[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
blobdeb4019ea8ba73c7036530f359ca450589fad043
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitstream/BitCodes.h"
28 #include "llvm/Bitstream/BitstreamWriter.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
82 using namespace llvm;
84 static cl::opt<unsigned>
85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86 cl::desc("Number of metadatas above which we emit an index "
87 "to enable lazy-loading"));
89 static cl::opt<bool> WriteRelBFToSummary(
90 "write-relbf-to-summary", cl::Hidden, cl::init(false),
91 cl::desc("Write relative block frequency to function summary "));
93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
95 namespace {
97 /// These are manifest constants used by the bitcode writer. They do not need to
98 /// be kept in sync with the reader, but need to be consistent within this file.
99 enum {
100 // VALUE_SYMTAB_BLOCK abbrev id's.
101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
102 VST_ENTRY_7_ABBREV,
103 VST_ENTRY_6_ABBREV,
104 VST_BBENTRY_6_ABBREV,
106 // CONSTANTS_BLOCK abbrev id's.
107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
108 CONSTANTS_INTEGER_ABBREV,
109 CONSTANTS_CE_CAST_Abbrev,
110 CONSTANTS_NULL_Abbrev,
112 // FUNCTION_BLOCK abbrev id's.
113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
114 FUNCTION_INST_UNOP_ABBREV,
115 FUNCTION_INST_UNOP_FLAGS_ABBREV,
116 FUNCTION_INST_BINOP_ABBREV,
117 FUNCTION_INST_BINOP_FLAGS_ABBREV,
118 FUNCTION_INST_CAST_ABBREV,
119 FUNCTION_INST_RET_VOID_ABBREV,
120 FUNCTION_INST_RET_VAL_ABBREV,
121 FUNCTION_INST_UNREACHABLE_ABBREV,
122 FUNCTION_INST_GEP_ABBREV,
125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
126 /// file type.
127 class BitcodeWriterBase {
128 protected:
129 /// The stream created and owned by the client.
130 BitstreamWriter &Stream;
132 StringTableBuilder &StrtabBuilder;
134 public:
135 /// Constructs a BitcodeWriterBase object that writes to the provided
136 /// \p Stream.
137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
140 protected:
141 void writeBitcodeHeader();
142 void writeModuleVersion();
145 void BitcodeWriterBase::writeModuleVersion() {
146 // VERSION: [version#]
147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
150 /// Base class to manage the module bitcode writing, currently subclassed for
151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
152 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
153 protected:
154 /// The Module to write to bitcode.
155 const Module &M;
157 /// Enumerates ids for all values in the module.
158 ValueEnumerator VE;
160 /// Optional per-module index to write for ThinLTO.
161 const ModuleSummaryIndex *Index;
163 /// Map that holds the correspondence between GUIDs in the summary index,
164 /// that came from indirect call profiles, and a value id generated by this
165 /// class to use in the VST and summary block records.
166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
168 /// Tracks the last value id recorded in the GUIDToValueMap.
169 unsigned GlobalValueId;
171 /// Saves the offset of the VSTOffset record that must eventually be
172 /// backpatched with the offset of the actual VST.
173 uint64_t VSTOffsetPlaceholder = 0;
175 public:
176 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
177 /// writing to the provided \p Buffer.
178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
179 BitstreamWriter &Stream,
180 bool ShouldPreserveUseListOrder,
181 const ModuleSummaryIndex *Index)
182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
183 VE(M, ShouldPreserveUseListOrder), Index(Index) {
184 // Assign ValueIds to any callee values in the index that came from
185 // indirect call profiles and were recorded as a GUID not a Value*
186 // (which would have been assigned an ID by the ValueEnumerator).
187 // The starting ValueId is just after the number of values in the
188 // ValueEnumerator, so that they can be emitted in the VST.
189 GlobalValueId = VE.getValues().size();
190 if (!Index)
191 return;
192 for (const auto &GUIDSummaryLists : *Index)
193 // Examine all summaries for this GUID.
194 for (auto &Summary : GUIDSummaryLists.second.SummaryList)
195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
196 // For each call in the function summary, see if the call
197 // is to a GUID (which means it is for an indirect call,
198 // otherwise we would have a Value for it). If so, synthesize
199 // a value id.
200 for (auto &CallEdge : FS->calls())
201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
202 assignValueId(CallEdge.first.getGUID());
205 protected:
206 void writePerModuleGlobalValueSummary();
208 private:
209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
210 GlobalValueSummary *Summary,
211 unsigned ValueID,
212 unsigned FSCallsAbbrev,
213 unsigned FSCallsProfileAbbrev,
214 const Function &F);
215 void writeModuleLevelReferences(const GlobalVariable &V,
216 SmallVector<uint64_t, 64> &NameVals,
217 unsigned FSModRefsAbbrev,
218 unsigned FSModVTableRefsAbbrev);
220 void assignValueId(GlobalValue::GUID ValGUID) {
221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
224 unsigned getValueId(GlobalValue::GUID ValGUID) {
225 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
226 // Expect that any GUID value had a value Id assigned by an
227 // earlier call to assignValueId.
228 assert(VMI != GUIDToValueIdMap.end() &&
229 "GUID does not have assigned value Id");
230 return VMI->second;
233 // Helper to get the valueId for the type of value recorded in VI.
234 unsigned getValueId(ValueInfo VI) {
235 if (!VI.haveGVs() || !VI.getValue())
236 return getValueId(VI.getGUID());
237 return VE.getValueID(VI.getValue());
240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
243 /// Class to manage the bitcode writing for a module.
244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
245 /// Pointer to the buffer allocated by caller for bitcode writing.
246 const SmallVectorImpl<char> &Buffer;
248 /// True if a module hash record should be written.
249 bool GenerateHash;
251 /// If non-null, when GenerateHash is true, the resulting hash is written
252 /// into ModHash.
253 ModuleHash *ModHash;
255 SHA1 Hasher;
257 /// The start bit of the identification block.
258 uint64_t BitcodeStartBit;
260 public:
261 /// Constructs a ModuleBitcodeWriter object for the given Module,
262 /// writing to the provided \p Buffer.
263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
264 StringTableBuilder &StrtabBuilder,
265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
266 const ModuleSummaryIndex *Index, bool GenerateHash,
267 ModuleHash *ModHash = nullptr)
268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
269 ShouldPreserveUseListOrder, Index),
270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
271 BitcodeStartBit(Stream.GetCurrentBitNo()) {}
273 /// Emit the current module to the bitstream.
274 void write();
276 private:
277 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
279 size_t addToStrtab(StringRef Str);
281 void writeAttributeGroupTable();
282 void writeAttributeTable();
283 void writeTypeTable();
284 void writeComdats();
285 void writeValueSymbolTableForwardDecl();
286 void writeModuleInfo();
287 void writeValueAsMetadata(const ValueAsMetadata *MD,
288 SmallVectorImpl<uint64_t> &Record);
289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
290 unsigned Abbrev);
291 unsigned createDILocationAbbrev();
292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
293 unsigned &Abbrev);
294 unsigned createGenericDINodeAbbrev();
295 void writeGenericDINode(const GenericDINode *N,
296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
298 unsigned Abbrev);
299 void writeDIEnumerator(const DIEnumerator *N,
300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
302 unsigned Abbrev);
303 void writeDIDerivedType(const DIDerivedType *N,
304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305 void writeDICompositeType(const DICompositeType *N,
306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
307 void writeDISubroutineType(const DISubroutineType *N,
308 SmallVectorImpl<uint64_t> &Record,
309 unsigned Abbrev);
310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
311 unsigned Abbrev);
312 void writeDICompileUnit(const DICompileUnit *N,
313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314 void writeDISubprogram(const DISubprogram *N,
315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316 void writeDILexicalBlock(const DILexicalBlock *N,
317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
318 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
319 SmallVectorImpl<uint64_t> &Record,
320 unsigned Abbrev);
321 void writeDICommonBlock(const DICommonBlock *N,
322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
324 unsigned Abbrev);
325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
326 unsigned Abbrev);
327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
328 unsigned Abbrev);
329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
330 unsigned Abbrev);
331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
332 SmallVectorImpl<uint64_t> &Record,
333 unsigned Abbrev);
334 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
335 SmallVectorImpl<uint64_t> &Record,
336 unsigned Abbrev);
337 void writeDIGlobalVariable(const DIGlobalVariable *N,
338 SmallVectorImpl<uint64_t> &Record,
339 unsigned Abbrev);
340 void writeDILocalVariable(const DILocalVariable *N,
341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
342 void writeDILabel(const DILabel *N,
343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
344 void writeDIExpression(const DIExpression *N,
345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
347 SmallVectorImpl<uint64_t> &Record,
348 unsigned Abbrev);
349 void writeDIObjCProperty(const DIObjCProperty *N,
350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
351 void writeDIImportedEntity(const DIImportedEntity *N,
352 SmallVectorImpl<uint64_t> &Record,
353 unsigned Abbrev);
354 unsigned createNamedMetadataAbbrev();
355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
356 unsigned createMetadataStringsAbbrev();
357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
358 SmallVectorImpl<uint64_t> &Record);
359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
360 SmallVectorImpl<uint64_t> &Record,
361 std::vector<unsigned> *MDAbbrevs = nullptr,
362 std::vector<uint64_t> *IndexPos = nullptr);
363 void writeModuleMetadata();
364 void writeFunctionMetadata(const Function &F);
365 void writeFunctionMetadataAttachment(const Function &F);
366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
368 const GlobalObject &GO);
369 void writeModuleMetadataKinds();
370 void writeOperandBundleTags();
371 void writeSyncScopeNames();
372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
373 void writeModuleConstants();
374 bool pushValueAndType(const Value *V, unsigned InstID,
375 SmallVectorImpl<unsigned> &Vals);
376 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
377 void pushValue(const Value *V, unsigned InstID,
378 SmallVectorImpl<unsigned> &Vals);
379 void pushValueSigned(const Value *V, unsigned InstID,
380 SmallVectorImpl<uint64_t> &Vals);
381 void writeInstruction(const Instruction &I, unsigned InstID,
382 SmallVectorImpl<unsigned> &Vals);
383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
384 void writeGlobalValueSymbolTable(
385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
386 void writeUseList(UseListOrder &&Order);
387 void writeUseListBlock(const Function *F);
388 void
389 writeFunction(const Function &F,
390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
391 void writeBlockInfo();
392 void writeModuleHash(size_t BlockStartPos);
394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
395 return unsigned(SSID);
399 /// Class to manage the bitcode writing for a combined index.
400 class IndexBitcodeWriter : public BitcodeWriterBase {
401 /// The combined index to write to bitcode.
402 const ModuleSummaryIndex &Index;
404 /// When writing a subset of the index for distributed backends, client
405 /// provides a map of modules to the corresponding GUIDs/summaries to write.
406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
408 /// Map that holds the correspondence between the GUID used in the combined
409 /// index and a value id generated by this class to use in references.
410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
412 /// Tracks the last value id recorded in the GUIDToValueMap.
413 unsigned GlobalValueId = 0;
415 public:
416 /// Constructs a IndexBitcodeWriter object for the given combined index,
417 /// writing to the provided \p Buffer. When writing a subset of the index
418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
420 const ModuleSummaryIndex &Index,
421 const std::map<std::string, GVSummaryMapTy>
422 *ModuleToSummariesForIndex = nullptr)
423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
425 // Assign unique value ids to all summaries to be written, for use
426 // in writing out the call graph edges. Save the mapping from GUID
427 // to the new global value id to use when writing those edges, which
428 // are currently saved in the index in terms of GUID.
429 forEachSummary([&](GVInfo I, bool) {
430 GUIDToValueIdMap[I.first] = ++GlobalValueId;
434 /// The below iterator returns the GUID and associated summary.
435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
437 /// Calls the callback for each value GUID and summary to be written to
438 /// bitcode. This hides the details of whether they are being pulled from the
439 /// entire index or just those in a provided ModuleToSummariesForIndex map.
440 template<typename Functor>
441 void forEachSummary(Functor Callback) {
442 if (ModuleToSummariesForIndex) {
443 for (auto &M : *ModuleToSummariesForIndex)
444 for (auto &Summary : M.second) {
445 Callback(Summary, false);
446 // Ensure aliasee is handled, e.g. for assigning a valueId,
447 // even if we are not importing the aliasee directly (the
448 // imported alias will contain a copy of aliasee).
449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
452 } else {
453 for (auto &Summaries : Index)
454 for (auto &Summary : Summaries.second.SummaryList)
455 Callback({Summaries.first, Summary.get()}, false);
459 /// Calls the callback for each entry in the modulePaths StringMap that
460 /// should be written to the module path string table. This hides the details
461 /// of whether they are being pulled from the entire index or just those in a
462 /// provided ModuleToSummariesForIndex map.
463 template <typename Functor> void forEachModule(Functor Callback) {
464 if (ModuleToSummariesForIndex) {
465 for (const auto &M : *ModuleToSummariesForIndex) {
466 const auto &MPI = Index.modulePaths().find(M.first);
467 if (MPI == Index.modulePaths().end()) {
468 // This should only happen if the bitcode file was empty, in which
469 // case we shouldn't be importing (the ModuleToSummariesForIndex
470 // would only include the module we are writing and index for).
471 assert(ModuleToSummariesForIndex->size() == 1);
472 continue;
474 Callback(*MPI);
476 } else {
477 for (const auto &MPSE : Index.modulePaths())
478 Callback(MPSE);
482 /// Main entry point for writing a combined index to bitcode.
483 void write();
485 private:
486 void writeModStrings();
487 void writeCombinedGlobalValueSummary();
489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
490 auto VMI = GUIDToValueIdMap.find(ValGUID);
491 if (VMI == GUIDToValueIdMap.end())
492 return None;
493 return VMI->second;
496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
499 } // end anonymous namespace
501 static unsigned getEncodedCastOpcode(unsigned Opcode) {
502 switch (Opcode) {
503 default: llvm_unreachable("Unknown cast instruction!");
504 case Instruction::Trunc : return bitc::CAST_TRUNC;
505 case Instruction::ZExt : return bitc::CAST_ZEXT;
506 case Instruction::SExt : return bitc::CAST_SEXT;
507 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
508 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
509 case Instruction::UIToFP : return bitc::CAST_UITOFP;
510 case Instruction::SIToFP : return bitc::CAST_SITOFP;
511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
512 case Instruction::FPExt : return bitc::CAST_FPEXT;
513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
515 case Instruction::BitCast : return bitc::CAST_BITCAST;
516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
521 switch (Opcode) {
522 default: llvm_unreachable("Unknown binary instruction!");
523 case Instruction::FNeg: return bitc::UNOP_FNEG;
527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
528 switch (Opcode) {
529 default: llvm_unreachable("Unknown binary instruction!");
530 case Instruction::Add:
531 case Instruction::FAdd: return bitc::BINOP_ADD;
532 case Instruction::Sub:
533 case Instruction::FSub: return bitc::BINOP_SUB;
534 case Instruction::Mul:
535 case Instruction::FMul: return bitc::BINOP_MUL;
536 case Instruction::UDiv: return bitc::BINOP_UDIV;
537 case Instruction::FDiv:
538 case Instruction::SDiv: return bitc::BINOP_SDIV;
539 case Instruction::URem: return bitc::BINOP_UREM;
540 case Instruction::FRem:
541 case Instruction::SRem: return bitc::BINOP_SREM;
542 case Instruction::Shl: return bitc::BINOP_SHL;
543 case Instruction::LShr: return bitc::BINOP_LSHR;
544 case Instruction::AShr: return bitc::BINOP_ASHR;
545 case Instruction::And: return bitc::BINOP_AND;
546 case Instruction::Or: return bitc::BINOP_OR;
547 case Instruction::Xor: return bitc::BINOP_XOR;
551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
552 switch (Op) {
553 default: llvm_unreachable("Unknown RMW operation!");
554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
555 case AtomicRMWInst::Add: return bitc::RMW_ADD;
556 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
557 case AtomicRMWInst::And: return bitc::RMW_AND;
558 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
559 case AtomicRMWInst::Or: return bitc::RMW_OR;
560 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
561 case AtomicRMWInst::Max: return bitc::RMW_MAX;
562 case AtomicRMWInst::Min: return bitc::RMW_MIN;
563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
571 switch (Ordering) {
572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
580 llvm_unreachable("Invalid ordering");
583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
584 StringRef Str, unsigned AbbrevToUse) {
585 SmallVector<unsigned, 64> Vals;
587 // Code: [strchar x N]
588 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
590 AbbrevToUse = 0;
591 Vals.push_back(Str[i]);
594 // Emit the finished record.
