[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / CodeGen / CodeGenPrepare.cpp
blobfa4432ea23ec4f60424db0aa36defa585eb0c75b
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/Analysis.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Argument.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/ValueMap.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <limits>
97 #include <memory>
98 #include <utility>
99 #include <vector>
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
104 #define DEBUG_TYPE "codegenprepare"
106 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
107 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
108 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
110 "sunken Cmps");
111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
112 "of sunken Casts");
113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
114 "computations were sunk");
115 STATISTIC(NumMemoryInstsPhiCreated,
116 "Number of phis created when address "
117 "computations were sunk to memory instructions");
118 STATISTIC(NumMemoryInstsSelectCreated,
119 "Number of select created when address "
120 "computations were sunk to memory instructions");
121 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
122 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
123 STATISTIC(NumAndsAdded,
124 "Number of and mask instructions added to form ext loads");
125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
126 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
131 static cl::opt<bool> DisableBranchOpts(
132 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
133 cl::desc("Disable branch optimizations in CodeGenPrepare"));
135 static cl::opt<bool>
136 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
137 cl::desc("Disable GC optimizations in CodeGenPrepare"));
139 static cl::opt<bool> DisableSelectToBranch(
140 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
141 cl::desc("Disable select to branch conversion."));
143 static cl::opt<bool> AddrSinkUsingGEPs(
144 "addr-sink-using-gep", cl::Hidden, cl::init(true),
145 cl::desc("Address sinking in CGP using GEPs."));
147 static cl::opt<bool> EnableAndCmpSinking(
148 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
149 cl::desc("Enable sinkinig and/cmp into branches."));
151 static cl::opt<bool> DisableStoreExtract(
152 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
153 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
155 static cl::opt<bool> StressStoreExtract(
156 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
157 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
159 static cl::opt<bool> DisableExtLdPromotion(
160 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
161 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
162 "CodeGenPrepare"));
164 static cl::opt<bool> StressExtLdPromotion(
165 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
166 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
167 "optimization in CodeGenPrepare"));
169 static cl::opt<bool> DisablePreheaderProtect(
170 "disable-preheader-prot", cl::Hidden, cl::init(false),
171 cl::desc("Disable protection against removing loop preheaders"));
173 static cl::opt<bool> ProfileGuidedSectionPrefix(
174 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
175 cl::desc("Use profile info to add section prefix for hot/cold functions"));
177 static cl::opt<unsigned> FreqRatioToSkipMerge(
178 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
179 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
180 "(frequency of destination block) is greater than this ratio"));
182 static cl::opt<bool> ForceSplitStore(
183 "force-split-store", cl::Hidden, cl::init(false),
184 cl::desc("Force store splitting no matter what the target query says."));
186 static cl::opt<bool>
187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
188 cl::desc("Enable merging of redundant sexts when one is dominating"
189 " the other."), cl::init(true));
191 static cl::opt<bool> DisableComplexAddrModes(
192 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
193 cl::desc("Disables combining addressing modes with different parts "
194 "in optimizeMemoryInst."));
196 static cl::opt<bool>
197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
198 cl::desc("Allow creation of Phis in Address sinking."));
200 static cl::opt<bool>
201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
202 cl::desc("Allow creation of selects in Address sinking."));
204 static cl::opt<bool> AddrSinkCombineBaseReg(
205 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
206 cl::desc("Allow combining of BaseReg field in Address sinking."));
208 static cl::opt<bool> AddrSinkCombineBaseGV(
209 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
210 cl::desc("Allow combining of BaseGV field in Address sinking."));
212 static cl::opt<bool> AddrSinkCombineBaseOffs(
213 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
214 cl::desc("Allow combining of BaseOffs field in Address sinking."));
216 static cl::opt<bool> AddrSinkCombineScaledReg(
217 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
218 cl::desc("Allow combining of ScaledReg field in Address sinking."));
220 static cl::opt<bool>
221 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
222 cl::init(true),
223 cl::desc("Enable splitting large offset of GEP."));
225 namespace {
227 enum ExtType {
228 ZeroExtension, // Zero extension has been seen.
229 SignExtension, // Sign extension has been seen.
230 BothExtension // This extension type is used if we saw sext after
231 // ZeroExtension had been set, or if we saw zext after
232 // SignExtension had been set. It makes the type
233 // information of a promoted instruction invalid.
236 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
237 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
238 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
239 using SExts = SmallVector<Instruction *, 16>;
240 using ValueToSExts = DenseMap<Value *, SExts>;
242 class TypePromotionTransaction;
244 class CodeGenPrepare : public FunctionPass {
245 const TargetMachine *TM = nullptr;
246 const TargetSubtargetInfo *SubtargetInfo;
247 const TargetLowering *TLI = nullptr;
248 const TargetRegisterInfo *TRI;
249 const TargetTransformInfo *TTI = nullptr;
250 const TargetLibraryInfo *TLInfo;
251 const LoopInfo *LI;
252 std::unique_ptr<BlockFrequencyInfo> BFI;
253 std::unique_ptr<BranchProbabilityInfo> BPI;
255 /// As we scan instructions optimizing them, this is the next instruction
256 /// to optimize. Transforms that can invalidate this should update it.
257 BasicBlock::iterator CurInstIterator;
259 /// Keeps track of non-local addresses that have been sunk into a block.
260 /// This allows us to avoid inserting duplicate code for blocks with
261 /// multiple load/stores of the same address. The usage of WeakTrackingVH
262 /// enables SunkAddrs to be treated as a cache whose entries can be
263 /// invalidated if a sunken address computation has been erased.
264 ValueMap<Value*, WeakTrackingVH> SunkAddrs;
266 /// Keeps track of all instructions inserted for the current function.
267 SetOfInstrs InsertedInsts;
269 /// Keeps track of the type of the related instruction before their
270 /// promotion for the current function.
271 InstrToOrigTy PromotedInsts;
273 /// Keep track of instructions removed during promotion.
274 SetOfInstrs RemovedInsts;
276 /// Keep track of sext chains based on their initial value.
277 DenseMap<Value *, Instruction *> SeenChainsForSExt;
279 /// Keep track of GEPs accessing the same data structures such as structs or
280 /// arrays that are candidates to be split later because of their large
281 /// size.
282 MapVector<
283 AssertingVH<Value>,
284 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
285 LargeOffsetGEPMap;
287 /// Keep track of new GEP base after splitting the GEPs having large offset.
288 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
290 /// Map serial numbers to Large offset GEPs.
291 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
293 /// Keep track of SExt promoted.
294 ValueToSExts ValToSExtendedUses;
296 /// True if optimizing for size.
297 bool OptSize;
299 /// DataLayout for the Function being processed.
300 const DataLayout *DL = nullptr;
302 /// Building the dominator tree can be expensive, so we only build it
303 /// lazily and update it when required.
304 std::unique_ptr<DominatorTree> DT;
306 public:
307 static char ID; // Pass identification, replacement for typeid
309 CodeGenPrepare() : FunctionPass(ID) {
310 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
313 bool runOnFunction(Function &F) override;
315 StringRef getPassName() const override { return "CodeGen Prepare"; }
317 void getAnalysisUsage(AnalysisUsage &AU) const override {
318 // FIXME: When we can selectively preserve passes, preserve the domtree.
319 AU.addRequired<ProfileSummaryInfoWrapperPass>();
320 AU.addRequired<TargetLibraryInfoWrapperPass>();
321 AU.addRequired<TargetTransformInfoWrapperPass>();
322 AU.addRequired<LoopInfoWrapperPass>();
325 private:
326 template <typename F>
327 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
328 // Substituting can cause recursive simplifications, which can invalidate
329 // our iterator. Use a WeakTrackingVH to hold onto it in case this
330 // happens.
331 Value *CurValue = &*CurInstIterator;
332 WeakTrackingVH IterHandle(CurValue);
334 f();
336 // If the iterator instruction was recursively deleted, start over at the
337 // start of the block.
338 if (IterHandle != CurValue) {
339 CurInstIterator = BB->begin();
340 SunkAddrs.clear();
344 // Get the DominatorTree, building if necessary.
345 DominatorTree &getDT(Function &F) {
346 if (!DT)
347 DT = std::make_unique<DominatorTree>(F);
348 return *DT;
351 bool eliminateFallThrough(Function &F);
352 bool eliminateMostlyEmptyBlocks(Function &F);
353 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
354 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
355 void eliminateMostlyEmptyBlock(BasicBlock *BB);
356 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
357 bool isPreheader);
358 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
359 bool optimizeInst(Instruction *I, bool &ModifiedDT);
360 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
361 Type *AccessTy, unsigned AddrSpace);
362 bool optimizeInlineAsmInst(CallInst *CS);
363 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
364 bool optimizeExt(Instruction *&I);
365 bool optimizeExtUses(Instruction *I);
366 bool optimizeLoadExt(LoadInst *Load);
367 bool optimizeShiftInst(BinaryOperator *BO);
368 bool optimizeSelectInst(SelectInst *SI);
369 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
370 bool optimizeSwitchInst(SwitchInst *SI);
371 bool optimizeExtractElementInst(Instruction *Inst);
372 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
373 bool placeDbgValues(Function &F);
374 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
375 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
376 bool tryToPromoteExts(TypePromotionTransaction &TPT,
377 const SmallVectorImpl<Instruction *> &Exts,
378 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
379 unsigned CreatedInstsCost = 0);
380 bool mergeSExts(Function &F);
381 bool splitLargeGEPOffsets();
382 bool performAddressTypePromotion(
383 Instruction *&Inst,
384 bool AllowPromotionWithoutCommonHeader,
385 bool HasPromoted, TypePromotionTransaction &TPT,
386 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
387 bool splitBranchCondition(Function &F, bool &ModifiedDT);
388 bool simplifyOffsetableRelocate(Instruction &I);
390 bool tryToSinkFreeOperands(Instruction *I);
391 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
392 Intrinsic::ID IID);
393 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
394 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
395 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
398 } // end anonymous namespace
400 char CodeGenPrepare::ID = 0;
402 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
403 "Optimize for code generation", false, false)
404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
405 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
406 "Optimize for code generation", false, false)
408 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
410 bool CodeGenPrepare::runOnFunction(Function &F) {
411 if (skipFunction(F))
412 return false;
414 DL = &F.getParent()->getDataLayout();
416 bool EverMadeChange = false;
417 // Clear per function information.
418 InsertedInsts.clear();
419 PromotedInsts.clear();
421 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
422 TM = &TPC->getTM<TargetMachine>();
423 SubtargetInfo = TM->getSubtargetImpl(F);
424 TLI = SubtargetInfo->getTargetLowering();
425 TRI = SubtargetInfo->getRegisterInfo();
427 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
428 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
429 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
430 BPI.reset(new BranchProbabilityInfo(F, *LI));
431 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
432 OptSize = F.hasOptSize();
434 ProfileSummaryInfo *PSI =
435 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
436 if (ProfileGuidedSectionPrefix) {
437 if (PSI->isFunctionHotInCallGraph(&F, *BFI))
438 F.setSectionPrefix(".hot");
439 else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
440 F.setSectionPrefix(".unlikely");
443 /// This optimization identifies DIV instructions that can be
444 /// profitably bypassed and carried out with a shorter, faster divide.
445 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
446 TLI->isSlowDivBypassed()) {
447 const DenseMap<unsigned int, unsigned int> &BypassWidths =
448 TLI->getBypassSlowDivWidths();
449 BasicBlock* BB = &*F.begin();
450 while (BB != nullptr) {
451 // bypassSlowDivision may create new BBs, but we don't want to reapply the
452 // optimization to those blocks.
453 BasicBlock* Next = BB->getNextNode();
454 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
455 BB = Next;
459 // Eliminate blocks that contain only PHI nodes and an
460 // unconditional branch.
461 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
463 bool ModifiedDT = false;
464 if (!DisableBranchOpts)
465 EverMadeChange |= splitBranchCondition(F, ModifiedDT);
467 // Split some critical edges where one of the sources is an indirect branch,
468 // to help generate sane code for PHIs involving such edges.
469 EverMadeChange |= SplitIndirectBrCriticalEdges(F);
471 bool MadeChange = true;
472 while (MadeChange) {
473 MadeChange = false;
474 DT.reset();
475 for (Function::iterator I = F.begin(); I != F.end(); ) {
476 BasicBlock *BB = &*I++;
477 bool ModifiedDTOnIteration = false;
478 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
480 // Restart BB iteration if the dominator tree of the Function was changed
481 if (ModifiedDTOnIteration)
482 break;
484 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
485 MadeChange |= mergeSExts(F);
486 if (!LargeOffsetGEPMap.empty())
487 MadeChange |= splitLargeGEPOffsets();
489 // Really free removed instructions during promotion.
490 for (Instruction *I : RemovedInsts)
491 I->deleteValue();
493 EverMadeChange |= MadeChange;
494 SeenChainsForSExt.clear();
495 ValToSExtendedUses.clear();
496 RemovedInsts.clear();
497 LargeOffsetGEPMap.clear();
498 LargeOffsetGEPID.clear();
501 SunkAddrs.clear();
503 if (!DisableBranchOpts) {
504 MadeChange = false;
505 // Use a set vector to get deterministic iteration order. The order the
506 // blocks are removed may affect whether or not PHI nodes in successors
507 // are removed.
508 SmallSetVector<BasicBlock*, 8> WorkList;
509 for (BasicBlock &BB : F) {
510 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
511 MadeChange |= ConstantFoldTerminator(&BB, true);
512 if (!MadeChange) continue;
514 for (SmallVectorImpl<BasicBlock*>::iterator
515 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
516 if (pred_begin(*II) == pred_end(*II))
517 WorkList.insert(*II);
520 // Delete the dead blocks and any of their dead successors.
521 MadeChange |= !WorkList.empty();
522 while (!WorkList.empty()) {
523 BasicBlock *BB = WorkList.pop_back_val();
524 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
526 DeleteDeadBlock(BB);
528 for (SmallVectorImpl<BasicBlock*>::iterator
529 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
530 if (pred_begin(*II) == pred_end(*II))
531 WorkList.insert(*II);
534 // Merge pairs of basic blocks with unconditional branches, connected by
535 // a single edge.
536 if (EverMadeChange || MadeChange)
537 MadeChange |= eliminateFallThrough(F);
539 EverMadeChange |= MadeChange;
542 if (!DisableGCOpts) {
543 SmallVector<Instruction *, 2> Statepoints;
544 for (BasicBlock &BB : F)
545 for (Instruction &I : BB)
546 if (isStatepoint(I))
547 Statepoints.push_back(&I);
548 for (auto &I : Statepoints)
549 EverMadeChange |= simplifyOffsetableRelocate(*I);
552 // Do this last to clean up use-before-def scenarios introduced by other
553 // preparatory transforms.
554 EverMadeChange |= placeDbgValues(F);
556 return EverMadeChange;
559 /// Merge basic blocks which are connected by a single edge, where one of the
560 /// basic blocks has a single successor pointing to the other basic block,
561 /// which has a single predecessor.
562 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
563 bool Changed = false;
564 // Scan all of the blocks in the function, except for the entry block.
565 // Use a temporary array to avoid iterator being invalidated when
566 // deleting blocks.
567 SmallVector<WeakTrackingVH, 16> Blocks;
568 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
569 Blocks.push_back(&Block);
571 for (auto &Block : Blocks) {
572 auto *BB = cast_or_null<BasicBlock>(Block);
573 if (!BB)
574 continue;
575 // If the destination block has a single pred, then this is a trivial
576 // edge, just collapse it.
577 BasicBlock *SinglePred = BB->getSinglePredecessor();
579 // Don't merge if BB's address is taken.
580 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
582 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
583 if (Term && !Term->isConditional()) {
584 Changed = true;
585 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
587 // Merge BB into SinglePred and delete it.
588 MergeBlockIntoPredecessor(BB);
591 return Changed;
594 /// Find a destination block from BB if BB is mergeable empty block.
595 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
596 // If this block doesn't end with an uncond branch, ignore it.
597 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
598 if (!BI || !BI->isUnconditional())
599 return nullptr;
601 // If the instruction before the branch (skipping debug info) isn't a phi
602 // node, then other stuff is happening here.
603 BasicBlock::iterator BBI = BI->getIterator();
604 if (BBI != BB->begin()) {
605 --BBI;
606 while (isa<DbgInfoIntrinsic>(BBI)) {
607 if (BBI == BB->begin())
608 break;
609 --BBI;
611 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
612 return nullptr;
615 // Do not break infinite loops.
616 BasicBlock *DestBB = BI->getSuccessor(0);
617 if (DestBB == BB)
618 return nullptr;
620 if (!canMergeBlocks(BB, DestBB))
621 DestBB = nullptr;
623 return DestBB;
626 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
627 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
628 /// edges in ways that are non-optimal for isel. Start by eliminating these
629 /// blocks so we can split them the way we want them.
630 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
631 SmallPtrSet<BasicBlock *, 16> Preheaders;
632 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
633 while (!LoopList.empty()) {
634 Loop *L = LoopList.pop_back_val();
635 LoopList.insert(LoopList.end(), L->begin(), L->end());
636 if (BasicBlock *Preheader = L->getLoopPreheader())
637 Preheaders.insert(Preheader);
640 bool MadeChange = false;
641 // Copy blocks into a temporary array to avoid iterator invalidation issues
642 // as we remove them.
643 // Note that this intentionally skips the entry block.
644 SmallVector<WeakTrackingVH, 16> Blocks;
645 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
646 Blocks.push_back(&Block);
648 for (auto &Block : Blocks) {
649 BasicBlock *BB = cast_or_null<BasicBlock>(Block);
650 if (!BB)
651 continue;
652 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
653 if (!DestBB ||
654 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
655 continue;
657 eliminateMostlyEmptyBlock(BB);
658 MadeChange = true;
660 return MadeChange;
663 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
664 BasicBlock *DestBB,
665 bool isPreheader) {
666 // Do not delete loop preheaders if doing so would create a critical edge.
667 // Loop preheaders can be good locations to spill registers. If the
668 // preheader is deleted and we create a critical edge, registers may be
669 // spilled in the loop body instead.
670 if (!DisablePreheaderProtect && isPreheader &&
671 !(BB->getSinglePredecessor() &&
672 BB->getSinglePredecessor()->getSingleSuccessor()))
673 return false;
675 // Skip merging if the block's successor is also a successor to any callbr
676 // that leads to this block.
677 // FIXME: Is this really needed? Is this a correctness issue?
678 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
679 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
680 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
681 if (DestBB == CBI->getSuccessor(i))
682 return false;
685 // Try to skip merging if the unique predecessor of BB is terminated by a
686 // switch or indirect branch instruction, and BB is used as an incoming block
687 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
688 // add COPY instructions in the predecessor of BB instead of BB (if it is not
689 // merged). Note that the critical edge created by merging such blocks wont be
690 // split in MachineSink because the jump table is not analyzable. By keeping
691 // such empty block (BB), ISel will place COPY instructions in BB, not in the
692 // predecessor of BB.
693 BasicBlock *Pred = BB->getUniquePredecessor();
694 if (!Pred ||
695 !(isa<SwitchInst>(Pred->getTerminator()) ||
696 isa<IndirectBrInst>(Pred->getTerminator())))
697 return true;
699 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
700 return true;
702 // We use a simple cost heuristic which determine skipping merging is
703 // profitable if the cost of skipping merging is less than the cost of
704 // merging : Cost(skipping merging) < Cost(merging BB), where the
705 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
706 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
707 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
708 // Freq(Pred) / Freq(BB) > 2.
709 // Note that if there are multiple empty blocks sharing the same incoming
710 // value for the PHIs in the DestBB, we consider them together. In such
711 // case, Cost(merging BB) will be the sum of their frequencies.
713 if (!isa<PHINode>(DestBB->begin()))
714 return true;
716 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
718 // Find all other incoming blocks from which incoming values of all PHIs in
719 // DestBB are the same as the ones from BB.
720 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
721 ++PI) {
722 BasicBlock *DestBBPred = *PI;
723 if (DestBBPred == BB)
724 continue;
726 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
727 return DestPN.getIncomingValueForBlock(BB) ==
728 DestPN.getIncomingValueForBlock(DestBBPred);
730 SameIncomingValueBBs.insert(DestBBPred);
733 // See if all BB's incoming values are same as the value from Pred. In this
734 // case, no reason to skip merging because COPYs are expected to be place in
735 // Pred already.
736 if (SameIncomingValueBBs.count(Pred))
737 return true;
739 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
740 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
742 for (auto SameValueBB : SameIncomingValueBBs)
743 if (SameValueBB->getUniquePredecessor() == Pred &&
744 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
745 BBFreq += BFI->getBlockFreq(SameValueBB);
747 return PredFreq.getFrequency() <=
748 BBFreq.getFrequency() * FreqRatioToSkipMerge;
751 /// Return true if we can merge BB into DestBB if there is a single
752 /// unconditional branch between them, and BB contains no other non-phi
753 /// instructions.
754 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
755 const BasicBlock *DestBB) const {
756 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
757 // the successor. If there are more complex condition (e.g. preheaders),
758 // don't mess around with them.
759 for (const PHINode &PN : BB->phis()) {
760 for (const User *U : PN.users()) {
761 const Instruction *UI = cast<Instruction>(U);
762 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
763 return false;
764 // If User is inside DestBB block and it is a PHINode then check
765 // incoming value. If incoming value is not from BB then this is
766 // a complex condition (e.g. preheaders) we want to avoid here.
767 if (UI->getParent() == DestBB) {
768 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
769 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
770 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
771 if (Insn && Insn->getParent() == BB &&
772 Insn->getParent() != UPN->getIncomingBlock(I))
773 return false;
779 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
780 // and DestBB may have conflicting incoming values for the block. If so, we
781 // can't merge the block.
782 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
783 if (!DestBBPN) return true; // no conflict.
785 // Collect the preds of BB.
786 SmallPtrSet<const BasicBlock*, 16> BBPreds;
787 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
788 // It is faster to get preds from a PHI than with pred_iterator.
789 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
790 BBPreds.insert(BBPN->getIncomingBlock(i));
791 } else {
792 BBPreds.insert(pred_begin(BB), pred_end(BB));
795 // Walk the preds of DestBB.
796 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
797 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
798 if (BBPreds.count(Pred)) { // Common predecessor?
799 for (const PHINode &PN : DestBB->phis()) {
800 const Value *V1 = PN.getIncomingValueForBlock(Pred);
801 const Value *V2 = PN.getIncomingValueForBlock(BB);
803 // If V2 is a phi node in BB, look up what the mapped value will be.
804 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
805 if (V2PN->getParent() == BB)
806 V2 = V2PN->getIncomingValueForBlock(Pred);
808 // If there is a conflict, bail out.
809 if (V1 != V2) return false;
814 return true;
817 /// Eliminate a basic block that has only phi's and an unconditional branch in
818 /// it.
819 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
820 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
821 BasicBlock *DestBB = BI->getSuccessor(0);
823 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
824 << *BB << *DestBB);
826 // If the destination block has a single pred, then this is a trivial edge,
827 // just collapse it.
828 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
829 if (SinglePred != DestBB) {
830 assert(SinglePred == BB &&
831 "Single predecessor not the same as predecessor");
832 // Merge DestBB into SinglePred/BB and delete it.
833 MergeBlockIntoPredecessor(DestBB);
834 // Note: BB(=SinglePred) will not be deleted on this path.
835 // DestBB(=its single successor) is the one that was deleted.
836 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
837 return;
841 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
842 // to handle the new incoming edges it is about to have.
843 for (PHINode &PN : DestBB->phis()) {
844 // Remove the incoming value for BB, and remember it.
845 Value *InVal = PN.removeIncomingValue(BB, false);
847 // Two options: either the InVal is a phi node defined in BB or it is some
848 // value that dominates BB.
849 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
850 if (InValPhi && InValPhi->getParent() == BB) {
851 // Add all of the input values of the input PHI as inputs of this phi.
852 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
853 PN.addIncoming(InValPhi->getIncomingValue(i),
854 InValPhi->getIncomingBlock(i));
855 } else {
856 // Otherwise, add one instance of the dominating value for each edge that
857 // we will be adding.
858 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
859 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
860 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
861 } else {
862 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
863 PN.addIncoming(InVal, *PI);
868 // The PHIs are now updated, change everything that refers to BB to use
869 // DestBB and remove BB.
870 BB->replaceAllUsesWith(DestBB);
871 BB->eraseFromParent();
872 ++NumBlocksElim;
874 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
877 // Computes a map of base pointer relocation instructions to corresponding
878 // derived pointer relocation instructions given a vector of all relocate calls
879 static void computeBaseDerivedRelocateMap(
880 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
881 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
882 &RelocateInstMap) {
883 // Collect information in two maps: one primarily for locating the base object
884 // while filling the second map; the second map is the final structure holding
885 // a mapping between Base and corresponding Derived relocate calls
886 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
887 for (auto *ThisRelocate : AllRelocateCalls) {
888 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
889 ThisRelocate->getDerivedPtrIndex());
890 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
892 for (auto &Item : RelocateIdxMap) {
893 std::pair<unsigned, unsigned> Key = Item.first;
894 if (Key.first == Key.second)
895 // Base relocation: nothing to insert
896 continue;
898 GCRelocateInst *I = Item.second;
899 auto BaseKey = std::make_pair(Key.first, Key.first);
901 // We're iterating over RelocateIdxMap so we cannot modify it.
902 auto MaybeBase = RelocateIdxMap.find(BaseKey);
903 if (MaybeBase == RelocateIdxMap.end())
904 // TODO: We might want to insert a new base object relocate and gep off
905 // that, if there are enough derived object relocates.
906 continue;
908 RelocateInstMap[MaybeBase->second].push_back(I);
912 // Accepts a GEP and extracts the operands into a vector provided they're all
913 // small integer constants
914 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
915 SmallVectorImpl<Value *> &OffsetV) {
916 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
917 // Only accept small constant integer operands
918 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
919 if (!Op || Op->getZExtValue() > 20)
920 return false;
923 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
924 OffsetV.push_back(GEP->getOperand(i));
925 return true;
928 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
929 // replace, computes a replacement, and affects it.
930 static bool
931 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
932 const SmallVectorImpl<GCRelocateInst *> &Targets) {
933 bool MadeChange = false;
934 // We must ensure the relocation of derived pointer is defined after
935 // relocation of base pointer. If we find a relocation corresponding to base
936 // defined earlier than relocation of base then we move relocation of base
937 // right before found relocation. We consider only relocation in the same
938 // basic block as relocation of base. Relocations from other basic block will
939 // be skipped by optimization and we do not care about them.
940 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
941 &*R != RelocatedBase; ++R)
942 if (auto RI = dyn_cast<GCRelocateInst>(R))
943 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
944 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
945 RelocatedBase->moveBefore(RI);
946 break;
949 for (GCRelocateInst *ToReplace : Targets) {
950 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
951 "Not relocating a derived object of the original base object");
952 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
953 // A duplicate relocate call. TODO: coalesce duplicates.
954 continue;
957 if (RelocatedBase->getParent() != ToReplace->getParent()) {
958 // Base and derived relocates are in different basic blocks.
959 // In this case transform is only valid when base dominates derived
960 // relocate. However it would be too expensive to check dominance
961 // for each such relocate, so we skip the whole transformation.
962 continue;
965 Value *Base = ToReplace->getBasePtr();
966 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
967 if (!Derived || Derived->getPointerOperand() != Base)
968 continue;
970 SmallVector<Value *, 2> OffsetV;
971 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
972 continue;
974 // Create a Builder and replace the target callsite with a gep
975 assert(RelocatedBase->getNextNode() &&
976 "Should always have one since it's not a terminator");
978 // Insert after RelocatedBase
979 IRBuilder<> Builder(RelocatedBase->getNextNode());
980 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
982 // If gc_relocate does not match the actual type, cast it to the right type.
983 // In theory, there must be a bitcast after gc_relocate if the type does not
984 // match, and we should reuse it to get the derived pointer. But it could be
985 // cases like this:
986 // bb1:
987 // ...
988 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
989 // br label %merge
991 // bb2:
992 // ...
993 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
994 // br label %merge
996 // merge:
997 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
998 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1000 // In this case, we can not find the bitcast any more. So we insert a new bitcast
1001 // no matter there is already one or not. In this way, we can handle all cases, and
1002 // the extra bitcast should be optimized away in later passes.
