[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / include / llvm / Support / Automaton.h
blob7c13a698e4922ef9b0dc95425bd24ea67331b594
1 //===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements class that drive and introspect deterministic finite-
10 // state automata (DFAs) as generated by TableGen's -gen-automata backend.
12 // For a description of how to define an automaton, see
13 // include/llvm/TableGen/Automaton.td.
15 // One important detail is that these deterministic automata are created from
16 // (potentially) nondeterministic definitions. Therefore a unique sequence of
17 // input symbols will produce one path through the DFA but multiple paths
18 // through the original NFA. An automaton by default only returns "accepted" or
19 // "not accepted", but frequently we want to analyze what NFA path was taken.
20 // Finding a path through the NFA states that results in a DFA state can help
21 // answer *what* the solution to a problem was, not just that there exists a
22 // solution.
24 //===----------------------------------------------------------------------===//
26 #ifndef LLVM_SUPPORT_AUTOMATON_H
27 #define LLVM_SUPPORT_AUTOMATON_H
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/Support/Allocator.h"
33 #include <deque>
34 #include <map>
35 #include <memory>
36 #include <unordered_map>
37 #include <vector>
39 namespace llvm {
41 using NfaPath = SmallVector<uint64_t, 4>;
43 /// Forward define the pair type used by the automata transition info tables.
44 ///
45 /// Experimental results with large tables have shown a significant (multiple
46 /// orders of magnitude) parsing speedup by using a custom struct here with a
47 /// trivial constructor rather than std::pair<uint64_t, uint64_t>.
48 struct NfaStatePair {
49 uint64_t FromDfaState, ToDfaState;
51 bool operator<(const NfaStatePair &Other) const {
52 return std::make_tuple(FromDfaState, ToDfaState) <
53 std::make_tuple(Other.FromDfaState, Other.ToDfaState);
57 namespace internal {
58 /// The internal class that maintains all possible paths through an NFA based
59 /// on a path through the DFA.
60 class NfaTranscriber {
61 private:
62 /// Cached transition table. This is a table of NfaStatePairs that contains
63 /// zero-terminated sequences pointed to by DFA transitions.
64 ArrayRef<NfaStatePair> TransitionInfo;
66 /// A simple linked-list of traversed states that can have a shared tail. The
67 /// traversed path is stored in reverse order with the latest state as the
68 /// head.
69 struct PathSegment {
70 uint64_t State;
71 PathSegment *Tail;
74 /// We allocate segment objects frequently. Allocate them upfront and dispose
75 /// at the end of a traversal rather than hammering the system allocator.
76 SpecificBumpPtrAllocator<PathSegment> Allocator;
78 /// Heads of each tracked path. These are not ordered.
79 std::deque<PathSegment *> Heads;
81 /// The returned paths. This is populated during getPaths.
82 SmallVector<NfaPath, 4> Paths;
84 /// Create a new segment and return it.
85 PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) {
86 PathSegment *P = Allocator.Allocate();
87 *P = {State, Tail};
88 return P;
91 /// Pairs defines a sequence of possible NFA transitions for a single DFA
92 /// transition.
93 void transition(ArrayRef<NfaStatePair> Pairs) {
94 // Iterate over all existing heads. We will mutate the Heads deque during
95 // iteration.
96 unsigned NumHeads = Heads.size();
97 for (unsigned I = 0; I < NumHeads; ++I) {
98 PathSegment *Head = Heads[I];
99 // The sequence of pairs is sorted. Select the set of pairs that
100 // transition from the current head state.
101 auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL});
102 auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX});
103 // For every transition from the current head state, add a new path
104 // segment.
105 for (; PI != PE; ++PI)
106 if (PI->FromDfaState == Head->State)
107 Heads.push_back(makePathSegment(PI->ToDfaState, Head));
109 // Now we've iterated over all the initial heads and added new ones,
110 // dispose of the original heads.
111 Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads));
114 public:
115 NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo)
116 : TransitionInfo(TransitionInfo) {
117 reset();
120 void reset() {
121 Paths.clear();
122 Heads.clear();
123 Allocator.DestroyAll();
124 // The initial NFA state is 0.
