[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / CodeGen / RegisterCoalescer.cpp
blob6ff5ddbc023d97fe4c21cebac7217ea9b4e45fbb
1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
13 //===----------------------------------------------------------------------===//
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/LaneBitmask.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <limits>
56 #include <tuple>
57 #include <utility>
58 #include <vector>
60 using namespace llvm;
62 #define DEBUG_TYPE "regalloc"
64 STATISTIC(numJoins , "Number of interval joins performed");
65 STATISTIC(numCrossRCs , "Number of cross class joins performed");
66 STATISTIC(numCommutes , "Number of instruction commuting performed");
67 STATISTIC(numExtends , "Number of copies extended");
68 STATISTIC(NumReMats , "Number of instructions re-materialized");
69 STATISTIC(NumInflated , "Number of register classes inflated");
70 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
71 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
72 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
74 static cl::opt<bool> EnableJoining("join-liveintervals",
75 cl::desc("Coalesce copies (default=true)"),
76 cl::init(true), cl::Hidden);
78 static cl::opt<bool> UseTerminalRule("terminal-rule",
79 cl::desc("Apply the terminal rule"),
80 cl::init(false), cl::Hidden);
82 /// Temporary flag to test critical edge unsplitting.
83 static cl::opt<bool>
84 EnableJoinSplits("join-splitedges",
85 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87 /// Temporary flag to test global copy optimization.
88 static cl::opt<cl::boolOrDefault>
89 EnableGlobalCopies("join-globalcopies",
90 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
91 cl::init(cl::BOU_UNSET), cl::Hidden);
93 static cl::opt<bool>
94 VerifyCoalescing("verify-coalescing",
95 cl::desc("Verify machine instrs before and after register coalescing"),
96 cl::Hidden);
98 static cl::opt<unsigned> LateRematUpdateThreshold(
99 "late-remat-update-threshold", cl::Hidden,
100 cl::desc("During rematerialization for a copy, if the def instruction has "
101 "many other copy uses to be rematerialized, delay the multiple "
102 "separate live interval update work and do them all at once after "
103 "all those rematerialization are done. It will save a lot of "
104 "repeated work. "),
105 cl::init(100));
107 static cl::opt<unsigned> LargeIntervalSizeThreshold(
108 "large-interval-size-threshold", cl::Hidden,
109 cl::desc("If the valnos size of an interval is larger than the threshold, "
110 "it is regarded as a large interval. "),
111 cl::init(100));
113 static cl::opt<unsigned> LargeIntervalFreqThreshold(
114 "large-interval-freq-threshold", cl::Hidden,
115 cl::desc("For a large interval, if it is coalesed with other live "
116 "intervals many times more than the threshold, stop its "
117 "coalescing to control the compile time. "),
118 cl::init(100));
120 namespace {
122 class RegisterCoalescer : public MachineFunctionPass,
123 private LiveRangeEdit::Delegate {
124 MachineFunction* MF;
125 MachineRegisterInfo* MRI;
126 const TargetRegisterInfo* TRI;
127 const TargetInstrInfo* TII;
128 LiveIntervals *LIS;
129 const MachineLoopInfo* Loops;
130 AliasAnalysis *AA;
131 RegisterClassInfo RegClassInfo;
133 /// A LaneMask to remember on which subregister live ranges we need to call
134 /// shrinkToUses() later.
135 LaneBitmask ShrinkMask;
137 /// True if the main range of the currently coalesced intervals should be
138 /// checked for smaller live intervals.
139 bool ShrinkMainRange;
141 /// True if the coalescer should aggressively coalesce global copies
142 /// in favor of keeping local copies.
143 bool JoinGlobalCopies;
145 /// True if the coalescer should aggressively coalesce fall-thru
146 /// blocks exclusively containing copies.
147 bool JoinSplitEdges;
149 /// Copy instructions yet to be coalesced.
150 SmallVector<MachineInstr*, 8> WorkList;
151 SmallVector<MachineInstr*, 8> LocalWorkList;
153 /// Set of instruction pointers that have been erased, and
154 /// that may be present in WorkList.
155 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
157 /// Dead instructions that are about to be deleted.
158 SmallVector<MachineInstr*, 8> DeadDefs;
160 /// Virtual registers to be considered for register class inflation.