1003 Value *ActualRelocatedBase = RelocatedBase;
1004 if (RelocatedBase->getType() != Base->getType()) {
1005 ActualRelocatedBase =
1006 Builder.CreateBitCast(RelocatedBase, Base->getType());
1008 Value *Replacement = Builder.CreateGEP(
1009 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1010 Replacement->takeName(ToReplace);
1011 // If the newly generated derived pointer's type does not match the original derived
1012 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1013 Value *ActualReplacement = Replacement;
1014 if (Replacement->getType() != ToReplace->getType()) {
1015 ActualReplacement =
1016 Builder.CreateBitCast(Replacement, ToReplace->getType());
1018 ToReplace->replaceAllUsesWith(ActualReplacement);
1019 ToReplace->eraseFromParent();
1021 MadeChange = true;
1023 return MadeChange;
1026 // Turns this:
1028 // %base = ...
1029 // %ptr = gep %base + 15
1030 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1031 // %base' = relocate(%tok, i32 4, i32 4)
1032 // %ptr' = relocate(%tok, i32 4, i32 5)
1033 // %val = load %ptr'
1035 // into this:
1037 // %base = ...
1038 // %ptr = gep %base + 15
1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1040 // %base' = gc.relocate(%tok, i32 4, i32 4)
1041 // %ptr' = gep %base' + 15
1042 // %val = load %ptr'
1043 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1044 bool MadeChange = false;
1045 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1047 for (auto *U : I.users())
1048 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1049 // Collect all the relocate calls associated with a statepoint
1050 AllRelocateCalls.push_back(Relocate);
1052 // We need atleast one base pointer relocation + one derived pointer
1053 // relocation to mangle
1054 if (AllRelocateCalls.size() < 2)
1055 return false;
1057 // RelocateInstMap is a mapping from the base relocate instruction to the
1058 // corresponding derived relocate instructions
1059 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1060 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1061 if (RelocateInstMap.empty())
1062 return false;
1064 for (auto &Item : RelocateInstMap)
1065 // Item.first is the RelocatedBase to offset against
1066 // Item.second is the vector of Targets to replace
1067 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1068 return MadeChange;
1071 /// Sink the specified cast instruction into its user blocks.
1072 static bool SinkCast(CastInst *CI) {
1073 BasicBlock *DefBB = CI->getParent();
1075 /// InsertedCasts - Only insert a cast in each block once.
1076 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1078 bool MadeChange = false;
1079 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1080 UI != E; ) {
1081 Use &TheUse = UI.getUse();
1082 Instruction *User = cast<Instruction>(*UI);
1084 // Figure out which BB this cast is used in. For PHI's this is the
1085 // appropriate predecessor block.
1086 BasicBlock *UserBB = User->getParent();
1087 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1088 UserBB = PN->getIncomingBlock(TheUse);
1091 // Preincrement use iterator so we don't invalidate it.
1092 ++UI;
1094 // The first insertion point of a block containing an EH pad is after the
1095 // pad. If the pad is the user, we cannot sink the cast past the pad.
1096 if (User->isEHPad())
1097 continue;
1099 // If the block selected to receive the cast is an EH pad that does not
1100 // allow non-PHI instructions before the terminator, we can't sink the
1101 // cast.
1102 if (UserBB->getTerminator()->isEHPad())
1103 continue;
1105 // If this user is in the same block as the cast, don't change the cast.
1106 if (UserBB == DefBB) continue;
1108 // If we have already inserted a cast into this block, use it.
1109 CastInst *&InsertedCast = InsertedCasts[UserBB];
1111 if (!InsertedCast) {
1112 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1113 assert(InsertPt != UserBB->end());
1114 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1115 CI->getType(), "", &*InsertPt);
1116 InsertedCast->setDebugLoc(CI->getDebugLoc());
1119 // Replace a use of the cast with a use of the new cast.
1120 TheUse = InsertedCast;
1121 MadeChange = true;
1122 ++NumCastUses;
1125 // If we removed all uses, nuke the cast.
1126 if (CI->use_empty()) {
1127 salvageDebugInfo(*CI);
1128 CI->eraseFromParent();
1129 MadeChange = true;
1132 return MadeChange;
1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1137 /// reduce the number of virtual registers that must be created and coalesced.
1139 /// Return true if any changes are made.
1140 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1141 const DataLayout &DL) {
1142 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1143 // than sinking only nop casts, but is helpful on some platforms.
1144 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1145 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1146 ASC->getDestAddressSpace()))
1147 return false;
1150 // If this is a noop copy,
1151 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1152 EVT DstVT = TLI.getValueType(DL, CI->getType());
1154 // This is an fp<->int conversion?
1155 if (SrcVT.isInteger() != DstVT.isInteger())
1156 return false;
1158 // If this is an extension, it will be a zero or sign extension, which
1159 // isn't a noop.
1160 if (SrcVT.bitsLT(DstVT)) return false;
1162 // If these values will be promoted, find out what they will be promoted
1163 // to. This helps us consider truncates on PPC as noop copies when they
1164 // are.
1165 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1166 TargetLowering::TypePromoteInteger)
1167 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1168 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1169 TargetLowering::TypePromoteInteger)
1170 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1172 // If, after promotion, these are the same types, this is a noop copy.
1173 if (SrcVT != DstVT)
1174 return false;
1176 return SinkCast(CI);
1179 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1180 CmpInst *Cmp,
1181 Intrinsic::ID IID) {
1182 if (BO->getParent() != Cmp->getParent()) {
1183 // We used to use a dominator tree here to allow multi-block optimization.
1184 // But that was problematic because:
1185 // 1. It could cause a perf regression by hoisting the math op into the
1186 // critical path.
1187 // 2. It could cause a perf regression by creating a value that was live
1188 // across multiple blocks and increasing register pressure.
1189 // 3. Use of a dominator tree could cause large compile-time regression.
1190 // This is because we recompute the DT on every change in the main CGP
1191 // run-loop. The recomputing is probably unnecessary in many cases, so if
1192 // that was fixed, using a DT here would be ok.
1193 return false;
1196 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1197 Value *Arg0 = BO->getOperand(0);
1198 Value *Arg1 = BO->getOperand(1);
1199 if (BO->getOpcode() == Instruction::Add &&
1200 IID == Intrinsic::usub_with_overflow) {
1201 assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1202 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1205 // Insert at the first instruction of the pair.
1206 Instruction *InsertPt = nullptr;
1207 for (Instruction &Iter : *Cmp->getParent()) {
1208 if (&Iter == BO || &Iter == Cmp) {
1209 InsertPt = &Iter;
1210 break;
1213 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1215 IRBuilder<> Builder(InsertPt);
1216 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1217 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1218 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1219 BO->replaceAllUsesWith(Math);
1220 Cmp->replaceAllUsesWith(OV);
1221 BO->eraseFromParent();
1222 Cmp->eraseFromParent();
1223 return true;
1226 /// Match special-case patterns that check for unsigned add overflow.
1227 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1228 BinaryOperator *&Add) {
1229 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1230 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1231 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1233 // We are not expecting non-canonical/degenerate code. Just bail out.
1234 if (isa<Constant>(A))
1235 return false;
1237 ICmpInst::Predicate Pred = Cmp->getPredicate();
1238 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1239 B = ConstantInt::get(B->getType(), 1);
1240 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1241 B = ConstantInt::get(B->getType(), -1);
1242 else
1243 return false;
1245 // Check the users of the variable operand of the compare looking for an add
1246 // with the adjusted constant.
1247 for (User *U : A->users()) {
1248 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1249 Add = cast<BinaryOperator>(U);
1250 return true;
1253 return false;
1256 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1257 /// intrinsic. Return true if any changes were made.
1258 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1259 bool &ModifiedDT) {
1260 Value *A, *B;
1261 BinaryOperator *Add;
1262 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1263 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1264 return false;
1266 if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1267 TLI->getValueType(*DL, Add->getType())))
1268 return false;
1270 // We don't want to move around uses of condition values this late, so we
1271 // check if it is legal to create the call to the intrinsic in the basic
1272 // block containing the icmp.
1273 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1274 return false;
1276 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
1277 return false;
1279 // Reset callers - do not crash by iterating over a dead instruction.
1280 ModifiedDT = true;
1281 return true;
1284 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1285 bool &ModifiedDT) {
1286 // We are not expecting non-canonical/degenerate code. Just bail out.
1287 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1288 if (isa<Constant>(A) && isa<Constant>(B))
1289 return false;
1291 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1292 ICmpInst::Predicate Pred = Cmp->getPredicate();
1293 if (Pred == ICmpInst::ICMP_UGT) {
1294 std::swap(A, B);
1295 Pred = ICmpInst::ICMP_ULT;
1297 // Convert special-case: (A == 0) is the same as (A u< 1).
1298 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1299 B = ConstantInt::get(B->getType(), 1);
1300 Pred = ICmpInst::ICMP_ULT;
1302 // Convert special-case: (A != 0) is the same as (0 u< A).
1303 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1304 std::swap(A, B);
1305 Pred = ICmpInst::ICMP_ULT;
1307 if (Pred != ICmpInst::ICMP_ULT)
1308 return false;
1310 // Walk the users of a variable operand of a compare looking for a subtract or
1311 // add with that same operand. Also match the 2nd operand of the compare to
1312 // the add/sub, but that may be a negated constant operand of an add.
1313 Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1314 BinaryOperator *Sub = nullptr;
1315 for (User *U : CmpVariableOperand->users()) {
1316 // A - B, A u< B --> usubo(A, B)
1317 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1318 Sub = cast<BinaryOperator>(U);
1319 break;
1322 // A + (-C), A u< C (canonicalized form of (sub A, C))
1323 const APInt *CmpC, *AddC;
1324 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1325 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1326 Sub = cast<BinaryOperator>(U);
1327 break;
1330 if (!Sub)
1331 return false;
1333 if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1334 TLI->getValueType(*DL, Sub->getType())))
1335 return false;
1337 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
1338 return false;
1340 // Reset callers - do not crash by iterating over a dead instruction.
1341 ModifiedDT = true;
1342 return true;
1345 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1346 /// registers that must be created and coalesced. This is a clear win except on
1347 /// targets with multiple condition code registers (PowerPC), where it might
1348 /// lose; some adjustment may be wanted there.
1350 /// Return true if any changes are made.
1351 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1352 if (TLI.hasMultipleConditionRegisters())
1353 return false;
1355 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1356 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1357 return false;
1359 // Only insert a cmp in each block once.
1360 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1362 bool MadeChange = false;
1363 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1364 UI != E; ) {
1365 Use &TheUse = UI.getUse();
1366 Instruction *User = cast<Instruction>(*UI);
1368 // Preincrement use iterator so we don't invalidate it.
1369 ++UI;
1371 // Don't bother for PHI nodes.
1372 if (isa<PHINode>(User))
1373 continue;
1375 // Figure out which BB this cmp is used in.
1376 BasicBlock *UserBB = User->getParent();
1377 BasicBlock *DefBB = Cmp->getParent();
1379 // If this user is in the same block as the cmp, don't change the cmp.
1380 if (UserBB == DefBB) continue;
1382 // If we have already inserted a cmp into this block, use it.
1383 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1385 if (!InsertedCmp) {
1386 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1387 assert(InsertPt != UserBB->end());
1388 InsertedCmp =
1389 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1390 Cmp->getOperand(0), Cmp->getOperand(1), "",
1391 &*InsertPt);
1392 // Propagate the debug info.
1393 InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1396 // Replace a use of the cmp with a use of the new cmp.
1397 TheUse = InsertedCmp;
1398 MadeChange = true;
1399 ++NumCmpUses;
1402 // If we removed all uses, nuke the cmp.
1403 if (Cmp->use_empty()) {
1404 Cmp->eraseFromParent();
1405 MadeChange = true;
1408 return MadeChange;
1411 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1412 if (sinkCmpExpression(Cmp, *TLI))
1413 return true;
1415 if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1416 return true;
1418 if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1419 return true;
1421 return false;
1424 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1425 /// used in a compare to allow isel to generate better code for targets where
1426 /// this operation can be combined.
1428 /// Return true if any changes are made.
1429 static bool sinkAndCmp0Expression(Instruction *AndI,
1430 const TargetLowering &TLI,
1431 SetOfInstrs &InsertedInsts) {
1432 // Double-check that we're not trying to optimize an instruction that was
1433 // already optimized by some other part of this pass.
1434 assert(!InsertedInsts.count(AndI) &&
1435 "Attempting to optimize already optimized and instruction");
1436 (void) InsertedInsts;
1438 // Nothing to do for single use in same basic block.
1439 if (AndI->hasOneUse() &&
1440 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1441 return false;
1443 // Try to avoid cases where sinking/duplicating is likely to increase register
1444 // pressure.
1445 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1446 !isa<ConstantInt>(AndI->getOperand(1)) &&
1447 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1448 return false;
1450 for (auto *U : AndI->users()) {
1451 Instruction *User = cast<Instruction>(U);
1453 // Only sink 'and' feeding icmp with 0.
1454 if (!isa<ICmpInst>(User))
1455 return false;
1457 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1458 if (!CmpC || !CmpC->isZero())
1459 return false;
1462 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1463 return false;
1465 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1466 LLVM_DEBUG(AndI->getParent()->dump());
1468 // Push the 'and' into the same block as the icmp 0. There should only be
1469 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1470 // others, so we don't need to keep track of which BBs we insert into.
1471 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1472 UI != E; ) {
1473 Use &TheUse = UI.getUse();
1474 Instruction *User = cast<Instruction>(*UI);
1476 // Preincrement use iterator so we don't invalidate it.
1477 ++UI;
1479 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1481 // Keep the 'and' in the same place if the use is already in the same block.
1482 Instruction *InsertPt =
1483 User->getParent() == AndI->getParent() ? AndI : User;
1484 Instruction *InsertedAnd =
1485 BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1486 AndI->getOperand(1), "", InsertPt);
1487 // Propagate the debug info.
1488 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1490 // Replace a use of the 'and' with a use of the new 'and'.
1491 TheUse = InsertedAnd;
1492 ++NumAndUses;
1493 LLVM_DEBUG(User->getParent()->dump());
1496 // We removed all uses, nuke the and.
1497 AndI->eraseFromParent();
1498 return true;
1501 /// Check if the candidates could be combined with a shift instruction, which
1502 /// includes:
1503 /// 1. Truncate instruction
1504 /// 2. And instruction and the imm is a mask of the low bits:
1505 /// imm & (imm+1) == 0
1506 static bool isExtractBitsCandidateUse(Instruction *User) {
1507 if (!isa<TruncInst>(User)) {
1508 if (User->getOpcode() != Instruction::And ||
1509 !isa<ConstantInt>(User->getOperand(1)))
1510 return false;
1512 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1514 if ((Cimm & (Cimm + 1)).getBoolValue())
1515 return false;
1517 return true;
1520 /// Sink both shift and truncate instruction to the use of truncate's BB.
1521 static bool
1522 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1523 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1524 const TargetLowering &TLI, const DataLayout &DL) {
1525 BasicBlock *UserBB = User->getParent();
1526 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1527 auto *TruncI = cast<TruncInst>(User);
1528 bool MadeChange = false;
1530 for (Value::user_iterator TruncUI = TruncI->user_begin(),
1531 TruncE = TruncI->user_end();
1532 TruncUI != TruncE;) {
1534 Use &TruncTheUse = TruncUI.getUse();
1535 Instruction *TruncUser = cast<Instruction>(*TruncUI);
1536 // Preincrement use iterator so we don't invalidate it.
1538 ++TruncUI;
1540 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1541 if (!ISDOpcode)
1542 continue;
1544 // If the use is actually a legal node, there will not be an
1545 // implicit truncate.
1546 // FIXME: always querying the result type is just an
1547 // approximation; some nodes' legality is determined by the
1548 // operand or other means. There's no good way to find out though.
1549 if (TLI.isOperationLegalOrCustom(
1550 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1551 continue;
1553 // Don't bother for PHI nodes.
1554 if (isa<PHINode>(TruncUser))
1555 continue;
1557 BasicBlock *TruncUserBB = TruncUser->getParent();
1559 if (UserBB == TruncUserBB)
1560 continue;
1562 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1563 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1565 if (!InsertedShift && !InsertedTrunc) {
1566 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1567 assert(InsertPt != TruncUserBB->end());
1568 // Sink the shift
1569 if (ShiftI->getOpcode() == Instruction::AShr)
1570 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1571 "", &*InsertPt);
1572 else
1573 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1574 "", &*InsertPt);
1575 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1577 // Sink the trunc
1578 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1579 TruncInsertPt++;
1580 assert(TruncInsertPt != TruncUserBB->end());
1582 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1583 TruncI->getType(), "", &*TruncInsertPt);
1584 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1586 MadeChange = true;
1588 TruncTheUse = InsertedTrunc;
1591 return MadeChange;
1594 /// Sink the shift *right* instruction into user blocks if the uses could
1595 /// potentially be combined with this shift instruction and generate BitExtract
1596 /// instruction. It will only be applied if the architecture supports BitExtract
1597 /// instruction. Here is an example:
1598 /// BB1:
1599 /// %x.extract.shift = lshr i64 %arg1, 32
1600 /// BB2:
1601 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1602 /// ==>
1604 /// BB2:
1605 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1606 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1608 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1609 /// instruction.
1610 /// Return true if any changes are made.
1611 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1612 const TargetLowering &TLI,
1613 const DataLayout &DL) {
1614 BasicBlock *DefBB = ShiftI->getParent();
1616 /// Only insert instructions in each block once.
1617 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1619 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1621 bool MadeChange = false;
1622 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1623 UI != E;) {
1624 Use &TheUse = UI.getUse();
1625 Instruction *User = cast<Instruction>(*UI);
1626 // Preincrement use iterator so we don't invalidate it.
1627 ++UI;
1629 // Don't bother for PHI nodes.
1630 if (isa<PHINode>(User))
1631 continue;
1633 if (!isExtractBitsCandidateUse(User))
1634 continue;
1636 BasicBlock *UserBB = User->getParent();
1638 if (UserBB == DefBB) {
1639 // If the shift and truncate instruction are in the same BB. The use of
1640 // the truncate(TruncUse) may still introduce another truncate if not
1641 // legal. In this case, we would like to sink both shift and truncate
1642 // instruction to the BB of TruncUse.
1643 // for example:
1644 // BB1:
1645 // i64 shift.result = lshr i64 opnd, imm
1646 // trunc.result = trunc shift.result to i16
1648 // BB2:
1649 // ----> We will have an implicit truncate here if the architecture does
1650 // not have i16 compare.
1651 // cmp i16 trunc.result, opnd2
1653 if (isa<TruncInst>(User) && shiftIsLegal
1654 // If the type of the truncate is legal, no truncate will be
1655 // introduced in other basic blocks.
1657 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1658 MadeChange =
1659 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1661 continue;
1663 // If we have already inserted a shift into this block, use it.
1664 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1666 if (!InsertedShift) {
1667 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1668 assert(InsertPt != UserBB->end());
1670 if (ShiftI->getOpcode() == Instruction::AShr)
1671 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1672 "", &*InsertPt);
1673 else
1674 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1675 "", &*InsertPt);
1676 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1678 MadeChange = true;
1681 // Replace a use of the shift with a use of the new shift.
1682 TheUse = InsertedShift;
1685 // If we removed all uses, or there are none, nuke the shift.
1686 if (ShiftI->use_empty()) {
1687 salvageDebugInfo(*ShiftI);
1688 ShiftI->eraseFromParent();
1689 MadeChange = true;
1692 return MadeChange;
1695 /// If counting leading or trailing zeros is an expensive operation and a zero
1696 /// input is defined, add a check for zero to avoid calling the intrinsic.
1698 /// We want to transform:
1699 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1701 /// into:
1702 /// entry:
1703 /// %cmpz = icmp eq i64 %A, 0
1704 /// br i1 %cmpz, label %cond.end, label %cond.false
1705 /// cond.false:
1706 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1707 /// br label %cond.end
1708 /// cond.end:
1709 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1711 /// If the transform is performed, return true and set ModifiedDT to true.
1712 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1713 const TargetLowering *TLI,
1714 const DataLayout *DL,
1715 bool &ModifiedDT) {
1716 if (!TLI || !DL)
1717 return false;
1719 // If a zero input is undefined, it doesn't make sense to despeculate that.
1720 if (match(CountZeros->getOperand(1), m_One()))
1721 return false;
1723 // If it's cheap to speculate, there's nothing to do.
1724 auto IntrinsicID = CountZeros->getIntrinsicID();
1725 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1726 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1727 return false;
1729 // Only handle legal scalar cases. Anything else requires too much work.
1730 Type *Ty = CountZeros->getType();
1731 unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1732 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1733 return false;
1735 // The intrinsic will be sunk behind a compare against zero and branch.
1736 BasicBlock *StartBlock = CountZeros->getParent();
1737 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1739 // Create another block after the count zero intrinsic. A PHI will be added
1740 // in this block to select the result of the intrinsic or the bit-width
1741 // constant if the input to the intrinsic is zero.
1742 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1743 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1745 // Set up a builder to create a compare, conditional branch, and PHI.
1746 IRBuilder<> Builder(CountZeros->getContext());
1747 Builder.SetInsertPoint(StartBlock->getTerminator());
1748 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1750 // Replace the unconditional branch that was created by the first split with
1751 // a compare against zero and a conditional branch.
1752 Value *Zero = Constant::getNullValue(Ty);
1753 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1754 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1755 StartBlock->getTerminator()->eraseFromParent();
1757 // Create a PHI in the end block to select either the output of the intrinsic
1758 // or the bit width of the operand.
1759 Builder.SetInsertPoint(&EndBlock->front());
1760 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1761 CountZeros->replaceAllUsesWith(PN);
1762 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1763 PN->addIncoming(BitWidth, StartBlock);
1764 PN->addIncoming(CountZeros, CallBlock);
1766 // We are explicitly handling the zero case, so we can set the intrinsic's
1767 // undefined zero argument to 'true'. This will also prevent reprocessing the
1768 // intrinsic; we only despeculate when a zero input is defined.
1769 CountZeros->setArgOperand(1, Builder.getTrue());
1770 ModifiedDT = true;
1771 return true;
1774 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1775 BasicBlock *BB = CI->getParent();
1777 // Lower inline assembly if we can.
1778 // If we found an inline asm expession, and if the target knows how to
1779 // lower it to normal LLVM code, do so now.
1780 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1781 if (TLI->ExpandInlineAsm(CI)) {
1782 // Avoid invalidating the iterator.
1783 CurInstIterator = BB->begin();
1784 // Avoid processing instructions out of order, which could cause
1785 // reuse before a value is defined.
1786 SunkAddrs.clear();
1787 return true;
1789 // Sink address computing for memory operands into the block.
1790 if (optimizeInlineAsmInst(CI))
1791 return true;
1794 // Align the pointer arguments to this call if the target thinks it's a good
1795 // idea
1796 unsigned MinSize, PrefAlign;
1797 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1798 for (auto &Arg : CI->arg_operands()) {
1799 // We want to align both objects whose address is used directly and
1800 // objects whose address is used in casts and GEPs, though it only makes
1801 // sense for GEPs if the offset is a multiple of the desired alignment and
1802 // if size - offset meets the size threshold.
1803 if (!Arg->getType()->isPointerTy())
1804 continue;
1805 APInt Offset(DL->getIndexSizeInBits(
1806 cast<PointerType>(Arg->getType())->getAddressSpace()),
1808 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1809 uint64_t Offset2 = Offset.getLimitedValue();
1810 if ((Offset2 & (PrefAlign-1)) != 0)
1811 continue;
1812 AllocaInst *AI;
1813 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1814 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1815 AI->setAlignment(MaybeAlign(PrefAlign));
1816 // Global variables can only be aligned if they are defined in this
1817 // object (i.e. they are uniquely initialized in this object), and
1818 // over-aligning global variables that have an explicit section is
1819 // forbidden.
1820 GlobalVariable *GV;
1821 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1822 GV->getPointerAlignment(*DL) < PrefAlign &&
1823 DL->getTypeAllocSize(GV->getValueType()) >=
1824 MinSize + Offset2)
1825 GV->setAlignment(MaybeAlign(PrefAlign));
1827 // If this is a memcpy (or similar) then we may be able to improve the
1828 // alignment
1829 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1830 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1831 if (DestAlign > MI->getDestAlignment())
1832 MI->setDestAlignment(DestAlign);
1833 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1834 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1835 if (SrcAlign > MTI->getSourceAlignment())
1836 MTI->setSourceAlignment(SrcAlign);
1841 // If we have a cold call site, try to sink addressing computation into the
1842 // cold block. This interacts with our handling for loads and stores to
1843 // ensure that we can fold all uses of a potential addressing computation
1844 // into their uses. TODO: generalize this to work over profiling data
1845 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1846 for (auto &Arg : CI->arg_operands()) {
1847 if (!Arg->getType()->isPointerTy())
1848 continue;
1849 unsigned AS = Arg->getType()->getPointerAddressSpace();
1850 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1853 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1854 if (II) {
1855 switch (II->getIntrinsicID()) {
1856 default: break;
1857 case Intrinsic::experimental_widenable_condition: {
1858 // Give up on future widening oppurtunties so that we can fold away dead
1859 // paths and merge blocks before going into block-local instruction
1860 // selection.
1861 if (II->use_empty()) {
1862 II->eraseFromParent();
1863 return true;
1865 Constant *RetVal = ConstantInt::getTrue(II->getContext());
1866 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1867 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1869 return true;
1871 case Intrinsic::objectsize:
1872 llvm_unreachable("llvm.objectsize.* should have been lowered already");
1873 case Intrinsic::is_constant:
1874 llvm_unreachable("llvm.is.constant.* should have been lowered already");
1875 case Intrinsic::aarch64_stlxr:
1876 case Intrinsic::aarch64_stxr: {
1877 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1878 if (!ExtVal || !ExtVal->hasOneUse() ||
1879 ExtVal->getParent() == CI->getParent())
1880 return false;
1881 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1882 ExtVal->moveBefore(CI);
1883 // Mark this instruction as "inserted by CGP", so that other
1884 // optimizations don't touch it.
1885 InsertedInsts.insert(ExtVal);
1886 return true;
1889 case Intrinsic::launder_invariant_group:
1890 case Intrinsic::strip_invariant_group: {
1891 Value *ArgVal = II->getArgOperand(0);
1892 auto it = LargeOffsetGEPMap.find(II);
1893 if (it != LargeOffsetGEPMap.end()) {
1894 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1895 // Make sure not to have to deal with iterator invalidation
1896 // after possibly adding ArgVal to LargeOffsetGEPMap.
1897 auto GEPs = std::move(it->second);
1898 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1899 LargeOffsetGEPMap.erase(II);
1902 II->replaceAllUsesWith(ArgVal);
1903 II->eraseFromParent();
1904 return true;
1906 case Intrinsic::cttz:
1907 case Intrinsic::ctlz:
1908 // If counting zeros is expensive, try to avoid it.
1909 return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1912 if (TLI) {
1913 SmallVector<Value*, 2> PtrOps;
1914 Type *AccessTy;
1915 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1916 while (!PtrOps.empty()) {
1917 Value *PtrVal = PtrOps.pop_back_val();
1918 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1919 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1920 return true;
1925 // From here on out we're working with named functions.
1926 if (!CI->getCalledFunction()) return false;
1928 // Lower all default uses of _chk calls. This is very similar
1929 // to what InstCombineCalls does, but here we are only lowering calls
1930 // to fortified library functions (e.g. __memcpy_chk) that have the default
1931 // "don't know" as the objectsize. Anything else should be left alone.