595 Stream.EmitRecord(Code, Vals, AbbrevToUse);
598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
599 switch (Kind) {
600 case Attribute::Alignment:
601 return bitc::ATTR_KIND_ALIGNMENT;
602 case Attribute::AllocSize:
603 return bitc::ATTR_KIND_ALLOC_SIZE;
604 case Attribute::AlwaysInline:
605 return bitc::ATTR_KIND_ALWAYS_INLINE;
606 case Attribute::ArgMemOnly:
607 return bitc::ATTR_KIND_ARGMEMONLY;
608 case Attribute::Builtin:
609 return bitc::ATTR_KIND_BUILTIN;
610 case Attribute::ByVal:
611 return bitc::ATTR_KIND_BY_VAL;
612 case Attribute::Convergent:
613 return bitc::ATTR_KIND_CONVERGENT;
614 case Attribute::InAlloca:
615 return bitc::ATTR_KIND_IN_ALLOCA;
616 case Attribute::Cold:
617 return bitc::ATTR_KIND_COLD;
618 case Attribute::InaccessibleMemOnly:
619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
620 case Attribute::InaccessibleMemOrArgMemOnly:
621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
622 case Attribute::InlineHint:
623 return bitc::ATTR_KIND_INLINE_HINT;
624 case Attribute::InReg:
625 return bitc::ATTR_KIND_IN_REG;
626 case Attribute::JumpTable:
627 return bitc::ATTR_KIND_JUMP_TABLE;
628 case Attribute::MinSize:
629 return bitc::ATTR_KIND_MIN_SIZE;
630 case Attribute::Naked:
631 return bitc::ATTR_KIND_NAKED;
632 case Attribute::Nest:
633 return bitc::ATTR_KIND_NEST;
634 case Attribute::NoAlias:
635 return bitc::ATTR_KIND_NO_ALIAS;
636 case Attribute::NoBuiltin:
637 return bitc::ATTR_KIND_NO_BUILTIN;
638 case Attribute::NoCapture:
639 return bitc::ATTR_KIND_NO_CAPTURE;
640 case Attribute::NoDuplicate:
641 return bitc::ATTR_KIND_NO_DUPLICATE;
642 case Attribute::NoFree:
643 return bitc::ATTR_KIND_NOFREE;
644 case Attribute::NoImplicitFloat:
645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
646 case Attribute::NoInline:
647 return bitc::ATTR_KIND_NO_INLINE;
648 case Attribute::NoRecurse:
649 return bitc::ATTR_KIND_NO_RECURSE;
650 case Attribute::NonLazyBind:
651 return bitc::ATTR_KIND_NON_LAZY_BIND;
652 case Attribute::NonNull:
653 return bitc::ATTR_KIND_NON_NULL;
654 case Attribute::Dereferenceable:
655 return bitc::ATTR_KIND_DEREFERENCEABLE;
656 case Attribute::DereferenceableOrNull:
657 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
658 case Attribute::NoRedZone:
659 return bitc::ATTR_KIND_NO_RED_ZONE;
660 case Attribute::NoReturn:
661 return bitc::ATTR_KIND_NO_RETURN;
662 case Attribute::NoSync:
663 return bitc::ATTR_KIND_NOSYNC;
664 case Attribute::NoCfCheck:
665 return bitc::ATTR_KIND_NOCF_CHECK;
666 case Attribute::NoUnwind:
667 return bitc::ATTR_KIND_NO_UNWIND;
668 case Attribute::OptForFuzzing:
669 return bitc::ATTR_KIND_OPT_FOR_FUZZING;
670 case Attribute::OptimizeForSize:
671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
672 case Attribute::OptimizeNone:
673 return bitc::ATTR_KIND_OPTIMIZE_NONE;
674 case Attribute::ReadNone:
675 return bitc::ATTR_KIND_READ_NONE;
676 case Attribute::ReadOnly:
677 return bitc::ATTR_KIND_READ_ONLY;
678 case Attribute::Returned:
679 return bitc::ATTR_KIND_RETURNED;
680 case Attribute::ReturnsTwice:
681 return bitc::ATTR_KIND_RETURNS_TWICE;
682 case Attribute::SExt:
683 return bitc::ATTR_KIND_S_EXT;
684 case Attribute::Speculatable:
685 return bitc::ATTR_KIND_SPECULATABLE;
686 case Attribute::StackAlignment:
687 return bitc::ATTR_KIND_STACK_ALIGNMENT;
688 case Attribute::StackProtect:
689 return bitc::ATTR_KIND_STACK_PROTECT;
690 case Attribute::StackProtectReq:
691 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
692 case Attribute::StackProtectStrong:
693 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
694 case Attribute::SafeStack:
695 return bitc::ATTR_KIND_SAFESTACK;
696 case Attribute::ShadowCallStack:
697 return bitc::ATTR_KIND_SHADOWCALLSTACK;
698 case Attribute::StrictFP:
699 return bitc::ATTR_KIND_STRICT_FP;
700 case Attribute::StructRet:
701 return bitc::ATTR_KIND_STRUCT_RET;
702 case Attribute::SanitizeAddress:
703 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
704 case Attribute::SanitizeHWAddress:
705 return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
706 case Attribute::SanitizeThread:
707 return bitc::ATTR_KIND_SANITIZE_THREAD;
708 case Attribute::SanitizeMemory:
709 return bitc::ATTR_KIND_SANITIZE_MEMORY;
710 case Attribute::SpeculativeLoadHardening:
711 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
712 case Attribute::SwiftError:
713 return bitc::ATTR_KIND_SWIFT_ERROR;
714 case Attribute::SwiftSelf:
715 return bitc::ATTR_KIND_SWIFT_SELF;
716 case Attribute::UWTable:
717 return bitc::ATTR_KIND_UW_TABLE;
718 case Attribute::WillReturn:
719 return bitc::ATTR_KIND_WILLRETURN;
720 case Attribute::WriteOnly:
721 return bitc::ATTR_KIND_WRITEONLY;
722 case Attribute::ZExt:
723 return bitc::ATTR_KIND_Z_EXT;
724 case Attribute::ImmArg:
725 return bitc::ATTR_KIND_IMMARG;
726 case Attribute::SanitizeMemTag:
727 return bitc::ATTR_KIND_SANITIZE_MEMTAG;
728 case Attribute::EndAttrKinds:
729 llvm_unreachable("Can not encode end-attribute kinds marker.");
730 case Attribute::None:
731 llvm_unreachable("Can not encode none-attribute.");
734 llvm_unreachable("Trying to encode unknown attribute");
737 void ModuleBitcodeWriter::writeAttributeGroupTable() {
738 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
739 VE.getAttributeGroups();
740 if (AttrGrps.empty()) return;
742 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
744 SmallVector<uint64_t, 64> Record;
745 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
746 unsigned AttrListIndex = Pair.first;
747 AttributeSet AS = Pair.second;
748 Record.push_back(VE.getAttributeGroupID(Pair));
749 Record.push_back(AttrListIndex);
751 for (Attribute Attr : AS) {
752 if (Attr.isEnumAttribute()) {
753 Record.push_back(0);
754 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
755 } else if (Attr.isIntAttribute()) {
756 Record.push_back(1);
757 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
758 Record.push_back(Attr.getValueAsInt());
759 } else if (Attr.isStringAttribute()) {
760 StringRef Kind = Attr.getKindAsString();
761 StringRef Val = Attr.getValueAsString();
763 Record.push_back(Val.empty() ? 3 : 4);
764 Record.append(Kind.begin(), Kind.end());
765 Record.push_back(0);
766 if (!Val.empty()) {
767 Record.append(Val.begin(), Val.end());
768 Record.push_back(0);
770 } else {
771 assert(Attr.isTypeAttribute());
772 Type *Ty = Attr.getValueAsType();
773 Record.push_back(Ty ? 6 : 5);
774 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
775 if (Ty)
776 Record.push_back(VE.getTypeID(Attr.getValueAsType()));
780 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
781 Record.clear();
784 Stream.ExitBlock();
787 void ModuleBitcodeWriter::writeAttributeTable() {
788 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
789 if (Attrs.empty()) return;
791 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
793 SmallVector<uint64_t, 64> Record;
794 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
795 AttributeList AL = Attrs[i];
796 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
797 AttributeSet AS = AL.getAttributes(i);
798 if (AS.hasAttributes())
799 Record.push_back(VE.getAttributeGroupID({i, AS}));
802 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
803 Record.clear();
806 Stream.ExitBlock();
809 /// WriteTypeTable - Write out the type table for a module.
810 void ModuleBitcodeWriter::writeTypeTable() {
811 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
813 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
814 SmallVector<uint64_t, 64> TypeVals;
816 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
818 // Abbrev for TYPE_CODE_POINTER.
819 auto Abbv = std::make_shared<BitCodeAbbrev>();
820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
822 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
823 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
825 // Abbrev for TYPE_CODE_FUNCTION.
826 Abbv = std::make_shared<BitCodeAbbrev>();
827 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
831 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
833 // Abbrev for TYPE_CODE_STRUCT_ANON.
834 Abbv = std::make_shared<BitCodeAbbrev>();
835 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
839 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
841 // Abbrev for TYPE_CODE_STRUCT_NAME.
842 Abbv = std::make_shared<BitCodeAbbrev>();
843 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
846 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
848 // Abbrev for TYPE_CODE_STRUCT_NAMED.
849 Abbv = std::make_shared<BitCodeAbbrev>();
850 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
854 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
856 // Abbrev for TYPE_CODE_ARRAY.
857 Abbv = std::make_shared<BitCodeAbbrev>();
858 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
861 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
863 // Emit an entry count so the reader can reserve space.
864 TypeVals.push_back(TypeList.size());
865 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
866 TypeVals.clear();
868 // Loop over all of the types, emitting each in turn.
869 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
870 Type *T = TypeList[i];
871 int AbbrevToUse = 0;
872 unsigned Code = 0;
874 switch (T->getTypeID()) {
875 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
876 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
877 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
878 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
879 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
880 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
881 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
882 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
883 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
884 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
885 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
886 case Type::IntegerTyID:
887 // INTEGER: [width]
888 Code = bitc::TYPE_CODE_INTEGER;
889 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
890 break;
891 case Type::PointerTyID: {
892 PointerType *PTy = cast<PointerType>(T);
893 // POINTER: [pointee type, address space]
894 Code = bitc::TYPE_CODE_POINTER;
895 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
896 unsigned AddressSpace = PTy->getAddressSpace();
897 TypeVals.push_back(AddressSpace);
898 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
899 break;
901 case Type::FunctionTyID: {
902 FunctionType *FT = cast<FunctionType>(T);
903 // FUNCTION: [isvararg, retty, paramty x N]
904 Code = bitc::TYPE_CODE_FUNCTION;
905 TypeVals.push_back(FT->isVarArg());
906 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
907 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
908 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
909 AbbrevToUse = FunctionAbbrev;
910 break;
912 case Type::StructTyID: {
913 StructType *ST = cast<StructType>(T);
914 // STRUCT: [ispacked, eltty x N]
915 TypeVals.push_back(ST->isPacked());
916 // Output all of the element types.
917 for (StructType::element_iterator I = ST->element_begin(),
918 E = ST->element_end(); I != E; ++I)
919 TypeVals.push_back(VE.getTypeID(*I));
921 if (ST->isLiteral()) {
922 Code = bitc::TYPE_CODE_STRUCT_ANON;
923 AbbrevToUse = StructAnonAbbrev;
924 } else {
925 if (ST->isOpaque()) {
926 Code = bitc::TYPE_CODE_OPAQUE;
927 } else {
928 Code = bitc::TYPE_CODE_STRUCT_NAMED;
929 AbbrevToUse = StructNamedAbbrev;
932 // Emit the name if it is present.
933 if (!ST->getName().empty())
934 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
935 StructNameAbbrev);
937 break;
939 case Type::ArrayTyID: {
940 ArrayType *AT = cast<ArrayType>(T);
941 // ARRAY: [numelts, eltty]
942 Code = bitc::TYPE_CODE_ARRAY;
943 TypeVals.push_back(AT->getNumElements());
944 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
945 AbbrevToUse = ArrayAbbrev;
946 break;
948 case Type::VectorTyID: {
949 VectorType *VT = cast<VectorType>(T);
950 // VECTOR [numelts, eltty] or
951 // [numelts, eltty, scalable]
952 Code = bitc::TYPE_CODE_VECTOR;
953 TypeVals.push_back(VT->getNumElements());
954 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
955 if (VT->isScalable())
956 TypeVals.push_back(VT->isScalable());
957 break;
961 // Emit the finished record.
962 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
963 TypeVals.clear();
966 Stream.ExitBlock();
969 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
970 switch (Linkage) {
971 case GlobalValue::ExternalLinkage:
972 return 0;
973 case GlobalValue::WeakAnyLinkage:
974 return 16;
975 case GlobalValue::AppendingLinkage:
976 return 2;
977 case GlobalValue::InternalLinkage:
978 return 3;
979 case GlobalValue::LinkOnceAnyLinkage:
980 return 18;
981 case GlobalValue::ExternalWeakLinkage:
982 return 7;
983 case GlobalValue::CommonLinkage:
984 return 8;
985 case GlobalValue::PrivateLinkage:
986 return 9;
987 case GlobalValue::WeakODRLinkage:
988 return 17;
989 case GlobalValue::LinkOnceODRLinkage:
990 return 19;
991 case GlobalValue::AvailableExternallyLinkage:
992 return 12;
994 llvm_unreachable("Invalid linkage");
997 static unsigned getEncodedLinkage(const GlobalValue &GV) {
998 return getEncodedLinkage(GV.getLinkage());
1001 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1002 uint64_t RawFlags = 0;
1003 RawFlags |= Flags.ReadNone;
1004 RawFlags |= (Flags.ReadOnly << 1);
1005 RawFlags |= (Flags.NoRecurse << 2);
1006 RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1007 RawFlags |= (Flags.NoInline << 4);
1008 return RawFlags;
1011 // Decode the flags for GlobalValue in the summary
1012 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1013 uint64_t RawFlags = 0;
1015 RawFlags |= Flags.NotEligibleToImport; // bool
1016 RawFlags |= (Flags.Live << 1);
1017 RawFlags |= (Flags.DSOLocal << 2);
1018 RawFlags |= (Flags.CanAutoHide << 3);
1020 // Linkage don't need to be remapped at that time for the summary. Any future
1021 // change to the getEncodedLinkage() function will need to be taken into
1022 // account here as well.
1023 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1025 return RawFlags;
1028 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1029 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1);
1030 return RawFlags;
1033 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1034 switch (GV.getVisibility()) {
1035 case GlobalValue::DefaultVisibility: return 0;
1036 case GlobalValue::HiddenVisibility: return 1;
1037 case GlobalValue::ProtectedVisibility: return 2;
1039 llvm_unreachable("Invalid visibility");
1042 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1043 switch (GV.getDLLStorageClass()) {
1044 case GlobalValue::DefaultStorageClass: return 0;
1045 case GlobalValue::DLLImportStorageClass: return 1;
1046 case GlobalValue::DLLExportStorageClass: return 2;
1048 llvm_unreachable("Invalid DLL storage class");
1051 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1052 switch (GV.getThreadLocalMode()) {
1053 case GlobalVariable::NotThreadLocal: return 0;
1054 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1055 case GlobalVariable::LocalDynamicTLSModel: return 2;
1056 case GlobalVariable::InitialExecTLSModel: return 3;
1057 case GlobalVariable::LocalExecTLSModel: return 4;
1059 llvm_unreachable("Invalid TLS model");
1062 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1063 switch (C.getSelectionKind()) {
1064 case Comdat::Any:
1065 return bitc::COMDAT_SELECTION_KIND_ANY;
1066 case Comdat::ExactMatch:
1067 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1068 case Comdat::Largest:
1069 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1070 case Comdat::NoDuplicates:
1071 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1072 case Comdat::SameSize:
1073 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1075 llvm_unreachable("Invalid selection kind");
1078 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1079 switch (GV.getUnnamedAddr()) {
1080 case GlobalValue::UnnamedAddr::None: return 0;
1081 case GlobalValue::UnnamedAddr::Local: return 2;
1082 case GlobalValue::UnnamedAddr::Global: return 1;
1084 llvm_unreachable("Invalid unnamed_addr");
1087 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1088 if (GenerateHash)
1089 Hasher.update(Str);
1090 return StrtabBuilder.add(Str);
1093 void ModuleBitcodeWriter::writeComdats() {
1094 SmallVector<unsigned, 64> Vals;
1095 for (const Comdat *C : VE.getComdats()) {
1096 // COMDAT: [strtab offset, strtab size, selection_kind]
1097 Vals.push_back(addToStrtab(C->getName()));
1098 Vals.push_back(C->getName().size());
1099 Vals.push_back(getEncodedComdatSelectionKind(*C));
1100 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1101 Vals.clear();
1105 /// Write a record that will eventually hold the word offset of the
1106 /// module-level VST. For now the offset is 0, which will be backpatched
1107 /// after the real VST is written. Saves the bit offset to backpatch.
1108 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1109 // Write a placeholder value in for the offset of the real VST,
1110 // which is written after the function blocks so that it can include
1111 // the offset of each function. The placeholder offset will be
1112 // updated when the real VST is written.
1113 auto Abbv = std::make_shared<BitCodeAbbrev>();
1114 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1115 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1116 // hold the real VST offset. Must use fixed instead of VBR as we don't
1117 // know how many VBR chunks to reserve ahead of time.
1118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1119 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1121 // Emit the placeholder
1122 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1123 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1125 // Compute and save the bit offset to the placeholder, which will be
1126 // patched when the real VST is written. We can simply subtract the 32-bit
1127 // fixed size from the current bit number to get the location to backpatch.
