1 //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the target-independent interfaces which should be
10 // implemented by each target which is using a TableGen based code generator.
12 //===----------------------------------------------------------------------===//
14 // Include all information about LLVM intrinsics.
15 include "llvm/IR/Intrinsics.td"
17 //===----------------------------------------------------------------------===//
18 // Register file description - These classes are used to fill in the target
19 // description classes.
21 class RegisterClass; // Forward def
23 class HwMode<string FS> {
24 // A string representing subtarget features that turn on this HW mode.
25 // For example, "+feat1,-feat2" will indicate that the mode is active
26 // when "feat1" is enabled and "feat2" is disabled at the same time.
27 // Any other features are not checked.
28 // When multiple modes are used, they should be mutually exclusive,
29 // otherwise the results are unpredictable.
33 // A special mode recognized by tablegen. This mode is considered active
34 // when no other mode is active. For targets that do not use specific hw
35 // modes, this is the only mode.
36 def DefaultMode : HwMode<"">;
38 // A class used to associate objects with HW modes. It is only intended to
39 // be used as a base class, where the derived class should contain a member
40 // "Objects", which is a list of the same length as the list of modes.
41 // The n-th element on the Objects list will be associated with the n-th
42 // element on the Modes list.
43 class HwModeSelect<list<HwMode> Ms> {
44 list<HwMode> Modes = Ms;
47 // A common class that implements a counterpart of ValueType, which is
48 // dependent on a HW mode. This class inherits from ValueType itself,
49 // which makes it possible to use objects of this class where ValueType
50 // objects could be used. This is specifically applicable to selection
52 class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
53 : HwModeSelect<Ms>, ValueType<0, 0> {
54 // The length of this list must be the same as the length of Ms.
55 list<ValueType> Objects = Ts;
58 // A class representing the register size, spill size and spill alignment
59 // in bits of a register.
60 class RegInfo<int RS, int SS, int SA> {
61 int RegSize = RS; // Register size in bits.
62 int SpillSize = SS; // Spill slot size in bits.
63 int SpillAlignment = SA; // Spill slot alignment in bits.
66 // The register size/alignment information, parameterized by a HW mode.
67 class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
69 // The length of this list must be the same as the length of Ms.
70 list<RegInfo> Objects = Ts;
73 // SubRegIndex - Use instances of SubRegIndex to identify subregisters.
74 class SubRegIndex<int size, int offset = 0> {
75 string Namespace = "";
77 // Size - Size (in bits) of the sub-registers represented by this index.
80 // Offset - Offset of the first bit that is part of this sub-register index.
81 // Set it to -1 if the same index is used to represent sub-registers that can
82 // be at different offsets (for example when using an index to access an
83 // element in a register tuple).
86 // ComposedOf - A list of two SubRegIndex instances, [A, B].
87 // This indicates that this SubRegIndex is the result of composing A and B.
88 // See ComposedSubRegIndex.
89 list<SubRegIndex> ComposedOf = [];
91 // CoveringSubRegIndices - A list of two or more sub-register indexes that
92 // cover this sub-register.
94 // This field should normally be left blank as TableGen can infer it.
96 // TableGen automatically detects sub-registers that straddle the registers
97 // in the SubRegs field of a Register definition. For example:
99 // Q0 = dsub_0 -> D0, dsub_1 -> D1
100 // Q1 = dsub_0 -> D2, dsub_1 -> D3
101 // D1_D2 = dsub_0 -> D1, dsub_1 -> D2
102 // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1
104 // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
105 // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
106 // CoveringSubRegIndices = [dsub_1, dsub_2].
107 list<SubRegIndex> CoveringSubRegIndices = [];
110 // ComposedSubRegIndex - A sub-register that is the result of composing A and B.
111 // Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
112 class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
113 : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
114 !if(!eq(B.Offset, -1), -1,
115 !add(A.Offset, B.Offset)))> {
117 let ComposedOf = [A, B];
120 // RegAltNameIndex - The alternate name set to use for register operands of
121 // this register class when printing.
122 class RegAltNameIndex {
123 string Namespace = "";
125 // A set to be used if the name for a register is not defined in this set.
126 // This allows creating name sets with only a few alternative names.
127 RegAltNameIndex FallbackRegAltNameIndex = ?;
129 def NoRegAltName : RegAltNameIndex;
131 // Register - You should define one instance of this class for each register
132 // in the target machine. String n will become the "name" of the register.
133 class Register<string n, list<string> altNames = []> {
134 string Namespace = "";
136 list<string> AltNames = altNames;
138 // Aliases - A list of registers that this register overlaps with. A read or
139 // modification of this register can potentially read or modify the aliased
141 list<Register> Aliases = [];
143 // SubRegs - A list of registers that are parts of this register. Note these
144 // are "immediate" sub-registers and the registers within the list do not
145 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
147 list<Register> SubRegs = [];
149 // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
150 // to address it. Sub-sub-register indices are automatically inherited from
152 list<SubRegIndex> SubRegIndices = [];
154 // RegAltNameIndices - The alternate name indices which are valid for this
156 list<RegAltNameIndex> RegAltNameIndices = [];
158 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
159 // These values can be determined by locating the <target>.h file in the
160 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
161 // order of these names correspond to the enumeration used by gcc. A value of
162 // -1 indicates that the gcc number is undefined and -2 that register number
163 // is invalid for this mode/flavour.
164 list<int> DwarfNumbers = [];
166 // CostPerUse - Additional cost of instructions using this register compared
167 // to other registers in its class. The register allocator will try to
168 // minimize the number of instructions using a register with a CostPerUse.
169 // This is used by the x86-64 and ARM Thumb targets where some registers
170 // require larger instruction encodings.
173 // CoveredBySubRegs - When this bit is set, the value of this register is
174 // completely determined by the value of its sub-registers. For example, the
175 // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
176 // covered by its sub-register AX.
177 bit CoveredBySubRegs = 0;
179 // HWEncoding - The target specific hardware encoding for this register.
180 bits<16> HWEncoding = 0;
182 bit isArtificial = 0;
185 // RegisterWithSubRegs - This can be used to define instances of Register which
186 // need to specify sub-registers.
187 // List "subregs" specifies which registers are sub-registers to this one. This
188 // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
189 // This allows the code generator to be careful not to put two values with
190 // overlapping live ranges into registers which alias.
191 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
192 let SubRegs = subregs;
195 // DAGOperand - An empty base class that unifies RegisterClass's and other forms
196 // of Operand's that are legal as type qualifiers in DAG patterns. This should
197 // only ever be used for defining multiclasses that are polymorphic over both
198 // RegisterClass's and other Operand's.
200 string OperandNamespace = "MCOI";
201 string DecoderMethod = "";
204 // RegisterClass - Now that all of the registers are defined, and aliases
205 // between registers are defined, specify which registers belong to which
206 // register classes. This also defines the default allocation order of
207 // registers by register allocators.
209 class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
210 dag regList, RegAltNameIndex idx = NoRegAltName>
212 string Namespace = namespace;
214 // The register size/alignment information, parameterized by a HW mode.