161 SmallVector<unsigned, 8> InflateRegs;
163 /// The collection of live intervals which should have been updated
164 /// immediately after rematerialiation but delayed until
165 /// lateLiveIntervalUpdate is called.
166 DenseSet<unsigned> ToBeUpdated;
168 /// Record how many times the large live interval with many valnos
169 /// has been tried to join with other live interval.
170 DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
172 /// Recursively eliminate dead defs in DeadDefs.
173 void eliminateDeadDefs();
175 /// LiveRangeEdit callback for eliminateDeadDefs().
176 void LRE_WillEraseInstruction(MachineInstr *MI) override;
178 /// Coalesce the LocalWorkList.
179 void coalesceLocals();
181 /// Join compatible live intervals
182 void joinAllIntervals();
184 /// Coalesce copies in the specified MBB, putting
185 /// copies that cannot yet be coalesced into WorkList.
186 void copyCoalesceInMBB(MachineBasicBlock *MBB);
188 /// Tries to coalesce all copies in CurrList. Returns true if any progress
189 /// was made.
190 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
192 /// If one def has many copy like uses, and those copy uses are all
193 /// rematerialized, the live interval update needed for those
194 /// rematerializations will be delayed and done all at once instead
195 /// of being done multiple times. This is to save compile cost because
196 /// live interval update is costly.
197 void lateLiveIntervalUpdate();
199 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
200 /// src/dst of the copy instruction CopyMI. This returns true if the copy
201 /// was successfully coalesced away. If it is not currently possible to
202 /// coalesce this interval, but it may be possible if other things get
203 /// coalesced, then it returns true by reference in 'Again'.
204 bool joinCopy(MachineInstr *CopyMI, bool &Again);
206 /// Attempt to join these two intervals. On failure, this
207 /// returns false. The output "SrcInt" will not have been modified, so we
208 /// can use this information below to update aliases.
209 bool joinIntervals(CoalescerPair &CP);
211 /// Attempt joining two virtual registers. Return true on success.
212 bool joinVirtRegs(CoalescerPair &CP);
214 /// If a live interval has many valnos and is coalesced with other
215 /// live intervals many times, we regard such live interval as having
216 /// high compile time cost.
217 bool isHighCostLiveInterval(LiveInterval &LI);
219 /// Attempt joining with a reserved physreg.
220 bool joinReservedPhysReg(CoalescerPair &CP);
222 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
223 /// Subranges in @p LI which only partially interfere with the desired
224 /// LaneMask are split as necessary. @p LaneMask are the lanes that
225 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
226 /// lanemasks already adjusted to the coalesced register.
227 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
228 LaneBitmask LaneMask, CoalescerPair &CP);
230 /// Join the liveranges of two subregisters. Joins @p RRange into
231 /// @p LRange, @p RRange may be invalid afterwards.
232 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
233 LaneBitmask LaneMask, const CoalescerPair &CP);
235 /// We found a non-trivially-coalescable copy. If the source value number is
236 /// defined by a copy from the destination reg see if we can merge these two
237 /// destination reg valno# into a single value number, eliminating a copy.
238 /// This returns true if an interval was modified.
239 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
241 /// Return true if there are definitions of IntB
242 /// other than BValNo val# that can reach uses of AValno val# of IntA.
243 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
244 VNInfo *AValNo, VNInfo *BValNo);
246 /// We found a non-trivially-coalescable copy.
247 /// If the source value number is defined by a commutable instruction and
248 /// its other operand is coalesced to the copy dest register, see if we
249 /// can transform the copy into a noop by commuting the definition.
250 /// This returns a pair of two flags:
251 /// - the first element is true if an interval was modified,
252 /// - the second element is true if the destination interval needs
253 /// to be shrunk after deleting the copy.
254 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
255 MachineInstr *CopyMI);
257 /// We found a copy which can be moved to its less frequent predecessor.
258 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
260 /// If the source of a copy is defined by a
261 /// trivial computation, replace the copy by rematerialize the definition.
262 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
263 bool &IsDefCopy);
265 /// Return true if a copy involving a physreg should be joined.
