[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / include / llvm / Target / GlobalISel / SelectionDAGCompat.td
blobb846d2252b8dc7cfe416af315cbc3ff03a9ac985
1 //===- TargetGlobalISel.td - Common code for GlobalISel ----*- tablegen -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the target-independent interfaces used to support
10 // SelectionDAG instruction selection patterns (specified in
11 // TargetSelectionDAG.td) when generating GlobalISel instruction selectors.
13 // This is intended as a compatibility layer, to enable reuse of target
14 // descriptions written for SelectionDAG without requiring explicit GlobalISel
15 // support.  It will eventually supersede SelectionDAG patterns.
17 //===----------------------------------------------------------------------===//
19 // Declare that a generic Instruction is 'equivalent' to an SDNode, that is,
20 // SelectionDAG patterns involving the SDNode can be transformed to match the
21 // Instruction instead.
22 class GINodeEquiv<Instruction i, SDNode node> {
23   Instruction I = i;
24   SDNode Node = node;
26   // SelectionDAG has separate nodes for atomic and non-atomic memory operations
27   // (ISD::LOAD, ISD::ATOMIC_LOAD, ISD::STORE, ISD::ATOMIC_STORE) but GlobalISel
28   // stores this information in the MachineMemoryOperand.
29   bit CheckMMOIsNonAtomic = 0;
30   bit CheckMMOIsAtomic = 0;
32   // SelectionDAG has one node for all loads and uses predicates to
33   // differentiate them. GlobalISel on the other hand uses separate opcodes.
34   // When this is true, the resulting opcode is G_LOAD/G_SEXTLOAD/G_ZEXTLOAD
35   // depending on the predicates on the node.
36   Instruction IfSignExtend = ?;
37   Instruction IfZeroExtend = ?;
39   // SelectionDAG has one setcc for all compares. This differentiates
40   // for G_ICMP and G_FCMP.
41   Instruction IfFloatingPoint = ?;
44 // These are defined in the same order as the G_* instructions.
45 def : GINodeEquiv<G_ANYEXT, anyext>;
46 def : GINodeEquiv<G_SEXT, sext>;
47 def : GINodeEquiv<G_ZEXT, zext>;
48 def : GINodeEquiv<G_TRUNC, trunc>;
49 def : GINodeEquiv<G_BITCAST, bitconvert>;
50 // G_INTTOPTR - SelectionDAG has no equivalent.
51 // G_PTRTOINT - SelectionDAG has no equivalent.
52 def : GINodeEquiv<G_CONSTANT, imm>;
53 def : GINodeEquiv<G_FCONSTANT, fpimm>;
54 def : GINodeEquiv<G_IMPLICIT_DEF, undef>;
55 def : GINodeEquiv<G_ADD, add>;
56 def : GINodeEquiv<G_SUB, sub>;
57 def : GINodeEquiv<G_MUL, mul>;
58 def : GINodeEquiv<G_UMULH, mulhu>;
59 def : GINodeEquiv<G_SMULH, mulhs>;
60 def : GINodeEquiv<G_SDIV, sdiv>;
61 def : GINodeEquiv<G_UDIV, udiv>;
62 def : GINodeEquiv<G_SREM, srem>;
63 def : GINodeEquiv<G_UREM, urem>;
64 def : GINodeEquiv<G_AND, and>;
65 def : GINodeEquiv<G_OR, or>;
66 def : GINodeEquiv<G_XOR, xor>;
67 def : GINodeEquiv<G_SHL, shl>;
68 def : GINodeEquiv<G_LSHR, srl>;
69 def : GINodeEquiv<G_ASHR, sra>;
70 def : GINodeEquiv<G_SELECT, select>;
71 def : GINodeEquiv<G_FNEG, fneg>;
72 def : GINodeEquiv<G_FPEXT, fpextend>;
73 def : GINodeEquiv<G_FPTRUNC, fpround>;
74 def : GINodeEquiv<G_FPTOSI, fp_to_sint>;
75 def : GINodeEquiv<G_FPTOUI, fp_to_uint>;
76 def : GINodeEquiv<G_SITOFP, sint_to_fp>;
77 def : GINodeEquiv<G_UITOFP, uint_to_fp>;
78 def : GINodeEquiv<G_FADD, fadd>;
79 def : GINodeEquiv<G_FSUB, fsub>;
80 def : GINodeEquiv<G_FMA, fma>;
81 def : GINodeEquiv<G_FMAD, fmad>;
82 def : GINodeEquiv<G_FMUL, fmul>;
83 def : GINodeEquiv<G_FDIV, fdiv>;
84 def : GINodeEquiv<G_FREM, frem>;
85 def : GINodeEquiv<G_FPOW, fpow>;
86 def : GINodeEquiv<G_FEXP2, fexp2>;
87 def : GINodeEquiv<G_FLOG2, flog2>;
88 def : GINodeEquiv<G_FCANONICALIZE, fcanonicalize>;
89 def : GINodeEquiv<G_INTRINSIC, intrinsic_wo_chain>;
90 // ISD::INTRINSIC_VOID can also be handled with G_INTRINSIC_W_SIDE_EFFECTS.