215 RegInfoByHwMode RegInfos;
217 // RegType - Specify the list ValueType of the registers in this register
218 // class. Note that all registers in a register class must have the same
219 // ValueTypes. This is a list because some targets permit storing different
220 // types in same register, for example vector values with 128-bit total size,
221 // but different count/size of items, like SSE on x86.
223 list<ValueType> RegTypes = regTypes;
225 // Size - Specify the spill size in bits of the registers. A default value of
226 // zero lets tablgen pick an appropriate size.
229 // Alignment - Specify the alignment required of the registers when they are
230 // stored or loaded to memory.
232 int Alignment = alignment;
234 // CopyCost - This value is used to specify the cost of copying a value
235 // between two registers in this register class. The default value is one
236 // meaning it takes a single instruction to perform the copying. A negative
237 // value means copying is extremely expensive or impossible.
240 // MemberList - Specify which registers are in this class. If the
241 // allocation_order_* method are not specified, this also defines the order of
242 // allocation used by the register allocator.
244 dag MemberList = regList;
246 // AltNameIndex - The alternate register name to use when printing operands
247 // of this register class. Every register in the register class must have
248 // a valid alternate name for the given index.
249 RegAltNameIndex altNameIndex = idx;
251 // isAllocatable - Specify that the register class can be used for virtual
252 // registers and register allocation. Some register classes are only used to
253 // model instruction operand constraints, and should have isAllocatable = 0.
254 bit isAllocatable = 1;
256 // AltOrders - List of alternative allocation orders. The default order is
257 // MemberList itself, and that is good enough for most targets since the
258 // register allocators automatically remove reserved registers and move
259 // callee-saved registers to the end.
260 list<dag> AltOrders = [];
262 // AltOrderSelect - The body of a function that selects the allocation order
263 // to use in a given machine function. The code will be inserted in a
264 // function like this:
266 // static inline unsigned f(const MachineFunction &MF) { ... }
268 // The function should return 0 to select the default order defined by
269 // MemberList, 1 to select the first AltOrders entry and so on.
270 code AltOrderSelect = [{}];
272 // Specify allocation priority for register allocators using a greedy
273 // heuristic. Classes with higher priority values are assigned first. This is
274 // useful as it is sometimes beneficial to assign registers to highly
275 // constrained classes first. The value has to be in the range [0,63].
276 int AllocationPriority = 0;
278 // The diagnostic type to present when referencing this operand in a match
279 // failure error message. If this is empty, the default Match_InvalidOperand
280 // diagnostic type will be used. If this is "<name>", a Match_<name> enum
281 // value will be generated and used for this operand type. The target
282 // assembly parser is responsible for converting this into a user-facing
283 // diagnostic message.
284 string DiagnosticType = "";
286 // A diagnostic message to emit when an invalid value is provided for this
287 // register class when it is being used an an assembly operand. If this is
288 // non-empty, an anonymous diagnostic type enum value will be generated, and
289 // the assembly matcher will provide a function to map from diagnostic types
290 // to message strings.
291 string DiagnosticString = "";
294 // The memberList in a RegisterClass is a dag of set operations. TableGen
295 // evaluates these set operations and expand them into register lists. These
296 // are the most common operation, see test/TableGen/SetTheory.td for more
297 // examples of what is possible:
299 // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
300 // register class, or a sub-expression. This is also the way to simply list
303 // (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
305 // (and GPR, CSR) - Set intersection. All registers from the first set that are
306 // also in the second set.
308 // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
309 // numbered registers. Takes an optional 4th operand which is a stride to use
310 // when generating the sequence.
312 // (shl GPR, 4) - Remove the first N elements.
314 // (trunc GPR, 4) - Truncate after the first N elements.
316 // (rotl GPR, 1) - Rotate N places to the left.
318 // (rotr GPR, 1) - Rotate N places to the right.
320 // (decimate GPR, 2) - Pick every N'th element, starting with the first.
322 // (interleave A, B, ...) - Interleave the elements from each argument list.
324 // All of these operators work on ordered sets, not lists. That means
325 // duplicates are removed from sub-expressions.
327 // Set operators. The rest is defined in TargetSelectionDAG.td.
332 // RegisterTuples - Automatically generate super-registers by forming tuples of
333 // sub-registers. This is useful for modeling register sequence constraints
334 // with pseudo-registers that are larger than the architectural registers.
336 // The sub-register lists are zipped together:
338 // def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
340 // Generates the same registers as:
342 // let SubRegIndices = [sube, subo] in {
343 // def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
344 // def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
347 // The generated pseudo-registers inherit super-classes and fields from their
348 // first sub-register. Most fields from the Register class are inferred, and
349 // the AsmName and Dwarf numbers are cleared.
351 // RegisterTuples instances can be used in other set operations to form
352 // register classes and so on. This is the only way of using the generated
355 // RegNames may be specified to supply asm names for the generated tuples.
356 // If used must have the same size as the list of produced registers.
357 class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
358 list<string> RegNames = []> {
359 // SubRegs - N lists of registers to be zipped up. Super-registers are
360 // synthesized from the first element of each SubRegs list, the second
361 // element and so on.
362 list<dag> SubRegs = Regs;
364 // SubRegIndices - N SubRegIndex instances. This provides the names of the
365 // sub-registers in the synthesized super-registers.
366 list<SubRegIndex> SubRegIndices = Indices;
368 // List of asm names for the generated tuple registers.
369 list<string> RegAsmNames = RegNames;
373 //===----------------------------------------------------------------------===//
374 // DwarfRegNum - This class provides a mapping of the llvm register enumeration
375 // to the register numbering used by gcc and gdb. These values are used by a
376 // debug information writer to describe where values may be located during
378 class DwarfRegNum<list<int> Numbers> {
379 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
380 // These values can be determined by locating the <target>.h file in the
381 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
382 // order of these names correspond to the enumeration used by gcc. A value of
383 // -1 indicates that the gcc number is undefined and -2 that register number
384 // is invalid for this mode/flavour.
385 list<int> DwarfNumbers = Numbers;
388 // DwarfRegAlias - This class declares that a given register uses the same dwarf
389 // numbers as another one. This is useful for making it clear that the two
390 // registers do have the same number. It also lets us build a mapping
391 // from dwarf register number to llvm register.
392 class DwarfRegAlias<Register reg> {
393 Register DwarfAlias = reg;
396 //===----------------------------------------------------------------------===//
397 // Pull in the common support for MCPredicate (portable scheduling predicates).
399 include "llvm/Target/TargetInstrPredicate.td"
401 //===----------------------------------------------------------------------===//
402 // Pull in the common support for scheduling
404 include "llvm/Target/TargetSchedule.td"
406 class Predicate; // Forward def
408 class InstructionEncoding {
409 // Size of encoded instruction.
412 // The "namespace" in which this instruction exists, on targets like ARM
413 // which multiple ISA namespaces exist.
414 string DecoderNamespace = "";
416 // List of predicates which will be turned into isel matching code.
