[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / CodeGen / ExpandMemCmp.cpp
blob9916f2de04142b9fc26de2a39cf44f1aa4165639
1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/IR/IRBuilder.h"
24 using namespace llvm;
26 #define DEBUG_TYPE "expandmemcmp"
28 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
29 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
30 STATISTIC(NumMemCmpGreaterThanMax,
31 "Number of memcmp calls with size greater than max size");
32 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
34 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
35 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
36 cl::desc("The number of loads per basic block for inline expansion of "
37 "memcmp that is only being compared against zero."));
39 static cl::opt<unsigned> MaxLoadsPerMemcmp(
40 "max-loads-per-memcmp", cl::Hidden,
41 cl::desc("Set maximum number of loads used in expanded memcmp"));
43 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
44 "max-loads-per-memcmp-opt-size", cl::Hidden,
45 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
47 namespace {
50 // This class provides helper functions to expand a memcmp library call into an
51 // inline expansion.
52 class MemCmpExpansion {
53 struct ResultBlock {
54 BasicBlock *BB = nullptr;
55 PHINode *PhiSrc1 = nullptr;
56 PHINode *PhiSrc2 = nullptr;
58 ResultBlock() = default;
61 CallInst *const CI;
62 ResultBlock ResBlock;
63 const uint64_t Size;
64 unsigned MaxLoadSize;
65 uint64_t NumLoadsNonOneByte;
66 const uint64_t NumLoadsPerBlockForZeroCmp;
67 std::vector<BasicBlock *> LoadCmpBlocks;
68 BasicBlock *EndBlock;
69 PHINode *PhiRes;
70 const bool IsUsedForZeroCmp;
71 const DataLayout &DL;
72 IRBuilder<> Builder;
73 // Represents the decomposition in blocks of the expansion. For example,
74 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
75 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
76 struct LoadEntry {
77 LoadEntry(unsigned LoadSize, uint64_t Offset)
78 : LoadSize(LoadSize), Offset(Offset) {
81 // The size of the load for this block, in bytes.
82 unsigned LoadSize;
83 // The offset of this load from the base pointer, in bytes.
84 uint64_t Offset;
86 using LoadEntryVector = SmallVector<LoadEntry, 8>;
87 LoadEntryVector LoadSequence;
89 void createLoadCmpBlocks();
90 void createResultBlock();
91 void setupResultBlockPHINodes();
92 void setupEndBlockPHINodes();
93 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
94 void emitLoadCompareBlock(unsigned BlockIndex);
95 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
96 unsigned &LoadIndex);
97 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
98 void emitMemCmpResultBlock();
99 Value *getMemCmpExpansionZeroCase();
100 Value *getMemCmpEqZeroOneBlock();
101 Value *getMemCmpOneBlock();
102 Value *getPtrToElementAtOffset(Value *Source, Type *LoadSizeType,
103 uint64_t OffsetBytes);
105 static LoadEntryVector
106 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
107 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
108 static LoadEntryVector
109 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
110 unsigned MaxNumLoads,
111 unsigned &NumLoadsNonOneByte);
113 public:
114 MemCmpExpansion(CallInst *CI, uint64_t Size,
115 const TargetTransformInfo::MemCmpExpansionOptions &Options,
116 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout);
118 unsigned getNumBlocks();
119 uint64_t getNumLoads() const { return LoadSequence.size(); }
121 Value *getMemCmpExpansion();
124 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
125 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
126 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
127 NumLoadsNonOneByte = 0;
128 LoadEntryVector LoadSequence;
129 uint64_t Offset = 0;
130 while (Size && !LoadSizes.empty()) {
131 const unsigned LoadSize = LoadSizes.front();
132 const uint64_t NumLoadsForThisSize = Size / LoadSize;
133 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
134 // Do not expand if the total number of loads is larger than what the
135 // target allows. Note that it's important that we exit before completing
136 // the expansion to avoid using a ton of memory to store the expansion for
137 // large sizes.