266 bool canJoinPhys(const CoalescerPair &CP);
268 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
269 /// number if it is not zero. If DstReg is a physical register and the
270 /// existing subregister number of the def / use being updated is not zero,
271 /// make sure to set it to the correct physical subregister.
272 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
274 /// If the given machine operand reads only undefined lanes add an undef
275 /// flag.
276 /// This can happen when undef uses were previously concealed by a copy
277 /// which we coalesced. Example:
278 /// %0:sub0<def,read-undef> = ...
279 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
280 /// = use %1:sub1 <-- hidden undef use
281 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
282 MachineOperand &MO, unsigned SubRegIdx);
284 /// Handle copies of undef values. If the undef value is an incoming
285 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
286 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
287 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
288 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
290 /// Check whether or not we should apply the terminal rule on the
291 /// destination (Dst) of \p Copy.
292 /// When the terminal rule applies, Copy is not profitable to
293 /// coalesce.
294 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
295 /// at least one interference (Dst, Dst2). If Dst is terminal, the
296 /// terminal rule consists in checking that at least one of
297 /// interfering node, say Dst2, has an affinity of equal or greater
298 /// weight with Src.
299 /// In that case, Dst2 and Dst will not be able to be both coalesced
300 /// with Src. Since Dst2 exposes more coalescing opportunities than
301 /// Dst, we can drop \p Copy.
302 bool applyTerminalRule(const MachineInstr &Copy) const;
304 /// Wrapper method for \see LiveIntervals::shrinkToUses.
305 /// This method does the proper fixing of the live-ranges when the afore
306 /// mentioned method returns true.
307 void shrinkToUses(LiveInterval *LI,
308 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
309 NumShrinkToUses++;
310 if (LIS->shrinkToUses(LI, Dead)) {
311 /// Check whether or not \p LI is composed by multiple connected
312 /// components and if that is the case, fix that.
313 SmallVector<LiveInterval*, 8> SplitLIs;
314 LIS->splitSeparateComponents(*LI, SplitLIs);
318 /// Wrapper Method to do all the necessary work when an Instruction is
319 /// deleted.
320 /// Optimizations should use this to make sure that deleted instructions
321 /// are always accounted for.
322 void deleteInstr(MachineInstr* MI) {
323 ErasedInstrs.insert(MI);
324 LIS->RemoveMachineInstrFromMaps(*MI);
325 MI->eraseFromParent();
328 public:
329 static char ID; ///< Class identification, replacement for typeinfo
331 RegisterCoalescer() : MachineFunctionPass(ID) {
332 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
335 void getAnalysisUsage(AnalysisUsage &AU) const override;
337 void releaseMemory() override;
339 /// This is the pass entry point.
340 bool runOnMachineFunction(MachineFunction&) override;
342 /// Implement the dump method.
343 void print(raw_ostream &O, const Module* = nullptr) const override;
346 } // end anonymous namespace
348 char RegisterCoalescer::ID = 0;
350 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
352 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
353 "Simple Register Coalescing", false, false)
354 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
355 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
356 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
357 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
358 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
359 "Simple Register Coalescing", false, false)
361 LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
362 const MachineInstr *MI, unsigned &Src,
363 unsigned &Dst, unsigned &SrcSub,
364 unsigned &DstSub) {
365 if (MI->isCopy()) {
366 Dst = MI->getOperand(0).getReg();
367 DstSub = MI->getOperand(0).getSubReg();
368 Src = MI->getOperand(1).getReg();
369 SrcSub = MI->getOperand(1).getSubReg();
370 } else if (MI->isSubregToReg()) {
371 Dst = MI->getOperand(0).getReg();
372 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
373 MI->getOperand(3).getImm());
374 Src = MI->getOperand(2).getReg();
375 SrcSub = MI->getOperand(2).getSubReg();
376 } else
377 return false;
378 return true;
381 /// Return true if this block should be vacated by the coalescer to eliminate
382 /// branches. The important cases to handle in the coalescer are critical edges
383 /// split during phi elimination which contain only copies. Simple blocks that
384 /// contain non-branches should also be vacated, but this can be handled by an
385 /// earlier pass similar to early if-conversion.
