[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-complete.git] / lib / Transforms / Utils / Evaluator.cpp
blobad36790b8c6a69fcbae5085e60ce7a04a3c76dd1
1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Function evaluator for LLVM IR.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/Evaluator.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <iterator>
43 #define DEBUG_TYPE "evaluator"
45 using namespace llvm;
47 static inline bool
48 isSimpleEnoughValueToCommit(Constant *C,
49 SmallPtrSetImpl<Constant *> &SimpleConstants,
50 const DataLayout &DL);
52 /// Return true if the specified constant can be handled by the code generator.
53 /// We don't want to generate something like:
54 /// void *X = &X/42;
55 /// because the code generator doesn't have a relocation that can handle that.
56 ///
57 /// This function should be called if C was not found (but just got inserted)
58 /// in SimpleConstants to avoid having to rescan the same constants all the
59 /// time.
60 static bool
61 isSimpleEnoughValueToCommitHelper(Constant *C,
62 SmallPtrSetImpl<Constant *> &SimpleConstants,
63 const DataLayout &DL) {
64 // Simple global addresses are supported, do not allow dllimport or
65 // thread-local globals.
66 if (auto *GV = dyn_cast<GlobalValue>(C))
67 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
69 // Simple integer, undef, constant aggregate zero, etc are all supported.
70 if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
71 return true;
73 // Aggregate values are safe if all their elements are.
74 if (isa<ConstantAggregate>(C)) {
75 for (Value *Op : C->operands())
76 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
77 return false;
78 return true;
81 // We don't know exactly what relocations are allowed in constant expressions,
82 // so we allow &global+constantoffset, which is safe and uniformly supported
83 // across targets.
84 ConstantExpr *CE = cast<ConstantExpr>(C);
85 switch (CE->getOpcode()) {
86 case Instruction::BitCast:
87 // Bitcast is fine if the casted value is fine.
88 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
90 case Instruction::IntToPtr:
91 case Instruction::PtrToInt:
92 // int <=> ptr is fine if the int type is the same size as the
93 // pointer type.
94 if (DL.getTypeSizeInBits(CE->getType()) !=
95 DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
96 return false;
97 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
99 // GEP is fine if it is simple + constant offset.
100 case Instruction::GetElementPtr:
101 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
102 if (!isa<ConstantInt>(CE->getOperand(i)))
103 return false;
104 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
106 case Instruction::Add:
107 // We allow simple+cst.
108 if (!isa<ConstantInt>(CE->getOperand(1)))
109 return false;
110 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
112 return false;
115 static inline bool
116 isSimpleEnoughValueToCommit(Constant *C,
117 SmallPtrSetImpl<Constant *> &SimpleConstants,
118 const DataLayout &DL) {
119 // If we already checked this constant, we win.
120 if (!SimpleConstants.insert(C).second)
121 return true;
122 // Check the constant.
123 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
126 /// Return true if this constant is simple enough for us to understand. In
127 /// particular, if it is a cast to anything other than from one pointer type to
128 /// another pointer type, we punt. We basically just support direct accesses to
129 /// globals and GEP's of globals. This should be kept up to date with
130 /// CommitValueTo.
131 static bool isSimpleEnoughPointerToCommit(Constant *C) {
132 // Conservatively, avoid aggregate types. This is because we don't
133 // want to worry about them partially overlapping other stores.
134 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
135 return false;
137 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
138 // Do not allow weak/*_odr/linkonce linkage or external globals.
139 return GV->hasUniqueInitializer();
141 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
142 // Handle a constantexpr gep.
143 if (CE->getOpcode() == Instruction::GetElementPtr &&
144 isa<GlobalVariable>(CE->getOperand(0)) &&
145 cast<GEPOperator>(CE)->isInBounds()) {
146 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
147 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
148 // external globals.
149 if (!GV->hasUniqueInitializer())
150 return false;
152 // The first index must be zero.
153 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
154 if (!CI || !CI->isZero()) return false;
156 // The remaining indices must be compile-time known integers within the
157 // notional bounds of the corresponding static array types.
158 if (!CE->isGEPWithNoNotionalOverIndexing())
159 return false;
161 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
163 // A constantexpr bitcast from a pointer to another pointer is a no-op,
164 // and we know how to evaluate it by moving the bitcast from the pointer
165 // operand to the value operand.