417 list<Predicate> Predicates = [];
419 string DecoderMethod = "";
421 // Is the instruction decoder method able to completely determine if the
422 // given instruction is valid or not. If the TableGen definition of the
423 // instruction specifies bitpattern A??B where A and B are static bits, the
424 // hasCompleteDecoder flag says whether the decoder method fully handles the
425 // ?? space, i.e. if it is a final arbiter for the instruction validity.
426 // If not then the decoder attempts to continue decoding when the decoder
429 // This allows to handle situations where the encoding is not fully
430 // orthogonal. Example:
431 // * InstA with bitpattern 0b0000????,
432 // * InstB with bitpattern 0b000000?? but the associated decoder method
433 // DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
435 // The decoder tries to decode a bitpattern that matches both InstA and
436 // InstB bitpatterns first as InstB (because it is the most specific
437 // encoding). In the default case (hasCompleteDecoder = 1), when
438 // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
439 // hasCompleteDecoder = 0 in InstB, the decoder is informed that
440 // DecodeInstB() is not able to determine if all possible values of ?? are
441 // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
442 // decode the bitpattern as InstA too.
443 bit hasCompleteDecoder = 1;
446 // Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
447 // an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
448 // to encode and decode based on HwMode.
449 class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
451 // The length of this list must be the same as the length of Ms.
452 list<InstructionEncoding> Objects = Ts;
455 //===----------------------------------------------------------------------===//
456 // Instruction set description - These classes correspond to the C++ classes in
457 // the Target/TargetInstrInfo.h file.
459 class Instruction : InstructionEncoding {
460 string Namespace = "";
462 dag OutOperandList; // An dag containing the MI def operand list.
463 dag InOperandList; // An dag containing the MI use operand list.
464 string AsmString = ""; // The .s format to print the instruction with.
466 // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
467 // the Inst member of this Instruction is ignored.
468 EncodingByHwMode EncodingInfos;
470 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
471 // otherwise, uninitialized.
474 // The follow state will eventually be inferred automatically from the
475 // instruction pattern.
477 list<Register> Uses = []; // Default to using no non-operand registers
478 list<Register> Defs = []; // Default to modifying no non-operand registers
480 // Predicates - List of predicates which will be turned into isel matching
482 list<Predicate> Predicates = [];
484 // Size - Size of encoded instruction, or zero if the size cannot be determined
488 // Code size, for instruction selection.
489 // FIXME: What does this actually mean?
492 // Added complexity passed onto matching pattern.
493 int AddedComplexity = 0;
495 // Indicates if this is a pre-isel opcode that should be
496 // legalized/regbankselected/selected.
497 bit isPreISelOpcode = 0;
499 // These bits capture information about the high-level semantics of the
501 bit isReturn = 0; // Is this instruction a return instruction?
502 bit isBranch = 0; // Is this instruction a branch instruction?
503 bit isEHScopeReturn = 0; // Does this instruction end an EH scope?
504 bit isIndirectBranch = 0; // Is this instruction an indirect branch?
505 bit isCompare = 0; // Is this instruction a comparison instruction?
506 bit isMoveImm = 0; // Is this instruction a move immediate instruction?
507 bit isMoveReg = 0; // Is this instruction a move register instruction?
508 bit isBitcast = 0; // Is this instruction a bitcast instruction?
509 bit isSelect = 0; // Is this instruction a select instruction?
510 bit isBarrier = 0; // Can control flow fall through this instruction?
511 bit isCall = 0; // Is this instruction a call instruction?
512 bit isAdd = 0; // Is this instruction an add instruction?
513 bit isTrap = 0; // Is this instruction a trap instruction?
514 bit canFoldAsLoad = 0; // Can this be folded as a simple memory operand?
515 bit mayLoad = ?; // Is it possible for this inst to read memory?
516 bit mayStore = ?; // Is it possible for this inst to write memory?
517 bit mayRaiseFPException = 0; // Can this raise a floating-point exception?
518 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
519 bit isCommutable = 0; // Is this 3 operand instruction commutable?
520 bit isTerminator = 0; // Is this part of the terminator for a basic block?
521 bit isReMaterializable = 0; // Is this instruction re-materializable?
522 bit isPredicable = 0; // 1 means this instruction is predicable
523 // even if it does not have any operand
524 // tablegen can identify as a predicate
525 bit isUnpredicable = 0; // 1 means this instruction is not predicable
526 // even if it _does_ have a predicate operand
527 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
528 bit usesCustomInserter = 0; // Pseudo instr needing special help.
529 bit hasPostISelHook = 0; // To be *adjusted* after isel by target hook.
530 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
531 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
532 bit isConvergent = 0; // Is this instruction convergent?
533 bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
534 bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
535 bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
536 bit isRegSequence = 0; // Is this instruction a kind of reg sequence?
537 // If so, make sure to override
538 // TargetInstrInfo::getRegSequenceLikeInputs.
539 bit isPseudo = 0; // Is this instruction a pseudo-instruction?
540 // If so, won't have encoding information for
541 // the [MC]CodeEmitter stuff.
542 bit isExtractSubreg = 0; // Is this instruction a kind of extract subreg?
543 // If so, make sure to override
544 // TargetInstrInfo::getExtractSubregLikeInputs.
545 bit isInsertSubreg = 0; // Is this instruction a kind of insert subreg?
546 // If so, make sure to override
547 // TargetInstrInfo::getInsertSubregLikeInputs.
548 bit variadicOpsAreDefs = 0; // Are variadic operands definitions?
550 // Does the instruction have side effects that are not captured by any
551 // operands of the instruction or other flags?
552 bit hasSideEffects = ?;
554 // Is this instruction a "real" instruction (with a distinct machine
555 // encoding), or is it a pseudo instruction used for codegen modeling
557 // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
558 // instructions can (and often do) still have encoding information
559 // associated with them. Once we've migrated all of them over to true
560 // pseudo-instructions that are lowered to real instructions prior to
561 // the printer/emitter, we can remove this attribute and just use isPseudo.
563 // The intended use is:
564 // isPseudo: Does not have encoding information and should be expanded,
565 // at the latest, during lowering to MCInst.
567 // isCodeGenOnly: Does have encoding information and can go through to the
568 // CodeEmitter unchanged, but duplicates a canonical instruction
569 // definition's encoding and should be ignored when constructing the
570 // assembler match tables.
571 bit isCodeGenOnly = 0;
573 // Is this instruction a pseudo instruction for use by the assembler parser.
574 bit isAsmParserOnly = 0;
576 // This instruction is not expected to be queried for scheduling latencies
577 // and therefore needs no scheduling information even for a complete
579 bit hasNoSchedulingInfo = 0;
581 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
583 // Scheduling information from TargetSchedule.td.
584 list<SchedReadWrite> SchedRW;
586 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
588 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
589 /// be encoded into the output machineinstr.
590 string DisableEncoding = "";
592 string PostEncoderMethod = "";
594 /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
595 bits<64> TSFlags = 0;
597 ///@name Assembler Parser Support
600 string AsmMatchConverter = "";
602 /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
603 /// two-operand matcher inst-alias for a three operand instruction.
