(&I
, Constant::getNullValue(ITy
));
1602 case Instruction::LShr
:
1603 case Instruction::Shl
:
1604 // X << undef -> undef.
1605 // X >> undef -> undef.
1606 if (Op1LV
.isUnknown()) break;
1608 // Shifting by the bitwidth or more is undefined.
1609 if (Op1LV
.isConstant()) {
1610 if (auto *ShiftAmt
= Op1LV
.getConstantInt())
1611 if (ShiftAmt
->getLimitedValue() >=
1612 ShiftAmt
->getType()->getScalarSizeInBits())
1618 markForcedConstant(&I
, Constant::getNullValue(ITy
));
1620 case Instruction::Select
:
1621 Op1LV
= getValueState(I
.getOperand(1));
1622 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1623 if (Op0LV
.isUnknown()) {
1624 if (!Op1LV
.isConstant()) // Pick the constant one if there is any.
1625 Op1LV
= getValueState(I
.getOperand(2));
1626 } else if (Op1LV
.isUnknown()) {
1627 // c ? undef : undef -> undef. No change.
1628 Op1LV
= getValueState(I
.getOperand(2));
1629 if (Op1LV
.isUnknown())
1631 // Otherwise, c ? undef : x -> x.
1633 // Leave Op1LV as Operand(1)'s LatticeValue.
1636 if (Op1LV
.isConstant())
1637 markForcedConstant(&I
, Op1LV
.getConstant());
1639 markOverdefined(&I
);
1641 case Instruction::Load
:
1642 // A load here means one of two things: a load of undef from a global,
1643 // a load from an unknown pointer. Either way, having it return undef
1646 case Instruction::ICmp
:
1647 // X == undef -> undef. Other comparisons get more complicated.
1648 Op0LV
= getValueState(I
.getOperand(0));
1649 Op1LV
= getValueState(I
.getOperand(1));
1651 if ((Op0LV
.isUnknown() || Op1LV
.isUnknown()) &&
1652 cast
<ICmpInst
>(&I
)->isEquality())
1654 markOverdefined(&I
);
1656 case Instruction::Call
:
1657 case Instruction::Invoke
:
1658 case Instruction::CallBr
:
1659 llvm_unreachable("Call-like instructions should have be handled early");
1661 // If we don't know what should happen here, conservatively mark it
1663 markOverdefined(&I
);
1668 // Check to see if we have a branch or switch on an undefined value. If so
1669 // we force the branch to go one way or the other to make the successor
1670 // values live. It doesn't really matter which way we force it.
1671 Instruction
*TI
= BB
.getTerminator();
1672 if (auto *BI
= dyn_cast
<BranchInst
>(TI
)) {
1673 if (!BI
->isConditional()) continue;
1674 if (!getValueState(BI
->getCondition()).isUnknown())
1677 // If the input to SCCP is actually branch on undef, fix the undef to
1679 if (isa
<UndefValue
>(BI
->getCondition())) {
1680 BI
->setCondition(ConstantInt::getFalse(BI
->getContext()));
1681 markEdgeExecutable(&BB
, TI
->getSuccessor(1));
1685 // Otherwise, it is a branch on a symbolic value which is currently
1686 // considered to be undef. Make sure some edge is executable, so a
1687 // branch on "undef" always flows somewhere.
1688 // FIXME: Distinguish between dead code and an LLVM "undef" value.
1689 BasicBlock
*DefaultSuccessor
= TI
->getSuccessor(1);
1690 if (markEdgeExecutable(&BB
, DefaultSuccessor
))
1696 if (auto *IBR
= dyn_cast
<IndirectBrInst
>(TI
)) {
1697 // Indirect branch with no successor ?. Its ok to assume it branches
1699 if (IBR
->getNumSuccessors() < 1)
1702 if (!getValueState(IBR
->getAddress()).isUnknown())
1705 // If the input to SCCP is actually branch on undef, fix the undef to
1706 // the first successor of the indirect branch.