1128 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1131 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1133 /// Determine the encoding to use for the given string name and length.
1134 static StringEncoding getStringEncoding(StringRef Str) {
1135 bool isChar6 = true;
1136 for (char C : Str) {
1137 if (isChar6)
1138 isChar6 = BitCodeAbbrevOp::isChar6(C);
1139 if ((unsigned char)C & 128)
1140 // don't bother scanning the rest.
1141 return SE_Fixed8;
1143 if (isChar6)
1144 return SE_Char6;
1145 return SE_Fixed7;
1148 /// Emit top-level description of module, including target triple, inline asm,
1149 /// descriptors for global variables, and function prototype info.
1150 /// Returns the bit offset to backpatch with the location of the real VST.
1151 void ModuleBitcodeWriter::writeModuleInfo() {
1152 // Emit various pieces of data attached to a module.
1153 if (!M.getTargetTriple().empty())
1154 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1155 0 /*TODO*/);
1156 const std::string &DL = M.getDataLayoutStr();
1157 if (!DL.empty())
1158 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1159 if (!M.getModuleInlineAsm().empty())
1160 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1161 0 /*TODO*/);
1163 // Emit information about sections and GC, computing how many there are. Also
1164 // compute the maximum alignment value.
1165 std::map<std::string, unsigned> SectionMap;
1166 std::map<std::string, unsigned> GCMap;
1167 unsigned MaxAlignment = 0;
1168 unsigned MaxGlobalType = 0;
1169 for (const GlobalValue &GV : M.globals()) {
1170 MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1171 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1172 if (GV.hasSection()) {
1173 // Give section names unique ID's.
1174 unsigned &Entry = SectionMap[GV.getSection()];
1175 if (!Entry) {
1176 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1177 0 /*TODO*/);
1178 Entry = SectionMap.size();
1182 for (const Function &F : M) {
1183 MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1184 if (F.hasSection()) {
1185 // Give section names unique ID's.
1186 unsigned &Entry = SectionMap[F.getSection()];
1187 if (!Entry) {
1188 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1189 0 /*TODO*/);
1190 Entry = SectionMap.size();
1193 if (F.hasGC()) {
1194 // Same for GC names.
1195 unsigned &Entry = GCMap[F.getGC()];
1196 if (!Entry) {
1197 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1198 0 /*TODO*/);
1199 Entry = GCMap.size();
1204 // Emit abbrev for globals, now that we know # sections and max alignment.
1205 unsigned SimpleGVarAbbrev = 0;
1206 if (!M.global_empty()) {
1207 // Add an abbrev for common globals with no visibility or thread localness.
1208 auto Abbv = std::make_shared<BitCodeAbbrev>();
1209 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1213 Log2_32_Ceil(MaxGlobalType+1)));
1214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1215 //| explicitType << 1
1216 //| constant
1217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1219 if (MaxAlignment == 0) // Alignment.
1220 Abbv->Add(BitCodeAbbrevOp(0));
1221 else {
1222 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1224 Log2_32_Ceil(MaxEncAlignment+1)));
1226 if (SectionMap.empty()) // Section.
1227 Abbv->Add(BitCodeAbbrevOp(0));
1228 else
1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1230 Log2_32_Ceil(SectionMap.size()+1)));
1231 // Don't bother emitting vis + thread local.
1232 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1235 SmallVector<unsigned, 64> Vals;
1236 // Emit the module's source file name.
1238 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1239 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1240 if (Bits == SE_Char6)
1241 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1242 else if (Bits == SE_Fixed7)
1243 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1245 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1246 auto Abbv = std::make_shared<BitCodeAbbrev>();
1247 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1249 Abbv->Add(AbbrevOpToUse);
1250 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1252 for (const auto P : M.getSourceFileName())
1253 Vals.push_back((unsigned char)P);
1255 // Emit the finished record.
1256 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1257 Vals.clear();
1260 // Emit the global variable information.
1261 for (const GlobalVariable &GV : M.globals()) {
1262 unsigned AbbrevToUse = 0;
1264 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1265 // linkage, alignment, section, visibility, threadlocal,
1266 // unnamed_addr, externally_initialized, dllstorageclass,
1267 // comdat, attributes, DSO_Local]
1268 Vals.push_back(addToStrtab(GV.getName()));
1269 Vals.push_back(GV.getName().size());
1270 Vals.push_back(VE.getTypeID(GV.getValueType()));
1271 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1272 Vals.push_back(GV.isDeclaration() ? 0 :
1273 (VE.getValueID(GV.getInitializer()) + 1));
1274 Vals.push_back(getEncodedLinkage(GV));
1275 Vals.push_back(Log2_32(GV.getAlignment())+1);
1276 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1277 if (GV.isThreadLocal() ||
1278 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1279 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1280 GV.isExternallyInitialized() ||
1281 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1282 GV.hasComdat() ||
1283 GV.hasAttributes() ||
1284 GV.isDSOLocal() ||
1285 GV.hasPartition()) {
1286 Vals.push_back(getEncodedVisibility(GV));
1287 Vals.push_back(getEncodedThreadLocalMode(GV));
1288 Vals.push_back(getEncodedUnnamedAddr(GV));
1289 Vals.push_back(GV.isExternallyInitialized());
1290 Vals.push_back(getEncodedDLLStorageClass(GV));
1291 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1293 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1294 Vals.push_back(VE.getAttributeListID(AL));
1296 Vals.push_back(GV.isDSOLocal());
1297 Vals.push_back(addToStrtab(GV.getPartition()));
1298 Vals.push_back(GV.getPartition().size());
1299 } else {
1300 AbbrevToUse = SimpleGVarAbbrev;
1303 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1304 Vals.clear();
1307 // Emit the function proto information.
1308 for (const Function &F : M) {
1309 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1310 // linkage, paramattrs, alignment, section, visibility, gc,
1311 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1312 // prefixdata, personalityfn, DSO_Local, addrspace]
1313 Vals.push_back(addToStrtab(F.getName()));
1314 Vals.push_back(F.getName().size());
1315 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1316 Vals.push_back(F.getCallingConv());
1317 Vals.push_back(F.isDeclaration());
1318 Vals.push_back(getEncodedLinkage(F));
1319 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1320 Vals.push_back(Log2_32(F.getAlignment())+1);
1321 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1322 Vals.push_back(getEncodedVisibility(F));
1323 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1324 Vals.push_back(getEncodedUnnamedAddr(F));
1325 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1326 : 0);
1327 Vals.push_back(getEncodedDLLStorageClass(F));
1328 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1329 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1330 : 0);
1331 Vals.push_back(
1332 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1334 Vals.push_back(F.isDSOLocal());
1335 Vals.push_back(F.getAddressSpace());
1336 Vals.push_back(addToStrtab(F.getPartition()));
1337 Vals.push_back(F.getPartition().size());
1339 unsigned AbbrevToUse = 0;
1340 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1341 Vals.clear();
1344 // Emit the alias information.
1345 for (const GlobalAlias &A : M.aliases()) {
1346 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1347 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1348 // DSO_Local]
1349 Vals.push_back(addToStrtab(A.getName()));
1350 Vals.push_back(A.getName().size());
1351 Vals.push_back(VE.getTypeID(A.getValueType()));
1352 Vals.push_back(A.getType()->getAddressSpace());
1353 Vals.push_back(VE.getValueID(A.getAliasee()));
1354 Vals.push_back(getEncodedLinkage(A));
1355 Vals.push_back(getEncodedVisibility(A));
1356 Vals.push_back(getEncodedDLLStorageClass(A));
1357 Vals.push_back(getEncodedThreadLocalMode(A));
1358 Vals.push_back(getEncodedUnnamedAddr(A));
1359 Vals.push_back(A.isDSOLocal());
1360 Vals.push_back(addToStrtab(A.getPartition()));
1361 Vals.push_back(A.getPartition().size());
1363 unsigned AbbrevToUse = 0;
1364 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1365 Vals.clear();
1368 // Emit the ifunc information.
1369 for (const GlobalIFunc &I : M.ifuncs()) {
1370 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1371 // val#, linkage, visibility, DSO_Local]
1372 Vals.push_back(addToStrtab(I.getName()));
1373 Vals.push_back(I.getName().size());
1374 Vals.push_back(VE.getTypeID(I.getValueType()));
1375 Vals.push_back(I.getType()->getAddressSpace());
1376 Vals.push_back(VE.getValueID(I.getResolver()));
1377 Vals.push_back(getEncodedLinkage(I));
1378 Vals.push_back(getEncodedVisibility(I));
1379 Vals.push_back(I.isDSOLocal());
1380 Vals.push_back(addToStrtab(I.getPartition()));
1381 Vals.push_back(I.getPartition().size());
1382 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1383 Vals.clear();
1386 writeValueSymbolTableForwardDecl();
1389 static uint64_t getOptimizationFlags(const Value *V) {
1390 uint64_t Flags = 0;
1392 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1393 if (OBO->hasNoSignedWrap())
1394 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1395 if (OBO->hasNoUnsignedWrap())
1396 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1397 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1398 if (PEO->isExact())
1399 Flags |= 1 << bitc::PEO_EXACT;
1400 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1401 if (FPMO->hasAllowReassoc())
1402 Flags |= bitc::AllowReassoc;
1403 if (FPMO->hasNoNaNs())
1404 Flags |= bitc::NoNaNs;
1405 if (FPMO->hasNoInfs())
1406 Flags |= bitc::NoInfs;
1407 if (FPMO->hasNoSignedZeros())
1408 Flags |= bitc::NoSignedZeros;
1409 if (FPMO->hasAllowReciprocal())
1410 Flags |= bitc::AllowReciprocal;
1411 if (FPMO->hasAllowContract())
1412 Flags |= bitc::AllowContract;
1413 if (FPMO->hasApproxFunc())
1414 Flags |= bitc::ApproxFunc;
1417 return Flags;
1420 void ModuleBitcodeWriter::writeValueAsMetadata(
1421 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1422 // Mimic an MDNode with a value as one operand.
1423 Value *V = MD->getValue();
1424 Record.push_back(VE.getTypeID(V->getType()));
1425 Record.push_back(VE.getValueID(V));
1426 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1427 Record.clear();
1430 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1431 SmallVectorImpl<uint64_t> &Record,
1432 unsigned Abbrev) {
1433 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1434 Metadata *MD = N->getOperand(i);
1435 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1436 "Unexpected function-local metadata");
1437 Record.push_back(VE.getMetadataOrNullID(MD));
1439 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1440 : bitc::METADATA_NODE,
1441 Record, Abbrev);
1442 Record.clear();
1445 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1446 // Assume the column is usually under 128, and always output the inlined-at
1447 // location (it's never more expensive than building an array size 1).
1448 auto Abbv = std::make_shared<BitCodeAbbrev>();
1449 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1456 return Stream.EmitAbbrev(std::move(Abbv));
1459 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1460 SmallVectorImpl<uint64_t> &Record,
1461 unsigned &Abbrev) {
1462 if (!Abbrev)
1463 Abbrev = createDILocationAbbrev();
1465 Record.push_back(N->isDistinct());
1466 Record.push_back(N->getLine());
1467 Record.push_back(N->getColumn());
1468 Record.push_back(VE.getMetadataID(N->getScope()));
1469 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1470 Record.push_back(N->isImplicitCode());
1472 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1473 Record.clear();
1476 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1477 // Assume the column is usually under 128, and always output the inlined-at
1478 // location (it's never more expensive than building an array size 1).
1479 auto Abbv = std::make_shared<BitCodeAbbrev>();
1480 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1487 return Stream.EmitAbbrev(std::move(Abbv));
1490 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1491 SmallVectorImpl<uint64_t> &Record,
1492 unsigned &Abbrev) {
1493 if (!Abbrev)
1494 Abbrev = createGenericDINodeAbbrev();
1496 Record.push_back(N->isDistinct());
1497 Record.push_back(N->getTag());
1498 Record.push_back(0); // Per-tag version field; unused for now.
1500 for (auto &I : N->operands())
1501 Record.push_back(VE.getMetadataOrNullID(I));
1503 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1504 Record.clear();
1507 static uint64_t rotateSign(int64_t I) {
1508 uint64_t U = I;
1509 return I < 0 ? ~(U << 1) : U << 1;
1512 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1513 SmallVectorImpl<uint64_t> &Record,
1514 unsigned Abbrev) {
1515 const uint64_t Version = 1 << 1;
1516 Record.push_back((uint64_t)N->isDistinct() | Version);
1517 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1518 Record.push_back(rotateSign(N->getLowerBound()));
1520 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1521 Record.clear();
1524 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1525 SmallVectorImpl<uint64_t> &Record,
1526 unsigned Abbrev) {
1527 Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1528 Record.push_back(rotateSign(N->getValue()));
1529 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1531 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1532 Record.clear();
1535 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1536 SmallVectorImpl<uint64_t> &Record,
1537 unsigned Abbrev) {
1538 Record.push_back(N->isDistinct());
1539 Record.push_back(N->getTag());
1540 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1541 Record.push_back(N->getSizeInBits());
1542 Record.push_back(N->getAlignInBits());
1543 Record.push_back(N->getEncoding());
1544 Record.push_back(N->getFlags());
1546 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1547 Record.clear();
1550 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1551 SmallVectorImpl<uint64_t> &Record,
1552 unsigned Abbrev) {
1553 Record.push_back(N->isDistinct());
1554 Record.push_back(N->getTag());
1555 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1556 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1557 Record.push_back(N->getLine());
1558 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1559 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1560 Record.push_back(N->getSizeInBits());
1561 Record.push_back(N->getAlignInBits());
1562 Record.push_back(N->getOffsetInBits());
1563 Record.push_back(N->getFlags());
1564 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1566 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1567 // that there is no DWARF address space associated with DIDerivedType.
1568 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1569 Record.push_back(*DWARFAddressSpace + 1);
1570 else
1571 Record.push_back(0);
1573 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1574 Record.clear();
1577 void ModuleBitcodeWriter::writeDICompositeType(
1578 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1579 unsigned Abbrev) {
1580 const unsigned IsNotUsedInOldTypeRef = 0x2;
1581 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1582 Record.push_back(N->getTag());
1583 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1584 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1585 Record.push_back(N->getLine());
1586 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1587 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1588 Record.push_back(N->getSizeInBits());
1589 Record.push_back(N->getAlignInBits());
1590 Record.push_back(N->getOffsetInBits());
1591 Record.push_back(N->getFlags());
1592 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1593 Record.push_back(N->getRuntimeLang());
1594 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1595 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1596 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1597 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1599 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1600 Record.clear();
1603 void ModuleBitcodeWriter::writeDISubroutineType(
1604 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1605 unsigned Abbrev) {
1606 const unsigned HasNoOldTypeRefs = 0x2;
1607 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1608 Record.push_back(N->getFlags());
1609 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1610 Record.push_back(N->getCC());
1612 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1613 Record.clear();
1616 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1617 SmallVectorImpl<uint64_t> &Record,
1618 unsigned Abbrev) {
1619 Record.push_back(N->isDistinct());
1620 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1621 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1622 if (N->getRawChecksum()) {
1623 Record.push_back(N->getRawChecksum()->Kind);
1624 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1625 } else {
1626 // Maintain backwards compatibility with the old internal representation of
1627 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1628 Record.push_back(0);
1629 Record.push_back(VE.getMetadataOrNullID(nullptr));
1631 auto Source = N->getRawSource();
1632 if (Source)
1633 Record.push_back(VE.getMetadataOrNullID(*Source));
1635 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1636 Record.clear();
1639 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1640 SmallVectorImpl<uint64_t> &Record,
1641 unsigned Abbrev) {
1642 assert(N->isDistinct() && "Expected distinct compile units");
1643 Record.push_back(/* IsDistinct */ true);
1644 Record.push_back(N->getSourceLanguage());
1645 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1646 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1647 Record.push_back(N->isOptimized());
1648 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1649 Record.push_back(N->getRuntimeVersion());
1650 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1651 Record.push_back(N->getEmissionKind());
1652 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1653 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1654 Record.push_back(/* subprograms */ 0);
1655 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1656 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1657 Record.push_back(N->getDWOId());
1658 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1659 Record.push_back(N->getSplitDebugInlining());
1660 Record.push_back(N->getDebugInfoForProfiling());
1661 Record.push_back((unsigned)N->getNameTableKind());
1663 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1664 Record.clear();
1667 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1668 SmallVectorImpl<uint64_t> &Record,
1669 unsigned Abbrev) {
1670 const uint64_t HasUnitFlag = 1 << 1;
1671 const uint64_t HasSPFlagsFlag = 1 << 2;
1672 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1673 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1674 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1675 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1676 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1677 Record.push_back(N->getLine());
1678 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1679 Record.push_back(N->getScopeLine());
1680 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1681 Record.push_back(N->getSPFlags());
1682 Record.push_back(N->getVirtualIndex());
1683 Record.push_back(N->getFlags());
1684 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1685 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1686 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1687 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1688 Record.push_back(N->getThisAdjustment());
1689 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1691 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1692 Record.clear();
1695 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1696 SmallVectorImpl<uint64_t> &Record,
1697 unsigned Abbrev) {
1698 Record.push_back(N->isDistinct());
1699 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1700 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1701 Record.push_back(N->getLine());
1702 Record.push_back(N->getColumn());
1704 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1705 Record.clear();
1708 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1709 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1710 unsigned Abbrev) {
1711 Record.push_back(N->isDistinct());
1712 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1713 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1714 Record.push_back(N->getDiscriminator());
1716 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1717 Record.clear();
1720 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1721 SmallVectorImpl<uint64_t> &Record,
1722 unsigned Abbrev) {
1723 Record.push_back(N->isDistinct());
1724 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1725 Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1726 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1727 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1728 Record.push_back(N->getLineNo());
1730 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1731 Record.clear();
1734 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1735 SmallVectorImpl<uint64_t> &Record,
1736 unsigned Abbrev) {
1737 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1738 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1739 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1741 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1742 Record.clear();
1745 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1746 SmallVectorImpl<uint64_t> &Record,
1747 unsigned Abbrev) {
1748 Record.push_back(N->isDistinct());
1749 Record.push_back(N->getMacinfoType());
1750 Record.push_back(N->getLine());
1751 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1752 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1754 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1755 Record.clear();
1758 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1759 SmallVectorImpl<uint64_t> &Record,
1760 unsigned Abbrev) {
1761 Record.push_back(N->isDistinct());
1762 Record.push_back(N->getMacinfoType());
1763 Record.push_back(N->getLine());
1764 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1765 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1767 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1768 Record.clear();
1771 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1772 SmallVectorImpl<uint64_t> &Record,
1773 unsigned Abbrev) {
1774 Record.push_back(N->isDistinct());
1775 for (auto &I : N->operands())
1776 Record.push_back(VE.getMetadataOrNullID(I));
1778 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1779 Record.clear();
1782 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1783 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1784 unsigned Abbrev) {
1785 Record.push_back(N->isDistinct());
1786 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1787 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1789 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1790 Record.clear();
1793 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1794 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1795 unsigned Abbrev) {
1796 Record.push_back(N->isDistinct());
1797 Record.push_back(N->getTag());
1798 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1799 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1800 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1802 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1803 Record.clear();
1806 void ModuleBitcodeWriter::writeDIGlobalVariable(
1807 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1808 unsigned Abbrev) {
1809 const uint64_t Version = 2 << 1;
1810 Record.push_back((uint64_t)N->isDistinct() | Version);
1811 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1812 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1813 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1814 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1815 Record.push_back(N->getLine());
1816 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1817 Record.push_back(N->isLocalToUnit());
1818 Record.push_back(N->isDefinition());
1819 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1820 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1821 Record.push_back(N->getAlignInBits());
1823 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1824 Record.clear();
1827 void ModuleBitcodeWriter::writeDILocalVariable(
1828 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1829 unsigned Abbrev) {
1830 // In order to support all possible bitcode formats in BitcodeReader we need
1831 // to distinguish the following cases:
1832 // 1) Record has no artificial tag (Record[1]),
1833 // has no obsolete inlinedAt field (Record[9]).
