[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Analysis / InstructionSimplify.cpp
blobcb8987721700bc8c6381893d1ad0f47a15f95f98
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions. This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
46 #define DEBUG_TYPE "instsimplify"
48 enum { RecursionLimit = 3 };
50 STATISTIC(NumExpand, "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56 const SimplifyQuery &, unsigned);
57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58 unsigned);
59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60 const SimplifyQuery &, unsigned);
61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62 unsigned);
63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64 const SimplifyQuery &Q, unsigned MaxRecurse);
65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyCastInst(unsigned, Value *, Type *,
68 const SimplifyQuery &, unsigned);
69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70 unsigned);
72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73 Value *FalseVal) {
74 BinaryOperator::BinaryOps BinOpCode;
75 if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76 BinOpCode = BO->getOpcode();
77 else
78 return nullptr;
80 CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81 if (BinOpCode == BinaryOperator::Or) {
82 ExpectedPred = ICmpInst::ICMP_NE;
83 } else if (BinOpCode == BinaryOperator::And) {
84 ExpectedPred = ICmpInst::ICMP_EQ;
85 } else
86 return nullptr;
88 // %A = icmp eq %TV, %FV
89 // %B = icmp eq %X, %Y (and one of these is a select operand)
90 // %C = and %A, %B
91 // %D = select %C, %TV, %FV
92 // -->
93 // %FV
95 // %A = icmp ne %TV, %FV
96 // %B = icmp ne %X, %Y (and one of these is a select operand)
97 // %C = or %A, %B
98 // %D = select %C, %TV, %FV
99 // -->
100 // %TV
101 Value *X, *Y;
102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103 m_Specific(FalseVal)),
104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105 Pred1 != Pred2 || Pred1 != ExpectedPred)
106 return nullptr;
108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
111 return nullptr;
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant *getFalse(Type *Ty) {
117 return ConstantInt::getFalse(Ty);
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant *getTrue(Type *Ty) {
123 return ConstantInt::getTrue(Ty);
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128 Value *RHS) {
129 CmpInst *Cmp = dyn_cast<CmpInst>(V);
130 if (!Cmp)
131 return false;
132 CmpInst::Predicate CPred = Cmp->getPredicate();
133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135 return true;
136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137 CRHS == LHS;
140 /// Does the given value dominate the specified phi node?
141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
142 Instruction *I = dyn_cast<Instruction>(V);
143 if (!I)
144 // Arguments and constants dominate all instructions.
145 return true;
147 // If we are processing instructions (and/or basic blocks) that have not been
148 // fully added to a function, the parent nodes may still be null. Simply
149 // return the conservative answer in these cases.
150 if (!I->getParent() || !P->getParent() || !I->getFunction())
151 return false;
153 // If we have a DominatorTree then do a precise test.
154 if (DT)
155 return DT->dominates(I, P);
157 // Otherwise, if the instruction is in the entry block and is not an invoke,
158 // then it obviously dominates all phi nodes.
159 if (I->getParent() == &I->getFunction()->getEntryBlock() &&
160 !isa<InvokeInst>(I))
161 return true;
163 return false;
166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
167 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
170 /// Returns the simplified value, or null if no simplification was performed.
171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
172 Instruction::BinaryOps OpcodeToExpand,
173 const SimplifyQuery &Q, unsigned MaxRecurse) {
174 // Recursion is always used, so bail out at once if we already hit the limit.
175 if (!MaxRecurse--)
176 return nullptr;
178 // Check whether the expression has the form "(A op' B) op C".
179 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
180 if (Op0->getOpcode() == OpcodeToExpand) {
181 // It does! Try turning it into "(A op C) op' (B op C)".
182 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
183 // Do "A op C" and "B op C" both simplify?
184 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
185 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
186 // They do! Return "L op' R" if it simplifies or is already available.
187 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
188 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
189 && L == B && R == A)) {
190 ++NumExpand;
191 return LHS;
193 // Otherwise return "L op' R" if it simplifies.
194 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
195 ++NumExpand;
196 return V;
201 // Check whether the expression has the form "A op (B op' C)".
202 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
203 if (Op1->getOpcode() == OpcodeToExpand) {
204 // It does! Try turning it into "(A op B) op' (A op C)".
205 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
206 // Do "A op B" and "A op C" both simplify?
207 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
208 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
209 // They do! Return "L op' R" if it simplifies or is already available.
210 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
211 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
212 && L == C && R == B)) {
213 ++NumExpand;
214 return RHS;
216 // Otherwise return "L op' R" if it simplifies.
217 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
218 ++NumExpand;
219 return V;
224 return nullptr;
227 /// Generic simplifications for associative binary operations.
228 /// Returns the simpler value, or null if none was found.
229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
230 Value *LHS, Value *RHS,
231 const SimplifyQuery &Q,
232 unsigned MaxRecurse) {
233 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
235 // Recursion is always used, so bail out at once if we already hit the limit.
236 if (!MaxRecurse--)
237 return nullptr;
239 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
240 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
242 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
243 if (Op0 && Op0->getOpcode() == Opcode) {
244 Value *A = Op0->getOperand(0);
245 Value *B = Op0->getOperand(1);
246 Value *C = RHS;
248 // Does "B op C" simplify?
249 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
250 // It does! Return "A op V" if it simplifies or is already available.
251 // If V equals B then "A op V" is just the LHS.
252 if (V == B) return LHS;
253 // Otherwise return "A op V" if it simplifies.
254 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
255 ++NumReassoc;
256 return W;
261 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
262 if (Op1 && Op1->getOpcode() == Opcode) {
263 Value *A = LHS;
264 Value *B = Op1->getOperand(0);
265 Value *C = Op1->getOperand(1);
267 // Does "A op B" simplify?
268 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
269 // It does! Return "V op C" if it simplifies or is already available.
270 // If V equals B then "V op C" is just the RHS.
271 if (V == B) return RHS;
272 // Otherwise return "V op C" if it simplifies.
273 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
274 ++NumReassoc;
275 return W;
280 // The remaining transforms require commutativity as well as associativity.
281 if (!Instruction::isCommutative(Opcode))
282 return nullptr;
284 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
285 if (Op0 && Op0->getOpcode() == Opcode) {
286 Value *A = Op0->getOperand(0);
287 Value *B = Op0->getOperand(1);
288 Value *C = RHS;
290 // Does "C op A" simplify?
291 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
292 // It does! Return "V op B" if it simplifies or is already available.
293 // If V equals A then "V op B" is just the LHS.
294 if (V == A) return LHS;
295 // Otherwise return "V op B" if it simplifies.
296 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
297 ++NumReassoc;
298 return W;
303 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
304 if (Op1 && Op1->getOpcode() == Opcode) {
305 Value *A = LHS;
306 Value *B = Op1->getOperand(0);
307 Value *C = Op1->getOperand(1);
309 // Does "C op A" simplify?
310 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
311 // It does! Return "B op V" if it simplifies or is already available.
312 // If V equals C then "B op V" is just the RHS.
313 if (V == C) return RHS;
314 // Otherwise return "B op V" if it simplifies.
315 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
316 ++NumReassoc;
317 return W;
322 return nullptr;
325 /// In the case of a binary operation with a select instruction as an operand,
326 /// try to simplify the binop by seeing whether evaluating it on both branches
327 /// of the select results in the same value. Returns the common value if so,
328 /// otherwise returns null.
329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
330 Value *RHS, const SimplifyQuery &Q,
331 unsigned MaxRecurse) {
332 // Recursion is always used, so bail out at once if we already hit the limit.
333 if (!MaxRecurse--)
334 return nullptr;
336 SelectInst *SI;
337 if (isa<SelectInst>(LHS)) {
338 SI = cast<SelectInst>(LHS);
339 } else {
340 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
341 SI = cast<SelectInst>(RHS);
344 // Evaluate the BinOp on the true and false branches of the select.
345 Value *TV;
346 Value *FV;
347 if (SI == LHS) {
348 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
349 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
350 } else {
351 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
352 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
355 // If they simplified to the same value, then return the common value.
356 // If they both failed to simplify then return null.
357 if (TV == FV)
358 return TV;
360 // If one branch simplified to undef, return the other one.
361 if (TV && isa<UndefValue>(TV))
362 return FV;
363 if (FV && isa<UndefValue>(FV))
364 return TV;
366 // If applying the operation did not change the true and false select values,
367 // then the result of the binop is the select itself.
368 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
369 return SI;
371 // If one branch simplified and the other did not, and the simplified
372 // value is equal to the unsimplified one, return the simplified value.
373 // For example, select (cond, X, X & Z) & Z -> X & Z.
374 if ((FV && !TV) || (TV && !FV)) {
375 // Check that the simplified value has the form "X op Y" where "op" is the
376 // same as the original operation.
377 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
378 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
379 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
380 // We already know that "op" is the same as for the simplified value. See
381 // if the operands match too. If so, return the simplified value.
382 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
383 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
384 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
385 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
386 Simplified->getOperand(1) == UnsimplifiedRHS)
387 return Simplified;
388 if (Simplified->isCommutative() &&
389 Simplified->getOperand(1) == UnsimplifiedLHS &&
390 Simplified->getOperand(0) == UnsimplifiedRHS)
391 return Simplified;
395 return nullptr;
398 /// In the case of a comparison with a select instruction, try to simplify the
399 /// comparison by seeing whether both branches of the select result in the same
400 /// value. Returns the common value if so, otherwise returns null.
401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
402 Value *RHS, const SimplifyQuery &Q,
403 unsigned MaxRecurse) {
404 // Recursion is always used, so bail out at once if we already hit the limit.
405 if (!MaxRecurse--)
406 return nullptr;
408 // Make sure the select is on the LHS.
409 if (!isa<SelectInst>(LHS)) {
410 std::swap(LHS, RHS);
411 Pred = CmpInst::getSwappedPredicate(Pred);
413 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
414 SelectInst *SI = cast<SelectInst>(LHS);
415 Value *Cond = SI->getCondition();
416 Value *TV = SI->getTrueValue();
417 Value *FV = SI->getFalseValue();
419 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
420 // Does "cmp TV, RHS" simplify?
421 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
422 if (TCmp == Cond) {
423 // It not only simplified, it simplified to the select condition. Replace
424 // it with 'true'.
425 TCmp = getTrue(Cond->getType());
426 } else if (!TCmp) {
427 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
428 // condition then we can replace it with 'true'. Otherwise give up.
429 if (!isSameCompare(Cond, Pred, TV, RHS))
430 return nullptr;
431 TCmp = getTrue(Cond->getType());
434 // Does "cmp FV, RHS" simplify?
435 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
436 if (FCmp == Cond) {
437 // It not only simplified, it simplified to the select condition. Replace
438 // it with 'false'.
439 FCmp = getFalse(Cond->getType());
440 } else if (!FCmp) {
441 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
442 // condition then we can replace it with 'false'. Otherwise give up.
443 if (!isSameCompare(Cond, Pred, FV, RHS))
444 return nullptr;
445 FCmp = getFalse(Cond->getType());
448 // If both sides simplified to the same value, then use it as the result of
449 // the original comparison.
450 if (TCmp == FCmp)
451 return TCmp;
453 // The remaining cases only make sense if the select condition has the same
454 // type as the result of the comparison, so bail out if this is not so.
455 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
456 return nullptr;
457 // If the false value simplified to false, then the result of the compare
458 // is equal to "Cond && TCmp". This also catches the case when the false
459 // value simplified to false and the true value to true, returning "Cond".
460 if (match(FCmp, m_Zero()))
461 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
462 return V;
463 // If the true value simplified to true, then the result of the compare
464 // is equal to "Cond || FCmp".
465 if (match(TCmp, m_One()))
466 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
467 return V;
468 // Finally, if the false value simplified to true and the true value to
469 // false, then the result of the compare is equal to "!Cond".
470 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
471 if (Value *V =
472 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
473 Q, MaxRecurse))
474 return V;
476 return nullptr;
479 /// In the case of a binary operation with an operand that is a PHI instruction,
480 /// try to simplify the binop by seeing whether evaluating it on the incoming
481 /// phi values yields the same result for every value. If so returns the common
482 /// value, otherwise returns null.
483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
484 Value *RHS, const SimplifyQuery &Q,
485 unsigned MaxRecurse) {
486 // Recursion is always used, so bail out at once if we already hit the limit.
487 if (!MaxRecurse--)
488 return nullptr;
490 PHINode *PI;
491 if (isa<PHINode>(LHS)) {
492 PI = cast<PHINode>(LHS);
493 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494 if (!valueDominatesPHI(RHS, PI, Q.DT))
495 return nullptr;
496 } else {
497 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
498 PI = cast<PHINode>(RHS);
499 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
500 if (!valueDominatesPHI(LHS, PI, Q.DT))
501 return nullptr;
504 // Evaluate the BinOp on the incoming phi values.
505 Value *CommonValue = nullptr;
506 for (Value *Incoming : PI->incoming_values()) {
507 // If the incoming value is the phi node itself, it can safely be skipped.
508 if (Incoming == PI) continue;
509 Value *V = PI == LHS ?
510 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
511 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
512 // If the operation failed to simplify, or simplified to a different value
513 // to previously, then give up.
514 if (!V || (CommonValue && V != CommonValue))
515 return nullptr;
516 CommonValue = V;
519 return CommonValue;
522 /// In the case of a comparison with a PHI instruction, try to simplify the
523 /// comparison by seeing whether comparing with all of the incoming phi values
524 /// yields the same result every time. If so returns the common result,
525 /// otherwise returns null.
526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
527 const SimplifyQuery &Q, unsigned MaxRecurse) {
528 // Recursion is always used, so bail out at once if we already hit the limit.
529 if (!MaxRecurse--)
530 return nullptr;
532 // Make sure the phi is on the LHS.
533 if (!isa<PHINode>(LHS)) {
534 std::swap(LHS, RHS);
535 Pred = CmpInst::getSwappedPredicate(Pred);
537 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
538 PHINode *PI = cast<PHINode>(LHS);
540 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
541 if (!valueDominatesPHI(RHS, PI, Q.DT))
542 return nullptr;
544 // Evaluate the BinOp on the incoming phi values.
545 Value *CommonValue = nullptr;
546 for (Value *Incoming : PI->incoming_values()) {
547 // If the incoming value is the phi node itself, it can safely be skipped.
548 if (Incoming == PI) continue;
549 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
550 // If the operation failed to simplify, or simplified to a different value
551 // to previously, then give up.
552 if (!V || (CommonValue && V != CommonValue))
553 return nullptr;
554 CommonValue = V;
557 return CommonValue;
560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
561 Value *&Op0, Value *&Op1,
562 const SimplifyQuery &Q) {
563 if (auto *CLHS = dyn_cast<Constant>(Op0)) {
564 if (auto *CRHS = dyn_cast<Constant>(Op1))
565 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
567 // Canonicalize the constant to the RHS if this is a commutative operation.
568 if (Instruction::isCommutative(Opcode))
569 std::swap(Op0, Op1);
571 return nullptr;
574 /// Given operands for an Add, see if we can fold the result.
575 /// If not, this returns null.
576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
577 const SimplifyQuery &Q, unsigned MaxRecurse) {
578 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
579 return C;
581 // X + undef -> undef
582 if (match(Op1, m_Undef()))
583 return Op1;
585 // X + 0 -> X
586 if (match(Op1, m_Zero()))
587 return Op0;
589 // If two operands are negative, return 0.
590 if (isKnownNegation(Op0, Op1))
591 return Constant::getNullValue(Op0->getType());
593 // X + (Y - X) -> Y
594 // (Y - X) + X -> Y
595 // Eg: X + -X -> 0
596 Value *Y = nullptr;
597 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
598 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
599 return Y;
601 // X + ~X -> -1 since ~X = -X-1
602 Type *Ty = Op0->getType();
603 if (match(Op0, m_Not(m_Specific(Op1))) ||
604 match(Op1, m_Not(m_Specific(Op0))))
605 return Constant::getAllOnesValue(Ty);
607 // add nsw/nuw (xor Y, signmask), signmask --> Y
608 // The no-wrapping add guarantees that the top bit will be set by the add.
609 // Therefore, the xor must be clearing the already set sign bit of Y.
610 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
611 match(Op0, m_Xor(m_Value(Y), m_SignMask())))
612 return Y;
614 // add nuw %x, -1 -> -1, because %x can only be 0.
615 if (IsNUW && match(Op1, m_AllOnes()))
616 return Op1; // Which is -1.
618 /// i1 add -> xor.
619 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
620 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
621 return V;
623 // Try some generic simplifications for associative operations.
624 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
625 MaxRecurse))
626 return V;
628 // Threading Add over selects and phi nodes is pointless, so don't bother.
629 // Threading over the select in "A + select(cond, B, C)" means evaluating
630 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
631 // only if B and C are equal. If B and C are equal then (since we assume
632 // that operands have already been simplified) "select(cond, B, C)" should
633 // have been simplified to the common value of B and C already. Analysing
634 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
635 // for threading over phi nodes.
637 return nullptr;
640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
641 const SimplifyQuery &Query) {
642 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
645 /// Compute the base pointer and cumulative constant offsets for V.
647 /// This strips all constant offsets off of V, leaving it the base pointer, and
648 /// accumulates the total constant offset applied in the returned constant. It
649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
650 /// no constant offsets applied.
652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
654 /// folding.
655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
656 bool AllowNonInbounds = false) {
657 assert(V->getType()->isPtrOrPtrVectorTy());
659 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
660 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
662 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
663 // As that strip may trace through `addrspacecast`, need to sext or trunc
664 // the offset calculated.
665 IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
666 Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth());
668 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
669 if (V->getType()->isVectorTy())
670 return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
671 OffsetIntPtr);
672 return OffsetIntPtr;
675 /// Compute the constant difference between two pointer values.
676 /// If the difference is not a constant, returns zero.
677 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
678 Value *RHS) {
679 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
680 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
682 // If LHS and RHS are not related via constant offsets to the same base
683 // value, there is nothing we can do here.
684 if (LHS != RHS)
685 return nullptr;
687 // Otherwise, the difference of LHS - RHS can be computed as:
688 // LHS - RHS
689 // = (LHSOffset + Base) - (RHSOffset + Base)
690 // = LHSOffset - RHSOffset
691 return ConstantExpr::getSub(LHSOffset, RHSOffset);
694 /// Given operands for a Sub, see if we can fold the result.
695 /// If not, this returns null.
696 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
697 const SimplifyQuery &Q, unsigned MaxRecurse) {
698 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
699 return C;
701 // X - undef -> undef
702 // undef - X -> undef
703 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
704 return UndefValue::get(Op0->getType());
706 // X - 0 -> X
707 if (match(Op1, m_Zero()))
708 return Op0;
710 // X - X -> 0
711 if (Op0 == Op1)
712 return Constant::getNullValue(Op0->getType());
714 // Is this a negation?
715 if (match(Op0, m_Zero())) {
716 // 0 - X -> 0 if the sub is NUW.
717 if (isNUW)
718 return Constant::getNullValue(Op0->getType());
720 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
721 if (Known.Zero.isMaxSignedValue()) {
722 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
723 // Op1 must be 0 because negating the minimum signed value is undefined.
724 if (isNSW)
725 return Constant::getNullValue(Op0->getType());
727 // 0 - X -> X if X is 0 or the minimum signed value.
728 return Op1;
732 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
733 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
734 Value *X = nullptr, *Y = nullptr, *Z = Op1;
735 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
736 // See if "V === Y - Z" simplifies.
737 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
738 // It does! Now see if "X + V" simplifies.
739 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
740 // It does, we successfully reassociated!
741 ++NumReassoc;
742 return W;
744 // See if "V === X - Z" simplifies.
