[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / include / llvm / Support / MathExtras.h
blob004a6f5f6eb8085f8b30c9bcb5a0df25d38614a1
1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains some functions that are useful for math stuff.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
14 #define LLVM_SUPPORT_MATHEXTRAS_H
16 #include "llvm/Support/Compiler.h"
17 #include "llvm/Support/SwapByteOrder.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <climits>
21 #include <cstring>
22 #include <limits>
23 #include <type_traits>
25 #ifdef __ANDROID_NDK__
26 #include <android/api-level.h>
27 #endif
29 #ifdef _MSC_VER
30 // Declare these intrinsics manually rather including intrin.h. It's very
31 // expensive, and MathExtras.h is popular.
32 // #include <intrin.h>
33 extern "C" {
34 unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
35 unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
36 unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
37 unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
39 #endif
41 namespace llvm {
43 /// The behavior an operation has on an input of 0.
44 enum ZeroBehavior {
45 /// The returned value is undefined.
46 ZB_Undefined,
47 /// The returned value is numeric_limits<T>::max()
48 ZB_Max,
49 /// The returned value is numeric_limits<T>::digits
50 ZB_Width
53 /// Mathematical constants.
54 namespace numbers {
55 // TODO: Track C++20 std::numbers.
56 // TODO: Favor using the hexadecimal FP constants (requires C++17).
57 constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
58 egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
59 ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
60 ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
61 log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0)
62 log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
63 pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
64 inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
65 sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
66 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
67 sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
68 inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
69 sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
70 inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1)
71 phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
72 constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
73 egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
74 ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
75 ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
76 log2ef = 1.44269504F, // (0x1.715476P+0)
77 log10ef = .434294482F, // (0x1.bcb7b2P-2)
78 pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
79 inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
80 sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
81 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
82 sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
83 inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1)
84 sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
85 inv_sqrt3f = .577350269F, // (0x1.279a74P-1)
86 phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
87 } // namespace numbers
89 namespace detail {
90 template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
91 static unsigned count(T Val, ZeroBehavior) {
92 if (!Val)
93 return std::numeric_limits<T>::digits;
94 if (Val & 0x1)
95 return 0;
97 // Bisection method.
98 unsigned ZeroBits = 0;
99 T Shift = std::numeric_limits<T>::digits >> 1;
100 T Mask = std::numeric_limits<T>::max() >> Shift;
101 while (Shift) {
102 if ((Val & Mask) == 0) {
103 Val >>= Shift;
104 ZeroBits |= Shift;
106 Shift >>= 1;
107 Mask >>= Shift;
109 return ZeroBits;
113 #if defined(__GNUC__) || defined(_MSC_VER)
114 template <typename T> struct TrailingZerosCounter<T, 4> {
115 static unsigned count(T Val, ZeroBehavior ZB) {
116 if (ZB != ZB_Undefined && Val == 0)
117 return 32;
119 #if __has_builtin(__builtin_ctz) || defined(__GNUC__)
120 return __builtin_ctz(Val);
121 #elif defined(_MSC_VER)
122 unsigned long Index;
123 _BitScanForward(&Index, Val);
124 return Index;
125 #endif
129 #if !defined(_MSC_VER) || defined(_M_X64)
130 template <typename T> struct TrailingZerosCounter<T, 8> {
131 static unsigned count(T Val, ZeroBehavior ZB) {
132 if (ZB != ZB_Undefined && Val == 0)
133 return 64;
135 #if __has_builtin(__builtin_ctzll) || defined(__GNUC__)
136 return __builtin_ctzll(Val);
137 #elif defined(_MSC_VER)
138 unsigned long Index;
139 _BitScanForward64(&Index, Val);
140 return Index;
141 #endif
144 #endif
145 #endif
146 } // namespace detail
148 /// Count number of 0's from the least significant bit to the most
149 /// stopping at the first 1.
151 /// Only unsigned integral types are allowed.
153 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
154 /// valid arguments.
155 template <typename T>
156 unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
157 static_assert(std::numeric_limits<T>::is_integer &&
158 !std::numeric_limits<T>::is_signed,
159 "Only unsigned integral types are allowed.");
160 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
163 namespace detail {
164 template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
165 static unsigned count(T Val, ZeroBehavior) {
166 if (!Val)
167 return std::numeric_limits<T>::digits;
169 // Bisection method.