386 static bool isSplitEdge(const MachineBasicBlock *MBB) {
387 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
388 return false;
390 for (const auto &MI : *MBB) {
391 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
392 return false;
394 return true;
397 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
398 SrcReg = DstReg = 0;
399 SrcIdx = DstIdx = 0;
400 NewRC = nullptr;
401 Flipped = CrossClass = false;
403 unsigned Src, Dst, SrcSub, DstSub;
404 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
405 return false;
406 Partial = SrcSub || DstSub;
408 // If one register is a physreg, it must be Dst.
409 if (Register::isPhysicalRegister(Src)) {
410 if (Register::isPhysicalRegister(Dst))
411 return false;
412 std::swap(Src, Dst);
413 std::swap(SrcSub, DstSub);
414 Flipped = true;
417 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
419 if (Register::isPhysicalRegister(Dst)) {
420 // Eliminate DstSub on a physreg.
421 if (DstSub) {
422 Dst = TRI.getSubReg(Dst, DstSub);
423 if (!Dst) return false;
424 DstSub = 0;
427 // Eliminate SrcSub by picking a corresponding Dst superregister.
428 if (SrcSub) {
429 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
430 if (!Dst) return false;
431 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
432 return false;
434 } else {
435 // Both registers are virtual.
436 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
437 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
439 // Both registers have subreg indices.
440 if (SrcSub && DstSub) {
441 // Copies between different sub-registers are never coalescable.
442 if (Src == Dst && SrcSub != DstSub)
443 return false;
445 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
446 SrcIdx, DstIdx);
447 if (!NewRC)
448 return false;
449 } else if (DstSub) {
450 // SrcReg will be merged with a sub-register of DstReg.
451 SrcIdx = DstSub;
452 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
453 } else if (SrcSub) {
454 // DstReg will be merged with a sub-register of SrcReg.
455 DstIdx = SrcSub;
456 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
457 } else {
458 // This is a straight copy without sub-registers.
459 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
462 // The combined constraint may be impossible to satisfy.
463 if (!NewRC)
464 return false;
466 // Prefer SrcReg to be a sub-register of DstReg.
467 // FIXME: Coalescer should support subregs symmetrically.
468 if (DstIdx && !SrcIdx) {
469 std::swap(Src, Dst);
470 std::swap(SrcIdx, DstIdx);
471 Flipped = !Flipped;
474 CrossClass = NewRC != DstRC || NewRC != SrcRC;
476 // Check our invariants
477 assert(Register::isVirtualRegister(Src) && "Src must be virtual");
478 assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
479 "Cannot have a physical SubIdx");
480 SrcReg = Src;
481 DstReg = Dst;
482 return true;
485 bool CoalescerPair::flip() {
486 if (Register::isPhysicalRegister(DstReg))
487 return false;
488 std::swap(SrcReg, DstReg);
489 std::swap(SrcIdx, DstIdx);
490 Flipped = !Flipped;
491 return true;
494 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
495 if (!MI)
496 return false;
497 unsigned Src, Dst, SrcSub, DstSub;
498 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
499 return false;
501 // Find the virtual register that is SrcReg.
502 if (Dst == SrcReg) {
503 std::swap(Src, Dst);
504 std::swap(SrcSub, DstSub);
505 } else if (Src != SrcReg) {
506 return false;
509 // Now check that Dst matches DstReg.
510 if (Register::isPhysicalRegister(DstReg)) {
511 if (!Register::isPhysicalRegister(Dst))
512 return false;
513 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
514 // DstSub could be set for a physreg from INSERT_SUBREG.
515 if (DstSub)
516 Dst = TRI.getSubReg(Dst, DstSub);
517 // Full copy of Src.
518 if (!SrcSub)
519 return DstReg == Dst;
520 // This is a partial register copy. Check that the parts match.
521 return TRI.getSubReg(DstReg, SrcSub) == Dst;
522 } else {
523 // DstReg is virtual.
524 if (DstReg != Dst)
525 return false;
526 // Registers match, do the subregisters line up?
