1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the LiveDebugVariables analysis.
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
19 //===----------------------------------------------------------------------===//
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/MC/MCRegisterInfo.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
67 #define DEBUG_TYPE "livedebugvars"
70 EnableLDV("live-debug-variables", cl::init(true),
71 cl::desc("Enable the live debug variables pass"), cl::Hidden
);
73 STATISTIC(NumInsertedDebugValues
, "Number of DBG_VALUEs inserted");
74 STATISTIC(NumInsertedDebugLabels
, "Number of DBG_LABELs inserted");
76 char LiveDebugVariables::ID
= 0;
78 INITIALIZE_PASS_BEGIN(LiveDebugVariables
, DEBUG_TYPE
,
79 "Debug Variable Analysis", false, false)
80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
82 INITIALIZE_PASS_END(LiveDebugVariables
, DEBUG_TYPE
,
83 "Debug Variable Analysis", false, false)
85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage
&AU
) const {
86 AU
.addRequired
<MachineDominatorTree
>();
87 AU
.addRequiredTransitive
<LiveIntervals
>();
89 MachineFunctionPass::getAnalysisUsage(AU
);
92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID
) {
93 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
96 enum : unsigned { UndefLocNo
= ~0U };
98 /// Describes a location by number along with some flags about the original
99 /// usage of the location.
100 class DbgValueLocation
{
102 DbgValueLocation(unsigned LocNo
)
104 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
105 assert(locNo() == LocNo
&& "location truncation");
108 DbgValueLocation() : LocNo(0) {}
110 unsigned locNo() const {
111 // Fix up the undef location number, which gets truncated.
112 return LocNo
== INT_MAX
? UndefLocNo
: LocNo
;
114 bool isUndef() const { return locNo() == UndefLocNo
; }
116 DbgValueLocation
changeLocNo(unsigned NewLocNo
) const {
117 return DbgValueLocation(NewLocNo
);
120 friend inline bool operator==(const DbgValueLocation
&LHS
,
121 const DbgValueLocation
&RHS
) {
122 return LHS
.LocNo
== RHS
.LocNo
;
125 friend inline bool operator!=(const DbgValueLocation
&LHS
,
126 const DbgValueLocation
&RHS
) {
127 return !(LHS
== RHS
);
134 /// Map of where a user value is live, and its location.
135 using LocMap
= IntervalMap
<SlotIndex
, DbgValueLocation
, 4>;
137 /// Map of stack slot offsets for spilled locations.
138 /// Non-spilled locations are not added to the map.
139 using SpillOffsetMap
= DenseMap
<unsigned, unsigned>;
145 /// A UserValue is uniquely identified by the source variable it refers to
146 /// (Variable), the expression describing how to get the value (Expression) and
147 /// the specific usage (InlinedAt). InlinedAt differentiates both between
148 /// inline and non-inline functions, and multiple inlined instances in the same
149 /// scope. FIXME: The only part of the Expression which matters for UserValue
150 /// identification is the fragment part.
151 class UserValueIdentity
{
153 /// The debug info variable we are part of.
154 const DILocalVariable
*Variable
;
155 /// Any complex address expression.
156 const DIExpression
*Expression
;
157 /// Function usage identification.
158 const DILocation
*InlinedAt
;
161 UserValueIdentity(const DILocalVariable
*Var
, const DIExpression
*Expr
,
162 const DILocation
*IA
)
163 : Variable(Var
), Expression(Expr
), InlinedAt(IA
) {}
165 bool match(const DILocalVariable
*Var
, const DIExpression
*Expr
,
166 const DILocation
*IA
) const {
167 // FIXME: The fragment should be part of the identity, but not
168 // other things in the expression like stack values.
169 return Var
== Variable
&& Expr
== Expression
&& IA
== InlinedAt
;
172 bool match(const UserValueIdentity
&Other
) const {
173 return match(Other
.Variable
, Other
.Expression
, Other
.InlinedAt
);
176 unsigned hash_value() const {
177 return hash_combine(Variable
, Expression
, InlinedAt
);
181 /// A user value is a part of a debug info user variable.
183 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
184 /// holds part of a user variable. The part is identified by a byte offset.
186 const DILocalVariable
*Variable
; ///< The debug info variable we are part of.
187 const DIExpression
*Expression
; ///< Any complex address expression.
188 DebugLoc dl
; ///< The debug location for the variable. This is
189 ///< used by dwarf writer to find lexical scope.
191 /// Numbered locations referenced by locmap.
192 SmallVector
<MachineOperand
, 4> locations
;
194 /// Map of slot indices where this value is live.
197 /// Insert a DBG_VALUE into MBB at Idx for LocNo.
198 void insertDebugValue(MachineBasicBlock
*MBB
, SlotIndex StartIdx
,
199 SlotIndex StopIdx
, DbgValueLocation Loc
, bool Spilled
,
200 unsigned SpillOffset
, LiveIntervals
&LIS
,
201 const TargetInstrInfo
&TII
,
202 const TargetRegisterInfo
&TRI
);
204 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
205 /// is live. Returns true if any changes were made.
206 bool splitLocation(unsigned OldLocNo
, ArrayRef
<unsigned> NewRegs
,
210 UserValue(const UserValue
&) = delete;
212 /// Create a new UserValue.
213 UserValue(const DILocalVariable
*var
, const DIExpression
*expr
, DebugLoc L
,
214 LocMap::Allocator
&alloc
)
215 : Variable(var
), Expression(expr
), dl(std::move(L
)), locInts(alloc
) {}
217 UserValueIdentity
getId() {
218 return UserValueIdentity(Variable
, Expression
, dl
->getInlinedAt());
221 /// Return the location number that matches Loc.
223 /// For undef values we always return location number UndefLocNo without
224 /// inserting anything in locations. Since locations is a vector and the
225 /// location number is the position in the vector and UndefLocNo is ~0,
226 /// we would need a very big vector to put the value at the right position.
227 unsigned getLocationNo(const MachineOperand
&LocMO
) {
229 if (LocMO
.getReg() == 0)
231 // For register locations we dont care about use/def and other flags.
232 for (unsigned i
= 0, e
= locations
.size(); i
!= e
; ++i
)
233 if (locations
[i
].isReg() &&
234 locations
[i
].getReg() == LocMO
.getReg() &&
235 locations
[i
].getSubReg() == LocMO
.getSubReg())
238 for (unsigned i
= 0, e
= locations
.size(); i
!= e
; ++i
)
239 if (LocMO
.isIdenticalTo(locations
[i
]))
241 locations
.push_back(LocMO
);
242 // We are storing a MachineOperand outside a MachineInstr.
243 locations
.back().clearParent();
244 // Don't store def operands.