745 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
746 // It does! Now see if "Y + V" simplifies.
747 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
748 // It does, we successfully reassociated!
749 ++NumReassoc;
750 return W;
754 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
755 // For example, X - (X + 1) -> -1
756 X = Op0;
757 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
758 // See if "V === X - Y" simplifies.
759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
760 // It does! Now see if "V - Z" simplifies.
761 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
762 // It does, we successfully reassociated!
763 ++NumReassoc;
764 return W;
766 // See if "V === X - Z" simplifies.
767 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
768 // It does! Now see if "V - Y" simplifies.
769 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
770 // It does, we successfully reassociated!
771 ++NumReassoc;
772 return W;
776 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
777 // For example, X - (X - Y) -> Y.
778 Z = Op0;
779 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
780 // See if "V === Z - X" simplifies.
781 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
782 // It does! Now see if "V + Y" simplifies.
783 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
784 // It does, we successfully reassociated!
785 ++NumReassoc;
786 return W;
789 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
790 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
791 match(Op1, m_Trunc(m_Value(Y))))
792 if (X->getType() == Y->getType())
793 // See if "V === X - Y" simplifies.
794 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
795 // It does! Now see if "trunc V" simplifies.
796 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
797 Q, MaxRecurse - 1))
798 // It does, return the simplified "trunc V".
799 return W;
801 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
802 if (match(Op0, m_PtrToInt(m_Value(X))) &&
803 match(Op1, m_PtrToInt(m_Value(Y))))
804 if (Constant *Result = computePointerDifference(Q.DL, X, Y))
805 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
807 // i1 sub -> xor.
808 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
809 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
810 return V;
812 // Threading Sub over selects and phi nodes is pointless, so don't bother.
813 // Threading over the select in "A - select(cond, B, C)" means evaluating
814 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
815 // only if B and C are equal. If B and C are equal then (since we assume
816 // that operands have already been simplified) "select(cond, B, C)" should
817 // have been simplified to the common value of B and C already. Analysing
818 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
819 // for threading over phi nodes.
821 return nullptr;
824 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
825 const SimplifyQuery &Q) {
826 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
829 /// Given operands for a Mul, see if we can fold the result.
830 /// If not, this returns null.
831 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
832 unsigned MaxRecurse) {
833 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
834 return C;
836 // X * undef -> 0
837 // X * 0 -> 0
838 if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
839 return Constant::getNullValue(Op0->getType());
841 // X * 1 -> X
842 if (match(Op1, m_One()))
843 return Op0;
845 // (X / Y) * Y -> X if the division is exact.
846 Value *X = nullptr;
847 if (Q.IIQ.UseInstrInfo &&
848 (match(Op0,
849 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
850 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
851 return X;
853 // i1 mul -> and.
854 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
855 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
856 return V;
858 // Try some generic simplifications for associative operations.
859 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
860 MaxRecurse))
861 return V;
863 // Mul distributes over Add. Try some generic simplifications based on this.
864 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
865 Q, MaxRecurse))
866 return V;
868 // If the operation is with the result of a select instruction, check whether
869 // operating on either branch of the select always yields the same value.
870 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
871 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
872 MaxRecurse))
873 return V;
875 // If the operation is with the result of a phi instruction, check whether
876 // operating on all incoming values of the phi always yields the same value.
877 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
878 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
879 MaxRecurse))
880 return V;
882 return nullptr;
885 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
886 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
889 /// Check for common or similar folds of integer division or integer remainder.
890 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
891 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
892 Type *Ty = Op0->getType();
894 // X / undef -> undef
895 // X % undef -> undef
896 if (match(Op1, m_Undef()))
897 return Op1;
899 // X / 0 -> undef
900 // X % 0 -> undef
901 // We don't need to preserve faults!
902 if (match(Op1, m_Zero()))
903 return UndefValue::get(Ty);
905 // If any element of a constant divisor vector is zero or undef, the whole op
906 // is undef.
907 auto *Op1C = dyn_cast<Constant>(Op1);
908 if (Op1C && Ty->isVectorTy()) {
909 unsigned NumElts = Ty->getVectorNumElements();
910 for (unsigned i = 0; i != NumElts; ++i) {
911 Constant *Elt = Op1C->getAggregateElement(i);
912 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
913 return UndefValue::get(Ty);
917 // undef / X -> 0
918 // undef % X -> 0
919 if (match(Op0, m_Undef()))
920 return Constant::getNullValue(Ty);
922 // 0 / X -> 0
923 // 0 % X -> 0
924 if (match(Op0, m_Zero()))
925 return Constant::getNullValue(Op0->getType());
927 // X / X -> 1
928 // X % X -> 0
929 if (Op0 == Op1)
930 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
932 // X / 1 -> X
933 // X % 1 -> 0
934 // If this is a boolean op (single-bit element type), we can't have
935 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
936 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
937 Value *X;
938 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
939 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
940 return IsDiv ? Op0 : Constant::getNullValue(Ty);
942 return nullptr;
945 /// Given a predicate and two operands, return true if the comparison is true.
946 /// This is a helper for div/rem simplification where we return some other value
947 /// when we can prove a relationship between the operands.
948 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
949 const SimplifyQuery &Q, unsigned MaxRecurse) {
950 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
951 Constant *C = dyn_cast_or_null<Constant>(V);
952 return (C && C->isAllOnesValue());
955 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
956 /// to simplify X % Y to X.
957 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
958 unsigned MaxRecurse, bool IsSigned) {
959 // Recursion is always used, so bail out at once if we already hit the limit.
960 if (!MaxRecurse--)
961 return false;
963 if (IsSigned) {
964 // |X| / |Y| --> 0
966 // We require that 1 operand is a simple constant. That could be extended to
967 // 2 variables if we computed the sign bit for each.
969 // Make sure that a constant is not the minimum signed value because taking
970 // the abs() of that is undefined.
971 Type *Ty = X->getType();
972 const APInt *C;
973 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
974 // Is the variable divisor magnitude always greater than the constant
975 // dividend magnitude?
976 // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
977 Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
978 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
979 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
980 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
981 return true;
983 if (match(Y, m_APInt(C))) {
984 // Special-case: we can't take the abs() of a minimum signed value. If
985 // that's the divisor, then all we have to do is prove that the dividend
986 // is also not the minimum signed value.
987 if (C->isMinSignedValue())
988 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
990 // Is the variable dividend magnitude always less than the constant
991 // divisor magnitude?
992 // |X| < |C| --> X > -abs(C) and X < abs(C)
993 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
994 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
995 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
996 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
997 return true;
999 return false;
1002 // IsSigned == false.
1003 // Is the dividend unsigned less than the divisor?
1004 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1007 /// These are simplifications common to SDiv and UDiv.
1008 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1009 const SimplifyQuery &Q, unsigned MaxRecurse) {
1010 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1011 return C;
1013 if (Value *V = simplifyDivRem(Op0, Op1, true))
1014 return V;
1016 bool IsSigned = Opcode == Instruction::SDiv;
1018 // (X * Y) / Y -> X if the multiplication does not overflow.
1019 Value *X;
1020 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1021 auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1022 // If the Mul does not overflow, then we are good to go.
1023 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1024 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1025 return X;
1026 // If X has the form X = A / Y, then X * Y cannot overflow.
1027 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1028 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1029 return X;
1032 // (X rem Y) / Y -> 0
1033 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1034 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1035 return Constant::getNullValue(Op0->getType());
1037 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1038 ConstantInt *C1, *C2;
1039 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1040 match(Op1, m_ConstantInt(C2))) {
1041 bool Overflow;
1042 (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1043 if (Overflow)
1044 return Constant::getNullValue(Op0->getType());
1047 // If the operation is with the result of a select instruction, check whether
1048 // operating on either branch of the select always yields the same value.
1049 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1050 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1051 return V;
1053 // If the operation is with the result of a phi instruction, check whether
1054 // operating on all incoming values of the phi always yields the same value.
1055 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1056 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1057 return V;
1059 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1060 return Constant::getNullValue(Op0->getType());
1062 return nullptr;
1065 /// These are simplifications common to SRem and URem.
1066 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1067 const SimplifyQuery &Q, unsigned MaxRecurse) {
1068 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1069 return C;
1071 if (Value *V = simplifyDivRem(Op0, Op1, false))
1072 return V;
1074 // (X % Y) % Y -> X % Y
1075 if ((Opcode == Instruction::SRem &&
1076 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1077 (Opcode == Instruction::URem &&
1078 match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1079 return Op0;
1081 // (X << Y) % X -> 0
1082 if (Q.IIQ.UseInstrInfo &&
1083 ((Opcode == Instruction::SRem &&
1084 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1085 (Opcode == Instruction::URem &&
1086 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1087 return Constant::getNullValue(Op0->getType());
1089 // If the operation is with the result of a select instruction, check whether
1090 // operating on either branch of the select always yields the same value.
1091 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1092 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1093 return V;
1095 // If the operation is with the result of a phi instruction, check whether
1096 // operating on all incoming values of the phi always yields the same value.
1097 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1098 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1099 return V;
1101 // If X / Y == 0, then X % Y == X.
1102 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1103 return Op0;
1105 return nullptr;
1108 /// Given operands for an SDiv, see if we can fold the result.
1109 /// If not, this returns null.
1110 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1111 unsigned MaxRecurse) {
1112 // If two operands are negated and no signed overflow, return -1.
1113 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1114 return Constant::getAllOnesValue(Op0->getType());
1116 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1119 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1120 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1123 /// Given operands for a UDiv, see if we can fold the result.
1124 /// If not, this returns null.
1125 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1126 unsigned MaxRecurse) {
1127 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1130 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1131 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1134 /// Given operands for an SRem, see if we can fold the result.
1135 /// If not, this returns null.
1136 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1137 unsigned MaxRecurse) {
1138 // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1139 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1140 Value *X;
1141 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1142 return ConstantInt::getNullValue(Op0->getType());
1144 // If the two operands are negated, return 0.
1145 if (isKnownNegation(Op0, Op1))
1146 return ConstantInt::getNullValue(Op0->getType());
1148 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1151 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1152 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1155 /// Given operands for a URem, see if we can fold the result.
1156 /// If not, this returns null.
1157 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1158 unsigned MaxRecurse) {
1159 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1162 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1163 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1166 /// Returns true if a shift by \c Amount always yields undef.
1167 static bool isUndefShift(Value *Amount) {
1168 Constant *C = dyn_cast<Constant>(Amount);
1169 if (!C)
1170 return false;
1172 // X shift by undef -> undef because it may shift by the bitwidth.
1173 if (isa<UndefValue>(C))
1174 return true;
1176 // Shifting by the bitwidth or more is undefined.
1177 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1178 if (CI->getValue().getLimitedValue() >=
1179 CI->getType()->getScalarSizeInBits())
1180 return true;
1182 // If all lanes of a vector shift are undefined the whole shift is.
1183 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1184 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1185 if (!isUndefShift(C->getAggregateElement(I)))
1186 return false;
1187 return true;
1190 return false;
1193 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1194 /// If not, this returns null.
1195 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1196 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1197 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1198 return C;
1200 // 0 shift by X -> 0
1201 if (match(Op0, m_Zero()))
1202 return Constant::getNullValue(Op0->getType());
1204 // X shift by 0 -> X
1205 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1206 // would be poison.
1207 Value *X;
1208 if (match(Op1, m_Zero()) ||
1209 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1210 return Op0;
1212 // Fold undefined shifts.
1213 if (isUndefShift(Op1))
1214 return UndefValue::get(Op0->getType());
1216 // If the operation is with the result of a select instruction, check whether
1217 // operating on either branch of the select always yields the same value.
1218 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1219 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1220 return V;
1222 // If the operation is with the result of a phi instruction, check whether
1223 // operating on all incoming values of the phi always yields the same value.
1224 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1225 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1226 return V;
1228 // If any bits in the shift amount make that value greater than or equal to
1229 // the number of bits in the type, the shift is undefined.
1230 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1231 if (Known.One.getLimitedValue() >= Known.getBitWidth())
1232 return UndefValue::get(Op0->getType());
1234 // If all valid bits in the shift amount are known zero, the first operand is
1235 // unchanged.
1236 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1237 if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1238 return Op0;
1240 return nullptr;
1243 /// Given operands for an Shl, LShr or AShr, see if we can
1244 /// fold the result. If not, this returns null.
1245 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1246 Value *Op1, bool isExact, const SimplifyQuery &Q,
1247 unsigned MaxRecurse) {
1248 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1249 return V;
1251 // X >> X -> 0
1252 if (Op0 == Op1)
1253 return Constant::getNullValue(Op0->getType());
1255 // undef >> X -> 0
1256 // undef >> X -> undef (if it's exact)
1257 if (match(Op0, m_Undef()))
1258 return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1260 // The low bit cannot be shifted out of an exact shift if it is set.
1261 if (isExact) {
1262 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1263 if (Op0Known.One[0])
1264 return Op0;
1267 return nullptr;
1270 /// Given operands for an Shl, see if we can fold the result.
1271 /// If not, this returns null.
1272 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1273 const SimplifyQuery &Q, unsigned MaxRecurse) {
1274 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1275 return V;
1277 // undef << X -> 0
1278 // undef << X -> undef if (if it's NSW/NUW)
1279 if (match(Op0, m_Undef()))
1280 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1282 // (X >> A) << A -> X
1283 Value *X;
1284 if (Q.IIQ.UseInstrInfo &&
1285 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1286 return X;
1288 // shl nuw i8 C, %x -> C iff C has sign bit set.
1289 if (isNUW && match(Op0, m_Negative()))
1290 return Op0;
1291 // NOTE: could use computeKnownBits() / LazyValueInfo,
1292 // but the cost-benefit analysis suggests it isn't worth it.
1294 return nullptr;
1297 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1298 const SimplifyQuery &Q) {
1299 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1302 /// Given operands for an LShr, see if we can fold the result.
1303 /// If not, this returns null.
1304 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1305 const SimplifyQuery &Q, unsigned MaxRecurse) {
1306 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1307 MaxRecurse))
1308 return V;
1310 // (X << A) >> A -> X
1311 Value *X;
1312 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1313 return X;
1315 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
1316 // We can return X as we do in the above case since OR alters no bits in X.
1317 // SimplifyDemandedBits in InstCombine can do more general optimization for
1318 // bit manipulation. This pattern aims to provide opportunities for other
1319 // optimizers by supporting a simple but common case in InstSimplify.
1320 Value *Y;
1321 const APInt *ShRAmt, *ShLAmt;
1322 if (match(Op1, m_APInt(ShRAmt)) &&
1323 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1324 *ShRAmt == *ShLAmt) {
1325 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1326 const unsigned Width = Op0->getType()->getScalarSizeInBits();
1327 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1328 if (ShRAmt->uge(EffWidthY))
1329 return X;
1332 return nullptr;
1335 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1336 const SimplifyQuery &Q) {
1337 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1340 /// Given operands for an AShr, see if we can fold the result.
1341 /// If not, this returns null.
1342 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1343 const SimplifyQuery &Q, unsigned MaxRecurse) {
1344 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1345 MaxRecurse))
1346 return V;
1348 // all ones >>a X -> -1
1349 // Do not return Op0 because it may contain undef elements if it's a vector.
1350 if (match(Op0, m_AllOnes()))
1351 return Constant::getAllOnesValue(Op0->getType());
1353 // (X << A) >> A -> X
1354 Value *X;
1355 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1356 return X;
1358 // Arithmetic shifting an all-sign-bit value is a no-op.
1359 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1360 if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1361 return Op0;
1363 return nullptr;
1366 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1367 const SimplifyQuery &Q) {
1368 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1371 /// Commuted variants are assumed to be handled by calling this function again
1372 /// with the parameters swapped.
1373 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1374 ICmpInst *UnsignedICmp, bool IsAnd,
1375 const SimplifyQuery &Q) {
1376 Value *X, *Y;
1378 ICmpInst::Predicate EqPred;
1379 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1380 !ICmpInst::isEquality(EqPred))
1381 return nullptr;
1383 ICmpInst::Predicate UnsignedPred;
1385 Value *A, *B;
1386 // Y = (A - B);
1387 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1388 if (match(UnsignedICmp,
1389 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1390 ICmpInst::isUnsigned(UnsignedPred)) {
1391 if (UnsignedICmp->getOperand(0) != A)
1392 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1394 // A >=/<= B || (A - B) != 0 <--> true
1395 if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1396 UnsignedPred == ICmpInst::ICMP_ULE) &&
1397 EqPred == ICmpInst::ICMP_NE && !IsAnd)
1398 return ConstantInt::getTrue(UnsignedICmp->getType());
1399 // A </> B && (A - B) == 0 <--> false
1400 if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1401 UnsignedPred == ICmpInst::ICMP_UGT) &&
1402 EqPred == ICmpInst::ICMP_EQ && IsAnd)
1403 return ConstantInt::getFalse(UnsignedICmp->getType());
1405 // A </> B && (A - B) != 0 <--> A </> B
1406 // A </> B || (A - B) != 0 <--> (A - B) != 0
1407 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1408 UnsignedPred == ICmpInst::ICMP_UGT))
1409 return IsAnd ? UnsignedICmp : ZeroICmp;
1411 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0
1412 // A <=/>= B || (A - B) == 0 <--> A <=/>= B
1413 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1414 UnsignedPred == ICmpInst::ICMP_UGE))
1415 return IsAnd ? ZeroICmp : UnsignedICmp;
1418 // Given Y = (A - B)
1419 // Y >= A && Y != 0 --> Y >= A iff B != 0
1420 // Y < A || Y == 0 --> Y < A iff B != 0
1421 if (match(UnsignedICmp,
1422 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1423 if (UnsignedICmp->getOperand(0) != Y)
1424 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1426 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1427 EqPred == ICmpInst::ICMP_NE &&
1428 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1429 return UnsignedICmp;
1430 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1431 EqPred == ICmpInst::ICMP_EQ &&
1432 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1433 return UnsignedICmp;
1437 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1438 ICmpInst::isUnsigned(UnsignedPred))
1440 else if (match(UnsignedICmp,
1441 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1442 ICmpInst::isUnsigned(UnsignedPred))
1443 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1444 else
1445 return nullptr;
1447 // X < Y && Y != 0 --> X < Y
1448 // X < Y || Y != 0 --> Y != 0
1449 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1450 return IsAnd ? UnsignedICmp : ZeroICmp;
1452 // X <= Y && Y != 0 --> X <= Y iff X != 0
1453 // X <= Y || Y != 0 --> Y != 0 iff X != 0
1454 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1455 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1456 return IsAnd ? UnsignedICmp : ZeroICmp;
1458 // X >= Y && Y == 0 --> Y == 0
1459 // X >= Y || Y == 0 --> X >= Y
1460 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1461 return IsAnd ? ZeroICmp : UnsignedICmp;
1463 // X > Y && Y == 0 --> Y == 0 iff X != 0
1464 // X > Y || Y == 0 --> X > Y iff X != 0
1465 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1466 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1467 return IsAnd ? ZeroICmp : UnsignedICmp;
1469 // X < Y && Y == 0 --> false
1470 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1471 IsAnd)
1472 return getFalse(UnsignedICmp->getType());
1474 // X >= Y || Y != 0 --> true
1475 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1476 !IsAnd)
1477 return getTrue(UnsignedICmp->getType());
1479 return nullptr;
1482 /// Commuted variants are assumed to be handled by calling this function again
1483 /// with the parameters swapped.
1484 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1485 ICmpInst::Predicate Pred0, Pred1;
1486 Value *A ,*B;
1487 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1488 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1489 return nullptr;
1491 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1492 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1493 // can eliminate Op1 from this 'and'.