527 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
528 TRI.composeSubRegIndices(DstIdx, DstSub);
532 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
533 AU.setPreservesCFG();
534 AU.addRequired<AAResultsWrapperPass>();
535 AU.addRequired<LiveIntervals>();
536 AU.addPreserved<LiveIntervals>();
537 AU.addPreserved<SlotIndexes>();
538 AU.addRequired<MachineLoopInfo>();
539 AU.addPreserved<MachineLoopInfo>();
540 AU.addPreservedID(MachineDominatorsID);
541 MachineFunctionPass::getAnalysisUsage(AU);
544 void RegisterCoalescer::eliminateDeadDefs() {
545 SmallVector<unsigned, 8> NewRegs;
546 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
547 nullptr, this).eliminateDeadDefs(DeadDefs);
550 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
551 // MI may be in WorkList. Make sure we don't visit it.
552 ErasedInstrs.insert(MI);
555 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
556 MachineInstr *CopyMI) {
557 assert(!CP.isPartial() && "This doesn't work for partial copies.");
558 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
560 LiveInterval &IntA =
561 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
562 LiveInterval &IntB =
563 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
564 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
566 // We have a non-trivially-coalescable copy with IntA being the source and
567 // IntB being the dest, thus this defines a value number in IntB. If the
568 // source value number (in IntA) is defined by a copy from B, see if we can
569 // merge these two pieces of B into a single value number, eliminating a copy.
570 // For example:
572 // A3 = B0
573 // ...
574 // B1 = A3 <- this copy
576 // In this case, B0 can be extended to where the B1 copy lives, allowing the
577 // B1 value number to be replaced with B0 (which simplifies the B
578 // liveinterval).
580 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
581 // the example above.
582 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
583 if (BS == IntB.end()) return false;
584 VNInfo *BValNo = BS->valno;
586 // Get the location that B is defined at. Two options: either this value has
587 // an unknown definition point or it is defined at CopyIdx. If unknown, we
588 // can't process it.
589 if (BValNo->def != CopyIdx) return false;
591 // AValNo is the value number in A that defines the copy, A3 in the example.
592 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
593 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
594 // The live segment might not exist after fun with physreg coalescing.
595 if (AS == IntA.end()) return false;
596 VNInfo *AValNo = AS->valno;
598 // If AValNo is defined as a copy from IntB, we can potentially process this.
599 // Get the instruction that defines this value number.
600 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
601 // Don't allow any partial copies, even if isCoalescable() allows them.
602 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
603 return false;
605 // Get the Segment in IntB that this value number starts with.
606 LiveInterval::iterator ValS =
607 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
608 if (ValS == IntB.end())
609 return false;
611 // Make sure that the end of the live segment is inside the same block as
612 // CopyMI.
613 MachineInstr *ValSEndInst =
614 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
615 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
616 return false;
618 // Okay, we now know that ValS ends in the same block that the CopyMI
619 // live-range starts. If there are no intervening live segments between them
620 // in IntB, we can merge them.
621 if (ValS+1 != BS) return false;
623 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
625 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
626 // We are about to delete CopyMI, so need to remove it as the 'instruction
627 // that defines this value #'. Update the valnum with the new defining
628 // instruction #.
629 BValNo->def = FillerStart;
631 // Okay, we can merge them. We need to insert a new liverange:
632 // [ValS.end, BS.begin) of either value number, then we merge the
633 // two value numbers.
634 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
636 // Okay, merge "B1" into the same value number as "B0".
637 if (BValNo != ValS->valno)
638 IntB.MergeValueNumberInto(BValNo, ValS->valno);
640 // Do the same for the subregister segments.
641 for (LiveInterval::SubRange &S : IntB.subranges()) {
642 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
643 // removed to prevent creating bogus SubRange Segments.
644 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
645 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
646 S.removeSegment(*SS, true);
647 continue;
649 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
650 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
651 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
652 if (SubBValNo != SubValSNo)
653 S.MergeValueNumberInto(SubBValNo, SubValSNo);
656 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
658 // If the source instruction was killing the source register before the
659 // merge, unset the isKill marker given the live range has been extended.
660 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
661 if (UIdx != -1) {
662 ValSEndInst->getOperand(UIdx).setIsKill(false);
665 // Rewrite the copy.
666 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
667 // If the copy instruction was killing the destination register or any
668 // subrange before the merge trim the live range.