138 return {};
140 if (NumLoadsForThisSize > 0) {
141 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
142 LoadSequence.push_back({LoadSize, Offset});
143 Offset += LoadSize;
145 if (LoadSize > 1)
146 ++NumLoadsNonOneByte;
147 Size = Size % LoadSize;
149 LoadSizes = LoadSizes.drop_front();
151 return LoadSequence;
154 MemCmpExpansion::LoadEntryVector
155 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
156 const unsigned MaxLoadSize,
157 const unsigned MaxNumLoads,
158 unsigned &NumLoadsNonOneByte) {
159 // These are already handled by the greedy approach.
160 if (Size < 2 || MaxLoadSize < 2)
161 return {};
163 // We try to do as many non-overlapping loads as possible starting from the
164 // beginning.
165 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
166 assert(NumNonOverlappingLoads && "there must be at least one load");
167 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
168 // an overlapping load.
169 Size = Size - NumNonOverlappingLoads * MaxLoadSize;
170 // Bail if we do not need an overloapping store, this is already handled by
171 // the greedy approach.
172 if (Size == 0)
173 return {};
174 // Bail if the number of loads (non-overlapping + potential overlapping one)
175 // is larger than the max allowed.
176 if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
177 return {};
179 // Add non-overlapping loads.
180 LoadEntryVector LoadSequence;
181 uint64_t Offset = 0;
182 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
183 LoadSequence.push_back({MaxLoadSize, Offset});
184 Offset += MaxLoadSize;
187 // Add the last overlapping load.
188 assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
189 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
190 NumLoadsNonOneByte = 1;
191 return LoadSequence;
194 // Initialize the basic block structure required for expansion of memcmp call
195 // with given maximum load size and memcmp size parameter.
196 // This structure includes:
197 // 1. A list of load compare blocks - LoadCmpBlocks.
198 // 2. An EndBlock, split from original instruction point, which is the block to
199 // return from.
200 // 3. ResultBlock, block to branch to for early exit when a
201 // LoadCmpBlock finds a difference.
202 MemCmpExpansion::MemCmpExpansion(
203 CallInst *const CI, uint64_t Size,
204 const TargetTransformInfo::MemCmpExpansionOptions &Options,
205 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout)
206 : CI(CI), Size(Size), MaxLoadSize(0), NumLoadsNonOneByte(0),
207 NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
208 IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), Builder(CI) {
209 assert(Size > 0 && "zero blocks");
210 // Scale the max size down if the target can load more bytes than we need.
211 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
212 while (!LoadSizes.empty() && LoadSizes.front() > Size) {
213 LoadSizes = LoadSizes.drop_front();
215 assert(!LoadSizes.empty() && "cannot load Size bytes");
216 MaxLoadSize = LoadSizes.front();
217 // Compute the decomposition.
218 unsigned GreedyNumLoadsNonOneByte = 0;
219 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
220 GreedyNumLoadsNonOneByte);
221 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
222 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
223 // If we allow overlapping loads and the load sequence is not already optimal,
224 // use overlapping loads.
225 if (Options.AllowOverlappingLoads &&
226 (LoadSequence.empty() || LoadSequence.size() > 2)) {
227 unsigned OverlappingNumLoadsNonOneByte = 0;
228 auto OverlappingLoads = computeOverlappingLoadSequence(
229 Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
230 if (!OverlappingLoads.empty() &&
231 (LoadSequence.empty() ||
232 OverlappingLoads.size() < LoadSequence.size())) {
233 LoadSequence = OverlappingLoads;
234 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
237 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
240 unsigned MemCmpExpansion::getNumBlocks() {
241 if (IsUsedForZeroCmp)
242 return getNumLoads() / NumLoadsPerBlockForZeroCmp +
243 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
244 return getNumLoads();
247 void MemCmpExpansion::createLoadCmpBlocks() {
248 for (unsigned i = 0; i < getNumBlocks(); i++) {
249 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
250 EndBlock->getParent(), EndBlock);
251 LoadCmpBlocks.push_back(BB);
255 void MemCmpExpansion::createResultBlock() {
256 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
257 EndBlock->getParent(), EndBlock);
260 /// Return a pointer to an element of type `LoadSizeType` at offset
261 /// `OffsetBytes`.