166 } else if (CE->getOpcode() == Instruction::BitCast &&
167 isa<GlobalVariable>(CE->getOperand(0))) {
168 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
169 // external globals.
170 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
174 return false;
177 /// Apply 'Func' to Ptr. If this returns nullptr, introspect the pointer's
178 /// type and walk down through the initial elements to obtain additional
179 /// pointers to try. Returns the first non-null return value from Func, or
180 /// nullptr if the type can't be introspected further.
181 static Constant *
182 evaluateBitcastFromPtr(Constant *Ptr, const DataLayout &DL,
183 const TargetLibraryInfo *TLI,
184 std::function<Constant *(Constant *)> Func) {
185 Constant *Val;
186 while (!(Val = Func(Ptr))) {
187 // If Ty is a struct, we can convert the pointer to the struct
188 // into a pointer to its first member.
189 // FIXME: This could be extended to support arrays as well.
190 Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
191 if (!isa<StructType>(Ty))
192 break;
194 IntegerType *IdxTy = IntegerType::get(Ty->getContext(), 32);
195 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
196 Constant *const IdxList[] = {IdxZero, IdxZero};
198 Ptr = ConstantExpr::getGetElementPtr(Ty, Ptr, IdxList);
199 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI))
200 Ptr = FoldedPtr;
202 return Val;
205 static Constant *getInitializer(Constant *C) {
206 auto *GV = dyn_cast<GlobalVariable>(C);
207 return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr;
210 /// Return the value that would be computed by a load from P after the stores
211 /// reflected by 'memory' have been performed. If we can't decide, return null.
212 Constant *Evaluator::ComputeLoadResult(Constant *P) {
213 // If this memory location has been recently stored, use the stored value: it
214 // is the most up-to-date.
215 auto findMemLoc = [this](Constant *Ptr) {
216 DenseMap<Constant *, Constant *>::const_iterator I =
217 MutatedMemory.find(Ptr);
218 return I != MutatedMemory.end() ? I->second : nullptr;
221 if (Constant *Val = findMemLoc(P))
222 return Val;
224 // Access it.
225 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
226 if (GV->hasDefinitiveInitializer())
227 return GV->getInitializer();
228 return nullptr;
231 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) {
232 switch (CE->getOpcode()) {
233 // Handle a constantexpr getelementptr.
234 case Instruction::GetElementPtr:
235 if (auto *I = getInitializer(CE->getOperand(0)))
236 return ConstantFoldLoadThroughGEPConstantExpr(I, CE);
237 break;
238 // Handle a constantexpr bitcast.
239 case Instruction::BitCast:
240 // We're evaluating a load through a pointer that was bitcast to a
241 // different type. See if the "from" pointer has recently been stored.
242 // If it hasn't, we may still be able to find a stored pointer by
243 // introspecting the type.
244 Constant *Val =
245 evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, findMemLoc);
246 if (!Val)
247 Val = getInitializer(CE->getOperand(0));
248 if (Val)
249 return ConstantFoldLoadThroughBitcast(
250 Val, P->getType()->getPointerElementType(), DL);
251 break;
255 return nullptr; // don't know how to evaluate.
258 static Function *getFunction(Constant *C) {
259 if (auto *Fn = dyn_cast<Function>(C))
260 return Fn;
262 if (auto *Alias = dyn_cast<GlobalAlias>(C))
263 if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
264 return Fn;
265 return nullptr;
268 Function *
269 Evaluator::getCalleeWithFormalArgs(CallSite &CS,
270 SmallVector<Constant *, 8> &Formals) {
271 auto *V = CS.getCalledValue();
272 if (auto *Fn = getFunction(getVal(V)))
273 return getFormalParams(CS, Fn, Formals) ? Fn : nullptr;
275 auto *CE = dyn_cast<ConstantExpr>(V);
276 if (!CE || CE->getOpcode() != Instruction::BitCast ||
277 !getFormalParams(CS, getFunction(CE->getOperand(0)), Formals))
278 return nullptr;
280 return dyn_cast<Function>(
281 ConstantFoldLoadThroughBitcast(CE, CE->getOperand(0)->getType(), DL));
284 bool Evaluator::getFormalParams(CallSite &CS, Function *F,
285 SmallVector<Constant *, 8> &Formals) {
286 if (!F)
287 return false;
289 auto *FTy = F->getFunctionType();
290 if (FTy->getNumParams() > CS.getNumArgOperands()) {
291 LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
292 return false;
295 auto ArgI = CS.arg_begin();
296 for (auto ParI = FTy->param_begin(), ParE = FTy->param_end(); ParI != ParE;
297 ++ParI) {
298 auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), *ParI, DL);
299 if (!ArgC) {
300 LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
301 return false;
303 Formals.push_back(ArgC);
304 ++ArgI;
306 return true;
309 /// If call expression contains bitcast then we may need to cast
310 /// evaluated return value to a type of the call expression.