245 if (locations
.back().isReg()) {
246 if (locations
.back().isDef())
247 locations
.back().setIsDead(false);
248 locations
.back().setIsUse();
250 return locations
.size() - 1;
253 /// Ensure that all virtual register locations are mapped.
254 void mapVirtRegs(LDVImpl
*LDV
);
256 /// Add a definition point to this value.
257 void addDef(SlotIndex Idx
, const MachineOperand
&LocMO
) {
258 DbgValueLocation
Loc(getLocationNo(LocMO
));
259 // Add a singular (Idx,Idx) -> Loc mapping.
260 LocMap::iterator I
= locInts
.find(Idx
);
261 if (!I
.valid() || I
.start() != Idx
)
262 I
.insert(Idx
, Idx
.getNextSlot(), Loc
);
264 // A later DBG_VALUE at the same SlotIndex overrides the old location.
268 /// Extend the current definition as far as possible down.
270 /// Stop when meeting an existing def or when leaving the live
271 /// range of VNI. End points where VNI is no longer live are added to Kills.
273 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
274 /// data-flow analysis to propagate them beyond basic block boundaries.
276 /// \param Idx Starting point for the definition.
277 /// \param Loc Location number to propagate.
278 /// \param LR Restrict liveness to where LR has the value VNI. May be null.
279 /// \param VNI When LR is not null, this is the value to restrict to.
280 /// \param [out] Kills Append end points of VNI's live range to Kills.
281 /// \param LIS Live intervals analysis.
282 void extendDef(SlotIndex Idx
, DbgValueLocation Loc
,
283 LiveRange
*LR
, const VNInfo
*VNI
,
284 SmallVectorImpl
<SlotIndex
> *Kills
,
287 /// The value in LI/LocNo may be copies to other registers. Determine if
288 /// any of the copies are available at the kill points, and add defs if
291 /// \param LI Scan for copies of the value in LI->reg.
292 /// \param LocNo Location number of LI->reg.
293 /// \param Kills Points where the range of LocNo could be extended.
294 /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here.
295 void addDefsFromCopies(
296 LiveInterval
*LI
, unsigned LocNo
,
297 const SmallVectorImpl
<SlotIndex
> &Kills
,
298 SmallVectorImpl
<std::pair
<SlotIndex
, DbgValueLocation
>> &NewDefs
,
299 MachineRegisterInfo
&MRI
, LiveIntervals
&LIS
);
301 /// Compute the live intervals of all locations after collecting all their
303 void computeIntervals(MachineRegisterInfo
&MRI
, const TargetRegisterInfo
&TRI
,
304 LiveIntervals
&LIS
, LexicalScopes
&LS
);
306 /// Replace OldReg ranges with NewRegs ranges where NewRegs is
307 /// live. Returns true if any changes were made.
308 bool splitRegister(unsigned OldReg
, ArrayRef
<unsigned> NewRegs
,
311 /// Rewrite virtual register locations according to the provided virtual
312 /// register map. Record the stack slot offsets for the locations that
314 void rewriteLocations(VirtRegMap
&VRM
, const MachineFunction
&MF
,
315 const TargetInstrInfo
&TII
,
316 const TargetRegisterInfo
&TRI
,
317 SpillOffsetMap
&SpillOffsets
);
319 /// Recreate DBG_VALUE instruction from data structures.
320 void emitDebugValues(VirtRegMap
*VRM
, LiveIntervals
&LIS
,
321 const TargetInstrInfo
&TII
,
322 const TargetRegisterInfo
&TRI
,
323 const SpillOffsetMap
&SpillOffsets
);
325 /// Return DebugLoc of this UserValue.
326 DebugLoc
getDebugLoc() { return dl
;}
328 void print(raw_ostream
&, const TargetRegisterInfo
*);
333 template <> struct DenseMapInfo
<UserValueIdentity
> {
334 static UserValueIdentity
getEmptyKey() {
335 auto Key
= DenseMapInfo
<DILocalVariable
*>::getEmptyKey();
336 return UserValueIdentity(Key
, nullptr, nullptr);
338 static UserValueIdentity
getTombstoneKey() {
339 auto Key
= DenseMapInfo
<DILocalVariable
*>::getTombstoneKey();
340 return UserValueIdentity(Key
, nullptr, nullptr);
342 static unsigned getHashValue(const UserValueIdentity
&Val
) {
343 return Val
.hash_value();
345 static bool isEqual(const UserValueIdentity
&LHS
,
346 const UserValueIdentity
&RHS
) {
347 return LHS
.match(RHS
);
353 /// A user label is a part of a debug info user label.
355 const DILabel
*Label
; ///< The debug info label we are part of.
356 DebugLoc dl
; ///< The debug location for the label. This is
357 ///< used by dwarf writer to find lexical scope.
358 SlotIndex loc
; ///< Slot used by the debug label.
360 /// Insert a DBG_LABEL into MBB at Idx.
361 void insertDebugLabel(MachineBasicBlock
*MBB
, SlotIndex Idx
,
362 LiveIntervals
&LIS
, const TargetInstrInfo
&TII
);
365 /// Create a new UserLabel.
366 UserLabel(const DILabel
*label
, DebugLoc L
, SlotIndex Idx
)
367 : Label(label
), dl(std::move(L
)), loc(Idx
) {}
369 /// Does this UserLabel match the parameters?
370 bool match(const DILabel
*L
, const DILocation
*IA
,
371 const SlotIndex Index
) const {
372 return Label
== L
&& dl
->getInlinedAt() == IA
&& loc
== Index
;
375 /// Recreate DBG_LABEL instruction from data structures.
376 void emitDebugLabel(LiveIntervals
&LIS
, const TargetInstrInfo
&TII
);
378 /// Return DebugLoc of this UserLabel.
379 DebugLoc
getDebugLoc() { return dl
; }
381 void print(raw_ostream
&, const TargetRegisterInfo
*);
384 /// Implementation of the LiveDebugVariables pass.
386 LiveDebugVariables
&pass
;
387 LocMap::Allocator allocator
;
388 MachineFunction
*MF
= nullptr;
390 const TargetRegisterInfo
*TRI
;
392 /// Whether emitDebugValues is called.
393 bool EmitDone
= false;
395 /// Whether the machine function is modified during the pass.
396 bool ModifiedMF
= false;
398 /// All allocated UserValue instances.
399 SmallVector
<std::unique_ptr
<UserValue
>, 8> userValues
;
401 /// All allocated UserLabel instances.
402 SmallVector
<std::unique_ptr
<UserLabel
>, 2> userLabels
;
404 /// Map virtual register to UserValues which use it.