1932 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1933 if (Value *V = Simplifier.optimizeCall(CI)) {
1934 CI->replaceAllUsesWith(V);
1935 CI->eraseFromParent();
1936 return true;
1939 return false;
1942 /// Look for opportunities to duplicate return instructions to the predecessor
1943 /// to enable tail call optimizations. The case it is currently looking for is:
1944 /// @code
1945 /// bb0:
1946 /// %tmp0 = tail call i32 @f0()
1947 /// br label %return
1948 /// bb1:
1949 /// %tmp1 = tail call i32 @f1()
1950 /// br label %return
1951 /// bb2:
1952 /// %tmp2 = tail call i32 @f2()
1953 /// br label %return
1954 /// return:
1955 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1956 /// ret i32 %retval
1957 /// @endcode
1959 /// =>
1961 /// @code
1962 /// bb0:
1963 /// %tmp0 = tail call i32 @f0()
1964 /// ret i32 %tmp0
1965 /// bb1:
1966 /// %tmp1 = tail call i32 @f1()
1967 /// ret i32 %tmp1
1968 /// bb2:
1969 /// %tmp2 = tail call i32 @f2()
1970 /// ret i32 %tmp2
1971 /// @endcode
1972 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
1973 if (!TLI)
1974 return false;
1976 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1977 if (!RetI)
1978 return false;
1980 PHINode *PN = nullptr;
1981 BitCastInst *BCI = nullptr;
1982 Value *V = RetI->getReturnValue();
1983 if (V) {
1984 BCI = dyn_cast<BitCastInst>(V);
1985 if (BCI)
1986 V = BCI->getOperand(0);
1988 PN = dyn_cast<PHINode>(V);
1989 if (!PN)
1990 return false;
1993 if (PN && PN->getParent() != BB)
1994 return false;
1996 // Make sure there are no instructions between the PHI and return, or that the
1997 // return is the first instruction in the block.
1998 if (PN) {
1999 BasicBlock::iterator BI = BB->begin();
2000 // Skip over debug and the bitcast.
2001 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2002 if (&*BI != RetI)
2003 return false;
2004 } else {
2005 BasicBlock::iterator BI = BB->begin();
2006 while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2007 if (&*BI != RetI)
2008 return false;
2011 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2012 /// call.
2013 const Function *F = BB->getParent();
2014 SmallVector<BasicBlock*, 4> TailCallBBs;
2015 if (PN) {
2016 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2017 // Look through bitcasts.
2018 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2019 CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2020 BasicBlock *PredBB = PN->getIncomingBlock(I);
2021 // Make sure the phi value is indeed produced by the tail call.
2022 if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2023 TLI->mayBeEmittedAsTailCall(CI) &&
2024 attributesPermitTailCall(F, CI, RetI, *TLI))
2025 TailCallBBs.push_back(PredBB);
2027 } else {
2028 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2029 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2030 if (!VisitedBBs.insert(*PI).second)
2031 continue;
2033 BasicBlock::InstListType &InstList = (*PI)->getInstList();
2034 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2035 BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2036 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2037 if (RI == RE)
2038 continue;
2040 CallInst *CI = dyn_cast<CallInst>(&*RI);
2041 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2042 attributesPermitTailCall(F, CI, RetI, *TLI))
2043 TailCallBBs.push_back(*PI);
2047 bool Changed = false;
2048 for (auto const &TailCallBB : TailCallBBs) {
2049 // Make sure the call instruction is followed by an unconditional branch to
2050 // the return block.
2051 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2052 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2053 continue;
2055 // Duplicate the return into TailCallBB.
2056 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2057 ModifiedDT = Changed = true;
2058 ++NumRetsDup;
2061 // If we eliminated all predecessors of the block, delete the block now.
2062 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2063 BB->eraseFromParent();
2065 return Changed;
2068 //===----------------------------------------------------------------------===//
2069 // Memory Optimization
2070 //===----------------------------------------------------------------------===//
2072 namespace {
2074 /// This is an extended version of TargetLowering::AddrMode
2075 /// which holds actual Value*'s for register values.
2076 struct ExtAddrMode : public TargetLowering::AddrMode {
2077 Value *BaseReg = nullptr;
2078 Value *ScaledReg = nullptr;
2079 Value *OriginalValue = nullptr;
2080 bool InBounds = true;
2082 enum FieldName {
2083 NoField = 0x00,
2084 BaseRegField = 0x01,
2085 BaseGVField = 0x02,
2086 BaseOffsField = 0x04,
2087 ScaledRegField = 0x08,
2088 ScaleField = 0x10,
2089 MultipleFields = 0xff
2093 ExtAddrMode() = default;
2095 void print(raw_ostream &OS) const;
2096 void dump() const;
2098 FieldName compare(const ExtAddrMode &other) {
2099 // First check that the types are the same on each field, as differing types
2100 // is something we can't cope with later on.
2101 if (BaseReg && other.BaseReg &&
2102 BaseReg->getType() != other.BaseReg->getType())
2103 return MultipleFields;
2104 if (BaseGV && other.BaseGV &&
2105 BaseGV->getType() != other.BaseGV->getType())
2106 return MultipleFields;
2107 if (ScaledReg && other.ScaledReg &&
2108 ScaledReg->getType() != other.ScaledReg->getType())
2109 return MultipleFields;
2111 // Conservatively reject 'inbounds' mismatches.
2112 if (InBounds != other.InBounds)
2113 return MultipleFields;
2115 // Check each field to see if it differs.
2116 unsigned Result = NoField;
2117 if (BaseReg != other.BaseReg)
2118 Result |= BaseRegField;
2119 if (BaseGV != other.BaseGV)
2120 Result |= BaseGVField;
2121 if (BaseOffs != other.BaseOffs)
2122 Result |= BaseOffsField;
2123 if (ScaledReg != other.ScaledReg)
2124 Result |= ScaledRegField;
2125 // Don't count 0 as being a different scale, because that actually means
2126 // unscaled (which will already be counted by having no ScaledReg).
2127 if (Scale && other.Scale && Scale != other.Scale)
2128 Result |= ScaleField;
2130 if (countPopulation(Result) > 1)
2131 return MultipleFields;
2132 else
2133 return static_cast<FieldName>(Result);
2136 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2137 // with no offset.
2138 bool isTrivial() {
2139 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2140 // trivial if at most one of these terms is nonzero, except that BaseGV and
2141 // BaseReg both being zero actually means a null pointer value, which we
2142 // consider to be 'non-zero' here.
2143 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2146 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2147 switch (Field) {
2148 default:
2149 return nullptr;
2150 case BaseRegField:
2151 return BaseReg;
2152 case BaseGVField:
2153 return BaseGV;
2154 case ScaledRegField:
2155 return ScaledReg;
2156 case BaseOffsField:
2157 return ConstantInt::get(IntPtrTy, BaseOffs);
2161 void SetCombinedField(FieldName Field, Value *V,
2162 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2163 switch (Field) {
2164 default:
2165 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2166 break;
2167 case ExtAddrMode::BaseRegField:
2168 BaseReg = V;
2169 break;
2170 case ExtAddrMode::BaseGVField:
2171 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2172 // in the BaseReg field.
2173 assert(BaseReg == nullptr);
2174 BaseReg = V;
2175 BaseGV = nullptr;
2176 break;
2177 case ExtAddrMode::ScaledRegField:
2178 ScaledReg = V;
2179 // If we have a mix of scaled and unscaled addrmodes then we want scale
2180 // to be the scale and not zero.
2181 if (!Scale)
2182 for (const ExtAddrMode &AM : AddrModes)
2183 if (AM.Scale) {
2184 Scale = AM.Scale;
2185 break;
2187 break;
2188 case ExtAddrMode::BaseOffsField:
2189 // The offset is no longer a constant, so it goes in ScaledReg with a
2190 // scale of 1.
2191 assert(ScaledReg == nullptr);
2192 ScaledReg = V;
2193 Scale = 1;
2194 BaseOffs = 0;
2195 break;
2200 } // end anonymous namespace
2202 #ifndef NDEBUG
2203 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2204 AM.print(OS);
2205 return OS;
2207 #endif
2209 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2210 void ExtAddrMode::print(raw_ostream &OS) const {
2211 bool NeedPlus = false;
2212 OS << "[";
2213 if (InBounds)
2214 OS << "inbounds ";
2215 if (BaseGV) {
2216 OS << (NeedPlus ? " + " : "")
2217 << "GV:";
2218 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2219 NeedPlus = true;
2222 if (BaseOffs) {
2223 OS << (NeedPlus ? " + " : "")
2224 << BaseOffs;
2225 NeedPlus = true;
2228 if (BaseReg) {
2229 OS << (NeedPlus ? " + " : "")
2230 << "Base:";
2231 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2232 NeedPlus = true;
2234 if (Scale) {
2235 OS << (NeedPlus ? " + " : "")
2236 << Scale << "*";
2237 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2240 OS << ']';
2243 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2244 print(dbgs());
2245 dbgs() << '\n';
2247 #endif
2249 namespace {
2251 /// This class provides transaction based operation on the IR.
2252 /// Every change made through this class is recorded in the internal state and
2253 /// can be undone (rollback) until commit is called.
2254 class TypePromotionTransaction {
2255 /// This represents the common interface of the individual transaction.
2256 /// Each class implements the logic for doing one specific modification on
2257 /// the IR via the TypePromotionTransaction.
2258 class TypePromotionAction {
2259 protected:
2260 /// The Instruction modified.
2261 Instruction *Inst;
2263 public:
2264 /// Constructor of the action.
2265 /// The constructor performs the related action on the IR.
2266 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2268 virtual ~TypePromotionAction() = default;
2270 /// Undo the modification done by this action.
2271 /// When this method is called, the IR must be in the same state as it was
2272 /// before this action was applied.
2273 /// \pre Undoing the action works if and only if the IR is in the exact same
2274 /// state as it was directly after this action was applied.
2275 virtual void undo() = 0;
2277 /// Advocate every change made by this action.
2278 /// When the results on the IR of the action are to be kept, it is important
2279 /// to call this function, otherwise hidden information may be kept forever.
2280 virtual void commit() {
2281 // Nothing to be done, this action is not doing anything.
2285 /// Utility to remember the position of an instruction.
2286 class InsertionHandler {
2287 /// Position of an instruction.
2288 /// Either an instruction:
2289 /// - Is the first in a basic block: BB is used.
2290 /// - Has a previous instruction: PrevInst is used.
2291 union {
2292 Instruction *PrevInst;
2293 BasicBlock *BB;
2294 } Point;
2296 /// Remember whether or not the instruction had a previous instruction.
2297 bool HasPrevInstruction;
2299 public:
2300 /// Record the position of \p Inst.
2301 InsertionHandler(Instruction *Inst) {
2302 BasicBlock::iterator It = Inst->getIterator();
2303 HasPrevInstruction = (It != (Inst->getParent()->begin()));
2304 if (HasPrevInstruction)
2305 Point.PrevInst = &*--It;
2306 else
2307 Point.BB = Inst->getParent();
2310 /// Insert \p Inst at the recorded position.
2311 void insert(Instruction *Inst) {
2312 if (HasPrevInstruction) {
2313 if (Inst->getParent())
2314 Inst->removeFromParent();
2315 Inst->insertAfter(Point.PrevInst);
2316 } else {
2317 Instruction *Position = &*Point.BB->getFirstInsertionPt();
2318 if (Inst->getParent())
2319 Inst->moveBefore(Position);
2320 else
2321 Inst->insertBefore(Position);
2326 /// Move an instruction before another.
2327 class InstructionMoveBefore : public TypePromotionAction {
2328 /// Original position of the instruction.
2329 InsertionHandler Position;
2331 public:
2332 /// Move \p Inst before \p Before.
2333 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2334 : TypePromotionAction(Inst), Position(Inst) {
2335 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2336 << "\n");
2337 Inst->moveBefore(Before);
2340 /// Move the instruction back to its original position.
2341 void undo() override {
2342 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2343 Position.insert(Inst);
2347 /// Set the operand of an instruction with a new value.
2348 class OperandSetter : public TypePromotionAction {
2349 /// Original operand of the instruction.
2350 Value *Origin;
2352 /// Index of the modified instruction.
2353 unsigned Idx;
2355 public:
2356 /// Set \p Idx operand of \p Inst with \p NewVal.
2357 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2358 : TypePromotionAction(Inst), Idx(Idx) {
2359 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2360 << "for:" << *Inst << "\n"
2361 << "with:" << *NewVal << "\n");
2362 Origin = Inst->getOperand(Idx);
2363 Inst->setOperand(Idx, NewVal);
2366 /// Restore the original value of the instruction.
2367 void undo() override {
2368 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2369 << "for: " << *Inst << "\n"
2370 << "with: " << *Origin << "\n");
2371 Inst->setOperand(Idx, Origin);
2375 /// Hide the operands of an instruction.
2376 /// Do as if this instruction was not using any of its operands.
2377 class OperandsHider : public TypePromotionAction {
2378 /// The list of original operands.
2379 SmallVector<Value *, 4> OriginalValues;
2381 public:
2382 /// Remove \p Inst from the uses of the operands of \p Inst.
2383 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2384 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2385 unsigned NumOpnds = Inst->getNumOperands();
2386 OriginalValues.reserve(NumOpnds);
2387 for (unsigned It = 0; It < NumOpnds; ++It) {
2388 // Save the current operand.
2389 Value *Val = Inst->getOperand(It);
2390 OriginalValues.push_back(Val);
2391 // Set a dummy one.
2392 // We could use OperandSetter here, but that would imply an overhead
2393 // that we are not willing to pay.
2394 Inst->setOperand(It, UndefValue::get(Val->getType()));
2398 /// Restore the original list of uses.
2399 void undo() override {
2400 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2401 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2402 Inst->setOperand(It, OriginalValues[It]);
2406 /// Build a truncate instruction.
2407 class TruncBuilder : public TypePromotionAction {
2408 Value *Val;
2410 public:
2411 /// Build a truncate instruction of \p Opnd producing a \p Ty
2412 /// result.
2413 /// trunc Opnd to Ty.
2414 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2415 IRBuilder<> Builder(Opnd);
2416 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2417 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2420 /// Get the built value.
2421 Value *getBuiltValue() { return Val; }
2423 /// Remove the built instruction.
2424 void undo() override {
2425 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2426 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2427 IVal->eraseFromParent();
2431 /// Build a sign extension instruction.
2432 class SExtBuilder : public TypePromotionAction {
2433 Value *Val;
2435 public:
2436 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2437 /// result.
2438 /// sext Opnd to Ty.
2439 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2440 : TypePromotionAction(InsertPt) {
2441 IRBuilder<> Builder(InsertPt);
2442 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2443 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2446 /// Get the built value.
2447 Value *getBuiltValue() { return Val; }
2449 /// Remove the built instruction.
2450 void undo() override {
2451 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2452 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2453 IVal->eraseFromParent();
2457 /// Build a zero extension instruction.
2458 class ZExtBuilder : public TypePromotionAction {
2459 Value *Val;
2461 public:
2462 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2463 /// result.
2464 /// zext Opnd to Ty.
2465 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2466 : TypePromotionAction(InsertPt) {
2467 IRBuilder<> Builder(InsertPt);
2468 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2469 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2472 /// Get the built value.
2473 Value *getBuiltValue() { return Val; }
2475 /// Remove the built instruction.
2476 void undo() override {
2477 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2478 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2479 IVal->eraseFromParent();
2483 /// Mutate an instruction to another type.
2484 class TypeMutator : public TypePromotionAction {
2485 /// Record the original type.
2486 Type *OrigTy;
2488 public:
2489 /// Mutate the type of \p Inst into \p NewTy.
2490 TypeMutator(Instruction *Inst, Type *NewTy)
2491 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2492 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2493 << "\n");
2494 Inst->mutateType(NewTy);
2497 /// Mutate the instruction back to its original type.
2498 void undo() override {
2499 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2500 << "\n");
2501 Inst->mutateType(OrigTy);
2505 /// Replace the uses of an instruction by another instruction.
2506 class UsesReplacer : public TypePromotionAction {
2507 /// Helper structure to keep track of the replaced uses.
2508 struct InstructionAndIdx {
2509 /// The instruction using the instruction.
2510 Instruction *Inst;
2512 /// The index where this instruction is used for Inst.
2513 unsigned Idx;
2515 InstructionAndIdx(Instruction *Inst, unsigned Idx)
2516 : Inst(Inst), Idx(Idx) {}
2519 /// Keep track of the original uses (pair Instruction, Index).
2520 SmallVector<InstructionAndIdx, 4> OriginalUses;
2521 /// Keep track of the debug users.
2522 SmallVector<DbgValueInst *, 1> DbgValues;
2524 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2526 public:
2527 /// Replace all the use of \p Inst by \p New.
2528 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2529 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2530 << "\n");
2531 // Record the original uses.
2532 for (Use &U : Inst->uses()) {
2533 Instruction *UserI = cast<Instruction>(U.getUser());
2534 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2536 // Record the debug uses separately. They are not in the instruction's
2537 // use list, but they are replaced by RAUW.
2538 findDbgValues(DbgValues, Inst);
2540 // Now, we can replace the uses.
2541 Inst->replaceAllUsesWith(New);
2544 /// Reassign the original uses of Inst to Inst.
2545 void undo() override {
2546 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2547 for (use_iterator UseIt = OriginalUses.begin(),
2548 EndIt = OriginalUses.end();
2549 UseIt != EndIt; ++UseIt) {
2550 UseIt->Inst->setOperand(UseIt->Idx, Inst);
2552 // RAUW has replaced all original uses with references to the new value,
2553 // including the debug uses. Since we are undoing the replacements,
2554 // the original debug uses must also be reinstated to maintain the
2555 // correctness and utility of debug value instructions.
2556 for (auto *DVI: DbgValues) {
2557 LLVMContext &Ctx = Inst->getType()->getContext();
2558 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2559 DVI->setOperand(0, MV);
2564 /// Remove an instruction from the IR.
2565 class InstructionRemover : public TypePromotionAction {
2566 /// Original position of the instruction.
2567 InsertionHandler Inserter;
2569 /// Helper structure to hide all the link to the instruction. In other
2570 /// words, this helps to do as if the instruction was removed.
2571 OperandsHider Hider;
2573 /// Keep track of the uses replaced, if any.
2574 UsesReplacer *Replacer = nullptr;
2576 /// Keep track of instructions removed.
2577 SetOfInstrs &RemovedInsts;
2579 public:
2580 /// Remove all reference of \p Inst and optionally replace all its
2581 /// uses with New.
2582 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2583 /// \pre If !Inst->use_empty(), then New != nullptr
2584 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2585 Value *New = nullptr)
2586 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2587 RemovedInsts(RemovedInsts) {
2588 if (New)
2589 Replacer = new UsesReplacer(Inst, New);
2590 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2591 RemovedInsts.insert(Inst);
2592 /// The instructions removed here will be freed after completing
2593 /// optimizeBlock() for all blocks as we need to keep track of the
2594 /// removed instructions during promotion.
2595 Inst->removeFromParent();
2598 ~InstructionRemover() override { delete Replacer; }
2600 /// Resurrect the instruction and reassign it to the proper uses if
2601 /// new value was provided when build this action.
2602 void undo() override {
2603 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2604 Inserter.insert(Inst);
2605 if (Replacer)
2606 Replacer->undo();
2607 Hider.undo();
2608 RemovedInsts.erase(Inst);
2612 public:
2613 /// Restoration point.
2614 /// The restoration point is a pointer to an action instead of an iterator
2615 /// because the iterator may be invalidated but not the pointer.
2616 using ConstRestorationPt = const TypePromotionAction *;
2618 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2619 : RemovedInsts(RemovedInsts) {}
2621 /// Advocate every changes made in that transaction.
2622 void commit();
2624 /// Undo all the changes made after the given point.
2625 void rollback(ConstRestorationPt Point);
2627 /// Get the current restoration point.
2628 ConstRestorationPt getRestorationPoint() const;
2630 /// \name API for IR modification with state keeping to support rollback.
2631 /// @{
2632 /// Same as Instruction::setOperand.
2633 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2635 /// Same as Instruction::eraseFromParent.
2636 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2638 /// Same as Value::replaceAllUsesWith.
2639 void replaceAllUsesWith(Instruction *Inst, Value *New);
2641 /// Same as Value::mutateType.
2642 void mutateType(Instruction *Inst, Type *NewTy);
2644 /// Same as IRBuilder::createTrunc.
2645 Value *createTrunc(Instruction *Opnd, Type *Ty);
2647 /// Same as IRBuilder::createSExt.
2648 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2650 /// Same as IRBuilder::createZExt.
2651 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2653 /// Same as Instruction::moveBefore.
2654 void moveBefore(Instruction *Inst, Instruction *Before);
2655 /// @}
2657 private:
2658 /// The ordered list of actions made so far.
2659 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2661 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2663 SetOfInstrs &RemovedInsts;
2666 } // end anonymous namespace
2668 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2669 Value *NewVal) {
2670 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2671 Inst, Idx, NewVal));
2674 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2675 Value *NewVal) {
2676 Actions.push_back(
2677 std::make_unique<TypePromotionTransaction::InstructionRemover>(
2678 Inst, RemovedInsts, NewVal));
2681 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2682 Value *New) {
2683 Actions.push_back(
2684 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2687 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2688 Actions.push_back(
2689 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2692 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2693 Type *Ty) {
2694 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2695 Value *Val = Ptr->getBuiltValue();
2696 Actions.push_back(std::move(Ptr));
2697 return Val;
2700 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2701 Value *Opnd, Type *Ty) {
2702 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2703 Value *Val = Ptr->getBuiltValue();
2704 Actions.push_back(std::move(Ptr));
2705 return Val;
2708 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2709 Value *Opnd, Type *Ty) {
2710 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2711 Value *Val = Ptr->getBuiltValue();
2712 Actions.push_back(std::move(Ptr));
2713 return Val;
2716 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2717 Instruction *Before) {
2718 Actions.push_back(
2719 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2720 Inst, Before));
2723 TypePromotionTransaction::ConstRestorationPt
2724 TypePromotionTransaction::getRestorationPoint() const {
2725 return !Actions.empty() ? Actions.back().get() : nullptr;
2728 void TypePromotionTransaction::commit() {
2729 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2730 ++It)
2731 (*It)->commit();
2732 Actions.clear();
2735 void TypePromotionTransaction::rollback(
2736 TypePromotionTransaction::ConstRestorationPt Point) {
2737 while (!Actions.empty() && Point != Actions.back().get()) {
2738 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2739 Curr->undo();
2743 namespace {
2745 /// A helper class for matching addressing modes.
2747 /// This encapsulates the logic for matching the target-legal addressing modes.
2748 class AddressingModeMatcher {
2749 SmallVectorImpl<Instruction*> &AddrModeInsts;
2750 const TargetLowering &TLI;
2751 const TargetRegisterInfo &TRI;
2752 const DataLayout &DL;
2754 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2755 /// the memory instruction that we're computing this address for.
2756 Type *AccessTy;
2757 unsigned AddrSpace;
2758 Instruction *MemoryInst;
2760 /// This is the addressing mode that we're building up. This is
2761 /// part of the return value of this addressing mode matching stuff.
2762 ExtAddrMode &AddrMode;
2764 /// The instructions inserted by other CodeGenPrepare optimizations.
2765 const SetOfInstrs &InsertedInsts;
2767 /// A map from the instructions to their type before promotion.
2768 InstrToOrigTy &PromotedInsts;
2770 /// The ongoing transaction where every action should be registered.
2771 TypePromotionTransaction &TPT;
2773 // A GEP which has too large offset to be folded into the addressing mode.
2774 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2776 /// This is set to true when we should not do profitability checks.
2777 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2778 bool IgnoreProfitability;
2780 AddressingModeMatcher(
2781 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2782 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2783 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2784 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2785 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2786 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2787 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2788 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2789 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2790 IgnoreProfitability = false;
2793 public:
2794 /// Find the maximal addressing mode that a load/store of V can fold,
2795 /// give an access type of AccessTy. This returns a list of involved
2796 /// instructions in AddrModeInsts.
2797 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2798 /// optimizations.
2799 /// \p PromotedInsts maps the instructions to their type before promotion.
2800 /// \p The ongoing transaction where every action should be registered.
2801 static ExtAddrMode
2802 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2803 SmallVectorImpl<Instruction *> &AddrModeInsts,
2804 const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2805 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2806 TypePromotionTransaction &TPT,
2807 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2808 ExtAddrMode Result;
2810 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2811 MemoryInst, Result, InsertedInsts,
2812 PromotedInsts, TPT, LargeOffsetGEP)
2813 .matchAddr(V, 0);
2814 (void)Success; assert(Success && "Couldn't select *anything*?");
2815 return Result;
2818 private:
2819 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2820 bool matchAddr(Value *Addr, unsigned Depth);
2821 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2822 bool *MovedAway = nullptr);
2823 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2824 ExtAddrMode &AMBefore,
2825 ExtAddrMode &AMAfter);
2826 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2827 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2828 Value *PromotedOperand) const;
2831 class PhiNodeSet;
2833 /// An iterator for PhiNodeSet.
2834 class PhiNodeSetIterator {
2835 PhiNodeSet * const Set;
2836 size_t CurrentIndex = 0;
2838 public:
2839 /// The constructor. Start should point to either a valid element, or be equal
2840 /// to the size of the underlying SmallVector of the PhiNodeSet.
2841 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2842 PHINode * operator*() const;
2843 PhiNodeSetIterator& operator++();
2844 bool operator==(const PhiNodeSetIterator &RHS) const;
2845 bool operator!=(const PhiNodeSetIterator &RHS) const;
2848 /// Keeps a set of PHINodes.
2850 /// This is a minimal set implementation for a specific use case:
2851 /// It is very fast when there are very few elements, but also provides good
2852 /// performance when there are many. It is similar to SmallPtrSet, but also
2853 /// provides iteration by insertion order, which is deterministic and stable
2854 /// across runs. It is also similar to SmallSetVector, but provides removing
2855 /// elements in O(1) time. This is achieved by not actually removing the element
2856 /// from the underlying vector, so comes at the cost of using more memory, but
2857 /// that is fine, since PhiNodeSets are used as short lived objects.
2858 class PhiNodeSet {
2859 friend class PhiNodeSetIterator;
2861 using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2862 using iterator = PhiNodeSetIterator;
2864 /// Keeps the elements in the order of their insertion in the underlying
2865 /// vector. To achieve constant time removal, it never deletes any element.
2866 SmallVector<PHINode *, 32> NodeList;
2868 /// Keeps the elements in the underlying set implementation. This (and not the
2869 /// NodeList defined above) is the source of truth on whether an element
2870 /// is actually in the collection.
2871 MapType NodeMap;
2873 /// Points to the first valid (not deleted) element when the set is not empty
2874 /// and the value is not zero. Equals to the size of the underlying vector
2875 /// when the set is empty. When the value is 0, as in the beginning, the
2876 /// first element may or may not be valid.
2877 size_t FirstValidElement = 0;
2879 public:
2880 /// Inserts a new element to the collection.
2881 /// \returns true if the element is actually added, i.e. was not in the
2882 /// collection before the operation.
2883 bool insert(PHINode *Ptr) {
2884 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2885 NodeList.push_back(Ptr);
2886 return true;
2888 return false;
2891 /// Removes the element from the collection.
2892 /// \returns whether the element is actually removed, i.e. was in the
2893 /// collection before the operation.
2894 bool erase(PHINode *Ptr) {
2895 auto it = NodeMap.find(Ptr);
2896 if (it != NodeMap.end()) {
2897 NodeMap.erase(Ptr);
2898 SkipRemovedElements(FirstValidElement);
2899 return true;
2901 return false;
2904 /// Removes all elements and clears the collection.
2905 void clear() {
2906 NodeMap.clear();
2907 NodeList.clear();
2908 FirstValidElement = 0;
2911 /// \returns an iterator that will iterate the elements in the order of
2912 /// insertion.
2913 iterator begin() {
2914 if (FirstValidElement == 0)
2915 SkipRemovedElements(FirstValidElement);
2916 return PhiNodeSetIterator(this, FirstValidElement);
2919 /// \returns an iterator that points to the end of the collection.
2920 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2922 /// Returns the number of elements in the collection.
2923 size_t size() const {
2924 return NodeMap.size();
2927 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2928 size_t count(PHINode *Ptr) const {
2929 return NodeMap.count(Ptr);
2932 private:
2933 /// Updates the CurrentIndex so that it will point to a valid element.
2935 /// If the element of NodeList at CurrentIndex is valid, it does not
2936 /// change it. If there are no more valid elements, it updates CurrentIndex
2937 /// to point to the end of the NodeList.
2938 void SkipRemovedElements(size_t &CurrentIndex) {
2939 while (CurrentIndex < NodeList.size()) {
2940 auto it = NodeMap.find(NodeList[CurrentIndex]);
2941 // If the element has been deleted and added again later, NodeMap will
2942 // point to a different index, so CurrentIndex will still be invalid.
