Removed IIIi specific changes. This should be fixed to add floating point deps for...
[llvm-complete.git] / lib / VMCore / Instructions.cpp
blob7d3b0eecb88717fce73427b466996f3cb29735b0
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/BasicBlock.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Support/CallSite.h"
21 using namespace llvm;
23 unsigned CallSite::getCallingConv() const {
24 if (CallInst *CI = dyn_cast<CallInst>(I))
25 return CI->getCallingConv();
26 else
27 return cast<InvokeInst>(I)->getCallingConv();
29 void CallSite::setCallingConv(unsigned CC) {
30 if (CallInst *CI = dyn_cast<CallInst>(I))
31 CI->setCallingConv(CC);
32 else
33 cast<InvokeInst>(I)->setCallingConv(CC);
37 //===----------------------------------------------------------------------===//
38 // TerminatorInst Class
39 //===----------------------------------------------------------------------===//
41 TerminatorInst::TerminatorInst(Instruction::TermOps iType,
42 Use *Ops, unsigned NumOps, Instruction *IB)
43 : Instruction(Type::VoidTy, iType, Ops, NumOps, "", IB) {
46 TerminatorInst::TerminatorInst(Instruction::TermOps iType,
47 Use *Ops, unsigned NumOps, BasicBlock *IAE)
48 : Instruction(Type::VoidTy, iType, Ops, NumOps, "", IAE) {
53 //===----------------------------------------------------------------------===//
54 // PHINode Class
55 //===----------------------------------------------------------------------===//
57 PHINode::PHINode(const PHINode &PN)
58 : Instruction(PN.getType(), Instruction::PHI,
59 new Use[PN.getNumOperands()], PN.getNumOperands()),
60 ReservedSpace(PN.getNumOperands()) {
61 Use *OL = OperandList;
62 for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
63 OL[i].init(PN.getOperand(i), this);
64 OL[i+1].init(PN.getOperand(i+1), this);
68 PHINode::~PHINode() {
69 delete [] OperandList;
72 // removeIncomingValue - Remove an incoming value. This is useful if a
73 // predecessor basic block is deleted.
74 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
75 unsigned NumOps = getNumOperands();
76 Use *OL = OperandList;
77 assert(Idx*2 < NumOps && "BB not in PHI node!");
78 Value *Removed = OL[Idx*2];
80 // Move everything after this operand down.
82 // FIXME: we could just swap with the end of the list, then erase. However,
83 // client might not expect this to happen. The code as it is thrashes the
84 // use/def lists, which is kinda lame.
85 for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
86 OL[i-2] = OL[i];
87 OL[i-2+1] = OL[i+1];
90 // Nuke the last value.
91 OL[NumOps-2].set(0);
92 OL[NumOps-2+1].set(0);
93 NumOperands = NumOps-2;
95 // If the PHI node is dead, because it has zero entries, nuke it now.
96 if (NumOps == 2 && DeletePHIIfEmpty) {
97 // If anyone is using this PHI, make them use a dummy value instead...
98 replaceAllUsesWith(UndefValue::get(getType()));
99 eraseFromParent();
101 return Removed;
104 /// resizeOperands - resize operands - This adjusts the length of the operands
105 /// list according to the following behavior:
106 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
107 /// of operation. This grows the number of ops by 1.5 times.
108 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
109 /// 3. If NumOps == NumOperands, trim the reserved space.
111 void PHINode::resizeOperands(unsigned NumOps) {
112 if (NumOps == 0) {
113 NumOps = (getNumOperands())*3/2;
114 if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
115 } else if (NumOps*2 > NumOperands) {
116 // No resize needed.