1494 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1495 return Op0;
1497 // Check for any combination of predicates that are guaranteed to be disjoint.
1498 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1499 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1500 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1501 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1502 return getFalse(Op0->getType());
1504 return nullptr;
1507 /// Commuted variants are assumed to be handled by calling this function again
1508 /// with the parameters swapped.
1509 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1510 ICmpInst::Predicate Pred0, Pred1;
1511 Value *A ,*B;
1512 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1513 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1514 return nullptr;
1516 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1517 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1518 // can eliminate Op0 from this 'or'.
1519 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1520 return Op1;
1522 // Check for any combination of predicates that cover the entire range of
1523 // possibilities.
1524 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1525 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1526 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1527 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1528 return getTrue(Op0->getType());
1530 return nullptr;
1533 /// Test if a pair of compares with a shared operand and 2 constants has an
1534 /// empty set intersection, full set union, or if one compare is a superset of
1535 /// the other.
1536 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1537 bool IsAnd) {
1538 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1539 if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1540 return nullptr;
1542 const APInt *C0, *C1;
1543 if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1544 !match(Cmp1->getOperand(1), m_APInt(C1)))
1545 return nullptr;
1547 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1548 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1550 // For and-of-compares, check if the intersection is empty:
1551 // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1552 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1553 return getFalse(Cmp0->getType());
1555 // For or-of-compares, check if the union is full:
1556 // (icmp X, C0) || (icmp X, C1) --> full set --> true
1557 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1558 return getTrue(Cmp0->getType());
1560 // Is one range a superset of the other?
1561 // If this is and-of-compares, take the smaller set:
1562 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1563 // If this is or-of-compares, take the larger set:
1564 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1565 if (Range0.contains(Range1))
1566 return IsAnd ? Cmp1 : Cmp0;
1567 if (Range1.contains(Range0))
1568 return IsAnd ? Cmp0 : Cmp1;
1570 return nullptr;
1573 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1574 bool IsAnd) {
1575 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1576 if (!match(Cmp0->getOperand(1), m_Zero()) ||
1577 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1578 return nullptr;
1580 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1581 return nullptr;
1583 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1584 Value *X = Cmp0->getOperand(0);
1585 Value *Y = Cmp1->getOperand(0);
1587 // If one of the compares is a masked version of a (not) null check, then
1588 // that compare implies the other, so we eliminate the other. Optionally, look
1589 // through a pointer-to-int cast to match a null check of a pointer type.
1591 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1592 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1593 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1594 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1595 if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1596 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1597 return Cmp1;
1599 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1600 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1601 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1602 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1603 if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1604 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1605 return Cmp0;
1607 return nullptr;
1610 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1611 const InstrInfoQuery &IIQ) {
1612 // (icmp (add V, C0), C1) & (icmp V, C0)
1613 ICmpInst::Predicate Pred0, Pred1;
1614 const APInt *C0, *C1;
1615 Value *V;
1616 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1617 return nullptr;
1619 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1620 return nullptr;
1622 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1623 if (AddInst->getOperand(1) != Op1->getOperand(1))
1624 return nullptr;
1626 Type *ITy = Op0->getType();
1627 bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1628 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1630 const APInt Delta = *C1 - *C0;
1631 if (C0->isStrictlyPositive()) {
1632 if (Delta == 2) {
1633 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1634 return getFalse(ITy);
1635 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1636 return getFalse(ITy);
1638 if (Delta == 1) {
1639 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1640 return getFalse(ITy);
1641 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1642 return getFalse(ITy);
1645 if (C0->getBoolValue() && isNUW) {
1646 if (Delta == 2)
1647 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1648 return getFalse(ITy);
1649 if (Delta == 1)
1650 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1651 return getFalse(ITy);
1654 return nullptr;
1657 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1658 const SimplifyQuery &Q) {
1659 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1660 return X;
1661 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1662 return X;
1664 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1665 return X;
1666 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1667 return X;
1669 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1670 return X;
1672 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1673 return X;
1675 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1676 return X;
1677 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1678 return X;
1680 return nullptr;
1683 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1684 const InstrInfoQuery &IIQ) {
1685 // (icmp (add V, C0), C1) | (icmp V, C0)
1686 ICmpInst::Predicate Pred0, Pred1;
1687 const APInt *C0, *C1;
1688 Value *V;
1689 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1690 return nullptr;
1692 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1693 return nullptr;
1695 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1696 if (AddInst->getOperand(1) != Op1->getOperand(1))
1697 return nullptr;
1699 Type *ITy = Op0->getType();
1700 bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1701 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1703 const APInt Delta = *C1 - *C0;
1704 if (C0->isStrictlyPositive()) {
1705 if (Delta == 2) {
1706 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1707 return getTrue(ITy);
1708 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1709 return getTrue(ITy);
1711 if (Delta == 1) {
1712 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1713 return getTrue(ITy);
1714 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1715 return getTrue(ITy);
1718 if (C0->getBoolValue() && isNUW) {
1719 if (Delta == 2)
1720 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1721 return getTrue(ITy);
1722 if (Delta == 1)
1723 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1724 return getTrue(ITy);
1727 return nullptr;
1730 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1731 const SimplifyQuery &Q) {
1732 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1733 return X;
1734 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1735 return X;
1737 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1738 return X;
1739 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1740 return X;
1742 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1743 return X;
1745 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1746 return X;
1748 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1749 return X;
1750 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1751 return X;
1753 return nullptr;
1756 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1757 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1758 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1759 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1760 if (LHS0->getType() != RHS0->getType())
1761 return nullptr;
1763 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1764 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1765 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1766 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1767 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1768 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1769 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1770 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1771 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1772 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1773 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1774 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1775 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1776 return RHS;
1778 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1779 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1780 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1781 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1782 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1783 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1784 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1785 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1786 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1787 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1788 return LHS;
1791 return nullptr;
1794 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1795 Value *Op0, Value *Op1, bool IsAnd) {
1796 // Look through casts of the 'and' operands to find compares.
1797 auto *Cast0 = dyn_cast<CastInst>(Op0);
1798 auto *Cast1 = dyn_cast<CastInst>(Op1);
1799 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1800 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1801 Op0 = Cast0->getOperand(0);
1802 Op1 = Cast1->getOperand(0);
1805 Value *V = nullptr;
1806 auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1807 auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1808 if (ICmp0 && ICmp1)
1809 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1810 : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1812 auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1813 auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1814 if (FCmp0 && FCmp1)
1815 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1817 if (!V)
1818 return nullptr;
1819 if (!Cast0)
1820 return V;
1822 // If we looked through casts, we can only handle a constant simplification
1823 // because we are not allowed to create a cast instruction here.
1824 if (auto *C = dyn_cast<Constant>(V))
1825 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1827 return nullptr;
1830 /// Check that the Op1 is in expected form, i.e.:
1831 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1832 /// %Op1 = extractvalue { i4, i1 } %Agg, 1
1833 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
1834 Value *X) {
1835 auto *Extract = dyn_cast<ExtractValueInst>(Op1);
1836 // We should only be extracting the overflow bit.
1837 if (!Extract || !Extract->getIndices().equals(1))
1838 return false;
1839 Value *Agg = Extract->getAggregateOperand();
1840 // This should be a multiplication-with-overflow intrinsic.
1841 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
1842 m_Intrinsic<Intrinsic::smul_with_overflow>())))
1843 return false;
1844 // One of its multipliers should be the value we checked for zero before.
1845 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
1846 m_Argument<1>(m_Specific(X)))))
1847 return false;
1848 return true;
1851 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1852 /// other form of check, e.g. one that was using division; it may have been
1853 /// guarded against division-by-zero. We can drop that check now.
1854 /// Look for:
1855 /// %Op0 = icmp ne i4 %X, 0
1856 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1857 /// %Op1 = extractvalue { i4, i1 } %Agg, 1
1858 /// %??? = and i1 %Op0, %Op1
1859 /// We can just return %Op1
1860 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
1861 ICmpInst::Predicate Pred;
1862 Value *X;
1863 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1864 Pred != ICmpInst::Predicate::ICMP_NE)
1865 return nullptr;
1866 // Is Op1 in expected form?
1867 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1868 return nullptr;
1869 // Can omit 'and', and just return the overflow bit.
1870 return Op1;
1873 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1874 /// other form of check, e.g. one that was using division; it may have been
1875 /// guarded against division-by-zero. We can drop that check now.
1876 /// Look for:
1877 /// %Op0 = icmp eq i4 %X, 0
1878 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1879 /// %Op1 = extractvalue { i4, i1 } %Agg, 1
1880 /// %NotOp1 = xor i1 %Op1, true
1881 /// %or = or i1 %Op0, %NotOp1
1882 /// We can just return %NotOp1
1883 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
1884 Value *NotOp1) {
1885 ICmpInst::Predicate Pred;
1886 Value *X;
1887 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1888 Pred != ICmpInst::Predicate::ICMP_EQ)
1889 return nullptr;
1890 // We expect the other hand of an 'or' to be a 'not'.
1891 Value *Op1;
1892 if (!match(NotOp1, m_Not(m_Value(Op1))))
1893 return nullptr;
1894 // Is Op1 in expected form?
1895 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1896 return nullptr;
1897 // Can omit 'and', and just return the inverted overflow bit.
1898 return NotOp1;
1901 /// Given operands for an And, see if we can fold the result.
1902 /// If not, this returns null.
1903 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1904 unsigned MaxRecurse) {
1905 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1906 return C;
1908 // X & undef -> 0
1909 if (match(Op1, m_Undef()))
1910 return Constant::getNullValue(Op0->getType());
1912 // X & X = X
1913 if (Op0 == Op1)
1914 return Op0;
1916 // X & 0 = 0
1917 if (match(Op1, m_Zero()))
1918 return Constant::getNullValue(Op0->getType());
1920 // X & -1 = X
1921 if (match(Op1, m_AllOnes()))
1922 return Op0;
1924 // A & ~A = ~A & A = 0
1925 if (match(Op0, m_Not(m_Specific(Op1))) ||
1926 match(Op1, m_Not(m_Specific(Op0))))
1927 return Constant::getNullValue(Op0->getType());
1929 // (A | ?) & A = A
1930 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1931 return Op1;
1933 // A & (A | ?) = A
1934 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1935 return Op0;
1937 // A mask that only clears known zeros of a shifted value is a no-op.
1938 Value *X;
1939 const APInt *Mask;
1940 const APInt *ShAmt;
1941 if (match(Op1, m_APInt(Mask))) {
1942 // If all bits in the inverted and shifted mask are clear:
1943 // and (shl X, ShAmt), Mask --> shl X, ShAmt
1944 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1945 (~(*Mask)).lshr(*ShAmt).isNullValue())
1946 return Op0;
1948 // If all bits in the inverted and shifted mask are clear:
1949 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1950 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1951 (~(*Mask)).shl(*ShAmt).isNullValue())
1952 return Op0;
1955 // If we have a multiplication overflow check that is being 'and'ed with a
1956 // check that one of the multipliers is not zero, we can omit the 'and', and
1957 // only keep the overflow check.
1958 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1))
1959 return V;
1960 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0))
1961 return V;
1963 // A & (-A) = A if A is a power of two or zero.
1964 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1965 match(Op1, m_Neg(m_Specific(Op0)))) {
1966 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1967 Q.DT))
1968 return Op0;
1969 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1970 Q.DT))
1971 return Op1;
1974 // This is a similar pattern used for checking if a value is a power-of-2:
1975 // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
1976 // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
1977 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
1978 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1979 return Constant::getNullValue(Op1->getType());
1980 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
1981 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1982 return Constant::getNullValue(Op0->getType());
1984 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
1985 return V;
1987 // Try some generic simplifications for associative operations.
1988 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1989 MaxRecurse))
1990 return V;
1992 // And distributes over Or. Try some generic simplifications based on this.
1993 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1994 Q, MaxRecurse))
1995 return V;
1997 // And distributes over Xor. Try some generic simplifications based on this.
1998 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1999 Q, MaxRecurse))
2000 return V;
2002 // If the operation is with the result of a select instruction, check whether
2003 // operating on either branch of the select always yields the same value.
2004 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2005 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2006 MaxRecurse))
2007 return V;
2009 // If the operation is with the result of a phi instruction, check whether
2010 // operating on all incoming values of the phi always yields the same value.
2011 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2012 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2013 MaxRecurse))
2014 return V;
2016 // Assuming the effective width of Y is not larger than A, i.e. all bits
2017 // from X and Y are disjoint in (X << A) | Y,
2018 // if the mask of this AND op covers all bits of X or Y, while it covers
2019 // no bits from the other, we can bypass this AND op. E.g.,
2020 // ((X << A) | Y) & Mask -> Y,
2021 // if Mask = ((1 << effective_width_of(Y)) - 1)
2022 // ((X << A) | Y) & Mask -> X << A,
2023 // if Mask = ((1 << effective_width_of(X)) - 1) << A
2024 // SimplifyDemandedBits in InstCombine can optimize the general case.
2025 // This pattern aims to help other passes for a common case.
2026 Value *Y, *XShifted;
2027 if (match(Op1, m_APInt(Mask)) &&
2028 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2029 m_Value(XShifted)),
2030 m_Value(Y)))) {
2031 const unsigned Width = Op0->getType()->getScalarSizeInBits();
2032 const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2033 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2034 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
2035 if (EffWidthY <= ShftCnt) {
2036 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2037 Q.DT);
2038 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
2039 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2040 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2041 // If the mask is extracting all bits from X or Y as is, we can skip
2042 // this AND op.
2043 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2044 return Y;
2045 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2046 return XShifted;
2050 return nullptr;
2053 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2054 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2057 /// Given operands for an Or, see if we can fold the result.
2058 /// If not, this returns null.
2059 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2060 unsigned MaxRecurse) {
2061 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2062 return C;
2064 // X | undef -> -1
2065 // X | -1 = -1
2066 // Do not return Op1 because it may contain undef elements if it's a vector.
2067 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
2068 return Constant::getAllOnesValue(Op0->getType());
2070 // X | X = X
2071 // X | 0 = X
2072 if (Op0 == Op1 || match(Op1, m_Zero()))
2073 return Op0;
2075 // A | ~A = ~A | A = -1
2076 if (match(Op0, m_Not(m_Specific(Op1))) ||
2077 match(Op1, m_Not(m_Specific(Op0))))
2078 return Constant::getAllOnesValue(Op0->getType());
2080 // (A & ?) | A = A
2081 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2082 return Op1;
2084 // A | (A & ?) = A
2085 if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2086 return Op0;
2088 // ~(A & ?) | A = -1
2089 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2090 return Constant::getAllOnesValue(Op1->getType());
2092 // A | ~(A & ?) = -1
2093 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2094 return Constant::getAllOnesValue(Op0->getType());
2096 Value *A, *B;
2097 // (A & ~B) | (A ^ B) -> (A ^ B)
2098 // (~B & A) | (A ^ B) -> (A ^ B)
2099 // (A & ~B) | (B ^ A) -> (B ^ A)
2100 // (~B & A) | (B ^ A) -> (B ^ A)
2101 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2102 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2103 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2104 return Op1;
2106 // Commute the 'or' operands.
2107 // (A ^ B) | (A & ~B) -> (A ^ B)
2108 // (A ^ B) | (~B & A) -> (A ^ B)
2109 // (B ^ A) | (A & ~B) -> (B ^ A)
2110 // (B ^ A) | (~B & A) -> (B ^ A)
2111 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2112 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2113 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2114 return Op0;
2116 // (A & B) | (~A ^ B) -> (~A ^ B)
2117 // (B & A) | (~A ^ B) -> (~A ^ B)
2118 // (A & B) | (B ^ ~A) -> (B ^ ~A)
2119 // (B & A) | (B ^ ~A) -> (B ^ ~A)
2120 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2121 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2122 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2123 return Op1;
2125 // (~A ^ B) | (A & B) -> (~A ^ B)
2126 // (~A ^ B) | (B & A) -> (~A ^ B)
2127 // (B ^ ~A) | (A & B) -> (B ^ ~A)
2128 // (B ^ ~A) | (B & A) -> (B ^ ~A)
2129 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2130 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2131 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2132 return Op0;
2134 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2135 return V;
2137 // If we have a multiplication overflow check that is being 'and'ed with a
2138 // check that one of the multipliers is not zero, we can omit the 'and', and
2139 // only keep the overflow check.
2140 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1))
2141 return V;
2142 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0))
2143 return V;
2145 // Try some generic simplifications for associative operations.
2146 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2147 MaxRecurse))
2148 return V;
2150 // Or distributes over And. Try some generic simplifications based on this.
2151 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
2152 MaxRecurse))
2153 return V;
2155 // If the operation is with the result of a select instruction, check whether
2156 // operating on either branch of the select always yields the same value.
2157 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2158 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2159 MaxRecurse))
2160 return V;
2162 // (A & C1)|(B & C2)
2163 const APInt *C1, *C2;
2164 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2165 match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2166 if (*C1 == ~*C2) {
2167 // (A & C1)|(B & C2)
2168 // If we have: ((V + N) & C1) | (V & C2)
2169 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2170 // replace with V+N.
2171 Value *N;
2172 if (C2->isMask() && // C2 == 0+1+
2173 match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2174 // Add commutes, try both ways.
2175 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2176 return A;
2178 // Or commutes, try both ways.
2179 if (C1->isMask() &&
2180 match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2181 // Add commutes, try both ways.
2182 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2183 return B;
2188 // If the operation is with the result of a phi instruction, check whether
2189 // operating on all incoming values of the phi always yields the same value.
2190 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2191 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2192 return V;
2194 return nullptr;
2197 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2198 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2201 /// Given operands for a Xor, see if we can fold the result.
2202 /// If not, this returns null.
2203 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2204 unsigned MaxRecurse) {
2205 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2206 return C;
2208 // A ^ undef -> undef
2209 if (match(Op1, m_Undef()))
2210 return Op1;
2212 // A ^ 0 = A
2213 if (match(Op1, m_Zero()))
2214 return Op0;
2216 // A ^ A = 0
2217 if (Op0 == Op1)
2218 return Constant::getNullValue(Op0->getType());
2220 // A ^ ~A = ~A ^ A = -1
2221 if (match(Op0, m_Not(m_Specific(Op1))) ||
2222 match(Op1, m_Not(m_Specific(Op0))))
2223 return Constant::getAllOnesValue(Op0->getType());
2225 // Try some generic simplifications for associative operations.
2226 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2227 MaxRecurse))
2228 return V;
2230 // Threading Xor over selects and phi nodes is pointless, so don't bother.
2231 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2232 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2233 // only if B and C are equal. If B and C are equal then (since we assume
2234 // that operands have already been simplified) "select(cond, B, C)" should
2235 // have been simplified to the common value of B and C already. Analysing
2236 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
2237 // for threading over phi nodes.
2239 return nullptr;
2242 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2243 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2247 static Type *GetCompareTy(Value *Op) {
2248 return CmpInst::makeCmpResultType(Op->getType());
2251 /// Rummage around inside V looking for something equivalent to the comparison
2252 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2253 /// Helper function for analyzing max/min idioms.
2254 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2255 Value *LHS, Value *RHS) {
2256 SelectInst *SI = dyn_cast<SelectInst>(V);
2257 if (!SI)
2258 return nullptr;
2259 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2260 if (!Cmp)
2261 return nullptr;
2262 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2263 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2264 return Cmp;
2265 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2266 LHS == CmpRHS && RHS == CmpLHS)
2267 return Cmp;
2268 return nullptr;
2271 // A significant optimization not implemented here is assuming that alloca
2272 // addresses are not equal to incoming argument values. They don't *alias*,
2273 // as we say, but that doesn't mean they aren't equal, so we take a
2274 // conservative approach.