1834 // In this case Record size will be 8, HasAlignment flag is false.
1835 // 2) Record has artificial tag (Record[1]),
1836 // has no obsolete inlignedAt field (Record[9]).
1837 // In this case Record size will be 9, HasAlignment flag is false.
1838 // 3) Record has both artificial tag (Record[1]) and
1839 // obsolete inlignedAt field (Record[9]).
1840 // In this case Record size will be 10, HasAlignment flag is false.
1841 // 4) Record has neither artificial tag, nor inlignedAt field, but
1842 // HasAlignment flag is true and Record[8] contains alignment value.
1843 const uint64_t HasAlignmentFlag = 1 << 1;
1844 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1845 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1846 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1847 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1848 Record.push_back(N->getLine());
1849 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1850 Record.push_back(N->getArg());
1851 Record.push_back(N->getFlags());
1852 Record.push_back(N->getAlignInBits());
1854 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1855 Record.clear();
1858 void ModuleBitcodeWriter::writeDILabel(
1859 const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1860 unsigned Abbrev) {
1861 Record.push_back((uint64_t)N->isDistinct());
1862 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1863 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1864 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1865 Record.push_back(N->getLine());
1867 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1868 Record.clear();
1871 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1872 SmallVectorImpl<uint64_t> &Record,
1873 unsigned Abbrev) {
1874 Record.reserve(N->getElements().size() + 1);
1875 const uint64_t Version = 3 << 1;
1876 Record.push_back((uint64_t)N->isDistinct() | Version);
1877 Record.append(N->elements_begin(), N->elements_end());
1879 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1880 Record.clear();
1883 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1884 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1885 unsigned Abbrev) {
1886 Record.push_back(N->isDistinct());
1887 Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1888 Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1890 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1891 Record.clear();
1894 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1895 SmallVectorImpl<uint64_t> &Record,
1896 unsigned Abbrev) {
1897 Record.push_back(N->isDistinct());
1898 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1899 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1900 Record.push_back(N->getLine());
1901 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1902 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1903 Record.push_back(N->getAttributes());
1904 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1906 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1907 Record.clear();
1910 void ModuleBitcodeWriter::writeDIImportedEntity(
1911 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1912 unsigned Abbrev) {
1913 Record.push_back(N->isDistinct());
1914 Record.push_back(N->getTag());
1915 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1916 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1917 Record.push_back(N->getLine());
1918 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1919 Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1921 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1922 Record.clear();
1925 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1926 auto Abbv = std::make_shared<BitCodeAbbrev>();
1927 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1930 return Stream.EmitAbbrev(std::move(Abbv));
1933 void ModuleBitcodeWriter::writeNamedMetadata(
1934 SmallVectorImpl<uint64_t> &Record) {
1935 if (M.named_metadata_empty())
1936 return;
1938 unsigned Abbrev = createNamedMetadataAbbrev();
1939 for (const NamedMDNode &NMD : M.named_metadata()) {
1940 // Write name.
1941 StringRef Str = NMD.getName();
1942 Record.append(Str.bytes_begin(), Str.bytes_end());
1943 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1944 Record.clear();
1946 // Write named metadata operands.
1947 for (const MDNode *N : NMD.operands())
1948 Record.push_back(VE.getMetadataID(N));
1949 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1950 Record.clear();
1954 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1955 auto Abbv = std::make_shared<BitCodeAbbrev>();
1956 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1960 return Stream.EmitAbbrev(std::move(Abbv));
1963 /// Write out a record for MDString.
1965 /// All the metadata strings in a metadata block are emitted in a single
1966 /// record. The sizes and strings themselves are shoved into a blob.
1967 void ModuleBitcodeWriter::writeMetadataStrings(
1968 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1969 if (Strings.empty())
1970 return;
1972 // Start the record with the number of strings.
1973 Record.push_back(bitc::METADATA_STRINGS);
1974 Record.push_back(Strings.size());
1976 // Emit the sizes of the strings in the blob.
1977 SmallString<256> Blob;
1979 BitstreamWriter W(Blob);
1980 for (const Metadata *MD : Strings)
1981 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1982 W.FlushToWord();
1985 // Add the offset to the strings to the record.
1986 Record.push_back(Blob.size());
1988 // Add the strings to the blob.
1989 for (const Metadata *MD : Strings)
1990 Blob.append(cast<MDString>(MD)->getString());
1992 // Emit the final record.
1993 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1994 Record.clear();
1997 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1998 enum MetadataAbbrev : unsigned {
1999 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2000 #include "llvm/IR/Metadata.def"
2001 LastPlusOne
2004 void ModuleBitcodeWriter::writeMetadataRecords(
2005 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2006 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2007 if (MDs.empty())
2008 return;
2010 // Initialize MDNode abbreviations.
2011 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2012 #include "llvm/IR/Metadata.def"
2014 for (const Metadata *MD : MDs) {
2015 if (IndexPos)
2016 IndexPos->push_back(Stream.GetCurrentBitNo());
2017 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2018 assert(N->isResolved() && "Expected forward references to be resolved");
2020 switch (N->getMetadataID()) {
2021 default:
2022 llvm_unreachable("Invalid MDNode subclass");
2023 #define HANDLE_MDNODE_LEAF(CLASS) \
2024 case Metadata::CLASS##Kind: \
2025 if (MDAbbrevs) \
2026 write##CLASS(cast<CLASS>(N), Record, \
2027 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2028 else \
2029 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2030 continue;
2031 #include "llvm/IR/Metadata.def"
2034 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2038 void ModuleBitcodeWriter::writeModuleMetadata() {
2039 if (!VE.hasMDs() && M.named_metadata_empty())
2040 return;
2042 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2043 SmallVector<uint64_t, 64> Record;
2045 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2046 // block and load any metadata.
2047 std::vector<unsigned> MDAbbrevs;
2049 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2050 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2051 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2052 createGenericDINodeAbbrev();
2054 auto Abbv = std::make_shared<BitCodeAbbrev>();
2055 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2058 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2060 Abbv = std::make_shared<BitCodeAbbrev>();
2061 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2064 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2066 // Emit MDStrings together upfront.
2067 writeMetadataStrings(VE.getMDStrings(), Record);
2069 // We only emit an index for the metadata record if we have more than a given
2070 // (naive) threshold of metadatas, otherwise it is not worth it.
2071 if (VE.getNonMDStrings().size() > IndexThreshold) {
2072 // Write a placeholder value in for the offset of the metadata index,
2073 // which is written after the records, so that it can include
2074 // the offset of each entry. The placeholder offset will be
2075 // updated after all records are emitted.
2076 uint64_t Vals[] = {0, 0};
2077 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2080 // Compute and save the bit offset to the current position, which will be
2081 // patched when we emit the index later. We can simply subtract the 64-bit
2082 // fixed size from the current bit number to get the location to backpatch.
2083 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2085 // This index will contain the bitpos for each individual record.
2086 std::vector<uint64_t> IndexPos;
2087 IndexPos.reserve(VE.getNonMDStrings().size());
2089 // Write all the records
2090 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2092 if (VE.getNonMDStrings().size() > IndexThreshold) {
2093 // Now that we have emitted all the records we will emit the index. But
2094 // first
2095 // backpatch the forward reference so that the reader can skip the records
2096 // efficiently.
2097 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2098 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2100 // Delta encode the index.
2101 uint64_t PreviousValue = IndexOffsetRecordBitPos;
2102 for (auto &Elt : IndexPos) {
2103 auto EltDelta = Elt - PreviousValue;
2104 PreviousValue = Elt;
2105 Elt = EltDelta;
2107 // Emit the index record.
2108 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2109 IndexPos.clear();
2112 // Write the named metadata now.
2113 writeNamedMetadata(Record);
2115 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2116 SmallVector<uint64_t, 4> Record;
2117 Record.push_back(VE.getValueID(&GO));
2118 pushGlobalMetadataAttachment(Record, GO);
2119 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2121 for (const Function &F : M)
2122 if (F.isDeclaration() && F.hasMetadata())
2123 AddDeclAttachedMetadata(F);
2124 // FIXME: Only store metadata for declarations here, and move data for global
2125 // variable definitions to a separate block (PR28134).
2126 for (const GlobalVariable &GV : M.globals())
2127 if (GV.hasMetadata())
2128 AddDeclAttachedMetadata(GV);
2130 Stream.ExitBlock();
2133 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2134 if (!VE.hasMDs())
2135 return;
2137 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2138 SmallVector<uint64_t, 64> Record;
2139 writeMetadataStrings(VE.getMDStrings(), Record);
2140 writeMetadataRecords(VE.getNonMDStrings(), Record);
2141 Stream.ExitBlock();
2144 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2145 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2146 // [n x [id, mdnode]]
2147 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2148 GO.getAllMetadata(MDs);
2149 for (const auto &I : MDs) {
2150 Record.push_back(I.first);
2151 Record.push_back(VE.getMetadataID(I.second));
2155 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2156 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2158 SmallVector<uint64_t, 64> Record;
2160 if (F.hasMetadata()) {
2161 pushGlobalMetadataAttachment(Record, F);
2162 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2163 Record.clear();
2166 // Write metadata attachments
2167 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2168 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2169 for (const BasicBlock &BB : F)
2170 for (const Instruction &I : BB) {
2171 MDs.clear();
2172 I.getAllMetadataOtherThanDebugLoc(MDs);
2174 // If no metadata, ignore instruction.
2175 if (MDs.empty()) continue;
2177 Record.push_back(VE.getInstructionID(&I));
2179 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2180 Record.push_back(MDs[i].first);
2181 Record.push_back(VE.getMetadataID(MDs[i].second));
2183 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2184 Record.clear();
2187 Stream.ExitBlock();
2190 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2191 SmallVector<uint64_t, 64> Record;
2193 // Write metadata kinds
2194 // METADATA_KIND - [n x [id, name]]
2195 SmallVector<StringRef, 8> Names;
2196 M.getMDKindNames(Names);
2198 if (Names.empty()) return;
2200 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2202 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2203 Record.push_back(MDKindID);
2204 StringRef KName = Names[MDKindID];
2205 Record.append(KName.begin(), KName.end());
2207 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2208 Record.clear();
2211 Stream.ExitBlock();
2214 void ModuleBitcodeWriter::writeOperandBundleTags() {
2215 // Write metadata kinds
2217 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2219 // OPERAND_BUNDLE_TAG - [strchr x N]
2221 SmallVector<StringRef, 8> Tags;
2222 M.getOperandBundleTags(Tags);
2224 if (Tags.empty())
2225 return;
2227 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2229 SmallVector<uint64_t, 64> Record;
2231 for (auto Tag : Tags) {
2232 Record.append(Tag.begin(), Tag.end());
2234 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2235 Record.clear();
2238 Stream.ExitBlock();
2241 void ModuleBitcodeWriter::writeSyncScopeNames() {
2242 SmallVector<StringRef, 8> SSNs;
2243 M.getContext().getSyncScopeNames(SSNs);
2244 if (SSNs.empty())
2245 return;
2247 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2249 SmallVector<uint64_t, 64> Record;
2250 for (auto SSN : SSNs) {
2251 Record.append(SSN.begin(), SSN.end());
2252 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2253 Record.clear();
2256 Stream.ExitBlock();
2259 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2260 if ((int64_t)V >= 0)
2261 Vals.push_back(V << 1);
2262 else
2263 Vals.push_back((-V << 1) | 1);
2266 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2267 bool isGlobal) {
2268 if (FirstVal == LastVal) return;
2270 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2272 unsigned AggregateAbbrev = 0;
2273 unsigned String8Abbrev = 0;
2274 unsigned CString7Abbrev = 0;
2275 unsigned CString6Abbrev = 0;
2276 // If this is a constant pool for the module, emit module-specific abbrevs.
2277 if (isGlobal) {
2278 // Abbrev for CST_CODE_AGGREGATE.
2279 auto Abbv = std::make_shared<BitCodeAbbrev>();
2280 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2283 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2285 // Abbrev for CST_CODE_STRING.
2286 Abbv = std::make_shared<BitCodeAbbrev>();
2287 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2290 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2291 // Abbrev for CST_CODE_CSTRING.
2292 Abbv = std::make_shared<BitCodeAbbrev>();
2293 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2296 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2297 // Abbrev for CST_CODE_CSTRING.
2298 Abbv = std::make_shared<BitCodeAbbrev>();
2299 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2302 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2305 SmallVector<uint64_t, 64> Record;
2307 const ValueEnumerator::ValueList &Vals = VE.getValues();
2308 Type *LastTy = nullptr;
2309 for (unsigned i = FirstVal; i != LastVal; ++i) {
2310 const Value *V = Vals[i].first;
2311 // If we need to switch types, do so now.
2312 if (V->getType() != LastTy) {
2313 LastTy = V->getType();
2314 Record.push_back(VE.getTypeID(LastTy));
2315 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2316 CONSTANTS_SETTYPE_ABBREV);
2317 Record.clear();
2320 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2321 Record.push_back(unsigned(IA->hasSideEffects()) |
2322 unsigned(IA->isAlignStack()) << 1 |
2323 unsigned(IA->getDialect()&1) << 2);
2325 // Add the asm string.
2326 const std::string &AsmStr = IA->getAsmString();
2327 Record.push_back(AsmStr.size());
2328 Record.append(AsmStr.begin(), AsmStr.end());
2330 // Add the constraint string.
2331 const std::string &ConstraintStr = IA->getConstraintString();
2332 Record.push_back(ConstraintStr.size());
2333 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2334 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2335 Record.clear();
2336 continue;
2338 const Constant *C = cast<Constant>(V);
2339 unsigned Code = -1U;
2340 unsigned AbbrevToUse = 0;
2341 if (C->isNullValue()) {
2342 Code = bitc::CST_CODE_NULL;
2343 } else if (isa<UndefValue>(C)) {
2344 Code = bitc::CST_CODE_UNDEF;
2345 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2346 if (IV->getBitWidth() <= 64) {
2347 uint64_t V = IV->getSExtValue();
2348 emitSignedInt64(Record, V);
2349 Code = bitc::CST_CODE_INTEGER;
2350 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2351 } else { // Wide integers, > 64 bits in size.