262 Value *MemCmpExpansion::getPtrToElementAtOffset(Value *Source,
263 Type *LoadSizeType,
264 uint64_t OffsetBytes) {
265 if (OffsetBytes > 0) {
266 auto *ByteType = Type::getInt8Ty(CI->getContext());
267 Source = Builder.CreateGEP(
268 ByteType, Builder.CreateBitCast(Source, ByteType->getPointerTo()),
269 ConstantInt::get(ByteType, OffsetBytes));
271 return Builder.CreateBitCast(Source, LoadSizeType->getPointerTo());
274 // This function creates the IR instructions for loading and comparing 1 byte.
275 // It loads 1 byte from each source of the memcmp parameters with the given
276 // GEPIndex. It then subtracts the two loaded values and adds this result to the
277 // final phi node for selecting the memcmp result.
278 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
279 unsigned OffsetBytes) {
280 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
281 Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
282 Value *Source1 =
283 getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, OffsetBytes);
284 Value *Source2 =
285 getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, OffsetBytes);
287 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
288 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
290 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
291 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
292 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
294 PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
296 if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
297 // Early exit branch if difference found to EndBlock. Otherwise, continue to
298 // next LoadCmpBlock,
299 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
300 ConstantInt::get(Diff->getType(), 0));
301 BranchInst *CmpBr =
302 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
303 Builder.Insert(CmpBr);
304 } else {
305 // The last block has an unconditional branch to EndBlock.
306 BranchInst *CmpBr = BranchInst::Create(EndBlock);
307 Builder.Insert(CmpBr);
311 /// Generate an equality comparison for one or more pairs of loaded values.
312 /// This is used in the case where the memcmp() call is compared equal or not
313 /// equal to zero.
314 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
315 unsigned &LoadIndex) {
316 assert(LoadIndex < getNumLoads() &&
317 "getCompareLoadPairs() called with no remaining loads");
318 std::vector<Value *> XorList, OrList;
319 Value *Diff = nullptr;
321 const unsigned NumLoads =
322 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
324 // For a single-block expansion, start inserting before the memcmp call.
325 if (LoadCmpBlocks.empty())
326 Builder.SetInsertPoint(CI);
327 else
328 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
330 Value *Cmp = nullptr;
331 // If we have multiple loads per block, we need to generate a composite
332 // comparison using xor+or. The type for the combinations is the largest load
333 // type.
334 IntegerType *const MaxLoadType =
335 NumLoads == 1 ? nullptr
336 : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
337 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
338 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
340 IntegerType *LoadSizeType =
341 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
343 Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
344 CurLoadEntry.Offset);
345 Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
346 CurLoadEntry.Offset);
348 // Get a constant or load a value for each source address.
349 Value *LoadSrc1 = nullptr;
350 if (auto *Source1C = dyn_cast<Constant>(Source1))
351 LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
352 if (!LoadSrc1)
353 LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
355 Value *LoadSrc2 = nullptr;
356 if (auto *Source2C = dyn_cast<Constant>(Source2))
357 LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
358 if (!LoadSrc2)
359 LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
361 if (NumLoads != 1) {
362 if (LoadSizeType != MaxLoadType) {
363 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
364 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
366 // If we have multiple loads per block, we need to generate a composite
367 // comparison using xor+or.
368 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
369 Diff = Builder.CreateZExt(Diff, MaxLoadType);
370 XorList.push_back(Diff);
371 } else {
372 // If there's only one load per block, we just compare the loaded values.