604 /// For example, the arm instruction "add r3, r3, r5" can be written
605 /// as "add r3, r5". The constraint is of the same form as a tied-operand
606 /// constraint. For example, "$Rn = $Rd".
607 string TwoOperandAliasConstraint = "";
609 /// Assembler variant name to use for this instruction. If specified then
610 /// instruction will be presented only in MatchTable for this variant. If
611 /// not specified then assembler variants will be determined based on
613 string AsmVariantName = "";
617 /// UseNamedOperandTable - If set, the operand indices of this instruction
618 /// can be queried via the getNamedOperandIdx() function which is generated
620 bit UseNamedOperandTable = 0;
622 /// Should FastISel ignore this instruction. For certain ISAs, they have
623 /// instructions which map to the same ISD Opcode, value type operands and
624 /// instruction selection predicates. FastISel cannot handle such cases, but
625 /// SelectionDAG can.
626 bit FastISelShouldIgnore = 0;
629 /// Defines an additional encoding that disassembles to the given instruction
630 /// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
631 // to specify their size.
632 class AdditionalEncoding<Instruction I> : InstructionEncoding {
633 Instruction AliasOf = I;
636 /// PseudoInstExpansion - Expansion information for a pseudo-instruction.
637 /// Which instruction it expands to and how the operands map from the
639 class PseudoInstExpansion<dag Result> {
640 dag ResultInst = Result; // The instruction to generate.
644 /// Predicates - These are extra conditionals which are turned into instruction
645 /// selector matching code. Currently each predicate is just a string.
646 class Predicate<string cond> {
647 string CondString = cond;
649 /// AssemblerMatcherPredicate - If this feature can be used by the assembler
650 /// matcher, this is true. Targets should set this by inheriting their
651 /// feature from the AssemblerPredicate class in addition to Predicate.
652 bit AssemblerMatcherPredicate = 0;
654 /// AssemblerCondString - Name of the subtarget feature being tested used
655 /// as alternative condition string used for assembler matcher.
656 /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
657 /// "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
658 /// It can also list multiple features separated by ",".
659 /// e.g. "ModeThumb,FeatureThumb2" is translated to
660 /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
661 string AssemblerCondString = "";
663 /// PredicateName - User-level name to use for the predicate. Mainly for use
664 /// in diagnostics such as missing feature errors in the asm matcher.
665 string PredicateName = "";
667 /// Setting this to '1' indicates that the predicate must be recomputed on
668 /// every function change. Most predicates can leave this at '0'.
670 /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
671 bit RecomputePerFunction = 0;
674 /// NoHonorSignDependentRounding - This predicate is true if support for
675 /// sign-dependent-rounding is not enabled.
676 def NoHonorSignDependentRounding
677 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
679 class Requires<list<Predicate> preds> {
680 list<Predicate> Predicates = preds;
683 /// ops definition - This is just a simple marker used to identify the operand
684 /// list for an instruction. outs and ins are identical both syntactically and
685 /// semantically; they are used to define def operands and use operands to
686 /// improve readibility. This should be used like this:
687 /// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
692 /// variable_ops definition - Mark this instruction as taking a variable number
697 /// PointerLikeRegClass - Values that are designed to have pointer width are
698 /// derived from this. TableGen treats the register class as having a symbolic
699 /// type that it doesn't know, and resolves the actual regclass to use by using
700 /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
701 class PointerLikeRegClass<int Kind> {
702 int RegClassKind = Kind;
706 /// ptr_rc definition - Mark this operand as being a pointer value whose
707 /// register class is resolved dynamically via a callback to TargetInstrInfo.
708 /// FIXME: We should probably change this to a class which contain a list of
709 /// flags. But currently we have but one flag.
710 def ptr_rc : PointerLikeRegClass<0>;
712 /// unknown definition - Mark this operand as being of unknown type, causing
713 /// it to be resolved by inference in the context it is used.
715 def unknown : unknown_class;
717 /// AsmOperandClass - Representation for the kinds of operands which the target
718 /// specific parser can create and the assembly matcher may need to distinguish.
720 /// Operand classes are used to define the order in which instructions are
721 /// matched, to ensure that the instruction which gets matched for any
722 /// particular list of operands is deterministic.
724 /// The target specific parser must be able to classify a parsed operand into a
725 /// unique class which does not partially overlap with any other classes. It can
726 /// match a subset of some other class, in which case the super class field
727 /// should be defined.
728 class AsmOperandClass {
729 /// The name to use for this class, which should be usable as an enum value.
732 /// The super classes of this operand.
733 list<AsmOperandClass> SuperClasses = [];
735 /// The name of the method on the target specific operand to call to test
736 /// whether the operand is an instance of this class. If not set, this will
737 /// default to "isFoo", where Foo is the AsmOperandClass name. The method
738 /// signature should be:
739 /// bool isFoo() const;
740 string PredicateMethod = ?;
742 /// The name of the method on the target specific operand to call to add the
743 /// target specific operand to an MCInst. If not set, this will default to
744 /// "addFooOperands", where Foo is the AsmOperandClass name. The method
745 /// signature should be:
746 /// void addFooOperands(MCInst &Inst, unsigned N) const;
747 string RenderMethod = ?;
749 /// The name of the method on the target specific operand to call to custom
750 /// handle the operand parsing. This is useful when the operands do not relate
751 /// to immediates or registers and are very instruction specific (as flags to
752 /// set in a processor register, coprocessor number, ...).
753 string ParserMethod = ?;
755 // The diagnostic type to present when referencing this operand in a
756 // match failure error message. By default, use a generic "invalid operand"
757 // diagnostic. The target AsmParser maps these codes to text.
758 string DiagnosticType = "";
760 /// A diagnostic message to emit when an invalid value is provided for this
762 string DiagnosticString = "";
764 /// Set to 1 if this operand is optional and not always required. Typically,
765 /// the AsmParser will emit an error when it finishes parsing an
766 /// instruction if it hasn't matched all the operands yet. However, this
767 /// error will be suppressed if all of the remaining unmatched operands are
768 /// marked as IsOptional.
770 /// Optional arguments must be at the end of the operand list.
773 /// The name of the method on the target specific asm parser that returns the
774 /// default operand for this optional operand. This method is only used if
775 /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
776 /// where Foo is the AsmOperandClass name. The method signature should be:
777 /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
778 string DefaultMethod = ?;
781 def ImmAsmOperand : AsmOperandClass {
785 /// Operand Types - These provide the built-in operand types that may be used
786 /// by a target. Targets can optionally provide their own operand types as
787 /// needed, though this should not be needed for RISC targets.
788 class Operand<ValueType ty> : DAGOperand {
790 string PrintMethod = "printOperand";
791 string EncoderMethod = "";
792 bit hasCompleteDecoder = 1;
793 string OperandType = "OPERAND_UNKNOWN";
794 dag MIOperandInfo = (ops);
796 // MCOperandPredicate - Optionally, a code fragment operating on
797 // const MCOperand &MCOp, and returning a bool, to indicate if
798 // the value of MCOp is valid for the specific subclass of Operand
799 code MCOperandPredicate;
801 // ParserMatchClass - The "match class" that operands of this type fit
802 // in. Match classes are used to define the order in which instructions are
803 // match, to ensure that which instructions gets matched is deterministic.
