1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the ValueEnumerator class.
11 //===----------------------------------------------------------------------===//
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/IR/Argument.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalAlias.h"
25 #include "llvm/IR/GlobalIFunc.h"
26 #include "llvm/IR/GlobalObject.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/UseListOrder.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueSymbolTable.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
57 DenseMap
<const Value
*, std::pair
<unsigned, bool>> IDs
;
58 unsigned LastGlobalConstantID
= 0;
59 unsigned LastGlobalValueID
= 0;
63 bool isGlobalConstant(unsigned ID
) const {
64 return ID
<= LastGlobalConstantID
;
67 bool isGlobalValue(unsigned ID
) const {
68 return ID
<= LastGlobalValueID
&& !isGlobalConstant(ID
);
71 unsigned size() const { return IDs
.size(); }
72 std::pair
<unsigned, bool> &operator[](const Value
*V
) { return IDs
[V
]; }
74 std::pair
<unsigned, bool> lookup(const Value
*V
) const {
78 void index(const Value
*V
) {
79 // Explicitly sequence get-size and insert-value operations to avoid UB.
80 unsigned ID
= IDs
.size() + 1;
85 } // end anonymous namespace
87 static void orderValue(const Value
*V
, OrderMap
&OM
) {
88 if (OM
.lookup(V
).first
)
91 if (const Constant
*C
= dyn_cast
<Constant
>(V
))
92 if (C
->getNumOperands() && !isa
<GlobalValue
>(C
))
93 for (const Value
*Op
: C
->operands())
94 if (!isa
<BasicBlock
>(Op
) && !isa
<GlobalValue
>(Op
))
97 // Note: we cannot cache this lookup above, since inserting into the map
98 // changes the map's size, and thus affects the other IDs.
102 static OrderMap
orderModule(const Module
&M
) {
103 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
104 // and ValueEnumerator::incorporateFunction().
107 // In the reader, initializers of GlobalValues are set *after* all the
108 // globals have been read. Rather than awkwardly modeling this behaviour
109 // directly in predictValueUseListOrderImpl(), just assign IDs to
110 // initializers of GlobalValues before GlobalValues themselves to model this
112 for (const GlobalVariable
&G
: M
.globals())
113 if (G
.hasInitializer())
114 if (!isa
<GlobalValue
>(G
.getInitializer()))
115 orderValue(G
.getInitializer(), OM
);
116 for (const GlobalAlias
&A
: M
.aliases())
117 if (!isa
<GlobalValue
>(A
.getAliasee()))
118 orderValue(A
.getAliasee(), OM
);
119 for (const GlobalIFunc
&I
: M
.ifuncs())
120 if (!isa
<GlobalValue
>(I
.getResolver()))
121 orderValue(I
.getResolver(), OM
);
122 for (const Function
&F
: M
) {
123 for (const Use
&U
: F
.operands())
124 if (!isa
<GlobalValue
>(U
.get()))
125 orderValue(U
.get(), OM
);
127 OM
.LastGlobalConstantID
= OM
.size();
129 // Initializers of GlobalValues are processed in
130 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
131 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
132 // by giving IDs in reverse order.
134 // Since GlobalValues never reference each other directly (just through
135 // initializers), their relative IDs only matter for determining order of
136 // uses in their initializers.
137 for (const Function
&F
: M
)
139 for (const GlobalAlias
&A
: M
.aliases())
141 for (const GlobalIFunc
&I
: M
.ifuncs())
143 for (const GlobalVariable
&G
: M
.globals())
145 OM
.LastGlobalValueID
= OM
.size();
147 for (const Function
&F
: M
) {
148 if (F
.isDeclaration())
150 // Here we need to match the union of ValueEnumerator::incorporateFunction()
151 // and WriteFunction(). Basic blocks are implicitly declared before
152 // anything else (by declaring their size).
153 for (const BasicBlock
&BB
: F
)
155 for (const Argument
&A
: F
.args())
157 for (const BasicBlock
&BB
: F
)
158 for (const Instruction
&I
: BB
)
159 for (const Value
*Op
: I
.operands())
160 if ((isa
<Constant
>(*Op
) && !isa
<GlobalValue
>(*Op
)) ||
163 for (const BasicBlock
&BB
: F
)
164 for (const Instruction
&I
: BB
)
170 static void predictValueUseListOrderImpl(const Value
*V
, const Function
*F
,
171 unsigned ID
, const OrderMap
&OM
,
172 UseListOrderStack
&Stack
) {
173 // Predict use-list order for this one.