2943 if (it != NodeMap.end() && it->second == CurrentIndex)
2944 break;
2945 ++CurrentIndex;
2950 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2951 : Set(Set), CurrentIndex(Start) {}
2953 PHINode * PhiNodeSetIterator::operator*() const {
2954 assert(CurrentIndex < Set->NodeList.size() &&
2955 "PhiNodeSet access out of range");
2956 return Set->NodeList[CurrentIndex];
2959 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2960 assert(CurrentIndex < Set->NodeList.size() &&
2961 "PhiNodeSet access out of range");
2962 ++CurrentIndex;
2963 Set->SkipRemovedElements(CurrentIndex);
2964 return *this;
2967 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2968 return CurrentIndex == RHS.CurrentIndex;
2971 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2972 return !((*this) == RHS);
2975 /// Keep track of simplification of Phi nodes.
2976 /// Accept the set of all phi nodes and erase phi node from this set
2977 /// if it is simplified.
2978 class SimplificationTracker {
2979 DenseMap<Value *, Value *> Storage;
2980 const SimplifyQuery &SQ;
2981 // Tracks newly created Phi nodes. The elements are iterated by insertion
2982 // order.
2983 PhiNodeSet AllPhiNodes;
2984 // Tracks newly created Select nodes.
2985 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2987 public:
2988 SimplificationTracker(const SimplifyQuery &sq)
2989 : SQ(sq) {}
2991 Value *Get(Value *V) {
2992 do {
2993 auto SV = Storage.find(V);
2994 if (SV == Storage.end())
2995 return V;
2996 V = SV->second;
2997 } while (true);
3000 Value *Simplify(Value *Val) {
3001 SmallVector<Value *, 32> WorkList;
3002 SmallPtrSet<Value *, 32> Visited;
3003 WorkList.push_back(Val);
3004 while (!WorkList.empty()) {
3005 auto P = WorkList.pop_back_val();
3006 if (!Visited.insert(P).second)
3007 continue;
3008 if (auto *PI = dyn_cast<Instruction>(P))
3009 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3010 for (auto *U : PI->users())
3011 WorkList.push_back(cast<Value>(U));
3012 Put(PI, V);
3013 PI->replaceAllUsesWith(V);
3014 if (auto *PHI = dyn_cast<PHINode>(PI))
3015 AllPhiNodes.erase(PHI);
3016 if (auto *Select = dyn_cast<SelectInst>(PI))
3017 AllSelectNodes.erase(Select);
3018 PI->eraseFromParent();
3021 return Get(Val);
3024 void Put(Value *From, Value *To) {
3025 Storage.insert({ From, To });
3028 void ReplacePhi(PHINode *From, PHINode *To) {
3029 Value* OldReplacement = Get(From);
3030 while (OldReplacement != From) {
3031 From = To;
3032 To = dyn_cast<PHINode>(OldReplacement);
3033 OldReplacement = Get(From);
3035 assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3036 Put(From, To);
3037 From->replaceAllUsesWith(To);
3038 AllPhiNodes.erase(From);
3039 From->eraseFromParent();
3042 PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3044 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3046 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3048 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3050 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3052 void destroyNewNodes(Type *CommonType) {
3053 // For safe erasing, replace the uses with dummy value first.
3054 auto Dummy = UndefValue::get(CommonType);
3055 for (auto I : AllPhiNodes) {
3056 I->replaceAllUsesWith(Dummy);
3057 I->eraseFromParent();
3059 AllPhiNodes.clear();
3060 for (auto I : AllSelectNodes) {
3061 I->replaceAllUsesWith(Dummy);
3062 I->eraseFromParent();
3064 AllSelectNodes.clear();
3068 /// A helper class for combining addressing modes.
3069 class AddressingModeCombiner {
3070 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3071 typedef std::pair<PHINode *, PHINode *> PHIPair;
3073 private:
3074 /// The addressing modes we've collected.
3075 SmallVector<ExtAddrMode, 16> AddrModes;
3077 /// The field in which the AddrModes differ, when we have more than one.
3078 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3080 /// Are the AddrModes that we have all just equal to their original values?
3081 bool AllAddrModesTrivial = true;
3083 /// Common Type for all different fields in addressing modes.
3084 Type *CommonType;
3086 /// SimplifyQuery for simplifyInstruction utility.
3087 const SimplifyQuery &SQ;
3089 /// Original Address.
3090 Value *Original;
3092 public:
3093 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3094 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3096 /// Get the combined AddrMode
3097 const ExtAddrMode &getAddrMode() const {
3098 return AddrModes[0];
3101 /// Add a new AddrMode if it's compatible with the AddrModes we already
3102 /// have.
3103 /// \return True iff we succeeded in doing so.
3104 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3105 // Take note of if we have any non-trivial AddrModes, as we need to detect
3106 // when all AddrModes are trivial as then we would introduce a phi or select
3107 // which just duplicates what's already there.
3108 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3110 // If this is the first addrmode then everything is fine.
3111 if (AddrModes.empty()) {
3112 AddrModes.emplace_back(NewAddrMode);
3113 return true;
3116 // Figure out how different this is from the other address modes, which we
3117 // can do just by comparing against the first one given that we only care
3118 // about the cumulative difference.
3119 ExtAddrMode::FieldName ThisDifferentField =
3120 AddrModes[0].compare(NewAddrMode);
3121 if (DifferentField == ExtAddrMode::NoField)
3122 DifferentField = ThisDifferentField;
3123 else if (DifferentField != ThisDifferentField)
3124 DifferentField = ExtAddrMode::MultipleFields;
3126 // If NewAddrMode differs in more than one dimension we cannot handle it.
3127 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3129 // If Scale Field is different then we reject.
3130 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3132 // We also must reject the case when base offset is different and
3133 // scale reg is not null, we cannot handle this case due to merge of
3134 // different offsets will be used as ScaleReg.
3135 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3136 !NewAddrMode.ScaledReg);
3138 // We also must reject the case when GV is different and BaseReg installed
3139 // due to we want to use base reg as a merge of GV values.
3140 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3141 !NewAddrMode.HasBaseReg);
3143 // Even if NewAddMode is the same we still need to collect it due to
3144 // original value is different. And later we will need all original values
3145 // as anchors during finding the common Phi node.
3146 if (CanHandle)
3147 AddrModes.emplace_back(NewAddrMode);
3148 else
3149 AddrModes.clear();
3151 return CanHandle;
3154 /// Combine the addressing modes we've collected into a single
3155 /// addressing mode.
3156 /// \return True iff we successfully combined them or we only had one so
3157 /// didn't need to combine them anyway.
3158 bool combineAddrModes() {
3159 // If we have no AddrModes then they can't be combined.
3160 if (AddrModes.size() == 0)
3161 return false;
3163 // A single AddrMode can trivially be combined.
3164 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3165 return true;
3167 // If the AddrModes we collected are all just equal to the value they are
3168 // derived from then combining them wouldn't do anything useful.
3169 if (AllAddrModesTrivial)
3170 return false;
3172 if (!addrModeCombiningAllowed())
3173 return false;
3175 // Build a map between <original value, basic block where we saw it> to
3176 // value of base register.
3177 // Bail out if there is no common type.
3178 FoldAddrToValueMapping Map;
3179 if (!initializeMap(Map))
3180 return false;
3182 Value *CommonValue = findCommon(Map);
3183 if (CommonValue)
3184 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3185 return CommonValue != nullptr;
3188 private:
3189 /// Initialize Map with anchor values. For address seen
3190 /// we set the value of different field saw in this address.
3191 /// At the same time we find a common type for different field we will
3192 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3193 /// Return false if there is no common type found.
3194 bool initializeMap(FoldAddrToValueMapping &Map) {
3195 // Keep track of keys where the value is null. We will need to replace it
3196 // with constant null when we know the common type.
3197 SmallVector<Value *, 2> NullValue;
3198 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3199 for (auto &AM : AddrModes) {
3200 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3201 if (DV) {
3202 auto *Type = DV->getType();
3203 if (CommonType && CommonType != Type)
3204 return false;
3205 CommonType = Type;
3206 Map[AM.OriginalValue] = DV;
3207 } else {
3208 NullValue.push_back(AM.OriginalValue);
3211 assert(CommonType && "At least one non-null value must be!");
3212 for (auto *V : NullValue)
3213 Map[V] = Constant::getNullValue(CommonType);
3214 return true;
3217 /// We have mapping between value A and other value B where B was a field in
3218 /// addressing mode represented by A. Also we have an original value C
3219 /// representing an address we start with. Traversing from C through phi and
3220 /// selects we ended up with A's in a map. This utility function tries to find
3221 /// a value V which is a field in addressing mode C and traversing through phi
3222 /// nodes and selects we will end up in corresponded values B in a map.
3223 /// The utility will create a new Phi/Selects if needed.
3224 // The simple example looks as follows:
3225 // BB1:
3226 // p1 = b1 + 40
3227 // br cond BB2, BB3
3228 // BB2:
3229 // p2 = b2 + 40
3230 // br BB3
3231 // BB3:
3232 // p = phi [p1, BB1], [p2, BB2]
3233 // v = load p
3234 // Map is
3235 // p1 -> b1
3236 // p2 -> b2
3237 // Request is
3238 // p -> ?
3239 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3240 Value *findCommon(FoldAddrToValueMapping &Map) {
3241 // Tracks the simplification of newly created phi nodes. The reason we use
3242 // this mapping is because we will add new created Phi nodes in AddrToBase.
3243 // Simplification of Phi nodes is recursive, so some Phi node may
3244 // be simplified after we added it to AddrToBase. In reality this
3245 // simplification is possible only if original phi/selects were not
3246 // simplified yet.
3247 // Using this mapping we can find the current value in AddrToBase.
3248 SimplificationTracker ST(SQ);
3250 // First step, DFS to create PHI nodes for all intermediate blocks.
3251 // Also fill traverse order for the second step.
3252 SmallVector<Value *, 32> TraverseOrder;
3253 InsertPlaceholders(Map, TraverseOrder, ST);
3255 // Second Step, fill new nodes by merged values and simplify if possible.
3256 FillPlaceholders(Map, TraverseOrder, ST);
3258 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3259 ST.destroyNewNodes(CommonType);
3260 return nullptr;
3263 // Now we'd like to match New Phi nodes to existed ones.
3264 unsigned PhiNotMatchedCount = 0;
3265 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3266 ST.destroyNewNodes(CommonType);
3267 return nullptr;
3270 auto *Result = ST.Get(Map.find(Original)->second);
3271 if (Result) {
3272 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3273 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3275 return Result;
3278 /// Try to match PHI node to Candidate.
3279 /// Matcher tracks the matched Phi nodes.
3280 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3281 SmallSetVector<PHIPair, 8> &Matcher,
3282 PhiNodeSet &PhiNodesToMatch) {
3283 SmallVector<PHIPair, 8> WorkList;
3284 Matcher.insert({ PHI, Candidate });
3285 SmallSet<PHINode *, 8> MatchedPHIs;
3286 MatchedPHIs.insert(PHI);
3287 WorkList.push_back({ PHI, Candidate });
3288 SmallSet<PHIPair, 8> Visited;
3289 while (!WorkList.empty()) {
3290 auto Item = WorkList.pop_back_val();
3291 if (!Visited.insert(Item).second)
3292 continue;
3293 // We iterate over all incoming values to Phi to compare them.
3294 // If values are different and both of them Phi and the first one is a
3295 // Phi we added (subject to match) and both of them is in the same basic
3296 // block then we can match our pair if values match. So we state that
3297 // these values match and add it to work list to verify that.
3298 for (auto B : Item.first->blocks()) {
3299 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3300 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3301 if (FirstValue == SecondValue)
3302 continue;
3304 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3305 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3307 // One of them is not Phi or
3308 // The first one is not Phi node from the set we'd like to match or
3309 // Phi nodes from different basic blocks then
3310 // we will not be able to match.
3311 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3312 FirstPhi->getParent() != SecondPhi->getParent())
3313 return false;
3315 // If we already matched them then continue.
3316 if (Matcher.count({ FirstPhi, SecondPhi }))
3317 continue;
3318 // So the values are different and does not match. So we need them to
3319 // match. (But we register no more than one match per PHI node, so that
3320 // we won't later try to replace them twice.)
3321 if (MatchedPHIs.insert(FirstPhi).second)
3322 Matcher.insert({ FirstPhi, SecondPhi });
3323 // But me must check it.
3324 WorkList.push_back({ FirstPhi, SecondPhi });
3327 return true;
3330 /// For the given set of PHI nodes (in the SimplificationTracker) try
3331 /// to find their equivalents.
3332 /// Returns false if this matching fails and creation of new Phi is disabled.
3333 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3334 unsigned &PhiNotMatchedCount) {
3335 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3336 // order, so the replacements (ReplacePhi) are also done in a deterministic
3337 // order.
3338 SmallSetVector<PHIPair, 8> Matched;
3339 SmallPtrSet<PHINode *, 8> WillNotMatch;
3340 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3341 while (PhiNodesToMatch.size()) {
3342 PHINode *PHI = *PhiNodesToMatch.begin();
3344 // Add us, if no Phi nodes in the basic block we do not match.
3345 WillNotMatch.clear();
3346 WillNotMatch.insert(PHI);
3348 // Traverse all Phis until we found equivalent or fail to do that.
3349 bool IsMatched = false;
3350 for (auto &P : PHI->getParent()->phis()) {
3351 if (&P == PHI)
3352 continue;
3353 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3354 break;
3355 // If it does not match, collect all Phi nodes from matcher.
3356 // if we end up with no match, them all these Phi nodes will not match
3357 // later.
3358 for (auto M : Matched)
3359 WillNotMatch.insert(M.first);
3360 Matched.clear();
3362 if (IsMatched) {
3363 // Replace all matched values and erase them.
3364 for (auto MV : Matched)
3365 ST.ReplacePhi(MV.first, MV.second);
3366 Matched.clear();
3367 continue;
3369 // If we are not allowed to create new nodes then bail out.
3370 if (!AllowNewPhiNodes)
3371 return false;
3372 // Just remove all seen values in matcher. They will not match anything.
3373 PhiNotMatchedCount += WillNotMatch.size();
3374 for (auto *P : WillNotMatch)
3375 PhiNodesToMatch.erase(P);
3377 return true;
3379 /// Fill the placeholders with values from predecessors and simplify them.
3380 void FillPlaceholders(FoldAddrToValueMapping &Map,
3381 SmallVectorImpl<Value *> &TraverseOrder,
3382 SimplificationTracker &ST) {
3383 while (!TraverseOrder.empty()) {
3384 Value *Current = TraverseOrder.pop_back_val();
3385 assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3386 Value *V = Map[Current];
3388 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3389 // CurrentValue also must be Select.
3390 auto *CurrentSelect = cast<SelectInst>(Current);
3391 auto *TrueValue = CurrentSelect->getTrueValue();
3392 assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3393 Select->setTrueValue(ST.Get(Map[TrueValue]));
3394 auto *FalseValue = CurrentSelect->getFalseValue();
3395 assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3396 Select->setFalseValue(ST.Get(Map[FalseValue]));
3397 } else {
3398 // Must be a Phi node then.
3399 auto *PHI = cast<PHINode>(V);
3400 // Fill the Phi node with values from predecessors.
3401 for (auto B : predecessors(PHI->getParent())) {
3402 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3403 assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3404 PHI->addIncoming(ST.Get(Map[PV]), B);
3407 Map[Current] = ST.Simplify(V);
3411 /// Starting from original value recursively iterates over def-use chain up to
3412 /// known ending values represented in a map. For each traversed phi/select
3413 /// inserts a placeholder Phi or Select.
3414 /// Reports all new created Phi/Select nodes by adding them to set.
3415 /// Also reports and order in what values have been traversed.
3416 void InsertPlaceholders(FoldAddrToValueMapping &Map,
3417 SmallVectorImpl<Value *> &TraverseOrder,
3418 SimplificationTracker &ST) {
3419 SmallVector<Value *, 32> Worklist;
3420 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3421 "Address must be a Phi or Select node");
3422 auto *Dummy = UndefValue::get(CommonType);
3423 Worklist.push_back(Original);
3424 while (!Worklist.empty()) {
3425 Value *Current = Worklist.pop_back_val();
3426 // if it is already visited or it is an ending value then skip it.
3427 if (Map.find(Current) != Map.end())
3428 continue;
3429 TraverseOrder.push_back(Current);
3431 // CurrentValue must be a Phi node or select. All others must be covered
3432 // by anchors.
3433 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3434 // Is it OK to get metadata from OrigSelect?!
3435 // Create a Select placeholder with dummy value.
3436 SelectInst *Select = SelectInst::Create(
3437 CurrentSelect->getCondition(), Dummy, Dummy,
3438 CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3439 Map[Current] = Select;
3440 ST.insertNewSelect(Select);
3441 // We are interested in True and False values.
3442 Worklist.push_back(CurrentSelect->getTrueValue());
3443 Worklist.push_back(CurrentSelect->getFalseValue());
3444 } else {
3445 // It must be a Phi node then.
3446 PHINode *CurrentPhi = cast<PHINode>(Current);
3447 unsigned PredCount = CurrentPhi->getNumIncomingValues();
3448 PHINode *PHI =
3449 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3450 Map[Current] = PHI;
3451 ST.insertNewPhi(PHI);
3452 for (Value *P : CurrentPhi->incoming_values())
3453 Worklist.push_back(P);
3458 bool addrModeCombiningAllowed() {
3459 if (DisableComplexAddrModes)
3460 return false;
3461 switch (DifferentField) {
3462 default:
3463 return false;
3464 case ExtAddrMode::BaseRegField:
3465 return AddrSinkCombineBaseReg;
3466 case ExtAddrMode::BaseGVField:
3467 return AddrSinkCombineBaseGV;
3468 case ExtAddrMode::BaseOffsField:
3469 return AddrSinkCombineBaseOffs;
3470 case ExtAddrMode::ScaledRegField:
3471 return AddrSinkCombineScaledReg;
3475 } // end anonymous namespace
3477 /// Try adding ScaleReg*Scale to the current addressing mode.
3478 /// Return true and update AddrMode if this addr mode is legal for the target,
3479 /// false if not.
3480 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3481 unsigned Depth) {
3482 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3483 // mode. Just process that directly.
3484 if (Scale == 1)
3485 return matchAddr(ScaleReg, Depth);
3487 // If the scale is 0, it takes nothing to add this.
3488 if (Scale == 0)
3489 return true;
3491 // If we already have a scale of this value, we can add to it, otherwise, we
3492 // need an available scale field.
3493 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3494 return false;
3496 ExtAddrMode TestAddrMode = AddrMode;
3498 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3499 // [A+B + A*7] -> [B+A*8].
3500 TestAddrMode.Scale += Scale;
3501 TestAddrMode.ScaledReg = ScaleReg;
3503 // If the new address isn't legal, bail out.
3504 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3505 return false;
3507 // It was legal, so commit it.
3508 AddrMode = TestAddrMode;
3510 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3511 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3512 // X*Scale + C*Scale to addr mode.
3513 ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3514 if (isa<Instruction>(ScaleReg) && // not a constant expr.
3515 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3516 TestAddrMode.InBounds = false;
3517 TestAddrMode.ScaledReg = AddLHS;
3518 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3520 // If this addressing mode is legal, commit it and remember that we folded
3521 // this instruction.
3522 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3523 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3524 AddrMode = TestAddrMode;
3525 return true;
3529 // Otherwise, not (x+c)*scale, just return what we have.
3530 return true;
3533 /// This is a little filter, which returns true if an addressing computation
3534 /// involving I might be folded into a load/store accessing it.
3535 /// This doesn't need to be perfect, but needs to accept at least
3536 /// the set of instructions that MatchOperationAddr can.
3537 static bool MightBeFoldableInst(Instruction *I) {
3538 switch (I->getOpcode()) {
3539 case Instruction::BitCast:
3540 case Instruction::AddrSpaceCast:
3541 // Don't touch identity bitcasts.
3542 if (I->getType() == I->getOperand(0)->getType())
3543 return false;
3544 return I->getType()->isIntOrPtrTy();
3545 case Instruction::PtrToInt:
3546 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3547 return true;
3548 case Instruction::IntToPtr:
3549 // We know the input is intptr_t, so this is foldable.
3550 return true;
3551 case Instruction::Add:
3552 return true;
3553 case Instruction::Mul:
3554 case Instruction::Shl:
3555 // Can only handle X*C and X << C.
3556 return isa<ConstantInt>(I->getOperand(1));
3557 case Instruction::GetElementPtr:
3558 return true;
3559 default:
3560 return false;
3564 /// Check whether or not \p Val is a legal instruction for \p TLI.
3565 /// \note \p Val is assumed to be the product of some type promotion.
3566 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3567 /// to be legal, as the non-promoted value would have had the same state.
3568 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3569 const DataLayout &DL, Value *Val) {
3570 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3571 if (!PromotedInst)
3572 return false;
3573 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3574 // If the ISDOpcode is undefined, it was undefined before the promotion.
3575 if (!ISDOpcode)
3576 return true;
3577 // Otherwise, check if the promoted instruction is legal or not.
3578 return TLI.isOperationLegalOrCustom(
3579 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3582 namespace {
3584 /// Hepler class to perform type promotion.
3585 class TypePromotionHelper {
3586 /// Utility function to add a promoted instruction \p ExtOpnd to
3587 /// \p PromotedInsts and record the type of extension we have seen.
3588 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3589 Instruction *ExtOpnd,
3590 bool IsSExt) {
3591 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3592 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3593 if (It != PromotedInsts.end()) {
3594 // If the new extension is same as original, the information in
3595 // PromotedInsts[ExtOpnd] is still correct.
3596 if (It->second.getInt() == ExtTy)
3597 return;
3599 // Now the new extension is different from old extension, we make
3600 // the type information invalid by setting extension type to
3601 // BothExtension.
3602 ExtTy = BothExtension;
3604 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3607 /// Utility function to query the original type of instruction \p Opnd
3608 /// with a matched extension type. If the extension doesn't match, we
3609 /// cannot use the information we had on the original type.
3610 /// BothExtension doesn't match any extension type.
3611 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3612 Instruction *Opnd,
3613 bool IsSExt) {
3614 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3615 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3616 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3617 return It->second.getPointer();
3618 return nullptr;
3621 /// Utility function to check whether or not a sign or zero extension
3622 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3623 /// either using the operands of \p Inst or promoting \p Inst.
3624 /// The type of the extension is defined by \p IsSExt.
3625 /// In other words, check if:
3626 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3627 /// #1 Promotion applies:
3628 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3629 /// #2 Operand reuses:
3630 /// ext opnd1 to ConsideredExtType.
3631 /// \p PromotedInsts maps the instructions to their type before promotion.
3632 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3633 const InstrToOrigTy &PromotedInsts, bool IsSExt);
3635 /// Utility function to determine if \p OpIdx should be promoted when
3636 /// promoting \p Inst.
3637 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3638 return !(isa<SelectInst>(Inst) && OpIdx == 0);
3641 /// Utility function to promote the operand of \p Ext when this
3642 /// operand is a promotable trunc or sext or zext.
3643 /// \p PromotedInsts maps the instructions to their type before promotion.
3644 /// \p CreatedInstsCost[out] contains the cost of all instructions
3645 /// created to promote the operand of Ext.
3646 /// Newly added extensions are inserted in \p Exts.
3647 /// Newly added truncates are inserted in \p Truncs.
3648 /// Should never be called directly.
3649 /// \return The promoted value which is used instead of Ext.
3650 static Value *promoteOperandForTruncAndAnyExt(
3651 Instruction *Ext, TypePromotionTransaction &TPT,
3652 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3653 SmallVectorImpl<Instruction *> *Exts,
3654 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3656 /// Utility function to promote the operand of \p Ext when this
3657 /// operand is promotable and is not a supported trunc or sext.
3658 /// \p PromotedInsts maps the instructions to their type before promotion.
3659 /// \p CreatedInstsCost[out] contains the cost of all the instructions
3660 /// created to promote the operand of Ext.
3661 /// Newly added extensions are inserted in \p Exts.
3662 /// Newly added truncates are inserted in \p Truncs.
3663 /// Should never be called directly.
3664 /// \return The promoted value which is used instead of Ext.
3665 static Value *promoteOperandForOther(Instruction *Ext,
3666 TypePromotionTransaction &TPT,
3667 InstrToOrigTy &PromotedInsts,
3668 unsigned &CreatedInstsCost,
3669 SmallVectorImpl<Instruction *> *Exts,
3670 SmallVectorImpl<Instruction *> *Truncs,
3671 const TargetLowering &TLI, bool IsSExt);
3673 /// \see promoteOperandForOther.
3674 static Value *signExtendOperandForOther(
3675 Instruction *Ext, TypePromotionTransaction &TPT,
3676 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3677 SmallVectorImpl<Instruction *> *Exts,
3678 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3679 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3680 Exts, Truncs, TLI, true);
3683 /// \see promoteOperandForOther.
3684 static Value *zeroExtendOperandForOther(
3685 Instruction *Ext, TypePromotionTransaction &TPT,
3686 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3687 SmallVectorImpl<Instruction *> *Exts,
3688 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3689 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3690 Exts, Truncs, TLI, false);
3693 public:
3694 /// Type for the utility function that promotes the operand of Ext.
3695 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3696 InstrToOrigTy &PromotedInsts,
3697 unsigned &CreatedInstsCost,
3698 SmallVectorImpl<Instruction *> *Exts,
3699 SmallVectorImpl<Instruction *> *Truncs,
3700 const TargetLowering &TLI);
3702 /// Given a sign/zero extend instruction \p Ext, return the appropriate
3703 /// action to promote the operand of \p Ext instead of using Ext.
3704 /// \return NULL if no promotable action is possible with the current
3705 /// sign extension.
3706 /// \p InsertedInsts keeps track of all the instructions inserted by the
3707 /// other CodeGenPrepare optimizations. This information is important
3708 /// because we do not want to promote these instructions as CodeGenPrepare
3709 /// will reinsert them later. Thus creating an infinite loop: create/remove.
3710 /// \p PromotedInsts maps the instructions to their type before promotion.
3711 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3712 const TargetLowering &TLI,
3713 const InstrToOrigTy &PromotedInsts);
3716 } // end anonymous namespace
3718 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3719 Type *ConsideredExtType,
3720 const InstrToOrigTy &PromotedInsts,
3721 bool IsSExt) {
3722 // The promotion helper does not know how to deal with vector types yet.
3723 // To be able to fix that, we would need to fix the places where we
3724 // statically extend, e.g., constants and such.
3725 if (Inst->getType()->isVectorTy())
3726 return false;
3728 // We can always get through zext.
3729 if (isa<ZExtInst>(Inst))
3730 return true;
3732 // sext(sext) is ok too.
3733 if (IsSExt && isa<SExtInst>(Inst))
3734 return true;
3736 // We can get through binary operator, if it is legal. In other words, the
3737 // binary operator must have a nuw or nsw flag.
3738 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3739 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3740 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3741 (IsSExt && BinOp->hasNoSignedWrap())))
3742 return true;
3744 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3745 if ((Inst->getOpcode() == Instruction::And ||
3746 Inst->getOpcode() == Instruction::Or))
3747 return true;
3749 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3750 if (Inst->getOpcode() == Instruction::Xor) {
3751 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3752 // Make sure it is not a NOT.
3753 if (Cst && !Cst->getValue().isAllOnesValue())
3754 return true;
3757 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3758 // It may change a poisoned value into a regular value, like
3759 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
3760 // poisoned value regular value
3761 // It should be OK since undef covers valid value.
3762 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3763 return true;
3765 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3766 // It may change a poisoned value into a regular value, like
3767 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
3768 // poisoned value regular value
3769 // It should be OK since undef covers valid value.
3770 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3771 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
3772 if (ExtInst->hasOneUse()) {
3773 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
3774 if (AndInst && AndInst->getOpcode() == Instruction::And) {
3775 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3776 if (Cst &&
3777 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3778 return true;
3783 // Check if we can do the following simplification.
3784 // ext(trunc(opnd)) --> ext(opnd)
3785 if (!isa<TruncInst>(Inst))
3786 return false;
3788 Value *OpndVal = Inst->getOperand(0);
3789 // Check if we can use this operand in the extension.
3790 // If the type is larger than the result type of the extension, we cannot.