1707 if (isa
<UndefValue
>(IBR
->getAddress())) {
1708 IBR
->setAddress(BlockAddress::get(IBR
->getSuccessor(0)));
1709 markEdgeExecutable(&BB
, IBR
->getSuccessor(0));
1713 // Otherwise, it is a branch on a symbolic value which is currently
1714 // considered to be undef. Make sure some edge is executable, so a
1715 // branch on "undef" always flows somewhere.
1716 // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
1717 // we can assume the branch has undefined behavior instead.
1718 BasicBlock
*DefaultSuccessor
= IBR
->getSuccessor(0);
1719 if (markEdgeExecutable(&BB
, DefaultSuccessor
))
1725 if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
1726 if (!SI
->getNumCases() || !getValueState(SI
->getCondition()).isUnknown())
1729 // If the input to SCCP is actually switch on undef, fix the undef to
1730 // the first constant.
1731 if (isa
<UndefValue
>(SI
->getCondition())) {
1732 SI
->setCondition(SI
->case_begin()->getCaseValue());
1733 markEdgeExecutable(&BB
, SI
->case_begin()->getCaseSuccessor());
1737 // Otherwise, it is a branch on a symbolic value which is currently
1738 // considered to be undef. Make sure some edge is executable, so a
1739 // branch on "undef" always flows somewhere.
1740 // FIXME: Distinguish between dead code and an LLVM "undef" value.
1741 BasicBlock
*DefaultSuccessor
= SI
->case_begin()->getCaseSuccessor();
1742 if (markEdgeExecutable(&BB
, DefaultSuccessor
))
1752 static bool tryToReplaceWithConstant(SCCPSolver
&Solver
, Value
*V
) {
1753 Constant
*Const
= nullptr;
1754 if (V
->getType()->isStructTy()) {
1755 std::vector
<LatticeVal
> IVs
= Solver
.getStructLatticeValueFor(V
);
1756 if (llvm::any_of(IVs
,
1757 [](const LatticeVal
&LV
) { return LV
.isOverdefined(); }))
1759 std::vector
<Constant
*> ConstVals
;
1760 auto *ST
= cast
<StructType
>(V
->getType());
1761 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
) {
1762 LatticeVal V
= IVs
[i
];
1763 ConstVals
.push_back(V
.isConstant()
1765 : UndefValue::get(ST
->getElementType(i
)));
1767 Const
= ConstantStruct::get(ST
, ConstVals
);
1769 const LatticeVal
&IV
= Solver
.getLatticeValueFor(V
);
1770 if (IV
.isOverdefined())
1773 Const
= IV
.isConstant() ? IV
.getConstant() : UndefValue::get(V
->getType());
1775 assert(Const
&& "Constant is nullptr here!");
1777 // Replacing `musttail` instructions with constant breaks `musttail` invariant
1778 // unless the call itself can be removed
1779 CallInst
*CI
= dyn_cast
<CallInst
>(V
);
1780 if (CI
&& CI
->isMustTailCall() && !CI
->isSafeToRemove()) {
1782 Function
*F
= CS
.getCalledFunction();
1784 // Don't zap returns of the callee
1786 Solver
.AddMustTailCallee(F
);
1788 LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI
1789 << " as a constant\n");
1793 LLVM_DEBUG(dbgs() << " Constant: " << *Const
<< " = " << *V
<< '\n');
1795 // Replaces all of the uses of a variable with uses of the constant.
1796 V
->replaceAllUsesWith(Const
);
1800 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
1801 // and return true if the function was modified.
1802 static bool runSCCP(Function
&F
, const DataLayout
&DL
,
1803 const TargetLibraryInfo
*TLI
) {
1804 LLVM_DEBUG(dbgs() << "SCCP on function '" << F
.getName() << "'\n");
1806 DL
, [TLI
](Function
&F
) -> const TargetLibraryInfo
& { return *TLI
; });
1808 // Mark the first block of the function as being executable.
1809 Solver
.MarkBlockExecutable(&F
.front());
1811 // Mark all arguments to the function as being overdefined.