405 using VRMap
= DenseMap
<unsigned, SmallVector
<UserValue
*, 4>>;
406 VRMap VirtRegToUserVals
;
408 /// Map unique UserValue identity to UserValue.
409 using UVMap
= DenseMap
<UserValueIdentity
, UserValue
*>;
412 /// Find or create a UserValue.
413 UserValue
*getUserValue(const DILocalVariable
*Var
, const DIExpression
*Expr
,
416 /// Find the UserValues for VirtReg or null.
417 SmallVectorImpl
<UserValue
*> *lookupVirtReg(unsigned VirtReg
);
419 /// Add DBG_VALUE instruction to our maps.
421 /// \param MI DBG_VALUE instruction
422 /// \param Idx Last valid SLotIndex before instruction.
424 /// \returns True if the DBG_VALUE instruction should be deleted.
425 bool handleDebugValue(MachineInstr
&MI
, SlotIndex Idx
);
427 /// Add DBG_LABEL instruction to UserLabel.
429 /// \param MI DBG_LABEL instruction
430 /// \param Idx Last valid SlotIndex before instruction.
432 /// \returns True if the DBG_LABEL instruction should be deleted.
433 bool handleDebugLabel(MachineInstr
&MI
, SlotIndex Idx
);
435 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
436 /// for each instruction.
438 /// \param mf MachineFunction to be scanned.
440 /// \returns True if any debug values were found.
441 bool collectDebugValues(MachineFunction
&mf
);
443 /// Compute the live intervals of all user values after collecting all
444 /// their def points.
445 void computeIntervals();
448 LDVImpl(LiveDebugVariables
*ps
) : pass(*ps
) {}
450 bool runOnMachineFunction(MachineFunction
&mf
);
452 /// Release all memory.
457 VirtRegToUserVals
.clear();
459 // Make sure we call emitDebugValues if the machine function was modified.
460 assert((!ModifiedMF
|| EmitDone
) &&
461 "Dbg values are not emitted in LDV");
466 /// Map virtual register to a UserValue.
467 void mapVirtReg(unsigned VirtReg
, UserValue
*UV
);
469 /// Replace all references to OldReg with NewRegs.
470 void splitRegister(unsigned OldReg
, ArrayRef
<unsigned> NewRegs
);
472 /// Recreate DBG_VALUE instruction from data structures.
473 void emitDebugValues(VirtRegMap
*VRM
);
475 void print(raw_ostream
&);
478 } // end anonymous namespace
480 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
481 static void printDebugLoc(const DebugLoc
&DL
, raw_ostream
&CommentOS
,
482 const LLVMContext
&Ctx
) {
486 auto *Scope
= cast
<DIScope
>(DL
.getScope());
487 // Omit the directory, because it's likely to be long and uninteresting.
488 CommentOS
<< Scope
->getFilename();
489 CommentOS
<< ':' << DL
.getLine();
490 if (DL
.getCol() != 0)
491 CommentOS
<< ':' << DL
.getCol();
493 DebugLoc InlinedAtDL
= DL
.getInlinedAt();
498 printDebugLoc(InlinedAtDL
, CommentOS
, Ctx
);
502 static void printExtendedName(raw_ostream
&OS
, const DINode
*Node
,
503 const DILocation
*DL
) {
504 const LLVMContext
&Ctx
= Node
->getContext();
507 if (const auto *V
= dyn_cast
<const DILocalVariable
>(Node
)) {
510 } else if (const auto *L
= dyn_cast
<const DILabel
>(Node
)) {
516 OS
<< Res
<< "," << Line
;
517 auto *InlinedAt
= DL
? DL
->getInlinedAt() : nullptr;
519 if (DebugLoc InlinedAtDL
= InlinedAt
) {
521 printDebugLoc(InlinedAtDL
, OS
, Ctx
);
527 void UserValue::print(raw_ostream
&OS
, const TargetRegisterInfo
*TRI
) {
529 printExtendedName(OS
, Variable
, dl
);
532 for (LocMap::const_iterator I
= locInts
.begin(); I
.valid(); ++I
) {
533 OS
<< " [" << I
.start() << ';' << I
.stop() << "):";
534 if (I
.value().isUndef())
537 OS
<< I
.value().locNo();
540 for (unsigned i
= 0, e
= locations
.size(); i
!= e
; ++i
) {
541 OS
<< " Loc" << i
<< '=';
542 locations
[i
].print(OS
, TRI
);
547 void UserLabel::print(raw_ostream
&OS
, const TargetRegisterInfo
*TRI
) {
549 printExtendedName(OS
, Label
, dl
);
556 void LDVImpl::print(raw_ostream
&OS
) {
557 OS
<< "********** DEBUG VARIABLES **********\n";
558 for (auto &userValue
: userValues
)
559 userValue
->print(OS
, TRI
);
560 OS
<< "********** DEBUG LABELS **********\n";
561 for (auto &userLabel
: userLabels
)
562 userLabel
->print(OS
, TRI
);
566 void UserValue::mapVirtRegs(LDVImpl
*LDV
) {
567 for (unsigned i
= 0, e
= locations
.size(); i
!= e
; ++i
)
568 if (locations
[i
].isReg() &&
569 Register::isVirtualRegister(locations
[i
].getReg()))
570 LDV
->mapVirtReg(locations
[i
].getReg(), this);
573 UserValue
*LDVImpl::getUserValue(const DILocalVariable
*Var
,
574 const DIExpression
*Expr
, const DebugLoc
&DL
) {
575 auto Ident
= UserValueIdentity(Var
, Expr
, DL
->getInlinedAt());
576 UserValue
*&UVEntry
= UserVarMap
[Ident
];
581 userValues
.push_back(std::make_unique
<UserValue
>(Var
, Expr
, DL
, allocator
));
582 return UVEntry
= userValues
.back().get();
585 void LDVImpl::mapVirtReg(unsigned VirtReg
, UserValue
*UV
) {
586 assert(Register::isVirtualRegister(VirtReg
) && "Only map VirtRegs");
587 assert(UserVarMap
.find(UV
->getId()) != UserVarMap
.end() &&
588 "UserValue should exist in UserVarMap");
589 VirtRegToUserVals
[VirtReg
].push_back(UV
);
592 SmallVectorImpl
<UserValue
*> *LDVImpl::lookupVirtReg(unsigned VirtReg
) {
593 VRMap::iterator Itr
= VirtRegToUserVals
.find(VirtReg
);
594 if (Itr
!= VirtRegToUserVals
.end())
595 return &Itr
->getSecond();
599 bool LDVImpl::handleDebugValue(MachineInstr
&MI
, SlotIndex Idx
) {
600 // DBG_VALUE loc, offset, variable
601 if (MI
.getNumOperands() != 4 ||
602 !(MI
.getOperand(1).isReg() || MI
.getOperand(1).isImm()) ||
603 !MI
.getOperand(2).isMetadata()) {
604 LLVM_DEBUG(dbgs() << "Can't handle " << MI
);
608 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
609 // register that hasn't been defined yet. If we do not remove those here, then
610 // the re-insertion of the DBG_VALUE instruction after register allocation
611 // will be incorrect.