3791 if (!OpndVal->getType()->isIntegerTy() ||
3792 OpndVal->getType()->getIntegerBitWidth() >
3793 ConsideredExtType->getIntegerBitWidth())
3794 return false;
3796 // If the operand of the truncate is not an instruction, we will not have
3797 // any information on the dropped bits.
3798 // (Actually we could for constant but it is not worth the extra logic).
3799 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3800 if (!Opnd)
3801 return false;
3803 // Check if the source of the type is narrow enough.
3804 // I.e., check that trunc just drops extended bits of the same kind of
3805 // the extension.
3806 // #1 get the type of the operand and check the kind of the extended bits.
3807 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3808 if (OpndType)
3810 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3811 OpndType = Opnd->getOperand(0)->getType();
3812 else
3813 return false;
3815 // #2 check that the truncate just drops extended bits.
3816 return Inst->getType()->getIntegerBitWidth() >=
3817 OpndType->getIntegerBitWidth();
3820 TypePromotionHelper::Action TypePromotionHelper::getAction(
3821 Instruction *Ext, const SetOfInstrs &InsertedInsts,
3822 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3823 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3824 "Unexpected instruction type");
3825 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3826 Type *ExtTy = Ext->getType();
3827 bool IsSExt = isa<SExtInst>(Ext);
3828 // If the operand of the extension is not an instruction, we cannot
3829 // get through.
3830 // If it, check we can get through.
3831 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3832 return nullptr;
3834 // Do not promote if the operand has been added by codegenprepare.
3835 // Otherwise, it means we are undoing an optimization that is likely to be
3836 // redone, thus causing potential infinite loop.
3837 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3838 return nullptr;
3840 // SExt or Trunc instructions.
3841 // Return the related handler.
3842 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3843 isa<ZExtInst>(ExtOpnd))
3844 return promoteOperandForTruncAndAnyExt;
3846 // Regular instruction.
3847 // Abort early if we will have to insert non-free instructions.
3848 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3849 return nullptr;
3850 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3853 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3854 Instruction *SExt, TypePromotionTransaction &TPT,
3855 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3856 SmallVectorImpl<Instruction *> *Exts,
3857 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3858 // By construction, the operand of SExt is an instruction. Otherwise we cannot
3859 // get through it and this method should not be called.
3860 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3861 Value *ExtVal = SExt;
3862 bool HasMergedNonFreeExt = false;
3863 if (isa<ZExtInst>(SExtOpnd)) {
3864 // Replace s|zext(zext(opnd))
3865 // => zext(opnd).
3866 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3867 Value *ZExt =
3868 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3869 TPT.replaceAllUsesWith(SExt, ZExt);
3870 TPT.eraseInstruction(SExt);
3871 ExtVal = ZExt;
3872 } else {
3873 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3874 // => z|sext(opnd).
3875 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3877 CreatedInstsCost = 0;
3879 // Remove dead code.
3880 if (SExtOpnd->use_empty())
3881 TPT.eraseInstruction(SExtOpnd);
3883 // Check if the extension is still needed.
3884 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3885 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3886 if (ExtInst) {
3887 if (Exts)
3888 Exts->push_back(ExtInst);
3889 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3891 return ExtVal;
3894 // At this point we have: ext ty opnd to ty.
3895 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3896 Value *NextVal = ExtInst->getOperand(0);
3897 TPT.eraseInstruction(ExtInst, NextVal);
3898 return NextVal;
3901 Value *TypePromotionHelper::promoteOperandForOther(
3902 Instruction *Ext, TypePromotionTransaction &TPT,
3903 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3904 SmallVectorImpl<Instruction *> *Exts,
3905 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3906 bool IsSExt) {
3907 // By construction, the operand of Ext is an instruction. Otherwise we cannot
3908 // get through it and this method should not be called.
3909 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3910 CreatedInstsCost = 0;
3911 if (!ExtOpnd->hasOneUse()) {
3912 // ExtOpnd will be promoted.
3913 // All its uses, but Ext, will need to use a truncated value of the
3914 // promoted version.
3915 // Create the truncate now.
3916 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3917 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3918 // Insert it just after the definition.
3919 ITrunc->moveAfter(ExtOpnd);
3920 if (Truncs)
3921 Truncs->push_back(ITrunc);
3924 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3925 // Restore the operand of Ext (which has been replaced by the previous call
3926 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3927 TPT.setOperand(Ext, 0, ExtOpnd);
3930 // Get through the Instruction:
3931 // 1. Update its type.
3932 // 2. Replace the uses of Ext by Inst.
3933 // 3. Extend each operand that needs to be extended.
3935 // Remember the original type of the instruction before promotion.
3936 // This is useful to know that the high bits are sign extended bits.
3937 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3938 // Step #1.
3939 TPT.mutateType(ExtOpnd, Ext->getType());
3940 // Step #2.
3941 TPT.replaceAllUsesWith(Ext, ExtOpnd);
3942 // Step #3.
3943 Instruction *ExtForOpnd = Ext;
3945 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3946 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3947 ++OpIdx) {
3948 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3949 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3950 !shouldExtOperand(ExtOpnd, OpIdx)) {
3951 LLVM_DEBUG(dbgs() << "No need to propagate\n");
3952 continue;
3954 // Check if we can statically extend the operand.
3955 Value *Opnd = ExtOpnd->getOperand(OpIdx);
3956 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3957 LLVM_DEBUG(dbgs() << "Statically extend\n");
3958 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3959 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3960 : Cst->getValue().zext(BitWidth);
3961 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3962 continue;
3964 // UndefValue are typed, so we have to statically sign extend them.
3965 if (isa<UndefValue>(Opnd)) {
3966 LLVM_DEBUG(dbgs() << "Statically extend\n");
3967 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3968 continue;
3971 // Otherwise we have to explicitly sign extend the operand.
3972 // Check if Ext was reused to extend an operand.
3973 if (!ExtForOpnd) {
3974 // If yes, create a new one.
3975 LLVM_DEBUG(dbgs() << "More operands to ext\n");
3976 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3977 : TPT.createZExt(Ext, Opnd, Ext->getType());
3978 if (!isa<Instruction>(ValForExtOpnd)) {
3979 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3980 continue;
3982 ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3984 if (Exts)
3985 Exts->push_back(ExtForOpnd);
3986 TPT.setOperand(ExtForOpnd, 0, Opnd);
3988 // Move the sign extension before the insertion point.
3989 TPT.moveBefore(ExtForOpnd, ExtOpnd);
3990 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3991 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3992 // If more sext are required, new instructions will have to be created.
3993 ExtForOpnd = nullptr;
3995 if (ExtForOpnd == Ext) {
3996 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3997 TPT.eraseInstruction(Ext);
3999 return ExtOpnd;
4002 /// Check whether or not promoting an instruction to a wider type is profitable.
4003 /// \p NewCost gives the cost of extension instructions created by the
4004 /// promotion.
4005 /// \p OldCost gives the cost of extension instructions before the promotion
4006 /// plus the number of instructions that have been
4007 /// matched in the addressing mode the promotion.
4008 /// \p PromotedOperand is the value that has been promoted.
4009 /// \return True if the promotion is profitable, false otherwise.
4010 bool AddressingModeMatcher::isPromotionProfitable(
4011 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4012 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4013 << '\n');
4014 // The cost of the new extensions is greater than the cost of the
4015 // old extension plus what we folded.
4016 // This is not profitable.
4017 if (NewCost > OldCost)
4018 return false;
4019 if (NewCost < OldCost)
4020 return true;
4021 // The promotion is neutral but it may help folding the sign extension in
4022 // loads for instance.
4023 // Check that we did not create an illegal instruction.
4024 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4027 /// Given an instruction or constant expr, see if we can fold the operation
4028 /// into the addressing mode. If so, update the addressing mode and return
4029 /// true, otherwise return false without modifying AddrMode.
4030 /// If \p MovedAway is not NULL, it contains the information of whether or
4031 /// not AddrInst has to be folded into the addressing mode on success.
4032 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4033 /// because it has been moved away.
4034 /// Thus AddrInst must not be added in the matched instructions.
4035 /// This state can happen when AddrInst is a sext, since it may be moved away.
4036 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4037 /// not be referenced anymore.
4038 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4039 unsigned Depth,
4040 bool *MovedAway) {
4041 // Avoid exponential behavior on extremely deep expression trees.
4042 if (Depth >= 5) return false;
4044 // By default, all matched instructions stay in place.
4045 if (MovedAway)
4046 *MovedAway = false;
4048 switch (Opcode) {
4049 case Instruction::PtrToInt:
4050 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4051 return matchAddr(AddrInst->getOperand(0), Depth);
4052 case Instruction::IntToPtr: {
4053 auto AS = AddrInst->getType()->getPointerAddressSpace();
4054 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4055 // This inttoptr is a no-op if the integer type is pointer sized.
4056 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4057 return matchAddr(AddrInst->getOperand(0), Depth);
4058 return false;
4060 case Instruction::BitCast:
4061 // BitCast is always a noop, and we can handle it as long as it is
4062 // int->int or pointer->pointer (we don't want int<->fp or something).
4063 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4064 // Don't touch identity bitcasts. These were probably put here by LSR,
4065 // and we don't want to mess around with them. Assume it knows what it
4066 // is doing.
4067 AddrInst->getOperand(0)->getType() != AddrInst->getType())
4068 return matchAddr(AddrInst->getOperand(0), Depth);
4069 return false;
4070 case Instruction::AddrSpaceCast: {
4071 unsigned SrcAS
4072 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4073 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4074 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4075 return matchAddr(AddrInst->getOperand(0), Depth);
4076 return false;
4078 case Instruction::Add: {
4079 // Check to see if we can merge in the RHS then the LHS. If so, we win.
4080 ExtAddrMode BackupAddrMode = AddrMode;
4081 unsigned OldSize = AddrModeInsts.size();
4082 // Start a transaction at this point.
4083 // The LHS may match but not the RHS.
4084 // Therefore, we need a higher level restoration point to undo partially
4085 // matched operation.
4086 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4087 TPT.getRestorationPoint();
4089 AddrMode.InBounds = false;
4090 if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4091 matchAddr(AddrInst->getOperand(0), Depth+1))
4092 return true;
4094 // Restore the old addr mode info.
4095 AddrMode = BackupAddrMode;
4096 AddrModeInsts.resize(OldSize);
4097 TPT.rollback(LastKnownGood);
4099 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
4100 if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4101 matchAddr(AddrInst->getOperand(1), Depth+1))
4102 return true;
4104 // Otherwise we definitely can't merge the ADD in.
4105 AddrMode = BackupAddrMode;
4106 AddrModeInsts.resize(OldSize);
4107 TPT.rollback(LastKnownGood);
4108 break;
4110 //case Instruction::Or:
4111 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4112 //break;
4113 case Instruction::Mul:
4114 case Instruction::Shl: {
4115 // Can only handle X*C and X << C.
4116 AddrMode.InBounds = false;
4117 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4118 if (!RHS || RHS->getBitWidth() > 64)
4119 return false;
4120 int64_t Scale = RHS->getSExtValue();
4121 if (Opcode == Instruction::Shl)
4122 Scale = 1LL << Scale;
4124 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4126 case Instruction::GetElementPtr: {
4127 // Scan the GEP. We check it if it contains constant offsets and at most
4128 // one variable offset.
4129 int VariableOperand = -1;
4130 unsigned VariableScale = 0;
4132 int64_t ConstantOffset = 0;
4133 gep_type_iterator GTI = gep_type_begin(AddrInst);
4134 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4135 if (StructType *STy = GTI.getStructTypeOrNull()) {
4136 const StructLayout *SL = DL.getStructLayout(STy);
4137 unsigned Idx =
4138 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4139 ConstantOffset += SL->getElementOffset(Idx);
4140 } else {
4141 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4142 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4143 const APInt &CVal = CI->getValue();
4144 if (CVal.getMinSignedBits() <= 64) {
4145 ConstantOffset += CVal.getSExtValue() * TypeSize;
4146 continue;
4149 if (TypeSize) { // Scales of zero don't do anything.
4150 // We only allow one variable index at the moment.
4151 if (VariableOperand != -1)
4152 return false;
4154 // Remember the variable index.
4155 VariableOperand = i;
4156 VariableScale = TypeSize;
4161 // A common case is for the GEP to only do a constant offset. In this case,
4162 // just add it to the disp field and check validity.
4163 if (VariableOperand == -1) {
4164 AddrMode.BaseOffs += ConstantOffset;
4165 if (ConstantOffset == 0 ||
4166 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4167 // Check to see if we can fold the base pointer in too.
4168 if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4169 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4170 AddrMode.InBounds = false;
4171 return true;
4173 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4174 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4175 ConstantOffset > 0) {
4176 // Record GEPs with non-zero offsets as candidates for splitting in the
4177 // event that the offset cannot fit into the r+i addressing mode.
4178 // Simple and common case that only one GEP is used in calculating the
4179 // address for the memory access.
4180 Value *Base = AddrInst->getOperand(0);
4181 auto *BaseI = dyn_cast<Instruction>(Base);
4182 auto *GEP = cast<GetElementPtrInst>(AddrInst);
4183 if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4184 (BaseI && !isa<CastInst>(BaseI) &&
4185 !isa<GetElementPtrInst>(BaseI))) {
4186 // Make sure the parent block allows inserting non-PHI instructions
4187 // before the terminator.
4188 BasicBlock *Parent =
4189 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4190 if (!Parent->getTerminator()->isEHPad())
4191 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4194 AddrMode.BaseOffs -= ConstantOffset;
4195 return false;
4198 // Save the valid addressing mode in case we can't match.
4199 ExtAddrMode BackupAddrMode = AddrMode;
4200 unsigned OldSize = AddrModeInsts.size();
4202 // See if the scale and offset amount is valid for this target.
4203 AddrMode.BaseOffs += ConstantOffset;
4204 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4205 AddrMode.InBounds = false;
4207 // Match the base operand of the GEP.
4208 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4209 // If it couldn't be matched, just stuff the value in a register.
4210 if (AddrMode.HasBaseReg) {
4211 AddrMode = BackupAddrMode;
4212 AddrModeInsts.resize(OldSize);
4213 return false;
4215 AddrMode.HasBaseReg = true;
4216 AddrMode.BaseReg = AddrInst->getOperand(0);
4219 // Match the remaining variable portion of the GEP.
4220 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4221 Depth)) {
4222 // If it couldn't be matched, try stuffing the base into a register
4223 // instead of matching it, and retrying the match of the scale.
4224 AddrMode = BackupAddrMode;
4225 AddrModeInsts.resize(OldSize);
4226 if (AddrMode.HasBaseReg)
4227 return false;
4228 AddrMode.HasBaseReg = true;
4229 AddrMode.BaseReg = AddrInst->getOperand(0);
4230 AddrMode.BaseOffs += ConstantOffset;
4231 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4232 VariableScale, Depth)) {
4233 // If even that didn't work, bail.
4234 AddrMode = BackupAddrMode;
4235 AddrModeInsts.resize(OldSize);
4236 return false;
4240 return true;
4242 case Instruction::SExt:
4243 case Instruction::ZExt: {
4244 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4245 if (!Ext)
4246 return false;
4248 // Try to move this ext out of the way of the addressing mode.
4249 // Ask for a method for doing so.
4250 TypePromotionHelper::Action TPH =
4251 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4252 if (!TPH)
4253 return false;
4255 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4256 TPT.getRestorationPoint();
4257 unsigned CreatedInstsCost = 0;
4258 unsigned ExtCost = !TLI.isExtFree(Ext);
4259 Value *PromotedOperand =
4260 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4261 // SExt has been moved away.
4262 // Thus either it will be rematched later in the recursive calls or it is
4263 // gone. Anyway, we must not fold it into the addressing mode at this point.
4264 // E.g.,
4265 // op = add opnd, 1
4266 // idx = ext op
4267 // addr = gep base, idx
4268 // is now:
4269 // promotedOpnd = ext opnd <- no match here
4270 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4271 // addr = gep base, op <- match
4272 if (MovedAway)
4273 *MovedAway = true;
4275 assert(PromotedOperand &&
4276 "TypePromotionHelper should have filtered out those cases");
4278 ExtAddrMode BackupAddrMode = AddrMode;
4279 unsigned OldSize = AddrModeInsts.size();
4281 if (!matchAddr(PromotedOperand, Depth) ||
4282 // The total of the new cost is equal to the cost of the created
4283 // instructions.
4284 // The total of the old cost is equal to the cost of the extension plus
4285 // what we have saved in the addressing mode.
4286 !isPromotionProfitable(CreatedInstsCost,
4287 ExtCost + (AddrModeInsts.size() - OldSize),
4288 PromotedOperand)) {
4289 AddrMode = BackupAddrMode;
4290 AddrModeInsts.resize(OldSize);
4291 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4292 TPT.rollback(LastKnownGood);
4293 return false;
4295 return true;
4298 return false;
4301 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4302 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4303 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4304 /// for the target.
4306 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4307 // Start a transaction at this point that we will rollback if the matching
4308 // fails.
4309 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4310 TPT.getRestorationPoint();
4311 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4312 // Fold in immediates if legal for the target.
4313 AddrMode.BaseOffs += CI->getSExtValue();
4314 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4315 return true;
4316 AddrMode.BaseOffs -= CI->getSExtValue();
4317 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4318 // If this is a global variable, try to fold it into the addressing mode.
4319 if (!AddrMode.BaseGV) {
4320 AddrMode.BaseGV = GV;
4321 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4322 return true;
4323 AddrMode.BaseGV = nullptr;
4325 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4326 ExtAddrMode BackupAddrMode = AddrMode;
4327 unsigned OldSize = AddrModeInsts.size();
4329 // Check to see if it is possible to fold this operation.
4330 bool MovedAway = false;
4331 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4332 // This instruction may have been moved away. If so, there is nothing
4333 // to check here.
4334 if (MovedAway)
4335 return true;
4336 // Okay, it's possible to fold this. Check to see if it is actually
4337 // *profitable* to do so. We use a simple cost model to avoid increasing
4338 // register pressure too much.
4339 if (I->hasOneUse() ||
4340 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4341 AddrModeInsts.push_back(I);
4342 return true;
4345 // It isn't profitable to do this, roll back.
4346 //cerr << "NOT FOLDING: " << *I;
4347 AddrMode = BackupAddrMode;
4348 AddrModeInsts.resize(OldSize);
4349 TPT.rollback(LastKnownGood);
4351 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4352 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4353 return true;
4354 TPT.rollback(LastKnownGood);
4355 } else if (isa<ConstantPointerNull>(Addr)) {
4356 // Null pointer gets folded without affecting the addressing mode.
4357 return true;
4360 // Worse case, the target should support [reg] addressing modes. :)
4361 if (!AddrMode.HasBaseReg) {
4362 AddrMode.HasBaseReg = true;
4363 AddrMode.BaseReg = Addr;
4364 // Still check for legality in case the target supports [imm] but not [i+r].
4365 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4366 return true;
4367 AddrMode.HasBaseReg = false;
4368 AddrMode.BaseReg = nullptr;
4371 // If the base register is already taken, see if we can do [r+r].
4372 if (AddrMode.Scale == 0) {
4373 AddrMode.Scale = 1;
4374 AddrMode.ScaledReg = Addr;
4375 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4376 return true;
4377 AddrMode.Scale = 0;
4378 AddrMode.ScaledReg = nullptr;
4380 // Couldn't match.
4381 TPT.rollback(LastKnownGood);
4382 return false;
4385 /// Check to see if all uses of OpVal by the specified inline asm call are due
4386 /// to memory operands. If so, return true, otherwise return false.
4387 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4388 const TargetLowering &TLI,
4389 const TargetRegisterInfo &TRI) {
4390 const Function *F = CI->getFunction();
4391 TargetLowering::AsmOperandInfoVector TargetConstraints =
4392 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4393 ImmutableCallSite(CI));
4395 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4396 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4398 // Compute the constraint code and ConstraintType to use.
4399 TLI.ComputeConstraintToUse(OpInfo, SDValue());
4401 // If this asm operand is our Value*, and if it isn't an indirect memory
4402 // operand, we can't fold it!
4403 if (OpInfo.CallOperandVal == OpVal &&
4404 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4405 !OpInfo.isIndirect))
4406 return false;
4409 return true;
4412 // Max number of memory uses to look at before aborting the search to conserve
4413 // compile time.
4414 static constexpr int MaxMemoryUsesToScan = 20;
4416 /// Recursively walk all the uses of I until we find a memory use.
4417 /// If we find an obviously non-foldable instruction, return true.
4418 /// Add the ultimately found memory instructions to MemoryUses.
4419 static bool FindAllMemoryUses(
4420 Instruction *I,
4421 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4422 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4423 const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4424 // If we already considered this instruction, we're done.
4425 if (!ConsideredInsts.insert(I).second)
4426 return false;
4428 // If this is an obviously unfoldable instruction, bail out.
4429 if (!MightBeFoldableInst(I))
4430 return true;
4432 const bool OptSize = I->getFunction()->hasOptSize();
4434 // Loop over all the uses, recursively processing them.
4435 for (Use &U : I->uses()) {
4436 // Conservatively return true if we're seeing a large number or a deep chain
4437 // of users. This avoids excessive compilation times in pathological cases.
4438 if (SeenInsts++ >= MaxMemoryUsesToScan)
4439 return true;
4441 Instruction *UserI = cast<Instruction>(U.getUser());
4442 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4443 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4444 continue;
4447 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4448 unsigned opNo = U.getOperandNo();
4449 if (opNo != StoreInst::getPointerOperandIndex())
4450 return true; // Storing addr, not into addr.
4451 MemoryUses.push_back(std::make_pair(SI, opNo));
4452 continue;
4455 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4456 unsigned opNo = U.getOperandNo();
4457 if (opNo != AtomicRMWInst::getPointerOperandIndex())
4458 return true; // Storing addr, not into addr.
4459 MemoryUses.push_back(std::make_pair(RMW, opNo));
4460 continue;
4463 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4464 unsigned opNo = U.getOperandNo();
4465 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4466 return true; // Storing addr, not into addr.
4467 MemoryUses.push_back(std::make_pair(CmpX, opNo));
4468 continue;
4471 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4472 // If this is a cold call, we can sink the addressing calculation into
4473 // the cold path. See optimizeCallInst
4474 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4475 continue;
4477 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4478 if (!IA) return true;
4480 // If this is a memory operand, we're cool, otherwise bail out.
4481 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4482 return true;
4483 continue;
4486 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4487 SeenInsts))
4488 return true;
4491 return false;
4494 /// Return true if Val is already known to be live at the use site that we're
4495 /// folding it into. If so, there is no cost to include it in the addressing
4496 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4497 /// instruction already.
4498 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4499 Value *KnownLive2) {
4500 // If Val is either of the known-live values, we know it is live!
4501 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4502 return true;
4504 // All values other than instructions and arguments (e.g. constants) are live.
4505 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4507 // If Val is a constant sized alloca in the entry block, it is live, this is
4508 // true because it is just a reference to the stack/frame pointer, which is
4509 // live for the whole function.
4510 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4511 if (AI->isStaticAlloca())
4512 return true;
4514 // Check to see if this value is already used in the memory instruction's
4515 // block. If so, it's already live into the block at the very least, so we
4516 // can reasonably fold it.
4517 return Val->isUsedInBasicBlock(MemoryInst->getParent());
4520 /// It is possible for the addressing mode of the machine to fold the specified
4521 /// instruction into a load or store that ultimately uses it.
4522 /// However, the specified instruction has multiple uses.
4523 /// Given this, it may actually increase register pressure to fold it
4524 /// into the load. For example, consider this code:
4526 /// X = ...
4527 /// Y = X+1
4528 /// use(Y) -> nonload/store
4529 /// Z = Y+1
4530 /// load Z
4532 /// In this case, Y has multiple uses, and can be folded into the load of Z
4533 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4534 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4535 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4536 /// number of computations either.
4538 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4539 /// X was live across 'load Z' for other reasons, we actually *would* want to
4540 /// fold the addressing mode in the Z case. This would make Y die earlier.
4541 bool AddressingModeMatcher::
4542 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4543 ExtAddrMode &AMAfter) {
4544 if (IgnoreProfitability) return true;
4546 // AMBefore is the addressing mode before this instruction was folded into it,
4547 // and AMAfter is the addressing mode after the instruction was folded. Get
4548 // the set of registers referenced by AMAfter and subtract out those
4549 // referenced by AMBefore: this is the set of values which folding in this
4550 // address extends the lifetime of.
4552 // Note that there are only two potential values being referenced here,
4553 // BaseReg and ScaleReg (global addresses are always available, as are any
4554 // folded immediates).
4555 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4557 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4558 // lifetime wasn't extended by adding this instruction.
4559 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4560 BaseReg = nullptr;
4561 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4562 ScaledReg = nullptr;
4564 // If folding this instruction (and it's subexprs) didn't extend any live
4565 // ranges, we're ok with it.
4566 if (!BaseReg && !ScaledReg)
4567 return true;
4569 // If all uses of this instruction can have the address mode sunk into them,
4570 // we can remove the addressing mode and effectively trade one live register
4571 // for another (at worst.) In this context, folding an addressing mode into
4572 // the use is just a particularly nice way of sinking it.
4573 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4574 SmallPtrSet<Instruction*, 16> ConsideredInsts;
4575 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4576 return false; // Has a non-memory, non-foldable use!
4578 // Now that we know that all uses of this instruction are part of a chain of
4579 // computation involving only operations that could theoretically be folded
4580 // into a memory use, loop over each of these memory operation uses and see
4581 // if they could *actually* fold the instruction. The assumption is that
4582 // addressing modes are cheap and that duplicating the computation involved
4583 // many times is worthwhile, even on a fastpath. For sinking candidates
4584 // (i.e. cold call sites), this serves as a way to prevent excessive code
4585 // growth since most architectures have some reasonable small and fast way to
4586 // compute an effective address. (i.e LEA on x86)
4587 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4588 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4589 Instruction *User = MemoryUses[i].first;
4590 unsigned OpNo = MemoryUses[i].second;
4592 // Get the access type of this use. If the use isn't a pointer, we don't
4593 // know what it accesses.
4594 Value *Address = User->getOperand(OpNo);
4595 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4596 if (!AddrTy)
4597 return false;
4598 Type *AddressAccessTy = AddrTy->getElementType();
4599 unsigned AS = AddrTy->getAddressSpace();
4601 // Do a match against the root of this address, ignoring profitability. This
4602 // will tell us if the addressing mode for the memory operation will
4603 // *actually* cover the shared instruction.
4604 ExtAddrMode Result;
4605 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4607 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4608 TPT.getRestorationPoint();
4609 AddressingModeMatcher Matcher(
4610 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4611 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4612 Matcher.IgnoreProfitability = true;
4613 bool Success = Matcher.matchAddr(Address, 0);
4614 (void)Success; assert(Success && "Couldn't select *anything*?");
4616 // The match was to check the profitability, the changes made are not
4617 // part of the original matcher. Therefore, they should be dropped
4618 // otherwise the original matcher will not present the right state.
4619 TPT.rollback(LastKnownGood);
4621 // If the match didn't cover I, then it won't be shared by it.
4622 if (!is_contained(MatchedAddrModeInsts, I))
4623 return false;
4625 MatchedAddrModeInsts.clear();
4628 return true;
4631 /// Return true if the specified values are defined in a
4632 /// different basic block than BB.
4633 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4634 if (Instruction *I = dyn_cast<Instruction>(V))
4635 return I->getParent() != BB;
4636 return false;
4639 /// Sink addressing mode computation immediate before MemoryInst if doing so
4640 /// can be done without increasing register pressure. The need for the
4641 /// register pressure constraint means this can end up being an all or nothing
4642 /// decision for all uses of the same addressing computation.
4644 /// Load and Store Instructions often have addressing modes that can do
4645 /// significant amounts of computation. As such, instruction selection will try
4646 /// to get the load or store to do as much computation as possible for the
4647 /// program. The problem is that isel can only see within a single block. As
4648 /// such, we sink as much legal addressing mode work into the block as possible.
4650 /// This method is used to optimize both load/store and inline asms with memory
4651 /// operands. It's also used to sink addressing computations feeding into cold
4652 /// call sites into their (cold) basic block.
4654 /// The motivation for handling sinking into cold blocks is that doing so can
4655 /// both enable other address mode sinking (by satisfying the register pressure
4656 /// constraint above), and reduce register pressure globally (by removing the
4657 /// addressing mode computation from the fast path entirely.).