117 if (ReservedSpace >= NumOps) return;
118 } else if (NumOps == NumOperands) {
119 if (ReservedSpace == NumOps) return;
120 } else {
121 return;
124 ReservedSpace = NumOps;
125 Use *NewOps = new Use[NumOps];
126 Use *OldOps = OperandList;
127 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
128 NewOps[i].init(OldOps[i], this);
129 OldOps[i].set(0);
131 delete [] OldOps;
132 OperandList = NewOps;
136 //===----------------------------------------------------------------------===//
137 // CallInst Implementation
138 //===----------------------------------------------------------------------===//
140 CallInst::~CallInst() {
141 delete [] OperandList;
144 void CallInst::init(Value *Func, const std::vector<Value*> &Params) {
145 NumOperands = Params.size()+1;
146 Use *OL = OperandList = new Use[Params.size()+1];
147 OL[0].init(Func, this);
149 const FunctionType *FTy =
150 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
152 assert((Params.size() == FTy->getNumParams() ||
153 (FTy->isVarArg() && Params.size() > FTy->getNumParams())) &&
154 "Calling a function with bad signature");
155 for (unsigned i = 0, e = Params.size(); i != e; ++i)
156 OL[i+1].init(Params[i], this);
159 void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
160 NumOperands = 3;
161 Use *OL = OperandList = new Use[3];
162 OL[0].init(Func, this);
163 OL[1].init(Actual1, this);
164 OL[2].init(Actual2, this);
166 const FunctionType *FTy =
167 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
169 assert((FTy->getNumParams() == 2 ||
170 (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
171 "Calling a function with bad signature");
174 void CallInst::init(Value *Func, Value *Actual) {
175 NumOperands = 2;
176 Use *OL = OperandList = new Use[2];
177 OL[0].init(Func, this);
178 OL[1].init(Actual, this);
180 const FunctionType *FTy =
181 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
183 assert((FTy->getNumParams() == 1 ||
184 (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
185 "Calling a function with bad signature");
188 void CallInst::init(Value *Func) {
189 NumOperands = 1;
190 Use *OL = OperandList = new Use[1];
191 OL[0].init(Func, this);
193 const FunctionType *MTy =
194 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
196 assert(MTy->getNumParams() == 0 && "Calling a function with bad signature");
199 CallInst::CallInst(Value *Func, const std::vector<Value*> &Params,
200 const std::string &Name, Instruction *InsertBefore)
201 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
202 ->getElementType())->getReturnType(),
203 Instruction::Call, 0, 0, Name, InsertBefore) {
204 init(Func, Params);
207 CallInst::CallInst(Value *Func, const std::vector<Value*> &Params,
208 const std::string &Name, BasicBlock *InsertAtEnd)
209 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
210 ->getElementType())->getReturnType(),
211 Instruction::Call, 0, 0, Name, InsertAtEnd) {
212 init(Func, Params);
215 CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
216 const std::string &Name, Instruction *InsertBefore)
217 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
218 ->getElementType())->getReturnType(),
219 Instruction::Call, 0, 0, Name, InsertBefore) {
220 init(Func, Actual1, Actual2);
223 CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
224 const std::string &Name, BasicBlock *InsertAtEnd)
225 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
226 ->getElementType())->getReturnType(),
227 Instruction::Call, 0, 0, Name, InsertAtEnd) {
228 init(Func, Actual1, Actual2);
231 CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
232 Instruction *InsertBefore)
233 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
234 ->getElementType())->getReturnType(),
235 Instruction::Call, 0, 0, Name, InsertBefore) {
236 init(Func, Actual);
239 CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
240 BasicBlock *InsertAtEnd)
241 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
242 ->getElementType())->getReturnType(),
243 Instruction::Call, 0, 0, Name, InsertAtEnd) {
244 init(Func, Actual);
247 CallInst::CallInst(Value *Func, const std::string &Name,
248 Instruction *InsertBefore)
249 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
250 ->getElementType())->getReturnType(),
251 Instruction::Call, 0, 0, Name, InsertBefore) {
252 init(Func);
255 CallInst::CallInst(Value *Func, const std::string &Name,
256 BasicBlock *InsertAtEnd)
257 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
258 ->getElementType())->getReturnType(),
259 Instruction::Call, 0, 0, Name, InsertAtEnd) {
260 init(Func);
263 CallInst::CallInst(const CallInst &CI)
264 : Instruction(CI.getType(), Instruction::Call, new Use[CI.getNumOperands()],
265 CI.getNumOperands()) {
266 SubclassData = CI.SubclassData;
267 Use *OL = OperandList;
268 Use *InOL = CI.OperandList;
269 for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
270 OL[i].init(InOL[i], this);
274 //===----------------------------------------------------------------------===//
275 // InvokeInst Implementation
