[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / Transforms / Utils / DemoteRegToStack.cpp
blob5f53d794fe8a16c897118c96f7f9bcfd308e341d
1 //===- DemoteRegToStack.cpp - Move a virtual register to the stack --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/ADT/DenseMap.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Transforms/Utils/Local.h"
12 #include "llvm/IR/Function.h"
13 #include "llvm/IR/Instructions.h"
14 #include "llvm/IR/Type.h"
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 using namespace llvm;
18 /// DemoteRegToStack - This function takes a virtual register computed by an
19 /// Instruction and replaces it with a slot in the stack frame, allocated via
20 /// alloca. This allows the CFG to be changed around without fear of
21 /// invalidating the SSA information for the value. It returns the pointer to
22 /// the alloca inserted to create a stack slot for I.
23 AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads,
24 Instruction *AllocaPoint) {
25 if (I.use_empty()) {
26 I.eraseFromParent();
27 return nullptr;
30 Function *F = I.getParent()->getParent();
31 const DataLayout &DL = F->getParent()->getDataLayout();
33 // Create a stack slot to hold the value.
34 AllocaInst *Slot;
35 if (AllocaPoint) {
36 Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr,
37 I.getName()+".reg2mem", AllocaPoint);
38 } else {
39 Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr,
40 I.getName() + ".reg2mem", &F->getEntryBlock().front());
43 // We cannot demote invoke instructions to the stack if their normal edge
44 // is critical. Therefore, split the critical edge and create a basic block
45 // into which the store can be inserted.
46 if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
47 if (!II->getNormalDest()->getSinglePredecessor()) {
48 unsigned SuccNum = GetSuccessorNumber(II->getParent(), II->getNormalDest());
49 assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!");
50 BasicBlock *BB = SplitCriticalEdge(II, SuccNum);
51 assert(BB && "Unable to split critical edge.");
52 (void)BB;
56 // Change all of the users of the instruction to read from the stack slot.
57 while (!I.use_empty()) {
58 Instruction *U = cast<Instruction>(I.user_back());
59 if (PHINode *PN = dyn_cast<PHINode>(U)) {
60 // If this is a PHI node, we can't insert a load of the value before the
61 // use. Instead insert the load in the predecessor block corresponding
62 // to the incoming value.
64 // Note that if there are multiple edges from a basic block to this PHI
65 // node that we cannot have multiple loads. The problem is that the
66 // resulting PHI node will have multiple values (from each load) coming in
67 // from the same block, which is illegal SSA form. For this reason, we
68 // keep track of and reuse loads we insert.
69 DenseMap<BasicBlock*, Value*> Loads;
70 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
71 if (PN->getIncomingValue(i) == &I) {
72 Value *&V = Loads[PN->getIncomingBlock(i)];
73 if (!V) {
74 // Insert the load into the predecessor block
75 V = new LoadInst(I.getType(), Slot, I.getName() + ".reload",
76 VolatileLoads,
77 PN->getIncomingBlock(i)->getTerminator());
79 PN->setIncomingValue(i, V);
82 } else {
83 // If this is a normal instruction, just insert a load.
84 Value *V = new LoadInst(I.getType(), Slot, I.getName() + ".reload",
85 VolatileLoads, U);
86 U->replaceUsesOfWith(&I, V);
90 // Insert stores of the computed value into the stack slot. We have to be
91 // careful if I is an invoke instruction, because we can't insert the store
92 // AFTER the terminator instruction.
93 BasicBlock::iterator InsertPt;
94 if (!I.isTerminator()) {
95 InsertPt = ++I.getIterator();
96 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
97 /* empty */; // Don't insert before PHI nodes or landingpad instrs.
98 } else {
99 InvokeInst &II = cast<InvokeInst>(I);
100 InsertPt = II.getNormalDest()->getFirstInsertionPt();
103 new StoreInst(&I, Slot, &*InsertPt);
104 return Slot;
107 /// DemotePHIToStack - This function takes a virtual register computed by a PHI
108 /// node and replaces it with a slot in the stack frame allocated via alloca.
109 /// The PHI node is deleted. It returns the pointer to the alloca inserted.
110 AllocaInst *llvm::DemotePHIToStack(PHINode *P, Instruction *AllocaPoint) {
111 if (P->use_empty()) {
112 P->eraseFromParent();
113 return nullptr;
116 const DataLayout &DL = P->getModule()->getDataLayout();
118 // Create a stack slot to hold the value.
119 AllocaInst *Slot;
120 if (AllocaPoint) {
121 Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr,
122 P->getName()+".reg2mem", AllocaPoint);
123 } else {
124 Function *F = P->getParent()->getParent();
125 Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr,
126 P->getName() + ".reg2mem",
127 &F->getEntryBlock().front());
130 // Iterate over each operand inserting a store in each predecessor.
131 for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
132 if (InvokeInst *II = dyn_cast<InvokeInst>(P->getIncomingValue(i))) {
133 assert(II->getParent() != P->getIncomingBlock(i) &&
134 "Invoke edge not supported yet"); (void)II;
136 new StoreInst(P->getIncomingValue(i), Slot,
137 P->getIncomingBlock(i)->getTerminator());
140 // Insert a load in place of the PHI and replace all uses.
141 BasicBlock::iterator InsertPt = P->getIterator();
143 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
144 /* empty */; // Don't insert before PHI nodes or landingpad instrs.
146 Value *V =
147 new LoadInst(P->getType(), Slot, P->getName() + ".reload", &*InsertPt);
148 P->replaceAllUsesWith(V);
150 // Delete PHI.
151 P->eraseFromParent();
152 return Slot;