669 bool RecomputeLiveRange = AS->end == CopyIdx;
670 if (!RecomputeLiveRange) {
671 for (LiveInterval::SubRange &S : IntA.subranges()) {
672 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
673 if (SS != S.end() && SS->end == CopyIdx) {
674 RecomputeLiveRange = true;
675 break;
679 if (RecomputeLiveRange)
680 shrinkToUses(&IntA);
682 ++numExtends;
683 return true;
686 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
687 LiveInterval &IntB,
688 VNInfo *AValNo,
689 VNInfo *BValNo) {
690 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
691 // the PHI values.
692 if (LIS->hasPHIKill(IntA, AValNo))
693 return true;
695 for (LiveRange::Segment &ASeg : IntA.segments) {
696 if (ASeg.valno != AValNo) continue;
697 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
698 if (BI != IntB.begin())
699 --BI;
700 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
701 if (BI->valno == BValNo)
702 continue;
703 if (BI->start <= ASeg.start && BI->end > ASeg.start)
704 return true;
705 if (BI->start > ASeg.start && BI->start < ASeg.end)
706 return true;
709 return false;
712 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
713 /// range @Dst and use value number @p DstValNo there.
714 static std::pair<bool,bool>
715 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
716 const VNInfo *SrcValNo) {
717 bool Changed = false;
718 bool MergedWithDead = false;
719 for (const LiveRange::Segment &S : Src.segments) {
720 if (S.valno != SrcValNo)
721 continue;
722 // This is adding a segment from Src that ends in a copy that is about
723 // to be removed. This segment is going to be merged with a pre-existing
724 // segment in Dst. This works, except in cases when the corresponding
725 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
726 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
727 // Recognized such cases, so that the segments can be shrunk.
728 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
729 LiveRange::Segment &Merged = *Dst.addSegment(Added);
730 if (Merged.end.isDead())
731 MergedWithDead = true;
732 Changed = true;
734 return std::make_pair(Changed, MergedWithDead);
737 std::pair<bool,bool>
738 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
739 MachineInstr *CopyMI) {
740 assert(!CP.isPhys());
742 LiveInterval &IntA =
743 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
744 LiveInterval &IntB =
745 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
747 // We found a non-trivially-coalescable copy with IntA being the source and
748 // IntB being the dest, thus this defines a value number in IntB. If the
749 // source value number (in IntA) is defined by a commutable instruction and
750 // its other operand is coalesced to the copy dest register, see if we can
751 // transform the copy into a noop by commuting the definition. For example,
753 // A3 = op A2 killed B0
754 // ...
755 // B1 = A3 <- this copy
756 // ...
757 // = op A3 <- more uses
759 // ==>
761 // B2 = op B0 killed A2
762 // ...
763 // B1 = B2 <- now an identity copy
764 // ...
765 // = op B2 <- more uses
767 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
768 // the example above.
769 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
770 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
771 assert(BValNo != nullptr && BValNo->def == CopyIdx);
773 // AValNo is the value number in A that defines the copy, A3 in the example.
774 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
775 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
776 if (AValNo->isPHIDef())
777 return { false, false };
778 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
779 if (!DefMI)
780 return { false, false };
781 if (!DefMI->isCommutable())
782 return { false, false };
783 // If DefMI is a two-address instruction then commuting it will change the
784 // destination register.
785 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
786 assert(DefIdx != -1);
787 unsigned UseOpIdx;
788 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
789 return { false, false };
791 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
792 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
793 // passed to the method. That _other_ operand is chosen by
794 // the findCommutedOpIndices() method.
796 // That is obviously an area for improvement in case of instructions having
797 // more than 2 operands. For example, if some instruction has 3 commutable
798 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
799 // op#2<->op#3) of commute transformation should be considered/tried here.
800 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
801 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
802 return { false, false };
804 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
805 Register NewReg = NewDstMO.getReg();
806 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
807 return { false, false };
809 // Make sure there are no other definitions of IntB that would reach the
810 // uses which the new definition can reach.
811 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
812 return { false, false };
814 // If some of the uses of IntA.reg is already coalesced away, return false.
815 // It's not possible to determine whether it's safe to perform the coalescing.
816 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
817 MachineInstr *UseMI = MO.getParent();
818 unsigned OpNo = &MO - &UseMI->getOperand(0);
819 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
820 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
821 if (US == IntA.end() || US->valno != AValNo)
822 continue;
823 // If this use is tied to a def, we can't rewrite the register.