1812 for (Argument
&AI
: F
.args())
1813 Solver
.markOverdefined(&AI
);
1815 // Solve for constants.
1816 bool ResolvedUndefs
= true;
1817 while (ResolvedUndefs
) {
1819 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1820 ResolvedUndefs
= Solver
.ResolvedUndefsIn(F
);
1823 bool MadeChanges
= false;
1825 // If we decided that there are basic blocks that are dead in this function,
1826 // delete their contents now. Note that we cannot actually delete the blocks,
1827 // as we cannot modify the CFG of the function.
1829 for (BasicBlock
&BB
: F
) {
1830 if (!Solver
.isBlockExecutable(&BB
)) {
1831 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB
);
1834 NumInstRemoved
+= removeAllNonTerminatorAndEHPadInstructions(&BB
);
1840 // Iterate over all of the instructions in a function, replacing them with
1841 // constants if we have found them to be of constant values.
1842 for (BasicBlock::iterator BI
= BB
.begin(), E
= BB
.end(); BI
!= E
;) {
1843 Instruction
*Inst
= &*BI
++;
1844 if (Inst
->getType()->isVoidTy() || Inst
->isTerminator())
1847 if (tryToReplaceWithConstant(Solver
, Inst
)) {
1848 if (isInstructionTriviallyDead(Inst
))
1849 Inst
->eraseFromParent();
1850 // Hey, we just changed something!
1860 PreservedAnalyses
SCCPPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1861 const DataLayout
&DL
= F
.getParent()->getDataLayout();
1862 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
1863 if (!runSCCP(F
, DL
, &TLI
))
1864 return PreservedAnalyses::all();
1866 auto PA
= PreservedAnalyses();
1867 PA
.preserve
<GlobalsAA
>();
1868 PA
.preserveSet
<CFGAnalyses
>();
1874 //===--------------------------------------------------------------------===//
1876 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1877 /// Sparse Conditional Constant Propagator.
1879 class SCCPLegacyPass
: public FunctionPass
{
1881 // Pass identification, replacement for typeid
1884 SCCPLegacyPass() : FunctionPass(ID
) {
1885 initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
1888 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1889 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
1890 AU
.addPreserved
<GlobalsAAWrapperPass
>();
1891 AU
.setPreservesCFG();
1894 // runOnFunction - Run the Sparse Conditional Constant Propagation
1895 // algorithm, and return true if the function was modified.
1896 bool runOnFunction(Function
&F
) override
{
1897 if (skipFunction(F
))
1899 const DataLayout
&DL
= F
.getParent()->getDataLayout();
1900 const TargetLibraryInfo
*TLI
=
1901 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
1902 return runSCCP(F
, DL
, TLI
);
1906 } // end anonymous namespace
1908 char SCCPLegacyPass::ID
= 0;
1910 INITIALIZE_PASS_BEGIN(SCCPLegacyPass
, "sccp",
1911 "Sparse Conditional Constant Propagation", false, false)
1912 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
1913 INITIALIZE_PASS_END(SCCPLegacyPass
, "sccp",
1914 "Sparse Conditional Constant Propagation", false, false)
1916 // createSCCPPass - This is the public interface to this file.
1917 FunctionPass
*llvm::createSCCPPass() { return new SCCPLegacyPass(); }
1919 static void findReturnsToZap(Function
&F
,
1920 SmallVector
<ReturnInst
*, 8> &ReturnsToZap
,
1921 SCCPSolver
&Solver
) {
1922 // We can only do this if we know that nothing else can call the function.
1923 if (!Solver
.isArgumentTrackedFunction(&F
))
1926 // There is a non-removable musttail call site of this function. Zapping
1927 // returns is not allowed.