612 // TODO: If earlier passes are corrected to generate sane debug information
613 // (and if the machine verifier is improved to catch this), then these checks
614 // could be removed or replaced by asserts.
615 bool Discard
= false;
616 if (MI
.getOperand(0).isReg() &&
617 Register::isVirtualRegister(MI
.getOperand(0).getReg())) {
618 const Register Reg
= MI
.getOperand(0).getReg();
619 if (!LIS
->hasInterval(Reg
)) {
620 // The DBG_VALUE is described by a virtual register that does not have a
621 // live interval. Discard the DBG_VALUE.
623 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
626 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
627 // is defined dead at Idx (where Idx is the slot index for the instruction
628 // preceding the DBG_VALUE).
629 const LiveInterval
&LI
= LIS
->getInterval(Reg
);
630 LiveQueryResult LRQ
= LI
.Query(Idx
);
631 if (!LRQ
.valueOutOrDead()) {
632 // We have found a DBG_VALUE with the value in a virtual register that
633 // is not live. Discard the DBG_VALUE.
635 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
641 // Get or create the UserValue for (variable,offset) here.
642 assert(!MI
.getOperand(1).isImm() && "DBG_VALUE with indirect flag before "
643 "LiveDebugVariables");
644 const DILocalVariable
*Var
= MI
.getDebugVariable();
645 const DIExpression
*Expr
= MI
.getDebugExpression();
647 getUserValue(Var
, Expr
, MI
.getDebugLoc());
649 UV
->addDef(Idx
, MI
.getOperand(0));
651 MachineOperand MO
= MachineOperand::CreateReg(0U, false);
658 bool LDVImpl::handleDebugLabel(MachineInstr
&MI
, SlotIndex Idx
) {
660 if (MI
.getNumOperands() != 1 || !MI
.getOperand(0).isMetadata()) {
661 LLVM_DEBUG(dbgs() << "Can't handle " << MI
);
665 // Get or create the UserLabel for label here.
666 const DILabel
*Label
= MI
.getDebugLabel();
667 const DebugLoc
&DL
= MI
.getDebugLoc();
669 for (auto const &L
: userLabels
) {
670 if (L
->match(Label
, DL
->getInlinedAt(), Idx
)) {
676 userLabels
.push_back(std::make_unique
<UserLabel
>(Label
, DL
, Idx
));
681 bool LDVImpl::collectDebugValues(MachineFunction
&mf
) {
682 bool Changed
= false;
683 for (MachineFunction::iterator MFI
= mf
.begin(), MFE
= mf
.end(); MFI
!= MFE
;
685 MachineBasicBlock
*MBB
= &*MFI
;
686 for (MachineBasicBlock::iterator MBBI
= MBB
->begin(), MBBE
= MBB
->end();
688 // Use the first debug instruction in the sequence to get a SlotIndex
689 // for following consecutive debug instructions.
690 if (!MBBI
->isDebugInstr()) {
694 // Debug instructions has no slot index. Use the previous
695 // non-debug instruction's SlotIndex as its SlotIndex.
698 ? LIS
->getMBBStartIdx(MBB
)
699 : LIS
->getInstructionIndex(*std::prev(MBBI
)).getRegSlot();
700 // Handle consecutive debug instructions with the same slot index.
702 // Only handle DBG_VALUE in handleDebugValue(). Skip all other
703 // kinds of debug instructions.
704 if ((MBBI
->isDebugValue() && handleDebugValue(*MBBI
, Idx
)) ||
705 (MBBI
->isDebugLabel() && handleDebugLabel(*MBBI
, Idx
))) {
706 MBBI
= MBB
->erase(MBBI
);
710 } while (MBBI
!= MBBE
&& MBBI
->isDebugInstr());
716 void UserValue::extendDef(SlotIndex Idx
, DbgValueLocation Loc
, LiveRange
*LR
,
717 const VNInfo
*VNI
, SmallVectorImpl
<SlotIndex
> *Kills
,
718 LiveIntervals
&LIS
) {
719 SlotIndex Start
= Idx
;
720 MachineBasicBlock
*MBB
= LIS
.getMBBFromIndex(Start
);
721 SlotIndex Stop
= LIS
.getMBBEndIdx(MBB
);
722 LocMap::iterator I
= locInts
.find(Start
);
724 // Limit to VNI's live range.
727 LiveInterval::Segment
*Segment
= LR
->getSegmentContaining(Start
);
728 if (!Segment
|| Segment
->valno
!= VNI
) {
730 Kills
->push_back(Start
);
733 if (Segment
->end
< Stop
) {
739 // There could already be a short def at Start.
740 if (I
.valid() && I
.start() <= Start
) {
741 // Stop when meeting a different location or an already extended interval.
742 Start
= Start
.getNextSlot();
743 if (I
.value() != Loc
|| I
.stop() != Start
)
745 // This is a one-slot placeholder. Just skip it.
749 // Limited by the next def.
750 if (I
.valid() && I
.start() < Stop
)
752 // Limited by VNI's live range.
753 else if (!ToEnd
&& Kills
)
754 Kills
->push_back(Stop
);
757 I
.insert(Start
, Stop
, Loc
);
760 void UserValue::addDefsFromCopies(
761 LiveInterval
*LI
, unsigned LocNo
,
762 const SmallVectorImpl
<SlotIndex
> &Kills
,
763 SmallVectorImpl
<std::pair
<SlotIndex
, DbgValueLocation
>> &NewDefs
,
764 MachineRegisterInfo
&MRI
, LiveIntervals
&LIS
) {
767 // Don't track copies from physregs, there are too many uses.
768 if (!Register::isVirtualRegister(LI
->reg
))
771 // Collect all the (vreg, valno) pairs that are copies of LI.
772 SmallVector
<std::pair
<LiveInterval
*, const VNInfo
*>, 8> CopyValues
;
773 for (MachineOperand
&MO
: MRI
.use_nodbg_operands(LI
->reg
)) {
774 MachineInstr
*MI
= MO
.getParent();
775 // Copies of the full value.
776 if (MO
.getSubReg() || !MI
->isCopy())
778 Register DstReg
= MI
->getOperand(0).getReg();
780 // Don't follow copies to physregs. These are usually setting up call
781 // arguments, and the argument registers are always call clobbered. We are
782 // better off in the source register which could be a callee-saved register,
783 // or it could be spilled.