174 using Entry
= std::pair
<const Use
*, unsigned>;
175 SmallVector
<Entry
, 64> List
;
176 for (const Use
&U
: V
->uses())
177 // Check if this user will be serialized.
178 if (OM
.lookup(U
.getUser()).first
)
179 List
.push_back(std::make_pair(&U
, List
.size()));
182 // We may have lost some users.
185 bool IsGlobalValue
= OM
.isGlobalValue(ID
);
186 llvm::sort(List
, [&](const Entry
&L
, const Entry
&R
) {
187 const Use
*LU
= L
.first
;
188 const Use
*RU
= R
.first
;
192 auto LID
= OM
.lookup(LU
->getUser()).first
;
193 auto RID
= OM
.lookup(RU
->getUser()).first
;
195 // Global values are processed in reverse order.
197 // Moreover, initializers of GlobalValues are set *after* all the globals
198 // have been read (despite having earlier IDs). Rather than awkwardly
199 // modeling this behaviour here, orderModule() has assigned IDs to
200 // initializers of GlobalValues before GlobalValues themselves.
201 if (OM
.isGlobalValue(LID
) && OM
.isGlobalValue(RID
))
204 // If ID is 4, then expect: 7 6 5 1 2 3.
207 if (!IsGlobalValue
) // GlobalValue uses don't get reversed.
213 if (!IsGlobalValue
) // GlobalValue uses don't get reversed.
218 // LID and RID are equal, so we have different operands of the same user.
219 // Assume operands are added in order for all instructions.
221 if (!IsGlobalValue
) // GlobalValue uses don't get reversed.
222 return LU
->getOperandNo() < RU
->getOperandNo();
223 return LU
->getOperandNo() > RU
->getOperandNo();
227 List
.begin(), List
.end(),
228 [](const Entry
&L
, const Entry
&R
) { return L
.second
< R
.second
; }))
229 // Order is already correct.
232 // Store the shuffle.
233 Stack
.emplace_back(V
, F
, List
.size());
234 assert(List
.size() == Stack
.back().Shuffle
.size() && "Wrong size");
235 for (size_t I
= 0, E
= List
.size(); I
!= E
; ++I
)
236 Stack
.back().Shuffle
[I
] = List
[I
].second
;
239 static void predictValueUseListOrder(const Value
*V
, const Function
*F
,
240 OrderMap
&OM
, UseListOrderStack
&Stack
) {
241 auto &IDPair
= OM
[V
];
242 assert(IDPair
.first
&& "Unmapped value");
244 // Already predicted.
247 // Do the actual prediction.
248 IDPair
.second
= true;
249 if (!V
->use_empty() && std::next(V
->use_begin()) != V
->use_end())
250 predictValueUseListOrderImpl(V
, F
, IDPair
.first
, OM
, Stack
);
252 // Recursive descent into constants.
253 if (const Constant
*C
= dyn_cast
<Constant
>(V
))
254 if (C
->getNumOperands()) // Visit GlobalValues.
255 for (const Value
*Op
: C
->operands())
256 if (isa
<Constant
>(Op
)) // Visit GlobalValues.
257 predictValueUseListOrder(Op
, F
, OM
, Stack
);
260 static UseListOrderStack
predictUseListOrder(const Module
&M
) {
261 OrderMap OM
= orderModule(M
);
263 // Use-list orders need to be serialized after all the users have been added
264 // to a value, or else the shuffles will be incomplete. Store them per
265 // function in a stack.
267 // Aside from function order, the order of values doesn't matter much here.
268 UseListOrderStack Stack
;
270 // We want to visit the functions backward now so we can list function-local
271 // constants in the last Function they're used in. Module-level constants
272 // have already been visited above.
273 for (auto I
= M
.rbegin(), E
= M
.rend(); I
!= E
; ++I
) {
274 const Function
&F
= *I
;
275 if (F
.isDeclaration())
277 for (const BasicBlock
&BB
: F
)
278 predictValueUseListOrder(&BB
, &F
, OM
, Stack
);
279 for (const Argument
&A
: F
.args())
280 predictValueUseListOrder(&A
, &F
, OM
, Stack
);
281 for (const BasicBlock
&BB
: F
)
282 for (const Instruction
&I
: BB
)
283 for (const Value
*Op
: I
.operands())
284 if (isa
<Constant
>(*Op
) || isa
<InlineAsm
>(*Op
)) // Visit GlobalValues.
285 predictValueUseListOrder(Op
, &F
, OM
, Stack
);
286 for (const BasicBlock
&BB
: F
)
287 for (const Instruction
&I
: BB
)
288 predictValueUseListOrder(&I
, &F
, OM
, Stack
);
291 // Visit globals last, since the module-level use-list block will be seen
292 // before the function bodies are processed.