2276 // This is inspired in part by C++11 5.10p1:
2277 // "Two pointers of the same type compare equal if and only if they are both
2278 // null, both point to the same function, or both represent the same
2279 // address."
2281 // This is pretty permissive.
2283 // It's also partly due to C11 6.5.9p6:
2284 // "Two pointers compare equal if and only if both are null pointers, both are
2285 // pointers to the same object (including a pointer to an object and a
2286 // subobject at its beginning) or function, both are pointers to one past the
2287 // last element of the same array object, or one is a pointer to one past the
2288 // end of one array object and the other is a pointer to the start of a
2289 // different array object that happens to immediately follow the first array
2290 // object in the address space.)
2292 // C11's version is more restrictive, however there's no reason why an argument
2293 // couldn't be a one-past-the-end value for a stack object in the caller and be
2294 // equal to the beginning of a stack object in the callee.
2296 // If the C and C++ standards are ever made sufficiently restrictive in this
2297 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2298 // this optimization.
2299 static Constant *
2300 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2301 const DominatorTree *DT, CmpInst::Predicate Pred,
2302 AssumptionCache *AC, const Instruction *CxtI,
2303 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2304 // First, skip past any trivial no-ops.
2305 LHS = LHS->stripPointerCasts();
2306 RHS = RHS->stripPointerCasts();
2308 // A non-null pointer is not equal to a null pointer.
2309 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2310 IIQ.UseInstrInfo) &&
2311 isa<ConstantPointerNull>(RHS) &&
2312 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2313 return ConstantInt::get(GetCompareTy(LHS),
2314 !CmpInst::isTrueWhenEqual(Pred));
2316 // We can only fold certain predicates on pointer comparisons.
2317 switch (Pred) {
2318 default:
2319 return nullptr;
2321 // Equality comaprisons are easy to fold.
2322 case CmpInst::ICMP_EQ:
2323 case CmpInst::ICMP_NE:
2324 break;
2326 // We can only handle unsigned relational comparisons because 'inbounds' on
2327 // a GEP only protects against unsigned wrapping.
2328 case CmpInst::ICMP_UGT:
2329 case CmpInst::ICMP_UGE:
2330 case CmpInst::ICMP_ULT:
2331 case CmpInst::ICMP_ULE:
2332 // However, we have to switch them to their signed variants to handle
2333 // negative indices from the base pointer.
2334 Pred = ICmpInst::getSignedPredicate(Pred);
2335 break;
2338 // Strip off any constant offsets so that we can reason about them.
2339 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2340 // here and compare base addresses like AliasAnalysis does, however there are
2341 // numerous hazards. AliasAnalysis and its utilities rely on special rules
2342 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2343 // doesn't need to guarantee pointer inequality when it says NoAlias.
2344 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2345 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2347 // If LHS and RHS are related via constant offsets to the same base
2348 // value, we can replace it with an icmp which just compares the offsets.
2349 if (LHS == RHS)
2350 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2352 // Various optimizations for (in)equality comparisons.
2353 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2354 // Different non-empty allocations that exist at the same time have
2355 // different addresses (if the program can tell). Global variables always
2356 // exist, so they always exist during the lifetime of each other and all
2357 // allocas. Two different allocas usually have different addresses...
2359 // However, if there's an @llvm.stackrestore dynamically in between two
2360 // allocas, they may have the same address. It's tempting to reduce the
2361 // scope of the problem by only looking at *static* allocas here. That would
2362 // cover the majority of allocas while significantly reducing the likelihood
2363 // of having an @llvm.stackrestore pop up in the middle. However, it's not
2364 // actually impossible for an @llvm.stackrestore to pop up in the middle of
2365 // an entry block. Also, if we have a block that's not attached to a
2366 // function, we can't tell if it's "static" under the current definition.
2367 // Theoretically, this problem could be fixed by creating a new kind of
2368 // instruction kind specifically for static allocas. Such a new instruction
2369 // could be required to be at the top of the entry block, thus preventing it
2370 // from being subject to a @llvm.stackrestore. Instcombine could even
2371 // convert regular allocas into these special allocas. It'd be nifty.
2372 // However, until then, this problem remains open.
2374 // So, we'll assume that two non-empty allocas have different addresses
2375 // for now.
2377 // With all that, if the offsets are within the bounds of their allocations
2378 // (and not one-past-the-end! so we can't use inbounds!), and their
2379 // allocations aren't the same, the pointers are not equal.
2381 // Note that it's not necessary to check for LHS being a global variable
2382 // address, due to canonicalization and constant folding.
2383 if (isa<AllocaInst>(LHS) &&
2384 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2385 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2386 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2387 uint64_t LHSSize, RHSSize;
2388 ObjectSizeOpts Opts;
2389 Opts.NullIsUnknownSize =
2390 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2391 if (LHSOffsetCI && RHSOffsetCI &&
2392 getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2393 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2394 const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2395 const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2396 if (!LHSOffsetValue.isNegative() &&
2397 !RHSOffsetValue.isNegative() &&
2398 LHSOffsetValue.ult(LHSSize) &&
2399 RHSOffsetValue.ult(RHSSize)) {
2400 return ConstantInt::get(GetCompareTy(LHS),
2401 !CmpInst::isTrueWhenEqual(Pred));
2405 // Repeat the above check but this time without depending on DataLayout
2406 // or being able to compute a precise size.
2407 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2408 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2409 LHSOffset->isNullValue() &&
2410 RHSOffset->isNullValue())
2411 return ConstantInt::get(GetCompareTy(LHS),
2412 !CmpInst::isTrueWhenEqual(Pred));
2415 // Even if an non-inbounds GEP occurs along the path we can still optimize
2416 // equality comparisons concerning the result. We avoid walking the whole
2417 // chain again by starting where the last calls to
2418 // stripAndComputeConstantOffsets left off and accumulate the offsets.
2419 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2420 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2421 if (LHS == RHS)
2422 return ConstantExpr::getICmp(Pred,
2423 ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2424 ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2426 // If one side of the equality comparison must come from a noalias call
2427 // (meaning a system memory allocation function), and the other side must
2428 // come from a pointer that cannot overlap with dynamically-allocated
2429 // memory within the lifetime of the current function (allocas, byval
2430 // arguments, globals), then determine the comparison result here.
2431 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2432 GetUnderlyingObjects(LHS, LHSUObjs, DL);
2433 GetUnderlyingObjects(RHS, RHSUObjs, DL);
2435 // Is the set of underlying objects all noalias calls?
2436 auto IsNAC = [](ArrayRef<const Value *> Objects) {
2437 return all_of(Objects, isNoAliasCall);
2440 // Is the set of underlying objects all things which must be disjoint from
2441 // noalias calls. For allocas, we consider only static ones (dynamic
2442 // allocas might be transformed into calls to malloc not simultaneously
2443 // live with the compared-to allocation). For globals, we exclude symbols
2444 // that might be resolve lazily to symbols in another dynamically-loaded
2445 // library (and, thus, could be malloc'ed by the implementation).
2446 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2447 return all_of(Objects, [](const Value *V) {
2448 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2449 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2450 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2451 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2452 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2453 !GV->isThreadLocal();
2454 if (const Argument *A = dyn_cast<Argument>(V))
2455 return A->hasByValAttr();
2456 return false;
2460 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2461 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2462 return ConstantInt::get(GetCompareTy(LHS),
2463 !CmpInst::isTrueWhenEqual(Pred));
2465 // Fold comparisons for non-escaping pointer even if the allocation call
2466 // cannot be elided. We cannot fold malloc comparison to null. Also, the
2467 // dynamic allocation call could be either of the operands.
2468 Value *MI = nullptr;
2469 if (isAllocLikeFn(LHS, TLI) &&
2470 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2471 MI = LHS;
2472 else if (isAllocLikeFn(RHS, TLI) &&
2473 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2474 MI = RHS;
2475 // FIXME: We should also fold the compare when the pointer escapes, but the
2476 // compare dominates the pointer escape
2477 if (MI && !PointerMayBeCaptured(MI, true, true))
2478 return ConstantInt::get(GetCompareTy(LHS),
2479 CmpInst::isFalseWhenEqual(Pred));
2482 // Otherwise, fail.
2483 return nullptr;
2486 /// Fold an icmp when its operands have i1 scalar type.
2487 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2488 Value *RHS, const SimplifyQuery &Q) {
2489 Type *ITy = GetCompareTy(LHS); // The return type.
2490 Type *OpTy = LHS->getType(); // The operand type.
2491 if (!OpTy->isIntOrIntVectorTy(1))
2492 return nullptr;
2494 // A boolean compared to true/false can be simplified in 14 out of the 20
2495 // (10 predicates * 2 constants) possible combinations. Cases not handled here
2496 // require a 'not' of the LHS, so those must be transformed in InstCombine.
2497 if (match(RHS, m_Zero())) {
2498 switch (Pred) {
2499 case CmpInst::ICMP_NE: // X != 0 -> X
2500 case CmpInst::ICMP_UGT: // X >u 0 -> X
2501 case CmpInst::ICMP_SLT: // X <s 0 -> X
2502 return LHS;
2504 case CmpInst::ICMP_ULT: // X <u 0 -> false
2505 case CmpInst::ICMP_SGT: // X >s 0 -> false
2506 return getFalse(ITy);
2508 case CmpInst::ICMP_UGE: // X >=u 0 -> true
2509 case CmpInst::ICMP_SLE: // X <=s 0 -> true
2510 return getTrue(ITy);
2512 default: break;
2514 } else if (match(RHS, m_One())) {
2515 switch (Pred) {
2516 case CmpInst::ICMP_EQ: // X == 1 -> X
2517 case CmpInst::ICMP_UGE: // X >=u 1 -> X
2518 case CmpInst::ICMP_SLE: // X <=s -1 -> X
2519 return LHS;
2521 case CmpInst::ICMP_UGT: // X >u 1 -> false
2522 case CmpInst::ICMP_SLT: // X <s -1 -> false
2523 return getFalse(ITy);
2525 case CmpInst::ICMP_ULE: // X <=u 1 -> true
2526 case CmpInst::ICMP_SGE: // X >=s -1 -> true
2527 return getTrue(ITy);
2529 default: break;
2533 switch (Pred) {
2534 default:
2535 break;
2536 case ICmpInst::ICMP_UGE:
2537 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2538 return getTrue(ITy);
2539 break;
2540 case ICmpInst::ICMP_SGE:
2541 /// For signed comparison, the values for an i1 are 0 and -1
2542 /// respectively. This maps into a truth table of:
2543 /// LHS | RHS | LHS >=s RHS | LHS implies RHS
2544 /// 0 | 0 | 1 (0 >= 0) | 1
2545 /// 0 | 1 | 1 (0 >= -1) | 1
2546 /// 1 | 0 | 0 (-1 >= 0) | 0
2547 /// 1 | 1 | 1 (-1 >= -1) | 1
2548 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2549 return getTrue(ITy);
2550 break;
2551 case ICmpInst::ICMP_ULE:
2552 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2553 return getTrue(ITy);
2554 break;
2557 return nullptr;
2560 /// Try hard to fold icmp with zero RHS because this is a common case.
2561 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2562 Value *RHS, const SimplifyQuery &Q) {
2563 if (!match(RHS, m_Zero()))
2564 return nullptr;
2566 Type *ITy = GetCompareTy(LHS); // The return type.
2567 switch (Pred) {
2568 default:
2569 llvm_unreachable("Unknown ICmp predicate!");
2570 case ICmpInst::ICMP_ULT:
2571 return getFalse(ITy);
2572 case ICmpInst::ICMP_UGE:
2573 return getTrue(ITy);
2574 case ICmpInst::ICMP_EQ:
2575 case ICmpInst::ICMP_ULE:
2576 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2577 return getFalse(ITy);
2578 break;
2579 case ICmpInst::ICMP_NE:
2580 case ICmpInst::ICMP_UGT:
2581 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2582 return getTrue(ITy);
2583 break;
2584 case ICmpInst::ICMP_SLT: {
2585 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2586 if (LHSKnown.isNegative())
2587 return getTrue(ITy);
2588 if (LHSKnown.isNonNegative())
2589 return getFalse(ITy);
2590 break;
2592 case ICmpInst::ICMP_SLE: {
2593 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2594 if (LHSKnown.isNegative())
2595 return getTrue(ITy);
2596 if (LHSKnown.isNonNegative() &&
2597 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2598 return getFalse(ITy);
2599 break;
2601 case ICmpInst::ICMP_SGE: {
2602 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2603 if (LHSKnown.isNegative())
2604 return getFalse(ITy);
2605 if (LHSKnown.isNonNegative())
2606 return getTrue(ITy);
2607 break;
2609 case ICmpInst::ICMP_SGT: {
2610 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2611 if (LHSKnown.isNegative())
2612 return getFalse(ITy);
2613 if (LHSKnown.isNonNegative() &&
2614 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2615 return getTrue(ITy);
2616 break;
2620 return nullptr;
2623 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2624 Value *RHS, const InstrInfoQuery &IIQ) {
2625 Type *ITy = GetCompareTy(RHS); // The return type.
2627 Value *X;
2628 // Sign-bit checks can be optimized to true/false after unsigned
2629 // floating-point casts:
2630 // icmp slt (bitcast (uitofp X)), 0 --> false
2631 // icmp sgt (bitcast (uitofp X)), -1 --> true
2632 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2633 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2634 return ConstantInt::getFalse(ITy);
2635 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2636 return ConstantInt::getTrue(ITy);
2639 const APInt *C;
2640 if (!match(RHS, m_APInt(C)))
2641 return nullptr;
2643 // Rule out tautological comparisons (eg., ult 0 or uge 0).
2644 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2645 if (RHS_CR.isEmptySet())
2646 return ConstantInt::getFalse(ITy);
2647 if (RHS_CR.isFullSet())
2648 return ConstantInt::getTrue(ITy);
2650 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2651 if (!LHS_CR.isFullSet()) {
2652 if (RHS_CR.contains(LHS_CR))
2653 return ConstantInt::getTrue(ITy);
2654 if (RHS_CR.inverse().contains(LHS_CR))
2655 return ConstantInt::getFalse(ITy);
2658 return nullptr;
2661 /// TODO: A large part of this logic is duplicated in InstCombine's
2662 /// foldICmpBinOp(). We should be able to share that and avoid the code
2663 /// duplication.
2664 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2665 Value *RHS, const SimplifyQuery &Q,
2666 unsigned MaxRecurse) {
2667 Type *ITy = GetCompareTy(LHS); // The return type.
2669 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2670 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2671 if (MaxRecurse && (LBO || RBO)) {
2672 // Analyze the case when either LHS or RHS is an add instruction.
2673 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2674 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2675 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2676 if (LBO && LBO->getOpcode() == Instruction::Add) {
2677 A = LBO->getOperand(0);
2678 B = LBO->getOperand(1);
2679 NoLHSWrapProblem =
2680 ICmpInst::isEquality(Pred) ||
2681 (CmpInst::isUnsigned(Pred) &&
2682 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2683 (CmpInst::isSigned(Pred) &&
2684 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2686 if (RBO && RBO->getOpcode() == Instruction::Add) {
2687 C = RBO->getOperand(0);
2688 D = RBO->getOperand(1);
2689 NoRHSWrapProblem =
2690 ICmpInst::isEquality(Pred) ||
2691 (CmpInst::isUnsigned(Pred) &&
2692 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2693 (CmpInst::isSigned(Pred) &&
2694 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2697 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2698 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2699 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2700 Constant::getNullValue(RHS->getType()), Q,
2701 MaxRecurse - 1))
2702 return V;
2704 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2705 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2706 if (Value *V =
2707 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2708 C == LHS ? D : C, Q, MaxRecurse - 1))
2709 return V;
2711 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2712 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2713 NoRHSWrapProblem) {
2714 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2715 Value *Y, *Z;
2716 if (A == C) {
2717 // C + B == C + D -> B == D
2718 Y = B;
2719 Z = D;
2720 } else if (A == D) {
2721 // D + B == C + D -> B == C
2722 Y = B;
2723 Z = C;
2724 } else if (B == C) {
2725 // A + C == C + D -> A == D
2726 Y = A;
2727 Z = D;
2728 } else {
2729 assert(B == D);
2730 // A + D == C + D -> A == C
2731 Y = A;
2732 Z = C;
2734 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2735 return V;
2740 Value *Y = nullptr;
2741 // icmp pred (or X, Y), X
2742 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2743 if (Pred == ICmpInst::ICMP_ULT)
2744 return getFalse(ITy);
2745 if (Pred == ICmpInst::ICMP_UGE)
2746 return getTrue(ITy);
2748 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2749 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2750 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2751 if (RHSKnown.isNonNegative() && YKnown.isNegative())
2752 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2753 if (RHSKnown.isNegative() || YKnown.isNonNegative())
2754 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2757 // icmp pred X, (or X, Y)
2758 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2759 if (Pred == ICmpInst::ICMP_ULE)
2760 return getTrue(ITy);
2761 if (Pred == ICmpInst::ICMP_UGT)
2762 return getFalse(ITy);
2764 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2765 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2766 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2767 if (LHSKnown.isNonNegative() && YKnown.isNegative())
2768 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2769 if (LHSKnown.isNegative() || YKnown.isNonNegative())
2770 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2775 // icmp pred (and X, Y), X
2776 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2777 if (Pred == ICmpInst::ICMP_UGT)
2778 return getFalse(ITy);
2779 if (Pred == ICmpInst::ICMP_ULE)
2780 return getTrue(ITy);
2782 // icmp pred X, (and X, Y)
2783 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2784 if (Pred == ICmpInst::ICMP_UGE)
2785 return getTrue(ITy);
2786 if (Pred == ICmpInst::ICMP_ULT)
2787 return getFalse(ITy);
2790 // 0 - (zext X) pred C
2791 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2792 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2793 if (RHSC->getValue().isStrictlyPositive()) {
2794 if (Pred == ICmpInst::ICMP_SLT)
2795 return ConstantInt::getTrue(RHSC->getContext());
2796 if (Pred == ICmpInst::ICMP_SGE)
2797 return ConstantInt::getFalse(RHSC->getContext());
2798 if (Pred == ICmpInst::ICMP_EQ)
2799 return ConstantInt::getFalse(RHSC->getContext());
2800 if (Pred == ICmpInst::ICMP_NE)
2801 return ConstantInt::getTrue(RHSC->getContext());
2803 if (RHSC->getValue().isNonNegative()) {
2804 if (Pred == ICmpInst::ICMP_SLE)
2805 return ConstantInt::getTrue(RHSC->getContext());
2806 if (Pred == ICmpInst::ICMP_SGT)
2807 return ConstantInt::getFalse(RHSC->getContext());
2812 // icmp pred (urem X, Y), Y
2813 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2814 switch (Pred) {
2815 default:
2816 break;
2817 case ICmpInst::ICMP_SGT:
2818 case ICmpInst::ICMP_SGE: {
2819 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2820 if (!Known.isNonNegative())
2821 break;
2822 LLVM_FALLTHROUGH;
2824 case ICmpInst::ICMP_EQ:
2825 case ICmpInst::ICMP_UGT:
2826 case ICmpInst::ICMP_UGE:
2827 return getFalse(ITy);
2828 case ICmpInst::ICMP_SLT:
2829 case ICmpInst::ICMP_SLE: {
2830 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2831 if (!Known.isNonNegative())
2832 break;
2833 LLVM_FALLTHROUGH;
2835 case ICmpInst::ICMP_NE:
2836 case ICmpInst::ICMP_ULT:
2837 case ICmpInst::ICMP_ULE:
2838 return getTrue(ITy);
2842 // icmp pred X, (urem Y, X)
2843 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2844 switch (Pred) {
2845 default:
2846 break;
2847 case ICmpInst::ICMP_SGT:
2848 case ICmpInst::ICMP_SGE: {
2849 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2850 if (!Known.isNonNegative())
2851 break;
2852 LLVM_FALLTHROUGH;
2854 case ICmpInst::ICMP_NE:
2855 case ICmpInst::ICMP_UGT:
2856 case ICmpInst::ICMP_UGE:
2857 return getTrue(ITy);
2858 case ICmpInst::ICMP_SLT:
2859 case ICmpInst::ICMP_SLE: {
2860 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2861 if (!Known.isNonNegative())
2862 break;
2863 LLVM_FALLTHROUGH;
2865 case ICmpInst::ICMP_EQ:
2866 case ICmpInst::ICMP_ULT:
2867 case ICmpInst::ICMP_ULE:
2868 return getFalse(ITy);
2872 // x >> y <=u x
2873 // x udiv y <=u x.