805 // The target specific parser must be able to classify an parsed operand into
806 // a unique class, which does not partially overlap with any other classes. It
807 // can match a subset of some other class, in which case the AsmOperandClass
808 // should declare the other operand as one of its super classes.
809 AsmOperandClass ParserMatchClass = ImmAsmOperand;
812 class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
814 // RegClass - The register class of the operand.
815 RegisterClass RegClass = regclass;
816 // PrintMethod - The target method to call to print register operands of
817 // this type. The method normally will just use an alt-name index to look
818 // up the name to print. Default to the generic printOperand().
819 string PrintMethod = pm;
821 // EncoderMethod - The target method name to call to encode this register
823 string EncoderMethod = "";
825 // ParserMatchClass - The "match class" that operands of this type fit
826 // in. Match classes are used to define the order in which instructions are
827 // match, to ensure that which instructions gets matched is deterministic.
829 // The target specific parser must be able to classify an parsed operand into
830 // a unique class, which does not partially overlap with any other classes. It
831 // can match a subset of some other class, in which case the AsmOperandClass
832 // should declare the other operand as one of its super classes.
833 AsmOperandClass ParserMatchClass;
835 string OperandType = "OPERAND_REGISTER";
837 // When referenced in the result of a CodeGen pattern, GlobalISel will
838 // normally copy the matched operand to the result. When this is set, it will
839 // emit a special copy that will replace zero-immediates with the specified
841 Register GIZeroRegister = ?;
844 let OperandType = "OPERAND_IMMEDIATE" in {
845 def i1imm : Operand<i1>;
846 def i8imm : Operand<i8>;
847 def i16imm : Operand<i16>;
848 def i32imm : Operand<i32>;
849 def i64imm : Operand<i64>;
851 def f32imm : Operand<f32>;
852 def f64imm : Operand<f64>;
855 // Register operands for generic instructions don't have an MVT, but do have
856 // constraints linking the operands (e.g. all operands of a G_ADD must
857 // have the same LLT).
858 class TypedOperand<string Ty> : Operand<untyped> {
859 let OperandType = Ty;
864 def type0 : TypedOperand<"OPERAND_GENERIC_0">;
865 def type1 : TypedOperand<"OPERAND_GENERIC_1">;
866 def type2 : TypedOperand<"OPERAND_GENERIC_2">;
867 def type3 : TypedOperand<"OPERAND_GENERIC_3">;
868 def type4 : TypedOperand<"OPERAND_GENERIC_4">;
869 def type5 : TypedOperand<"OPERAND_GENERIC_5">;
871 let IsPointer = 1 in {
872 def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
873 def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
874 def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
875 def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
876 def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
877 def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
880 // untyped_imm is for operands where isImm() will be true. It currently has no
881 // special behaviour and is only used for clarity.
882 def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
886 /// zero_reg definition - Special node to stand for the zero register.
890 /// All operands which the MC layer classifies as predicates should inherit from
891 /// this class in some manner. This is already handled for the most commonly
892 /// used PredicateOperand, but may be useful in other circumstances.
895 /// OperandWithDefaultOps - This Operand class can be used as the parent class
896 /// for an Operand that needs to be initialized with a default value if
897 /// no value is supplied in a pattern. This class can be used to simplify the
898 /// pattern definitions for instructions that have target specific flags
899 /// encoded as immediate operands.
900 class OperandWithDefaultOps<ValueType ty, dag defaultops>
902 dag DefaultOps = defaultops;
905 /// PredicateOperand - This can be used to define a predicate operand for an
906 /// instruction. OpTypes specifies the MIOperandInfo for the operand, and
907 /// AlwaysVal specifies the value of this predicate when set to "always
909 class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
910 : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
911 let MIOperandInfo = OpTypes;
914 /// OptionalDefOperand - This is used to define a optional definition operand
915 /// for an instruction. DefaultOps is the register the operand represents if
916 /// none is supplied, e.g. zero_reg.
917 class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
918 : OperandWithDefaultOps<ty, defaultops> {
919 let MIOperandInfo = OpTypes;
923 // InstrInfo - This class should only be instantiated once to provide parameters
924 // which are global to the target machine.
927 // Target can specify its instructions in either big or little-endian formats.
928 // For instance, while both Sparc and PowerPC are big-endian platforms, the
929 // Sparc manual specifies its instructions in the format [31..0] (big), while
930 // PowerPC specifies them using the format [0..31] (little).
931 bit isLittleEndianEncoding = 0;
933 // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
934 // by default, and TableGen will infer their value from the instruction
935 // pattern when possible.
937 // Normally, TableGen will issue an error it it can't infer the value of a
938 // property that hasn't been set explicitly. When guessInstructionProperties
939 // is set, it will guess a safe value instead.
941 // This option is a temporary migration help. It will go away.
942 bit guessInstructionProperties = 1;
944 // TableGen's instruction encoder generator has support for matching operands
945 // to bit-field variables both by name and by position. While matching by
946 // name is preferred, this is currently not possible for complex operands,
947 // and some targets still reply on the positional encoding rules. When
948 // generating a decoder for such targets, the positional encoding rules must
949 // be used by the decoder generator as well.
951 // This option is temporary; it will go away once the TableGen decoder
952 // generator has better support for complex operands and targets have
953 // migrated away from using positionally encoded operands.
954 bit decodePositionallyEncodedOperands = 0;
956 // When set, this indicates that there will be no overlap between those
957 // operands that are matched by ordering (positional operands) and those
960 // This option is temporary; it will go away once the TableGen decoder
961 // generator has better support for complex operands and targets have
962 // migrated away from using positionally encoded operands.
963 bit noNamedPositionallyEncodedOperands = 0;
966 // Standard Pseudo Instructions.
967 // This list must match TargetOpcodes.def.
968 // Only these instructions are allowed in the TargetOpcode namespace.
969 // Ensure mayLoad and mayStore have a default value, so as not to break
970 // targets that set guessInstructionProperties=0. Any local definition of
971 // mayLoad/mayStore takes precedence over these default values.
972 class StandardPseudoInstruction : Instruction {
975 let isCodeGenOnly = 1;
977 let hasNoSchedulingInfo = 1;
978 let Namespace = "TargetOpcode";
980 def PHI : StandardPseudoInstruction {
981 let OutOperandList = (outs unknown:$dst);
982 let InOperandList = (ins variable_ops);
983 let AsmString = "PHINODE";
984 let hasSideEffects = 0;
986 def INLINEASM : StandardPseudoInstruction {
987 let OutOperandList = (outs);
988 let InOperandList = (ins variable_ops);
990 let hasSideEffects = 0; // Note side effect is encoded in an operand.
992 def INLINEASM_BR : StandardPseudoInstruction {
993 let OutOperandList = (outs);
994 let InOperandList = (ins variable_ops);
996 let hasSideEffects = 0; // Note side effect is encoded in an operand.