784 if (!Register::isVirtualRegister(DstReg
))
787 // Is LocNo extended to reach this copy? If not, another def may be blocking
788 // it, or we are looking at a wrong value of LI.
789 SlotIndex Idx
= LIS
.getInstructionIndex(*MI
);
790 LocMap::iterator I
= locInts
.find(Idx
.getRegSlot(true));
791 if (!I
.valid() || I
.value().locNo() != LocNo
)
794 if (!LIS
.hasInterval(DstReg
))
796 LiveInterval
*DstLI
= &LIS
.getInterval(DstReg
);
797 const VNInfo
*DstVNI
= DstLI
->getVNInfoAt(Idx
.getRegSlot());
798 assert(DstVNI
&& DstVNI
->def
== Idx
.getRegSlot() && "Bad copy value");
799 CopyValues
.push_back(std::make_pair(DstLI
, DstVNI
));
802 if (CopyValues
.empty())
805 LLVM_DEBUG(dbgs() << "Got " << CopyValues
.size() << " copies of " << *LI
808 // Try to add defs of the copied values for each kill point.
809 for (unsigned i
= 0, e
= Kills
.size(); i
!= e
; ++i
) {
810 SlotIndex Idx
= Kills
[i
];
811 for (unsigned j
= 0, e
= CopyValues
.size(); j
!= e
; ++j
) {
812 LiveInterval
*DstLI
= CopyValues
[j
].first
;
813 const VNInfo
*DstVNI
= CopyValues
[j
].second
;
814 if (DstLI
->getVNInfoAt(Idx
) != DstVNI
)
816 // Check that there isn't already a def at Idx
817 LocMap::iterator I
= locInts
.find(Idx
);
818 if (I
.valid() && I
.start() <= Idx
)
820 LLVM_DEBUG(dbgs() << "Kill at " << Idx
<< " covered by valno #"
821 << DstVNI
->id
<< " in " << *DstLI
<< '\n');
822 MachineInstr
*CopyMI
= LIS
.getInstructionFromIndex(DstVNI
->def
);
823 assert(CopyMI
&& CopyMI
->isCopy() && "Bad copy value");
824 unsigned LocNo
= getLocationNo(CopyMI
->getOperand(0));
825 DbgValueLocation
NewLoc(LocNo
);
826 I
.insert(Idx
, Idx
.getNextSlot(), NewLoc
);
827 NewDefs
.push_back(std::make_pair(Idx
, NewLoc
));
833 void UserValue::computeIntervals(MachineRegisterInfo
&MRI
,
834 const TargetRegisterInfo
&TRI
,
835 LiveIntervals
&LIS
, LexicalScopes
&LS
) {
836 SmallVector
<std::pair
<SlotIndex
, DbgValueLocation
>, 16> Defs
;
838 // Collect all defs to be extended (Skipping undefs).
839 for (LocMap::const_iterator I
= locInts
.begin(); I
.valid(); ++I
)
840 if (!I
.value().isUndef())
841 Defs
.push_back(std::make_pair(I
.start(), I
.value()));
843 // Extend all defs, and possibly add new ones along the way.
844 for (unsigned i
= 0; i
!= Defs
.size(); ++i
) {
845 SlotIndex Idx
= Defs
[i
].first
;
846 DbgValueLocation Loc
= Defs
[i
].second
;
847 const MachineOperand
&LocMO
= locations
[Loc
.locNo()];
849 if (!LocMO
.isReg()) {
850 extendDef(Idx
, Loc
, nullptr, nullptr, nullptr, LIS
);
854 // Register locations are constrained to where the register value is live.
855 if (Register::isVirtualRegister(LocMO
.getReg())) {
856 LiveInterval
*LI
= nullptr;
857 const VNInfo
*VNI
= nullptr;
858 if (LIS
.hasInterval(LocMO
.getReg())) {
859 LI
= &LIS
.getInterval(LocMO
.getReg());
860 VNI
= LI
->getVNInfoAt(Idx
);
862 SmallVector
<SlotIndex
, 16> Kills
;
863 extendDef(Idx
, Loc
, LI
, VNI
, &Kills
, LIS
);
864 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
865 // if the original location for example is %vreg0:sub_hi, and we find a
866 // full register copy in addDefsFromCopies (at the moment it only handles
867 // full register copies), then we must add the sub1 sub-register index to
868 // the new location. However, that is only possible if the new virtual
869 // register is of the same regclass (or if there is an equivalent
870 // sub-register in that regclass). For now, simply skip handling copies if
871 // a sub-register is involved.
872 if (LI
&& !LocMO
.getSubReg())
873 addDefsFromCopies(LI
, Loc
.locNo(), Kills
, Defs
, MRI
, LIS
);
877 // For physregs, we only mark the start slot idx. DwarfDebug will see it
878 // as if the DBG_VALUE is valid up until the end of the basic block, or
879 // the next def of the physical register. So we do not need to extend the
880 // range. It might actually happen that the DBG_VALUE is the last use of
881 // the physical register (e.g. if this is an unused input argument to a
885 // The computed intervals may extend beyond the range of the debug
886 // location's lexical scope. In this case, splitting of an interval
887 // can result in an interval outside of the scope being created,
888 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
889 // this, trim the intervals to the lexical scope.
891 LexicalScope
*Scope
= LS
.findLexicalScope(dl
);
896 LocMap::iterator I
= locInts
.begin();
898 // Iterate over the lexical scope ranges. Each time round the loop
899 // we check the intervals for overlap with the end of the previous
900 // range and the start of the next. The first range is handled as
901 // a special case where there is no PrevEnd.
902 for (const InsnRange
&Range
: Scope
->getRanges()) {
903 SlotIndex RStart
= LIS
.getInstructionIndex(*Range
.first
);
904 SlotIndex REnd
= LIS
.getInstructionIndex(*Range
.second
);
906 // At the start of each iteration I has been advanced so that
907 // I.stop() >= PrevEnd. Check for overlap.
908 if (PrevEnd
&& I
.start() < PrevEnd
) {
909 SlotIndex IStop
= I
.stop();
910 DbgValueLocation Loc
= I
.value();
912 // Stop overlaps previous end - trim the end of the interval to
914 I
.setStopUnchecked(PrevEnd
);
917 // If the interval also overlaps the start of the "next" (i.e.
918 // current) range create a new interval for the remainder
920 I
.insert(RStart
, IStop
, Loc
);
923 // Advance I so that I.stop() >= RStart, and check for overlap.
928 // The end of a lexical scope range is the last instruction in the
929 // range. To convert to an interval we need the index of the
930 // instruction after it.
931 REnd
= REnd
.getNextIndex();
933 // Advance I to first interval outside current range.