293 for (const GlobalVariable
&G
: M
.globals())
294 predictValueUseListOrder(&G
, nullptr, OM
, Stack
);
295 for (const Function
&F
: M
)
296 predictValueUseListOrder(&F
, nullptr, OM
, Stack
);
297 for (const GlobalAlias
&A
: M
.aliases())
298 predictValueUseListOrder(&A
, nullptr, OM
, Stack
);
299 for (const GlobalIFunc
&I
: M
.ifuncs())
300 predictValueUseListOrder(&I
, nullptr, OM
, Stack
);
301 for (const GlobalVariable
&G
: M
.globals())
302 if (G
.hasInitializer())
303 predictValueUseListOrder(G
.getInitializer(), nullptr, OM
, Stack
);
304 for (const GlobalAlias
&A
: M
.aliases())
305 predictValueUseListOrder(A
.getAliasee(), nullptr, OM
, Stack
);
306 for (const GlobalIFunc
&I
: M
.ifuncs())
307 predictValueUseListOrder(I
.getResolver(), nullptr, OM
, Stack
);
308 for (const Function
&F
: M
) {
309 for (const Use
&U
: F
.operands())
310 predictValueUseListOrder(U
.get(), nullptr, OM
, Stack
);
316 static bool isIntOrIntVectorValue(const std::pair
<const Value
*, unsigned> &V
) {
317 return V
.first
->getType()->isIntOrIntVectorTy();
320 ValueEnumerator::ValueEnumerator(const Module
&M
,
321 bool ShouldPreserveUseListOrder
)
322 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder
) {
323 if (ShouldPreserveUseListOrder
)
324 UseListOrders
= predictUseListOrder(M
);
326 // Enumerate the global variables.
327 for (const GlobalVariable
&GV
: M
.globals())
330 // Enumerate the functions.
331 for (const Function
& F
: M
) {
333 EnumerateAttributes(F
.getAttributes());
336 // Enumerate the aliases.
337 for (const GlobalAlias
&GA
: M
.aliases())
340 // Enumerate the ifuncs.
341 for (const GlobalIFunc
&GIF
: M
.ifuncs())
342 EnumerateValue(&GIF
);
344 // Remember what is the cutoff between globalvalue's and other constants.
345 unsigned FirstConstant
= Values
.size();
347 // Enumerate the global variable initializers and attributes.
348 for (const GlobalVariable
&GV
: M
.globals()) {
349 if (GV
.hasInitializer())
350 EnumerateValue(GV
.getInitializer());
351 if (GV
.hasAttributes())
352 EnumerateAttributes(GV
.getAttributesAsList(AttributeList::FunctionIndex
));
355 // Enumerate the aliasees.
356 for (const GlobalAlias
&GA
: M
.aliases())
357 EnumerateValue(GA
.getAliasee());
359 // Enumerate the ifunc resolvers.
360 for (const GlobalIFunc
&GIF
: M
.ifuncs())
361 EnumerateValue(GIF
.getResolver());
363 // Enumerate any optional Function data.
364 for (const Function
&F
: M
)
365 for (const Use
&U
: F
.operands())
366 EnumerateValue(U
.get());
368 // Enumerate the metadata type.
370 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
371 // only encodes the metadata type when it's used as a value.
372 EnumerateType(Type::getMetadataTy(M
.getContext()));
374 // Insert constants and metadata that are named at module level into the slot
375 // pool so that the module symbol table can refer to them...
376 EnumerateValueSymbolTable(M
.getValueSymbolTable());
377 EnumerateNamedMetadata(M
);
379 SmallVector
<std::pair
<unsigned, MDNode
*>, 8> MDs
;
380 for (const GlobalVariable
&GV
: M
.globals()) {
382 GV
.getAllMetadata(MDs
);
383 for (const auto &I
: MDs
)
384 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
385 // to write metadata to the global variable's own metadata block
387 EnumerateMetadata(nullptr, I
.second
);
390 // Enumerate types used by function bodies and argument lists.
391 for (const Function
&F
: M
) {
392 for (const Argument
&A
: F
.args())
393 EnumerateType(A
.getType());
395 // Enumerate metadata attached to this function.
397 F
.getAllMetadata(MDs
);
398 for (const auto &I
: MDs
)
399 EnumerateMetadata(F
.isDeclaration() ? nullptr : &F
, I
.second
);
401 for (const BasicBlock
&BB
: F
)
402 for (const Instruction
&I
: BB
) {
403 for (const Use
&Op
: I
.operands()) {
404 auto *MD
= dyn_cast
<MetadataAsValue
>(&Op
);
406 EnumerateOperandType(Op
);
410 // Local metadata is enumerated during function-incorporation.