170 unsigned ZeroBits = 0;
171 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
172 T Tmp = Val >> Shift;
173 if (Tmp)
174 Val = Tmp;
175 else
176 ZeroBits |= Shift;
178 return ZeroBits;
182 #if defined(__GNUC__) || defined(_MSC_VER)
183 template <typename T> struct LeadingZerosCounter<T, 4> {
184 static unsigned count(T Val, ZeroBehavior ZB) {
185 if (ZB != ZB_Undefined && Val == 0)
186 return 32;
188 #if __has_builtin(__builtin_clz) || defined(__GNUC__)
189 return __builtin_clz(Val);
190 #elif defined(_MSC_VER)
191 unsigned long Index;
192 _BitScanReverse(&Index, Val);
193 return Index ^ 31;
194 #endif
198 #if !defined(_MSC_VER) || defined(_M_X64)
199 template <typename T> struct LeadingZerosCounter<T, 8> {
200 static unsigned count(T Val, ZeroBehavior ZB) {
201 if (ZB != ZB_Undefined && Val == 0)
202 return 64;
204 #if __has_builtin(__builtin_clzll) || defined(__GNUC__)
205 return __builtin_clzll(Val);
206 #elif defined(_MSC_VER)
207 unsigned long Index;
208 _BitScanReverse64(&Index, Val);
209 return Index ^ 63;
210 #endif
213 #endif
214 #endif
215 } // namespace detail
217 /// Count number of 0's from the most significant bit to the least
218 /// stopping at the first 1.
220 /// Only unsigned integral types are allowed.
222 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
223 /// valid arguments.
224 template <typename T>
225 unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
226 static_assert(std::numeric_limits<T>::is_integer &&
227 !std::numeric_limits<T>::is_signed,
228 "Only unsigned integral types are allowed.");
229 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
232 /// Get the index of the first set bit starting from the least
233 /// significant bit.
235 /// Only unsigned integral types are allowed.
237 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
238 /// valid arguments.
239 template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
240 if (ZB == ZB_Max && Val == 0)
241 return std::numeric_limits<T>::max();
243 return countTrailingZeros(Val, ZB_Undefined);
246 /// Create a bitmask with the N right-most bits set to 1, and all other
247 /// bits set to 0. Only unsigned types are allowed.
248 template <typename T> T maskTrailingOnes(unsigned N) {
249 static_assert(std::is_unsigned<T>::value, "Invalid type!");
250 const unsigned Bits = CHAR_BIT * sizeof(T);
251 assert(N <= Bits && "Invalid bit index");
252 return N == 0 ? 0 : (T(-1) >> (Bits - N));
255 /// Create a bitmask with the N left-most bits set to 1, and all other
256 /// bits set to 0. Only unsigned types are allowed.
257 template <typename T> T maskLeadingOnes(unsigned N) {
258 return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
261 /// Create a bitmask with the N right-most bits set to 0, and all other
262 /// bits set to 1. Only unsigned types are allowed.
263 template <typename T> T maskTrailingZeros(unsigned N) {
264 return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
267 /// Create a bitmask with the N left-most bits set to 0, and all other
268 /// bits set to 1. Only unsigned types are allowed.
269 template <typename T> T maskLeadingZeros(unsigned N) {
270 return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
273 /// Get the index of the last set bit starting from the least
274 /// significant bit.
276 /// Only unsigned integral types are allowed.
278 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
279 /// valid arguments.
280 template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
281 if (ZB == ZB_Max && Val == 0)
282 return std::numeric_limits<T>::max();
284 // Use ^ instead of - because both gcc and llvm can remove the associated ^
285 // in the __builtin_clz intrinsic on x86.
286 return countLeadingZeros(Val, ZB_Undefined) ^
287 (std::numeric_limits<T>::digits - 1);
290 /// Macro compressed bit reversal table for 256 bits.
292 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
293 static const unsigned char BitReverseTable256[256] = {
294 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
295 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
296 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
297 R6(0), R6(2), R6(1), R6(3)
298 #undef R2
299 #undef R4
300 #undef R6
303 /// Reverse the bits in \p Val.