373 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
377 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
378 std::vector<Value *> OutList;
379 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
380 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
381 OutList.push_back(Or);
383 if (InList.size() % 2 != 0)
384 OutList.push_back(InList.back());
385 return OutList;
388 if (!Cmp) {
389 // Pairwise OR the XOR results.
390 OrList = pairWiseOr(XorList);
392 // Pairwise OR the OR results until one result left.
393 while (OrList.size() != 1) {
394 OrList = pairWiseOr(OrList);
397 assert(Diff && "Failed to find comparison diff");
398 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
401 return Cmp;
404 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
405 unsigned &LoadIndex) {
406 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
408 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
409 ? EndBlock
410 : LoadCmpBlocks[BlockIndex + 1];
411 // Early exit branch if difference found to ResultBlock. Otherwise,
412 // continue to next LoadCmpBlock or EndBlock.
413 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
414 Builder.Insert(CmpBr);
416 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
417 // since early exit to ResultBlock was not taken (no difference was found in
418 // any of the bytes).
419 if (BlockIndex == LoadCmpBlocks.size() - 1) {
420 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
421 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
425 // This function creates the IR intructions for loading and comparing using the
426 // given LoadSize. It loads the number of bytes specified by LoadSize from each
427 // source of the memcmp parameters. It then does a subtract to see if there was
428 // a difference in the loaded values. If a difference is found, it branches
429 // with an early exit to the ResultBlock for calculating which source was
430 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
431 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
432 // a special case through emitLoadCompareByteBlock. The special handling can
433 // simply subtract the loaded values and add it to the result phi node.
434 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
435 // There is one load per block in this case, BlockIndex == LoadIndex.
436 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
438 if (CurLoadEntry.LoadSize == 1) {
439 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
440 return;
443 Type *LoadSizeType =
444 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
445 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
446 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
448 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
450 Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
451 CurLoadEntry.Offset);
452 Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
453 CurLoadEntry.Offset);
455 // Load LoadSizeType from the base address.
456 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
457 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
459 if (DL.isLittleEndian()) {
460 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
461 Intrinsic::bswap, LoadSizeType);
462 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
463 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
466 if (LoadSizeType != MaxLoadType) {
467 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
468 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
471 // Add the loaded values to the phi nodes for calculating memcmp result only
472 // if result is not used in a zero equality.
473 if (!IsUsedForZeroCmp) {
474 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
475 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
478 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
479 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
480 ? EndBlock
481 : LoadCmpBlocks[BlockIndex + 1];
482 // Early exit branch if difference found to ResultBlock. Otherwise, continue
483 // to next LoadCmpBlock or EndBlock.
484 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
485 Builder.Insert(CmpBr);
487 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
488 // since early exit to ResultBlock was not taken (no difference was found in
489 // any of the bytes).
490 if (BlockIndex == LoadCmpBlocks.size() - 1) {
491 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
492 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
496 // This function populates the ResultBlock with a sequence to calculate the
497 // memcmp result. It compares the two loaded source values and returns -1 if
498 // src1 < src2 and 1 if src1 > src2.
499 void MemCmpExpansion::emitMemCmpResultBlock() {
500 // Special case: if memcmp result is used in a zero equality, result does not
501 // need to be calculated and can simply return 1.
502 if (IsUsedForZeroCmp) {
503 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
504 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
505 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
506 PhiRes->addIncoming(Res, ResBlock.BB);
507 BranchInst *NewBr = BranchInst::Create(EndBlock);
508 Builder.Insert(NewBr);
509 return;
511 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
512 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
514 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
515 ResBlock.PhiSrc2);
517 Value *Res =
518 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
519 ConstantInt::get(Builder.getInt32Ty(), 1));
521 BranchInst *NewBr = BranchInst::Create(EndBlock);
522 Builder.Insert(NewBr);
523 PhiRes->addIncoming(Res, ResBlock.BB);
526 void MemCmpExpansion::setupResultBlockPHINodes() {
527 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
528 Builder.SetInsertPoint(ResBlock.BB);
529 // Note: this assumes one load per block.