824 if (UseMI->isRegTiedToDefOperand(OpNo))
825 return { false, false };
828 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
829 << *DefMI);
831 // At this point we have decided that it is legal to do this
832 // transformation. Start by commuting the instruction.
833 MachineBasicBlock *MBB = DefMI->getParent();
834 MachineInstr *NewMI =
835 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
836 if (!NewMI)
837 return { false, false };
838 if (Register::isVirtualRegister(IntA.reg) &&
839 Register::isVirtualRegister(IntB.reg) &&
840 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
841 return { false, false };
842 if (NewMI != DefMI) {
843 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
844 MachineBasicBlock::iterator Pos = DefMI;
845 MBB->insert(Pos, NewMI);
846 MBB->erase(DefMI);
849 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
850 // A = or A, B
851 // ...
852 // B = A
853 // ...
854 // C = killed A
855 // ...
856 // = B
858 // Update uses of IntA of the specific Val# with IntB.
859 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
860 UE = MRI->use_end();
861 UI != UE; /* ++UI is below because of possible MI removal */) {
862 MachineOperand &UseMO = *UI;
863 ++UI;
864 if (UseMO.isUndef())
865 continue;
866 MachineInstr *UseMI = UseMO.getParent();
867 if (UseMI->isDebugValue()) {
868 // FIXME These don't have an instruction index. Not clear we have enough
869 // info to decide whether to do this replacement or not. For now do it.
870 UseMO.setReg(NewReg);
871 continue;
873 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
874 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
875 assert(US != IntA.end() && "Use must be live");
876 if (US->valno != AValNo)
877 continue;
878 // Kill flags are no longer accurate. They are recomputed after RA.
879 UseMO.setIsKill(false);
880 if (Register::isPhysicalRegister(NewReg))
881 UseMO.substPhysReg(NewReg, *TRI);
882 else
883 UseMO.setReg(NewReg);
884 if (UseMI == CopyMI)
885 continue;
886 if (!UseMI->isCopy())
887 continue;
888 if (UseMI->getOperand(0).getReg() != IntB.reg ||
889 UseMI->getOperand(0).getSubReg())
890 continue;
892 // This copy will become a noop. If it's defining a new val#, merge it into
893 // BValNo.
894 SlotIndex DefIdx = UseIdx.getRegSlot();
895 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
896 if (!DVNI)
897 continue;
898 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
899 assert(DVNI->def == DefIdx);
900 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
901 for (LiveInterval::SubRange &S : IntB.subranges()) {
902 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
903 if (!SubDVNI)
904 continue;
905 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
906 assert(SubBValNo->def == CopyIdx);
907 S.MergeValueNumberInto(SubDVNI, SubBValNo);
910 deleteInstr(UseMI);
913 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
914 // is updated.
915 bool ShrinkB = false;
916 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
917 if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
918 if (!IntA.hasSubRanges()) {
919 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
920 IntA.createSubRangeFrom(Allocator, Mask, IntA);
921 } else if (!IntB.hasSubRanges()) {
922 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
923 IntB.createSubRangeFrom(Allocator, Mask, IntB);
925 SlotIndex AIdx = CopyIdx.getRegSlot(true);
926 LaneBitmask MaskA;
927 const SlotIndexes &Indexes = *LIS->getSlotIndexes();
928 for (LiveInterval::SubRange &SA : IntA.subranges()) {
929 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
930 // Even if we are dealing with a full copy, some lanes can
931 // still be undefined.
932 // E.g.,
933 // undef A.subLow = ...
934 // B = COPY A <== A.subHigh is undefined here and does
935 // not have a value number.
936 if (!ASubValNo)
937 continue;
938 MaskA |= SA.LaneMask;
940 IntB.refineSubRanges(
941 Allocator, SA.LaneMask,
942 [&Allocator, &SA, CopyIdx, ASubValNo,
943 &ShrinkB](LiveInterval::SubRange &SR) {
944 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
945 : SR.getVNInfoAt(CopyIdx);
946 assert(BSubValNo != nullptr);
947 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
948 ShrinkB |= P.second;
949 if (P.first)
950 BSubValNo->def = ASubValNo->def;
952 Indexes, *TRI);
954 // Go over all subranges of IntB that have not been covered by IntA,
955 // and delete the segments starting at CopyIdx. This can happen if
956 // IntA has undef lanes that are defined in IntB.