941 // Check for overlap with end of final range.
942 if (PrevEnd
&& I
.start() < PrevEnd
)
943 I
.setStopUnchecked(PrevEnd
);
946 void LDVImpl::computeIntervals() {
950 for (unsigned i
= 0, e
= userValues
.size(); i
!= e
; ++i
) {
951 userValues
[i
]->computeIntervals(MF
->getRegInfo(), *TRI
, *LIS
, LS
);
952 userValues
[i
]->mapVirtRegs(this);
956 bool LDVImpl::runOnMachineFunction(MachineFunction
&mf
) {
959 LIS
= &pass
.getAnalysis
<LiveIntervals
>();
960 TRI
= mf
.getSubtarget().getRegisterInfo();
961 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
962 << mf
.getName() << " **********\n");
964 bool Changed
= collectDebugValues(mf
);
966 LLVM_DEBUG(print(dbgs()));
967 ModifiedMF
= Changed
;
971 static void removeDebugValues(MachineFunction
&mf
) {
972 for (MachineBasicBlock
&MBB
: mf
) {
973 for (auto MBBI
= MBB
.begin(), MBBE
= MBB
.end(); MBBI
!= MBBE
; ) {
974 if (!MBBI
->isDebugValue()) {
978 MBBI
= MBB
.erase(MBBI
);
983 bool LiveDebugVariables::runOnMachineFunction(MachineFunction
&mf
) {
986 if (!mf
.getFunction().getSubprogram()) {
987 removeDebugValues(mf
);
991 pImpl
= new LDVImpl(this);
992 return static_cast<LDVImpl
*>(pImpl
)->runOnMachineFunction(mf
);
995 void LiveDebugVariables::releaseMemory() {
997 static_cast<LDVImpl
*>(pImpl
)->clear();
1000 LiveDebugVariables::~LiveDebugVariables() {
1002 delete static_cast<LDVImpl
*>(pImpl
);
1005 //===----------------------------------------------------------------------===//
1006 // Live Range Splitting
1007 //===----------------------------------------------------------------------===//
1010 UserValue::splitLocation(unsigned OldLocNo
, ArrayRef
<unsigned> NewRegs
,
1011 LiveIntervals
& LIS
) {
1013 dbgs() << "Splitting Loc" << OldLocNo
<< '\t';
1014 print(dbgs(), nullptr);
1016 bool DidChange
= false;
1017 LocMap::iterator LocMapI
;
1018 LocMapI
.setMap(locInts
);
1019 for (unsigned i
= 0; i
!= NewRegs
.size(); ++i
) {
1020 LiveInterval
*LI
= &LIS
.getInterval(NewRegs
[i
]);
1024 // Don't allocate the new LocNo until it is needed.
1025 unsigned NewLocNo
= UndefLocNo
;
1027 // Iterate over the overlaps between locInts and LI.
1028 LocMapI
.find(LI
->beginIndex());
1029 if (!LocMapI
.valid())
1031 LiveInterval::iterator LII
= LI
->advanceTo(LI
->begin(), LocMapI
.start());
1032 LiveInterval::iterator LIE
= LI
->end();
1033 while (LocMapI
.valid() && LII
!= LIE
) {
1034 // At this point, we know that LocMapI.stop() > LII->start.
1035 LII
= LI
->advanceTo(LII
, LocMapI
.start());
1039 // Now LII->end > LocMapI.start(). Do we have an overlap?
1040 if (LocMapI
.value().locNo() == OldLocNo
&& LII
->start
< LocMapI
.stop()) {
1041 // Overlapping correct location. Allocate NewLocNo now.
1042 if (NewLocNo
== UndefLocNo
) {
1043 MachineOperand MO
= MachineOperand::CreateReg(LI
->reg
, false);
1044 MO
.setSubReg(locations
[OldLocNo
].getSubReg());
1045 NewLocNo
= getLocationNo(MO
);
1049 SlotIndex LStart
= LocMapI
.start();
1050 SlotIndex LStop
= LocMapI
.stop();
1051 DbgValueLocation OldLoc
= LocMapI
.value();
1053 // Trim LocMapI down to the LII overlap.
1054 if (LStart
< LII
->start
)
1055 LocMapI
.setStartUnchecked(LII
->start
);
1056 if (LStop
> LII
->end
)
1057 LocMapI
.setStopUnchecked(LII
->end
);
1059 // Change the value in the overlap. This may trigger coalescing.
1060 LocMapI
.setValue(OldLoc
.changeLocNo(NewLocNo
));
1062 // Re-insert any removed OldLocNo ranges.
1063 if (LStart
< LocMapI
.start()) {
1064 LocMapI
.insert(LStart
, LocMapI
.start(), OldLoc
);
1066 assert(LocMapI
.valid() && "Unexpected coalescing");
1068 if (LStop
> LocMapI
.stop()) {
1070 LocMapI
.insert(LII
->end
, LStop
, OldLoc
);
1075 // Advance to the next overlap.
1076 if (LII
->end
< LocMapI
.stop()) {
1079 LocMapI
.advanceTo(LII
->start
);
1082 if (!LocMapI
.valid())
1084 LII
= LI
->advanceTo(LII
, LocMapI
.start());
1089 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
1090 locations
.erase(locations
.begin() + OldLocNo
);
1091 LocMapI
.goToBegin();
1092 while (LocMapI
.valid()) {
1093 DbgValueLocation v
= LocMapI
.value();
1094 if (v
.locNo() == OldLocNo
) {
1095 LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI
.start() << ';'
1096 << LocMapI
.stop() << ")\n");
1099 // Undef values always have location number UndefLocNo, so don't change
1100 // locNo in that case. See getLocationNo().
1101 if (!v
.isUndef() && v
.locNo() > OldLocNo
)
1102 LocMapI
.setValueUnchecked(v
.changeLocNo(v
.locNo() - 1));
1108 dbgs() << "Split result: \t";
1109 print(dbgs(), nullptr);
1115 UserValue::splitRegister(unsigned OldReg
, ArrayRef
<unsigned> NewRegs
,
1116 LiveIntervals
&LIS
) {
1117 bool DidChange
= false;
1118 // Split locations referring to OldReg. Iterate backwards so splitLocation can
1119 // safely erase unused locations.
1120 for (unsigned i
= locations
.size(); i
; --i
) {
1121 unsigned LocNo
= i
-1;
1122 const MachineOperand
*Loc
= &locations
[LocNo
];
1123 if (!Loc
->isReg() || Loc
->getReg() != OldReg
)
1125 DidChange
|= splitLocation(LocNo
, NewRegs
, LIS
);
1130 void LDVImpl::splitRegister(unsigned OldReg
, ArrayRef
<unsigned> NewRegs
) {
1131 bool DidChange
= false;
1132 if (auto *UserVals
= lookupVirtReg(OldReg
))
1133 for (auto *UV
: *UserVals
)
1134 DidChange
|= UV
->splitRegister(OldReg
, NewRegs
, *LIS
);
1139 // Map all of the new virtual registers.