411 if (isa
<LocalAsMetadata
>(MD
->getMetadata()))
414 EnumerateMetadata(&F
, MD
->getMetadata());
416 EnumerateType(I
.getType());
417 if (const auto *Call
= dyn_cast
<CallBase
>(&I
))
418 EnumerateAttributes(Call
->getAttributes());
420 // Enumerate metadata attached with this instruction.
422 I
.getAllMetadataOtherThanDebugLoc(MDs
);
423 for (unsigned i
= 0, e
= MDs
.size(); i
!= e
; ++i
)
424 EnumerateMetadata(&F
, MDs
[i
].second
);
426 // Don't enumerate the location directly -- it has a special record
427 // type -- but enumerate its operands.
428 if (DILocation
*L
= I
.getDebugLoc())
429 for (const Metadata
*Op
: L
->operands())
430 EnumerateMetadata(&F
, Op
);
434 // Optimize constant ordering.
435 OptimizeConstants(FirstConstant
, Values
.size());
437 // Organize metadata ordering.
441 unsigned ValueEnumerator::getInstructionID(const Instruction
*Inst
) const {
442 InstructionMapType::const_iterator I
= InstructionMap
.find(Inst
);
443 assert(I
!= InstructionMap
.end() && "Instruction is not mapped!");
447 unsigned ValueEnumerator::getComdatID(const Comdat
*C
) const {
448 unsigned ComdatID
= Comdats
.idFor(C
);
449 assert(ComdatID
&& "Comdat not found!");
453 void ValueEnumerator::setInstructionID(const Instruction
*I
) {
454 InstructionMap
[I
] = InstructionCount
++;
457 unsigned ValueEnumerator::getValueID(const Value
*V
) const {
458 if (auto *MD
= dyn_cast
<MetadataAsValue
>(V
))
459 return getMetadataID(MD
->getMetadata());
461 ValueMapType::const_iterator I
= ValueMap
.find(V
);
462 assert(I
!= ValueMap
.end() && "Value not in slotcalculator!");
466 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
467 LLVM_DUMP_METHOD
void ValueEnumerator::dump() const {
468 print(dbgs(), ValueMap
, "Default");
470 print(dbgs(), MetadataMap
, "MetaData");
475 void ValueEnumerator::print(raw_ostream
&OS
, const ValueMapType
&Map
,
476 const char *Name
) const {
477 OS
<< "Map Name: " << Name
<< "\n";
478 OS
<< "Size: " << Map
.size() << "\n";
479 for (ValueMapType::const_iterator I
= Map
.begin(),
480 E
= Map
.end(); I
!= E
; ++I
) {
481 const Value
*V
= I
->first
;
483 OS
<< "Value: " << V
->getName();
485 OS
<< "Value: [null]\n";
489 OS
<< " Uses(" << V
->getNumUses() << "):";
490 for (const Use
&U
: V
->uses()) {
491 if (&U
!= &*V
->use_begin())
494 OS
<< " " << U
->getName();
503 void ValueEnumerator::print(raw_ostream
&OS
, const MetadataMapType
&Map
,
504 const char *Name
) const {
505 OS
<< "Map Name: " << Name
<< "\n";
506 OS
<< "Size: " << Map
.size() << "\n";
507 for (auto I
= Map
.begin(), E
= Map
.end(); I
!= E
; ++I
) {
508 const Metadata
*MD
= I
->first
;
509 OS
<< "Metadata: slot = " << I
->second
.ID
<< "\n";
510 OS
<< "Metadata: function = " << I
->second
.F
<< "\n";
516 /// OptimizeConstants - Reorder constant pool for denser encoding.
517 void ValueEnumerator::OptimizeConstants(unsigned CstStart
, unsigned CstEnd
) {
518 if (CstStart
== CstEnd
|| CstStart
+1 == CstEnd
) return;
520 if (ShouldPreserveUseListOrder
)
521 // Optimizing constants makes the use-list order difficult to predict.
522 // Disable it for now when trying to preserve the order.
525 std::stable_sort(Values
.begin() + CstStart
, Values
.begin() + CstEnd
,
526 [this](const std::pair
<const Value
*, unsigned> &LHS
,
527 const std::pair
<const Value
*, unsigned> &RHS
) {
529 if (LHS
.first
->getType() != RHS
.first
->getType())
530 return getTypeID(LHS
.first
->getType()) < getTypeID(RHS
.first
->getType());
531 // Then by frequency.