2352 // We have an arbitrary precision integer value to write whose
2353 // bit width is > 64. However, in canonical unsigned integer
2354 // format it is likely that the high bits are going to be zero.
2355 // So, we only write the number of active words.
2356 unsigned NWords = IV->getValue().getActiveWords();
2357 const uint64_t *RawWords = IV->getValue().getRawData();
2358 for (unsigned i = 0; i != NWords; ++i) {
2359 emitSignedInt64(Record, RawWords[i]);
2361 Code = bitc::CST_CODE_WIDE_INTEGER;
2363 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2364 Code = bitc::CST_CODE_FLOAT;
2365 Type *Ty = CFP->getType();
2366 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2367 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2368 } else if (Ty->isX86_FP80Ty()) {
2369 // api needed to prevent premature destruction
2370 // bits are not in the same order as a normal i80 APInt, compensate.
2371 APInt api = CFP->getValueAPF().bitcastToAPInt();
2372 const uint64_t *p = api.getRawData();
2373 Record.push_back((p[1] << 48) | (p[0] >> 16));
2374 Record.push_back(p[0] & 0xffffLL);
2375 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2376 APInt api = CFP->getValueAPF().bitcastToAPInt();
2377 const uint64_t *p = api.getRawData();
2378 Record.push_back(p[0]);
2379 Record.push_back(p[1]);
2380 } else {
2381 assert(0 && "Unknown FP type!");
2383 } else if (isa<ConstantDataSequential>(C) &&
2384 cast<ConstantDataSequential>(C)->isString()) {
2385 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2386 // Emit constant strings specially.
2387 unsigned NumElts = Str->getNumElements();
2388 // If this is a null-terminated string, use the denser CSTRING encoding.
2389 if (Str->isCString()) {
2390 Code = bitc::CST_CODE_CSTRING;
2391 --NumElts; // Don't encode the null, which isn't allowed by char6.
2392 } else {
2393 Code = bitc::CST_CODE_STRING;
2394 AbbrevToUse = String8Abbrev;
2396 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2397 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2398 for (unsigned i = 0; i != NumElts; ++i) {
2399 unsigned char V = Str->getElementAsInteger(i);
2400 Record.push_back(V);
2401 isCStr7 &= (V & 128) == 0;
2402 if (isCStrChar6)
2403 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2406 if (isCStrChar6)
2407 AbbrevToUse = CString6Abbrev;
2408 else if (isCStr7)
2409 AbbrevToUse = CString7Abbrev;
2410 } else if (const ConstantDataSequential *CDS =
2411 dyn_cast<ConstantDataSequential>(C)) {
2412 Code = bitc::CST_CODE_DATA;
2413 Type *EltTy = CDS->getType()->getElementType();
2414 if (isa<IntegerType>(EltTy)) {
2415 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2416 Record.push_back(CDS->getElementAsInteger(i));
2417 } else {
2418 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2419 Record.push_back(
2420 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2422 } else if (isa<ConstantAggregate>(C)) {
2423 Code = bitc::CST_CODE_AGGREGATE;
2424 for (const Value *Op : C->operands())
2425 Record.push_back(VE.getValueID(Op));
2426 AbbrevToUse = AggregateAbbrev;
2427 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2428 switch (CE->getOpcode()) {
2429 default:
2430 if (Instruction::isCast(CE->getOpcode())) {
2431 Code = bitc::CST_CODE_CE_CAST;
2432 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2433 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2434 Record.push_back(VE.getValueID(C->getOperand(0)));
2435 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2436 } else {
2437 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2438 Code = bitc::CST_CODE_CE_BINOP;
2439 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2440 Record.push_back(VE.getValueID(C->getOperand(0)));
2441 Record.push_back(VE.getValueID(C->getOperand(1)));
2442 uint64_t Flags = getOptimizationFlags(CE);
2443 if (Flags != 0)
2444 Record.push_back(Flags);
2446 break;
2447 case Instruction::FNeg: {
2448 assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2449 Code = bitc::CST_CODE_CE_UNOP;
2450 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2451 Record.push_back(VE.getValueID(C->getOperand(0)));
2452 uint64_t Flags = getOptimizationFlags(CE);
2453 if (Flags != 0)
2454 Record.push_back(Flags);
2455 break;
2457 case Instruction::GetElementPtr: {
2458 Code = bitc::CST_CODE_CE_GEP;
2459 const auto *GO = cast<GEPOperator>(C);
2460 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2461 if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2462 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2463 Record.push_back((*Idx << 1) | GO->isInBounds());
2464 } else if (GO->isInBounds())
2465 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2466 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2467 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2468 Record.push_back(VE.getValueID(C->getOperand(i)));
2470 break;
2472 case Instruction::Select:
2473 Code = bitc::CST_CODE_CE_SELECT;
2474 Record.push_back(VE.getValueID(C->getOperand(0)));
2475 Record.push_back(VE.getValueID(C->getOperand(1)));
2476 Record.push_back(VE.getValueID(C->getOperand(2)));
2477 break;
2478 case Instruction::ExtractElement:
2479 Code = bitc::CST_CODE_CE_EXTRACTELT;
2480 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2481 Record.push_back(VE.getValueID(C->getOperand(0)));
2482 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2483 Record.push_back(VE.getValueID(C->getOperand(1)));
2484 break;
2485 case Instruction::InsertElement:
2486 Code = bitc::CST_CODE_CE_INSERTELT;
2487 Record.push_back(VE.getValueID(C->getOperand(0)));
2488 Record.push_back(VE.getValueID(C->getOperand(1)));
2489 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2490 Record.push_back(VE.getValueID(C->getOperand(2)));
2491 break;
2492 case Instruction::ShuffleVector:
2493 // If the return type and argument types are the same, this is a
2494 // standard shufflevector instruction. If the types are different,
2495 // then the shuffle is widening or truncating the input vectors, and
2496 // the argument type must also be encoded.
2497 if (C->getType() == C->getOperand(0)->getType()) {
2498 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2499 } else {
2500 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2501 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2503 Record.push_back(VE.getValueID(C->getOperand(0)));
2504 Record.push_back(VE.getValueID(C->getOperand(1)));
2505 Record.push_back(VE.getValueID(C->getOperand(2)));
2506 break;
2507 case Instruction::ICmp:
2508 case Instruction::FCmp:
2509 Code = bitc::CST_CODE_CE_CMP;
2510 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2511 Record.push_back(VE.getValueID(C->getOperand(0)));
2512 Record.push_back(VE.getValueID(C->getOperand(1)));
2513 Record.push_back(CE->getPredicate());
2514 break;
2516 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2517 Code = bitc::CST_CODE_BLOCKADDRESS;
2518 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2519 Record.push_back(VE.getValueID(BA->getFunction()));
2520 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2521 } else {
2522 #ifndef NDEBUG
2523 C->dump();
2524 #endif
2525 llvm_unreachable("Unknown constant!");
2527 Stream.EmitRecord(Code, Record, AbbrevToUse);
2528 Record.clear();
2531 Stream.ExitBlock();
2534 void ModuleBitcodeWriter::writeModuleConstants() {
2535 const ValueEnumerator::ValueList &Vals = VE.getValues();
2537 // Find the first constant to emit, which is the first non-globalvalue value.
2538 // We know globalvalues have been emitted by WriteModuleInfo.
2539 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2540 if (!isa<GlobalValue>(Vals[i].first)) {
2541 writeConstants(i, Vals.size(), true);
2542 return;
2547 /// pushValueAndType - The file has to encode both the value and type id for
2548 /// many values, because we need to know what type to create for forward
2549 /// references. However, most operands are not forward references, so this type
2550 /// field is not needed.
2552 /// This function adds V's value ID to Vals. If the value ID is higher than the
2553 /// instruction ID, then it is a forward reference, and it also includes the
2554 /// type ID. The value ID that is written is encoded relative to the InstID.
2555 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2556 SmallVectorImpl<unsigned> &Vals) {
2557 unsigned ValID = VE.getValueID(V);
2558 // Make encoding relative to the InstID.
2559 Vals.push_back(InstID - ValID);
2560 if (ValID >= InstID) {
2561 Vals.push_back(VE.getTypeID(V->getType()));
2562 return true;
2564 return false;
2567 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2568 unsigned InstID) {
2569 SmallVector<unsigned, 64> Record;
2570 LLVMContext &C = CS.getInstruction()->getContext();
2572 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2573 const auto &Bundle = CS.getOperandBundleAt(i);
2574 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2576 for (auto &Input : Bundle.Inputs)
2577 pushValueAndType(Input, InstID, Record);
2579 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2580 Record.clear();
2584 /// pushValue - Like pushValueAndType, but where the type of the value is
2585 /// omitted (perhaps it was already encoded in an earlier operand).
2586 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2587 SmallVectorImpl<unsigned> &Vals) {
2588 unsigned ValID = VE.getValueID(V);
2589 Vals.push_back(InstID - ValID);
2592 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2593 SmallVectorImpl<uint64_t> &Vals) {
2594 unsigned ValID = VE.getValueID(V);
2595 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2596 emitSignedInt64(Vals, diff);
2599 /// WriteInstruction - Emit an instruction to the specified stream.
2600 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2601 unsigned InstID,
2602 SmallVectorImpl<unsigned> &Vals) {
2603 unsigned Code = 0;
2604 unsigned AbbrevToUse = 0;
2605 VE.setInstructionID(&I);
2606 switch (I.getOpcode()) {
2607 default:
2608 if (Instruction::isCast(I.getOpcode())) {
2609 Code = bitc::FUNC_CODE_INST_CAST;
2610 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2611 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2612 Vals.push_back(VE.getTypeID(I.getType()));
2613 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2614 } else {
2615 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2616 Code = bitc::FUNC_CODE_INST_BINOP;
2617 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2618 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2619 pushValue(I.getOperand(1), InstID, Vals);
2620 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2621 uint64_t Flags = getOptimizationFlags(&I);
2622 if (Flags != 0) {
2623 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2624 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2625 Vals.push_back(Flags);
2628 break;
2629 case Instruction::FNeg: {
2630 Code = bitc::FUNC_CODE_INST_UNOP;
2631 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2632 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2633 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2634 uint64_t Flags = getOptimizationFlags(&I);
2635 if (Flags != 0) {
2636 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2637 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2638 Vals.push_back(Flags);
2640 break;
2642 case Instruction::GetElementPtr: {
2643 Code = bitc::FUNC_CODE_INST_GEP;
2644 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2645 auto &GEPInst = cast<GetElementPtrInst>(I);
2646 Vals.push_back(GEPInst.isInBounds());
2647 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2648 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2649 pushValueAndType(I.getOperand(i), InstID, Vals);
2650 break;
2652 case Instruction::ExtractValue: {
2653 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2654 pushValueAndType(I.getOperand(0), InstID, Vals);
2655 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2656 Vals.append(EVI->idx_begin(), EVI->idx_end());
2657 break;
2659 case Instruction::InsertValue: {
2660 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2661 pushValueAndType(I.getOperand(0), InstID, Vals);
2662 pushValueAndType(I.getOperand(1), InstID, Vals);
2663 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2664 Vals.append(IVI->idx_begin(), IVI->idx_end());
2665 break;
2667 case Instruction::Select: {
2668 Code = bitc::FUNC_CODE_INST_VSELECT;
2669 pushValueAndType(I.getOperand(1), InstID, Vals);
2670 pushValue(I.getOperand(2), InstID, Vals);
2671 pushValueAndType(I.getOperand(0), InstID, Vals);
2672 uint64_t Flags = getOptimizationFlags(&I);
2673 if (Flags != 0)
2674 Vals.push_back(Flags);
2675 break;
2677 case Instruction::ExtractElement:
2678 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2679 pushValueAndType(I.getOperand(0), InstID, Vals);
2680 pushValueAndType(I.getOperand(1), InstID, Vals);
2681 break;
2682 case Instruction::InsertElement:
2683 Code = bitc::FUNC_CODE_INST_INSERTELT;
2684 pushValueAndType(I.getOperand(0), InstID, Vals);
2685 pushValue(I.getOperand(1), InstID, Vals);
2686 pushValueAndType(I.getOperand(2), InstID, Vals);
2687 break;
2688 case Instruction::ShuffleVector:
2689 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2690 pushValueAndType(I.getOperand(0), InstID, Vals);
2691 pushValue(I.getOperand(1), InstID, Vals);
2692 pushValue(I.getOperand(2), InstID, Vals);
2693 break;
2694 case Instruction::ICmp:
2695 case Instruction::FCmp: {
2696 // compare returning Int1Ty or vector of Int1Ty
2697 Code = bitc::FUNC_CODE_INST_CMP2;
2698 pushValueAndType(I.getOperand(0), InstID, Vals);
2699 pushValue(I.getOperand(1), InstID, Vals);
2700 Vals.push_back(cast<CmpInst>(I).getPredicate());
2701 uint64_t Flags = getOptimizationFlags(&I);
2702 if (Flags != 0)
2703 Vals.push_back(Flags);
2704 break;
2707 case Instruction::Ret:
2709 Code = bitc::FUNC_CODE_INST_RET;
2710 unsigned NumOperands = I.getNumOperands();
2711 if (NumOperands == 0)
2712 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2713 else if (NumOperands == 1) {
2714 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2715 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2716 } else {
2717 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2718 pushValueAndType(I.getOperand(i), InstID, Vals);
2721 break;
2722 case Instruction::Br:
2724 Code = bitc::FUNC_CODE_INST_BR;
2725 const BranchInst &II = cast<BranchInst>(I);
2726 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2727 if (II.isConditional()) {
2728 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2729 pushValue(II.getCondition(), InstID, Vals);
2732 break;
2733 case Instruction::Switch:
2735 Code = bitc::FUNC_CODE_INST_SWITCH;
2736 const SwitchInst &SI = cast<SwitchInst>(I);
2737 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2738 pushValue(SI.getCondition(), InstID, Vals);
2739 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2740 for (auto Case : SI.cases()) {
2741 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2742 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2745 break;
2746 case Instruction::IndirectBr:
2747 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2748 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2749 // Encode the address operand as relative, but not the basic blocks.
2750 pushValue(I.getOperand(0), InstID, Vals);
2751 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2752 Vals.push_back(VE.getValueID(I.getOperand(i)));
2753 break;
2755 case Instruction::Invoke: {
2756 const InvokeInst *II = cast<InvokeInst>(&I);
2757 const Value *Callee = II->getCalledValue();
2758 FunctionType *FTy = II->getFunctionType();
2760 if (II->hasOperandBundles())
2761 writeOperandBundles(II, InstID);
2763 Code = bitc::FUNC_CODE_INST_INVOKE;
2765 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2766 Vals.push_back(II->getCallingConv() | 1 << 13);
2767 Vals.push_back(VE.getValueID(II->getNormalDest()));
2768 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2769 Vals.push_back(VE.getTypeID(FTy));
2770 pushValueAndType(Callee, InstID, Vals);
2772 // Emit value #'s for the fixed parameters.
2773 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2774 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2776 // Emit type/value pairs for varargs params.
2777 if (FTy->isVarArg()) {
2778 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2779 i != e; ++i)
2780 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2782 break;
2784 case Instruction::Resume:
2785 Code = bitc::FUNC_CODE_INST_RESUME;
2786 pushValueAndType(I.getOperand(0), InstID, Vals);
2787 break;
2788 case Instruction::CleanupRet: {
2789 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2790 const auto &CRI = cast<CleanupReturnInst>(I);
2791 pushValue(CRI.getCleanupPad(), InstID, Vals);
2792 if (CRI.hasUnwindDest())
2793 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2794 break;
2796 case Instruction::CatchRet: {
2797 Code = bitc::FUNC_CODE_INST_CATCHRET;
2798 const auto &CRI = cast<CatchReturnInst>(I);
2799 pushValue(CRI.getCatchPad(), InstID, Vals);
2800 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2801 break;
2803 case Instruction::CleanupPad:
2804 case Instruction::CatchPad: {
2805 const auto &FuncletPad = cast<FuncletPadInst>(I);
2806 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2807 : bitc::FUNC_CODE_INST_CLEANUPPAD;
2808 pushValue(FuncletPad.getParentPad(), InstID, Vals);
2810 unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2811 Vals.push_back(NumArgOperands);
2812 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2813 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2814 break;
2816 case Instruction::CatchSwitch: {
2817 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2818 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2820 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2822 unsigned NumHandlers = CatchSwitch.getNumHandlers();
2823 Vals.push_back(NumHandlers);
2824 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2825 Vals.push_back(VE.getValueID(CatchPadBB));
2827 if (CatchSwitch.hasUnwindDest())
2828 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2829 break;
2831 case Instruction::CallBr: {
2832 const CallBrInst *CBI = cast<CallBrInst>(&I);
2833 const Value *Callee = CBI->getCalledValue();
2834 FunctionType *FTy = CBI->getFunctionType();
2836 if (CBI->hasOperandBundles())
2837 writeOperandBundles(CBI, InstID);
2839 Code = bitc::FUNC_CODE_INST_CALLBR;
2841 Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2843 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2844 1 << bitc::CALL_EXPLICIT_TYPE);
2846 Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2847 Vals.push_back(CBI->getNumIndirectDests());
2848 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2849 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2851 Vals.push_back(VE.getTypeID(FTy));
2852 pushValueAndType(Callee, InstID, Vals);
2854 // Emit value #'s for the fixed parameters.