276 //===----------------------------------------------------------------------===//
278 InvokeInst::~InvokeInst() {
279 delete [] OperandList;
282 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
283 const std::vector<Value*> &Params) {
284 NumOperands = 3+Params.size();
285 Use *OL = OperandList = new Use[3+Params.size()];
286 OL[0].init(Fn, this);
287 OL[1].init(IfNormal, this);
288 OL[2].init(IfException, this);
289 const FunctionType *FTy =
290 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
292 assert((Params.size() == FTy->getNumParams()) ||
293 (FTy->isVarArg() && Params.size() > FTy->getNumParams()) &&
294 "Calling a function with bad signature");
296 for (unsigned i = 0, e = Params.size(); i != e; i++)
297 OL[i+3].init(Params[i], this);
300 InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
301 BasicBlock *IfException,
302 const std::vector<Value*> &Params,
303 const std::string &Name, Instruction *InsertBefore)
304 : TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
305 ->getElementType())->getReturnType(),
306 Instruction::Invoke, 0, 0, Name, InsertBefore) {
307 init(Fn, IfNormal, IfException, Params);
310 InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
311 BasicBlock *IfException,
312 const std::vector<Value*> &Params,
313 const std::string &Name, BasicBlock *InsertAtEnd)
314 : TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
315 ->getElementType())->getReturnType(),
316 Instruction::Invoke, 0, 0, Name, InsertAtEnd) {
317 init(Fn, IfNormal, IfException, Params);
320 InvokeInst::InvokeInst(const InvokeInst &II)
321 : TerminatorInst(II.getType(), Instruction::Invoke,
322 new Use[II.getNumOperands()], II.getNumOperands()) {
323 SubclassData = II.SubclassData;
324 Use *OL = OperandList, *InOL = II.OperandList;
325 for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
326 OL[i].init(InOL[i], this);
329 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
330 return getSuccessor(idx);
332 unsigned InvokeInst::getNumSuccessorsV() const {
333 return getNumSuccessors();
335 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
336 return setSuccessor(idx, B);
340 //===----------------------------------------------------------------------===//
341 // ReturnInst Implementation
342 //===----------------------------------------------------------------------===//
344 void ReturnInst::init(Value *retVal) {
345 if (retVal && retVal->getType() != Type::VoidTy) {
346 assert(!isa<BasicBlock>(retVal) &&
347 "Cannot return basic block. Probably using the incorrect ctor");
348 NumOperands = 1;
349 RetVal.init(retVal, this);
353 unsigned ReturnInst::getNumSuccessorsV() const {
354 return getNumSuccessors();
357 // Out-of-line ReturnInst method, put here so the C++ compiler can choose to
358 // emit the vtable for the class in this translation unit.
359 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
360 assert(0 && "ReturnInst has no successors!");
363 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
364 assert(0 && "ReturnInst has no successors!");
365 abort();
366 return 0;
370 //===----------------------------------------------------------------------===//
371 // UnwindInst Implementation
372 //===----------------------------------------------------------------------===//
374 unsigned UnwindInst::getNumSuccessorsV() const {
375 return getNumSuccessors();
378 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
379 assert(0 && "UnwindInst has no successors!");
382 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
383 assert(0 && "UnwindInst has no successors!");
384 abort();
385 return 0;
388 //===----------------------------------------------------------------------===//
389 // UnreachableInst Implementation
390 //===----------------------------------------------------------------------===//
392 unsigned UnreachableInst::getNumSuccessorsV() const {
393 return getNumSuccessors();
396 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
397 assert(0 && "UnwindInst has no successors!");
400 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
401 assert(0 && "UnwindInst has no successors!");
402 abort();
403 return 0;
406 //===----------------------------------------------------------------------===//
407 // BranchInst Implementation
408 //===----------------------------------------------------------------------===//
410 void BranchInst::AssertOK() {
411 if (isConditional())
412 assert(getCondition()->getType() == Type::BoolTy &&
413 "May only branch on boolean predicates!");
416 BranchInst::BranchInst(const BranchInst &BI) :
417 TerminatorInst(Instruction::Br, Ops, BI.getNumOperands()) {
418 OperandList[0].init(BI.getOperand(0), this);
419 if (BI.getNumOperands() != 1) {
420 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
421 OperandList[1].init(BI.getOperand(1), this);
422 OperandList[2].init(BI.getOperand(2), this);
426 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
427 return getSuccessor(idx);
429 unsigned BranchInst::getNumSuccessorsV() const {
430 return getNumSuccessors();
432 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