1140 if (auto *UserVals
= lookupVirtReg(OldReg
))
1141 for (auto *UV
: *UserVals
)
1142 for (unsigned i
= 0; i
!= NewRegs
.size(); ++i
)
1143 mapVirtReg(NewRegs
[i
], UV
);
1146 void LiveDebugVariables::
1147 splitRegister(unsigned OldReg
, ArrayRef
<unsigned> NewRegs
, LiveIntervals
&LIS
) {
1149 static_cast<LDVImpl
*>(pImpl
)->splitRegister(OldReg
, NewRegs
);
1152 void UserValue::rewriteLocations(VirtRegMap
&VRM
, const MachineFunction
&MF
,
1153 const TargetInstrInfo
&TII
,
1154 const TargetRegisterInfo
&TRI
,
1155 SpillOffsetMap
&SpillOffsets
) {
1156 // Build a set of new locations with new numbers so we can coalesce our
1157 // IntervalMap if two vreg intervals collapse to the same physical location.
1158 // Use MapVector instead of SetVector because MapVector::insert returns the
1159 // position of the previously or newly inserted element. The boolean value
1160 // tracks if the location was produced by a spill.
1161 // FIXME: This will be problematic if we ever support direct and indirect
1162 // frame index locations, i.e. expressing both variables in memory and
1163 // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1164 MapVector
<MachineOperand
, std::pair
<bool, unsigned>> NewLocations
;
1165 SmallVector
<unsigned, 4> LocNoMap(locations
.size());
1166 for (unsigned I
= 0, E
= locations
.size(); I
!= E
; ++I
) {
1167 bool Spilled
= false;
1168 unsigned SpillOffset
= 0;
1169 MachineOperand Loc
= locations
[I
];
1170 // Only virtual registers are rewritten.
1171 if (Loc
.isReg() && Loc
.getReg() &&
1172 Register::isVirtualRegister(Loc
.getReg())) {
1173 Register VirtReg
= Loc
.getReg();
1174 if (VRM
.isAssignedReg(VirtReg
) &&
1175 Register::isPhysicalRegister(VRM
.getPhys(VirtReg
))) {
1176 // This can create a %noreg operand in rare cases when the sub-register
1177 // index is no longer available. That means the user value is in a
1178 // non-existent sub-register, and %noreg is exactly what we want.
1179 Loc
.substPhysReg(VRM
.getPhys(VirtReg
), TRI
);
1180 } else if (VRM
.getStackSlot(VirtReg
) != VirtRegMap::NO_STACK_SLOT
) {
1181 // Retrieve the stack slot offset.
1183 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1184 const TargetRegisterClass
*TRC
= MRI
.getRegClass(VirtReg
);
1185 bool Success
= TII
.getStackSlotRange(TRC
, Loc
.getSubReg(), SpillSize
,
1188 // FIXME: Invalidate the location if the offset couldn't be calculated.
1191 Loc
= MachineOperand::CreateFI(VRM
.getStackSlot(VirtReg
));
1199 // Insert this location if it doesn't already exist and record a mapping
1200 // from the old number to the new number.
1201 auto InsertResult
= NewLocations
.insert({Loc
, {Spilled
, SpillOffset
}});
1202 unsigned NewLocNo
= std::distance(NewLocations
.begin(), InsertResult
.first
);
1203 LocNoMap
[I
] = NewLocNo
;
1206 // Rewrite the locations and record the stack slot offsets for spills.
1208 SpillOffsets
.clear();
1209 for (auto &Pair
: NewLocations
) {
1211 unsigned SpillOffset
;
1212 std::tie(Spilled
, SpillOffset
) = Pair
.second
;
1213 locations
.push_back(Pair
.first
);
1215 unsigned NewLocNo
= std::distance(&*NewLocations
.begin(), &Pair
);
1216 SpillOffsets
[NewLocNo
] = SpillOffset
;
1220 // Update the interval map, but only coalesce left, since intervals to the
1221 // right use the old location numbers. This should merge two contiguous
1222 // DBG_VALUE intervals with different vregs that were allocated to the same
1223 // physical register.
1224 for (LocMap::iterator I
= locInts
.begin(); I
.valid(); ++I
) {
1225 DbgValueLocation Loc
= I
.value();
1226 // Undef values don't exist in locations (and thus not in LocNoMap either)
1227 // so skip over them. See getLocationNo().
1230 unsigned NewLocNo
= LocNoMap
[Loc
.locNo()];
1231 I
.setValueUnchecked(Loc
.changeLocNo(NewLocNo
));
1232 I
.setStart(I
.start());
1236 /// Find an iterator for inserting a DBG_VALUE instruction.
1237 static MachineBasicBlock::iterator
1238 findInsertLocation(MachineBasicBlock
*MBB
, SlotIndex Idx
,
1239 LiveIntervals
&LIS
) {
1240 SlotIndex Start
= LIS
.getMBBStartIdx(MBB
);
1241 Idx
= Idx
.getBaseIndex();
1243 // Try to find an insert location by going backwards from Idx.
1245 while (!(MI
= LIS
.getInstructionFromIndex(Idx
))) {
1246 // We've reached the beginning of MBB.
1248 MachineBasicBlock::iterator I
= MBB
->SkipPHIsLabelsAndDebug(MBB
->begin());
1251 Idx
= Idx
.getPrevIndex();
1254 // Don't insert anything after the first terminator, though.
1255 return MI
->isTerminator() ? MBB
->getFirstTerminator() :
1256 std::next(MachineBasicBlock::iterator(MI
));
1259 /// Find an iterator for inserting the next DBG_VALUE instruction
1260 /// (or end if no more insert locations found).
1261 static MachineBasicBlock::iterator
1262 findNextInsertLocation(MachineBasicBlock
*MBB
,
1263 MachineBasicBlock::iterator I
,
1264 SlotIndex StopIdx
, MachineOperand
&LocMO
,
1266 const TargetRegisterInfo
&TRI
) {
1268 return MBB
->instr_end();
1269 Register Reg
= LocMO
.getReg();
1271 // Find the next instruction in the MBB that define the register Reg.
1272 while (I
!= MBB
->end() && !I
->isTerminator()) {
1273 if (!LIS
.isNotInMIMap(*I
) &&
1274 SlotIndex::isEarlierEqualInstr(StopIdx
, LIS
.getInstructionIndex(*I
)))
1276 if (I
->definesRegister(Reg
, &TRI
))
1277 // The insert location is directly after the instruction/bundle.