311 Constant *Evaluator::castCallResultIfNeeded(Value *CallExpr, Constant *RV) {
312 ConstantExpr *CE = dyn_cast<ConstantExpr>(CallExpr);
313 if (!RV || !CE || CE->getOpcode() != Instruction::BitCast)
314 return RV;
316 if (auto *FT =
317 dyn_cast<FunctionType>(CE->getType()->getPointerElementType())) {
318 RV = ConstantFoldLoadThroughBitcast(RV, FT->getReturnType(), DL);
319 if (!RV)
320 LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
322 return RV;
325 /// Evaluate all instructions in block BB, returning true if successful, false
326 /// if we can't evaluate it. NewBB returns the next BB that control flows into,
327 /// or null upon return.
328 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
329 BasicBlock *&NextBB) {
330 // This is the main evaluation loop.
331 while (true) {
332 Constant *InstResult = nullptr;
334 LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
336 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
337 if (!SI->isSimple()) {
338 LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
339 return false; // no volatile/atomic accesses.
341 Constant *Ptr = getVal(SI->getOperand(1));
342 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
343 LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
344 Ptr = FoldedPtr;
345 LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
347 if (!isSimpleEnoughPointerToCommit(Ptr)) {
348 // If this is too complex for us to commit, reject it.
349 LLVM_DEBUG(
350 dbgs() << "Pointer is too complex for us to evaluate store.");
351 return false;
354 Constant *Val = getVal(SI->getOperand(0));
356 // If this might be too difficult for the backend to handle (e.g. the addr
357 // of one global variable divided by another) then we can't commit it.
358 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
359 LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
360 << *Val << "\n");
361 return false;
364 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
365 if (CE->getOpcode() == Instruction::BitCast) {
366 LLVM_DEBUG(dbgs()
367 << "Attempting to resolve bitcast on constant ptr.\n");
368 // If we're evaluating a store through a bitcast, then we need
369 // to pull the bitcast off the pointer type and push it onto the
370 // stored value. In order to push the bitcast onto the stored value,
371 // a bitcast from the pointer's element type to Val's type must be
372 // legal. If it's not, we can try introspecting the type to find a
373 // legal conversion.
375 auto castValTy = [&](Constant *P) -> Constant * {
376 Type *Ty = cast<PointerType>(P->getType())->getElementType();
377 if (Constant *FV = ConstantFoldLoadThroughBitcast(Val, Ty, DL)) {
378 Ptr = P;
379 return FV;
381 return nullptr;
384 Constant *NewVal =
385 evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, castValTy);
386 if (!NewVal) {
387 LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
388 "evaluate.\n");
389 return false;
392 Val = NewVal;
393 LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
397 MutatedMemory[Ptr] = Val;
398 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
399 InstResult = ConstantExpr::get(BO->getOpcode(),
400 getVal(BO->getOperand(0)),
401 getVal(BO->getOperand(1)));
402 LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: "
403 << *InstResult << "\n");
404 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
405 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
406 getVal(CI->getOperand(0)),
407 getVal(CI->getOperand(1)));
408 LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
409 << "\n");
410 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
411 InstResult = ConstantExpr::getCast(CI->getOpcode(),
412 getVal(CI->getOperand(0)),
413 CI->getType());
414 LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
415 << "\n");
416 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
417 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
418 getVal(SI->getOperand(1)),
419 getVal(SI->getOperand(2)));
420 LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
421 << "\n");
422 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
423 InstResult = ConstantExpr::getExtractValue(
424 getVal(EVI->getAggregateOperand()), EVI->getIndices());
425 LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: "
426 << *InstResult << "\n");
427 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
428 InstResult = ConstantExpr::getInsertValue(
429 getVal(IVI->getAggregateOperand()),
430 getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
431 LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: "
432 << *InstResult << "\n");
433 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
434 Constant *P = getVal(GEP->getOperand(0));
435 SmallVector<Constant*, 8> GEPOps;
436 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
437 i != e; ++i)
438 GEPOps.push_back(getVal(*i));
439 InstResult =
440 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
441 cast<GEPOperator>(GEP)->isInBounds());
442 LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n");
443 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
444 if (!LI->isSimple()) {
445 LLVM_DEBUG(
446 dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
447 return false; // no volatile/atomic accesses.