433 setSuccessor(idx, B);
437 //===----------------------------------------------------------------------===//
438 // AllocationInst Implementation
439 //===----------------------------------------------------------------------===//
441 static Value *getAISize(Value *Amt) {
442 if (!Amt)
443 Amt = ConstantUInt::get(Type::UIntTy, 1);
444 else
445 assert(Amt->getType() == Type::UIntTy &&
446 "Malloc/Allocation array size != UIntTy!");
447 return Amt;
450 AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
451 const std::string &Name,
452 Instruction *InsertBefore)
453 : UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
454 Name, InsertBefore) {
455 assert(Ty != Type::VoidTy && "Cannot allocate void!");
458 AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
459 const std::string &Name,
460 BasicBlock *InsertAtEnd)
461 : UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
462 Name, InsertAtEnd) {
463 assert(Ty != Type::VoidTy && "Cannot allocate void!");
466 bool AllocationInst::isArrayAllocation() const {
467 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(getOperand(0)))
468 return CUI->getValue() != 1;
469 return true;
472 const Type *AllocationInst::getAllocatedType() const {
473 return getType()->getElementType();
476 AllocaInst::AllocaInst(const AllocaInst &AI)
477 : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
478 Instruction::Alloca) {
481 MallocInst::MallocInst(const MallocInst &MI)
482 : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
483 Instruction::Malloc) {
486 //===----------------------------------------------------------------------===//
487 // FreeInst Implementation
488 //===----------------------------------------------------------------------===//
490 void FreeInst::AssertOK() {
491 assert(isa<PointerType>(getOperand(0)->getType()) &&
492 "Can not free something of nonpointer type!");
495 FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
496 : UnaryInstruction(Type::VoidTy, Free, Ptr, "", InsertBefore) {
497 AssertOK();
500 FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
501 : UnaryInstruction(Type::VoidTy, Free, Ptr, "", InsertAtEnd) {
502 AssertOK();
506 //===----------------------------------------------------------------------===//
507 // LoadInst Implementation
508 //===----------------------------------------------------------------------===//
510 void LoadInst::AssertOK() {
511 assert(isa<PointerType>(getOperand(0)->getType()) &&
512 "Ptr must have pointer type.");
515 LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
516 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
517 Load, Ptr, Name, InsertBef) {
518 setVolatile(false);
519 AssertOK();
522 LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
523 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
524 Load, Ptr, Name, InsertAE) {
525 setVolatile(false);
526 AssertOK();
529 LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
530 Instruction *InsertBef)
531 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
532 Load, Ptr, Name, InsertBef) {
533 setVolatile(isVolatile);
534 AssertOK();
537 LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
538 BasicBlock *InsertAE)
539 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
540 Load, Ptr, Name, InsertAE) {
541 setVolatile(isVolatile);
542 AssertOK();
546 //===----------------------------------------------------------------------===//
547 // StoreInst Implementation
548 //===----------------------------------------------------------------------===//
550 void StoreInst::AssertOK() {
551 assert(isa<PointerType>(getOperand(1)->getType()) &&
552 "Ptr must have pointer type!");
553 assert(getOperand(0)->getType() ==
554 cast<PointerType>(getOperand(1)->getType())->getElementType()
555 && "Ptr must be a pointer to Val type!");
559 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
560 : Instruction(Type::VoidTy, Store, Ops, 2, "", InsertBefore) {
561 Ops[0].init(val, this);
562 Ops[1].init(addr, this);
563 setVolatile(false);
564 AssertOK();
567 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
568 : Instruction(Type::VoidTy, Store, Ops, 2, "", InsertAtEnd) {
569 Ops[0].init(val, this);
570 Ops[1].init(addr, this);
571 setVolatile(false);
572 AssertOK();
575 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
576 Instruction *InsertBefore)
577 : Instruction(Type::VoidTy, Store, Ops, 2, "", InsertBefore) {
578 Ops[0].init(val, this);
579 Ops[1].init(addr, this);
580 setVolatile(isVolatile);
581 AssertOK();
584 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
585 BasicBlock *InsertAtEnd)
586 : Instruction(Type::VoidTy, Store, Ops, 2, "", InsertAtEnd) {
587 Ops[0].init(val, this);
588 Ops[1].init(addr, this);
589 setVolatile(isVolatile);
590 AssertOK();
593 //===----------------------------------------------------------------------===//
594 // GetElementPtrInst Implementation
595 //===----------------------------------------------------------------------===//
597 // checkType - Simple wrapper function to give a better assertion failure
598 // message on bad indexes for a gep instruction.