91 def : GINodeEquiv<G_INTRINSIC_W_SIDE_EFFECTS, intrinsic_void>;
92 def : GINodeEquiv<G_INTRINSIC_W_SIDE_EFFECTS, intrinsic_w_chain>;
93 def : GINodeEquiv<G_BR, br>;
94 def : GINodeEquiv<G_BSWAP, bswap>;
95 def : GINodeEquiv<G_BITREVERSE, bitreverse>;
96 def : GINodeEquiv<G_CTLZ, ctlz>;
97 def : GINodeEquiv<G_CTTZ, cttz>;
98 def : GINodeEquiv<G_CTLZ_ZERO_UNDEF, ctlz_zero_undef>;
99 def : GINodeEquiv<G_CTTZ_ZERO_UNDEF, cttz_zero_undef>;
100 def : GINodeEquiv<G_CTPOP, ctpop>;
101 def : GINodeEquiv<G_EXTRACT_VECTOR_ELT, vector_extract>;
102 def : GINodeEquiv<G_CONCAT_VECTORS, concat_vectors>;
103 def : GINodeEquiv<G_FCEIL, fceil>;
104 def : GINodeEquiv<G_FCOS, fcos>;
105 def : GINodeEquiv<G_FSIN, fsin>;
106 def : GINodeEquiv<G_FABS, fabs>;
107 def : GINodeEquiv<G_FSQRT, fsqrt>;
108 def : GINodeEquiv<G_FFLOOR, ffloor>;
109 def : GINodeEquiv<G_FRINT, frint>;
110 def : GINodeEquiv<G_FNEARBYINT, fnearbyint>;
111 def : GINodeEquiv<G_FCOPYSIGN, fcopysign>;
112 def : GINodeEquiv<G_SMIN, smin>;
113 def : GINodeEquiv<G_SMAX, smax>;
114 def : GINodeEquiv<G_UMIN, umin>;
115 def : GINodeEquiv<G_UMAX, umax>;
116 def : GINodeEquiv<G_FMINNUM, fminnum>;
117 def : GINodeEquiv<G_FMAXNUM, fmaxnum>;
118 def : GINodeEquiv<G_FMINNUM_IEEE, fminnum_ieee>;
119 def : GINodeEquiv<G_FMAXNUM_IEEE, fmaxnum_ieee>;
121 // Broadly speaking G_LOAD is equivalent to ISD::LOAD but there are some
122 // complications that tablegen must take care of. For example, Predicates such
123 // as isSignExtLoad require that this is not a perfect 1:1 mapping since a
124 // sign-extending load is (G_SEXTLOAD x) in GlobalISel. Additionally,
125 // G_LOAD handles both atomic and non-atomic loads where as SelectionDAG had
126 // separate nodes for them. This GINodeEquiv maps the non-atomic loads to
127 // G_LOAD with a non-atomic MachineMemOperand.
128 def : GINodeEquiv<G_LOAD, ld> {
129   let CheckMMOIsNonAtomic = 1;
130   let IfSignExtend = G_SEXTLOAD;
131   let IfZeroExtend = G_ZEXTLOAD;
134 def : GINodeEquiv<G_ICMP, setcc> {
135   let IfFloatingPoint = G_FCMP;
138 // Broadly speaking G_STORE is equivalent to ISD::STORE but there are some
139 // complications that tablegen must take care of. For example, predicates such
140 // as isTruncStore require that this is not a perfect 1:1 mapping since a
141 // truncating store is (G_STORE (G_TRUNCATE x)) in GlobalISel. Additionally,
142 // G_STORE handles both atomic and non-atomic stores where as SelectionDAG had
143 // separate nodes for them. This GINodeEquiv maps the non-atomic stores to
144 // G_STORE with a non-atomic MachineMemOperand.
145 def : GINodeEquiv<G_STORE, st> { let CheckMMOIsNonAtomic = 1; }
147 def : GINodeEquiv<G_LOAD, atomic_load> {
148   let CheckMMOIsNonAtomic = 0;
149   let CheckMMOIsAtomic = 1;
152 def : GINodeEquiv<G_ATOMIC_CMPXCHG, atomic_cmp_swap>;
153 def : GINodeEquiv<G_ATOMICRMW_XCHG, atomic_swap>;
154 def : GINodeEquiv<G_ATOMICRMW_ADD, atomic_load_add>;
155 def : GINodeEquiv<G_ATOMICRMW_SUB, atomic_load_sub>;
156 def : GINodeEquiv<G_ATOMICRMW_AND, atomic_load_and>;
157 def : GINodeEquiv<G_ATOMICRMW_NAND, atomic_load_nand>;
158 def : GINodeEquiv<G_ATOMICRMW_OR, atomic_load_or>;
159 def : GINodeEquiv<G_ATOMICRMW_XOR, atomic_load_xor>;
160 def : GINodeEquiv<G_ATOMICRMW_MIN, atomic_load_min>;
161 def : GINodeEquiv<G_ATOMICRMW_MAX, atomic_load_max>;
162 def : GINodeEquiv<G_ATOMICRMW_UMIN, atomic_load_umin>;
163 def : GINodeEquiv<G_ATOMICRMW_UMAX, atomic_load_umax>;
164 def : GINodeEquiv<G_ATOMICRMW_FADD, atomic_load_fadd>;
165 def : GINodeEquiv<G_ATOMICRMW_FSUB, atomic_load_fsub>;
166 def : GINodeEquiv<G_FENCE, atomic_fence>;
168 // Specifies the GlobalISel equivalents for SelectionDAG's ComplexPattern.
169 // Should be used on defs that subclass GIComplexOperandMatcher<>.
170 class GIComplexPatternEquiv<ComplexPattern seldag> {
171   ComplexPattern SelDAGEquivalent = seldag;
174 // Specifies the GlobalISel equivalents for SelectionDAG's SDNodeXForm.
175 // Should be used on defs that subclass GICustomOperandRenderer<>.
176 class GISDNodeXFormEquiv<SDNodeXForm seldag> {
177   SDNodeXForm SelDAGEquivalent = seldag;