997 let isTerminator = 1;
999 let isIndirectBranch = 1;
1001 def CFI_INSTRUCTION : StandardPseudoInstruction {
1002 let OutOperandList = (outs);
1003 let InOperandList = (ins i32imm:$id);
1006 let hasSideEffects = 0;
1007 let isNotDuplicable = 1;
1009 def EH_LABEL : StandardPseudoInstruction {
1010 let OutOperandList = (outs);
1011 let InOperandList = (ins i32imm:$id);
1014 let hasSideEffects = 0;
1015 let isNotDuplicable = 1;
1017 def GC_LABEL : StandardPseudoInstruction {
1018 let OutOperandList = (outs);
1019 let InOperandList = (ins i32imm:$id);
1022 let hasSideEffects = 0;
1023 let isNotDuplicable = 1;
1025 def ANNOTATION_LABEL : StandardPseudoInstruction {
1026 let OutOperandList = (outs);
1027 let InOperandList = (ins i32imm:$id);
1030 let hasSideEffects = 0;
1031 let isNotDuplicable = 1;
1033 def KILL : StandardPseudoInstruction {
1034 let OutOperandList = (outs);
1035 let InOperandList = (ins variable_ops);
1037 let hasSideEffects = 0;
1039 def EXTRACT_SUBREG : StandardPseudoInstruction {
1040 let OutOperandList = (outs unknown:$dst);
1041 let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
1043 let hasSideEffects = 0;
1045 def INSERT_SUBREG : StandardPseudoInstruction {
1046 let OutOperandList = (outs unknown:$dst);
1047 let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
1049 let hasSideEffects = 0;
1050 let Constraints = "$supersrc = $dst";
1052 def IMPLICIT_DEF : StandardPseudoInstruction {
1053 let OutOperandList = (outs unknown:$dst);
1054 let InOperandList = (ins);
1056 let hasSideEffects = 0;
1057 let isReMaterializable = 1;
1058 let isAsCheapAsAMove = 1;
1060 def SUBREG_TO_REG : StandardPseudoInstruction {
1061 let OutOperandList = (outs unknown:$dst);
1062 let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
1064 let hasSideEffects = 0;
1066 def COPY_TO_REGCLASS : StandardPseudoInstruction {
1067 let OutOperandList = (outs unknown:$dst);
1068 let InOperandList = (ins unknown:$src, i32imm:$regclass);
1070 let hasSideEffects = 0;
1071 let isAsCheapAsAMove = 1;
1073 def DBG_VALUE : StandardPseudoInstruction {
1074 let OutOperandList = (outs);
1075 let InOperandList = (ins variable_ops);
1076 let AsmString = "DBG_VALUE";
1077 let hasSideEffects = 0;
1079 def DBG_LABEL : StandardPseudoInstruction {
1080 let OutOperandList = (outs);
1081 let InOperandList = (ins unknown:$label);
1082 let AsmString = "DBG_LABEL";
1083 let hasSideEffects = 0;
1085 def REG_SEQUENCE : StandardPseudoInstruction {
1086 let OutOperandList = (outs unknown:$dst);
1087 let InOperandList = (ins unknown:$supersrc, variable_ops);
1089 let hasSideEffects = 0;
1090 let isAsCheapAsAMove = 1;
1092 def COPY : StandardPseudoInstruction {
1093 let OutOperandList = (outs unknown:$dst);
1094 let InOperandList = (ins unknown:$src);
1096 let hasSideEffects = 0;
1097 let isAsCheapAsAMove = 1;
1098 let hasNoSchedulingInfo = 0;
1100 def BUNDLE : StandardPseudoInstruction {
1101 let OutOperandList = (outs);
1102 let InOperandList = (ins variable_ops);
1103 let AsmString = "BUNDLE";
1104 let hasSideEffects = 0;
1106 def LIFETIME_START : StandardPseudoInstruction {
1107 let OutOperandList = (outs);
1108 let InOperandList = (ins i32imm:$id);
1109 let AsmString = "LIFETIME_START";
1110 let hasSideEffects = 0;
1112 def LIFETIME_END : StandardPseudoInstruction {
1113 let OutOperandList = (outs);
1114 let InOperandList = (ins i32imm:$id);
1115 let AsmString = "LIFETIME_END";
1116 let hasSideEffects = 0;
1118 def STACKMAP : StandardPseudoInstruction {
1119 let OutOperandList = (outs);
1120 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1121 let hasSideEffects = 1;
1124 let usesCustomInserter = 1;
1126 def PATCHPOINT : StandardPseudoInstruction {
1127 let OutOperandList = (outs unknown:$dst);
1128 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1129 i32imm:$nargs, i32imm:$cc, variable_ops);
1130 let hasSideEffects = 1;
1133 let usesCustomInserter = 1;
1135 def STATEPOINT : StandardPseudoInstruction {
1136 let OutOperandList = (outs);
1137 let InOperandList = (ins variable_ops);
1138 let usesCustomInserter = 1;
1141 let hasSideEffects = 1;
1144 def LOAD_STACK_GUARD : StandardPseudoInstruction {
1145 let OutOperandList = (outs ptr_rc:$dst);
1146 let InOperandList = (ins);
1148 bit isReMaterializable = 1;
1149 let hasSideEffects = 0;
1152 def LOCAL_ESCAPE : StandardPseudoInstruction {
1153 // This instruction is really just a label. It has to be part of the chain so
1154 // that it doesn't get dropped from the DAG, but it produces nothing and has
1156 let OutOperandList = (outs);
1157 let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1158 let hasSideEffects = 0;
1161 def FAULTING_OP : StandardPseudoInstruction {
1162 let OutOperandList = (outs unknown:$dst);
1163 let InOperandList = (ins variable_ops);
1164 let usesCustomInserter = 1;
1165 let hasSideEffects = 1;
1168 let isTerminator = 1;
1171 def PATCHABLE_OP : StandardPseudoInstruction {
1172 let OutOperandList = (outs);
1173 let InOperandList = (ins variable_ops);
1174 let usesCustomInserter = 1;
1177 let hasSideEffects = 1;
1179 def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1180 let OutOperandList = (outs);
1181 let InOperandList = (ins);
1182 let AsmString = "# XRay Function Enter.";
1183 let usesCustomInserter = 1;
1184 let hasSideEffects = 0;
1186 def PATCHABLE_RET : StandardPseudoInstruction {
1187 let OutOperandList = (outs);
1188 let InOperandList = (ins variable_ops);
1189 let AsmString = "# XRay Function Patchable RET.";
1190 let usesCustomInserter = 1;
1191 let hasSideEffects = 1;
1192 let isTerminator = 1;
1195 def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1196 let OutOperandList = (outs);
1197 let InOperandList = (ins);
1198 let AsmString = "# XRay Function Exit.";
1199 let usesCustomInserter = 1;
1200 let hasSideEffects = 0; // FIXME: is this correct?