600 static inline const Type *checkType(const Type *Ty) {
601 assert(Ty && "Invalid indices for type!");
602 return Ty;
605 void GetElementPtrInst::init(Value *Ptr, const std::vector<Value*> &Idx) {
606 NumOperands = 1+Idx.size();
607 Use *OL = OperandList = new Use[NumOperands];
608 OL[0].init(Ptr, this);
610 for (unsigned i = 0, e = Idx.size(); i != e; ++i)
611 OL[i+1].init(Idx[i], this);
614 void GetElementPtrInst::init(Value *Ptr, Value *Idx0, Value *Idx1) {
615 NumOperands = 3;
616 Use *OL = OperandList = new Use[3];
617 OL[0].init(Ptr, this);
618 OL[1].init(Idx0, this);
619 OL[2].init(Idx1, this);
622 void GetElementPtrInst::init(Value *Ptr, Value *Idx) {
623 NumOperands = 2;
624 Use *OL = OperandList = new Use[2];
625 OL[0].init(Ptr, this);
626 OL[1].init(Idx, this);
629 GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
630 const std::string &Name, Instruction *InBe)
631 : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
632 Idx, true))),
633 GetElementPtr, 0, 0, Name, InBe) {
634 init(Ptr, Idx);
637 GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
638 const std::string &Name, BasicBlock *IAE)
639 : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
640 Idx, true))),
641 GetElementPtr, 0, 0, Name, IAE) {
642 init(Ptr, Idx);
645 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
646 const std::string &Name, Instruction *InBe)
647 : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
648 GetElementPtr, 0, 0, Name, InBe) {
649 init(Ptr, Idx);
652 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
653 const std::string &Name, BasicBlock *IAE)
654 : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
655 GetElementPtr, 0, 0, Name, IAE) {
656 init(Ptr, Idx);
659 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
660 const std::string &Name, Instruction *InBe)
661 : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
662 Idx0, Idx1, true))),
663 GetElementPtr, 0, 0, Name, InBe) {
664 init(Ptr, Idx0, Idx1);
667 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
668 const std::string &Name, BasicBlock *IAE)
669 : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
670 Idx0, Idx1, true))),
671 GetElementPtr, 0, 0, Name, IAE) {
672 init(Ptr, Idx0, Idx1);
675 GetElementPtrInst::~GetElementPtrInst() {
676 delete[] OperandList;
679 // getIndexedType - Returns the type of the element that would be loaded with
680 // a load instruction with the specified parameters.
682 // A null type is returned if the indices are invalid for the specified
683 // pointer type.
685 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
686 const std::vector<Value*> &Idx,
687 bool AllowCompositeLeaf) {
688 if (!isa<PointerType>(Ptr)) return 0; // Type isn't a pointer type!
690 // Handle the special case of the empty set index set...
691 if (Idx.empty())
692 if (AllowCompositeLeaf ||
693 cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
694 return cast<PointerType>(Ptr)->getElementType();
695 else
696 return 0;
698 unsigned CurIdx = 0;
699 while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
700 if (Idx.size() == CurIdx) {
701 if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
702 return 0; // Can't load a whole structure or array!?!?
705 Value *Index = Idx[CurIdx++];
706 if (isa<PointerType>(CT) && CurIdx != 1)
707 return 0; // Can only index into pointer types at the first index!
708 if (!CT->indexValid(Index)) return 0;
709 Ptr = CT->getTypeAtIndex(Index);
711 // If the new type forwards to another type, then it is in the middle
712 // of being refined to another type (and hence, may have dropped all
713 // references to what it was using before). So, use the new forwarded
714 // type.