304 template <typename T>
305 T reverseBits(T Val) {
306 unsigned char in[sizeof(Val)];
307 unsigned char out[sizeof(Val)];
308 std::memcpy(in, &Val, sizeof(Val));
309 for (unsigned i = 0; i < sizeof(Val); ++i)
310 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
311 std::memcpy(&Val, out, sizeof(Val));
312 return Val;
315 // NOTE: The following support functions use the _32/_64 extensions instead of
316 // type overloading so that signed and unsigned integers can be used without
317 // ambiguity.
319 /// Return the high 32 bits of a 64 bit value.
320 constexpr inline uint32_t Hi_32(uint64_t Value) {
321 return static_cast<uint32_t>(Value >> 32);
324 /// Return the low 32 bits of a 64 bit value.
325 constexpr inline uint32_t Lo_32(uint64_t Value) {
326 return static_cast<uint32_t>(Value);
329 /// Make a 64-bit integer from a high / low pair of 32-bit integers.
330 constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
331 return ((uint64_t)High << 32) | (uint64_t)Low;
334 /// Checks if an integer fits into the given bit width.
335 template <unsigned N> constexpr inline bool isInt(int64_t x) {
336 return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
338 // Template specializations to get better code for common cases.
339 template <> constexpr inline bool isInt<8>(int64_t x) {
340 return static_cast<int8_t>(x) == x;
342 template <> constexpr inline bool isInt<16>(int64_t x) {
343 return static_cast<int16_t>(x) == x;
345 template <> constexpr inline bool isInt<32>(int64_t x) {
346 return static_cast<int32_t>(x) == x;
349 /// Checks if a signed integer is an N bit number shifted left by S.
350 template <unsigned N, unsigned S>
351 constexpr inline bool isShiftedInt(int64_t x) {
352 static_assert(
353 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
354 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
355 return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
358 /// Checks if an unsigned integer fits into the given bit width.
360 /// This is written as two functions rather than as simply
362 /// return N >= 64 || X < (UINT64_C(1) << N);
364 /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
365 /// left too many places.
366 template <unsigned N>
367 constexpr inline typename std::enable_if<(N < 64), bool>::type
368 isUInt(uint64_t X) {
369 static_assert(N > 0, "isUInt<0> doesn't make sense");
370 return X < (UINT64_C(1) << (N));
372 template <unsigned N>
373 constexpr inline typename std::enable_if<N >= 64, bool>::type
374 isUInt(uint64_t X) {
375 return true;
378 // Template specializations to get better code for common cases.
379 template <> constexpr inline bool isUInt<8>(uint64_t x) {
380 return static_cast<uint8_t>(x) == x;
382 template <> constexpr inline bool isUInt<16>(uint64_t x) {
383 return static_cast<uint16_t>(x) == x;
385 template <> constexpr inline bool isUInt<32>(uint64_t x) {
386 return static_cast<uint32_t>(x) == x;
389 /// Checks if a unsigned integer is an N bit number shifted left by S.
390 template <unsigned N, unsigned S>
391 constexpr inline bool isShiftedUInt(uint64_t x) {
392 static_assert(
393 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
394 static_assert(N + S <= 64,
395 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
396 // Per the two static_asserts above, S must be strictly less than 64. So
397 // 1 << S is not undefined behavior.
398 return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
401 /// Gets the maximum value for a N-bit unsigned integer.
402 inline uint64_t maxUIntN(uint64_t N) {
403 assert(N > 0 && N <= 64 && "integer width out of range");
405 // uint64_t(1) << 64 is undefined behavior, so we can't do
406 // (uint64_t(1) << N) - 1
407 // without checking first that N != 64. But this works and doesn't have a
408 // branch.
409 return UINT64_MAX >> (64 - N);
412 /// Gets the minimum value for a N-bit signed integer.
413 inline int64_t minIntN(int64_t N) {
414 assert(N > 0 && N <= 64 && "integer width out of range");
416 return -(UINT64_C(1)<<(N-1));
419 /// Gets the maximum value for a N-bit signed integer.
420 inline int64_t maxIntN(int64_t N) {
421 assert(N > 0 && N <= 64 && "integer width out of range");
423 // This relies on two's complement wraparound when N == 64, so we convert to
424 // int64_t only at the very end to avoid UB.
425 return (UINT64_C(1) << (N - 1)) - 1;
428 /// Checks if an unsigned integer fits into the given (dynamic) bit width.
429 inline bool isUIntN(unsigned N, uint64_t x) {
430 return N >= 64 || x <= maxUIntN(N);
433 /// Checks if an signed integer fits into the given (dynamic) bit width.