530 ResBlock.PhiSrc1 =
531 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
532 ResBlock.PhiSrc2 =
533 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
536 void MemCmpExpansion::setupEndBlockPHINodes() {
537 Builder.SetInsertPoint(&EndBlock->front());
538 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
541 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
542 unsigned LoadIndex = 0;
543 // This loop populates each of the LoadCmpBlocks with the IR sequence to
544 // handle multiple loads per block.
545 for (unsigned I = 0; I < getNumBlocks(); ++I) {
546 emitLoadCompareBlockMultipleLoads(I, LoadIndex);
549 emitMemCmpResultBlock();
550 return PhiRes;
553 /// A memcmp expansion that compares equality with 0 and only has one block of
554 /// load and compare can bypass the compare, branch, and phi IR that is required
555 /// in the general case.
556 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
557 unsigned LoadIndex = 0;
558 Value *Cmp = getCompareLoadPairs(0, LoadIndex);
559 assert(LoadIndex == getNumLoads() && "some entries were not consumed");
560 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
563 /// A memcmp expansion that only has one block of load and compare can bypass
564 /// the compare, branch, and phi IR that is required in the general case.
565 Value *MemCmpExpansion::getMemCmpOneBlock() {
566 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
567 Value *Source1 = CI->getArgOperand(0);
568 Value *Source2 = CI->getArgOperand(1);
570 // Cast source to LoadSizeType*.
571 if (Source1->getType() != LoadSizeType)
572 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
573 if (Source2->getType() != LoadSizeType)
574 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
576 // Load LoadSizeType from the base address.
577 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
578 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
580 if (DL.isLittleEndian() && Size != 1) {
581 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
582 Intrinsic::bswap, LoadSizeType);
583 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
584 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
587 if (Size < 4) {
588 // The i8 and i16 cases don't need compares. We zext the loaded values and
589 // subtract them to get the suitable negative, zero, or positive i32 result.
590 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
591 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
592 return Builder.CreateSub(LoadSrc1, LoadSrc2);
595 // The result of memcmp is negative, zero, or positive, so produce that by
596 // subtracting 2 extended compare bits: sub (ugt, ult).
597 // If a target prefers to use selects to get -1/0/1, they should be able
598 // to transform this later. The inverse transform (going from selects to math)
599 // may not be possible in the DAG because the selects got converted into
600 // branches before we got there.
601 Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
602 Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
603 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
604 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
605 return Builder.CreateSub(ZextUGT, ZextULT);
608 // This function expands the memcmp call into an inline expansion and returns
609 // the memcmp result.
610 Value *MemCmpExpansion::getMemCmpExpansion() {
611 // Create the basic block framework for a multi-block expansion.
612 if (getNumBlocks() != 1) {
613 BasicBlock *StartBlock = CI->getParent();
614 EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
615 setupEndBlockPHINodes();
616 createResultBlock();
618 // If return value of memcmp is not used in a zero equality, we need to
619 // calculate which source was larger. The calculation requires the
620 // two loaded source values of each load compare block.
621 // These will be saved in the phi nodes created by setupResultBlockPHINodes.
622 if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
624 // Create the number of required load compare basic blocks.
625 createLoadCmpBlocks();
627 // Update the terminator added by splitBasicBlock to branch to the first
628 // LoadCmpBlock.
629 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
632 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
634 if (IsUsedForZeroCmp)
635 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
636 : getMemCmpExpansionZeroCase();
638 if (getNumBlocks() == 1)
639 return getMemCmpOneBlock();
641 for (unsigned I = 0; I < getNumBlocks(); ++I) {
642 emitLoadCompareBlock(I);
645 emitMemCmpResultBlock();
646 return PhiRes;
649 // This function checks to see if an expansion of memcmp can be generated.
650 // It checks for constant compare size that is less than the max inline size.
651 // If an expansion cannot occur, returns false to leave as a library call.