125 Heads.push_back(makePathSegment(0ULL, nullptr));
128 void transition(unsigned TransitionInfoIdx) {
129 unsigned EndIdx = TransitionInfoIdx;
130 while (TransitionInfo[EndIdx].ToDfaState != 0)
131 ++EndIdx;
132 ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx],
133 EndIdx - TransitionInfoIdx);
134 transition(Pairs);
137 ArrayRef<NfaPath> getPaths() {
138 Paths.clear();
139 for (auto *Head : Heads) {
140 NfaPath P;
141 while (Head->State != 0) {
142 P.push_back(Head->State);
143 Head = Head->Tail;
145 std::reverse(P.begin(), P.end());
146 Paths.push_back(std::move(P));
148 return Paths;
151 } // namespace internal
153 /// A deterministic finite-state automaton. The automaton is defined in
154 /// TableGen; this object drives an automaton defined by tblgen-emitted tables.
156 /// An automaton accepts a sequence of input tokens ("actions"). This class is
157 /// templated on the type of these actions.
158 template <typename ActionT> class Automaton {
159 /// Map from {State, Action} to {NewState, TransitionInfoIdx}.
160 /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition.
161 /// FIXME: This uses a std::map because ActionT can be a pair type including
162 /// an enum. In particular DenseMapInfo<ActionT> must be defined to use
163 /// DenseMap here.
164 /// This is a shared_ptr to allow very quick copy-construction of Automata; this
165 /// state is immutable after construction so this is safe.
166 using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>;
167 std::shared_ptr<MapTy> M;
168 /// An optional transcription object. This uses much more state than simply
169 /// traversing the DFA for acceptance, so is heap allocated.
170 std::shared_ptr<internal::NfaTranscriber> Transcriber;
171 /// The initial DFA state is 1.
172 uint64_t State = 1;
173 /// True if we should transcribe and false if not (even if Transcriber is defined).
174 bool Transcribe;
176 public:
177 /// Create an automaton.
178 /// \param Transitions The Transitions table as created by TableGen. Note that
179 /// because the action type differs per automaton, the
180 /// table type is templated as ArrayRef<InfoT>.
181 /// \param TranscriptionTable The TransitionInfo table as created by TableGen.
183 /// Providing the TranscriptionTable argument as non-empty will enable the
184 /// use of transcription, which analyzes the possible paths in the original
185 /// NFA taken by the DFA. NOTE: This is substantially more work than simply
186 /// driving the DFA, so unless you require the getPaths() method leave this
187 /// empty.
188 template <typename InfoT>
189 Automaton(ArrayRef<InfoT> Transitions,
190 ArrayRef<NfaStatePair> TranscriptionTable = {}) {
191 if (!TranscriptionTable.empty())
192 Transcriber =
193 std::make_shared<internal::NfaTranscriber>(TranscriptionTable);
194 Transcribe = Transcriber != nullptr;
195 M = std::make_shared<MapTy>();
196 for (const auto &I : Transitions)
197 // Greedily read and cache the transition table.
198 M->emplace(std::make_pair(I.FromDfaState, I.Action),
199 std::make_pair(I.ToDfaState, I.InfoIdx));
201 Automaton(const Automaton &) = default;
203 /// Reset the automaton to its initial state.
204 void reset() {
205 State = 1;
206 if (Transcriber)
207 Transcriber->reset();
210 /// Enable or disable transcription. Transcription is only available if
211 /// TranscriptionTable was provided to the constructor.
212 void enableTranscription(bool Enable = true) {
213 assert(Transcriber &&
214 "Transcription is only available if TranscriptionTable was provided "
215 "to the Automaton constructor");
216 Transcribe = Enable;
219 /// Transition the automaton based on input symbol A. Return true if the
220 /// automaton transitioned to a valid state, false if the automaton
221 /// transitioned to an invalid state.
223 /// If this function returns false, all methods are undefined until reset() is
224 /// called.
225 bool add(const ActionT &A) {
226 auto I = M->find({State, A});
227 if (I == M->end())
228 return false;
229 if (Transcriber && Transcribe)
230 Transcriber->transition(I->second.second);
231 State = I->second.first;
232 return true;
235 /// Return true if the automaton can be transitioned based on input symbol A.
236 bool canAdd(const ActionT &A) {
237 auto I = M->find({State, A});
238 return I != M->end();
241 /// Obtain a set of possible paths through the input nondeterministic
242 /// automaton that could be obtained from the sequence of input actions
243 /// presented to this deterministic automaton.
244 ArrayRef<NfaPath> getNfaPaths() {
245 assert(Transcriber && Transcribe &&
246 "Can only obtain NFA paths if transcribing!");
247 return Transcriber->getPaths();
251 } // namespace llvm
253 #endif // LLVM_SUPPORT_AUTOMATON_H