2855 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2856 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2858 // Emit type/value pairs for varargs params.
2859 if (FTy->isVarArg()) {
2860 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2861 i != e; ++i)
2862 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2864 break;
2866 case Instruction::Unreachable:
2867 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2868 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2869 break;
2871 case Instruction::PHI: {
2872 const PHINode &PN = cast<PHINode>(I);
2873 Code = bitc::FUNC_CODE_INST_PHI;
2874 // With the newer instruction encoding, forward references could give
2875 // negative valued IDs. This is most common for PHIs, so we use
2876 // signed VBRs.
2877 SmallVector<uint64_t, 128> Vals64;
2878 Vals64.push_back(VE.getTypeID(PN.getType()));
2879 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2880 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2881 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2884 uint64_t Flags = getOptimizationFlags(&I);
2885 if (Flags != 0)
2886 Vals64.push_back(Flags);
2888 // Emit a Vals64 vector and exit.
2889 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2890 Vals64.clear();
2891 return;
2894 case Instruction::LandingPad: {
2895 const LandingPadInst &LP = cast<LandingPadInst>(I);
2896 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2897 Vals.push_back(VE.getTypeID(LP.getType()));
2898 Vals.push_back(LP.isCleanup());
2899 Vals.push_back(LP.getNumClauses());
2900 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2901 if (LP.isCatch(I))
2902 Vals.push_back(LandingPadInst::Catch);
2903 else
2904 Vals.push_back(LandingPadInst::Filter);
2905 pushValueAndType(LP.getClause(I), InstID, Vals);
2907 break;
2910 case Instruction::Alloca: {
2911 Code = bitc::FUNC_CODE_INST_ALLOCA;
2912 const AllocaInst &AI = cast<AllocaInst>(I);
2913 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2914 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2915 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2916 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2917 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2918 "not enough bits for maximum alignment");
2919 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2920 AlignRecord |= AI.isUsedWithInAlloca() << 5;
2921 AlignRecord |= 1 << 6;
2922 AlignRecord |= AI.isSwiftError() << 7;
2923 Vals.push_back(AlignRecord);
2924 break;
2927 case Instruction::Load:
2928 if (cast<LoadInst>(I).isAtomic()) {
2929 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2930 pushValueAndType(I.getOperand(0), InstID, Vals);
2931 } else {
2932 Code = bitc::FUNC_CODE_INST_LOAD;
2933 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2934 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2936 Vals.push_back(VE.getTypeID(I.getType()));
2937 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2938 Vals.push_back(cast<LoadInst>(I).isVolatile());
2939 if (cast<LoadInst>(I).isAtomic()) {
2940 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2941 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2943 break;
2944 case Instruction::Store:
2945 if (cast<StoreInst>(I).isAtomic())
2946 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2947 else
2948 Code = bitc::FUNC_CODE_INST_STORE;
2949 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2950 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2951 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2952 Vals.push_back(cast<StoreInst>(I).isVolatile());
2953 if (cast<StoreInst>(I).isAtomic()) {
2954 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2955 Vals.push_back(
2956 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2958 break;
2959 case Instruction::AtomicCmpXchg:
2960 Code = bitc::FUNC_CODE_INST_CMPXCHG;
2961 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2962 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2963 pushValue(I.getOperand(2), InstID, Vals); // newval.
2964 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2965 Vals.push_back(
2966 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2967 Vals.push_back(
2968 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2969 Vals.push_back(
2970 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2971 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2972 break;
2973 case Instruction::AtomicRMW:
2974 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2975 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2976 pushValue(I.getOperand(1), InstID, Vals); // val.
2977 Vals.push_back(
2978 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2979 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2980 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2981 Vals.push_back(
2982 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2983 break;
2984 case Instruction::Fence:
2985 Code = bitc::FUNC_CODE_INST_FENCE;
2986 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2987 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2988 break;
2989 case Instruction::Call: {
2990 const CallInst &CI = cast<CallInst>(I);
2991 FunctionType *FTy = CI.getFunctionType();
2993 if (CI.hasOperandBundles())
2994 writeOperandBundles(&CI, InstID);
2996 Code = bitc::FUNC_CODE_INST_CALL;
2998 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3000 unsigned Flags = getOptimizationFlags(&I);
3001 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3002 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3003 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3004 1 << bitc::CALL_EXPLICIT_TYPE |
3005 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3006 unsigned(Flags != 0) << bitc::CALL_FMF);
3007 if (Flags != 0)
3008 Vals.push_back(Flags);
3010 Vals.push_back(VE.getTypeID(FTy));
3011 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
3013 // Emit value #'s for the fixed parameters.
3014 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3015 // Check for labels (can happen with asm labels).
3016 if (FTy->getParamType(i)->isLabelTy())
3017 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3018 else
3019 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3022 // Emit type/value pairs for varargs params.
3023 if (FTy->isVarArg()) {
3024 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3025 i != e; ++i)
3026 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3028 break;
3030 case Instruction::VAArg:
3031 Code = bitc::FUNC_CODE_INST_VAARG;
3032 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
3033 pushValue(I.getOperand(0), InstID, Vals); // valist.
3034 Vals.push_back(VE.getTypeID(I.getType())); // restype.
3035 break;
3038 Stream.EmitRecord(Code, Vals, AbbrevToUse);
3039 Vals.clear();
3042 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3043 /// to allow clients to efficiently find the function body.
3044 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3045 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3046 // Get the offset of the VST we are writing, and backpatch it into
3047 // the VST forward declaration record.
3048 uint64_t VSTOffset = Stream.GetCurrentBitNo();
3049 // The BitcodeStartBit was the stream offset of the identification block.
3050 VSTOffset -= bitcodeStartBit();
3051 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3052 // Note that we add 1 here because the offset is relative to one word
3053 // before the start of the identification block, which was historically
3054 // always the start of the regular bitcode header.
3055 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3057 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3059 auto Abbv = std::make_shared<BitCodeAbbrev>();
3060 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3063 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3065 for (const Function &F : M) {
3066 uint64_t Record[2];
3068 if (F.isDeclaration())
3069 continue;
3071 Record[0] = VE.getValueID(&F);
3073 // Save the word offset of the function (from the start of the
3074 // actual bitcode written to the stream).
3075 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3076 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3077 // Note that we add 1 here because the offset is relative to one word
3078 // before the start of the identification block, which was historically
3079 // always the start of the regular bitcode header.
3080 Record[1] = BitcodeIndex / 32 + 1;
3082 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3085 Stream.ExitBlock();
3088 /// Emit names for arguments, instructions and basic blocks in a function.
3089 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3090 const ValueSymbolTable &VST) {
3091 if (VST.empty())
3092 return;
3094 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3096 // FIXME: Set up the abbrev, we know how many values there are!
3097 // FIXME: We know if the type names can use 7-bit ascii.
3098 SmallVector<uint64_t, 64> NameVals;
3100 for (const ValueName &Name : VST) {
3101 // Figure out the encoding to use for the name.
3102 StringEncoding Bits = getStringEncoding(Name.getKey());
3104 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3105 NameVals.push_back(VE.getValueID(Name.getValue()));
3107 // VST_CODE_ENTRY: [valueid, namechar x N]
3108 // VST_CODE_BBENTRY: [bbid, namechar x N]
3109 unsigned Code;
3110 if (isa<BasicBlock>(Name.getValue())) {
3111 Code = bitc::VST_CODE_BBENTRY;
3112 if (Bits == SE_Char6)
3113 AbbrevToUse = VST_BBENTRY_6_ABBREV;
3114 } else {
3115 Code = bitc::VST_CODE_ENTRY;
3116 if (Bits == SE_Char6)
3117 AbbrevToUse = VST_ENTRY_6_ABBREV;
3118 else if (Bits == SE_Fixed7)
3119 AbbrevToUse = VST_ENTRY_7_ABBREV;
3122 for (const auto P : Name.getKey())
3123 NameVals.push_back((unsigned char)P);
3125 // Emit the finished record.
3126 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3127 NameVals.clear();
3130 Stream.ExitBlock();
3133 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3134 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3135 unsigned Code;
3136 if (isa<BasicBlock>(Order.V))
3137 Code = bitc::USELIST_CODE_BB;
3138 else
3139 Code = bitc::USELIST_CODE_DEFAULT;
3141 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3142 Record.push_back(VE.getValueID(Order.V));
3143 Stream.EmitRecord(Code, Record);
3146 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3147 assert(VE.shouldPreserveUseListOrder() &&
3148 "Expected to be preserving use-list order");
3150 auto hasMore = [&]() {
3151 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3153 if (!hasMore())
3154 // Nothing to do.
3155 return;
3157 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3158 while (hasMore()) {
3159 writeUseList(std::move(VE.UseListOrders.back()));
3160 VE.UseListOrders.pop_back();
3162 Stream.ExitBlock();
3165 /// Emit a function body to the module stream.
3166 void ModuleBitcodeWriter::writeFunction(
3167 const Function &F,
3168 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3169 // Save the bitcode index of the start of this function block for recording
3170 // in the VST.
3171 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3173 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3174 VE.incorporateFunction(F);
3176 SmallVector<unsigned, 64> Vals;
3178 // Emit the number of basic blocks, so the reader can create them ahead of
3179 // time.
3180 Vals.push_back(VE.getBasicBlocks().size());
3181 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3182 Vals.clear();
3184 // If there are function-local constants, emit them now.
3185 unsigned CstStart, CstEnd;
3186 VE.getFunctionConstantRange(CstStart, CstEnd);
3187 writeConstants(CstStart, CstEnd, false);
3189 // If there is function-local metadata, emit it now.
3190 writeFunctionMetadata(F);
3192 // Keep a running idea of what the instruction ID is.
3193 unsigned InstID = CstEnd;
3195 bool NeedsMetadataAttachment = F.hasMetadata();
3197 DILocation *LastDL = nullptr;
3198 // Finally, emit all the instructions, in order.
3199 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3200 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3201 I != E; ++I) {
3202 writeInstruction(*I, InstID, Vals);
3204 if (!I->getType()->isVoidTy())
3205 ++InstID;
3207 // If the instruction has metadata, write a metadata attachment later.
3208 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3210 // If the instruction has a debug location, emit it.
3211 DILocation *DL = I->getDebugLoc();
3212 if (!DL)
3213 continue;
3215 if (DL == LastDL) {
3216 // Just repeat the same debug loc as last time.
3217 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3218 continue;
3221 Vals.push_back(DL->getLine());
3222 Vals.push_back(DL->getColumn());
3223 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3224 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3225 Vals.push_back(DL->isImplicitCode());
3226 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3227 Vals.clear();
3229 LastDL = DL;
3232 // Emit names for all the instructions etc.
3233 if (auto *Symtab = F.getValueSymbolTable())
3234 writeFunctionLevelValueSymbolTable(*Symtab);
3236 if (NeedsMetadataAttachment)
3237 writeFunctionMetadataAttachment(F);
3238 if (VE.shouldPreserveUseListOrder())
3239 writeUseListBlock(&F);
3240 VE.purgeFunction();
3241 Stream.ExitBlock();
3244 // Emit blockinfo, which defines the standard abbreviations etc.
3245 void ModuleBitcodeWriter::writeBlockInfo() {
3246 // We only want to emit block info records for blocks that have multiple
3247 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3248 // Other blocks can define their abbrevs inline.
3249 Stream.EnterBlockInfoBlock();
3251 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3252 auto Abbv = std::make_shared<BitCodeAbbrev>();
3253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3257 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3258 VST_ENTRY_8_ABBREV)
3259 llvm_unreachable("Unexpected abbrev ordering!");
3262 { // 7-bit fixed width VST_CODE_ENTRY strings.
3263 auto Abbv = std::make_shared<BitCodeAbbrev>();
3264 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3268 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3269 VST_ENTRY_7_ABBREV)
3270 llvm_unreachable("Unexpected abbrev ordering!");
3272 { // 6-bit char6 VST_CODE_ENTRY strings.
3273 auto Abbv = std::make_shared<BitCodeAbbrev>();
3274 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3278 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3279 VST_ENTRY_6_ABBREV)
3280 llvm_unreachable("Unexpected abbrev ordering!");
3282 { // 6-bit char6 VST_CODE_BBENTRY strings.
3283 auto Abbv = std::make_shared<BitCodeAbbrev>();
3284 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3288 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3289 VST_BBENTRY_6_ABBREV)
3290 llvm_unreachable("Unexpected abbrev ordering!");
3293 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3294 auto Abbv = std::make_shared<BitCodeAbbrev>();
3295 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3297 VE.computeBitsRequiredForTypeIndicies()));
3298 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3299 CONSTANTS_SETTYPE_ABBREV)
3300 llvm_unreachable("Unexpected abbrev ordering!");
3303 { // INTEGER abbrev for CONSTANTS_BLOCK.
3304 auto Abbv = std::make_shared<BitCodeAbbrev>();
3305 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3307 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3308 CONSTANTS_INTEGER_ABBREV)
3309 llvm_unreachable("Unexpected abbrev ordering!");
3312 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3313 auto Abbv = std::make_shared<BitCodeAbbrev>();
3314 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3317 VE.computeBitsRequiredForTypeIndicies()));
3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3320 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3321 CONSTANTS_CE_CAST_Abbrev)
3322 llvm_unreachable("Unexpected abbrev ordering!");
3324 { // NULL abbrev for CONSTANTS_BLOCK.
3325 auto Abbv = std::make_shared<BitCodeAbbrev>();
3326 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3327 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3328 CONSTANTS_NULL_Abbrev)
3329 llvm_unreachable("Unexpected abbrev ordering!");
3332 // FIXME: This should only use space for first class types!
3334 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3335 auto Abbv = std::make_shared<BitCodeAbbrev>();
3336 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3339 VE.computeBitsRequiredForTypeIndicies()));
3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3342 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3343 FUNCTION_INST_LOAD_ABBREV)
3344 llvm_unreachable("Unexpected abbrev ordering!");
3346 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3347 auto Abbv = std::make_shared<BitCodeAbbrev>();
3348 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3351 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3352 FUNCTION_INST_UNOP_ABBREV)
3353 llvm_unreachable("Unexpected abbrev ordering!");
3355 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3356 auto Abbv = std::make_shared<BitCodeAbbrev>();
3357 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3361 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3362 FUNCTION_INST_UNOP_FLAGS_ABBREV)
3363 llvm_unreachable("Unexpected abbrev ordering!");
3365 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3366 auto Abbv = std::make_shared<BitCodeAbbrev>();
3367 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3371 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3372 FUNCTION_INST_BINOP_ABBREV)
3373 llvm_unreachable("Unexpected abbrev ordering!");
3375 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3376 auto Abbv = std::make_shared<BitCodeAbbrev>();
3377 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3382 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3383 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3384 llvm_unreachable("Unexpected abbrev ordering!");
3386 { // INST_CAST abbrev for FUNCTION_BLOCK.
3387 auto Abbv = std::make_shared<BitCodeAbbrev>();
3388 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3391 VE.computeBitsRequiredForTypeIndicies()));
3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3393 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3394 FUNCTION_INST_CAST_ABBREV)
3395 llvm_unreachable("Unexpected abbrev ordering!");
3398 { // INST_RET abbrev for FUNCTION_BLOCK.
3399 auto Abbv = std::make_shared<BitCodeAbbrev>();
3400 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3401 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3402 FUNCTION_INST_RET_VOID_ABBREV)
3403 llvm_unreachable("Unexpected abbrev ordering!");
3405 { // INST_RET abbrev for FUNCTION_BLOCK.
3406 auto Abbv = std::make_shared<BitCodeAbbrev>();
3407 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3409 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3410 FUNCTION_INST_RET_VAL_ABBREV)
3411 llvm_unreachable("Unexpected abbrev ordering!");
3413 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3414 auto Abbv = std::make_shared<BitCodeAbbrev>();
3415 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3416 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3417 FUNCTION_INST_UNREACHABLE_ABBREV)
3418 llvm_unreachable("Unexpected abbrev ordering!");
3421 auto Abbv = std::make_shared<BitCodeAbbrev>();
3422 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3425 Log2_32_Ceil(VE.getTypes().size() + 1)));
3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3428 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3429 FUNCTION_INST_GEP_ABBREV)
3430 llvm_unreachable("Unexpected abbrev ordering!");
3433 Stream.ExitBlock();
3436 /// Write the module path strings, currently only used when generating
3437 /// a combined index file.
3438 void IndexBitcodeWriter::writeModStrings() {
3439 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3441 // TODO: See which abbrev sizes we actually need to emit
3443 // 8-bit fixed-width MST_ENTRY strings.
3444 auto Abbv = std::make_shared<BitCodeAbbrev>();
3445 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3449 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3451 // 7-bit fixed width MST_ENTRY strings.
3452 Abbv = std::make_shared<BitCodeAbbrev>();
3453 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3457 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3459 // 6-bit char6 MST_ENTRY strings.