434 inline bool isIntN(unsigned N, int64_t x) {
435 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
438 /// Return true if the argument is a non-empty sequence of ones starting at the
439 /// least significant bit with the remainder zero (32 bit version).
440 /// Ex. isMask_32(0x0000FFFFU) == true.
441 constexpr inline bool isMask_32(uint32_t Value) {
442 return Value && ((Value + 1) & Value) == 0;
445 /// Return true if the argument is a non-empty sequence of ones starting at the
446 /// least significant bit with the remainder zero (64 bit version).
447 constexpr inline bool isMask_64(uint64_t Value) {
448 return Value && ((Value + 1) & Value) == 0;
451 /// Return true if the argument contains a non-empty sequence of ones with the
452 /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
453 constexpr inline bool isShiftedMask_32(uint32_t Value) {
454 return Value && isMask_32((Value - 1) | Value);
457 /// Return true if the argument contains a non-empty sequence of ones with the
458 /// remainder zero (64 bit version.)
459 constexpr inline bool isShiftedMask_64(uint64_t Value) {
460 return Value && isMask_64((Value - 1) | Value);
463 /// Return true if the argument is a power of two > 0.
464 /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
465 constexpr inline bool isPowerOf2_32(uint32_t Value) {
466 return Value && !(Value & (Value - 1));
469 /// Return true if the argument is a power of two > 0 (64 bit edition.)
470 constexpr inline bool isPowerOf2_64(uint64_t Value) {
471 return Value && !(Value & (Value - 1));
474 /// Return a byte-swapped representation of the 16-bit argument.
475 inline uint16_t ByteSwap_16(uint16_t Value) {
476 return sys::SwapByteOrder_16(Value);
479 /// Return a byte-swapped representation of the 32-bit argument.
480 inline uint32_t ByteSwap_32(uint32_t Value) {
481 return sys::SwapByteOrder_32(Value);
484 /// Return a byte-swapped representation of the 64-bit argument.
485 inline uint64_t ByteSwap_64(uint64_t Value) {
486 return sys::SwapByteOrder_64(Value);
489 /// Count the number of ones from the most significant bit to the first
490 /// zero bit.
492 /// Ex. countLeadingOnes(0xFF0FFF00) == 8.
493 /// Only unsigned integral types are allowed.
495 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
496 /// ZB_Undefined are valid arguments.
497 template <typename T>
498 unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
499 static_assert(std::numeric_limits<T>::is_integer &&
500 !std::numeric_limits<T>::is_signed,
501 "Only unsigned integral types are allowed.");
502 return countLeadingZeros<T>(~Value, ZB);
505 /// Count the number of ones from the least significant bit to the first
506 /// zero bit.
508 /// Ex. countTrailingOnes(0x00FF00FF) == 8.
509 /// Only unsigned integral types are allowed.
511 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
512 /// ZB_Undefined are valid arguments.
513 template <typename T>
514 unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
515 static_assert(std::numeric_limits<T>::is_integer &&
516 !std::numeric_limits<T>::is_signed,
517 "Only unsigned integral types are allowed.");
518 return countTrailingZeros<T>(~Value, ZB);
521 namespace detail {
522 template <typename T, std::size_t SizeOfT> struct PopulationCounter {
523 static unsigned count(T Value) {
524 // Generic version, forward to 32 bits.
525 static_assert(SizeOfT <= 4, "Not implemented!");
526 #if defined(__GNUC__)
527 return __builtin_popcount(Value);
528 #else
529 uint32_t v = Value;
530 v = v - ((v >> 1) & 0x55555555);
531 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
532 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
533 #endif
537 template <typename T> struct PopulationCounter<T, 8> {
538 static unsigned count(T Value) {
539 #if defined(__GNUC__)
540 return __builtin_popcountll(Value);
541 #else
542 uint64_t v = Value;
543 v = v - ((v >> 1) & 0x5555555555555555ULL);
544 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
545 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
546 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
547 #endif
550 } // namespace detail
552 /// Count the number of set bits in a value.
553 /// Ex. countPopulation(0xF000F000) = 8
554 /// Returns 0 if the word is zero.
555 template <typename T>
556 inline unsigned countPopulation(T Value) {
557 static_assert(std::numeric_limits<T>::is_integer &&
558 !std::numeric_limits<T>::is_signed,
559 "Only unsigned integral types are allowed.");
560 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
563 /// Compile time Log2.