2874 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2875 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2876 // icmp pred (X op Y), X
2877 if (Pred == ICmpInst::ICMP_UGT)
2878 return getFalse(ITy);
2879 if (Pred == ICmpInst::ICMP_ULE)
2880 return getTrue(ITy);
2883 // x >=u x >> y
2884 // x >=u x udiv y.
2885 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2886 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2887 // icmp pred X, (X op Y)
2888 if (Pred == ICmpInst::ICMP_ULT)
2889 return getFalse(ITy);
2890 if (Pred == ICmpInst::ICMP_UGE)
2891 return getTrue(ITy);
2894 // handle:
2895 // CI2 << X == CI
2896 // CI2 << X != CI
2898 // where CI2 is a power of 2 and CI isn't
2899 if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2900 const APInt *CI2Val, *CIVal = &CI->getValue();
2901 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2902 CI2Val->isPowerOf2()) {
2903 if (!CIVal->isPowerOf2()) {
2904 // CI2 << X can equal zero in some circumstances,
2905 // this simplification is unsafe if CI is zero.
2907 // We know it is safe if:
2908 // - The shift is nsw, we can't shift out the one bit.
2909 // - The shift is nuw, we can't shift out the one bit.
2910 // - CI2 is one
2911 // - CI isn't zero
2912 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2913 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2914 CI2Val->isOneValue() || !CI->isZero()) {
2915 if (Pred == ICmpInst::ICMP_EQ)
2916 return ConstantInt::getFalse(RHS->getContext());
2917 if (Pred == ICmpInst::ICMP_NE)
2918 return ConstantInt::getTrue(RHS->getContext());
2921 if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2922 if (Pred == ICmpInst::ICMP_UGT)
2923 return ConstantInt::getFalse(RHS->getContext());
2924 if (Pred == ICmpInst::ICMP_ULE)
2925 return ConstantInt::getTrue(RHS->getContext());
2930 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2931 LBO->getOperand(1) == RBO->getOperand(1)) {
2932 switch (LBO->getOpcode()) {
2933 default:
2934 break;
2935 case Instruction::UDiv:
2936 case Instruction::LShr:
2937 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
2938 !Q.IIQ.isExact(RBO))
2939 break;
2940 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2941 RBO->getOperand(0), Q, MaxRecurse - 1))
2942 return V;
2943 break;
2944 case Instruction::SDiv:
2945 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
2946 !Q.IIQ.isExact(RBO))
2947 break;
2948 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2949 RBO->getOperand(0), Q, MaxRecurse - 1))
2950 return V;
2951 break;
2952 case Instruction::AShr:
2953 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
2954 break;
2955 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2956 RBO->getOperand(0), Q, MaxRecurse - 1))
2957 return V;
2958 break;
2959 case Instruction::Shl: {
2960 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
2961 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
2962 if (!NUW && !NSW)
2963 break;
2964 if (!NSW && ICmpInst::isSigned(Pred))
2965 break;
2966 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2967 RBO->getOperand(0), Q, MaxRecurse - 1))
2968 return V;
2969 break;
2973 return nullptr;
2976 /// Simplify integer comparisons where at least one operand of the compare
2977 /// matches an integer min/max idiom.
2978 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2979 Value *RHS, const SimplifyQuery &Q,
2980 unsigned MaxRecurse) {
2981 Type *ITy = GetCompareTy(LHS); // The return type.
2982 Value *A, *B;
2983 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2984 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2986 // Signed variants on "max(a,b)>=a -> true".
2987 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2988 if (A != RHS)
2989 std::swap(A, B); // smax(A, B) pred A.
2990 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2991 // We analyze this as smax(A, B) pred A.
2992 P = Pred;
2993 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2994 (A == LHS || B == LHS)) {
2995 if (A != LHS)
2996 std::swap(A, B); // A pred smax(A, B).
2997 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2998 // We analyze this as smax(A, B) swapped-pred A.
2999 P = CmpInst::getSwappedPredicate(Pred);
3000 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3001 (A == RHS || B == RHS)) {
3002 if (A != RHS)
3003 std::swap(A, B); // smin(A, B) pred A.
3004 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3005 // We analyze this as smax(-A, -B) swapped-pred -A.
3006 // Note that we do not need to actually form -A or -B thanks to EqP.
3007 P = CmpInst::getSwappedPredicate(Pred);
3008 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3009 (A == LHS || B == LHS)) {
3010 if (A != LHS)
3011 std::swap(A, B); // A pred smin(A, B).
3012 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3013 // We analyze this as smax(-A, -B) pred -A.
3014 // Note that we do not need to actually form -A or -B thanks to EqP.
3015 P = Pred;
3017 if (P != CmpInst::BAD_ICMP_PREDICATE) {
3018 // Cases correspond to "max(A, B) p A".
3019 switch (P) {
3020 default:
3021 break;
3022 case CmpInst::ICMP_EQ:
3023 case CmpInst::ICMP_SLE:
3024 // Equivalent to "A EqP B". This may be the same as the condition tested
3025 // in the max/min; if so, we can just return that.
3026 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3027 return V;
3028 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3029 return V;
3030 // Otherwise, see if "A EqP B" simplifies.
3031 if (MaxRecurse)
3032 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3033 return V;
3034 break;
3035 case CmpInst::ICMP_NE:
3036 case CmpInst::ICMP_SGT: {
3037 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3038 // Equivalent to "A InvEqP B". This may be the same as the condition
3039 // tested in the max/min; if so, we can just return that.
3040 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3041 return V;
3042 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3043 return V;
3044 // Otherwise, see if "A InvEqP B" simplifies.
3045 if (MaxRecurse)
3046 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3047 return V;
3048 break;
3050 case CmpInst::ICMP_SGE:
3051 // Always true.
3052 return getTrue(ITy);
3053 case CmpInst::ICMP_SLT:
3054 // Always false.
3055 return getFalse(ITy);
3059 // Unsigned variants on "max(a,b)>=a -> true".
3060 P = CmpInst::BAD_ICMP_PREDICATE;
3061 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3062 if (A != RHS)
3063 std::swap(A, B); // umax(A, B) pred A.
3064 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3065 // We analyze this as umax(A, B) pred A.
3066 P = Pred;
3067 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3068 (A == LHS || B == LHS)) {
3069 if (A != LHS)
3070 std::swap(A, B); // A pred umax(A, B).
3071 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3072 // We analyze this as umax(A, B) swapped-pred A.
3073 P = CmpInst::getSwappedPredicate(Pred);
3074 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3075 (A == RHS || B == RHS)) {
3076 if (A != RHS)
3077 std::swap(A, B); // umin(A, B) pred A.
3078 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3079 // We analyze this as umax(-A, -B) swapped-pred -A.
3080 // Note that we do not need to actually form -A or -B thanks to EqP.
3081 P = CmpInst::getSwappedPredicate(Pred);
3082 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3083 (A == LHS || B == LHS)) {
3084 if (A != LHS)
3085 std::swap(A, B); // A pred umin(A, B).
3086 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3087 // We analyze this as umax(-A, -B) pred -A.
3088 // Note that we do not need to actually form -A or -B thanks to EqP.
3089 P = Pred;
3091 if (P != CmpInst::BAD_ICMP_PREDICATE) {
3092 // Cases correspond to "max(A, B) p A".
3093 switch (P) {
3094 default:
3095 break;
3096 case CmpInst::ICMP_EQ:
3097 case CmpInst::ICMP_ULE:
3098 // Equivalent to "A EqP B". This may be the same as the condition tested
3099 // in the max/min; if so, we can just return that.
3100 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3101 return V;
3102 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3103 return V;
3104 // Otherwise, see if "A EqP B" simplifies.
3105 if (MaxRecurse)
3106 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3107 return V;
3108 break;
3109 case CmpInst::ICMP_NE:
3110 case CmpInst::ICMP_UGT: {
3111 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3112 // Equivalent to "A InvEqP B". This may be the same as the condition
3113 // tested in the max/min; if so, we can just return that.
3114 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3115 return V;
3116 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3117 return V;
3118 // Otherwise, see if "A InvEqP B" simplifies.
3119 if (MaxRecurse)
3120 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3121 return V;
3122 break;
3124 case CmpInst::ICMP_UGE:
3125 // Always true.
3126 return getTrue(ITy);
3127 case CmpInst::ICMP_ULT:
3128 // Always false.
3129 return getFalse(ITy);
3133 // Variants on "max(x,y) >= min(x,z)".
3134 Value *C, *D;
3135 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3136 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3137 (A == C || A == D || B == C || B == D)) {
3138 // max(x, ?) pred min(x, ?).
3139 if (Pred == CmpInst::ICMP_SGE)
3140 // Always true.
3141 return getTrue(ITy);
3142 if (Pred == CmpInst::ICMP_SLT)
3143 // Always false.
3144 return getFalse(ITy);
3145 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3146 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3147 (A == C || A == D || B == C || B == D)) {
3148 // min(x, ?) pred max(x, ?).
3149 if (Pred == CmpInst::ICMP_SLE)
3150 // Always true.
3151 return getTrue(ITy);
3152 if (Pred == CmpInst::ICMP_SGT)
3153 // Always false.
3154 return getFalse(ITy);
3155 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3156 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3157 (A == C || A == D || B == C || B == D)) {
3158 // max(x, ?) pred min(x, ?).
3159 if (Pred == CmpInst::ICMP_UGE)
3160 // Always true.
3161 return getTrue(ITy);
3162 if (Pred == CmpInst::ICMP_ULT)
3163 // Always false.
3164 return getFalse(ITy);
3165 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3166 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3167 (A == C || A == D || B == C || B == D)) {
3168 // min(x, ?) pred max(x, ?).
3169 if (Pred == CmpInst::ICMP_ULE)
3170 // Always true.
3171 return getTrue(ITy);
3172 if (Pred == CmpInst::ICMP_UGT)
3173 // Always false.
3174 return getFalse(ITy);
3177 return nullptr;
3180 /// Given operands for an ICmpInst, see if we can fold the result.
3181 /// If not, this returns null.
3182 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3183 const SimplifyQuery &Q, unsigned MaxRecurse) {
3184 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3185 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3187 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3188 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3189 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3191 // If we have a constant, make sure it is on the RHS.
3192 std::swap(LHS, RHS);
3193 Pred = CmpInst::getSwappedPredicate(Pred);
3195 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3197 Type *ITy = GetCompareTy(LHS); // The return type.
3199 // For EQ and NE, we can always pick a value for the undef to make the
3200 // predicate pass or fail, so we can return undef.
3201 // Matches behavior in llvm::ConstantFoldCompareInstruction.
3202 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred))
3203 return UndefValue::get(ITy);
3205 // icmp X, X -> true/false
3206 // icmp X, undef -> true/false because undef could be X.
3207 if (LHS == RHS || isa<UndefValue>(RHS))
3208 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3210 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3211 return V;
3213 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3214 return V;
3216 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3217 return V;
3219 // If both operands have range metadata, use the metadata
3220 // to simplify the comparison.
3221 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3222 auto RHS_Instr = cast<Instruction>(RHS);
3223 auto LHS_Instr = cast<Instruction>(LHS);
3225 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3226 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3227 auto RHS_CR = getConstantRangeFromMetadata(
3228 *RHS_Instr->getMetadata(LLVMContext::MD_range));
3229 auto LHS_CR = getConstantRangeFromMetadata(
3230 *LHS_Instr->getMetadata(LLVMContext::MD_range));
3232 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3233 if (Satisfied_CR.contains(LHS_CR))
3234 return ConstantInt::getTrue(RHS->getContext());
3236 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3237 CmpInst::getInversePredicate(Pred), RHS_CR);
3238 if (InversedSatisfied_CR.contains(LHS_CR))
3239 return ConstantInt::getFalse(RHS->getContext());
3243 // Compare of cast, for example (zext X) != 0 -> X != 0
3244 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3245 Instruction *LI = cast<CastInst>(LHS);
3246 Value *SrcOp = LI->getOperand(0);
3247 Type *SrcTy = SrcOp->getType();
3248 Type *DstTy = LI->getType();
3250 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3251 // if the integer type is the same size as the pointer type.
3252 if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3253 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3254 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3255 // Transfer the cast to the constant.
3256 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3257 ConstantExpr::getIntToPtr(RHSC, SrcTy),
3258 Q, MaxRecurse-1))
3259 return V;
3260 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3261 if (RI->getOperand(0)->getType() == SrcTy)
3262 // Compare without the cast.
3263 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3264 Q, MaxRecurse-1))
3265 return V;
3269 if (isa<ZExtInst>(LHS)) {
3270 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3271 // same type.
3272 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3273 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3274 // Compare X and Y. Note that signed predicates become unsigned.
3275 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3276 SrcOp, RI->getOperand(0), Q,
3277 MaxRecurse-1))
3278 return V;
3280 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3281 // too. If not, then try to deduce the result of the comparison.
3282 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3283 // Compute the constant that would happen if we truncated to SrcTy then
3284 // reextended to DstTy.
3285 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3286 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3288 // If the re-extended constant didn't change then this is effectively
3289 // also a case of comparing two zero-extended values.
3290 if (RExt == CI && MaxRecurse)
3291 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3292 SrcOp, Trunc, Q, MaxRecurse-1))
3293 return V;
3295 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3296 // there. Use this to work out the result of the comparison.
3297 if (RExt != CI) {
3298 switch (Pred) {
3299 default: llvm_unreachable("Unknown ICmp predicate!");
3300 // LHS <u RHS.
3301 case ICmpInst::ICMP_EQ:
3302 case ICmpInst::ICMP_UGT:
3303 case ICmpInst::ICMP_UGE:
3304 return ConstantInt::getFalse(CI->getContext());
3306 case ICmpInst::ICMP_NE:
3307 case ICmpInst::ICMP_ULT:
3308 case ICmpInst::ICMP_ULE:
3309 return ConstantInt::getTrue(CI->getContext());
3311 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
3312 // is non-negative then LHS <s RHS.
3313 case ICmpInst::ICMP_SGT:
3314 case ICmpInst::ICMP_SGE:
3315 return CI->getValue().isNegative() ?
3316 ConstantInt::getTrue(CI->getContext()) :
3317 ConstantInt::getFalse(CI->getContext());
3319 case ICmpInst::ICMP_SLT:
3320 case ICmpInst::ICMP_SLE:
3321 return CI->getValue().isNegative() ?
3322 ConstantInt::getFalse(CI->getContext()) :
3323 ConstantInt::getTrue(CI->getContext());
3329 if (isa<SExtInst>(LHS)) {
3330 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3331 // same type.
3332 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3333 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3334 // Compare X and Y. Note that the predicate does not change.
3335 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3336 Q, MaxRecurse-1))
3337 return V;
3339 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3340 // too. If not, then try to deduce the result of the comparison.
3341 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3342 // Compute the constant that would happen if we truncated to SrcTy then
3343 // reextended to DstTy.
3344 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3345 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3347 // If the re-extended constant didn't change then this is effectively
3348 // also a case of comparing two sign-extended values.
3349 if (RExt == CI && MaxRecurse)
3350 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3351 return V;
3353 // Otherwise the upper bits of LHS are all equal, while RHS has varying
3354 // bits there. Use this to work out the result of the comparison.
3355 if (RExt != CI) {
3356 switch (Pred) {
3357 default: llvm_unreachable("Unknown ICmp predicate!");
3358 case ICmpInst::ICMP_EQ:
3359 return ConstantInt::getFalse(CI->getContext());
3360 case ICmpInst::ICMP_NE:
3361 return ConstantInt::getTrue(CI->getContext());
3363 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
3364 // LHS >s RHS.
3365 case ICmpInst::ICMP_SGT:
3366 case ICmpInst::ICMP_SGE:
3367 return CI->getValue().isNegative() ?
3368 ConstantInt::getTrue(CI->getContext()) :
3369 ConstantInt::getFalse(CI->getContext());
3370 case ICmpInst::ICMP_SLT:
3371 case ICmpInst::ICMP_SLE:
3372 return CI->getValue().isNegative() ?
3373 ConstantInt::getFalse(CI->getContext()) :
3374 ConstantInt::getTrue(CI->getContext());
3376 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
3377 // LHS >u RHS.
3378 case ICmpInst::ICMP_UGT:
3379 case ICmpInst::ICMP_UGE:
3380 // Comparison is true iff the LHS <s 0.
3381 if (MaxRecurse)
3382 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3383 Constant::getNullValue(SrcTy),
3384 Q, MaxRecurse-1))
3385 return V;
3386 break;
3387 case ICmpInst::ICMP_ULT:
3388 case ICmpInst::ICMP_ULE:
3389 // Comparison is true iff the LHS >=s 0.
3390 if (MaxRecurse)
3391 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3392 Constant::getNullValue(SrcTy),
3393 Q, MaxRecurse-1))
3394 return V;
3395 break;
3402 // icmp eq|ne X, Y -> false|true if X != Y
3403 if (ICmpInst::isEquality(Pred) &&
3404 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3405 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3408 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3409 return V;
3411 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3412 return V;
3414 // Simplify comparisons of related pointers using a powerful, recursive
3415 // GEP-walk when we have target data available..
3416 if (LHS->getType()->isPointerTy())
3417 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3418 Q.IIQ, LHS, RHS))
3419 return C;
3420 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3421 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3422 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3423 Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3424 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3425 Q.DL.getTypeSizeInBits(CRHS->getType()))
3426 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3427 Q.IIQ, CLHS->getPointerOperand(),
3428 CRHS->getPointerOperand()))
3429 return C;
3431 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3432 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3433 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3434 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3435 (ICmpInst::isEquality(Pred) ||
3436 (GLHS->isInBounds() && GRHS->isInBounds() &&
3437 Pred == ICmpInst::getSignedPredicate(Pred)))) {
3438 // The bases are equal and the indices are constant. Build a constant
3439 // expression GEP with the same indices and a null base pointer to see
3440 // what constant folding can make out of it.
3441 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3442 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3443 Constant *NewLHS = ConstantExpr::getGetElementPtr(
3444 GLHS->getSourceElementType(), Null, IndicesLHS);
3446 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3447 Constant *NewRHS = ConstantExpr::getGetElementPtr(
3448 GLHS->getSourceElementType(), Null, IndicesRHS);
3449 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3454 // If the comparison is with the result of a select instruction, check whether
3455 // comparing with either branch of the select always yields the same value.
3456 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3457 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3458 return V;
3460 // If the comparison is with the result of a phi instruction, check whether
3461 // doing the compare with each incoming phi value yields a common result.
3462 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3463 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3464 return V;
3466 return nullptr;
3469 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3470 const SimplifyQuery &Q) {
3471 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3474 /// Given operands for an FCmpInst, see if we can fold the result.