715 if (const Type * Ty = Ptr->getForwardedType()) {
716 Ptr = Ty;
719 return CurIdx == Idx.size() ? Ptr : 0;
722 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
723 Value *Idx0, Value *Idx1,
724 bool AllowCompositeLeaf) {
725 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
726 if (!PTy) return 0; // Type isn't a pointer type!
728 // Check the pointer index.
729 if (!PTy->indexValid(Idx0)) return 0;
731 const CompositeType *CT = dyn_cast<CompositeType>(PTy->getElementType());
732 if (!CT || !CT->indexValid(Idx1)) return 0;
734 const Type *ElTy = CT->getTypeAtIndex(Idx1);
735 if (AllowCompositeLeaf || ElTy->isFirstClassType())
736 return ElTy;
737 return 0;
740 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
741 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
742 if (!PTy) return 0; // Type isn't a pointer type!
744 // Check the pointer index.
745 if (!PTy->indexValid(Idx)) return 0;
747 return PTy->getElementType();
750 //===----------------------------------------------------------------------===//
751 // BinaryOperator Class
752 //===----------------------------------------------------------------------===//
754 void BinaryOperator::init(BinaryOps iType)
756 Value *LHS = getOperand(0), *RHS = getOperand(1);
757 assert(LHS->getType() == RHS->getType() &&
758 "Binary operator operand types must match!");
759 #ifndef NDEBUG
760 switch (iType) {
761 case Add: case Sub:
762 case Mul: case Div:
763 case Rem:
764 assert(getType() == LHS->getType() &&
765 "Arithmetic operation should return same type as operands!");
766 assert((getType()->isInteger() ||
767 getType()->isFloatingPoint() ||
768 isa<PackedType>(getType()) ) &&
769 "Tried to create an arithmetic operation on a non-arithmetic type!");
770 break;
771 case And: case Or:
772 case Xor:
773 assert(getType() == LHS->getType() &&
774 "Logical operation should return same type as operands!");
775 assert(getType()->isIntegral() &&
776 "Tried to create a logical operation on a non-integral type!");
777 break;
778 case SetLT: case SetGT: case SetLE:
779 case SetGE: case SetEQ: case SetNE:
780 assert(getType() == Type::BoolTy && "Setcc must return bool!");
781 default:
782 break;
784 #endif
787 BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
788 const std::string &Name,
789 Instruction *InsertBefore) {
790 assert(S1->getType() == S2->getType() &&
791 "Cannot create binary operator with two operands of differing type!");
792 switch (Op) {
793 // Binary comparison operators...
794 case SetLT: case SetGT: case SetLE:
795 case SetGE: case SetEQ: case SetNE:
796 return new SetCondInst(Op, S1, S2, Name, InsertBefore);
798 default:
799 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
803 BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
804 const std::string &Name,
805 BasicBlock *InsertAtEnd) {
806 BinaryOperator *Res = create(Op, S1, S2, Name);
807 InsertAtEnd->getInstList().push_back(Res);
808 return Res;
811 BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
812 Instruction *InsertBefore) {
813 if (!Op->getType()->isFloatingPoint())
814 return new BinaryOperator(Instruction::Sub,
815 Constant::getNullValue(Op->getType()), Op,
816 Op->getType(), Name, InsertBefore);
817 else
818 return new BinaryOperator(Instruction::Sub,
819 ConstantFP::get(Op->getType(), -0.0), Op,
820 Op->getType(), Name, InsertBefore);
823 BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
824 BasicBlock *InsertAtEnd) {
825 if (!Op->getType()->isFloatingPoint())
826 return new BinaryOperator(Instruction::Sub,
827 Constant::getNullValue(Op->getType()), Op,
828 Op->getType(), Name, InsertAtEnd);
829 else
830 return new BinaryOperator(Instruction::Sub,
831 ConstantFP::get(Op->getType(), -0.0), Op,
832 Op->getType(), Name, InsertAtEnd);
835 BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
836 Instruction *InsertBefore) {
837 return new BinaryOperator(Instruction::Xor, Op,
838 ConstantIntegral::getAllOnesValue(Op->getType()),
839 Op->getType(), Name, InsertBefore);
842 BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
843 BasicBlock *InsertAtEnd) {
844 return new BinaryOperator(Instruction::Xor, Op,
845 ConstantIntegral::getAllOnesValue(Op->getType()),
846 Op->getType(), Name, InsertAtEnd);
850 // isConstantAllOnes - Helper function for several functions below
851 static inline bool isConstantAllOnes(const Value *V) {
852 return isa<ConstantIntegral>(V) &&cast<ConstantIntegral>(V)->isAllOnesValue();
855 bool BinaryOperator::isNeg(const Value *V) {
856 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
857 if (Bop->getOpcode() == Instruction::Sub)
858 if (!V->getType()->isFloatingPoint())
