[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / docs / HistoricalNotes / 2003-06-26-Reoptimizer2.txt
blobec4b93fea0a2382babd6c4375c8626d4c31a355c
1 Thu Jun 26 14:43:04 CDT 2003
3 Information about BinInterface
4 ------------------------------
6 Take in a set of instructions with some particular register
7 allocation. It allows you to add, modify, or delete some instructions,
8 in SSA form (kind of like LLVM's MachineInstrs.) Then re-allocate
9 registers. It assumes that the transformations you are doing are safe.
10 It does not update the mapping information or the LLVM representation
11 for the modified trace (so it would not, for instance, support
12 multiple optimization passes; passes have to be aware of and update
13 manually the mapping information.)
15 The way you use it is you take the original code and provide it to
16 BinInterface; then you do optimizations to it, then you put it in the
17 trace cache.
19 The BinInterface tries to find live-outs for traces so that it can do
20 register allocation on just the trace, and stitch the trace back into
21 the original code. It has to preserve the live-ins and live-outs when
22 it does its register allocation.  (On exits from the trace we have
23 epilogues that copy live-outs back into the right registers, but
24 live-ins have to be in the right registers.)
27 Limitations of BinInterface
28 ---------------------------
30 It does copy insertions for PHIs, which it infers from the machine
31 code. The mapping info inserted by LLC is not sufficient to determine
32 the PHIs.
34 It does not handle integer or floating-point condition codes and it
35 does not handle floating-point register allocation.
37 It is not aggressively able to use lots of registers.
39 There is a problem with alloca: we cannot find our spill space for
40 spilling registers, normally allocated on the stack, if the trace
41 follows an alloca(). What might be an acceptable solution would be to
42 disable trace generation on functions that have variable-sized
43 alloca()s. Variable-sized allocas in the trace would also probably
44 screw things up.
46 Because of the FP and alloca limitations, the BinInterface is
47 completely disabled right now.
50 Demo
51 ----
53 This is a demo of the Ball & Larus version that does NOT use 2-level
54 profiling.
56 1. Compile program with llvm-gcc.
57 2. Run opt -lowerswitch -paths -emitfuncs on the bytecode.
58    -lowerswitch change switch statements to branches
59    -paths       Ball & Larus path-profiling algorithm
60    -emitfuncs   emit the table of functions
61 3. Run llc to generate SPARC assembly code for the result of step 2.
62 4. Use g++ to link the (instrumented) assembly code.
64 We use a script to do all this:
65 ------------------------------------------------------------------------------
66 #!/bin/sh
67 llvm-gcc $1.c -o $1
68 opt -lowerswitch -paths -emitfuncs $1.bc > $1.run.bc
69 llc -f $1.run.bc 
70 LIBS=$HOME/llvm_sparc/lib/Debug
71 GXX=/usr/dcs/software/evaluation/bin/g++
72 $GXX -g -L $LIBS $1.run.s -o $1.run.llc \
73 $LIBS/tracecache.o \
74 $LIBS/mapinfo.o \
75 $LIBS/trigger.o \
76 $LIBS/profpaths.o \
77 $LIBS/bininterface.o \
78 $LIBS/support.o \
79 $LIBS/vmcore.o \
80 $LIBS/transformutils.o \
81 $LIBS/bcreader.o \
82 -lscalaropts -lscalaropts -lanalysis \
83 -lmalloc -lcpc -lm -ldl
84 ------------------------------------------------------------------------------
86 5. Run the resulting binary.  You will see output from BinInterface
87 (described below) intermixed with the output from the program.
90 Output from BinInterface
91 ------------------------
93 BinInterface's debugging code prints out the following stuff in order:
95 1. Initial code provided to BinInterface with original register
96 allocation.
98 2. Section 0 is the trace prolog, consisting mainly of live-ins and
99 register saves which will be restored in epilogs.
101 3. Section 1 is the trace itself, in SSA form used by BinInterface,
102 along with the PHIs that are inserted.
103 PHIs are followed by the copies that implement them.
104 Each branch (i.e., out of the trace) is annotated with the
105 section number that represents the epilog it branches to.
107 4. All the other sections starting with Section 2 are trace epilogs.
108 Every branch from the trace has to go to some epilog.
110 5. After the last section is the register allocation output.