1201 let isReturn = 0; // Original return instruction will follow
1203 def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
1204 let OutOperandList = (outs);
1205 let InOperandList = (ins variable_ops);
1206 let AsmString = "# XRay Tail Call Exit.";
1207 let usesCustomInserter = 1;
1208 let hasSideEffects = 1;
1211 def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1212 let OutOperandList = (outs);
1213 let InOperandList = (ins ptr_rc:$event, i8imm:$size);
1214 let AsmString = "# XRay Custom Event Log.";
1215 let usesCustomInserter = 1;
1219 let hasSideEffects = 1;
1221 def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1222 let OutOperandList = (outs);
1223 let InOperandList = (ins i16imm:$type, ptr_rc:$event, i32imm:$size);
1224 let AsmString = "# XRay Typed Event Log.";
1225 let usesCustomInserter = 1;
1229 let hasSideEffects = 1;
1231 def FENTRY_CALL : StandardPseudoInstruction {
1232 let OutOperandList = (outs);
1233 let InOperandList = (ins);
1234 let AsmString = "# FEntry call";
1235 let usesCustomInserter = 1;
1238 let hasSideEffects = 1;
1240 def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1241 let OutOperandList = (outs);
1242 let InOperandList = (ins variable_ops);
1244 let hasSideEffects = 1;
1247 // Generic opcodes used in GlobalISel.
1248 include "llvm/Target/GenericOpcodes.td"
1250 //===----------------------------------------------------------------------===//
1251 // AsmParser - This class can be implemented by targets that wish to implement
1254 // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1255 // syntax on X86 for example).
1258 // AsmParserClassName - This specifies the suffix to use for the asmparser
1259 // class. Generated AsmParser classes are always prefixed with the target
1261 string AsmParserClassName = "AsmParser";
1263 // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1264 // function of the AsmParser class to call on every matched instruction.
1265 // This can be used to perform target specific instruction post-processing.
1266 string AsmParserInstCleanup = "";
1268 // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1269 // written register name matcher
1270 bit ShouldEmitMatchRegisterName = 1;
1272 // Set to true if the target needs a generated 'alternative register name'
1275 // This generates a function which can be used to lookup registers from
1276 // their aliases. This function will fail when called on targets where
1277 // several registers share the same alias (i.e. not a 1:1 mapping).
1278 bit ShouldEmitMatchRegisterAltName = 0;
1280 // Set to true if MatchRegisterName and MatchRegisterAltName functions
1281 // should be generated even if there are duplicate register names. The
1282 // target is responsible for coercing aliased registers as necessary
1283 // (e.g. in validateTargetOperandClass), and there are no guarantees about
1284 // which numeric register identifier will be returned in the case of
1285 // multiple matches.
1286 bit AllowDuplicateRegisterNames = 0;
1288 // HasMnemonicFirst - Set to false if target instructions don't always
1289 // start with a mnemonic as the first token.
1290 bit HasMnemonicFirst = 1;
1292 // ReportMultipleNearMisses -
1293 // When 0, the assembly matcher reports an error for one encoding or operand
1294 // that did not match the parsed instruction.
1295 // When 1, the assmebly matcher returns a list of encodings that were close
1296 // to matching the parsed instruction, so to allow more detailed error
1298 bit ReportMultipleNearMisses = 0;
1300 def DefaultAsmParser : AsmParser;
1302 //===----------------------------------------------------------------------===//
1303 // AsmParserVariant - Subtargets can have multiple different assembly parsers
1304 // (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1305 // implemented by targets to describe such variants.
1307 class AsmParserVariant {
1308 // Variant - AsmParsers can be of multiple different variants. Variants are
1309 // used to support targets that need to parser multiple formats for the
1310 // assembly language.
1313 // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1316 // CommentDelimiter - If given, the delimiter string used to recognize
1317 // comments which are hard coded in the .td assembler strings for individual
1319 string CommentDelimiter = "";
1321 // RegisterPrefix - If given, the token prefix which indicates a register
1322 // token. This is used by the matcher to automatically recognize hard coded
1323 // register tokens as constrained registers, instead of tokens, for the
1324 // purposes of matching.
1325 string RegisterPrefix = "";
1327 // TokenizingCharacters - Characters that are standalone tokens
1328 string TokenizingCharacters = "[]*!";
1330 // SeparatorCharacters - Characters that are not tokens
1331 string SeparatorCharacters = " \t,";
1333 // BreakCharacters - Characters that start new identifiers
1334 string BreakCharacters = "";
1336 def DefaultAsmParserVariant : AsmParserVariant;
1338 /// AssemblerPredicate - This is a Predicate that can be used when the assembler
1339 /// matches instructions and aliases.
1340 class AssemblerPredicate<string cond, string name = ""> {
1341 bit AssemblerMatcherPredicate = 1;
1342 string AssemblerCondString = cond;
1343 string PredicateName = name;
1346 /// TokenAlias - This class allows targets to define assembler token
1347 /// operand aliases. That is, a token literal operand which is equivalent
1348 /// to another, canonical, token literal. For example, ARM allows:
1349 /// vmov.u32 s4, #0 -> vmov.i32, #0
1350 /// 'u32' is a more specific designator for the 32-bit integer type specifier
1351 /// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1352 /// def : TokenAlias<".u32", ".i32">;
1354 /// This works by marking the match class of 'From' as a subclass of the
1355 /// match class of 'To'.
1356 class TokenAlias<string From, string To> {
1357 string FromToken = From;
1358 string ToToken = To;
1361 /// MnemonicAlias - This class allows targets to define assembler mnemonic
1362 /// aliases. This should be used when all forms of one mnemonic are accepted
1363 /// with a different mnemonic. For example, X86 allows:
1364 /// sal %al, 1 -> shl %al, 1
1365 /// sal %ax, %cl -> shl %ax, %cl
1366 /// sal %eax, %cl -> shl %eax, %cl
1367 /// etc. Though "sal" is accepted with many forms, all of them are directly
1368 /// translated to a shl, so it can be handled with (in the case of X86, it
1369 /// actually has one for each suffix as well):
1370 /// def : MnemonicAlias<"sal", "shl">;
1372 /// Mnemonic aliases are mapped before any other translation in the match phase,
1373 /// and do allow Requires predicates, e.g.:
1375 /// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1376 /// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1378 /// Mnemonic aliases can also be constrained to specific variants, e.g.:
1380 /// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1382 /// If no variant (e.g., "att" or "intel") is specified then the alias is
1383 /// applied unconditionally.
1384 class MnemonicAlias<string From, string To, string VariantName = ""> {
1385 string FromMnemonic = From;
1386 string ToMnemonic = To;
1387 string AsmVariantName = VariantName;
1389 // Predicates - Predicates that must be true for this remapping to happen.
1390 list<Predicate> Predicates = [];
1393 /// InstAlias - This defines an alternate assembly syntax that is allowed to
1394 /// match an instruction that has a different (more canonical) assembly
1396 class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
1397 string AsmString = Asm; // The .s format to match the instruction with.
1398 dag ResultInst = Result; // The MCInst to generate.
1400 // This determines which order the InstPrinter detects aliases for
1401 // printing. A larger value makes the alias more likely to be
1402 // emitted. The Instruction's own definition is notionally 0.5, so 0
1403 // disables printing and 1 enables it if there are no conflicting aliases.