859 return Bop->getOperand(0) == Constant::getNullValue(Bop->getType());
860 else
861 return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0);
862 return false;
865 bool BinaryOperator::isNot(const Value *V) {
866 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
867 return (Bop->getOpcode() == Instruction::Xor &&
868 (isConstantAllOnes(Bop->getOperand(1)) ||
869 isConstantAllOnes(Bop->getOperand(0))));
870 return false;
873 Value *BinaryOperator::getNegArgument(Value *BinOp) {
874 assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!");
875 return cast<BinaryOperator>(BinOp)->getOperand(1);
878 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
879 return getNegArgument(const_cast<Value*>(BinOp));
882 Value *BinaryOperator::getNotArgument(Value *BinOp) {
883 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
884 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
885 Value *Op0 = BO->getOperand(0);
886 Value *Op1 = BO->getOperand(1);
887 if (isConstantAllOnes(Op0)) return Op1;
889 assert(isConstantAllOnes(Op1));
890 return Op0;
893 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
894 return getNotArgument(const_cast<Value*>(BinOp));
898 // swapOperands - Exchange the two operands to this instruction. This
899 // instruction is safe to use on any binary instruction and does not
900 // modify the semantics of the instruction. If the instruction is
901 // order dependent (SetLT f.e.) the opcode is changed.
903 bool BinaryOperator::swapOperands() {
904 if (isCommutative())
905 ; // If the instruction is commutative, it is safe to swap the operands
906 else if (SetCondInst *SCI = dyn_cast<SetCondInst>(this))
907 /// FIXME: SetCC instructions shouldn't all have different opcodes.
908 setOpcode(SCI->getSwappedCondition());
909 else
910 return true; // Can't commute operands
912 std::swap(Ops[0], Ops[1]);
913 return false;
917 //===----------------------------------------------------------------------===//
918 // SetCondInst Class
919 //===----------------------------------------------------------------------===//
921 SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
922 const std::string &Name, Instruction *InsertBefore)
923 : BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertBefore) {
925 // Make sure it's a valid type... getInverseCondition will assert out if not.
926 assert(getInverseCondition(Opcode));
929 SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
930 const std::string &Name, BasicBlock *InsertAtEnd)
931 : BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertAtEnd) {
933 // Make sure it's a valid type... getInverseCondition will assert out if not.
934 assert(getInverseCondition(Opcode));
937 // getInverseCondition - Return the inverse of the current condition opcode.
938 // For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
940 Instruction::BinaryOps SetCondInst::getInverseCondition(BinaryOps Opcode) {
941 switch (Opcode) {
942 default:
943 assert(0 && "Unknown setcc opcode!");
944 case SetEQ: return SetNE;
945 case SetNE: return SetEQ;
946 case SetGT: return SetLE;
947 case SetLT: return SetGE;
948 case SetGE: return SetLT;
949 case SetLE: return SetGT;
953 // getSwappedCondition - Return the condition opcode that would be the result
954 // of exchanging the two operands of the setcc instruction without changing
955 // the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
957 Instruction::BinaryOps SetCondInst::getSwappedCondition(BinaryOps Opcode) {
958 switch (Opcode) {
959 default: assert(0 && "Unknown setcc instruction!");
960 case SetEQ: case SetNE: return Opcode;
961 case SetGT: return SetLT;
962 case SetLT: return SetGT;
963 case SetGE: return SetLE;
964 case SetLE: return SetGE;
968 //===----------------------------------------------------------------------===//
969 // SwitchInst Implementation
970 //===----------------------------------------------------------------------===//
972 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
973 assert(Value && Default);
974 ReservedSpace = 2+NumCases*2;
975 NumOperands = 2;
976 OperandList = new Use[ReservedSpace];
978 OperandList[0].init(Value, this);
979 OperandList[1].init(Default, this);
982 SwitchInst::SwitchInst(const SwitchInst &SI)
983 : TerminatorInst(Instruction::Switch, new Use[SI.getNumOperands()],
984 SI.getNumOperands()) {
985 Use *OL = OperandList, *InOL = SI.OperandList;
986 for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
987 OL[i].init(InOL[i], this);
988 OL[i+1].init(InOL[i+1], this);
992 SwitchInst::~SwitchInst() {
993 delete [] OperandList;
997 /// addCase - Add an entry to the switch instruction...