1278 return std::next(I
);
1284 void UserValue::insertDebugValue(MachineBasicBlock
*MBB
, SlotIndex StartIdx
,
1285 SlotIndex StopIdx
, DbgValueLocation Loc
,
1286 bool Spilled
, unsigned SpillOffset
,
1287 LiveIntervals
&LIS
, const TargetInstrInfo
&TII
,
1288 const TargetRegisterInfo
&TRI
) {
1289 SlotIndex MBBEndIdx
= LIS
.getMBBEndIdx(&*MBB
);
1290 // Only search within the current MBB.
1291 StopIdx
= (MBBEndIdx
< StopIdx
) ? MBBEndIdx
: StopIdx
;
1292 MachineBasicBlock::iterator I
= findInsertLocation(MBB
, StartIdx
, LIS
);
1293 // Undef values don't exist in locations so create new "noreg" register MOs
1294 // for them. See getLocationNo().
1295 MachineOperand MO
= !Loc
.isUndef() ?
1296 locations
[Loc
.locNo()] :
1297 MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
1298 /* isKill */ false, /* isDead */ false,
1299 /* isUndef */ false, /* isEarlyClobber */ false,
1300 /* SubReg */ 0, /* isDebug */ true);
1302 ++NumInsertedDebugValues
;
1304 assert(cast
<DILocalVariable
>(Variable
)
1305 ->isValidLocationForIntrinsic(getDebugLoc()) &&
1306 "Expected inlined-at fields to agree");
1308 // If the location was spilled, the new DBG_VALUE will be indirect. If the
1309 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1310 // that the original virtual register was a pointer. Also, add the stack slot
1311 // offset for the spilled register to the expression.
1312 const DIExpression
*Expr
= Expression
;
1314 Expr
= DIExpression::prepend(Expr
, DIExpression::ApplyOffset
, SpillOffset
);
1316 assert((!Spilled
|| MO
.isFI()) && "a spilled location must be a frame index");
1319 BuildMI(*MBB
, I
, getDebugLoc(), TII
.get(TargetOpcode::DBG_VALUE
),
1320 Spilled
, MO
, Variable
, Expr
);
1322 // Continue and insert DBG_VALUES after every redefinition of register
1323 // associated with the debug value within the range
1324 I
= findNextInsertLocation(MBB
, I
, StopIdx
, MO
, LIS
, TRI
);
1325 } while (I
!= MBB
->end());
1328 void UserLabel::insertDebugLabel(MachineBasicBlock
*MBB
, SlotIndex Idx
,
1330 const TargetInstrInfo
&TII
) {
1331 MachineBasicBlock::iterator I
= findInsertLocation(MBB
, Idx
, LIS
);
1332 ++NumInsertedDebugLabels
;
1333 BuildMI(*MBB
, I
, getDebugLoc(), TII
.get(TargetOpcode::DBG_LABEL
))
1334 .addMetadata(Label
);
1337 void UserValue::emitDebugValues(VirtRegMap
*VRM
, LiveIntervals
&LIS
,
1338 const TargetInstrInfo
&TII
,
1339 const TargetRegisterInfo
&TRI
,
1340 const SpillOffsetMap
&SpillOffsets
) {
1341 MachineFunction::iterator MFEnd
= VRM
->getMachineFunction().end();
1343 for (LocMap::const_iterator I
= locInts
.begin(); I
.valid();) {
1344 SlotIndex Start
= I
.start();
1345 SlotIndex Stop
= I
.stop();
1346 DbgValueLocation Loc
= I
.value();
1348 !Loc
.isUndef() ? SpillOffsets
.find(Loc
.locNo()) : SpillOffsets
.end();
1349 bool Spilled
= SpillIt
!= SpillOffsets
.end();
1350 unsigned SpillOffset
= Spilled
? SpillIt
->second
: 0;
1352 LLVM_DEBUG(dbgs() << "\t[" << Start
<< ';' << Stop
<< "):" << Loc
.locNo());
1353 MachineFunction::iterator MBB
= LIS
.getMBBFromIndex(Start
)->getIterator();
1354 SlotIndex MBBEnd
= LIS
.getMBBEndIdx(&*MBB
);
1356 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB
) << '-' << MBBEnd
);
1357 insertDebugValue(&*MBB
, Start
, Stop
, Loc
, Spilled
, SpillOffset
, LIS
, TII
,
1359 // This interval may span multiple basic blocks.
1360 // Insert a DBG_VALUE into each one.
1361 while (Stop
> MBBEnd
) {
1362 // Move to the next block.
1366 MBBEnd
= LIS
.getMBBEndIdx(&*MBB
);
1367 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB
) << '-' << MBBEnd
);
1368 insertDebugValue(&*MBB
, Start
, Stop
, Loc
, Spilled
, SpillOffset
, LIS
, TII
,
1371 LLVM_DEBUG(dbgs() << '\n');
1379 void UserLabel::emitDebugLabel(LiveIntervals
&LIS
, const TargetInstrInfo
&TII
) {
1380 LLVM_DEBUG(dbgs() << "\t" << loc
);
1381 MachineFunction::iterator MBB
= LIS
.getMBBFromIndex(loc
)->getIterator();
1383 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB
));
1384 insertDebugLabel(&*MBB
, loc
, LIS
, TII
);
1386 LLVM_DEBUG(dbgs() << '\n');
1389 void LDVImpl::emitDebugValues(VirtRegMap
*VRM
) {
1390 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1393 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1394 SpillOffsetMap SpillOffsets
;
1395 for (auto &userValue
: userValues
) {
1396 LLVM_DEBUG(userValue
->print(dbgs(), TRI
));
1397 userValue
->rewriteLocations(*VRM
, *MF
, *TII
, *TRI
, SpillOffsets
);
1398 userValue
->emitDebugValues(VRM
, *LIS
, *TII
, *TRI
, SpillOffsets
);
1400 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1401 for (auto &userLabel
: userLabels
) {
1402 LLVM_DEBUG(userLabel
->print(dbgs(), TRI
));
1403 userLabel
->emitDebugLabel(*LIS
, *TII
);
1408 void LiveDebugVariables::emitDebugValues(VirtRegMap
*VRM
) {
1410 static_cast<LDVImpl
*>(pImpl
)->emitDebugValues(VRM
);
1413 bool LiveDebugVariables::doInitialization(Module
&M
) {
1414 return Pass::doInitialization(M
);
1417 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1418 LLVM_DUMP_METHOD
void LiveDebugVariables::dump() const {
1420 static_cast<LDVImpl
*>(pImpl
)->print(dbgs());