3475 /// If not, this returns null.
3476 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3477 FastMathFlags FMF, const SimplifyQuery &Q,
3478 unsigned MaxRecurse) {
3479 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3480 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3482 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3483 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3484 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3486 // If we have a constant, make sure it is on the RHS.
3487 std::swap(LHS, RHS);
3488 Pred = CmpInst::getSwappedPredicate(Pred);
3491 // Fold trivial predicates.
3492 Type *RetTy = GetCompareTy(LHS);
3493 if (Pred == FCmpInst::FCMP_FALSE)
3494 return getFalse(RetTy);
3495 if (Pred == FCmpInst::FCMP_TRUE)
3496 return getTrue(RetTy);
3498 // Fold (un)ordered comparison if we can determine there are no NaNs.
3499 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3500 if (FMF.noNaNs() ||
3501 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3502 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3504 // NaN is unordered; NaN is not ordered.
3505 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3506 "Comparison must be either ordered or unordered");
3507 if (match(RHS, m_NaN()))
3508 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3510 // fcmp pred x, undef and fcmp pred undef, x
3511 // fold to true if unordered, false if ordered
3512 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3513 // Choosing NaN for the undef will always make unordered comparison succeed
3514 // and ordered comparison fail.
3515 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3518 // fcmp x,x -> true/false. Not all compares are foldable.
3519 if (LHS == RHS) {
3520 if (CmpInst::isTrueWhenEqual(Pred))
3521 return getTrue(RetTy);
3522 if (CmpInst::isFalseWhenEqual(Pred))
3523 return getFalse(RetTy);
3526 // Handle fcmp with constant RHS.
3527 // TODO: Use match with a specific FP value, so these work with vectors with
3528 // undef lanes.
3529 const APFloat *C;
3530 if (match(RHS, m_APFloat(C))) {
3531 // Check whether the constant is an infinity.
3532 if (C->isInfinity()) {
3533 if (C->isNegative()) {
3534 switch (Pred) {
3535 case FCmpInst::FCMP_OLT:
3536 // No value is ordered and less than negative infinity.
3537 return getFalse(RetTy);
3538 case FCmpInst::FCMP_UGE:
3539 // All values are unordered with or at least negative infinity.
3540 return getTrue(RetTy);
3541 default:
3542 break;
3544 } else {
3545 switch (Pred) {
3546 case FCmpInst::FCMP_OGT:
3547 // No value is ordered and greater than infinity.
3548 return getFalse(RetTy);
3549 case FCmpInst::FCMP_ULE:
3550 // All values are unordered with and at most infinity.
3551 return getTrue(RetTy);
3552 default:
3553 break;
3557 if (C->isNegative() && !C->isNegZero()) {
3558 assert(!C->isNaN() && "Unexpected NaN constant!");
3559 // TODO: We can catch more cases by using a range check rather than
3560 // relying on CannotBeOrderedLessThanZero.
3561 switch (Pred) {
3562 case FCmpInst::FCMP_UGE:
3563 case FCmpInst::FCMP_UGT:
3564 case FCmpInst::FCMP_UNE:
3565 // (X >= 0) implies (X > C) when (C < 0)
3566 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3567 return getTrue(RetTy);
3568 break;
3569 case FCmpInst::FCMP_OEQ:
3570 case FCmpInst::FCMP_OLE:
3571 case FCmpInst::FCMP_OLT:
3572 // (X >= 0) implies !(X < C) when (C < 0)
3573 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3574 return getFalse(RetTy);
3575 break;
3576 default:
3577 break;
3581 // Check comparison of [minnum/maxnum with constant] with other constant.
3582 const APFloat *C2;
3583 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3584 C2->compare(*C) == APFloat::cmpLessThan) ||
3585 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3586 C2->compare(*C) == APFloat::cmpGreaterThan)) {
3587 bool IsMaxNum =
3588 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3589 // The ordered relationship and minnum/maxnum guarantee that we do not
3590 // have NaN constants, so ordered/unordered preds are handled the same.
3591 switch (Pred) {
3592 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3593 // minnum(X, LesserC) == C --> false
3594 // maxnum(X, GreaterC) == C --> false
3595 return getFalse(RetTy);
3596 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3597 // minnum(X, LesserC) != C --> true
3598 // maxnum(X, GreaterC) != C --> true
3599 return getTrue(RetTy);
3600 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3601 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3602 // minnum(X, LesserC) >= C --> false
3603 // minnum(X, LesserC) > C --> false
3604 // maxnum(X, GreaterC) >= C --> true
3605 // maxnum(X, GreaterC) > C --> true
3606 return ConstantInt::get(RetTy, IsMaxNum);
3607 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3608 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3609 // minnum(X, LesserC) <= C --> true
3610 // minnum(X, LesserC) < C --> true
3611 // maxnum(X, GreaterC) <= C --> false
3612 // maxnum(X, GreaterC) < C --> false
3613 return ConstantInt::get(RetTy, !IsMaxNum);
3614 default:
3615 // TRUE/FALSE/ORD/UNO should be handled before this.
3616 llvm_unreachable("Unexpected fcmp predicate");
3621 if (match(RHS, m_AnyZeroFP())) {
3622 switch (Pred) {
3623 case FCmpInst::FCMP_OGE:
3624 case FCmpInst::FCMP_ULT:
3625 // Positive or zero X >= 0.0 --> true
3626 // Positive or zero X < 0.0 --> false
3627 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3628 CannotBeOrderedLessThanZero(LHS, Q.TLI))
3629 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3630 break;
3631 case FCmpInst::FCMP_UGE:
3632 case FCmpInst::FCMP_OLT:
3633 // Positive or zero or nan X >= 0.0 --> true
3634 // Positive or zero or nan X < 0.0 --> false
3635 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3636 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3637 break;
3638 default:
3639 break;
3643 // If the comparison is with the result of a select instruction, check whether
3644 // comparing with either branch of the select always yields the same value.
3645 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3646 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3647 return V;
3649 // If the comparison is with the result of a phi instruction, check whether
3650 // doing the compare with each incoming phi value yields a common result.
3651 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3652 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3653 return V;
3655 return nullptr;
3658 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3659 FastMathFlags FMF, const SimplifyQuery &Q) {
3660 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3663 /// See if V simplifies when its operand Op is replaced with RepOp.
3664 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3665 const SimplifyQuery &Q,
3666 unsigned MaxRecurse) {
3667 // Trivial replacement.
3668 if (V == Op)
3669 return RepOp;
3671 // We cannot replace a constant, and shouldn't even try.
3672 if (isa<Constant>(Op))
3673 return nullptr;
3675 auto *I = dyn_cast<Instruction>(V);
3676 if (!I)
3677 return nullptr;
3679 // If this is a binary operator, try to simplify it with the replaced op.
3680 if (auto *B = dyn_cast<BinaryOperator>(I)) {
3681 // Consider:
3682 // %cmp = icmp eq i32 %x, 2147483647
3683 // %add = add nsw i32 %x, 1
3684 // %sel = select i1 %cmp, i32 -2147483648, i32 %add
3686 // We can't replace %sel with %add unless we strip away the flags.
3687 // TODO: This is an unusual limitation because better analysis results in
3688 // worse simplification. InstCombine can do this fold more generally
3689 // by dropping the flags. Remove this fold to save compile-time?
3690 if (isa<OverflowingBinaryOperator>(B))
3691 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
3692 return nullptr;
3693 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
3694 return nullptr;
3696 if (MaxRecurse) {
3697 if (B->getOperand(0) == Op)
3698 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3699 MaxRecurse - 1);
3700 if (B->getOperand(1) == Op)
3701 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3702 MaxRecurse - 1);
3706 // Same for CmpInsts.
3707 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3708 if (MaxRecurse) {
3709 if (C->getOperand(0) == Op)
3710 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3711 MaxRecurse - 1);
3712 if (C->getOperand(1) == Op)
3713 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3714 MaxRecurse - 1);
3718 // Same for GEPs.
3719 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3720 if (MaxRecurse) {
3721 SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3722 transform(GEP->operands(), NewOps.begin(),
3723 [&](Value *V) { return V == Op ? RepOp : V; });
3724 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
3725 MaxRecurse - 1);
3729 // TODO: We could hand off more cases to instsimplify here.
3731 // If all operands are constant after substituting Op for RepOp then we can
3732 // constant fold the instruction.
3733 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3734 // Build a list of all constant operands.
3735 SmallVector<Constant *, 8> ConstOps;
3736 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3737 if (I->getOperand(i) == Op)
3738 ConstOps.push_back(CRepOp);
3739 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3740 ConstOps.push_back(COp);
3741 else
3742 break;
3745 // All operands were constants, fold it.
3746 if (ConstOps.size() == I->getNumOperands()) {
3747 if (CmpInst *C = dyn_cast<CmpInst>(I))
3748 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3749 ConstOps[1], Q.DL, Q.TLI);
3751 if (LoadInst *LI = dyn_cast<LoadInst>(I))
3752 if (!LI->isVolatile())
3753 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3755 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3759 return nullptr;
3762 /// Try to simplify a select instruction when its condition operand is an
3763 /// integer comparison where one operand of the compare is a constant.
3764 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3765 const APInt *Y, bool TrueWhenUnset) {
3766 const APInt *C;
3768 // (X & Y) == 0 ? X & ~Y : X --> X
3769 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
3770 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3771 *Y == ~*C)
3772 return TrueWhenUnset ? FalseVal : TrueVal;
3774 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
3775 // (X & Y) != 0 ? X : X & ~Y --> X
3776 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3777 *Y == ~*C)
3778 return TrueWhenUnset ? FalseVal : TrueVal;
3780 if (Y->isPowerOf2()) {
3781 // (X & Y) == 0 ? X | Y : X --> X | Y
3782 // (X & Y) != 0 ? X | Y : X --> X
3783 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3784 *Y == *C)
3785 return TrueWhenUnset ? TrueVal : FalseVal;
3787 // (X & Y) == 0 ? X : X | Y --> X
3788 // (X & Y) != 0 ? X : X | Y --> X | Y
3789 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3790 *Y == *C)
3791 return TrueWhenUnset ? TrueVal : FalseVal;
3794 return nullptr;
3797 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3798 /// eq/ne.
3799 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3800 ICmpInst::Predicate Pred,
3801 Value *TrueVal, Value *FalseVal) {
3802 Value *X;
3803 APInt Mask;
3804 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3805 return nullptr;
3807 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3808 Pred == ICmpInst::ICMP_EQ);
3811 /// Try to simplify a select instruction when its condition operand is an
3812 /// integer comparison.
3813 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3814 Value *FalseVal, const SimplifyQuery &Q,
3815 unsigned MaxRecurse) {
3816 ICmpInst::Predicate Pred;
3817 Value *CmpLHS, *CmpRHS;
3818 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3819 return nullptr;
3821 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3822 Value *X;
3823 const APInt *Y;
3824 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3825 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3826 Pred == ICmpInst::ICMP_EQ))
3827 return V;
3829 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
3830 Value *ShAmt;
3831 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
3832 m_Value(ShAmt)),
3833 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
3834 m_Value(ShAmt)));
3835 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
3836 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
3837 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt &&
3838 Pred == ICmpInst::ICMP_EQ)
3839 return X;
3840 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
3841 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
3842 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt &&
3843 Pred == ICmpInst::ICMP_NE)
3844 return X;
3846 // Test for a zero-shift-guard-op around rotates. These are used to
3847 // avoid UB from oversized shifts in raw IR rotate patterns, but the
3848 // intrinsics do not have that problem.
3849 // We do not allow this transform for the general funnel shift case because
3850 // that would not preserve the poison safety of the original code.
3851 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X),
3852 m_Deferred(X),
3853 m_Value(ShAmt)),
3854 m_Intrinsic<Intrinsic::fshr>(m_Value(X),
3855 m_Deferred(X),
3856 m_Value(ShAmt)));
3857 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt)
3858 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt)
3859 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt &&
3860 Pred == ICmpInst::ICMP_NE)
3861 return TrueVal;
3862 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
3863 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
3864 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
3865 Pred == ICmpInst::ICMP_EQ)
3866 return FalseVal;
3869 // Check for other compares that behave like bit test.
3870 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3871 TrueVal, FalseVal))
3872 return V;
3874 // If we have an equality comparison, then we know the value in one of the
3875 // arms of the select. See if substituting this value into the arm and
3876 // simplifying the result yields the same value as the other arm.
3877 if (Pred == ICmpInst::ICMP_EQ) {
3878 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3879 TrueVal ||
3880 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3881 TrueVal)
3882 return FalseVal;
3883 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3884 FalseVal ||
3885 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3886 FalseVal)
3887 return FalseVal;
3888 } else if (Pred == ICmpInst::ICMP_NE) {
3889 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3890 FalseVal ||
3891 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3892 FalseVal)
3893 return TrueVal;
3894 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3895 TrueVal ||
3896 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3897 TrueVal)
3898 return TrueVal;
3901 return nullptr;
3904 /// Try to simplify a select instruction when its condition operand is a
3905 /// floating-point comparison.
3906 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) {
3907 FCmpInst::Predicate Pred;
3908 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
3909 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
3910 return nullptr;
3912 // TODO: The transform may not be valid with -0.0. An incomplete way of
3913 // testing for that possibility is to check if at least one operand is a
3914 // non-zero constant.
3915 const APFloat *C;
3916 if ((match(T, m_APFloat(C)) && C->isNonZero()) ||
3917 (match(F, m_APFloat(C)) && C->isNonZero())) {
3918 // (T == F) ? T : F --> F
3919 // (F == T) ? T : F --> F
3920 if (Pred == FCmpInst::FCMP_OEQ)
3921 return F;
3923 // (T != F) ? T : F --> T
3924 // (F != T) ? T : F --> T
3925 if (Pred == FCmpInst::FCMP_UNE)
3926 return T;
3929 return nullptr;
3932 /// Given operands for a SelectInst, see if we can fold the result.
3933 /// If not, this returns null.
3934 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3935 const SimplifyQuery &Q, unsigned MaxRecurse) {
3936 if (auto *CondC = dyn_cast<Constant>(Cond)) {
3937 if (auto *TrueC = dyn_cast<Constant>(TrueVal))
3938 if (auto *FalseC = dyn_cast<Constant>(FalseVal))
3939 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
3941 // select undef, X, Y -> X or Y
3942 if (isa<UndefValue>(CondC))
3943 return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
3945 // TODO: Vector constants with undef elements don't simplify.
3947 // select true, X, Y -> X
3948 if (CondC->isAllOnesValue())
3949 return TrueVal;
3950 // select false, X, Y -> Y
3951 if (CondC->isNullValue())
3952 return FalseVal;
3955 // select ?, X, X -> X
3956 if (TrueVal == FalseVal)
3957 return TrueVal;
3959 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X
3960 return FalseVal;
3961 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X
3962 return TrueVal;
3964 if (Value *V =
3965 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
3966 return V;
3968 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal))
3969 return V;
3971 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
3972 return V;
3974 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
3975 if (Imp)
3976 return *Imp ? TrueVal : FalseVal;
3978 return nullptr;
3981 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3982 const SimplifyQuery &Q) {
3983 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3986 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3987 /// If not, this returns null.
3988 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3989 const SimplifyQuery &Q, unsigned) {
3990 // The type of the GEP pointer operand.
3991 unsigned AS =
3992 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3994 // getelementptr P -> P.
3995 if (Ops.size() == 1)
3996 return Ops[0];
3998 // Compute the (pointer) type returned by the GEP instruction.
3999 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4000 Type *GEPTy = PointerType::get(LastType, AS);
4001 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
4002 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
4003 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
4004 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
4006 if (isa<UndefValue>(Ops[0]))
4007 return UndefValue::get(GEPTy);
4009 if (Ops.size() == 2) {
4010 // getelementptr P, 0 -> P.
4011 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4012 return Ops[0];
4014 Type *Ty = SrcTy;
4015 if (Ty->isSized()) {
4016 Value *P;
4017 uint64_t C;
4018 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4019 // getelementptr P, N -> P if P points to a type of zero size.
4020 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4021 return Ops[0];
4023 // The following transforms are only safe if the ptrtoint cast
4024 // doesn't truncate the pointers.
4025 if (Ops[1]->getType()->getScalarSizeInBits() ==
4026 Q.DL.getIndexSizeInBits(AS)) {
4027 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
4028 if (match(P, m_Zero()))
4029 return Constant::getNullValue(GEPTy);
4030 Value *Temp;
4031 if (match(P, m_PtrToInt(m_Value(Temp))))
4032 if (Temp->getType() == GEPTy)
4033 return Temp;
4034 return nullptr;
4037 // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4038 if (TyAllocSize == 1 &&
4039 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
4040 if (Value *R = PtrToIntOrZero(P))
4041 return R;
4043 // getelementptr V, (ashr (sub P, V), C) -> Q
4044 // if P points to a type of size 1 << C.
4045 if (match(Ops[1],
4046 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4047 m_ConstantInt(C))) &&
4048 TyAllocSize == 1ULL << C)
4049 if (Value *R = PtrToIntOrZero(P))
4050 return R;
4052 // getelementptr V, (sdiv (sub P, V), C) -> Q
4053 // if P points to a type of size C.
4054 if (match(Ops[1],
4055 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4056 m_SpecificInt(TyAllocSize))))
4057 if (Value *R = PtrToIntOrZero(P))
4058 return R;
4063 if (Q.DL.getTypeAllocSize(LastType) == 1 &&
4064 all_of(Ops.slice(1).drop_back(1),
4065 [](Value *Idx) { return match(Idx, m_Zero()); })) {
4066 unsigned IdxWidth =
4067 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4068 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4069 APInt BasePtrOffset(IdxWidth, 0);
4070 Value *StrippedBasePtr =
4071 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4072 BasePtrOffset);
4074 // gep (gep V, C), (sub 0, V) -> C
4075 if (match(Ops.back(),
4076 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
4077 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4078 return ConstantExpr::getIntToPtr(CI, GEPTy);
4080 // gep (gep V, C), (xor V, -1) -> C-1
4081 if (match(Ops.back(),
4082 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
4083 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4084 return ConstantExpr::getIntToPtr(CI, GEPTy);
4089 // Check to see if this is constant foldable.
4090 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4091 return nullptr;
4093 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4094 Ops.slice(1));
4095 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
4096 return CEFolded;
4097 return CE;
4100 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4101 const SimplifyQuery &Q) {
4102 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4105 /// Given operands for an InsertValueInst, see if we can fold the result.
4106 /// If not, this returns null.
4107 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4108 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4109 unsigned) {
4110 if (Constant *CAgg = dyn_cast<Constant>(Agg))
4111 if (Constant *CVal = dyn_cast<Constant>(Val))
4112 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4114 // insertvalue x, undef, n -> x
4115 if (match(Val, m_Undef()))
4116 return Agg;
4118 // insertvalue x, (extractvalue y, n), n
4119 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4120 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4121 EV->getIndices() == Idxs) {
4122 // insertvalue undef, (extractvalue y, n), n -> y
4123 if (match(Agg, m_Undef()))
4124 return EV->getAggregateOperand();
4126 // insertvalue y, (extractvalue y, n), n -> y
4127 if (Agg == EV->getAggregateOperand())
4128 return Agg;
4131 return nullptr;
4134 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4135 ArrayRef<unsigned> Idxs,
4136 const SimplifyQuery &Q) {
4137 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4140 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4141 const SimplifyQuery &Q) {
4142 // Try to constant fold.
4143 auto *VecC = dyn_cast<Constant>(Vec);
4144 auto *ValC = dyn_cast<Constant>(Val);
4145 auto *IdxC = dyn_cast<Constant>(Idx);
4146 if (VecC && ValC && IdxC)
4147 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
4149 // Fold into undef if index is out of bounds.