3460 Abbv = std::make_shared<BitCodeAbbrev>();
3461 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3465 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3467 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3468 Abbv = std::make_shared<BitCodeAbbrev>();
3469 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3475 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3477 SmallVector<unsigned, 64> Vals;
3478 forEachModule(
3479 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3480 StringRef Key = MPSE.getKey();
3481 const auto &Value = MPSE.getValue();
3482 StringEncoding Bits = getStringEncoding(Key);
3483 unsigned AbbrevToUse = Abbrev8Bit;
3484 if (Bits == SE_Char6)
3485 AbbrevToUse = Abbrev6Bit;
3486 else if (Bits == SE_Fixed7)
3487 AbbrevToUse = Abbrev7Bit;
3489 Vals.push_back(Value.first);
3490 Vals.append(Key.begin(), Key.end());
3492 // Emit the finished record.
3493 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3495 // Emit an optional hash for the module now
3496 const auto &Hash = Value.second;
3497 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3498 Vals.assign(Hash.begin(), Hash.end());
3499 // Emit the hash record.
3500 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3503 Vals.clear();
3505 Stream.ExitBlock();
3508 /// Write the function type metadata related records that need to appear before
3509 /// a function summary entry (whether per-module or combined).
3510 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3511 FunctionSummary *FS) {
3512 if (!FS->type_tests().empty())
3513 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3515 SmallVector<uint64_t, 64> Record;
3517 auto WriteVFuncIdVec = [&](uint64_t Ty,
3518 ArrayRef<FunctionSummary::VFuncId> VFs) {
3519 if (VFs.empty())
3520 return;
3521 Record.clear();
3522 for (auto &VF : VFs) {
3523 Record.push_back(VF.GUID);
3524 Record.push_back(VF.Offset);
3526 Stream.EmitRecord(Ty, Record);
3529 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3530 FS->type_test_assume_vcalls());
3531 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3532 FS->type_checked_load_vcalls());
3534 auto WriteConstVCallVec = [&](uint64_t Ty,
3535 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3536 for (auto &VC : VCs) {
3537 Record.clear();
3538 Record.push_back(VC.VFunc.GUID);
3539 Record.push_back(VC.VFunc.Offset);
3540 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3541 Stream.EmitRecord(Ty, Record);
3545 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3546 FS->type_test_assume_const_vcalls());
3547 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3548 FS->type_checked_load_const_vcalls());
3551 /// Collect type IDs from type tests used by function.
3552 static void
3553 getReferencedTypeIds(FunctionSummary *FS,
3554 std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3555 if (!FS->type_tests().empty())
3556 for (auto &TT : FS->type_tests())
3557 ReferencedTypeIds.insert(TT);
3559 auto GetReferencedTypesFromVFuncIdVec =
3560 [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3561 for (auto &VF : VFs)
3562 ReferencedTypeIds.insert(VF.GUID);
3565 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3566 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3568 auto GetReferencedTypesFromConstVCallVec =
3569 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3570 for (auto &VC : VCs)
3571 ReferencedTypeIds.insert(VC.VFunc.GUID);
3574 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3575 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3578 static void writeWholeProgramDevirtResolutionByArg(
3579 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3580 const WholeProgramDevirtResolution::ByArg &ByArg) {
3581 NameVals.push_back(args.size());
3582 NameVals.insert(NameVals.end(), args.begin(), args.end());
3584 NameVals.push_back(ByArg.TheKind);
3585 NameVals.push_back(ByArg.Info);
3586 NameVals.push_back(ByArg.Byte);
3587 NameVals.push_back(ByArg.Bit);
3590 static void writeWholeProgramDevirtResolution(
3591 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3592 uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3593 NameVals.push_back(Id);
3595 NameVals.push_back(Wpd.TheKind);
3596 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3597 NameVals.push_back(Wpd.SingleImplName.size());
3599 NameVals.push_back(Wpd.ResByArg.size());
3600 for (auto &A : Wpd.ResByArg)
3601 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3604 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3605 StringTableBuilder &StrtabBuilder,
3606 const std::string &Id,
3607 const TypeIdSummary &Summary) {
3608 NameVals.push_back(StrtabBuilder.add(Id));
3609 NameVals.push_back(Id.size());
3611 NameVals.push_back(Summary.TTRes.TheKind);
3612 NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3613 NameVals.push_back(Summary.TTRes.AlignLog2);
3614 NameVals.push_back(Summary.TTRes.SizeM1);
3615 NameVals.push_back(Summary.TTRes.BitMask);
3616 NameVals.push_back(Summary.TTRes.InlineBits);
3618 for (auto &W : Summary.WPDRes)
3619 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3620 W.second);
3623 static void writeTypeIdCompatibleVtableSummaryRecord(
3624 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3625 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3626 ValueEnumerator &VE) {
3627 NameVals.push_back(StrtabBuilder.add(Id));
3628 NameVals.push_back(Id.size());
3630 for (auto &P : Summary) {
3631 NameVals.push_back(P.AddressPointOffset);
3632 NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3636 // Helper to emit a single function summary record.
3637 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3638 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3639 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3640 const Function &F) {
3641 NameVals.push_back(ValueID);
3643 FunctionSummary *FS = cast<FunctionSummary>(Summary);
3644 writeFunctionTypeMetadataRecords(Stream, FS);
3646 auto SpecialRefCnts = FS->specialRefCounts();
3647 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3648 NameVals.push_back(FS->instCount());
3649 NameVals.push_back(getEncodedFFlags(FS->fflags()));
3650 NameVals.push_back(FS->refs().size());
3651 NameVals.push_back(SpecialRefCnts.first); // rorefcnt
3652 NameVals.push_back(SpecialRefCnts.second); // worefcnt
3654 for (auto &RI : FS->refs())
3655 NameVals.push_back(VE.getValueID(RI.getValue()));
3657 bool HasProfileData =
3658 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3659 for (auto &ECI : FS->calls()) {
3660 NameVals.push_back(getValueId(ECI.first));
3661 if (HasProfileData)
3662 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3663 else if (WriteRelBFToSummary)
3664 NameVals.push_back(ECI.second.RelBlockFreq);
3667 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3668 unsigned Code =
3669 (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3670 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3671 : bitc::FS_PERMODULE));
3673 // Emit the finished record.
3674 Stream.EmitRecord(Code, NameVals, FSAbbrev);
3675 NameVals.clear();
3678 // Collect the global value references in the given variable's initializer,
3679 // and emit them in a summary record.
3680 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3681 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3682 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3683 auto VI = Index->getValueInfo(V.getGUID());
3684 if (!VI || VI.getSummaryList().empty()) {
3685 // Only declarations should not have a summary (a declaration might however
3686 // have a summary if the def was in module level asm).
3687 assert(V.isDeclaration());
3688 return;
3690 auto *Summary = VI.getSummaryList()[0].get();
3691 NameVals.push_back(VE.getValueID(&V));
3692 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3693 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3694 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3696 auto VTableFuncs = VS->vTableFuncs();
3697 if (!VTableFuncs.empty())
3698 NameVals.push_back(VS->refs().size());
3700 unsigned SizeBeforeRefs = NameVals.size();
3701 for (auto &RI : VS->refs())
3702 NameVals.push_back(VE.getValueID(RI.getValue()));
3703 // Sort the refs for determinism output, the vector returned by FS->refs() has
3704 // been initialized from a DenseSet.
3705 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3707 if (VTableFuncs.empty())
3708 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3709 FSModRefsAbbrev);
3710 else {
3711 // VTableFuncs pairs should already be sorted by offset.
3712 for (auto &P : VTableFuncs) {
3713 NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3714 NameVals.push_back(P.VTableOffset);
3717 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3718 FSModVTableRefsAbbrev);
3720 NameVals.clear();
3723 // Current version for the summary.
3724 // This is bumped whenever we introduce changes in the way some record are
3725 // interpreted, like flags for instance.
3726 static const uint64_t INDEX_VERSION = 7;
3728 /// Emit the per-module summary section alongside the rest of
3729 /// the module's bitcode.
3730 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3731 // By default we compile with ThinLTO if the module has a summary, but the
3732 // client can request full LTO with a module flag.
3733 bool IsThinLTO = true;
3734 if (auto *MD =
3735 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3736 IsThinLTO = MD->getZExtValue();
3737 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3738 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3741 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3743 // Write the index flags.
3744 uint64_t Flags = 0;
3745 // Bits 1-3 are set only in the combined index, skip them.
3746 if (Index->enableSplitLTOUnit())
3747 Flags |= 0x8;
3748 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3750 if (Index->begin() == Index->end()) {
3751 Stream.ExitBlock();
3752 return;
3755 for (const auto &GVI : valueIds()) {
3756 Stream.EmitRecord(bitc::FS_VALUE_GUID,
3757 ArrayRef<uint64_t>{GVI.second, GVI.first});
3760 // Abbrev for FS_PERMODULE_PROFILE.
3761 auto Abbv = std::make_shared<BitCodeAbbrev>();
3762 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3770 // numrefs x valueid, n x (valueid, hotness)
3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3773 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3775 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3776 Abbv = std::make_shared<BitCodeAbbrev>();
3777 if (WriteRelBFToSummary)
3778 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3779 else
3780 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3788 // numrefs x valueid, n x (valueid [, rel_block_freq])
3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3791 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3793 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3794 Abbv = std::make_shared<BitCodeAbbrev>();
3795 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3800 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3802 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3803 Abbv = std::make_shared<BitCodeAbbrev>();
3804 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3808 // numrefs x valueid, n x (valueid , offset)
3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3811 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3813 // Abbrev for FS_ALIAS.
3814 Abbv = std::make_shared<BitCodeAbbrev>();
3815 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3819 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3821 // Abbrev for FS_TYPE_ID_METADATA
3822 Abbv = std::make_shared<BitCodeAbbrev>();
3823 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3826 // n x (valueid , offset)
3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3829 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3831 SmallVector<uint64_t, 64> NameVals;
3832 // Iterate over the list of functions instead of the Index to
3833 // ensure the ordering is stable.
3834 for (const Function &F : M) {
3835 // Summary emission does not support anonymous functions, they have to
3836 // renamed using the anonymous function renaming pass.
3837 if (!F.hasName())
3838 report_fatal_error("Unexpected anonymous function when writing summary");
3840 ValueInfo VI = Index->getValueInfo(F.getGUID());
3841 if (!VI || VI.getSummaryList().empty()) {
3842 // Only declarations should not have a summary (a declaration might
3843 // however have a summary if the def was in module level asm).
3844 assert(F.isDeclaration());
3845 continue;
3847 auto *Summary = VI.getSummaryList()[0].get();
3848 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3849 FSCallsAbbrev, FSCallsProfileAbbrev, F);
3852 // Capture references from GlobalVariable initializers, which are outside
3853 // of a function scope.
3854 for (const GlobalVariable &G : M.globals())
3855 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
3856 FSModVTableRefsAbbrev);
3858 for (const GlobalAlias &A : M.aliases()) {
3859 auto *Aliasee = A.getBaseObject();
3860 if (!Aliasee->hasName())
3861 // Nameless function don't have an entry in the summary, skip it.
3862 continue;
3863 auto AliasId = VE.getValueID(&A);
3864 auto AliaseeId = VE.getValueID(Aliasee);
3865 NameVals.push_back(AliasId);
3866 auto *Summary = Index->getGlobalValueSummary(A);
3867 AliasSummary *AS = cast<AliasSummary>(Summary);
3868 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3869 NameVals.push_back(AliaseeId);
3870 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3871 NameVals.clear();
3874 for (auto &S : Index->typeIdCompatibleVtableMap()) {
3875 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
3876 S.second, VE);
3877 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
3878 TypeIdCompatibleVtableAbbrev);
3879 NameVals.clear();
3882 Stream.ExitBlock();
3885 /// Emit the combined summary section into the combined index file.
3886 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3887 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3888 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3890 // Write the index flags.
3891 uint64_t Flags = 0;
3892 if (Index.withGlobalValueDeadStripping())
3893 Flags |= 0x1;
3894 if (Index.skipModuleByDistributedBackend())
3895 Flags |= 0x2;
3896 if (Index.hasSyntheticEntryCounts())
3897 Flags |= 0x4;
3898 if (Index.enableSplitLTOUnit())
3899 Flags |= 0x8;
3900 if (Index.partiallySplitLTOUnits())
3901 Flags |= 0x10;
3902 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3904 for (const auto &GVI : valueIds()) {
3905 Stream.EmitRecord(bitc::FS_VALUE_GUID,
3906 ArrayRef<uint64_t>{GVI.second, GVI.first});
3909 // Abbrev for FS_COMBINED.
3910 auto Abbv = std::make_shared<BitCodeAbbrev>();
3911 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3921 // numrefs x valueid, n x (valueid)
3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3924 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3926 // Abbrev for FS_COMBINED_PROFILE.
3927 Abbv = std::make_shared<BitCodeAbbrev>();
3928 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3938 // numrefs x valueid, n x (valueid, hotness)
3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3941 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3943 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3944 Abbv = std::make_shared<BitCodeAbbrev>();
3945 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3951 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3953 // Abbrev for FS_COMBINED_ALIAS.
3954 Abbv = std::make_shared<BitCodeAbbrev>();
3955 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3960 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3962 // The aliases are emitted as a post-pass, and will point to the value
3963 // id of the aliasee. Save them in a vector for post-processing.
3964 SmallVector<AliasSummary *, 64> Aliases;
3966 // Save the value id for each summary for alias emission.
3967 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3969 SmallVector<uint64_t, 64> NameVals;
3971 // Set that will be populated during call to writeFunctionTypeMetadataRecords
3972 // with the type ids referenced by this index file.
3973 std::set<GlobalValue::GUID> ReferencedTypeIds;
3975 // For local linkage, we also emit the original name separately
3976 // immediately after the record.
3977 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3978 if (!GlobalValue::isLocalLinkage(S.linkage()))
3979 return;
3980 NameVals.push_back(S.getOriginalName());
3981 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3982 NameVals.clear();
3985 std::set<GlobalValue::GUID> DefOrUseGUIDs;
3986 forEachSummary([&](GVInfo I, bool IsAliasee) {
3987 GlobalValueSummary *S = I.second;
3988 assert(S);
3989 DefOrUseGUIDs.insert(I.first);
3990 for (const ValueInfo &VI : S->refs())
3991 DefOrUseGUIDs.insert(VI.getGUID());
3993 auto ValueId = getValueId(I.first);
3994 assert(ValueId);
3995 SummaryToValueIdMap[S] = *ValueId;
3997 // If this is invoked for an aliasee, we want to record the above
3998 // mapping, but then not emit a summary entry (if the aliasee is
3999 // to be imported, we will invoke this separately with IsAliasee=false).
4000 if (IsAliasee)
4001 return;
4003 if (auto *AS = dyn_cast<AliasSummary>(S)) {
4004 // Will process aliases as a post-pass because the reader wants all
4005 // global to be loaded first.
4006 Aliases.push_back(AS);
4007 return;
4010 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4011 NameVals.push_back(*ValueId);
4012 NameVals.push_back(Index.getModuleId(VS->modulePath()));
4013 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4014 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4015 for (auto &RI : VS->refs()) {
4016 auto RefValueId = getValueId(RI.getGUID());
4017 if (!RefValueId)
4018 continue;
4019 NameVals.push_back(*RefValueId);
4022 // Emit the finished record.
4023 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4024 FSModRefsAbbrev);
4025 NameVals.clear();
4026 MaybeEmitOriginalName(*S);
4027 return;
4030 auto *FS = cast<FunctionSummary>(S);
4031 writeFunctionTypeMetadataRecords(Stream, FS);
4032 getReferencedTypeIds(FS, ReferencedTypeIds);
4034 NameVals.push_back(*ValueId);
4035 NameVals.push_back(Index.getModuleId(FS->modulePath()));
4036 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4037 NameVals.push_back(FS->instCount());
4038 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4039 NameVals.push_back(FS->entryCount());
4041 // Fill in below
4042 NameVals.push_back(0); // numrefs
4043 NameVals.push_back(0); // rorefcnt
4044 NameVals.push_back(0); // worefcnt
4046 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4047 for (auto &RI : FS->refs()) {
4048 auto RefValueId = getValueId(RI.getGUID());
4049 if (!RefValueId)
4050 continue;
4051 NameVals.push_back(*RefValueId);
4052 if (RI.isReadOnly())
4053 RORefCnt++;
4054 else if (RI.isWriteOnly())
4055 WORefCnt++;
4056 Count++;
4058 NameVals[6] = Count;
4059 NameVals[7] = RORefCnt;
4060 NameVals[8] = WORefCnt;
4062 bool HasProfileData = false;
4063 for (auto &EI : FS->calls()) {
4064 HasProfileData |=
4065 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4066 if (HasProfileData)
4067 break;
4070 for (auto &EI : FS->calls()) {
4071 // If this GUID doesn't have a value id, it doesn't have a function
4072 // summary and we don't need to record any calls to it.
4073 GlobalValue::GUID GUID = EI.first.getGUID();
4074 auto CallValueId = getValueId(GUID);
4075 if (!CallValueId) {
4076 // For SamplePGO, the indirect call targets for local functions will
4077 // have its original name annotated in profile. We try to find the
4078 // corresponding PGOFuncName as the GUID.