4658 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4659 Type *AccessTy, unsigned AddrSpace) {
4660 Value *Repl = Addr;
4662 // Try to collapse single-value PHI nodes. This is necessary to undo
4663 // unprofitable PRE transformations.
4664 SmallVector<Value*, 8> worklist;
4665 SmallPtrSet<Value*, 16> Visited;
4666 worklist.push_back(Addr);
4668 // Use a worklist to iteratively look through PHI and select nodes, and
4669 // ensure that the addressing mode obtained from the non-PHI/select roots of
4670 // the graph are compatible.
4671 bool PhiOrSelectSeen = false;
4672 SmallVector<Instruction*, 16> AddrModeInsts;
4673 const SimplifyQuery SQ(*DL, TLInfo);
4674 AddressingModeCombiner AddrModes(SQ, Addr);
4675 TypePromotionTransaction TPT(RemovedInsts);
4676 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4677 TPT.getRestorationPoint();
4678 while (!worklist.empty()) {
4679 Value *V = worklist.back();
4680 worklist.pop_back();
4682 // We allow traversing cyclic Phi nodes.
4683 // In case of success after this loop we ensure that traversing through
4684 // Phi nodes ends up with all cases to compute address of the form
4685 // BaseGV + Base + Scale * Index + Offset
4686 // where Scale and Offset are constans and BaseGV, Base and Index
4687 // are exactly the same Values in all cases.
4688 // It means that BaseGV, Scale and Offset dominate our memory instruction
4689 // and have the same value as they had in address computation represented
4690 // as Phi. So we can safely sink address computation to memory instruction.
4691 if (!Visited.insert(V).second)
4692 continue;
4694 // For a PHI node, push all of its incoming values.
4695 if (PHINode *P = dyn_cast<PHINode>(V)) {
4696 for (Value *IncValue : P->incoming_values())
4697 worklist.push_back(IncValue);
4698 PhiOrSelectSeen = true;
4699 continue;
4701 // Similar for select.
4702 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4703 worklist.push_back(SI->getFalseValue());
4704 worklist.push_back(SI->getTrueValue());
4705 PhiOrSelectSeen = true;
4706 continue;
4709 // For non-PHIs, determine the addressing mode being computed. Note that
4710 // the result may differ depending on what other uses our candidate
4711 // addressing instructions might have.
4712 AddrModeInsts.clear();
4713 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4715 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4716 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4717 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4719 GetElementPtrInst *GEP = LargeOffsetGEP.first;
4720 if (GEP && !NewGEPBases.count(GEP)) {
4721 // If splitting the underlying data structure can reduce the offset of a
4722 // GEP, collect the GEP. Skip the GEPs that are the new bases of
4723 // previously split data structures.
4724 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4725 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4726 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4729 NewAddrMode.OriginalValue = V;
4730 if (!AddrModes.addNewAddrMode(NewAddrMode))
4731 break;
4734 // Try to combine the AddrModes we've collected. If we couldn't collect any,
4735 // or we have multiple but either couldn't combine them or combining them
4736 // wouldn't do anything useful, bail out now.
4737 if (!AddrModes.combineAddrModes()) {
4738 TPT.rollback(LastKnownGood);
4739 return false;
4741 TPT.commit();
4743 // Get the combined AddrMode (or the only AddrMode, if we only had one).
4744 ExtAddrMode AddrMode = AddrModes.getAddrMode();
4746 // If all the instructions matched are already in this BB, don't do anything.
4747 // If we saw a Phi node then it is not local definitely, and if we saw a select
4748 // then we want to push the address calculation past it even if it's already
4749 // in this BB.
4750 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4751 return IsNonLocalValue(V, MemoryInst->getParent());
4752 })) {
4753 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
4754 << "\n");
4755 return false;
4758 // Insert this computation right after this user. Since our caller is
4759 // scanning from the top of the BB to the bottom, reuse of the expr are
4760 // guaranteed to happen later.
4761 IRBuilder<> Builder(MemoryInst);
4763 // Now that we determined the addressing expression we want to use and know
4764 // that we have to sink it into this block. Check to see if we have already
4765 // done this for some other load/store instr in this block. If so, reuse
4766 // the computation. Before attempting reuse, check if the address is valid
4767 // as it may have been erased.
4769 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4771 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4772 if (SunkAddr) {
4773 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4774 << " for " << *MemoryInst << "\n");
4775 if (SunkAddr->getType() != Addr->getType())
4776 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4777 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
4778 TM && SubtargetInfo->addrSinkUsingGEPs())) {
4779 // By default, we use the GEP-based method when AA is used later. This
4780 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4781 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4782 << " for " << *MemoryInst << "\n");
4783 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4784 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4786 // First, find the pointer.
4787 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4788 ResultPtr = AddrMode.BaseReg;
4789 AddrMode.BaseReg = nullptr;
4792 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4793 // We can't add more than one pointer together, nor can we scale a
4794 // pointer (both of which seem meaningless).
4795 if (ResultPtr || AddrMode.Scale != 1)
4796 return false;
4798 ResultPtr = AddrMode.ScaledReg;
4799 AddrMode.Scale = 0;
4802 // It is only safe to sign extend the BaseReg if we know that the math
4803 // required to create it did not overflow before we extend it. Since
4804 // the original IR value was tossed in favor of a constant back when
4805 // the AddrMode was created we need to bail out gracefully if widths
4806 // do not match instead of extending it.
4808 // (See below for code to add the scale.)
4809 if (AddrMode.Scale) {
4810 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4811 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4812 cast<IntegerType>(ScaledRegTy)->getBitWidth())
4813 return false;
4816 if (AddrMode.BaseGV) {
4817 if (ResultPtr)
4818 return false;
4820 ResultPtr = AddrMode.BaseGV;
4823 // If the real base value actually came from an inttoptr, then the matcher
4824 // will look through it and provide only the integer value. In that case,
4825 // use it here.
4826 if (!DL->isNonIntegralPointerType(Addr->getType())) {
4827 if (!ResultPtr && AddrMode.BaseReg) {
4828 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4829 "sunkaddr");
4830 AddrMode.BaseReg = nullptr;
4831 } else if (!ResultPtr && AddrMode.Scale == 1) {
4832 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4833 "sunkaddr");
4834 AddrMode.Scale = 0;
4838 if (!ResultPtr &&
4839 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4840 SunkAddr = Constant::getNullValue(Addr->getType());
4841 } else if (!ResultPtr) {
4842 return false;
4843 } else {
4844 Type *I8PtrTy =
4845 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4846 Type *I8Ty = Builder.getInt8Ty();
4848 // Start with the base register. Do this first so that subsequent address
4849 // matching finds it last, which will prevent it from trying to match it
4850 // as the scaled value in case it happens to be a mul. That would be
4851 // problematic if we've sunk a different mul for the scale, because then
4852 // we'd end up sinking both muls.
4853 if (AddrMode.BaseReg) {
4854 Value *V = AddrMode.BaseReg;
4855 if (V->getType() != IntPtrTy)
4856 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4858 ResultIndex = V;
4861 // Add the scale value.
4862 if (AddrMode.Scale) {
4863 Value *V = AddrMode.ScaledReg;
4864 if (V->getType() == IntPtrTy) {
4865 // done.
4866 } else {
4867 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4868 cast<IntegerType>(V->getType())->getBitWidth() &&
4869 "We can't transform if ScaledReg is too narrow");
4870 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4873 if (AddrMode.Scale != 1)
4874 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4875 "sunkaddr");
4876 if (ResultIndex)
4877 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4878 else
4879 ResultIndex = V;
4882 // Add in the Base Offset if present.
4883 if (AddrMode.BaseOffs) {
4884 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4885 if (ResultIndex) {
4886 // We need to add this separately from the scale above to help with
4887 // SDAG consecutive load/store merging.
4888 if (ResultPtr->getType() != I8PtrTy)
4889 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4890 ResultPtr =
4891 AddrMode.InBounds
4892 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4893 "sunkaddr")
4894 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4897 ResultIndex = V;
4900 if (!ResultIndex) {
4901 SunkAddr = ResultPtr;
4902 } else {
4903 if (ResultPtr->getType() != I8PtrTy)
4904 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4905 SunkAddr =
4906 AddrMode.InBounds
4907 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4908 "sunkaddr")
4909 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4912 if (SunkAddr->getType() != Addr->getType())
4913 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4915 } else {
4916 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4917 // non-integral pointers, so in that case bail out now.
4918 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4919 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4920 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4921 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4922 if (DL->isNonIntegralPointerType(Addr->getType()) ||
4923 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4924 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4925 (AddrMode.BaseGV &&
4926 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4927 return false;
4929 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4930 << " for " << *MemoryInst << "\n");
4931 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4932 Value *Result = nullptr;
4934 // Start with the base register. Do this first so that subsequent address
4935 // matching finds it last, which will prevent it from trying to match it
4936 // as the scaled value in case it happens to be a mul. That would be
4937 // problematic if we've sunk a different mul for the scale, because then
4938 // we'd end up sinking both muls.
4939 if (AddrMode.BaseReg) {
4940 Value *V = AddrMode.BaseReg;
4941 if (V->getType()->isPointerTy())
4942 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4943 if (V->getType() != IntPtrTy)
4944 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4945 Result = V;
4948 // Add the scale value.
4949 if (AddrMode.Scale) {
4950 Value *V = AddrMode.ScaledReg;
4951 if (V->getType() == IntPtrTy) {
4952 // done.
4953 } else if (V->getType()->isPointerTy()) {
4954 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4955 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4956 cast<IntegerType>(V->getType())->getBitWidth()) {
4957 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4958 } else {
4959 // It is only safe to sign extend the BaseReg if we know that the math
4960 // required to create it did not overflow before we extend it. Since
4961 // the original IR value was tossed in favor of a constant back when
4962 // the AddrMode was created we need to bail out gracefully if widths
4963 // do not match instead of extending it.
4964 Instruction *I = dyn_cast_or_null<Instruction>(Result);
4965 if (I && (Result != AddrMode.BaseReg))
4966 I->eraseFromParent();
4967 return false;
4969 if (AddrMode.Scale != 1)
4970 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4971 "sunkaddr");
4972 if (Result)
4973 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4974 else
4975 Result = V;
4978 // Add in the BaseGV if present.
4979 if (AddrMode.BaseGV) {
4980 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4981 if (Result)
4982 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4983 else
4984 Result = V;
4987 // Add in the Base Offset if present.
4988 if (AddrMode.BaseOffs) {
4989 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4990 if (Result)
4991 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4992 else
4993 Result = V;
4996 if (!Result)
4997 SunkAddr = Constant::getNullValue(Addr->getType());
4998 else
4999 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5002 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5003 // Store the newly computed address into the cache. In the case we reused a
5004 // value, this should be idempotent.
5005 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5007 // If we have no uses, recursively delete the value and all dead instructions
5008 // using it.
5009 if (Repl->use_empty()) {
5010 // This can cause recursive deletion, which can invalidate our iterator.
5011 // Use a WeakTrackingVH to hold onto it in case this happens.
5012 Value *CurValue = &*CurInstIterator;
5013 WeakTrackingVH IterHandle(CurValue);
5014 BasicBlock *BB = CurInstIterator->getParent();
5016 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5018 if (IterHandle != CurValue) {
5019 // If the iterator instruction was recursively deleted, start over at the
5020 // start of the block.
5021 CurInstIterator = BB->begin();
5022 SunkAddrs.clear();
5025 ++NumMemoryInsts;
5026 return true;
5029 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5030 /// address computing into the block when possible / profitable.
5031 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5032 bool MadeChange = false;
5034 const TargetRegisterInfo *TRI =
5035 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5036 TargetLowering::AsmOperandInfoVector TargetConstraints =
5037 TLI->ParseConstraints(*DL, TRI, CS);
5038 unsigned ArgNo = 0;
5039 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5040 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5042 // Compute the constraint code and ConstraintType to use.
5043 TLI->ComputeConstraintToUse(OpInfo, SDValue());
5045 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5046 OpInfo.isIndirect) {
5047 Value *OpVal = CS->getArgOperand(ArgNo++);
5048 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5049 } else if (OpInfo.Type == InlineAsm::isInput)
5050 ArgNo++;
5053 return MadeChange;
5056 /// Check if all the uses of \p Val are equivalent (or free) zero or
5057 /// sign extensions.
5058 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5059 assert(!Val->use_empty() && "Input must have at least one use");
5060 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5061 bool IsSExt = isa<SExtInst>(FirstUser);
5062 Type *ExtTy = FirstUser->getType();
5063 for (const User *U : Val->users()) {
5064 const Instruction *UI = cast<Instruction>(U);
5065 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5066 return false;
5067 Type *CurTy = UI->getType();
5068 // Same input and output types: Same instruction after CSE.
5069 if (CurTy == ExtTy)
5070 continue;
5072 // If IsSExt is true, we are in this situation:
5073 // a = Val
5074 // b = sext ty1 a to ty2
5075 // c = sext ty1 a to ty3
5076 // Assuming ty2 is shorter than ty3, this could be turned into:
5077 // a = Val
5078 // b = sext ty1 a to ty2
5079 // c = sext ty2 b to ty3
5080 // However, the last sext is not free.
5081 if (IsSExt)
5082 return false;
5084 // This is a ZExt, maybe this is free to extend from one type to another.
5085 // In that case, we would not account for a different use.
5086 Type *NarrowTy;
5087 Type *LargeTy;
5088 if (ExtTy->getScalarType()->getIntegerBitWidth() >
5089 CurTy->getScalarType()->getIntegerBitWidth()) {
5090 NarrowTy = CurTy;
5091 LargeTy = ExtTy;
5092 } else {
5093 NarrowTy = ExtTy;
5094 LargeTy = CurTy;
5097 if (!TLI.isZExtFree(NarrowTy, LargeTy))
5098 return false;
5100 // All uses are the same or can be derived from one another for free.
5101 return true;
5104 /// Try to speculatively promote extensions in \p Exts and continue
5105 /// promoting through newly promoted operands recursively as far as doing so is
5106 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5107 /// When some promotion happened, \p TPT contains the proper state to revert
5108 /// them.
5110 /// \return true if some promotion happened, false otherwise.
5111 bool CodeGenPrepare::tryToPromoteExts(
5112 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5113 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5114 unsigned CreatedInstsCost) {
5115 bool Promoted = false;
5117 // Iterate over all the extensions to try to promote them.
5118 for (auto I : Exts) {
5119 // Early check if we directly have ext(load).
5120 if (isa<LoadInst>(I->getOperand(0))) {
5121 ProfitablyMovedExts.push_back(I);
5122 continue;
5125 // Check whether or not we want to do any promotion. The reason we have
5126 // this check inside the for loop is to catch the case where an extension
5127 // is directly fed by a load because in such case the extension can be moved
5128 // up without any promotion on its operands.
5129 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5130 return false;
5132 // Get the action to perform the promotion.
5133 TypePromotionHelper::Action TPH =
5134 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5135 // Check if we can promote.
5136 if (!TPH) {
5137 // Save the current extension as we cannot move up through its operand.
5138 ProfitablyMovedExts.push_back(I);
5139 continue;
5142 // Save the current state.
5143 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5144 TPT.getRestorationPoint();
5145 SmallVector<Instruction *, 4> NewExts;
5146 unsigned NewCreatedInstsCost = 0;
5147 unsigned ExtCost = !TLI->isExtFree(I);
5148 // Promote.
5149 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5150 &NewExts, nullptr, *TLI);
5151 assert(PromotedVal &&
5152 "TypePromotionHelper should have filtered out those cases");
5154 // We would be able to merge only one extension in a load.
5155 // Therefore, if we have more than 1 new extension we heuristically
5156 // cut this search path, because it means we degrade the code quality.
5157 // With exactly 2, the transformation is neutral, because we will merge
5158 // one extension but leave one. However, we optimistically keep going,
5159 // because the new extension may be removed too.
5160 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5161 // FIXME: It would be possible to propagate a negative value instead of
5162 // conservatively ceiling it to 0.
5163 TotalCreatedInstsCost =
5164 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5165 if (!StressExtLdPromotion &&
5166 (TotalCreatedInstsCost > 1 ||
5167 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5168 // This promotion is not profitable, rollback to the previous state, and
5169 // save the current extension in ProfitablyMovedExts as the latest
5170 // speculative promotion turned out to be unprofitable.
5171 TPT.rollback(LastKnownGood);
5172 ProfitablyMovedExts.push_back(I);
5173 continue;
5175 // Continue promoting NewExts as far as doing so is profitable.
5176 SmallVector<Instruction *, 2> NewlyMovedExts;
5177 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5178 bool NewPromoted = false;
5179 for (auto ExtInst : NewlyMovedExts) {
5180 Instruction *MovedExt = cast<Instruction>(ExtInst);
5181 Value *ExtOperand = MovedExt->getOperand(0);
5182 // If we have reached to a load, we need this extra profitability check
5183 // as it could potentially be merged into an ext(load).
5184 if (isa<LoadInst>(ExtOperand) &&
5185 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5186 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5187 continue;
5189 ProfitablyMovedExts.push_back(MovedExt);
5190 NewPromoted = true;
5193 // If none of speculative promotions for NewExts is profitable, rollback
5194 // and save the current extension (I) as the last profitable extension.
5195 if (!NewPromoted) {
5196 TPT.rollback(LastKnownGood);
5197 ProfitablyMovedExts.push_back(I);
5198 continue;
5200 // The promotion is profitable.
5201 Promoted = true;
5203 return Promoted;
5206 /// Merging redundant sexts when one is dominating the other.
5207 bool CodeGenPrepare::mergeSExts(Function &F) {
5208 bool Changed = false;
5209 for (auto &Entry : ValToSExtendedUses) {
5210 SExts &Insts = Entry.second;
5211 SExts CurPts;
5212 for (Instruction *Inst : Insts) {
5213 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5214 Inst->getOperand(0) != Entry.first)
5215 continue;
5216 bool inserted = false;
5217 for (auto &Pt : CurPts) {
5218 if (getDT(F).dominates(Inst, Pt)) {
5219 Pt->replaceAllUsesWith(Inst);
5220 RemovedInsts.insert(Pt);
5221 Pt->removeFromParent();
5222 Pt = Inst;
5223 inserted = true;
5224 Changed = true;
5225 break;
5227 if (!getDT(F).dominates(Pt, Inst))
5228 // Give up if we need to merge in a common dominator as the
5229 // experiments show it is not profitable.
5230 continue;
5231 Inst->replaceAllUsesWith(Pt);
5232 RemovedInsts.insert(Inst);
5233 Inst->removeFromParent();
5234 inserted = true;
5235 Changed = true;
5236 break;
5238 if (!inserted)
5239 CurPts.push_back(Inst);
5242 return Changed;
5245 // Spliting large data structures so that the GEPs accessing them can have
5246 // smaller offsets so that they can be sunk to the same blocks as their users.
5247 // For example, a large struct starting from %base is splitted into two parts
5248 // where the second part starts from %new_base.
5250 // Before:
5251 // BB0:
5252 // %base =
5254 // BB1:
5255 // %gep0 = gep %base, off0
5256 // %gep1 = gep %base, off1
5257 // %gep2 = gep %base, off2
5259 // BB2:
5260 // %load1 = load %gep0
5261 // %load2 = load %gep1
5262 // %load3 = load %gep2
5264 // After:
5265 // BB0:
5266 // %base =
5267 // %new_base = gep %base, off0
5269 // BB1:
5270 // %new_gep0 = %new_base
5271 // %new_gep1 = gep %new_base, off1 - off0
5272 // %new_gep2 = gep %new_base, off2 - off0
5274 // BB2:
5275 // %load1 = load i32, i32* %new_gep0
5276 // %load2 = load i32, i32* %new_gep1
5277 // %load3 = load i32, i32* %new_gep2
5279 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5280 // their offsets are smaller enough to fit into the addressing mode.
5281 bool CodeGenPrepare::splitLargeGEPOffsets() {
5282 bool Changed = false;
5283 for (auto &Entry : LargeOffsetGEPMap) {
5284 Value *OldBase = Entry.first;
5285 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5286 &LargeOffsetGEPs = Entry.second;
5287 auto compareGEPOffset =
5288 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5289 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5290 if (LHS.first == RHS.first)
5291 return false;
5292 if (LHS.second != RHS.second)
5293 return LHS.second < RHS.second;
5294 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5296 // Sorting all the GEPs of the same data structures based on the offsets.
5297 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5298 LargeOffsetGEPs.erase(
5299 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5300 LargeOffsetGEPs.end());
5301 // Skip if all the GEPs have the same offsets.
5302 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5303 continue;
5304 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5305 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5306 Value *NewBaseGEP = nullptr;
5308 auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5309 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5310 GetElementPtrInst *GEP = LargeOffsetGEP->first;
5311 int64_t Offset = LargeOffsetGEP->second;
5312 if (Offset != BaseOffset) {
5313 TargetLowering::AddrMode AddrMode;
5314 AddrMode.BaseOffs = Offset - BaseOffset;
5315 // The result type of the GEP might not be the type of the memory
5316 // access.
5317 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5318 GEP->getResultElementType(),
5319 GEP->getAddressSpace())) {
5320 // We need to create a new base if the offset to the current base is
5321 // too large to fit into the addressing mode. So, a very large struct
5322 // may be splitted into several parts.
5323 BaseGEP = GEP;
5324 BaseOffset = Offset;
5325 NewBaseGEP = nullptr;
5329 // Generate a new GEP to replace the current one.
5330 LLVMContext &Ctx = GEP->getContext();
5331 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5332 Type *I8PtrTy =
5333 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5334 Type *I8Ty = Type::getInt8Ty(Ctx);
5336 if (!NewBaseGEP) {
5337 // Create a new base if we don't have one yet. Find the insertion
5338 // pointer for the new base first.
5339 BasicBlock::iterator NewBaseInsertPt;
5340 BasicBlock *NewBaseInsertBB;
5341 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5342 // If the base of the struct is an instruction, the new base will be
5343 // inserted close to it.
5344 NewBaseInsertBB = BaseI->getParent();
5345 if (isa<PHINode>(BaseI))
5346 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5347 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5348 NewBaseInsertBB =
5349 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5350 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5351 } else
5352 NewBaseInsertPt = std::next(BaseI->getIterator());
5353 } else {
5354 // If the current base is an argument or global value, the new base
5355 // will be inserted to the entry block.
5356 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5357 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5359 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5360 // Create a new base.
5361 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5362 NewBaseGEP = OldBase;
5363 if (NewBaseGEP->getType() != I8PtrTy)
5364 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5365 NewBaseGEP =
5366 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5367 NewGEPBases.insert(NewBaseGEP);
5370 IRBuilder<> Builder(GEP);
5371 Value *NewGEP = NewBaseGEP;
5372 if (Offset == BaseOffset) {
5373 if (GEP->getType() != I8PtrTy)
5374 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5375 } else {
5376 // Calculate the new offset for the new GEP.
5377 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5378 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5380 if (GEP->getType() != I8PtrTy)
5381 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5383 GEP->replaceAllUsesWith(NewGEP);
5384 LargeOffsetGEPID.erase(GEP);
5385 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5386 GEP->eraseFromParent();
5387 Changed = true;
5390 return Changed;
5393 /// Return true, if an ext(load) can be formed from an extension in
5394 /// \p MovedExts.
5395 bool CodeGenPrepare::canFormExtLd(
5396 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5397 Instruction *&Inst, bool HasPromoted) {
5398 for (auto *MovedExtInst : MovedExts) {
5399 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5400 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5401 Inst = MovedExtInst;
5402 break;
5405 if (!LI)
5406 return false;
5408 // If they're already in the same block, there's nothing to do.
5409 // Make the cheap checks first if we did not promote.
5410 // If we promoted, we need to check if it is indeed profitable.
5411 if (!HasPromoted && LI->getParent() == Inst->getParent())
5412 return false;
5414 return TLI->isExtLoad(LI, Inst, *DL);
5417 /// Move a zext or sext fed by a load into the same basic block as the load,
5418 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5419 /// extend into the load.
5421 /// E.g.,
5422 /// \code
5423 /// %ld = load i32* %addr
5424 /// %add = add nuw i32 %ld, 4
5425 /// %zext = zext i32 %add to i64
5426 // \endcode
5427 /// =>
5428 /// \code
5429 /// %ld = load i32* %addr
5430 /// %zext = zext i32 %ld to i64
5431 /// %add = add nuw i64 %zext, 4
5432 /// \encode
5433 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5434 /// allow us to match zext(load i32*) to i64.
5436 /// Also, try to promote the computations used to obtain a sign extended
5437 /// value used into memory accesses.
5438 /// E.g.,
5439 /// \code
5440 /// a = add nsw i32 b, 3
5441 /// d = sext i32 a to i64
5442 /// e = getelementptr ..., i64 d
5443 /// \endcode
5444 /// =>
5445 /// \code
5446 /// f = sext i32 b to i64
5447 /// a = add nsw i64 f, 3
5448 /// e = getelementptr ..., i64 a
5449 /// \endcode
5451 /// \p Inst[in/out] the extension may be modified during the process if some
5452 /// promotions apply.
5453 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5454 // ExtLoad formation and address type promotion infrastructure requires TLI to
5455 // be effective.
5456 if (!TLI)
5457 return false;
5459 bool AllowPromotionWithoutCommonHeader = false;
5460 /// See if it is an interesting sext operations for the address type
5461 /// promotion before trying to promote it, e.g., the ones with the right
5462 /// type and used in memory accesses.
5463 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5464 *Inst, AllowPromotionWithoutCommonHeader);
5465 TypePromotionTransaction TPT(RemovedInsts);
5466 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5467 TPT.getRestorationPoint();
5468 SmallVector<Instruction *, 1> Exts;
5469 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5470 Exts.push_back(Inst);
5472 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5474 // Look for a load being extended.
5475 LoadInst *LI = nullptr;
5476 Instruction *ExtFedByLoad;
5478 // Try to promote a chain of computation if it allows to form an extended
5479 // load.
5480 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5481 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5482 TPT.commit();
5483 // Move the extend into the same block as the load
5484 ExtFedByLoad->moveAfter(LI);
5485 // CGP does not check if the zext would be speculatively executed when moved
5486 // to the same basic block as the load. Preserving its original location
5487 // would pessimize the debugging experience, as well as negatively impact
5488 // the quality of sample pgo. We don't want to use "line 0" as that has a
5489 // size cost in the line-table section and logically the zext can be seen as
5490 // part of the load. Therefore we conservatively reuse the same debug
5491 // location for the load and the zext.
5492 ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5493 ++NumExtsMoved;
5494 Inst = ExtFedByLoad;
5495 return true;
5498 // Continue promoting SExts if known as considerable depending on targets.
5499 if (ATPConsiderable &&
5500 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5501 HasPromoted, TPT, SpeculativelyMovedExts))
5502 return true;
5504 TPT.rollback(LastKnownGood);
5505 return false;
5508 // Perform address type promotion if doing so is profitable.
5509 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5510 // instructions that sign extended the same initial value. However, if
5511 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5512 // extension is just profitable.
5513 bool CodeGenPrepare::performAddressTypePromotion(
5514 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5515 bool HasPromoted, TypePromotionTransaction &TPT,
5516 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5517 bool Promoted = false;
5518 SmallPtrSet<Instruction *, 1> UnhandledExts;
5519 bool AllSeenFirst = true;
5520 for (auto I : SpeculativelyMovedExts) {
5521 Value *HeadOfChain = I->getOperand(0);
5522 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5523 SeenChainsForSExt.find(HeadOfChain);
5524 // If there is an unhandled SExt which has the same header, try to promote
5525 // it as well.
5526 if (AlreadySeen != SeenChainsForSExt.end()) {
5527 if (AlreadySeen->second != nullptr)
5528 UnhandledExts.insert(AlreadySeen->second);
5529 AllSeenFirst = false;
5533 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5534 SpeculativelyMovedExts.size() == 1)) {
5535 TPT.commit();
5536 if (HasPromoted)
5537 Promoted = true;
5538 for (auto I : SpeculativelyMovedExts) {
5539 Value *HeadOfChain = I->getOperand(0);
5540 SeenChainsForSExt[HeadOfChain] = nullptr;
5541 ValToSExtendedUses[HeadOfChain].push_back(I);
5543 // Update Inst as promotion happen.