4150 if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4151 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
4152 if (CI->uge(NumElements))
4153 return UndefValue::get(Vec->getType());
4156 // If index is undef, it might be out of bounds (see above case)
4157 if (isa<UndefValue>(Idx))
4158 return UndefValue::get(Vec->getType());
4160 // Inserting an undef scalar? Assume it is the same value as the existing
4161 // vector element.
4162 if (isa<UndefValue>(Val))
4163 return Vec;
4165 // If we are extracting a value from a vector, then inserting it into the same
4166 // place, that's the input vector:
4167 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4168 if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx))))
4169 return Vec;
4171 return nullptr;
4174 /// Given operands for an ExtractValueInst, see if we can fold the result.
4175 /// If not, this returns null.
4176 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4177 const SimplifyQuery &, unsigned) {
4178 if (auto *CAgg = dyn_cast<Constant>(Agg))
4179 return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4181 // extractvalue x, (insertvalue y, elt, n), n -> elt
4182 unsigned NumIdxs = Idxs.size();
4183 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4184 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4185 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4186 unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4187 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4188 if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4189 Idxs.slice(0, NumCommonIdxs)) {
4190 if (NumIdxs == NumInsertValueIdxs)
4191 return IVI->getInsertedValueOperand();
4192 break;
4196 return nullptr;
4199 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4200 const SimplifyQuery &Q) {
4201 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4204 /// Given operands for an ExtractElementInst, see if we can fold the result.
4205 /// If not, this returns null.
4206 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
4207 unsigned) {
4208 if (auto *CVec = dyn_cast<Constant>(Vec)) {
4209 if (auto *CIdx = dyn_cast<Constant>(Idx))
4210 return ConstantFoldExtractElementInstruction(CVec, CIdx);
4212 // The index is not relevant if our vector is a splat.
4213 if (auto *Splat = CVec->getSplatValue())
4214 return Splat;
4216 if (isa<UndefValue>(Vec))
4217 return UndefValue::get(Vec->getType()->getVectorElementType());
4220 // If extracting a specified index from the vector, see if we can recursively
4221 // find a previously computed scalar that was inserted into the vector.
4222 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4223 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
4224 // definitely out of bounds, thus undefined result
4225 return UndefValue::get(Vec->getType()->getVectorElementType());
4226 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4227 return Elt;
4230 // An undef extract index can be arbitrarily chosen to be an out-of-range
4231 // index value, which would result in the instruction being undef.
4232 if (isa<UndefValue>(Idx))
4233 return UndefValue::get(Vec->getType()->getVectorElementType());
4235 return nullptr;
4238 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4239 const SimplifyQuery &Q) {
4240 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4243 /// See if we can fold the given phi. If not, returns null.
4244 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4245 // If all of the PHI's incoming values are the same then replace the PHI node
4246 // with the common value.
4247 Value *CommonValue = nullptr;
4248 bool HasUndefInput = false;
4249 for (Value *Incoming : PN->incoming_values()) {
4250 // If the incoming value is the phi node itself, it can safely be skipped.
4251 if (Incoming == PN) continue;
4252 if (isa<UndefValue>(Incoming)) {
4253 // Remember that we saw an undef value, but otherwise ignore them.
4254 HasUndefInput = true;
4255 continue;
4257 if (CommonValue && Incoming != CommonValue)
4258 return nullptr; // Not the same, bail out.
4259 CommonValue = Incoming;
4262 // If CommonValue is null then all of the incoming values were either undef or
4263 // equal to the phi node itself.
4264 if (!CommonValue)
4265 return UndefValue::get(PN->getType());
4267 // If we have a PHI node like phi(X, undef, X), where X is defined by some
4268 // instruction, we cannot return X as the result of the PHI node unless it
4269 // dominates the PHI block.
4270 if (HasUndefInput)
4271 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4273 return CommonValue;
4276 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4277 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4278 if (auto *C = dyn_cast<Constant>(Op))
4279 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4281 if (auto *CI = dyn_cast<CastInst>(Op)) {
4282 auto *Src = CI->getOperand(0);
4283 Type *SrcTy = Src->getType();
4284 Type *MidTy = CI->getType();
4285 Type *DstTy = Ty;
4286 if (Src->getType() == Ty) {
4287 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4288 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4289 Type *SrcIntPtrTy =
4290 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4291 Type *MidIntPtrTy =
4292 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4293 Type *DstIntPtrTy =
4294 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4295 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4296 SrcIntPtrTy, MidIntPtrTy,
4297 DstIntPtrTy) == Instruction::BitCast)
4298 return Src;
4302 // bitcast x -> x
4303 if (CastOpc == Instruction::BitCast)
4304 if (Op->getType() == Ty)
4305 return Op;
4307 return nullptr;
4310 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4311 const SimplifyQuery &Q) {
4312 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4315 /// For the given destination element of a shuffle, peek through shuffles to
4316 /// match a root vector source operand that contains that element in the same
4317 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4318 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4319 int MaskVal, Value *RootVec,
4320 unsigned MaxRecurse) {
4321 if (!MaxRecurse--)
4322 return nullptr;
4324 // Bail out if any mask value is undefined. That kind of shuffle may be
4325 // simplified further based on demanded bits or other folds.
4326 if (MaskVal == -1)
4327 return nullptr;
4329 // The mask value chooses which source operand we need to look at next.
4330 int InVecNumElts = Op0->getType()->getVectorNumElements();
4331 int RootElt = MaskVal;
4332 Value *SourceOp = Op0;
4333 if (MaskVal >= InVecNumElts) {
4334 RootElt = MaskVal - InVecNumElts;
4335 SourceOp = Op1;
4338 // If the source operand is a shuffle itself, look through it to find the
4339 // matching root vector.
4340 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4341 return foldIdentityShuffles(
4342 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4343 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4346 // TODO: Look through bitcasts? What if the bitcast changes the vector element
4347 // size?
4349 // The source operand is not a shuffle. Initialize the root vector value for
4350 // this shuffle if that has not been done yet.
4351 if (!RootVec)
4352 RootVec = SourceOp;
4354 // Give up as soon as a source operand does not match the existing root value.
4355 if (RootVec != SourceOp)
4356 return nullptr;
4358 // The element must be coming from the same lane in the source vector
4359 // (although it may have crossed lanes in intermediate shuffles).
4360 if (RootElt != DestElt)
4361 return nullptr;
4363 return RootVec;
4366 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4367 Type *RetTy, const SimplifyQuery &Q,
4368 unsigned MaxRecurse) {
4369 if (isa<UndefValue>(Mask))
4370 return UndefValue::get(RetTy);
4372 Type *InVecTy = Op0->getType();
4373 unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4374 unsigned InVecNumElts = InVecTy->getVectorNumElements();
4376 SmallVector<int, 32> Indices;
4377 ShuffleVectorInst::getShuffleMask(Mask, Indices);
4378 assert(MaskNumElts == Indices.size() &&
4379 "Size of Indices not same as number of mask elements?");
4381 // Canonicalization: If mask does not select elements from an input vector,
4382 // replace that input vector with undef.
4383 bool MaskSelects0 = false, MaskSelects1 = false;
4384 for (unsigned i = 0; i != MaskNumElts; ++i) {
4385 if (Indices[i] == -1)
4386 continue;
4387 if ((unsigned)Indices[i] < InVecNumElts)
4388 MaskSelects0 = true;
4389 else
4390 MaskSelects1 = true;
4392 if (!MaskSelects0)
4393 Op0 = UndefValue::get(InVecTy);
4394 if (!MaskSelects1)
4395 Op1 = UndefValue::get(InVecTy);
4397 auto *Op0Const = dyn_cast<Constant>(Op0);
4398 auto *Op1Const = dyn_cast<Constant>(Op1);
4400 // If all operands are constant, constant fold the shuffle.
4401 if (Op0Const && Op1Const)
4402 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4404 // Canonicalization: if only one input vector is constant, it shall be the
4405 // second one.
4406 if (Op0Const && !Op1Const) {
4407 std::swap(Op0, Op1);
4408 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4411 // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4412 // value type is same as the input vectors' type.
4413 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4414 if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4415 OpShuf->getMask()->getSplatValue())
4416 return Op0;
4418 // Don't fold a shuffle with undef mask elements. This may get folded in a
4419 // better way using demanded bits or other analysis.
4420 // TODO: Should we allow this?
4421 if (find(Indices, -1) != Indices.end())
4422 return nullptr;
4424 // Check if every element of this shuffle can be mapped back to the
4425 // corresponding element of a single root vector. If so, we don't need this
4426 // shuffle. This handles simple identity shuffles as well as chains of
4427 // shuffles that may widen/narrow and/or move elements across lanes and back.
4428 Value *RootVec = nullptr;
4429 for (unsigned i = 0; i != MaskNumElts; ++i) {
4430 // Note that recursion is limited for each vector element, so if any element
4431 // exceeds the limit, this will fail to simplify.
4432 RootVec =
4433 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4435 // We can't replace a widening/narrowing shuffle with one of its operands.
4436 if (!RootVec || RootVec->getType() != RetTy)
4437 return nullptr;
4439 return RootVec;
4442 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4443 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4444 Type *RetTy, const SimplifyQuery &Q) {
4445 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4448 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4449 Value *&Op, const SimplifyQuery &Q) {
4450 if (auto *C = dyn_cast<Constant>(Op))
4451 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4452 return nullptr;
4455 /// Given the operand for an FNeg, see if we can fold the result. If not, this
4456 /// returns null.
4457 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4458 const SimplifyQuery &Q, unsigned MaxRecurse) {
4459 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4460 return C;
4462 Value *X;
4463 // fneg (fneg X) ==> X
4464 if (match(Op, m_FNeg(m_Value(X))))
4465 return X;
4467 return nullptr;
4470 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4471 const SimplifyQuery &Q) {
4472 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4475 static Constant *propagateNaN(Constant *In) {
4476 // If the input is a vector with undef elements, just return a default NaN.
4477 if (!In->isNaN())
4478 return ConstantFP::getNaN(In->getType());
4480 // Propagate the existing NaN constant when possible.
4481 // TODO: Should we quiet a signaling NaN?
4482 return In;
4485 /// Perform folds that are common to any floating-point operation. This implies
4486 /// transforms based on undef/NaN because the operation itself makes no
4487 /// difference to the result.
4488 static Constant *simplifyFPOp(ArrayRef<Value *> Ops) {
4489 if (any_of(Ops, [](Value *V) { return isa<UndefValue>(V); }))
4490 return ConstantFP::getNaN(Ops[0]->getType());
4492 for (Value *V : Ops)
4493 if (match(V, m_NaN()))
4494 return propagateNaN(cast<Constant>(V));
4496 return nullptr;
4499 /// Given operands for an FAdd, see if we can fold the result. If not, this
4500 /// returns null.
4501 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4502 const SimplifyQuery &Q, unsigned MaxRecurse) {
4503 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4504 return C;
4506 if (Constant *C = simplifyFPOp({Op0, Op1}))
4507 return C;
4509 // fadd X, -0 ==> X
4510 if (match(Op1, m_NegZeroFP()))
4511 return Op0;
4513 // fadd X, 0 ==> X, when we know X is not -0
4514 if (match(Op1, m_PosZeroFP()) &&
4515 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4516 return Op0;
4518 // With nnan: -X + X --> 0.0 (and commuted variant)
4519 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4520 // Negative zeros are allowed because we always end up with positive zero:
4521 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4522 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4523 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4524 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4525 if (FMF.noNaNs()) {
4526 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4527 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4528 return ConstantFP::getNullValue(Op0->getType());
4530 if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4531 match(Op1, m_FNeg(m_Specific(Op0))))
4532 return ConstantFP::getNullValue(Op0->getType());
4535 // (X - Y) + Y --> X
4536 // Y + (X - Y) --> X
4537 Value *X;
4538 if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4539 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4540 match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4541 return X;
4543 return nullptr;
4546 /// Given operands for an FSub, see if we can fold the result. If not, this
4547 /// returns null.
4548 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4549 const SimplifyQuery &Q, unsigned MaxRecurse) {
4550 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4551 return C;
4553 if (Constant *C = simplifyFPOp({Op0, Op1}))
4554 return C;
4556 // fsub X, +0 ==> X
4557 if (match(Op1, m_PosZeroFP()))
4558 return Op0;
4560 // fsub X, -0 ==> X, when we know X is not -0
4561 if (match(Op1, m_NegZeroFP()) &&
4562 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4563 return Op0;
4565 // fsub -0.0, (fsub -0.0, X) ==> X
4566 // fsub -0.0, (fneg X) ==> X
4567 Value *X;
4568 if (match(Op0, m_NegZeroFP()) &&
4569 match(Op1, m_FNeg(m_Value(X))))
4570 return X;
4572 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4573 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4574 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4575 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4576 match(Op1, m_FNeg(m_Value(X)))))
4577 return X;
4579 // fsub nnan x, x ==> 0.0
4580 if (FMF.noNaNs() && Op0 == Op1)
4581 return Constant::getNullValue(Op0->getType());
4583 // Y - (Y - X) --> X
4584 // (X + Y) - Y --> X
4585 if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4586 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4587 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4588 return X;
4590 return nullptr;
4593 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4594 const SimplifyQuery &Q, unsigned MaxRecurse) {
4595 if (Constant *C = simplifyFPOp({Op0, Op1}))
4596 return C;
4598 // fmul X, 1.0 ==> X
4599 if (match(Op1, m_FPOne()))
4600 return Op0;
4602 // fmul 1.0, X ==> X
4603 if (match(Op0, m_FPOne()))
4604 return Op1;
4606 // fmul nnan nsz X, 0 ==> 0
4607 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4608 return ConstantFP::getNullValue(Op0->getType());
4610 // fmul nnan nsz 0, X ==> 0
4611 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4612 return ConstantFP::getNullValue(Op1->getType());
4614 // sqrt(X) * sqrt(X) --> X, if we can:
4615 // 1. Remove the intermediate rounding (reassociate).
4616 // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4617 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4618 Value *X;
4619 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4620 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4621 return X;
4623 return nullptr;
4626 /// Given the operands for an FMul, see if we can fold the result
4627 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4628 const SimplifyQuery &Q, unsigned MaxRecurse) {
4629 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4630 return C;
4632 // Now apply simplifications that do not require rounding.
4633 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse);
4636 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4637 const SimplifyQuery &Q) {
4638 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4642 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4643 const SimplifyQuery &Q) {
4644 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4647 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4648 const SimplifyQuery &Q) {
4649 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4652 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4653 const SimplifyQuery &Q) {
4654 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit);
4657 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4658 const SimplifyQuery &Q, unsigned) {
4659 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4660 return C;
4662 if (Constant *C = simplifyFPOp({Op0, Op1}))
4663 return C;
4665 // X / 1.0 -> X
4666 if (match(Op1, m_FPOne()))
4667 return Op0;
4669 // 0 / X -> 0
4670 // Requires that NaNs are off (X could be zero) and signed zeroes are
4671 // ignored (X could be positive or negative, so the output sign is unknown).
4672 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4673 return ConstantFP::getNullValue(Op0->getType());
4675 if (FMF.noNaNs()) {
4676 // X / X -> 1.0 is legal when NaNs are ignored.
4677 // We can ignore infinities because INF/INF is NaN.
4678 if (Op0 == Op1)
4679 return ConstantFP::get(Op0->getType(), 1.0);
4681 // (X * Y) / Y --> X if we can reassociate to the above form.
4682 Value *X;
4683 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4684 return X;
4686 // -X / X -> -1.0 and
4687 // X / -X -> -1.0 are legal when NaNs are ignored.
4688 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4689 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4690 match(Op1, m_FNegNSZ(m_Specific(Op0))))
4691 return ConstantFP::get(Op0->getType(), -1.0);
4694 return nullptr;
4697 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4698 const SimplifyQuery &Q) {
4699 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4702 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4703 const SimplifyQuery &Q, unsigned) {
4704 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4705 return C;
4707 if (Constant *C = simplifyFPOp({Op0, Op1}))
4708 return C;
4710 // Unlike fdiv, the result of frem always matches the sign of the dividend.
4711 // The constant match may include undef elements in a vector, so return a full
4712 // zero constant as the result.
4713 if (FMF.noNaNs()) {
4714 // +0 % X -> 0
4715 if (match(Op0, m_PosZeroFP()))
4716 return ConstantFP::getNullValue(Op0->getType());
4717 // -0 % X -> -0
4718 if (match(Op0, m_NegZeroFP()))
4719 return ConstantFP::getNegativeZero(Op0->getType());
4722 return nullptr;
4725 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4726 const SimplifyQuery &Q) {
4727 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4730 //=== Helper functions for higher up the class hierarchy.
4732 /// Given the operand for a UnaryOperator, see if we can fold the result.
4733 /// If not, this returns null.
4734 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
4735 unsigned MaxRecurse) {
4736 switch (Opcode) {
4737 case Instruction::FNeg:
4738 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
4739 default:
4740 llvm_unreachable("Unexpected opcode");
4744 /// Given the operand for a UnaryOperator, see if we can fold the result.
4745 /// If not, this returns null.
4746 /// Try to use FastMathFlags when folding the result.
4747 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
4748 const FastMathFlags &FMF,
4749 const SimplifyQuery &Q, unsigned MaxRecurse) {
4750 switch (Opcode) {
4751 case Instruction::FNeg:
4752 return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
4753 default:
4754 return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
4758 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
4759 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
4762 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
4763 const SimplifyQuery &Q) {
4764 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
4767 /// Given operands for a BinaryOperator, see if we can fold the result.
4768 /// If not, this returns null.
4769 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4770 const SimplifyQuery &Q, unsigned MaxRecurse) {
4771 switch (Opcode) {
4772 case Instruction::Add:
4773 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4774 case Instruction::Sub:
4775 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4776 case Instruction::Mul:
4777 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4778 case Instruction::SDiv:
4779 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4780 case Instruction::UDiv:
4781 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4782 case Instruction::SRem:
4783 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4784 case Instruction::URem:
4785 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4786 case Instruction::Shl:
4787 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4788 case Instruction::LShr:
4789 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4790 case Instruction::AShr:
4791 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4792 case Instruction::And:
4793 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4794 case Instruction::Or:
4795 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4796 case Instruction::Xor:
4797 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4798 case Instruction::FAdd:
4799 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4800 case Instruction::FSub:
4801 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4802 case Instruction::FMul:
4803 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4804 case Instruction::FDiv:
4805 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4806 case Instruction::FRem:
4807 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4808 default:
4809 llvm_unreachable("Unexpected opcode");
4813 /// Given operands for a BinaryOperator, see if we can fold the result.
4814 /// If not, this returns null.
4815 /// Try to use FastMathFlags when folding the result.
4816 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4817 const FastMathFlags &FMF, const SimplifyQuery &Q,
4818 unsigned MaxRecurse) {
4819 switch (Opcode) {
4820 case Instruction::FAdd:
4821 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4822 case Instruction::FSub:
4823 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4824 case Instruction::FMul:
4825 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4826 case Instruction::FDiv:
4827 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4828 default:
4829 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4833 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4834 const SimplifyQuery &Q) {
4835 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4838 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4839 FastMathFlags FMF, const SimplifyQuery &Q) {
4840 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4843 /// Given operands for a CmpInst, see if we can fold the result.