652 // Otherwise, the library call is replaced with a new IR instruction sequence.
653 /// We want to transform:
654 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
655 /// To:
656 /// loadbb:
657 /// %0 = bitcast i32* %buffer2 to i8*
658 /// %1 = bitcast i32* %buffer1 to i8*
659 /// %2 = bitcast i8* %1 to i64*
660 /// %3 = bitcast i8* %0 to i64*
661 /// %4 = load i64, i64* %2
662 /// %5 = load i64, i64* %3
663 /// %6 = call i64 @llvm.bswap.i64(i64 %4)
664 /// %7 = call i64 @llvm.bswap.i64(i64 %5)
665 /// %8 = sub i64 %6, %7
666 /// %9 = icmp ne i64 %8, 0
667 /// br i1 %9, label %res_block, label %loadbb1
668 /// res_block: ; preds = %loadbb2,
669 /// %loadbb1, %loadbb
670 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
671 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
672 /// %10 = icmp ult i64 %phi.src1, %phi.src2
673 /// %11 = select i1 %10, i32 -1, i32 1
674 /// br label %endblock
675 /// loadbb1: ; preds = %loadbb
676 /// %12 = bitcast i32* %buffer2 to i8*
677 /// %13 = bitcast i32* %buffer1 to i8*
678 /// %14 = bitcast i8* %13 to i32*
679 /// %15 = bitcast i8* %12 to i32*
680 /// %16 = getelementptr i32, i32* %14, i32 2
681 /// %17 = getelementptr i32, i32* %15, i32 2
682 /// %18 = load i32, i32* %16
683 /// %19 = load i32, i32* %17
684 /// %20 = call i32 @llvm.bswap.i32(i32 %18)
685 /// %21 = call i32 @llvm.bswap.i32(i32 %19)
686 /// %22 = zext i32 %20 to i64
687 /// %23 = zext i32 %21 to i64
688 /// %24 = sub i64 %22, %23
689 /// %25 = icmp ne i64 %24, 0
690 /// br i1 %25, label %res_block, label %loadbb2
691 /// loadbb2: ; preds = %loadbb1
692 /// %26 = bitcast i32* %buffer2 to i8*
693 /// %27 = bitcast i32* %buffer1 to i8*
694 /// %28 = bitcast i8* %27 to i16*
695 /// %29 = bitcast i8* %26 to i16*
696 /// %30 = getelementptr i16, i16* %28, i16 6
697 /// %31 = getelementptr i16, i16* %29, i16 6
698 /// %32 = load i16, i16* %30
699 /// %33 = load i16, i16* %31
700 /// %34 = call i16 @llvm.bswap.i16(i16 %32)
701 /// %35 = call i16 @llvm.bswap.i16(i16 %33)
702 /// %36 = zext i16 %34 to i64
703 /// %37 = zext i16 %35 to i64
704 /// %38 = sub i64 %36, %37
705 /// %39 = icmp ne i64 %38, 0
706 /// br i1 %39, label %res_block, label %loadbb3
707 /// loadbb3: ; preds = %loadbb2
708 /// %40 = bitcast i32* %buffer2 to i8*
709 /// %41 = bitcast i32* %buffer1 to i8*
710 /// %42 = getelementptr i8, i8* %41, i8 14
711 /// %43 = getelementptr i8, i8* %40, i8 14
712 /// %44 = load i8, i8* %42
713 /// %45 = load i8, i8* %43
714 /// %46 = zext i8 %44 to i32
715 /// %47 = zext i8 %45 to i32
716 /// %48 = sub i32 %46, %47
717 /// br label %endblock
718 /// endblock: ; preds = %res_block,
719 /// %loadbb3
720 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
721 /// ret i32 %phi.res
722 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
723 const TargetLowering *TLI, const DataLayout *DL) {
724 NumMemCmpCalls++;
726 // Early exit from expansion if -Oz.