1928 if (Solver
.isMustTailCallee(&F
)) {
1929 LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F
.getName()
1930 << " due to present musttail call of it\n");
1936 [&Solver
](User
*U
) {
1937 if (isa
<Instruction
>(U
) &&
1938 !Solver
.isBlockExecutable(cast
<Instruction
>(U
)->getParent()))
1940 // Non-callsite uses are not impacted by zapping. Also, constant
1941 // uses (like blockaddresses) could stuck around, without being
1942 // used in the underlying IR, meaning we do not have lattice
1946 if (U
->getType()->isStructTy()) {
1948 Solver
.getStructLatticeValueFor(U
),
1949 [](const LatticeVal
&LV
) { return !LV
.isOverdefined(); });
1951 return !Solver
.getLatticeValueFor(U
).isOverdefined();
1953 "We can only zap functions where all live users have a concrete value");
1955 for (BasicBlock
&BB
: F
) {
1956 if (CallInst
*CI
= BB
.getTerminatingMustTailCall()) {
1957 LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
1958 << "musttail call : " << *CI
<< "\n");
1963 if (auto *RI
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
1964 if (!isa
<UndefValue
>(RI
->getOperand(0)))
1965 ReturnsToZap
.push_back(RI
);
1969 // Update the condition for terminators that are branching on indeterminate
1970 // values, forcing them to use a specific edge.
1971 static void forceIndeterminateEdge(Instruction
* I
, SCCPSolver
&Solver
) {
1972 BasicBlock
*Dest
= nullptr;
1973 Constant
*C
= nullptr;
1974 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(I
)) {
1975 if (!isa
<ConstantInt
>(SI
->getCondition())) {
1976 // Indeterminate switch; use first case value.
1977 Dest
= SI
->case_begin()->getCaseSuccessor();
1978 C
= SI
->case_begin()->getCaseValue();
1980 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(I
)) {
1981 if (!isa
<ConstantInt
>(BI
->getCondition())) {
1982 // Indeterminate branch; use false.
1983 Dest
= BI
->getSuccessor(1);
1984 C
= ConstantInt::getFalse(BI
->getContext());
1986 } else if (IndirectBrInst
*IBR
= dyn_cast
<IndirectBrInst
>(I
)) {
1987 if (!isa
<BlockAddress
>(IBR
->getAddress()->stripPointerCasts())) {
1988 // Indeterminate indirectbr; use successor 0.
1989 Dest
= IBR
->getSuccessor(0);
1990 C
= BlockAddress::get(IBR
->getSuccessor(0));
1993 llvm_unreachable("Unexpected terminator instruction");
1996 assert(Solver
.isEdgeFeasible(I
->getParent(), Dest
) &&
1997 "Didn't find feasible edge?");
2000 I
->setOperand(0, C
);
2004 bool llvm::runIPSCCP(
2005 Module
&M
, const DataLayout
&DL
,
2006 std::function
<const TargetLibraryInfo
&(Function
&)> GetTLI
,
2007 function_ref
<AnalysisResultsForFn(Function
&)> getAnalysis
) {
2008 SCCPSolver
Solver(DL
, GetTLI
);
2010 // Loop over all functions, marking arguments to those with their addresses
2011 // taken or that are external as overdefined.
2012 for (Function
&F
: M
) {
2013 if (F
.isDeclaration())
2016 Solver
.addAnalysis(F
, getAnalysis(F
));
2018 // Determine if we can track the function's return values. If so, add the
2019 // function to the solver's set of return-tracked functions.
2020 if (canTrackReturnsInterprocedurally(&F
))
2021 Solver
.AddTrackedFunction(&F
);
2023 // Determine if we can track the function's arguments. If so, add the
2024 // function to the solver's set of argument-tracked functions.
2025 if (canTrackArgumentsInterprocedurally(&F
)) {
2026 Solver
.AddArgumentTrackedFunction(&F
);
2030 // Assume the function is called.
2031 Solver
.MarkBlockExecutable(&F
.front());
2033 // Assume nothing about the incoming arguments.