532 return LHS
.second
> RHS
.second
;
535 // Ensure that integer and vector of integer constants are at the start of the
536 // constant pool. This is important so that GEP structure indices come before
537 // gep constant exprs.
538 std::stable_partition(Values
.begin() + CstStart
, Values
.begin() + CstEnd
,
539 isIntOrIntVectorValue
);
541 // Rebuild the modified portion of ValueMap.
542 for (; CstStart
!= CstEnd
; ++CstStart
)
543 ValueMap
[Values
[CstStart
].first
] = CstStart
+1;
546 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
547 /// table into the values table.
548 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable
&VST
) {
549 for (ValueSymbolTable::const_iterator VI
= VST
.begin(), VE
= VST
.end();
551 EnumerateValue(VI
->getValue());
554 /// Insert all of the values referenced by named metadata in the specified
556 void ValueEnumerator::EnumerateNamedMetadata(const Module
&M
) {
557 for (const auto &I
: M
.named_metadata())
558 EnumerateNamedMDNode(&I
);
561 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode
*MD
) {
562 for (unsigned i
= 0, e
= MD
->getNumOperands(); i
!= e
; ++i
)
563 EnumerateMetadata(nullptr, MD
->getOperand(i
));
566 unsigned ValueEnumerator::getMetadataFunctionID(const Function
*F
) const {
567 return F
? getValueID(F
) + 1 : 0;
570 void ValueEnumerator::EnumerateMetadata(const Function
*F
, const Metadata
*MD
) {
571 EnumerateMetadata(getMetadataFunctionID(F
), MD
);
574 void ValueEnumerator::EnumerateFunctionLocalMetadata(
575 const Function
&F
, const LocalAsMetadata
*Local
) {
576 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F
), Local
);
579 void ValueEnumerator::dropFunctionFromMetadata(
580 MetadataMapType::value_type
&FirstMD
) {
581 SmallVector
<const MDNode
*, 64> Worklist
;
582 auto push
= [&Worklist
](MetadataMapType::value_type
&MD
) {
583 auto &Entry
= MD
.second
;
585 // Nothing to do if this metadata isn't tagged.
589 // Drop the function tag.
592 // If this is has an ID and is an MDNode, then its operands have entries as
593 // well. We need to drop the function from them too.
595 if (auto *N
= dyn_cast
<MDNode
>(MD
.first
))
596 Worklist
.push_back(N
);
599 while (!Worklist
.empty())
600 for (const Metadata
*Op
: Worklist
.pop_back_val()->operands()) {
603 auto MD
= MetadataMap
.find(Op
);
604 if (MD
!= MetadataMap
.end())
609 void ValueEnumerator::EnumerateMetadata(unsigned F
, const Metadata
*MD
) {
610 // It's vital for reader efficiency that uniqued subgraphs are done in
611 // post-order; it's expensive when their operands have forward references.
612 // If a distinct node is referenced from a uniqued node, it'll be delayed
613 // until the uniqued subgraph has been completely traversed.
614 SmallVector
<const MDNode
*, 32> DelayedDistinctNodes
;
616 // Start by enumerating MD, and then work through its transitive operands in
617 // post-order. This requires a depth-first search.
618 SmallVector
<std::pair
<const MDNode
*, MDNode::op_iterator
>, 32> Worklist
;
619 if (const MDNode
*N
= enumerateMetadataImpl(F
, MD
))
620 Worklist
.push_back(std::make_pair(N
, N
->op_begin()));
622 while (!Worklist
.empty()) {
623 const MDNode
*N
= Worklist
.back().first
;
625 // Enumerate operands until we hit a new node. We need to traverse these
626 // nodes' operands before visiting the rest of N's operands.
627 MDNode::op_iterator I
= std::find_if(
628 Worklist
.back().second
, N
->op_end(),
629 [&](const Metadata
*MD
) { return enumerateMetadataImpl(F
, MD
); });
630 if (I
!= N
->op_end()) {
631 auto *Op
= cast
<MDNode
>(*I
);
632 Worklist
.back().second
= ++I
;
634 // Delay traversing Op if it's a distinct node and N is uniqued.
635 if (Op
->isDistinct() && !N
->isDistinct())
636 DelayedDistinctNodes
.push_back(Op
);
638 Worklist
.push_back(std::make_pair(Op
, Op
->op_begin()));
642 // All the operands have been visited. Now assign an ID.
645 MetadataMap
[N
].ID
= MDs
.size();
647 // Flush out any delayed distinct nodes; these are all the distinct nodes
648 // that are leaves in last uniqued subgraph.