727 if (CI->getFunction()->hasMinSize())
728 return false;
730 // Early exit from expansion if size is not a constant.
731 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
732 if (!SizeCast) {
733 NumMemCmpNotConstant++;
734 return false;
736 const uint64_t SizeVal = SizeCast->getZExtValue();
738 if (SizeVal == 0) {
739 return false;
741 // TTI call to check if target would like to expand memcmp. Also, get the
742 // available load sizes.
743 const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
744 auto Options = TTI->enableMemCmpExpansion(CI->getFunction()->hasOptSize(),
745 IsUsedForZeroCmp);
746 if (!Options) return false;
748 if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
749 Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
751 if (CI->getFunction()->hasOptSize() &&
752 MaxLoadsPerMemcmpOptSize.getNumOccurrences())
753 Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
755 if (!CI->getFunction()->hasOptSize() && MaxLoadsPerMemcmp.getNumOccurrences())
756 Options.MaxNumLoads = MaxLoadsPerMemcmp;
758 MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL);
760 // Don't expand if this will require more loads than desired by the target.
761 if (Expansion.getNumLoads() == 0) {
762 NumMemCmpGreaterThanMax++;
763 return false;
766 NumMemCmpInlined++;
768 Value *Res = Expansion.getMemCmpExpansion();
770 // Replace call with result of expansion and erase call.
771 CI->replaceAllUsesWith(Res);
772 CI->eraseFromParent();
774 return true;
779 class ExpandMemCmpPass : public FunctionPass {
780 public:
781 static char ID;
783 ExpandMemCmpPass() : FunctionPass(ID) {
784 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
787 bool runOnFunction(Function &F) override {
788 if (skipFunction(F)) return false;
790 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
791 if (!TPC) {
792 return false;
794 const TargetLowering* TL =
795 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
797 const TargetLibraryInfo *TLI =
798 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
799 const TargetTransformInfo *TTI =
800 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
801 auto PA = runImpl(F, TLI, TTI, TL);
802 return !PA.areAllPreserved();
805 private:
806 void getAnalysisUsage(AnalysisUsage &AU) const override {
807 AU.addRequired<TargetLibraryInfoWrapperPass>();
808 AU.addRequired<TargetTransformInfoWrapperPass>();
809 FunctionPass::getAnalysisUsage(AU);
812 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
813 const TargetTransformInfo *TTI,
814 const TargetLowering* TL);
815 // Returns true if a change was made.
816 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
817 const TargetTransformInfo *TTI, const TargetLowering* TL,
818 const DataLayout& DL);
821 bool ExpandMemCmpPass::runOnBlock(
822 BasicBlock &BB, const TargetLibraryInfo *TLI,
823 const TargetTransformInfo *TTI, const TargetLowering* TL,
824 const DataLayout& DL) {
825 for (Instruction& I : BB) {
826 CallInst *CI = dyn_cast<CallInst>(&I);
827 if (!CI) {
828 continue;
830 LibFunc Func;
831 if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
832 (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
833 expandMemCmp(CI, TTI, TL, &DL)) {
834 return true;
837 return false;
841 PreservedAnalyses ExpandMemCmpPass::runImpl(
842 Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
843 const TargetLowering* TL) {
844 const DataLayout& DL = F.getParent()->getDataLayout();
845 bool MadeChanges = false;
846 for (auto BBIt = F.begin(); BBIt != F.end();) {
847 if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) {
848 MadeChanges = true;
849 // If changes were made, restart the function from the beginning, since
850 // the structure of the function was changed.
851 BBIt = F.begin();
852 } else {
853 ++BBIt;
856 return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
859 } // namespace
861 char ExpandMemCmpPass::ID = 0;
862 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
863 "Expand memcmp() to load/stores", false, false)
864 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
865 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
866 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
867 "Expand memcmp() to load/stores", false, false)
869 FunctionPass *llvm::createExpandMemCmpPass() {
870 return new ExpandMemCmpPass();