450 Constant *Ptr = getVal(LI->getOperand(0));
451 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
452 Ptr = FoldedPtr;
453 LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
454 "folding: "
455 << *Ptr << "\n");
457 InstResult = ComputeLoadResult(Ptr);
458 if (!InstResult) {
459 LLVM_DEBUG(
460 dbgs() << "Failed to compute load result. Can not evaluate load."
461 "\n");
462 return false; // Could not evaluate load.
465 LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
466 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
467 if (AI->isArrayAllocation()) {
468 LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
469 return false; // Cannot handle array allocs.
471 Type *Ty = AI->getAllocatedType();
472 AllocaTmps.push_back(std::make_unique<GlobalVariable>(
473 Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
474 AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
475 AI->getType()->getPointerAddressSpace()));
476 InstResult = AllocaTmps.back().get();
477 LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
478 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
479 CallSite CS(&*CurInst);
481 // Debug info can safely be ignored here.
482 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
483 LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
484 ++CurInst;
485 continue;
488 // Cannot handle inline asm.
489 if (isa<InlineAsm>(CS.getCalledValue())) {
490 LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
491 return false;
494 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
495 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
496 if (MSI->isVolatile()) {
497 LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
498 << "intrinsic.\n");
499 return false;
501 Constant *Ptr = getVal(MSI->getDest());
502 Constant *Val = getVal(MSI->getValue());
503 Constant *DestVal = ComputeLoadResult(getVal(Ptr));
504 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
505 // This memset is a no-op.
506 LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
507 ++CurInst;
508 continue;
512 if (II->isLifetimeStartOrEnd()) {
513 LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
514 ++CurInst;
515 continue;
518 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
519 // We don't insert an entry into Values, as it doesn't have a
520 // meaningful return value.
521 if (!II->use_empty()) {
522 LLVM_DEBUG(dbgs()
523 << "Found unused invariant_start. Can't evaluate.\n");
524 return false;
526 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
527 Value *PtrArg = getVal(II->getArgOperand(1));
528 Value *Ptr = PtrArg->stripPointerCasts();
529 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
530 Type *ElemTy = GV->getValueType();
531 if (!Size->isMinusOne() &&
532 Size->getValue().getLimitedValue() >=
533 DL.getTypeStoreSize(ElemTy)) {
534 Invariants.insert(GV);
535 LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
536 << *GV << "\n");
537 } else {
538 LLVM_DEBUG(dbgs()
539 << "Found a global var, but can not treat it as an "
540 "invariant.\n");
543 // Continue even if we do nothing.
544 ++CurInst;
545 continue;
546 } else if (II->getIntrinsicID() == Intrinsic::assume) {
547 LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
548 ++CurInst;
549 continue;
550 } else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
551 LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
552 ++CurInst;
553 continue;
556 LLVM_DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
557 return false;
560 // Resolve function pointers.
561 SmallVector<Constant *, 8> Formals;
562 Function *Callee = getCalleeWithFormalArgs(CS, Formals);
563 if (!Callee || Callee->isInterposable()) {
564 LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
565 return false; // Cannot resolve.
568 if (Callee->isDeclaration()) {
569 // If this is a function we can constant fold, do it.
570 if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()),
571 Callee, Formals, TLI)) {
572 InstResult = castCallResultIfNeeded(CS.getCalledValue(), C);
573 if (!InstResult)
574 return false;
575 LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
576 << *InstResult << "\n");
577 } else {
578 LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
579 return false;
581 } else {
582 if (Callee->getFunctionType()->isVarArg()) {
583 LLVM_DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
584 return false;
587 Constant *RetVal = nullptr;
588 // Execute the call, if successful, use the return value.