4844 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4845 const SimplifyQuery &Q, unsigned MaxRecurse) {
4846 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4847 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4848 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4851 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4852 const SimplifyQuery &Q) {
4853 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4856 static bool IsIdempotent(Intrinsic::ID ID) {
4857 switch (ID) {
4858 default: return false;
4860 // Unary idempotent: f(f(x)) = f(x)
4861 case Intrinsic::fabs:
4862 case Intrinsic::floor:
4863 case Intrinsic::ceil:
4864 case Intrinsic::trunc:
4865 case Intrinsic::rint:
4866 case Intrinsic::nearbyint:
4867 case Intrinsic::round:
4868 case Intrinsic::canonicalize:
4869 return true;
4873 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4874 const DataLayout &DL) {
4875 GlobalValue *PtrSym;
4876 APInt PtrOffset;
4877 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4878 return nullptr;
4880 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4881 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4882 Type *Int32PtrTy = Int32Ty->getPointerTo();
4883 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4885 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4886 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4887 return nullptr;
4889 uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4890 if (OffsetInt % 4 != 0)
4891 return nullptr;
4893 Constant *C = ConstantExpr::getGetElementPtr(
4894 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4895 ConstantInt::get(Int64Ty, OffsetInt / 4));
4896 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4897 if (!Loaded)
4898 return nullptr;
4900 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4901 if (!LoadedCE)
4902 return nullptr;
4904 if (LoadedCE->getOpcode() == Instruction::Trunc) {
4905 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4906 if (!LoadedCE)
4907 return nullptr;
4910 if (LoadedCE->getOpcode() != Instruction::Sub)
4911 return nullptr;
4913 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4914 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4915 return nullptr;
4916 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4918 Constant *LoadedRHS = LoadedCE->getOperand(1);
4919 GlobalValue *LoadedRHSSym;
4920 APInt LoadedRHSOffset;
4921 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4922 DL) ||
4923 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4924 return nullptr;
4926 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4929 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
4930 const SimplifyQuery &Q) {
4931 // Idempotent functions return the same result when called repeatedly.
4932 Intrinsic::ID IID = F->getIntrinsicID();
4933 if (IsIdempotent(IID))
4934 if (auto *II = dyn_cast<IntrinsicInst>(Op0))
4935 if (II->getIntrinsicID() == IID)
4936 return II;
4938 Value *X;
4939 switch (IID) {
4940 case Intrinsic::fabs:
4941 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
4942 break;
4943 case Intrinsic::bswap:
4944 // bswap(bswap(x)) -> x
4945 if (match(Op0, m_BSwap(m_Value(X)))) return X;
4946 break;
4947 case Intrinsic::bitreverse:
4948 // bitreverse(bitreverse(x)) -> x
4949 if (match(Op0, m_BitReverse(m_Value(X)))) return X;
4950 break;
4951 case Intrinsic::exp:
4952 // exp(log(x)) -> x
4953 if (Q.CxtI->hasAllowReassoc() &&
4954 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
4955 break;
4956 case Intrinsic::exp2:
4957 // exp2(log2(x)) -> x
4958 if (Q.CxtI->hasAllowReassoc() &&
4959 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
4960 break;
4961 case Intrinsic::log:
4962 // log(exp(x)) -> x
4963 if (Q.CxtI->hasAllowReassoc() &&
4964 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
4965 break;
4966 case Intrinsic::log2:
4967 // log2(exp2(x)) -> x
4968 if (Q.CxtI->hasAllowReassoc() &&
4969 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
4970 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
4971 m_Value(X))))) return X;
4972 break;
4973 case Intrinsic::log10:
4974 // log10(pow(10.0, x)) -> x
4975 if (Q.CxtI->hasAllowReassoc() &&
4976 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
4977 m_Value(X)))) return X;
4978 break;
4979 case Intrinsic::floor:
4980 case Intrinsic::trunc:
4981 case Intrinsic::ceil:
4982 case Intrinsic::round:
4983 case Intrinsic::nearbyint:
4984 case Intrinsic::rint: {
4985 // floor (sitofp x) -> sitofp x
4986 // floor (uitofp x) -> uitofp x
4988 // Converting from int always results in a finite integral number or
4989 // infinity. For either of those inputs, these rounding functions always
4990 // return the same value, so the rounding can be eliminated.
4991 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
4992 return Op0;
4993 break;
4995 default:
4996 break;
4999 return nullptr;
5002 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5003 const SimplifyQuery &Q) {
5004 Intrinsic::ID IID = F->getIntrinsicID();
5005 Type *ReturnType = F->getReturnType();
5006 switch (IID) {
5007 case Intrinsic::usub_with_overflow:
5008 case Intrinsic::ssub_with_overflow:
5009 // X - X -> { 0, false }
5010 if (Op0 == Op1)
5011 return Constant::getNullValue(ReturnType);
5012 LLVM_FALLTHROUGH;
5013 case Intrinsic::uadd_with_overflow:
5014 case Intrinsic::sadd_with_overflow:
5015 // X - undef -> { undef, false }
5016 // undef - X -> { undef, false }
5017 // X + undef -> { undef, false }
5018 // undef + x -> { undef, false }
5019 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) {
5020 return ConstantStruct::get(
5021 cast<StructType>(ReturnType),
5022 {UndefValue::get(ReturnType->getStructElementType(0)),
5023 Constant::getNullValue(ReturnType->getStructElementType(1))});
5025 break;
5026 case Intrinsic::umul_with_overflow:
5027 case Intrinsic::smul_with_overflow:
5028 // 0 * X -> { 0, false }
5029 // X * 0 -> { 0, false }
5030 if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5031 return Constant::getNullValue(ReturnType);
5032 // undef * X -> { 0, false }
5033 // X * undef -> { 0, false }
5034 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
5035 return Constant::getNullValue(ReturnType);
5036 break;
5037 case Intrinsic::uadd_sat:
5038 // sat(MAX + X) -> MAX
5039 // sat(X + MAX) -> MAX
5040 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5041 return Constant::getAllOnesValue(ReturnType);
5042 LLVM_FALLTHROUGH;
5043 case Intrinsic::sadd_sat:
5044 // sat(X + undef) -> -1
5045 // sat(undef + X) -> -1
5046 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5047 // For signed: Assume undef is ~X, in which case X + ~X = -1.
5048 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
5049 return Constant::getAllOnesValue(ReturnType);
5051 // X + 0 -> X
5052 if (match(Op1, m_Zero()))
5053 return Op0;
5054 // 0 + X -> X
5055 if (match(Op0, m_Zero()))
5056 return Op1;
5057 break;
5058 case Intrinsic::usub_sat:
5059 // sat(0 - X) -> 0, sat(X - MAX) -> 0
5060 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5061 return Constant::getNullValue(ReturnType);
5062 LLVM_FALLTHROUGH;
5063 case Intrinsic::ssub_sat:
5064 // X - X -> 0, X - undef -> 0, undef - X -> 0
5065 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef()))
5066 return Constant::getNullValue(ReturnType);
5067 // X - 0 -> X
5068 if (match(Op1, m_Zero()))
5069 return Op0;
5070 break;
5071 case Intrinsic::load_relative:
5072 if (auto *C0 = dyn_cast<Constant>(Op0))
5073 if (auto *C1 = dyn_cast<Constant>(Op1))
5074 return SimplifyRelativeLoad(C0, C1, Q.DL);
5075 break;
5076 case Intrinsic::powi:
5077 if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5078 // powi(x, 0) -> 1.0
5079 if (Power->isZero())
5080 return ConstantFP::get(Op0->getType(), 1.0);
5081 // powi(x, 1) -> x
5082 if (Power->isOne())
5083 return Op0;
5085 break;
5086 case Intrinsic::maxnum:
5087 case Intrinsic::minnum:
5088 case Intrinsic::maximum:
5089 case Intrinsic::minimum: {
5090 // If the arguments are the same, this is a no-op.
5091 if (Op0 == Op1) return Op0;
5093 // If one argument is undef, return the other argument.
5094 if (match(Op0, m_Undef()))
5095 return Op1;
5096 if (match(Op1, m_Undef()))
5097 return Op0;
5099 // If one argument is NaN, return other or NaN appropriately.
5100 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5101 if (match(Op0, m_NaN()))
5102 return PropagateNaN ? Op0 : Op1;
5103 if (match(Op1, m_NaN()))
5104 return PropagateNaN ? Op1 : Op0;
5106 // Min/max of the same operation with common operand:
5107 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5108 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5109 if (M0->getIntrinsicID() == IID &&
5110 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5111 return Op0;
5112 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5113 if (M1->getIntrinsicID() == IID &&
5114 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5115 return Op1;
5117 // min(X, -Inf) --> -Inf (and commuted variant)
5118 // max(X, +Inf) --> +Inf (and commuted variant)
5119 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
5120 const APFloat *C;
5121 if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
5122 C->isNegative() == UseNegInf) ||
5123 (match(Op1, m_APFloat(C)) && C->isInfinity() &&
5124 C->isNegative() == UseNegInf))
5125 return ConstantFP::getInfinity(ReturnType, UseNegInf);
5127 // TODO: minnum(nnan x, inf) -> x
5128 // TODO: minnum(nnan ninf x, flt_max) -> x
5129 // TODO: maxnum(nnan x, -inf) -> x
5130 // TODO: maxnum(nnan ninf x, -flt_max) -> x
5131 break;
5133 default:
5134 break;
5137 return nullptr;
5140 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5142 // Intrinsics with no operands have some kind of side effect. Don't simplify.
5143 unsigned NumOperands = Call->getNumArgOperands();
5144 if (!NumOperands)
5145 return nullptr;
5147 Function *F = cast<Function>(Call->getCalledFunction());
5148 Intrinsic::ID IID = F->getIntrinsicID();
5149 if (NumOperands == 1)
5150 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5152 if (NumOperands == 2)
5153 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5154 Call->getArgOperand(1), Q);
5156 // Handle intrinsics with 3 or more arguments.
5157 switch (IID) {
5158 case Intrinsic::masked_load:
5159 case Intrinsic::masked_gather: {
5160 Value *MaskArg = Call->getArgOperand(2);
5161 Value *PassthruArg = Call->getArgOperand(3);
5162 // If the mask is all zeros or undef, the "passthru" argument is the result.
5163 if (maskIsAllZeroOrUndef(MaskArg))
5164 return PassthruArg;
5165 return nullptr;
5167 case Intrinsic::fshl:
5168 case Intrinsic::fshr: {
5169 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5170 *ShAmtArg = Call->getArgOperand(2);
5172 // If both operands are undef, the result is undef.
5173 if (match(Op0, m_Undef()) && match(Op1, m_Undef()))
5174 return UndefValue::get(F->getReturnType());
5176 // If shift amount is undef, assume it is zero.
5177 if (match(ShAmtArg, m_Undef()))
5178 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5180 const APInt *ShAmtC;
5181 if (match(ShAmtArg, m_APInt(ShAmtC))) {
5182 // If there's effectively no shift, return the 1st arg or 2nd arg.
5183 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5184 if (ShAmtC->urem(BitWidth).isNullValue())
5185 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5187 return nullptr;
5189 case Intrinsic::fma:
5190 case Intrinsic::fmuladd: {
5191 Value *Op0 = Call->getArgOperand(0);
5192 Value *Op1 = Call->getArgOperand(1);
5193 Value *Op2 = Call->getArgOperand(2);
5194 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }))
5195 return V;
5196 return nullptr;
5198 default:
5199 return nullptr;
5203 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5204 Value *Callee = Call->getCalledValue();
5206 // call undef -> undef
5207 // call null -> undef
5208 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5209 return UndefValue::get(Call->getType());
5211 Function *F = dyn_cast<Function>(Callee);
5212 if (!F)
5213 return nullptr;
5215 if (F->isIntrinsic())
5216 if (Value *Ret = simplifyIntrinsic(Call, Q))
5217 return Ret;
5219 if (!canConstantFoldCallTo(Call, F))
5220 return nullptr;
5222 SmallVector<Constant *, 4> ConstantArgs;
5223 unsigned NumArgs = Call->getNumArgOperands();
5224 ConstantArgs.reserve(NumArgs);
5225 for (auto &Arg : Call->args()) {
5226 Constant *C = dyn_cast<Constant>(&Arg);
5227 if (!C)
5228 return nullptr;
5229 ConstantArgs.push_back(C);
5232 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5235 /// See if we can compute a simplified version of this instruction.
5236 /// If not, this returns null.
5238 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5239 OptimizationRemarkEmitter *ORE) {
5240 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5241 Value *Result;
5243 switch (I->getOpcode()) {
5244 default:
5245 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5246 break;
5247 case Instruction::FNeg:
5248 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5249 break;
5250 case Instruction::FAdd:
5251 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5252 I->getFastMathFlags(), Q);
5253 break;
5254 case Instruction::Add:
5255 Result =
5256 SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5257 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5258 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5259 break;
5260 case Instruction::FSub:
5261 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5262 I->getFastMathFlags(), Q);
5263 break;
5264 case Instruction::Sub:
5265 Result =
5266 SimplifySubInst(I->getOperand(0), I->getOperand(1),
5267 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5268 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5269 break;
5270 case Instruction::FMul:
5271 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5272 I->getFastMathFlags(), Q);
5273 break;
5274 case Instruction::Mul:
5275 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5276 break;
5277 case Instruction::SDiv:
5278 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5279 break;
5280 case Instruction::UDiv:
5281 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5282 break;
5283 case Instruction::FDiv:
5284 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5285 I->getFastMathFlags(), Q);
5286 break;
5287 case Instruction::SRem:
5288 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5289 break;
5290 case Instruction::URem:
5291 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5292 break;
5293 case Instruction::FRem:
5294 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5295 I->getFastMathFlags(), Q);
5296 break;
5297 case Instruction::Shl:
5298 Result =
5299 SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5300 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5301 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5302 break;
5303 case Instruction::LShr:
5304 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5305 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5306 break;
5307 case Instruction::AShr:
5308 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5309 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5310 break;
5311 case Instruction::And:
5312 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5313 break;
5314 case Instruction::Or:
5315 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5316 break;
5317 case Instruction::Xor:
5318 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5319 break;
5320 case Instruction::ICmp:
5321 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5322 I->getOperand(0), I->getOperand(1), Q);
5323 break;
5324 case Instruction::FCmp:
5325 Result =
5326 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5327 I->getOperand(1), I->getFastMathFlags(), Q);
5328 break;
5329 case Instruction::Select:
5330 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5331 I->getOperand(2), Q);
5332 break;
5333 case Instruction::GetElementPtr: {
5334 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5335 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5336 Ops, Q);
5337 break;
5339 case Instruction::InsertValue: {
5340 InsertValueInst *IV = cast<InsertValueInst>(I);
5341 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5342 IV->getInsertedValueOperand(),
5343 IV->getIndices(), Q);
5344 break;
5346 case Instruction::InsertElement: {
5347 auto *IE = cast<InsertElementInst>(I);
5348 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5349 IE->getOperand(2), Q);
5350 break;
5352 case Instruction::ExtractValue: {
5353 auto *EVI = cast<ExtractValueInst>(I);
5354 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5355 EVI->getIndices(), Q);
5356 break;
5358 case Instruction::ExtractElement: {
5359 auto *EEI = cast<ExtractElementInst>(I);
5360 Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5361 EEI->getIndexOperand(), Q);
5362 break;
5364 case Instruction::ShuffleVector: {
5365 auto *SVI = cast<ShuffleVectorInst>(I);
5366 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5367 SVI->getMask(), SVI->getType(), Q);
5368 break;
5370 case Instruction::PHI:
5371 Result = SimplifyPHINode(cast<PHINode>(I), Q);
5372 break;
5373 case Instruction::Call: {
5374 Result = SimplifyCall(cast<CallInst>(I), Q);
5375 break;
5377 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5378 #include "llvm/IR/Instruction.def"
5379 #undef HANDLE_CAST_INST
5380 Result =
5381 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5382 break;
5383 case Instruction::Alloca:
5384 // No simplifications for Alloca and it can't be constant folded.
5385 Result = nullptr;
5386 break;
5389 // In general, it is possible for computeKnownBits to determine all bits in a
5390 // value even when the operands are not all constants.
5391 if (!Result && I->getType()->isIntOrIntVectorTy()) {
5392 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
5393 if (Known.isConstant())
5394 Result = ConstantInt::get(I->getType(), Known.getConstant());
5397 /// If called on unreachable code, the above logic may report that the
5398 /// instruction simplified to itself. Make life easier for users by
5399 /// detecting that case here, returning a safe value instead.
5400 return Result == I ? UndefValue::get(I->getType()) : Result;
5403 /// Implementation of recursive simplification through an instruction's
5404 /// uses.
5406 /// This is the common implementation of the recursive simplification routines.
5407 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5408 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5409 /// instructions to process and attempt to simplify it using
5410 /// InstructionSimplify. Recursively visited users which could not be
5411 /// simplified themselves are to the optional UnsimplifiedUsers set for
5412 /// further processing by the caller.
5414 /// This routine returns 'true' only when *it* simplifies something. The passed
5415 /// in simplified value does not count toward this.
5416 static bool replaceAndRecursivelySimplifyImpl(
5417 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5418 const DominatorTree *DT, AssumptionCache *AC,
5419 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
5420 bool Simplified = false;
5421 SmallSetVector<Instruction *, 8> Worklist;
5422 const DataLayout &DL = I->getModule()->getDataLayout();
5424 // If we have an explicit value to collapse to, do that round of the
5425 // simplification loop by hand initially.
5426 if (SimpleV) {
5427 for (User *U : I->users())
5428 if (U != I)
5429 Worklist.insert(cast<Instruction>(U));
5431 // Replace the instruction with its simplified value.
5432 I->replaceAllUsesWith(SimpleV);
5434 // Gracefully handle edge cases where the instruction is not wired into any
5435 // parent block.
5436 if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5437 !I->mayHaveSideEffects())
5438 I->eraseFromParent();
5439 } else {
5440 Worklist.insert(I);
5443 // Note that we must test the size on each iteration, the worklist can grow.
5444 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5445 I = Worklist[Idx];
5447 // See if this instruction simplifies.
5448 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5449 if (!SimpleV) {
5450 if (UnsimplifiedUsers)
5451 UnsimplifiedUsers->insert(I);
5452 continue;
5455 Simplified = true;
5457 // Stash away all the uses of the old instruction so we can check them for
5458 // recursive simplifications after a RAUW. This is cheaper than checking all
5459 // uses of To on the recursive step in most cases.
5460 for (User *U : I->users())
5461 Worklist.insert(cast<Instruction>(U));
5463 // Replace the instruction with its simplified value.
5464 I->replaceAllUsesWith(SimpleV);
5466 // Gracefully handle edge cases where the instruction is not wired into any
5467 // parent block.
5468 if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5469 !I->mayHaveSideEffects())
5470 I->eraseFromParent();
5472 return Simplified;
5475 bool llvm::recursivelySimplifyInstruction(Instruction *I,
5476 const TargetLibraryInfo *TLI,
5477 const DominatorTree *DT,
5478 AssumptionCache *AC) {
5479 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr);
5482 bool llvm::replaceAndRecursivelySimplify(
5483 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5484 const DominatorTree *DT, AssumptionCache *AC,
5485 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
5486 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5487 assert(SimpleV && "Must provide a simplified value.");
5488 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
5489 UnsimplifiedUsers);
5492 namespace llvm {
5493 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5494 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5495 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5496 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5497 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
5498 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5499 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5500 return {F.getParent()->getDataLayout(), TLI, DT, AC};
5503 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5504 const DataLayout &DL) {
5505 return {DL, &AR.TLI, &AR.DT, &AR.AC};
5508 template <class T, class... TArgs>
5509 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5510 Function &F) {
5511 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5512 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5513 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5514 return {F.getParent()->getDataLayout(), TLI, DT, AC};
5516 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5517 Function &);