2034 for (Argument
&AI
: F
.args())
2035 Solver
.markOverdefined(&AI
);
2038 // Determine if we can track any of the module's global variables. If so, add
2039 // the global variables we can track to the solver's set of tracked global
2041 for (GlobalVariable
&G
: M
.globals()) {
2042 G
.removeDeadConstantUsers();
2043 if (canTrackGlobalVariableInterprocedurally(&G
))
2044 Solver
.TrackValueOfGlobalVariable(&G
);
2047 // Solve for constants.
2048 bool ResolvedUndefs
= true;
2050 while (ResolvedUndefs
) {
2051 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
2052 ResolvedUndefs
= false;
2053 for (Function
&F
: M
)
2054 if (Solver
.ResolvedUndefsIn(F
)) {
2055 // We run Solve() after we resolved an undef in a function, because
2056 // we might deduce a fact that eliminates an undef in another function.
2058 ResolvedUndefs
= true;
2062 bool MadeChanges
= false;
2064 // Iterate over all of the instructions in the module, replacing them with
2065 // constants if we have found them to be of constant values.
2067 for (Function
&F
: M
) {
2068 if (F
.isDeclaration())
2071 SmallVector
<BasicBlock
*, 512> BlocksToErase
;
2073 if (Solver
.isBlockExecutable(&F
.front()))
2074 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end(); AI
!= E
;
2076 if (!AI
->use_empty() && tryToReplaceWithConstant(Solver
, &*AI
)) {
2082 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
2083 if (!Solver
.isBlockExecutable(&*BB
)) {
2084 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB
);
2089 if (&*BB
!= &F
.front())
2090 BlocksToErase
.push_back(&*BB
);
2094 for (BasicBlock::iterator BI
= BB
->begin(), E
= BB
->end(); BI
!= E
; ) {
2095 Instruction
*Inst
= &*BI
++;
2096 if (Inst
->getType()->isVoidTy())
2098 if (tryToReplaceWithConstant(Solver
, Inst
)) {
2099 if (Inst
->isSafeToRemove())
2100 Inst
->eraseFromParent();
2101 // Hey, we just changed something!
2108 DomTreeUpdater DTU
= Solver
.getDTU(F
);
2109 // Change dead blocks to unreachable. We do it after replacing constants
2110 // in all executable blocks, because changeToUnreachable may remove PHI
2111 // nodes in executable blocks we found values for. The function's entry
2112 // block is not part of BlocksToErase, so we have to handle it separately.
2113 for (BasicBlock
*BB
: BlocksToErase
) {
2115 changeToUnreachable(BB
->getFirstNonPHI(), /*UseLLVMTrap=*/false,
2116 /*PreserveLCSSA=*/false, &DTU
);
2118 if (!Solver
.isBlockExecutable(&F
.front()))
2119 NumInstRemoved
+= changeToUnreachable(F
.front().getFirstNonPHI(),
2120 /*UseLLVMTrap=*/false,
2121 /*PreserveLCSSA=*/false, &DTU
);
2123 // Now that all instructions in the function are constant folded,
2124 // use ConstantFoldTerminator to get rid of in-edges, record DT updates and
2126 for (BasicBlock
*DeadBB
: BlocksToErase
) {
2127 // If there are any PHI nodes in this successor, drop entries for BB now.
2128 for (Value::user_iterator UI
= DeadBB
->user_begin(),
2129 UE
= DeadBB
->user_end();
2131 // Grab the user and then increment the iterator early, as the user
2132 // will be deleted. Step past all adjacent uses from the same user.
2133 auto *I
= dyn_cast
<Instruction
>(*UI
);
2134 do { ++UI
; } while (UI
!= UE
&& *UI
== I
);
2136 // Ignore blockaddress users; BasicBlock's dtor will handle them.
2139 // If we have forced an edge for an indeterminate value, then force the
2140 // terminator to fold to that edge.