589 ValueStack.emplace_back();
590 if (!EvaluateFunction(Callee, RetVal, Formals)) {
591 LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
592 return false;
594 ValueStack.pop_back();
595 InstResult = castCallResultIfNeeded(CS.getCalledValue(), RetVal);
596 if (RetVal && !InstResult)
597 return false;
599 if (InstResult) {
600 LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
601 << *InstResult << "\n\n");
602 } else {
603 LLVM_DEBUG(dbgs()
604 << "Successfully evaluated function. Result: 0\n\n");
607 } else if (CurInst->isTerminator()) {
608 LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
610 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
611 if (BI->isUnconditional()) {
612 NextBB = BI->getSuccessor(0);
613 } else {
614 ConstantInt *Cond =
615 dyn_cast<ConstantInt>(getVal(BI->getCondition()));
616 if (!Cond) return false; // Cannot determine.
618 NextBB = BI->getSuccessor(!Cond->getZExtValue());
620 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
621 ConstantInt *Val =
622 dyn_cast<ConstantInt>(getVal(SI->getCondition()));
623 if (!Val) return false; // Cannot determine.
624 NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
625 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
626 Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
627 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
628 NextBB = BA->getBasicBlock();
629 else
630 return false; // Cannot determine.
631 } else if (isa<ReturnInst>(CurInst)) {
632 NextBB = nullptr;
633 } else {
634 // invoke, unwind, resume, unreachable.
635 LLVM_DEBUG(dbgs() << "Can not handle terminator.");
636 return false; // Cannot handle this terminator.
639 // We succeeded at evaluating this block!
640 LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
641 return true;
642 } else {
643 // Did not know how to evaluate this!
644 LLVM_DEBUG(
645 dbgs() << "Failed to evaluate block due to unhandled instruction."
646 "\n");
647 return false;
650 if (!CurInst->use_empty()) {
651 if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI))
652 InstResult = FoldedInstResult;
654 setVal(&*CurInst, InstResult);
657 // If we just processed an invoke, we finished evaluating the block.
658 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
659 NextBB = II->getNormalDest();
660 LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
661 return true;
664 // Advance program counter.
665 ++CurInst;
669 /// Evaluate a call to function F, returning true if successful, false if we
670 /// can't evaluate it. ActualArgs contains the formal arguments for the
671 /// function.
672 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
673 const SmallVectorImpl<Constant*> &ActualArgs) {
674 // Check to see if this function is already executing (recursion). If so,
675 // bail out. TODO: we might want to accept limited recursion.
676 if (is_contained(CallStack, F))
677 return false;
679 CallStack.push_back(F);
681 // Initialize arguments to the incoming values specified.
682 unsigned ArgNo = 0;
683 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
684 ++AI, ++ArgNo)
685 setVal(&*AI, ActualArgs[ArgNo]);
687 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
688 // we can only evaluate any one basic block at most once. This set keeps
689 // track of what we have executed so we can detect recursive cases etc.
690 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
692 // CurBB - The current basic block we're evaluating.
693 BasicBlock *CurBB = &F->front();
695 BasicBlock::iterator CurInst = CurBB->begin();
697 while (true) {
698 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
699 LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
701 if (!EvaluateBlock(CurInst, NextBB))
702 return false;
704 if (!NextBB) {
705 // Successfully running until there's no next block means that we found
706 // the return. Fill it the return value and pop the call stack.
707 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
708 if (RI->getNumOperands())
709 RetVal = getVal(RI->getOperand(0));
710 CallStack.pop_back();
711 return true;
714 // Okay, we succeeded in evaluating this control flow. See if we have
715 // executed the new block before. If so, we have a looping function,
716 // which we cannot evaluate in reasonable time.
717 if (!ExecutedBlocks.insert(NextBB).second)
718 return false; // looped!
720 // Okay, we have never been in this block before. Check to see if there
721 // are any PHI nodes. If so, evaluate them with information about where
722 // we came from.
723 PHINode *PN = nullptr;
724 for (CurInst = NextBB->begin();
725 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
726 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
728 // Advance to the next block.
729 CurBB = NextBB;