4079 GUID = Index.getGUIDFromOriginalID(GUID);
4080 if (GUID == 0)
4081 continue;
4082 CallValueId = getValueId(GUID);
4083 if (!CallValueId)
4084 continue;
4085 // The mapping from OriginalId to GUID may return a GUID
4086 // that corresponds to a static variable. Filter it out here.
4087 // This can happen when
4088 // 1) There is a call to a library function which does not have
4089 // a CallValidId;
4090 // 2) There is a static variable with the OriginalGUID identical
4091 // to the GUID of the library function in 1);
4092 // When this happens, the logic for SamplePGO kicks in and
4093 // the static variable in 2) will be found, which needs to be
4094 // filtered out.
4095 auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4096 if (GVSum &&
4097 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4098 continue;
4100 NameVals.push_back(*CallValueId);
4101 if (HasProfileData)
4102 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4105 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4106 unsigned Code =
4107 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4109 // Emit the finished record.
4110 Stream.EmitRecord(Code, NameVals, FSAbbrev);
4111 NameVals.clear();
4112 MaybeEmitOriginalName(*S);
4115 for (auto *AS : Aliases) {
4116 auto AliasValueId = SummaryToValueIdMap[AS];
4117 assert(AliasValueId);
4118 NameVals.push_back(AliasValueId);
4119 NameVals.push_back(Index.getModuleId(AS->modulePath()));
4120 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4121 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4122 assert(AliaseeValueId);
4123 NameVals.push_back(AliaseeValueId);
4125 // Emit the finished record.
4126 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4127 NameVals.clear();
4128 MaybeEmitOriginalName(*AS);
4130 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4131 getReferencedTypeIds(FS, ReferencedTypeIds);
4134 if (!Index.cfiFunctionDefs().empty()) {
4135 for (auto &S : Index.cfiFunctionDefs()) {
4136 if (DefOrUseGUIDs.count(
4137 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4138 NameVals.push_back(StrtabBuilder.add(S));
4139 NameVals.push_back(S.size());
4142 if (!NameVals.empty()) {
4143 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4144 NameVals.clear();
4148 if (!Index.cfiFunctionDecls().empty()) {
4149 for (auto &S : Index.cfiFunctionDecls()) {
4150 if (DefOrUseGUIDs.count(
4151 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4152 NameVals.push_back(StrtabBuilder.add(S));
4153 NameVals.push_back(S.size());
4156 if (!NameVals.empty()) {
4157 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4158 NameVals.clear();
4162 // Walk the GUIDs that were referenced, and write the
4163 // corresponding type id records.
4164 for (auto &T : ReferencedTypeIds) {
4165 auto TidIter = Index.typeIds().equal_range(T);
4166 for (auto It = TidIter.first; It != TidIter.second; ++It) {
4167 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4168 It->second.second);
4169 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4170 NameVals.clear();
4174 Stream.ExitBlock();
4177 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4178 /// current llvm version, and a record for the epoch number.
4179 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4180 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4182 // Write the "user readable" string identifying the bitcode producer
4183 auto Abbv = std::make_shared<BitCodeAbbrev>();
4184 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4187 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4188 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4189 "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4191 // Write the epoch version
4192 Abbv = std::make_shared<BitCodeAbbrev>();
4193 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4195 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4196 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
4197 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4198 Stream.ExitBlock();
4201 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4202 // Emit the module's hash.
4203 // MODULE_CODE_HASH: [5*i32]
4204 if (GenerateHash) {
4205 uint32_t Vals[5];
4206 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4207 Buffer.size() - BlockStartPos));
4208 StringRef Hash = Hasher.result();
4209 for (int Pos = 0; Pos < 20; Pos += 4) {
4210 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4213 // Emit the finished record.
4214 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4216 if (ModHash)
4217 // Save the written hash value.
4218 llvm::copy(Vals, std::begin(*ModHash));
4222 void ModuleBitcodeWriter::write() {
4223 writeIdentificationBlock(Stream);
4225 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4226 size_t BlockStartPos = Buffer.size();
4228 writeModuleVersion();
4230 // Emit blockinfo, which defines the standard abbreviations etc.
4231 writeBlockInfo();
4233 // Emit information describing all of the types in the module.
4234 writeTypeTable();
4236 // Emit information about attribute groups.
4237 writeAttributeGroupTable();
4239 // Emit information about parameter attributes.
4240 writeAttributeTable();
4242 writeComdats();
4244 // Emit top-level description of module, including target triple, inline asm,
4245 // descriptors for global variables, and function prototype info.
4246 writeModuleInfo();
4248 // Emit constants.
4249 writeModuleConstants();
4251 // Emit metadata kind names.
4252 writeModuleMetadataKinds();
4254 // Emit metadata.
4255 writeModuleMetadata();
4257 // Emit module-level use-lists.
4258 if (VE.shouldPreserveUseListOrder())
4259 writeUseListBlock(nullptr);
4261 writeOperandBundleTags();
4262 writeSyncScopeNames();
4264 // Emit function bodies.
4265 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4266 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4267 if (!F->isDeclaration())
4268 writeFunction(*F, FunctionToBitcodeIndex);
4270 // Need to write after the above call to WriteFunction which populates
4271 // the summary information in the index.
4272 if (Index)
4273 writePerModuleGlobalValueSummary();
4275 writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4277 writeModuleHash(BlockStartPos);
4279 Stream.ExitBlock();
4282 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4283 uint32_t &Position) {
4284 support::endian::write32le(&Buffer[Position], Value);
4285 Position += 4;
4288 /// If generating a bc file on darwin, we have to emit a
4289 /// header and trailer to make it compatible with the system archiver. To do
4290 /// this we emit the following header, and then emit a trailer that pads the
4291 /// file out to be a multiple of 16 bytes.
4293 /// struct bc_header {
4294 /// uint32_t Magic; // 0x0B17C0DE
4295 /// uint32_t Version; // Version, currently always 0.
4296 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4297 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4298 /// uint32_t CPUType; // CPU specifier.
4299 /// ... potentially more later ...
4300 /// };
4301 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4302 const Triple &TT) {
4303 unsigned CPUType = ~0U;
4305 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4306 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4307 // number from /usr/include/mach/machine.h. It is ok to reproduce the
4308 // specific constants here because they are implicitly part of the Darwin ABI.
4309 enum {
4310 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4311 DARWIN_CPU_TYPE_X86 = 7,
4312 DARWIN_CPU_TYPE_ARM = 12,
4313 DARWIN_CPU_TYPE_POWERPC = 18
4316 Triple::ArchType Arch = TT.getArch();
4317 if (Arch == Triple::x86_64)
4318 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4319 else if (Arch == Triple::x86)
4320 CPUType = DARWIN_CPU_TYPE_X86;
4321 else if (Arch == Triple::ppc)
4322 CPUType = DARWIN_CPU_TYPE_POWERPC;
4323 else if (Arch == Triple::ppc64)
4324 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4325 else if (Arch == Triple::arm || Arch == Triple::thumb)
4326 CPUType = DARWIN_CPU_TYPE_ARM;
4328 // Traditional Bitcode starts after header.
4329 assert(Buffer.size() >= BWH_HeaderSize &&
4330 "Expected header size to be reserved");
4331 unsigned BCOffset = BWH_HeaderSize;
4332 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4334 // Write the magic and version.
4335 unsigned Position = 0;
4336 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4337 writeInt32ToBuffer(0, Buffer, Position); // Version.
4338 writeInt32ToBuffer(BCOffset, Buffer, Position);
4339 writeInt32ToBuffer(BCSize, Buffer, Position);
4340 writeInt32ToBuffer(CPUType, Buffer, Position);
4342 // If the file is not a multiple of 16 bytes, insert dummy padding.
4343 while (Buffer.size() & 15)
4344 Buffer.push_back(0);
4347 /// Helper to write the header common to all bitcode files.
4348 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4349 // Emit the file header.
4350 Stream.Emit((unsigned)'B', 8);
4351 Stream.Emit((unsigned)'C', 8);
4352 Stream.Emit(0x0, 4);
4353 Stream.Emit(0xC, 4);
4354 Stream.Emit(0xE, 4);
4355 Stream.Emit(0xD, 4);
4358 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4359 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4360 writeBitcodeHeader(*Stream);
4363 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4365 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4366 Stream->EnterSubblock(Block, 3);
4368 auto Abbv = std::make_shared<BitCodeAbbrev>();
4369 Abbv->Add(BitCodeAbbrevOp(Record));
4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4371 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4373 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4375 Stream->ExitBlock();
4378 void BitcodeWriter::writeSymtab() {
4379 assert(!WroteStrtab && !WroteSymtab);
4381 // If any module has module-level inline asm, we will require a registered asm
4382 // parser for the target so that we can create an accurate symbol table for
4383 // the module.
4384 for (Module *M : Mods) {
4385 if (M->getModuleInlineAsm().empty())
4386 continue;
4388 std::string Err;
4389 const Triple TT(M->getTargetTriple());
4390 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4391 if (!T || !T->hasMCAsmParser())
4392 return;
4395 WroteSymtab = true;
4396 SmallVector<char, 0> Symtab;
4397 // The irsymtab::build function may be unable to create a symbol table if the
4398 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4399 // table is not required for correctness, but we still want to be able to
4400 // write malformed modules to bitcode files, so swallow the error.
4401 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4402 consumeError(std::move(E));
4403 return;
4406 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4407 {Symtab.data(), Symtab.size()});
4410 void BitcodeWriter::writeStrtab() {
4411 assert(!WroteStrtab);
4413 std::vector<char> Strtab;
4414 StrtabBuilder.finalizeInOrder();
4415 Strtab.resize(StrtabBuilder.getSize());
4416 StrtabBuilder.write((uint8_t *)Strtab.data());
4418 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4419 {Strtab.data(), Strtab.size()});
4421 WroteStrtab = true;
4424 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4425 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4426 WroteStrtab = true;
4429 void BitcodeWriter::writeModule(const Module &M,
4430 bool ShouldPreserveUseListOrder,
4431 const ModuleSummaryIndex *Index,
4432 bool GenerateHash, ModuleHash *ModHash) {
4433 assert(!WroteStrtab);
4435 // The Mods vector is used by irsymtab::build, which requires non-const
4436 // Modules in case it needs to materialize metadata. But the bitcode writer
4437 // requires that the module is materialized, so we can cast to non-const here,
4438 // after checking that it is in fact materialized.
4439 assert(M.isMaterialized());
4440 Mods.push_back(const_cast<Module *>(&M));
4442 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4443 ShouldPreserveUseListOrder, Index,
4444 GenerateHash, ModHash);
4445 ModuleWriter.write();
4448 void BitcodeWriter::writeIndex(
4449 const ModuleSummaryIndex *Index,
4450 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4451 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4452 ModuleToSummariesForIndex);
4453 IndexWriter.write();
4456 /// Write the specified module to the specified output stream.
4457 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4458 bool ShouldPreserveUseListOrder,
4459 const ModuleSummaryIndex *Index,
4460 bool GenerateHash, ModuleHash *ModHash) {
4461 SmallVector<char, 0> Buffer;
4462 Buffer.reserve(256*1024);
4464 // If this is darwin or another generic macho target, reserve space for the
4465 // header.
4466 Triple TT(M.getTargetTriple());
4467 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4468 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4470 BitcodeWriter Writer(Buffer);
4471 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4472 ModHash);
4473 Writer.writeSymtab();
4474 Writer.writeStrtab();
4476 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4477 emitDarwinBCHeaderAndTrailer(Buffer, TT);
4479 // Write the generated bitstream to "Out".
4480 Out.write((char*)&Buffer.front(), Buffer.size());
4483 void IndexBitcodeWriter::write() {
4484 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4486 writeModuleVersion();
4488 // Write the module paths in the combined index.
4489 writeModStrings();
4491 // Write the summary combined index records.
4492 writeCombinedGlobalValueSummary();
4494 Stream.ExitBlock();
4497 // Write the specified module summary index to the given raw output stream,
4498 // where it will be written in a new bitcode block. This is used when
4499 // writing the combined index file for ThinLTO. When writing a subset of the
4500 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4501 void llvm::WriteIndexToFile(
4502 const ModuleSummaryIndex &Index, raw_ostream &Out,
4503 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4504 SmallVector<char, 0> Buffer;
4505 Buffer.reserve(256 * 1024);
4507 BitcodeWriter Writer(Buffer);
4508 Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4509 Writer.writeStrtab();
4511 Out.write((char *)&Buffer.front(), Buffer.size());
4514 namespace {
4516 /// Class to manage the bitcode writing for a thin link bitcode file.
4517 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4518 /// ModHash is for use in ThinLTO incremental build, generated while writing
4519 /// the module bitcode file.
4520 const ModuleHash *ModHash;
4522 public:
4523 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4524 BitstreamWriter &Stream,
4525 const ModuleSummaryIndex &Index,
4526 const ModuleHash &ModHash)
4527 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4528 /*ShouldPreserveUseListOrder=*/false, &Index),
4529 ModHash(&ModHash) {}
4531 void write();
4533 private:
4534 void writeSimplifiedModuleInfo();
4537 } // end anonymous namespace
4539 // This function writes a simpilified module info for thin link bitcode file.
4540 // It only contains the source file name along with the name(the offset and
4541 // size in strtab) and linkage for global values. For the global value info
4542 // entry, in order to keep linkage at offset 5, there are three zeros used
4543 // as padding.
4544 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4545 SmallVector<unsigned, 64> Vals;
4546 // Emit the module's source file name.
4548 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4549 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4550 if (Bits == SE_Char6)
4551 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4552 else if (Bits == SE_Fixed7)
4553 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4555 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4556 auto Abbv = std::make_shared<BitCodeAbbrev>();
4557 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4559 Abbv->Add(AbbrevOpToUse);
4560 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4562 for (const auto P : M.getSourceFileName())
4563 Vals.push_back((unsigned char)P);
4565 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4566 Vals.clear();
4569 // Emit the global variable information.
4570 for (const GlobalVariable &GV : M.globals()) {
4571 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4572 Vals.push_back(StrtabBuilder.add(GV.getName()));
4573 Vals.push_back(GV.getName().size());
4574 Vals.push_back(0);
4575 Vals.push_back(0);
4576 Vals.push_back(0);
4577 Vals.push_back(getEncodedLinkage(GV));
4579 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4580 Vals.clear();
4583 // Emit the function proto information.
4584 for (const Function &F : M) {
4585 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
4586 Vals.push_back(StrtabBuilder.add(F.getName()));
4587 Vals.push_back(F.getName().size());
4588 Vals.push_back(0);
4589 Vals.push_back(0);
4590 Vals.push_back(0);
4591 Vals.push_back(getEncodedLinkage(F));
4593 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4594 Vals.clear();
4597 // Emit the alias information.
4598 for (const GlobalAlias &A : M.aliases()) {
4599 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4600 Vals.push_back(StrtabBuilder.add(A.getName()));
4601 Vals.push_back(A.getName().size());
4602 Vals.push_back(0);
4603 Vals.push_back(0);
4604 Vals.push_back(0);
4605 Vals.push_back(getEncodedLinkage(A));
4607 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4608 Vals.clear();
4611 // Emit the ifunc information.
4612 for (const GlobalIFunc &I : M.ifuncs()) {
4613 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4614 Vals.push_back(StrtabBuilder.add(I.getName()));
4615 Vals.push_back(I.getName().size());
4616 Vals.push_back(0);
4617 Vals.push_back(0);
4618 Vals.push_back(0);
4619 Vals.push_back(getEncodedLinkage(I));
4621 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4622 Vals.clear();
4626 void ThinLinkBitcodeWriter::write() {
4627 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4629 writeModuleVersion();
4631 writeSimplifiedModuleInfo();
4633 writePerModuleGlobalValueSummary();
4635 // Write module hash.
4636 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4638 Stream.ExitBlock();
4641 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4642 const ModuleSummaryIndex &Index,
4643 const ModuleHash &ModHash) {
4644 assert(!WroteStrtab);
4646 // The Mods vector is used by irsymtab::build, which requires non-const
4647 // Modules in case it needs to materialize metadata. But the bitcode writer
4648 // requires that the module is materialized, so we can cast to non-const here,
4649 // after checking that it is in fact materialized.
4650 assert(M.isMaterialized());
4651 Mods.push_back(const_cast<Module *>(&M));
4653 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4654 ModHash);
4655 ThinLinkWriter.write();
4658 // Write the specified thin link bitcode file to the given raw output stream,
4659 // where it will be written in a new bitcode block. This is used when
4660 // writing the per-module index file for ThinLTO.
4661 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4662 const ModuleSummaryIndex &Index,
4663 const ModuleHash &ModHash) {
4664 SmallVector<char, 0> Buffer;
4665 Buffer.reserve(256 * 1024);
4667 BitcodeWriter Writer(Buffer);
4668 Writer.writeThinLinkBitcode(M, Index, ModHash);
4669 Writer.writeSymtab();
4670 Writer.writeStrtab();
4672 Out.write((char *)&Buffer.front(), Buffer.size());