2141 forceIndeterminateEdge(I
, Solver
);
2142 BasicBlock
*InstBB
= I
->getParent();
2143 bool Folded
= ConstantFoldTerminator(InstBB
,
2144 /*DeleteDeadConditions=*/false,
2145 /*TLI=*/nullptr, &DTU
);
2147 "Expect TermInst on constantint or blockaddress to be folded");
2149 // If we folded the terminator to an unconditional branch to another
2150 // dead block, replace it with Unreachable, to avoid trying to fold that
2152 BranchInst
*BI
= cast
<BranchInst
>(InstBB
->getTerminator());
2153 if (BI
&& BI
->isUnconditional() &&
2154 !Solver
.isBlockExecutable(BI
->getSuccessor(0))) {
2155 InstBB
->getTerminator()->eraseFromParent();
2156 new UnreachableInst(InstBB
->getContext(), InstBB
);
2159 // Mark dead BB for deletion.
2160 DTU
.deleteBB(DeadBB
);
2163 for (BasicBlock
&BB
: F
) {
2164 for (BasicBlock::iterator BI
= BB
.begin(), E
= BB
.end(); BI
!= E
;) {
2165 Instruction
*Inst
= &*BI
++;
2166 if (Solver
.getPredicateInfoFor(Inst
)) {
2167 if (auto *II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
2168 if (II
->getIntrinsicID() == Intrinsic::ssa_copy
) {
2169 Value
*Op
= II
->getOperand(0);
2170 Inst
->replaceAllUsesWith(Op
);
2171 Inst
->eraseFromParent();
2179 // If we inferred constant or undef return values for a function, we replaced
2180 // all call uses with the inferred value. This means we don't need to bother
2181 // actually returning anything from the function. Replace all return
2182 // instructions with return undef.
2184 // Do this in two stages: first identify the functions we should process, then
2185 // actually zap their returns. This is important because we can only do this
2186 // if the address of the function isn't taken. In cases where a return is the
2187 // last use of a function, the order of processing functions would affect
2188 // whether other functions are optimizable.
2189 SmallVector
<ReturnInst
*, 8> ReturnsToZap
;
2191 const MapVector
<Function
*, LatticeVal
> &RV
= Solver
.getTrackedRetVals();
2192 for (const auto &I
: RV
) {
2193 Function
*F
= I
.first
;
2194 if (I
.second
.isOverdefined() || F
->getReturnType()->isVoidTy())
2196 findReturnsToZap(*F
, ReturnsToZap
, Solver
);
2199 for (const auto &F
: Solver
.getMRVFunctionsTracked()) {
2200 assert(F
->getReturnType()->isStructTy() &&
2201 "The return type should be a struct");
2202 StructType
*STy
= cast
<StructType
>(F
->getReturnType());
2203 if (Solver
.isStructLatticeConstant(F
, STy
))
2204 findReturnsToZap(*F
, ReturnsToZap
, Solver
);
2207 // Zap all returns which we've identified as zap to change.
2208 for (unsigned i
= 0, e
= ReturnsToZap
.size(); i
!= e
; ++i
) {
2209 Function
*F
= ReturnsToZap
[i
]->getParent()->getParent();
2210 ReturnsToZap
[i
]->setOperand(0, UndefValue::get(F
->getReturnType()));
2213 // If we inferred constant or undef values for globals variables, we can
2214 // delete the global and any stores that remain to it.
2215 const DenseMap
<GlobalVariable
*, LatticeVal
> &TG
= Solver
.getTrackedGlobals();
2216 for (DenseMap
<GlobalVariable
*, LatticeVal
>::const_iterator I
= TG
.begin(),
2217 E
= TG
.end(); I
!= E
; ++I
) {
2218 GlobalVariable
*GV
= I
->first
;
2219 assert(!I
->second
.isOverdefined() &&
2220 "Overdefined values should have been taken out of the map!");
2221 LLVM_DEBUG(dbgs() << "Found that GV '" << GV
->getName()
2222 << "' is constant!\n");
2223 while (!GV
->use_empty()) {
2224 StoreInst
*SI
= cast
<StoreInst
>(GV
->user_back());
2225 SI
->eraseFromParent();
2227 M
.getGlobalList().erase(GV
);