649 if (Worklist
.empty() || Worklist
.back().first
->isDistinct()) {
650 for (const MDNode
*N
: DelayedDistinctNodes
)
651 Worklist
.push_back(std::make_pair(N
, N
->op_begin()));
652 DelayedDistinctNodes
.clear();
657 const MDNode
*ValueEnumerator::enumerateMetadataImpl(unsigned F
, const Metadata
*MD
) {
662 (isa
<MDNode
>(MD
) || isa
<MDString
>(MD
) || isa
<ConstantAsMetadata
>(MD
)) &&
663 "Invalid metadata kind");
665 auto Insertion
= MetadataMap
.insert(std::make_pair(MD
, MDIndex(F
)));
666 MDIndex
&Entry
= Insertion
.first
->second
;
667 if (!Insertion
.second
) {
668 // Already mapped. If F doesn't match the function tag, drop it.
669 if (Entry
.hasDifferentFunction(F
))
670 dropFunctionFromMetadata(*Insertion
.first
);
674 // Don't assign IDs to metadata nodes.
675 if (auto *N
= dyn_cast
<MDNode
>(MD
))
678 // Save the metadata.
680 Entry
.ID
= MDs
.size();
682 // Enumerate the constant, if any.
683 if (auto *C
= dyn_cast
<ConstantAsMetadata
>(MD
))
684 EnumerateValue(C
->getValue());
689 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
690 /// information reachable from the metadata.
691 void ValueEnumerator::EnumerateFunctionLocalMetadata(
692 unsigned F
, const LocalAsMetadata
*Local
) {
693 assert(F
&& "Expected a function");
695 // Check to see if it's already in!
696 MDIndex
&Index
= MetadataMap
[Local
];
698 assert(Index
.F
== F
&& "Expected the same function");
702 MDs
.push_back(Local
);
704 Index
.ID
= MDs
.size();
706 EnumerateValue(Local
->getValue());
709 static unsigned getMetadataTypeOrder(const Metadata
*MD
) {
710 // Strings are emitted in bulk and must come first.
711 if (isa
<MDString
>(MD
))
714 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it
715 // to the front since we can detect it.
716 auto *N
= dyn_cast
<MDNode
>(MD
);
720 // The reader is fast forward references for distinct node operands, but slow
721 // when uniqued operands are unresolved.
722 return N
->isDistinct() ? 2 : 3;
725 void ValueEnumerator::organizeMetadata() {
726 assert(MetadataMap
.size() == MDs
.size() &&
727 "Metadata map and vector out of sync");
732 // Copy out the index information from MetadataMap in order to choose a new
734 SmallVector
<MDIndex
, 64> Order
;
735 Order
.reserve(MetadataMap
.size());
736 for (const Metadata
*MD
: MDs
)
737 Order
.push_back(MetadataMap
.lookup(MD
));
740 // - by function, then
741 // - by isa<MDString>
742 // and then sort by the original/current ID. Since the IDs are guaranteed to
743 // be unique, the result of std::sort will be deterministic. There's no need
744 // for std::stable_sort.
745 llvm::sort(Order
, [this](MDIndex LHS
, MDIndex RHS
) {
746 return std::make_tuple(LHS
.F
, getMetadataTypeOrder(LHS
.get(MDs
)), LHS
.ID
) <
747 std::make_tuple(RHS
.F
, getMetadataTypeOrder(RHS
.get(MDs
)), RHS
.ID
);
750 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
751 // and fix up MetadataMap.
752 std::vector
<const Metadata
*> OldMDs
;
754 MDs
.reserve(OldMDs
.size());
755 for (unsigned I
= 0, E
= Order
.size(); I
!= E
&& !Order
[I
].F
; ++I
) {
756 auto *MD
= Order
[I
].get(OldMDs
);
758 MetadataMap
[MD
].ID
= I
+ 1;
759 if (isa
<MDString
>(MD
))
763 // Return early if there's nothing for the functions.
764 if (MDs
.size() == Order
.size())
767 // Build the function metadata ranges.