5544 Inst = SpeculativelyMovedExts.pop_back_val();
5545 } else {
5546 // This is the first chain visited from the header, keep the current chain
5547 // as unhandled. Defer to promote this until we encounter another SExt
5548 // chain derived from the same header.
5549 for (auto I : SpeculativelyMovedExts) {
5550 Value *HeadOfChain = I->getOperand(0);
5551 SeenChainsForSExt[HeadOfChain] = Inst;
5553 return false;
5556 if (!AllSeenFirst && !UnhandledExts.empty())
5557 for (auto VisitedSExt : UnhandledExts) {
5558 if (RemovedInsts.count(VisitedSExt))
5559 continue;
5560 TypePromotionTransaction TPT(RemovedInsts);
5561 SmallVector<Instruction *, 1> Exts;
5562 SmallVector<Instruction *, 2> Chains;
5563 Exts.push_back(VisitedSExt);
5564 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5565 TPT.commit();
5566 if (HasPromoted)
5567 Promoted = true;
5568 for (auto I : Chains) {
5569 Value *HeadOfChain = I->getOperand(0);
5570 // Mark this as handled.
5571 SeenChainsForSExt[HeadOfChain] = nullptr;
5572 ValToSExtendedUses[HeadOfChain].push_back(I);
5575 return Promoted;
5578 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5579 BasicBlock *DefBB = I->getParent();
5581 // If the result of a {s|z}ext and its source are both live out, rewrite all
5582 // other uses of the source with result of extension.
5583 Value *Src = I->getOperand(0);
5584 if (Src->hasOneUse())
5585 return false;
5587 // Only do this xform if truncating is free.
5588 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5589 return false;
5591 // Only safe to perform the optimization if the source is also defined in
5592 // this block.
5593 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5594 return false;
5596 bool DefIsLiveOut = false;
5597 for (User *U : I->users()) {
5598 Instruction *UI = cast<Instruction>(U);
5600 // Figure out which BB this ext is used in.
5601 BasicBlock *UserBB = UI->getParent();
5602 if (UserBB == DefBB) continue;
5603 DefIsLiveOut = true;
5604 break;
5606 if (!DefIsLiveOut)
5607 return false;
5609 // Make sure none of the uses are PHI nodes.
5610 for (User *U : Src->users()) {
5611 Instruction *UI = cast<Instruction>(U);
5612 BasicBlock *UserBB = UI->getParent();
5613 if (UserBB == DefBB) continue;
5614 // Be conservative. We don't want this xform to end up introducing
5615 // reloads just before load / store instructions.
5616 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5617 return false;
5620 // InsertedTruncs - Only insert one trunc in each block once.
5621 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5623 bool MadeChange = false;
5624 for (Use &U : Src->uses()) {
5625 Instruction *User = cast<Instruction>(U.getUser());
5627 // Figure out which BB this ext is used in.
5628 BasicBlock *UserBB = User->getParent();
5629 if (UserBB == DefBB) continue;
5631 // Both src and def are live in this block. Rewrite the use.
5632 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5634 if (!InsertedTrunc) {
5635 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5636 assert(InsertPt != UserBB->end());
5637 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5638 InsertedInsts.insert(InsertedTrunc);
5641 // Replace a use of the {s|z}ext source with a use of the result.
5642 U = InsertedTrunc;
5643 ++NumExtUses;
5644 MadeChange = true;
5647 return MadeChange;
5650 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
5651 // just after the load if the target can fold this into one extload instruction,
5652 // with the hope of eliminating some of the other later "and" instructions using
5653 // the loaded value. "and"s that are made trivially redundant by the insertion
5654 // of the new "and" are removed by this function, while others (e.g. those whose
5655 // path from the load goes through a phi) are left for isel to potentially
5656 // remove.
5658 // For example:
5660 // b0:
5661 // x = load i32
5662 // ...
5663 // b1:
5664 // y = and x, 0xff
5665 // z = use y
5667 // becomes:
5669 // b0:
5670 // x = load i32
5671 // x' = and x, 0xff
5672 // ...
5673 // b1:
5674 // z = use x'
5676 // whereas:
5678 // b0:
5679 // x1 = load i32
5680 // ...
5681 // b1:
5682 // x2 = load i32
5683 // ...
5684 // b2:
5685 // x = phi x1, x2
5686 // y = and x, 0xff
5688 // becomes (after a call to optimizeLoadExt for each load):
5690 // b0:
5691 // x1 = load i32
5692 // x1' = and x1, 0xff
5693 // ...
5694 // b1:
5695 // x2 = load i32
5696 // x2' = and x2, 0xff
5697 // ...
5698 // b2:
5699 // x = phi x1', x2'
5700 // y = and x, 0xff
5701 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5702 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5703 return false;
5705 // Skip loads we've already transformed.
5706 if (Load->hasOneUse() &&
5707 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5708 return false;
5710 // Look at all uses of Load, looking through phis, to determine how many bits
5711 // of the loaded value are needed.
5712 SmallVector<Instruction *, 8> WorkList;
5713 SmallPtrSet<Instruction *, 16> Visited;
5714 SmallVector<Instruction *, 8> AndsToMaybeRemove;
5715 for (auto *U : Load->users())
5716 WorkList.push_back(cast<Instruction>(U));
5718 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5719 unsigned BitWidth = LoadResultVT.getSizeInBits();
5720 APInt DemandBits(BitWidth, 0);
5721 APInt WidestAndBits(BitWidth, 0);
5723 while (!WorkList.empty()) {
5724 Instruction *I = WorkList.back();
5725 WorkList.pop_back();
5727 // Break use-def graph loops.
5728 if (!Visited.insert(I).second)
5729 continue;
5731 // For a PHI node, push all of its users.
5732 if (auto *Phi = dyn_cast<PHINode>(I)) {
5733 for (auto *U : Phi->users())
5734 WorkList.push_back(cast<Instruction>(U));
5735 continue;
5738 switch (I->getOpcode()) {
5739 case Instruction::And: {
5740 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5741 if (!AndC)
5742 return false;
5743 APInt AndBits = AndC->getValue();
5744 DemandBits |= AndBits;
5745 // Keep track of the widest and mask we see.
5746 if (AndBits.ugt(WidestAndBits))
5747 WidestAndBits = AndBits;
5748 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5749 AndsToMaybeRemove.push_back(I);
5750 break;
5753 case Instruction::Shl: {
5754 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5755 if (!ShlC)
5756 return false;
5757 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5758 DemandBits.setLowBits(BitWidth - ShiftAmt);
5759 break;
5762 case Instruction::Trunc: {
5763 EVT TruncVT = TLI->getValueType(*DL, I->getType());
5764 unsigned TruncBitWidth = TruncVT.getSizeInBits();
5765 DemandBits.setLowBits(TruncBitWidth);
5766 break;
5769 default:
5770 return false;
5774 uint32_t ActiveBits = DemandBits.getActiveBits();
5775 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5776 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
5777 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5778 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5779 // followed by an AND.
5780 // TODO: Look into removing this restriction by fixing backends to either
5781 // return false for isLoadExtLegal for i1 or have them select this pattern to
5782 // a single instruction.
5784 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5785 // mask, since these are the only ands that will be removed by isel.
5786 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5787 WidestAndBits != DemandBits)
5788 return false;
5790 LLVMContext &Ctx = Load->getType()->getContext();
5791 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5792 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5794 // Reject cases that won't be matched as extloads.
5795 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5796 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5797 return false;
5799 IRBuilder<> Builder(Load->getNextNode());
5800 auto *NewAnd = cast<Instruction>(
5801 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5802 // Mark this instruction as "inserted by CGP", so that other
5803 // optimizations don't touch it.
5804 InsertedInsts.insert(NewAnd);
5806 // Replace all uses of load with new and (except for the use of load in the
5807 // new and itself).
5808 Load->replaceAllUsesWith(NewAnd);
5809 NewAnd->setOperand(0, Load);
5811 // Remove any and instructions that are now redundant.
5812 for (auto *And : AndsToMaybeRemove)
5813 // Check that the and mask is the same as the one we decided to put on the
5814 // new and.
5815 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5816 And->replaceAllUsesWith(NewAnd);
5817 if (&*CurInstIterator == And)
5818 CurInstIterator = std::next(And->getIterator());
5819 And->eraseFromParent();
5820 ++NumAndUses;
5823 ++NumAndsAdded;
5824 return true;
5827 /// Check if V (an operand of a select instruction) is an expensive instruction
5828 /// that is only used once.
5829 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5830 auto *I = dyn_cast<Instruction>(V);
5831 // If it's safe to speculatively execute, then it should not have side
5832 // effects; therefore, it's safe to sink and possibly *not* execute.
5833 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5834 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5837 /// Returns true if a SelectInst should be turned into an explicit branch.
5838 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5839 const TargetLowering *TLI,
5840 SelectInst *SI) {
5841 // If even a predictable select is cheap, then a branch can't be cheaper.
5842 if (!TLI->isPredictableSelectExpensive())
5843 return false;
5845 // FIXME: This should use the same heuristics as IfConversion to determine
5846 // whether a select is better represented as a branch.
5848 // If metadata tells us that the select condition is obviously predictable,
5849 // then we want to replace the select with a branch.
5850 uint64_t TrueWeight, FalseWeight;
5851 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5852 uint64_t Max = std::max(TrueWeight, FalseWeight);
5853 uint64_t Sum = TrueWeight + FalseWeight;
5854 if (Sum != 0) {
5855 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5856 if (Probability > TLI->getPredictableBranchThreshold())
5857 return true;
5861 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5863 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5864 // comparison condition. If the compare has more than one use, there's
5865 // probably another cmov or setcc around, so it's not worth emitting a branch.
5866 if (!Cmp || !Cmp->hasOneUse())
5867 return false;
5869 // If either operand of the select is expensive and only needed on one side
5870 // of the select, we should form a branch.
5871 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5872 sinkSelectOperand(TTI, SI->getFalseValue()))
5873 return true;
5875 return false;
5878 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5879 /// false value of \p SI. If the true/false value of \p SI is defined by any
5880 /// select instructions in \p Selects, look through the defining select
5881 /// instruction until the true/false value is not defined in \p Selects.
5882 static Value *getTrueOrFalseValue(
5883 SelectInst *SI, bool isTrue,
5884 const SmallPtrSet<const Instruction *, 2> &Selects) {
5885 Value *V = nullptr;
5887 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5888 DefSI = dyn_cast<SelectInst>(V)) {
5889 assert(DefSI->getCondition() == SI->getCondition() &&
5890 "The condition of DefSI does not match with SI");
5891 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5894 assert(V && "Failed to get select true/false value");
5895 return V;
5898 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
5899 assert(Shift->isShift() && "Expected a shift");
5901 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
5902 // general vector shifts, and (3) the shift amount is a select-of-splatted
5903 // values, hoist the shifts before the select:
5904 // shift Op0, (select Cond, TVal, FVal) -->
5905 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
5907 // This is inverting a generic IR transform when we know that the cost of a
5908 // general vector shift is more than the cost of 2 shift-by-scalars.
5909 // We can't do this effectively in SDAG because we may not be able to
5910 // determine if the select operands are splats from within a basic block.
5911 Type *Ty = Shift->getType();
5912 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
5913 return false;
5914 Value *Cond, *TVal, *FVal;
5915 if (!match(Shift->getOperand(1),
5916 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
5917 return false;
5918 if (!isSplatValue(TVal) || !isSplatValue(FVal))
5919 return false;
5921 IRBuilder<> Builder(Shift);
5922 BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
5923 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
5924 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
5925 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
5926 Shift->replaceAllUsesWith(NewSel);
5927 Shift->eraseFromParent();
5928 return true;
5931 /// If we have a SelectInst that will likely profit from branch prediction,
5932 /// turn it into a branch.
5933 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5934 // If branch conversion isn't desirable, exit early.
5935 if (DisableSelectToBranch || OptSize || !TLI)
5936 return false;
5938 // Find all consecutive select instructions that share the same condition.
5939 SmallVector<SelectInst *, 2> ASI;
5940 ASI.push_back(SI);
5941 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5942 It != SI->getParent()->end(); ++It) {
5943 SelectInst *I = dyn_cast<SelectInst>(&*It);
5944 if (I && SI->getCondition() == I->getCondition()) {
5945 ASI.push_back(I);
5946 } else {
5947 break;
5951 SelectInst *LastSI = ASI.back();
5952 // Increment the current iterator to skip all the rest of select instructions
5953 // because they will be either "not lowered" or "all lowered" to branch.
5954 CurInstIterator = std::next(LastSI->getIterator());
5956 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5958 // Can we convert the 'select' to CF ?
5959 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5960 return false;
5962 TargetLowering::SelectSupportKind SelectKind;
5963 if (VectorCond)
5964 SelectKind = TargetLowering::VectorMaskSelect;
5965 else if (SI->getType()->isVectorTy())
5966 SelectKind = TargetLowering::ScalarCondVectorVal;
5967 else
5968 SelectKind = TargetLowering::ScalarValSelect;
5970 if (TLI->isSelectSupported(SelectKind) &&
5971 !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5972 return false;
5974 // The DominatorTree needs to be rebuilt by any consumers after this
5975 // transformation. We simply reset here rather than setting the ModifiedDT
5976 // flag to avoid restarting the function walk in runOnFunction for each
5977 // select optimized.
5978 DT.reset();
5980 // Transform a sequence like this:
5981 // start:
5982 // %cmp = cmp uge i32 %a, %b
5983 // %sel = select i1 %cmp, i32 %c, i32 %d
5985 // Into:
5986 // start:
5987 // %cmp = cmp uge i32 %a, %b
5988 // br i1 %cmp, label %select.true, label %select.false
5989 // select.true:
5990 // br label %select.end
5991 // select.false:
5992 // br label %select.end
5993 // select.end:
5994 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5996 // In addition, we may sink instructions that produce %c or %d from
5997 // the entry block into the destination(s) of the new branch.
5998 // If the true or false blocks do not contain a sunken instruction, that
5999 // block and its branch may be optimized away. In that case, one side of the
6000 // first branch will point directly to select.end, and the corresponding PHI
6001 // predecessor block will be the start block.
6003 // First, we split the block containing the select into 2 blocks.
6004 BasicBlock *StartBlock = SI->getParent();
6005 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6006 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6008 // Delete the unconditional branch that was just created by the split.
6009 StartBlock->getTerminator()->eraseFromParent();
6011 // These are the new basic blocks for the conditional branch.
6012 // At least one will become an actual new basic block.
6013 BasicBlock *TrueBlock = nullptr;
6014 BasicBlock *FalseBlock = nullptr;
6015 BranchInst *TrueBranch = nullptr;
6016 BranchInst *FalseBranch = nullptr;
6018 // Sink expensive instructions into the conditional blocks to avoid executing
6019 // them speculatively.
6020 for (SelectInst *SI : ASI) {
6021 if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6022 if (TrueBlock == nullptr) {
6023 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6024 EndBlock->getParent(), EndBlock);
6025 TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6026 TrueBranch->setDebugLoc(SI->getDebugLoc());
6028 auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6029 TrueInst->moveBefore(TrueBranch);
6031 if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6032 if (FalseBlock == nullptr) {
6033 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6034 EndBlock->getParent(), EndBlock);
6035 FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6036 FalseBranch->setDebugLoc(SI->getDebugLoc());
6038 auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6039 FalseInst->moveBefore(FalseBranch);
6043 // If there was nothing to sink, then arbitrarily choose the 'false' side
6044 // for a new input value to the PHI.
6045 if (TrueBlock == FalseBlock) {
6046 assert(TrueBlock == nullptr &&
6047 "Unexpected basic block transform while optimizing select");
6049 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6050 EndBlock->getParent(), EndBlock);
6051 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6052 FalseBranch->setDebugLoc(SI->getDebugLoc());
6055 // Insert the real conditional branch based on the original condition.
6056 // If we did not create a new block for one of the 'true' or 'false' paths
6057 // of the condition, it means that side of the branch goes to the end block
6058 // directly and the path originates from the start block from the point of
6059 // view of the new PHI.
6060 BasicBlock *TT, *FT;
6061 if (TrueBlock == nullptr) {
6062 TT = EndBlock;
6063 FT = FalseBlock;
6064 TrueBlock = StartBlock;
6065 } else if (FalseBlock == nullptr) {
6066 TT = TrueBlock;
6067 FT = EndBlock;
6068 FalseBlock = StartBlock;
6069 } else {
6070 TT = TrueBlock;
6071 FT = FalseBlock;
6073 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6075 SmallPtrSet<const Instruction *, 2> INS;
6076 INS.insert(ASI.begin(), ASI.end());
6077 // Use reverse iterator because later select may use the value of the
6078 // earlier select, and we need to propagate value through earlier select
6079 // to get the PHI operand.
6080 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6081 SelectInst *SI = *It;
6082 // The select itself is replaced with a PHI Node.
6083 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6084 PN->takeName(SI);
6085 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6086 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6087 PN->setDebugLoc(SI->getDebugLoc());
6089 SI->replaceAllUsesWith(PN);
6090 SI->eraseFromParent();
6091 INS.erase(SI);
6092 ++NumSelectsExpanded;
6095 // Instruct OptimizeBlock to skip to the next block.
6096 CurInstIterator = StartBlock->end();
6097 return true;
6100 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6101 SmallVector<int, 16> Mask(SVI->getShuffleMask());
6102 int SplatElem = -1;
6103 for (unsigned i = 0; i < Mask.size(); ++i) {
6104 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6105 return false;
6106 SplatElem = Mask[i];
6109 return true;
6112 /// Some targets have expensive vector shifts if the lanes aren't all the same
6113 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6114 /// it's often worth sinking a shufflevector splat down to its use so that
6115 /// codegen can spot all lanes are identical.
6116 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6117 BasicBlock *DefBB = SVI->getParent();
6119 // Only do this xform if variable vector shifts are particularly expensive.
6120 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
6121 return false;
6123 // We only expect better codegen by sinking a shuffle if we can recognise a
6124 // constant splat.
6125 if (!isBroadcastShuffle(SVI))
6126 return false;
6128 // InsertedShuffles - Only insert a shuffle in each block once.
6129 DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6131 bool MadeChange = false;
6132 for (User *U : SVI->users()) {
6133 Instruction *UI = cast<Instruction>(U);
6135 // Figure out which BB this ext is used in.
6136 BasicBlock *UserBB = UI->getParent();
6137 if (UserBB == DefBB) continue;
6139 // For now only apply this when the splat is used by a shift instruction.
6140 if (!UI->isShift()) continue;
6142 // Everything checks out, sink the shuffle if the user's block doesn't
6143 // already have a copy.
6144 Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6146 if (!InsertedShuffle) {
6147 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6148 assert(InsertPt != UserBB->end());
6149 InsertedShuffle =
6150 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6151 SVI->getOperand(2), "", &*InsertPt);
6152 InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6155 UI->replaceUsesOfWith(SVI, InsertedShuffle);
6156 MadeChange = true;
6159 // If we removed all uses, nuke the shuffle.
6160 if (SVI->use_empty()) {
6161 SVI->eraseFromParent();
6162 MadeChange = true;
6165 return MadeChange;
6168 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6169 // If the operands of I can be folded into a target instruction together with
6170 // I, duplicate and sink them.
6171 SmallVector<Use *, 4> OpsToSink;
6172 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
6173 return false;
6175 // OpsToSink can contain multiple uses in a use chain (e.g.
6176 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6177 // uses must come first, so we process the ops in reverse order so as to not
6178 // create invalid IR.
6179 BasicBlock *TargetBB = I->getParent();
6180 bool Changed = false;
6181 SmallVector<Use *, 4> ToReplace;
6182 for (Use *U : reverse(OpsToSink)) {
6183 auto *UI = cast<Instruction>(U->get());
6184 if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6185 continue;
6186 ToReplace.push_back(U);
6189 SetVector<Instruction *> MaybeDead;
6190 DenseMap<Instruction *, Instruction *> NewInstructions;
6191 Instruction *InsertPoint = I;
6192 for (Use *U : ToReplace) {
6193 auto *UI = cast<Instruction>(U->get());
6194 Instruction *NI = UI->clone();
6195 NewInstructions[UI] = NI;
6196 MaybeDead.insert(UI);
6197 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6198 NI->insertBefore(InsertPoint);
6199 InsertPoint = NI;
6200 InsertedInsts.insert(NI);
6202 // Update the use for the new instruction, making sure that we update the
6203 // sunk instruction uses, if it is part of a chain that has already been
6204 // sunk.
6205 Instruction *OldI = cast<Instruction>(U->getUser());
6206 if (NewInstructions.count(OldI))
6207 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6208 else
6209 U->set(NI);
6210 Changed = true;
6213 // Remove instructions that are dead after sinking.
6214 for (auto *I : MaybeDead) {
6215 if (!I->hasNUsesOrMore(1)) {
6216 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6217 I->eraseFromParent();
6221 return Changed;
6224 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6225 if (!TLI || !DL)
6226 return false;
6228 Value *Cond = SI->getCondition();
6229 Type *OldType = Cond->getType();
6230 LLVMContext &Context = Cond->getContext();
6231 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6232 unsigned RegWidth = RegType.getSizeInBits();
6234 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6235 return false;
6237 // If the register width is greater than the type width, expand the condition
6238 // of the switch instruction and each case constant to the width of the
6239 // register. By widening the type of the switch condition, subsequent
6240 // comparisons (for case comparisons) will not need to be extended to the
6241 // preferred register width, so we will potentially eliminate N-1 extends,
6242 // where N is the number of cases in the switch.
6243 auto *NewType = Type::getIntNTy(Context, RegWidth);
6245 // Zero-extend the switch condition and case constants unless the switch
6246 // condition is a function argument that is already being sign-extended.
6247 // In that case, we can avoid an unnecessary mask/extension by sign-extending
6248 // everything instead.
6249 Instruction::CastOps ExtType = Instruction::ZExt;
6250 if (auto *Arg = dyn_cast<Argument>(Cond))
6251 if (Arg->hasSExtAttr())
6252 ExtType = Instruction::SExt;
6254 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6255 ExtInst->insertBefore(SI);
6256 ExtInst->setDebugLoc(SI->getDebugLoc());
6257 SI->setCondition(ExtInst);
6258 for (auto Case : SI->cases()) {
6259 APInt NarrowConst = Case.getCaseValue()->getValue();
6260 APInt WideConst = (ExtType == Instruction::ZExt) ?
6261 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6262 Case.setValue(ConstantInt::get(Context, WideConst));
6265 return true;
6269 namespace {
6271 /// Helper class to promote a scalar operation to a vector one.
6272 /// This class is used to move downward extractelement transition.
6273 /// E.g.,
6274 /// a = vector_op <2 x i32>
6275 /// b = extractelement <2 x i32> a, i32 0
6276 /// c = scalar_op b
6277 /// store c
6279 /// =>
6280 /// a = vector_op <2 x i32>
6281 /// c = vector_op a (equivalent to scalar_op on the related lane)
6282 /// * d = extractelement <2 x i32> c, i32 0
6283 /// * store d
6284 /// Assuming both extractelement and store can be combine, we get rid of the
6285 /// transition.
6286 class VectorPromoteHelper {
6287 /// DataLayout associated with the current module.
6288 const DataLayout &DL;
6290 /// Used to perform some checks on the legality of vector operations.
6291 const TargetLowering &TLI;
6293 /// Used to estimated the cost of the promoted chain.
6294 const TargetTransformInfo &TTI;
6296 /// The transition being moved downwards.
6297 Instruction *Transition;
6299 /// The sequence of instructions to be promoted.
6300 SmallVector<Instruction *, 4> InstsToBePromoted;
6302 /// Cost of combining a store and an extract.
6303 unsigned StoreExtractCombineCost;
6305 /// Instruction that will be combined with the transition.
6306 Instruction *CombineInst = nullptr;
6308 /// The instruction that represents the current end of the transition.
6309 /// Since we are faking the promotion until we reach the end of the chain
6310 /// of computation, we need a way to get the current end of the transition.
6311 Instruction *getEndOfTransition() const {
6312 if (InstsToBePromoted.empty())
6313 return Transition;
6314 return InstsToBePromoted.back();
6317 /// Return the index of the original value in the transition.
6318 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6319 /// c, is at index 0.
6320 unsigned getTransitionOriginalValueIdx() const {
6321 assert(isa<ExtractElementInst>(Transition) &&
6322 "Other kind of transitions are not supported yet");
6323 return 0;
6326 /// Return the index of the index in the transition.
6327 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6328 /// is at index 1.
6329 unsigned getTransitionIdx() const {
6330 assert(isa<ExtractElementInst>(Transition) &&
6331 "Other kind of transitions are not supported yet");
6332 return 1;
6335 /// Get the type of the transition.
6336 /// This is the type of the original value.
6337 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6338 /// transition is <2 x i32>.
6339 Type *getTransitionType() const {
6340 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6343 /// Promote \p ToBePromoted by moving \p Def downward through.
6344 /// I.e., we have the following sequence:
6345 /// Def = Transition <ty1> a to <ty2>
6346 /// b = ToBePromoted <ty2> Def, ...
6347 /// =>
6348 /// b = ToBePromoted <ty1> a, ...
6349 /// Def = Transition <ty1> ToBePromoted to <ty2>
6350 void promoteImpl(Instruction *ToBePromoted);
6352 /// Check whether or not it is profitable to promote all the
6353 /// instructions enqueued to be promoted.
6354 bool isProfitableToPromote() {
6355 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6356 unsigned Index = isa<ConstantInt>(ValIdx)
6357 ? cast<ConstantInt>(ValIdx)->getZExtValue()
6358 : -1;
6359 Type *PromotedType = getTransitionType();
6361 StoreInst *ST = cast<StoreInst>(CombineInst);
6362 unsigned AS = ST->getPointerAddressSpace();
6363 unsigned Align = ST->getAlignment();
6364 // Check if this store is supported.
6365 if (!TLI.allowsMisalignedMemoryAccesses(
6366 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6367 Align)) {
6368 // If this is not supported, there is no way we can combine
6369 // the extract with the store.
6370 return false;
6373 // The scalar chain of computation has to pay for the transition
6374 // scalar to vector.
6375 // The vector chain has to account for the combining cost.
6376 uint64_t ScalarCost =
6377 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6378 uint64_t VectorCost = StoreExtractCombineCost;
6379 for (const auto &Inst : InstsToBePromoted) {
6380 // Compute the cost.
6381 // By construction, all instructions being promoted are arithmetic ones.
6382 // Moreover, one argument is a constant that can be viewed as a splat
6383 // constant.
6384 Value *Arg0 = Inst->getOperand(0);
6385 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6386 isa<ConstantFP>(Arg0);
6387 TargetTransformInfo::OperandValueKind Arg0OVK =
6388 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6389 : TargetTransformInfo::OK_AnyValue;
6390 TargetTransformInfo::OperandValueKind Arg1OVK =
6391 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6392 : TargetTransformInfo::OK_AnyValue;
6393 ScalarCost += TTI.getArithmeticInstrCost(
6394 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6395 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6396 Arg0OVK, Arg1OVK);
6398 LLVM_DEBUG(
6399 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6400 << ScalarCost << "\nVector: " << VectorCost << '\n');
6401 return ScalarCost > VectorCost;
6404 /// Generate a constant vector with \p Val with the same
6405 /// number of elements as the transition.
6406 /// \p UseSplat defines whether or not \p Val should be replicated
6407 /// across the whole vector.
6408 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6409 /// otherwise we generate a vector with as many undef as possible:
6410 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6411 /// used at the index of the extract.
6412 Value *getConstantVector(Constant *Val, bool UseSplat) const {
6413 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6414 if (!UseSplat) {
6415 // If we cannot determine where the constant must be, we have to
6416 // use a splat constant.
6417 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6418 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6419 ExtractIdx = CstVal->getSExtValue();
6420 else
6421 UseSplat = true;
6424 unsigned End = getTransitionType()->getVectorNumElements();
6425 if (UseSplat)
6426 return ConstantVector::getSplat(End, Val);
6428 SmallVector<Constant *, 4> ConstVec;
6429 UndefValue *UndefVal = UndefValue::get(Val->getType());
6430 for (unsigned Idx = 0; Idx != End; ++Idx) {
6431 if (Idx == ExtractIdx)
6432 ConstVec.push_back(Val);
6433 else
6434 ConstVec.push_back(UndefVal);
6436 return ConstantVector::get(ConstVec);
6439 /// Check if promoting to a vector type an operand at \p OperandIdx
6440 /// in \p Use can trigger undefined behavior.