1404 int EmitPriority = Emit;
1406 // Predicates - Predicates that must be true for this to match.
1407 list<Predicate> Predicates = [];
1409 // If the instruction specified in Result has defined an AsmMatchConverter
1410 // then setting this to 1 will cause the alias to use the AsmMatchConverter
1411 // function when converting the OperandVector into an MCInst instead of the
1412 // function that is generated by the dag Result.
1413 // Setting this to 0 will cause the alias to ignore the Result instruction's
1414 // defined AsmMatchConverter and instead use the function generated by the
1416 bit UseInstAsmMatchConverter = 1;
1418 // Assembler variant name to use for this alias. If not specified then
1419 // assembler variants will be determined based on AsmString
1420 string AsmVariantName = VariantName;
1423 //===----------------------------------------------------------------------===//
1424 // AsmWriter - This class can be implemented by targets that need to customize
1425 // the format of the .s file writer.
1427 // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1428 // on X86 for example).
1431 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1432 // class. Generated AsmWriter classes are always prefixed with the target
1434 string AsmWriterClassName = "InstPrinter";
1436 // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1437 // the various print methods.
1438 // FIXME: Remove after all ports are updated.
1439 int PassSubtarget = 0;
1441 // Variant - AsmWriters can be of multiple different variants. Variants are
1442 // used to support targets that need to emit assembly code in ways that are
1443 // mostly the same for different targets, but have minor differences in
1444 // syntax. If the asmstring contains {|} characters in them, this integer
1445 // will specify which alternative to use. For example "{x|y|z}" with Variant
1446 // == 1, will expand to "y".
1449 def DefaultAsmWriter : AsmWriter;
1452 //===----------------------------------------------------------------------===//
1453 // Target - This class contains the "global" target information
1456 // InstructionSet - Instruction set description for this target.
1457 InstrInfo InstructionSet;
1459 // AssemblyParsers - The AsmParser instances available for this target.
1460 list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1462 /// AssemblyParserVariants - The AsmParserVariant instances available for
1464 list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1466 // AssemblyWriters - The AsmWriter instances available for this target.
1467 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1469 // AllowRegisterRenaming - Controls whether this target allows
1470 // post-register-allocation renaming of registers. This is done by
1471 // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1472 // for all opcodes if this flag is set to 0.
1473 int AllowRegisterRenaming = 0;
1476 //===----------------------------------------------------------------------===//
1477 // SubtargetFeature - A characteristic of the chip set.
1479 class SubtargetFeature<string n, string a, string v, string d,
1480 list<SubtargetFeature> i = []> {
1481 // Name - Feature name. Used by command line (-mattr=) to determine the
1482 // appropriate target chip.
1486 // Attribute - Attribute to be set by feature.
1488 string Attribute = a;
1490 // Value - Value the attribute to be set to by feature.
1494 // Desc - Feature description. Used by command line (-mattr=) to display help
1499 // Implies - Features that this feature implies are present. If one of those
1500 // features isn't set, then this one shouldn't be set either.
1502 list<SubtargetFeature> Implies = i;
1505 /// Specifies a Subtarget feature that this instruction is deprecated on.
1506 class Deprecated<SubtargetFeature dep> {
1507 SubtargetFeature DeprecatedFeatureMask = dep;
1510 /// A custom predicate used to determine if an instruction is
1511 /// deprecated or not.
1512 class ComplexDeprecationPredicate<string dep> {
1513 string ComplexDeprecationPredicate = dep;
1516 //===----------------------------------------------------------------------===//
1517 // Processor chip sets - These values represent each of the chip sets supported
1518 // by the scheduler. Each Processor definition requires corresponding
1519 // instruction itineraries.
1521 class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1522 // Name - Chip set name. Used by command line (-mcpu=) to determine the
1523 // appropriate target chip.
1527 // SchedModel - The machine model for scheduling and instruction cost.
1529 SchedMachineModel SchedModel = NoSchedModel;
1531 // ProcItin - The scheduling information for the target processor.
1533 ProcessorItineraries ProcItin = pi;
1535 // Features - list of
1536 list<SubtargetFeature> Features = f;
1539 // ProcessorModel allows subtargets to specify the more general
1540 // SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1541 // gradually move to this newer form.
1543 // Although this class always passes NoItineraries to the Processor
1544 // class, the SchedMachineModel may still define valid Itineraries.
1545 class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1546 : Processor<n, NoItineraries, f> {
1550 //===----------------------------------------------------------------------===//
1551 // InstrMapping - This class is used to create mapping tables to relate
1552 // instructions with each other based on the values specified in RowFields,
1553 // ColFields, KeyCol and ValueCols.
1555 class InstrMapping {
1556 // FilterClass - Used to limit search space only to the instructions that
1557 // define the relationship modeled by this InstrMapping record.
1560 // RowFields - List of fields/attributes that should be same for all the
1561 // instructions in a row of the relation table. Think of this as a set of
1562 // properties shared by all the instructions related by this relationship
1563 // model and is used to categorize instructions into subgroups. For instance,
1564 // if we want to define a relation that maps 'Add' instruction to its
1565 // predicated forms, we can define RowFields like this:
1567 // let RowFields = BaseOp
1568 // All add instruction predicated/non-predicated will have to set their BaseOp
1569 // to the same value.
1571 // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1572 // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1573 // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' }
1574 list<string> RowFields = [];
1576 // List of fields/attributes that are same for all the instructions
1577 // in a column of the relation table.
1578 // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1579 // based on the 'predSense' values. All the instruction in a specific
1580 // column have the same value and it is fixed for the column according
1581 // to the values set in 'ValueCols'.
1582 list<string> ColFields = [];
1584 // Values for the fields/attributes listed in 'ColFields'.
1585 // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1586 // that models this relation) should be non-predicated.
1587 // In the example above, 'Add' is the key instruction.
1588 list<string> KeyCol = [];
1590 // List of values for the fields/attributes listed in 'ColFields', one for
1591 // each column in the relation table.
1593 // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1594 // table. First column requires all the instructions to have predSense
1595 // set to 'true' and second column requires it to be 'false'.
1596 list<list<string> > ValueCols = [];
1599 //===----------------------------------------------------------------------===//
1600 // Pull in the common support for calling conventions.
1602 include "llvm/Target/TargetCallingConv.td"
1604 //===----------------------------------------------------------------------===//
1605 // Pull in the common support for DAG isel generation.
1607 include "llvm/Target/TargetSelectionDAG.td"
1609 //===----------------------------------------------------------------------===//
1610 // Pull in the common support for Global ISel register bank info generation.
1612 include "llvm/Target/GlobalISel/RegisterBank.td"
1614 //===----------------------------------------------------------------------===//
1615 // Pull in the common support for DAG isel generation.
1617 include "llvm/Target/GlobalISel/Target.td"
1619 //===----------------------------------------------------------------------===//
1620 // Pull in the common support for the Global ISel DAG-based selector generation.
1622 include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
1624 //===----------------------------------------------------------------------===//
1625 // Pull in the common support for Pfm Counters generation.
1627 include "llvm/Target/TargetPfmCounters.td"