564 /// Valid only for positive powers of two.
565 template <size_t kValue> constexpr inline size_t CTLog2() {
566 static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
567 "Value is not a valid power of 2");
568 return 1 + CTLog2<kValue / 2>();
571 template <> constexpr inline size_t CTLog2<1>() { return 0; }
573 /// Return the log base 2 of the specified value.
574 inline double Log2(double Value) {
575 #if defined(__ANDROID_API__) && __ANDROID_API__ < 18
576 return __builtin_log(Value) / __builtin_log(2.0);
577 #else
578 return log2(Value);
579 #endif
582 /// Return the floor log base 2 of the specified value, -1 if the value is zero.
583 /// (32 bit edition.)
584 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
585 inline unsigned Log2_32(uint32_t Value) {
586 return 31 - countLeadingZeros(Value);
589 /// Return the floor log base 2 of the specified value, -1 if the value is zero.
590 /// (64 bit edition.)
591 inline unsigned Log2_64(uint64_t Value) {
592 return 63 - countLeadingZeros(Value);
595 /// Return the ceil log base 2 of the specified value, 32 if the value is zero.
596 /// (32 bit edition).
597 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
598 inline unsigned Log2_32_Ceil(uint32_t Value) {
599 return 32 - countLeadingZeros(Value - 1);
602 /// Return the ceil log base 2 of the specified value, 64 if the value is zero.
603 /// (64 bit edition.)
604 inline unsigned Log2_64_Ceil(uint64_t Value) {
605 return 64 - countLeadingZeros(Value - 1);
608 /// Return the greatest common divisor of the values using Euclid's algorithm.
609 template <typename T>
610 inline T greatestCommonDivisor(T A, T B) {
611 while (B) {
612 T Tmp = B;
613 B = A % B;
614 A = Tmp;
616 return A;
619 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
620 return greatestCommonDivisor<uint64_t>(A, B);
623 /// This function takes a 64-bit integer and returns the bit equivalent double.
624 inline double BitsToDouble(uint64_t Bits) {
625 double D;
626 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
627 memcpy(&D, &Bits, sizeof(Bits));
628 return D;
631 /// This function takes a 32-bit integer and returns the bit equivalent float.
632 inline float BitsToFloat(uint32_t Bits) {
633 float F;
634 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
635 memcpy(&F, &Bits, sizeof(Bits));
636 return F;
639 /// This function takes a double and returns the bit equivalent 64-bit integer.
640 /// Note that copying doubles around changes the bits of NaNs on some hosts,
641 /// notably x86, so this routine cannot be used if these bits are needed.
642 inline uint64_t DoubleToBits(double Double) {
643 uint64_t Bits;
644 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
645 memcpy(&Bits, &Double, sizeof(Double));
646 return Bits;
649 /// This function takes a float and returns the bit equivalent 32-bit integer.
650 /// Note that copying floats around changes the bits of NaNs on some hosts,
651 /// notably x86, so this routine cannot be used if these bits are needed.
652 inline uint32_t FloatToBits(float Float) {
653 uint32_t Bits;
654 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
655 memcpy(&Bits, &Float, sizeof(Float));
656 return Bits;
659 /// A and B are either alignments or offsets. Return the minimum alignment that
660 /// may be assumed after adding the two together.
661 constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
662 // The largest power of 2 that divides both A and B.
664 // Replace "-Value" by "1+~Value" in the following commented code to avoid
665 // MSVC warning C4146
666 // return (A | B) & -(A | B);
667 return (A | B) & (1 + ~(A | B));
670 /// Returns the next power of two (in 64-bits) that is strictly greater than A.
671 /// Returns zero on overflow.
672 inline uint64_t NextPowerOf2(uint64_t A) {
673 A |= (A >> 1);
674 A |= (A >> 2);
675 A |= (A >> 4);
676 A |= (A >> 8);
677 A |= (A >> 16);
678 A |= (A >> 32);
679 return A + 1;
682 /// Returns the power of two which is less than or equal to the given value.
683 /// Essentially, it is a floor operation across the domain of powers of two.
684 inline uint64_t PowerOf2Floor(uint64_t A) {
685 if (!A) return 0;
686 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
689 /// Returns the power of two which is greater than or equal to the given value.
690 /// Essentially, it is a ceil operation across the domain of powers of two.