6441 static bool canCauseUndefinedBehavior(const Instruction *Use,
6442 unsigned OperandIdx) {
6443 // This is not safe to introduce undef when the operand is on
6444 // the right hand side of a division-like instruction.
6445 if (OperandIdx != 1)
6446 return false;
6447 switch (Use->getOpcode()) {
6448 default:
6449 return false;
6450 case Instruction::SDiv:
6451 case Instruction::UDiv:
6452 case Instruction::SRem:
6453 case Instruction::URem:
6454 return true;
6455 case Instruction::FDiv:
6456 case Instruction::FRem:
6457 return !Use->hasNoNaNs();
6459 llvm_unreachable(nullptr);
6462 public:
6463 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6464 const TargetTransformInfo &TTI, Instruction *Transition,
6465 unsigned CombineCost)
6466 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6467 StoreExtractCombineCost(CombineCost) {
6468 assert(Transition && "Do not know how to promote null");
6471 /// Check if we can promote \p ToBePromoted to \p Type.
6472 bool canPromote(const Instruction *ToBePromoted) const {
6473 // We could support CastInst too.
6474 return isa<BinaryOperator>(ToBePromoted);
6477 /// Check if it is profitable to promote \p ToBePromoted
6478 /// by moving downward the transition through.
6479 bool shouldPromote(const Instruction *ToBePromoted) const {
6480 // Promote only if all the operands can be statically expanded.
6481 // Indeed, we do not want to introduce any new kind of transitions.
6482 for (const Use &U : ToBePromoted->operands()) {
6483 const Value *Val = U.get();
6484 if (Val == getEndOfTransition()) {
6485 // If the use is a division and the transition is on the rhs,
6486 // we cannot promote the operation, otherwise we may create a
6487 // division by zero.
6488 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6489 return false;
6490 continue;
6492 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6493 !isa<ConstantFP>(Val))
6494 return false;
6496 // Check that the resulting operation is legal.
6497 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6498 if (!ISDOpcode)
6499 return false;
6500 return StressStoreExtract ||
6501 TLI.isOperationLegalOrCustom(
6502 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6505 /// Check whether or not \p Use can be combined
6506 /// with the transition.
6507 /// I.e., is it possible to do Use(Transition) => AnotherUse?
6508 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6510 /// Record \p ToBePromoted as part of the chain to be promoted.
6511 void enqueueForPromotion(Instruction *ToBePromoted) {
6512 InstsToBePromoted.push_back(ToBePromoted);
6515 /// Set the instruction that will be combined with the transition.
6516 void recordCombineInstruction(Instruction *ToBeCombined) {
6517 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6518 CombineInst = ToBeCombined;
6521 /// Promote all the instructions enqueued for promotion if it is
6522 /// is profitable.
6523 /// \return True if the promotion happened, false otherwise.
6524 bool promote() {
6525 // Check if there is something to promote.
6526 // Right now, if we do not have anything to combine with,
6527 // we assume the promotion is not profitable.
6528 if (InstsToBePromoted.empty() || !CombineInst)
6529 return false;
6531 // Check cost.
6532 if (!StressStoreExtract && !isProfitableToPromote())
6533 return false;
6535 // Promote.
6536 for (auto &ToBePromoted : InstsToBePromoted)
6537 promoteImpl(ToBePromoted);
6538 InstsToBePromoted.clear();
6539 return true;
6543 } // end anonymous namespace
6545 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6546 // At this point, we know that all the operands of ToBePromoted but Def
6547 // can be statically promoted.
6548 // For Def, we need to use its parameter in ToBePromoted:
6549 // b = ToBePromoted ty1 a
6550 // Def = Transition ty1 b to ty2
6551 // Move the transition down.
6552 // 1. Replace all uses of the promoted operation by the transition.
6553 // = ... b => = ... Def.
6554 assert(ToBePromoted->getType() == Transition->getType() &&
6555 "The type of the result of the transition does not match "
6556 "the final type");
6557 ToBePromoted->replaceAllUsesWith(Transition);
6558 // 2. Update the type of the uses.
6559 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6560 Type *TransitionTy = getTransitionType();
6561 ToBePromoted->mutateType(TransitionTy);
6562 // 3. Update all the operands of the promoted operation with promoted
6563 // operands.
6564 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6565 for (Use &U : ToBePromoted->operands()) {
6566 Value *Val = U.get();
6567 Value *NewVal = nullptr;
6568 if (Val == Transition)
6569 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6570 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6571 isa<ConstantFP>(Val)) {
6572 // Use a splat constant if it is not safe to use undef.
6573 NewVal = getConstantVector(
6574 cast<Constant>(Val),
6575 isa<UndefValue>(Val) ||
6576 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6577 } else
6578 llvm_unreachable("Did you modified shouldPromote and forgot to update "
6579 "this?");
6580 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6582 Transition->moveAfter(ToBePromoted);
6583 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6586 /// Some targets can do store(extractelement) with one instruction.
6587 /// Try to push the extractelement towards the stores when the target
6588 /// has this feature and this is profitable.
6589 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6590 unsigned CombineCost = std::numeric_limits<unsigned>::max();
6591 if (DisableStoreExtract || !TLI ||
6592 (!StressStoreExtract &&
6593 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6594 Inst->getOperand(1), CombineCost)))
6595 return false;
6597 // At this point we know that Inst is a vector to scalar transition.
6598 // Try to move it down the def-use chain, until:
6599 // - We can combine the transition with its single use
6600 // => we got rid of the transition.
6601 // - We escape the current basic block
6602 // => we would need to check that we are moving it at a cheaper place and
6603 // we do not do that for now.
6604 BasicBlock *Parent = Inst->getParent();
6605 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6606 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6607 // If the transition has more than one use, assume this is not going to be
6608 // beneficial.
6609 while (Inst->hasOneUse()) {
6610 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6611 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6613 if (ToBePromoted->getParent() != Parent) {
6614 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6615 << ToBePromoted->getParent()->getName()
6616 << ") than the transition (" << Parent->getName()
6617 << ").\n");
6618 return false;
6621 if (VPH.canCombine(ToBePromoted)) {
6622 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6623 << "will be combined with: " << *ToBePromoted << '\n');
6624 VPH.recordCombineInstruction(ToBePromoted);
6625 bool Changed = VPH.promote();
6626 NumStoreExtractExposed += Changed;
6627 return Changed;
6630 LLVM_DEBUG(dbgs() << "Try promoting.\n");
6631 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6632 return false;
6634 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6636 VPH.enqueueForPromotion(ToBePromoted);
6637 Inst = ToBePromoted;
6639 return false;
6642 /// For the instruction sequence of store below, F and I values
6643 /// are bundled together as an i64 value before being stored into memory.
6644 /// Sometimes it is more efficient to generate separate stores for F and I,
6645 /// which can remove the bitwise instructions or sink them to colder places.
6647 /// (store (or (zext (bitcast F to i32) to i64),
6648 /// (shl (zext I to i64), 32)), addr) -->
6649 /// (store F, addr) and (store I, addr+4)
6651 /// Similarly, splitting for other merged store can also be beneficial, like:
6652 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6653 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6654 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6655 /// For pair of {i16, i8}, i32 store --> two i16 stores.
6656 /// For pair of {i8, i8}, i16 store --> two i8 stores.
6658 /// We allow each target to determine specifically which kind of splitting is
6659 /// supported.
6661 /// The store patterns are commonly seen from the simple code snippet below
6662 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6663 /// void goo(const std::pair<int, float> &);
6664 /// hoo() {
6665 /// ...
6666 /// goo(std::make_pair(tmp, ftmp));
6667 /// ...
6668 /// }
6670 /// Although we already have similar splitting in DAG Combine, we duplicate
6671 /// it in CodeGenPrepare to catch the case in which pattern is across
6672 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6673 /// during code expansion.
6674 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6675 const TargetLowering &TLI) {
6676 // Handle simple but common cases only.
6677 Type *StoreType = SI.getValueOperand()->getType();
6678 if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6679 DL.getTypeSizeInBits(StoreType) == 0)
6680 return false;
6682 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6683 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6684 if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6685 return false;
6687 // Don't split the store if it is volatile.
6688 if (SI.isVolatile())
6689 return false;
6691 // Match the following patterns:
6692 // (store (or (zext LValue to i64),
6693 // (shl (zext HValue to i64), 32)), HalfValBitSize)
6694 // or
6695 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6696 // (zext LValue to i64),
6697 // Expect both operands of OR and the first operand of SHL have only
6698 // one use.
6699 Value *LValue, *HValue;
6700 if (!match(SI.getValueOperand(),
6701 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6702 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6703 m_SpecificInt(HalfValBitSize))))))
6704 return false;
6706 // Check LValue and HValue are int with size less or equal than 32.
6707 if (!LValue->getType()->isIntegerTy() ||
6708 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6709 !HValue->getType()->isIntegerTy() ||
6710 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6711 return false;
6713 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6714 // as the input of target query.
6715 auto *LBC = dyn_cast<BitCastInst>(LValue);
6716 auto *HBC = dyn_cast<BitCastInst>(HValue);
6717 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6718 : EVT::getEVT(LValue->getType());
6719 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6720 : EVT::getEVT(HValue->getType());
6721 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6722 return false;
6724 // Start to split store.
6725 IRBuilder<> Builder(SI.getContext());
6726 Builder.SetInsertPoint(&SI);
6728 // If LValue/HValue is a bitcast in another BB, create a new one in current
6729 // BB so it may be merged with the splitted stores by dag combiner.
6730 if (LBC && LBC->getParent() != SI.getParent())
6731 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6732 if (HBC && HBC->getParent() != SI.getParent())
6733 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6735 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6736 auto CreateSplitStore = [&](Value *V, bool Upper) {
6737 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6738 Value *Addr = Builder.CreateBitCast(
6739 SI.getOperand(1),
6740 SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6741 if ((IsLE && Upper) || (!IsLE && !Upper))
6742 Addr = Builder.CreateGEP(
6743 SplitStoreType, Addr,
6744 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6745 Builder.CreateAlignedStore(
6746 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6749 CreateSplitStore(LValue, false);
6750 CreateSplitStore(HValue, true);
6752 // Delete the old store.
6753 SI.eraseFromParent();
6754 return true;
6757 // Return true if the GEP has two operands, the first operand is of a sequential
6758 // type, and the second operand is a constant.
6759 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6760 gep_type_iterator I = gep_type_begin(*GEP);
6761 return GEP->getNumOperands() == 2 &&
6762 I.isSequential() &&
6763 isa<ConstantInt>(GEP->getOperand(1));
6766 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6767 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6768 // reducing liveness interference across those edges benefits global register
6769 // allocation. Currently handles only certain cases.
6771 // For example, unmerge %GEPI and %UGEPI as below.
6773 // ---------- BEFORE ----------
6774 // SrcBlock:
6775 // ...
6776 // %GEPIOp = ...
6777 // ...
6778 // %GEPI = gep %GEPIOp, Idx
6779 // ...
6780 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6781 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6782 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6783 // %UGEPI)
6785 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6786 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6787 // ...
6789 // DstBi:
6790 // ...
6791 // %UGEPI = gep %GEPIOp, UIdx
6792 // ...
6793 // ---------------------------
6795 // ---------- AFTER ----------
6796 // SrcBlock:
6797 // ... (same as above)
6798 // (* %GEPI is still alive on the indirectbr edges)
6799 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6800 // unmerging)
6801 // ...
6803 // DstBi:
6804 // ...
6805 // %UGEPI = gep %GEPI, (UIdx-Idx)
6806 // ...
6807 // ---------------------------
6809 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6810 // no longer alive on them.
6812 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6813 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6814 // not to disable further simplications and optimizations as a result of GEP
6815 // merging.
6817 // Note this unmerging may increase the length of the data flow critical path
6818 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6819 // between the register pressure and the length of data-flow critical
6820 // path. Restricting this to the uncommon IndirectBr case would minimize the
6821 // impact of potentially longer critical path, if any, and the impact on compile
6822 // time.
6823 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6824 const TargetTransformInfo *TTI) {
6825 BasicBlock *SrcBlock = GEPI->getParent();
6826 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6827 // (non-IndirectBr) cases exit early here.
6828 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6829 return false;
6830 // Check that GEPI is a simple gep with a single constant index.
6831 if (!GEPSequentialConstIndexed(GEPI))
6832 return false;
6833 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6834 // Check that GEPI is a cheap one.
6835 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6836 > TargetTransformInfo::TCC_Basic)
6837 return false;
6838 Value *GEPIOp = GEPI->getOperand(0);
6839 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6840 if (!isa<Instruction>(GEPIOp))
6841 return false;
6842 auto *GEPIOpI = cast<Instruction>(GEPIOp);
6843 if (GEPIOpI->getParent() != SrcBlock)
6844 return false;
6845 // Check that GEP is used outside the block, meaning it's alive on the
6846 // IndirectBr edge(s).
6847 if (find_if(GEPI->users(), [&](User *Usr) {
6848 if (auto *I = dyn_cast<Instruction>(Usr)) {
6849 if (I->getParent() != SrcBlock) {
6850 return true;
6853 return false;
6854 }) == GEPI->users().end())
6855 return false;
6856 // The second elements of the GEP chains to be unmerged.
6857 std::vector<GetElementPtrInst *> UGEPIs;
6858 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6859 // on IndirectBr edges.
6860 for (User *Usr : GEPIOp->users()) {
6861 if (Usr == GEPI) continue;
6862 // Check if Usr is an Instruction. If not, give up.
6863 if (!isa<Instruction>(Usr))
6864 return false;
6865 auto *UI = cast<Instruction>(Usr);
6866 // Check if Usr in the same block as GEPIOp, which is fine, skip.
6867 if (UI->getParent() == SrcBlock)
6868 continue;
6869 // Check if Usr is a GEP. If not, give up.
6870 if (!isa<GetElementPtrInst>(Usr))
6871 return false;
6872 auto *UGEPI = cast<GetElementPtrInst>(Usr);
6873 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6874 // the pointer operand to it. If so, record it in the vector. If not, give
6875 // up.
6876 if (!GEPSequentialConstIndexed(UGEPI))
6877 return false;
6878 if (UGEPI->getOperand(0) != GEPIOp)
6879 return false;
6880 if (GEPIIdx->getType() !=
6881 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6882 return false;
6883 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6884 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6885 > TargetTransformInfo::TCC_Basic)
6886 return false;
6887 UGEPIs.push_back(UGEPI);
6889 if (UGEPIs.size() == 0)
6890 return false;
6891 // Check the materializing cost of (Uidx-Idx).
6892 for (GetElementPtrInst *UGEPI : UGEPIs) {
6893 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6894 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6895 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6896 if (ImmCost > TargetTransformInfo::TCC_Basic)
6897 return false;
6899 // Now unmerge between GEPI and UGEPIs.
6900 for (GetElementPtrInst *UGEPI : UGEPIs) {
6901 UGEPI->setOperand(0, GEPI);
6902 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6903 Constant *NewUGEPIIdx =
6904 ConstantInt::get(GEPIIdx->getType(),
6905 UGEPIIdx->getValue() - GEPIIdx->getValue());
6906 UGEPI->setOperand(1, NewUGEPIIdx);
6907 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6908 // inbounds to avoid UB.
6909 if (!GEPI->isInBounds()) {
6910 UGEPI->setIsInBounds(false);
6913 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6914 // alive on IndirectBr edges).
6915 assert(find_if(GEPIOp->users(), [&](User *Usr) {
6916 return cast<Instruction>(Usr)->getParent() != SrcBlock;
6917 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6918 return true;
6921 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6922 // Bail out if we inserted the instruction to prevent optimizations from
6923 // stepping on each other's toes.
6924 if (InsertedInsts.count(I))
6925 return false;
6927 // TODO: Move into the switch on opcode below here.
6928 if (PHINode *P = dyn_cast<PHINode>(I)) {
6929 // It is possible for very late stage optimizations (such as SimplifyCFG)
6930 // to introduce PHI nodes too late to be cleaned up. If we detect such a
6931 // trivial PHI, go ahead and zap it here.
6932 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6933 LargeOffsetGEPMap.erase(P);
6934 P->replaceAllUsesWith(V);
6935 P->eraseFromParent();
6936 ++NumPHIsElim;
6937 return true;
6939 return false;
6942 if (CastInst *CI = dyn_cast<CastInst>(I)) {
6943 // If the source of the cast is a constant, then this should have
6944 // already been constant folded. The only reason NOT to constant fold
6945 // it is if something (e.g. LSR) was careful to place the constant
6946 // evaluation in a block other than then one that uses it (e.g. to hoist
6947 // the address of globals out of a loop). If this is the case, we don't
6948 // want to forward-subst the cast.
6949 if (isa<Constant>(CI->getOperand(0)))
6950 return false;
6952 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6953 return true;
6955 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6956 /// Sink a zext or sext into its user blocks if the target type doesn't
6957 /// fit in one register
6958 if (TLI &&
6959 TLI->getTypeAction(CI->getContext(),
6960 TLI->getValueType(*DL, CI->getType())) ==
6961 TargetLowering::TypeExpandInteger) {
6962 return SinkCast(CI);
6963 } else {
6964 bool MadeChange = optimizeExt(I);
6965 return MadeChange | optimizeExtUses(I);
6968 return false;
6971 if (auto *Cmp = dyn_cast<CmpInst>(I))
6972 if (TLI && optimizeCmp(Cmp, ModifiedDT))
6973 return true;
6975 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6976 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6977 if (TLI) {
6978 bool Modified = optimizeLoadExt(LI);
6979 unsigned AS = LI->getPointerAddressSpace();
6980 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6981 return Modified;
6983 return false;
6986 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6987 if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6988 return true;
6989 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6990 if (TLI) {
6991 unsigned AS = SI->getPointerAddressSpace();
6992 return optimizeMemoryInst(I, SI->getOperand(1),
6993 SI->getOperand(0)->getType(), AS);
6995 return false;
6998 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6999 unsigned AS = RMW->getPointerAddressSpace();
7000 return optimizeMemoryInst(I, RMW->getPointerOperand(),
7001 RMW->getType(), AS);
7004 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7005 unsigned AS = CmpX->getPointerAddressSpace();
7006 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7007 CmpX->getCompareOperand()->getType(), AS);
7010 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7012 if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
7013 EnableAndCmpSinking && TLI)
7014 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7016 // TODO: Move this into the switch on opcode - it handles shifts already.
7017 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7018 BinOp->getOpcode() == Instruction::LShr)) {
7019 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7020 if (TLI && CI && TLI->hasExtractBitsInsn())
7021 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7022 return true;
7025 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7026 if (GEPI->hasAllZeroIndices()) {
7027 /// The GEP operand must be a pointer, so must its result -> BitCast
7028 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7029 GEPI->getName(), GEPI);
7030 NC->setDebugLoc(GEPI->getDebugLoc());
7031 GEPI->replaceAllUsesWith(NC);
7032 GEPI->eraseFromParent();
7033 ++NumGEPsElim;
7034 optimizeInst(NC, ModifiedDT);
7035 return true;
7037 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7038 return true;
7040 return false;
7043 if (tryToSinkFreeOperands(I))
7044 return true;
7046 switch (I->getOpcode()) {
7047 case Instruction::Shl:
7048 case Instruction::LShr:
7049 case Instruction::AShr:
7050 return optimizeShiftInst(cast<BinaryOperator>(I));
7051 case Instruction::Call:
7052 return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7053 case Instruction::Select:
7054 return optimizeSelectInst(cast<SelectInst>(I));
7055 case Instruction::ShuffleVector:
7056 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7057 case Instruction::Switch:
7058 return optimizeSwitchInst(cast<SwitchInst>(I));
7059 case Instruction::ExtractElement:
7060 return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7063 return false;
7066 /// Given an OR instruction, check to see if this is a bitreverse
7067 /// idiom. If so, insert the new intrinsic and return true.
7068 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7069 const TargetLowering &TLI) {
7070 if (!I.getType()->isIntegerTy() ||
7071 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7072 TLI.getValueType(DL, I.getType(), true)))
7073 return false;
7075 SmallVector<Instruction*, 4> Insts;
7076 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7077 return false;
7078 Instruction *LastInst = Insts.back();
7079 I.replaceAllUsesWith(LastInst);
7080 RecursivelyDeleteTriviallyDeadInstructions(&I);
7081 return true;
7084 // In this pass we look for GEP and cast instructions that are used
7085 // across basic blocks and rewrite them to improve basic-block-at-a-time
7086 // selection.
7087 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7088 SunkAddrs.clear();
7089 bool MadeChange = false;
7091 CurInstIterator = BB.begin();
7092 while (CurInstIterator != BB.end()) {
7093 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7094 if (ModifiedDT)
7095 return true;
7098 bool MadeBitReverse = true;
7099 while (TLI && MadeBitReverse) {
7100 MadeBitReverse = false;
7101 for (auto &I : reverse(BB)) {
7102 if (makeBitReverse(I, *DL, *TLI)) {
7103 MadeBitReverse = MadeChange = true;
7104 break;
7108 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7110 return MadeChange;
7113 // llvm.dbg.value is far away from the value then iSel may not be able
7114 // handle it properly. iSel will drop llvm.dbg.value if it can not
7115 // find a node corresponding to the value.
7116 bool CodeGenPrepare::placeDbgValues(Function &F) {
7117 bool MadeChange = false;
7118 for (BasicBlock &BB : F) {
7119 Instruction *PrevNonDbgInst = nullptr;
7120 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7121 Instruction *Insn = &*BI++;
7122 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7123 // Leave dbg.values that refer to an alloca alone. These
7124 // intrinsics describe the address of a variable (= the alloca)
7125 // being taken. They should not be moved next to the alloca
7126 // (and to the beginning of the scope), but rather stay close to
7127 // where said address is used.
7128 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
7129 PrevNonDbgInst = Insn;
7130 continue;
7133 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7134 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
7135 // If VI is a phi in a block with an EHPad terminator, we can't insert
7136 // after it.
7137 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7138 continue;
7139 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7140 << *DVI << ' ' << *VI);
7141 DVI->removeFromParent();
7142 if (isa<PHINode>(VI))
7143 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7144 else
7145 DVI->insertAfter(VI);
7146 MadeChange = true;
7147 ++NumDbgValueMoved;
7151 return MadeChange;
7154 /// Scale down both weights to fit into uint32_t.
7155 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7156 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7157 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7158 NewTrue = NewTrue / Scale;
7159 NewFalse = NewFalse / Scale;
7162 /// Some targets prefer to split a conditional branch like:
7163 /// \code
7164 /// %0 = icmp ne i32 %a, 0
7165 /// %1 = icmp ne i32 %b, 0
7166 /// %or.cond = or i1 %0, %1
7167 /// br i1 %or.cond, label %TrueBB, label %FalseBB
7168 /// \endcode
7169 /// into multiple branch instructions like:
7170 /// \code
7171 /// bb1:
7172 /// %0 = icmp ne i32 %a, 0
7173 /// br i1 %0, label %TrueBB, label %bb2
7174 /// bb2:
7175 /// %1 = icmp ne i32 %b, 0
7176 /// br i1 %1, label %TrueBB, label %FalseBB
7177 /// \endcode
7178 /// This usually allows instruction selection to do even further optimizations
7179 /// and combine the compare with the branch instruction. Currently this is
7180 /// applied for targets which have "cheap" jump instructions.
7182 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7184 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7185 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
7186 return false;
7188 bool MadeChange = false;
7189 for (auto &BB : F) {
7190 // Does this BB end with the following?
7191 // %cond1 = icmp|fcmp|binary instruction ...
7192 // %cond2 = icmp|fcmp|binary instruction ...
7193 // %cond.or = or|and i1 %cond1, cond2
7194 // br i1 %cond.or label %dest1, label %dest2"
7195 BinaryOperator *LogicOp;
7196 BasicBlock *TBB, *FBB;
7197 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7198 continue;
7200 auto *Br1 = cast<BranchInst>(BB.getTerminator());
7201 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7202 continue;
7204 unsigned Opc;
7205 Value *Cond1, *Cond2;
7206 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7207 m_OneUse(m_Value(Cond2)))))
7208 Opc = Instruction::And;
7209 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7210 m_OneUse(m_Value(Cond2)))))
7211 Opc = Instruction::Or;
7212 else
7213 continue;
7215 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7216 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
7217 continue;
7219 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7221 // Create a new BB.
7222 auto TmpBB =
7223 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7224 BB.getParent(), BB.getNextNode());
7226 // Update original basic block by using the first condition directly by the
7227 // branch instruction and removing the no longer needed and/or instruction.
7228 Br1->setCondition(Cond1);
7229 LogicOp->eraseFromParent();
7231 // Depending on the condition we have to either replace the true or the
7232 // false successor of the original branch instruction.
7233 if (Opc == Instruction::And)
7234 Br1->setSuccessor(0, TmpBB);
7235 else
7236 Br1->setSuccessor(1, TmpBB);
7238 // Fill in the new basic block.
7239 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7240 if (auto *I = dyn_cast<Instruction>(Cond2)) {
7241 I->removeFromParent();
7242 I->insertBefore(Br2);
7245 // Update PHI nodes in both successors. The original BB needs to be
7246 // replaced in one successor's PHI nodes, because the branch comes now from
7247 // the newly generated BB (NewBB). In the other successor we need to add one
7248 // incoming edge to the PHI nodes, because both branch instructions target
7249 // now the same successor. Depending on the original branch condition
7250 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7251 // we perform the correct update for the PHI nodes.
7252 // This doesn't change the successor order of the just created branch
7253 // instruction (or any other instruction).
7254 if (Opc == Instruction::Or)
7255 std::swap(TBB, FBB);
7257 // Replace the old BB with the new BB.
7258 TBB->replacePhiUsesWith(&BB, TmpBB);
7260 // Add another incoming edge form the new BB.
7261 for (PHINode &PN : FBB->phis()) {
7262 auto *Val = PN.getIncomingValueForBlock(&BB);
7263 PN.addIncoming(Val, TmpBB);
7266 // Update the branch weights (from SelectionDAGBuilder::
7267 // FindMergedConditions).
7268 if (Opc == Instruction::Or) {
7269 // Codegen X | Y as:
7270 // BB1:
7271 // jmp_if_X TBB
7272 // jmp TmpBB
7273 // TmpBB:
7274 // jmp_if_Y TBB
7275 // jmp FBB
7278 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7279 // The requirement is that
7280 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7281 // = TrueProb for original BB.
7282 // Assuming the original weights are A and B, one choice is to set BB1's
7283 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7284 // assumes that
7285 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7286 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7287 // TmpBB, but the math is more complicated.
7288 uint64_t TrueWeight, FalseWeight;
7289 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7290 uint64_t NewTrueWeight = TrueWeight;
7291 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7292 scaleWeights(NewTrueWeight, NewFalseWeight);
7293 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7294 .createBranchWeights(TrueWeight, FalseWeight));
7296 NewTrueWeight = TrueWeight;
7297 NewFalseWeight = 2 * FalseWeight;
7298 scaleWeights(NewTrueWeight, NewFalseWeight);
7299 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7300 .createBranchWeights(TrueWeight, FalseWeight));
7302 } else {
7303 // Codegen X & Y as:
7304 // BB1:
7305 // jmp_if_X TmpBB
7306 // jmp FBB
7307 // TmpBB:
7308 // jmp_if_Y TBB
7309 // jmp FBB
7311 // This requires creation of TmpBB after CurBB.
7313 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7314 // The requirement is that
7315 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7316 // = FalseProb for original BB.
7317 // Assuming the original weights are A and B, one choice is to set BB1's
7318 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7319 // assumes that
7320 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7321 uint64_t TrueWeight, FalseWeight;
7322 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7323 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7324 uint64_t NewFalseWeight = FalseWeight;
7325 scaleWeights(NewTrueWeight, NewFalseWeight);
7326 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7327 .createBranchWeights(TrueWeight, FalseWeight));
7329 NewTrueWeight = 2 * TrueWeight;
7330 NewFalseWeight = FalseWeight;
7331 scaleWeights(NewTrueWeight, NewFalseWeight);
7332 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7333 .createBranchWeights(TrueWeight, FalseWeight));
7337 ModifiedDT = true;
7338 MadeChange = true;
7340 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7341 TmpBB->dump());
7343 return MadeChange;