999 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
1000 unsigned OpNo = NumOperands;
1001 if (OpNo+2 > ReservedSpace)
1002 resizeOperands(0); // Get more space!
1003 // Initialize some new operands.
1004 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
1005 NumOperands = OpNo+2;
1006 OperandList[OpNo].init(OnVal, this);
1007 OperandList[OpNo+1].init(Dest, this);
1010 /// removeCase - This method removes the specified successor from the switch
1011 /// instruction. Note that this cannot be used to remove the default
1012 /// destination (successor #0).
1014 void SwitchInst::removeCase(unsigned idx) {
1015 assert(idx != 0 && "Cannot remove the default case!");
1016 assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
1018 unsigned NumOps = getNumOperands();
1019 Use *OL = OperandList;
1021 // Move everything after this operand down.
1023 // FIXME: we could just swap with the end of the list, then erase. However,
1024 // client might not expect this to happen. The code as it is thrashes the
1025 // use/def lists, which is kinda lame.
1026 for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
1027 OL[i-2] = OL[i];
1028 OL[i-2+1] = OL[i+1];
1031 // Nuke the last value.
1032 OL[NumOps-2].set(0);
1033 OL[NumOps-2+1].set(0);
1034 NumOperands = NumOps-2;
1037 /// resizeOperands - resize operands - This adjusts the length of the operands
1038 /// list according to the following behavior:
1039 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
1040 /// of operation. This grows the number of ops by 1.5 times.
1041 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
1042 /// 3. If NumOps == NumOperands, trim the reserved space.
1044 void SwitchInst::resizeOperands(unsigned NumOps) {
1045 if (NumOps == 0) {
1046 NumOps = getNumOperands()/2*6;
1047 } else if (NumOps*2 > NumOperands) {
1048 // No resize needed.
1049 if (ReservedSpace >= NumOps) return;
1050 } else if (NumOps == NumOperands) {
1051 if (ReservedSpace == NumOps) return;
1052 } else {
1053 return;
1056 ReservedSpace = NumOps;
1057 Use *NewOps = new Use[NumOps];
1058 Use *OldOps = OperandList;
1059 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1060 NewOps[i].init(OldOps[i], this);
1061 OldOps[i].set(0);
1063 delete [] OldOps;
1064 OperandList = NewOps;
1068 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
1069 return getSuccessor(idx);
1071 unsigned SwitchInst::getNumSuccessorsV() const {
1072 return getNumSuccessors();
1074 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
1075 setSuccessor(idx, B);
1079 // Define these methods here so vtables don't get emitted into every translation
1080 // unit that uses these classes.
1082 GetElementPtrInst *GetElementPtrInst::clone() const {
1083 return new GetElementPtrInst(*this);
1086 BinaryOperator *BinaryOperator::clone() const {
1087 return create(getOpcode(), Ops[0], Ops[1]);
1090 MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
1091 AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
1092 FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); }
1093 LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
1094 StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
1095 CastInst *CastInst::clone() const { return new CastInst(*this); }
1096 CallInst *CallInst::clone() const { return new CallInst(*this); }
1097 ShiftInst *ShiftInst::clone() const { return new ShiftInst(*this); }
1098 SelectInst *SelectInst::clone() const { return new SelectInst(*this); }
1099 VANextInst *VANextInst::clone() const { return new VANextInst(*this); }
1100 VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
1101 PHINode *PHINode::clone() const { return new PHINode(*this); }
1102 ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); }
1103 BranchInst *BranchInst::clone() const { return new BranchInst(*this); }
1104 SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
1105 InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); }
1106 UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
1107 UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}