691 inline uint64_t PowerOf2Ceil(uint64_t A) {
692 if (!A)
693 return 0;
694 return NextPowerOf2(A - 1);
697 /// Returns the next integer (mod 2**64) that is greater than or equal to
698 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
700 /// If non-zero \p Skew is specified, the return value will be a minimal
701 /// integer that is greater than or equal to \p Value and equal to
702 /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
703 /// \p Align, its value is adjusted to '\p Skew mod \p Align'.
705 /// Examples:
706 /// \code
707 /// alignTo(5, 8) = 8
708 /// alignTo(17, 8) = 24
709 /// alignTo(~0LL, 8) = 0
710 /// alignTo(321, 255) = 510
712 /// alignTo(5, 8, 7) = 7
713 /// alignTo(17, 8, 1) = 17
714 /// alignTo(~0LL, 8, 3) = 3
715 /// alignTo(321, 255, 42) = 552
716 /// \endcode
717 inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
718 assert(Align != 0u && "Align can't be 0.");
719 Skew %= Align;
720 return (Value + Align - 1 - Skew) / Align * Align + Skew;
723 /// Returns the next integer (mod 2**64) that is greater than or equal to
724 /// \p Value and is a multiple of \c Align. \c Align must be non-zero.
725 template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
726 static_assert(Align != 0u, "Align must be non-zero");
727 return (Value + Align - 1) / Align * Align;
730 /// Returns the integer ceil(Numerator / Denominator).
731 inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
732 return alignTo(Numerator, Denominator) / Denominator;
735 /// Returns the largest uint64_t less than or equal to \p Value and is
736 /// \p Skew mod \p Align. \p Align must be non-zero
737 inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
738 assert(Align != 0u && "Align can't be 0.");
739 Skew %= Align;
740 return (Value - Skew) / Align * Align + Skew;
743 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
744 /// Requires 0 < B <= 32.
745 template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
746 static_assert(B > 0, "Bit width can't be 0.");
747 static_assert(B <= 32, "Bit width out of range.");
748 return int32_t(X << (32 - B)) >> (32 - B);
751 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
752 /// Requires 0 < B < 32.
753 inline int32_t SignExtend32(uint32_t X, unsigned B) {
754 assert(B > 0 && "Bit width can't be 0.");
755 assert(B <= 32 && "Bit width out of range.");
756 return int32_t(X << (32 - B)) >> (32 - B);
759 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
760 /// Requires 0 < B < 64.
761 template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
762 static_assert(B > 0, "Bit width can't be 0.");
763 static_assert(B <= 64, "Bit width out of range.");
764 return int64_t(x << (64 - B)) >> (64 - B);
767 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
768 /// Requires 0 < B < 64.
769 inline int64_t SignExtend64(uint64_t X, unsigned B) {
770 assert(B > 0 && "Bit width can't be 0.");
771 assert(B <= 64 && "Bit width out of range.");
772 return int64_t(X << (64 - B)) >> (64 - B);
775 /// Subtract two unsigned integers, X and Y, of type T and return the absolute
776 /// value of the result.
777 template <typename T>
778 typename std::enable_if<std::is_unsigned<T>::value, T>::type
779 AbsoluteDifference(T X, T Y) {
780 return std::max(X, Y) - std::min(X, Y);
783 /// Add two unsigned integers, X and Y, of type T. Clamp the result to the
784 /// maximum representable value of T on overflow. ResultOverflowed indicates if
785 /// the result is larger than the maximum representable value of type T.
786 template <typename T>
787 typename std::enable_if<std::is_unsigned<T>::value, T>::type
788 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
789 bool Dummy;
790 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
791 // Hacker's Delight, p. 29
792 T Z = X + Y;
793 Overflowed = (Z < X || Z < Y);
794 if (Overflowed)
795 return std::numeric_limits<T>::max();
796 else
797 return Z;
800 /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
801 /// maximum representable value of T on overflow. ResultOverflowed indicates if
802 /// the result is larger than the maximum representable value of type T.
803 template <typename T>
804 typename std::enable_if<std::is_unsigned<T>::value, T>::type
805 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
806 bool Dummy;
807 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
809 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
810 // because it fails for uint16_t (where multiplication can have undefined
811 // behavior due to promotion to int), and requires a division in addition
812 // to the multiplication.