769 FunctionMDs
.reserve(OldMDs
.size());
771 for (unsigned I
= MDs
.size(), E
= Order
.size(), ID
= MDs
.size(); I
!= E
;
773 unsigned F
= Order
[I
].F
;
776 } else if (PrevF
!= F
) {
777 R
.Last
= FunctionMDs
.size();
778 std::swap(R
, FunctionMDInfo
[PrevF
]);
779 R
.First
= FunctionMDs
.size();
785 auto *MD
= Order
[I
].get(OldMDs
);
786 FunctionMDs
.push_back(MD
);
787 MetadataMap
[MD
].ID
= ++ID
;
788 if (isa
<MDString
>(MD
))
791 R
.Last
= FunctionMDs
.size();
792 FunctionMDInfo
[PrevF
] = R
;
795 void ValueEnumerator::incorporateFunctionMetadata(const Function
&F
) {
796 NumModuleMDs
= MDs
.size();
798 auto R
= FunctionMDInfo
.lookup(getValueID(&F
) + 1);
799 NumMDStrings
= R
.NumStrings
;
800 MDs
.insert(MDs
.end(), FunctionMDs
.begin() + R
.First
,
801 FunctionMDs
.begin() + R
.Last
);
804 void ValueEnumerator::EnumerateValue(const Value
*V
) {
805 assert(!V
->getType()->isVoidTy() && "Can't insert void values!");
806 assert(!isa
<MetadataAsValue
>(V
) && "EnumerateValue doesn't handle Metadata!");
808 // Check to see if it's already in!
809 unsigned &ValueID
= ValueMap
[V
];
811 // Increment use count.
812 Values
[ValueID
-1].second
++;
816 if (auto *GO
= dyn_cast
<GlobalObject
>(V
))
817 if (const Comdat
*C
= GO
->getComdat())
820 // Enumerate the type of this value.
821 EnumerateType(V
->getType());
823 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
824 if (isa
<GlobalValue
>(C
)) {
825 // Initializers for globals are handled explicitly elsewhere.
826 } else if (C
->getNumOperands()) {
827 // If a constant has operands, enumerate them. This makes sure that if a
828 // constant has uses (for example an array of const ints), that they are
831 // We prefer to enumerate them with values before we enumerate the user
832 // itself. This makes it more likely that we can avoid forward references
833 // in the reader. We know that there can be no cycles in the constants
834 // graph that don't go through a global variable.
835 for (User::const_op_iterator I
= C
->op_begin(), E
= C
->op_end();
837 if (!isa
<BasicBlock
>(*I
)) // Don't enumerate BB operand to BlockAddress.
840 // Finally, add the value. Doing this could make the ValueID reference be
841 // dangling, don't reuse it.
842 Values
.push_back(std::make_pair(V
, 1U));
843 ValueMap
[V
] = Values
.size();
849 Values
.push_back(std::make_pair(V
, 1U));
850 ValueID
= Values
.size();
854 void ValueEnumerator::EnumerateType(Type
*Ty
) {
855 unsigned *TypeID
= &TypeMap
[Ty
];
857 // We've already seen this type.
861 // If it is a non-anonymous struct, mark the type as being visited so that we
862 // don't recursively visit it. This is safe because we allow forward
863 // references of these in the bitcode reader.
864 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
865 if (!STy
->isLiteral())
868 // Enumerate all of the subtypes before we enumerate this type. This ensures
869 // that the type will be enumerated in an order that can be directly built.
870 for (Type
*SubTy
: Ty
->subtypes())
871 EnumerateType(SubTy
);
873 // Refresh the TypeID pointer in case the table rehashed.
874 TypeID
= &TypeMap
[Ty
];
876 // Check to see if we got the pointer another way. This can happen when
877 // enumerating recursive types that hit the base case deeper than they start.
879 // If this is actually a struct that we are treating as forward ref'able,
880 // then emit the definition now that all of its contents are available.
881 if (*TypeID
&& *TypeID
!= ~0U)
884 // Add this type now that its contents are all happily enumerated.
887 *TypeID
= Types
.size();
890 // Enumerate the types for the specified value. If the value is a constant,
891 // walk through it, enumerating the types of the constant.
892 void ValueEnumerator::EnumerateOperandType(const Value
*V
) {
893 EnumerateType(V
->getType());
895 assert(!isa
<MetadataAsValue
>(V
) && "Unexpected metadata operand");
897 const Constant
*C
= dyn_cast
<Constant
>(V
);
901 // If this constant is already enumerated, ignore it, we know its type must
903 if (ValueMap
.count(C
))
906 // This constant may have operands, make sure to enumerate the types in
908 for (const Value
*Op
: C
->operands()) {
909 // Don't enumerate basic blocks here, this happens as operands to
911 if (isa
<BasicBlock
>(Op
))
914 EnumerateOperandType(Op
);
918 void ValueEnumerator::EnumerateAttributes(AttributeList PAL
) {
919 if (PAL
.isEmpty()) return; // null is always 0.
922 unsigned &Entry
= AttributeListMap
[PAL
];
924 // Never saw this before, add it.
925 AttributeLists
.push_back(PAL
);
926 Entry
= AttributeLists
.size();
929 // Do lookups for all attribute groups.
930 for (unsigned i
= PAL
.index_begin(), e
= PAL
.index_end(); i
!= e
; ++i
) {
931 AttributeSet AS
= PAL
.getAttributes(i
);
932 if (!AS
.hasAttributes())
934 IndexAndAttrSet Pair
= {i
, AS
};
935 unsigned &Entry
= AttributeGroupMap
[Pair
];
937 AttributeGroups
.push_back(Pair
);
938 Entry
= AttributeGroups
.size();
943 void ValueEnumerator::incorporateFunction(const Function
&F
) {
944 InstructionCount
= 0;
945 NumModuleValues
= Values
.size();
947 // Add global metadata to the function block. This doesn't include
949 incorporateFunctionMetadata(F
);
951 // Adding function arguments to the value table.
952 for (const auto &I
: F
.args()) {
954 if (I
.hasAttribute(Attribute::ByVal
))
955 EnumerateType(I
.getParamByValType());
957 FirstFuncConstantID
= Values
.size();
959 // Add all function-level constants to the value table.
960 for (const BasicBlock
&BB
: F
) {
961 for (const Instruction
&I
: BB
)
962 for (const Use
&OI
: I
.operands()) {
963 if ((isa
<Constant
>(OI
) && !isa
<GlobalValue
>(OI
)) || isa
<InlineAsm
>(OI
))
966 BasicBlocks
.push_back(&BB
);
967 ValueMap
[&BB
] = BasicBlocks
.size();
970 // Optimize the constant layout.
971 OptimizeConstants(FirstFuncConstantID
, Values
.size());
973 // Add the function's parameter attributes so they are available for use in
974 // the function's instruction.
975 EnumerateAttributes(F
.getAttributes());
977 FirstInstID
= Values
.size();
979 SmallVector
<LocalAsMetadata
*, 8> FnLocalMDVector
;
980 // Add all of the instructions.
981 for (const BasicBlock
&BB
: F
) {
982 for (const Instruction
&I
: BB
) {
983 for (const Use
&OI
: I
.operands()) {
984 if (auto *MD
= dyn_cast
<MetadataAsValue
>(&OI
))
985 if (auto *Local
= dyn_cast
<LocalAsMetadata
>(MD
->getMetadata()))
986 // Enumerate metadata after the instructions they might refer to.
987 FnLocalMDVector
.push_back(Local
);
990 if (!I
.getType()->isVoidTy())
995 // Add all of the function-local metadata.
996 for (unsigned i
= 0, e
= FnLocalMDVector
.size(); i
!= e
; ++i
) {
997 // At this point, every local values have been incorporated, we shouldn't
998 // have a metadata operand that references a value that hasn't been seen.
999 assert(ValueMap
.count(FnLocalMDVector
[i
]->getValue()) &&
1000 "Missing value for metadata operand");
1001 EnumerateFunctionLocalMetadata(F
, FnLocalMDVector
[i
]);
1005 void ValueEnumerator::purgeFunction() {
1006 /// Remove purged values from the ValueMap.
1007 for (unsigned i
= NumModuleValues
, e
= Values
.size(); i
!= e
; ++i
)
1008 ValueMap
.erase(Values
[i
].first
);
1009 for (unsigned i
= NumModuleMDs
, e
= MDs
.size(); i
!= e
; ++i
)
1010 MetadataMap
.erase(MDs
[i
]);
1011 for (unsigned i
= 0, e
= BasicBlocks
.size(); i
!= e
; ++i
)
1012 ValueMap
.erase(BasicBlocks
[i
]);
1014 Values
.resize(NumModuleValues
);
1015 MDs
.resize(NumModuleMDs
);
1016 BasicBlocks
.clear();
1020 static void IncorporateFunctionInfoGlobalBBIDs(const Function
*F
,
1021 DenseMap
<const BasicBlock
*, unsigned> &IDMap
) {
1022 unsigned Counter
= 0;
1023 for (const BasicBlock
&BB
: *F
)
1024 IDMap
[&BB
] = ++Counter
;
1027 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1028 /// specified basic block. This is relatively expensive information, so it
1029 /// should only be used by rare constructs such as address-of-label.
1030 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock
*BB
) const {
1031 unsigned &Idx
= GlobalBasicBlockIDs
[BB
];
1035 IncorporateFunctionInfoGlobalBBIDs(BB
->getParent(), GlobalBasicBlockIDs
);
1036 return getGlobalBasicBlockID(BB
);
1039 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1040 return Log2_32_Ceil(getTypes().size() + 1);