814 Overflowed = false;
816 // Log2(Z) would be either Log2Z or Log2Z + 1.
817 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
818 // will necessarily be less than Log2Max as desired.
819 int Log2Z = Log2_64(X) + Log2_64(Y);
820 const T Max = std::numeric_limits<T>::max();
821 int Log2Max = Log2_64(Max);
822 if (Log2Z < Log2Max) {
823 return X * Y;
825 if (Log2Z > Log2Max) {
826 Overflowed = true;
827 return Max;
830 // We're going to use the top bit, and maybe overflow one
831 // bit past it. Multiply all but the bottom bit then add
832 // that on at the end.
833 T Z = (X >> 1) * Y;
834 if (Z & ~(Max >> 1)) {
835 Overflowed = true;
836 return Max;
838 Z <<= 1;
839 if (X & 1)
840 return SaturatingAdd(Z, Y, ResultOverflowed);
842 return Z;
845 /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
846 /// the product. Clamp the result to the maximum representable value of T on
847 /// overflow. ResultOverflowed indicates if the result is larger than the
848 /// maximum representable value of type T.
849 template <typename T>
850 typename std::enable_if<std::is_unsigned<T>::value, T>::type
851 SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
852 bool Dummy;
853 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
855 T Product = SaturatingMultiply(X, Y, &Overflowed);
856 if (Overflowed)
857 return Product;
859 return SaturatingAdd(A, Product, &Overflowed);
862 /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
863 extern const float huge_valf;
866 /// Add two signed integers, computing the two's complement truncated result,
867 /// returning true if overflow occured.
868 template <typename T>
869 typename std::enable_if<std::is_signed<T>::value, T>::type
870 AddOverflow(T X, T Y, T &Result) {
871 #if __has_builtin(__builtin_add_overflow)
872 return __builtin_add_overflow(X, Y, &Result);
873 #else
874 // Perform the unsigned addition.
875 using U = typename std::make_unsigned<T>::type;
876 const U UX = static_cast<U>(X);
877 const U UY = static_cast<U>(Y);
878 const U UResult = UX + UY;
880 // Convert to signed.
881 Result = static_cast<T>(UResult);
883 // Adding two positive numbers should result in a positive number.
884 if (X > 0 && Y > 0)
885 return Result <= 0;
886 // Adding two negatives should result in a negative number.
887 if (X < 0 && Y < 0)
888 return Result >= 0;
889 return false;
890 #endif
893 /// Subtract two signed integers, computing the two's complement truncated
894 /// result, returning true if an overflow ocurred.
895 template <typename T>
896 typename std::enable_if<std::is_signed<T>::value, T>::type
897 SubOverflow(T X, T Y, T &Result) {
898 #if __has_builtin(__builtin_sub_overflow)
899 return __builtin_sub_overflow(X, Y, &Result);
900 #else
901 // Perform the unsigned addition.
902 using U = typename std::make_unsigned<T>::type;
903 const U UX = static_cast<U>(X);
904 const U UY = static_cast<U>(Y);
905 const U UResult = UX - UY;
907 // Convert to signed.
908 Result = static_cast<T>(UResult);
910 // Subtracting a positive number from a negative results in a negative number.
911 if (X <= 0 && Y > 0)
912 return Result >= 0;
913 // Subtracting a negative number from a positive results in a positive number.
914 if (X >= 0 && Y < 0)
915 return Result <= 0;
916 return false;
917 #endif
921 /// Multiply two signed integers, computing the two's complement truncated
922 /// result, returning true if an overflow ocurred.
923 template <typename T>
924 typename std::enable_if<std::is_signed<T>::value, T>::type
925 MulOverflow(T X, T Y, T &Result) {
926 // Perform the unsigned multiplication on absolute values.
927 using U = typename std::make_unsigned<T>::type;
928 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
929 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
930 const U UResult = UX * UY;
932 // Convert to signed.
933 const bool IsNegative = (X < 0) ^ (Y < 0);
934 Result = IsNegative ? (0 - UResult) : UResult;
936 // If any of the args was 0, result is 0 and no overflow occurs.
937 if (UX == 0 || UY == 0)
938 return false;
940 // UX and UY are in [1, 2^n], where n is the number of digits.
941 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
942 // positive) divided by an argument compares to the other.
943 if (IsNegative)
944 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
945 else
946 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
949 } // End llvm namespace
951 #endif