957 for (LiveInterval::SubRange &SB : IntB.subranges()) {
958 if ((SB.LaneMask & MaskA).any())
959 continue;
960 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
961 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
962 SB.removeSegment(*S, true);
966 BValNo->def = AValNo->def;
967 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
968 ShrinkB |= P.second;
969 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
971 LIS->removeVRegDefAt(IntA, AValNo->def);
973 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
974 ++numCommutes;
975 return { true, ShrinkB };
978 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
979 /// predecessor of BB2, and if B is not redefined on the way from A = B
980 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
981 /// execution goes through the path from BB0 to BB2. We may move B = A
982 /// to the predecessor without such reversed copy.
983 /// So we will transform the program from:
984 /// BB0:
985 /// A = B; BB1:
986 /// ... ...
987 /// / \ /
988 /// BB2:
989 /// ...
990 /// B = A;
992 /// to:
994 /// BB0: BB1:
995 /// A = B; ...
996 /// ... B = A;
997 /// / \ /
998 /// BB2:
999 /// ...
1001 /// A special case is when BB0 and BB2 are the same BB which is the only
1002 /// BB in a loop:
1003 /// BB1:
1004 /// ...
1005 /// BB0/BB2: ----
1006 /// B = A; |
1007 /// ... |
1008 /// A = B; |
1009 /// |-------
1010 /// |
1011 /// We may hoist B = A from BB0/BB2 to BB1.
1013 /// The major preconditions for correctness to remove such partial
1014 /// redundancy include:
1015 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1016 /// the PHI is defined by the reversed copy A = B in BB0.
1017 /// 2. No B is referenced from the start of BB2 to B = A.
1018 /// 3. No B is defined from A = B to the end of BB0.
1019 /// 4. BB1 has only one successor.
1021 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1022 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1023 /// colder place, which not only prevent endless loop, but also make sure
1024 /// the movement of copy is beneficial.
1025 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1026 MachineInstr &CopyMI) {
1027 assert(!CP.isPhys());
1028 if (!CopyMI.isFullCopy())
1029 return false;
1031 MachineBasicBlock &MBB = *CopyMI.getParent();
1032 if (MBB.isEHPad())
1033 return false;
1035 if (MBB.pred_size() != 2)
1036 return false;
1038 LiveInterval &IntA =
1039 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1040 LiveInterval &IntB =
1041 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1043 // A is defined by PHI at the entry of MBB.
1044 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1045 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1046 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1047 if (!AValNo->isPHIDef())
1048 return false;
1050 // No B is referenced before CopyMI in MBB.
1051 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1052 return false;
1054 // MBB has two predecessors: one contains A = B so no copy will be inserted
1055 // for it. The other one will have a copy moved from MBB.
1056 bool FoundReverseCopy = false;
1057 MachineBasicBlock *CopyLeftBB = nullptr;
1058 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1059 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1060 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1061 if (!DefMI || !DefMI->isFullCopy()) {
1062 CopyLeftBB = Pred;
1063 continue;
1065 // Check DefMI is a reverse copy and it is in BB Pred.
1066 if (DefMI->getOperand(0).getReg() != IntA.reg ||
1067 DefMI->getOperand(1).getReg() != IntB.reg ||
1068 DefMI->getParent() != Pred) {
1069 CopyLeftBB = Pred;
1070 continue;
1072 // If there is any other def of B after DefMI and before the end of Pred,
1073 // we need to keep the copy of B = A at the end of Pred if we remove
1074 // B = A from MBB.
1075 bool ValB_Changed = false;
1076 for (auto VNI : IntB.valnos) {
1077 if (VNI->isUnused())
1078 continue;
1079 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1080 ValB_Changed = true;
1081 break;
1084 if (ValB_Changed) {
1085 CopyLeftBB = Pred;
1086 continue;
1088 FoundReverseCopy = true;
1091 // If no reverse copy is found in predecessors, nothing to do.
1092 if (!FoundReverseCopy)
1093 return false;
1095 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1096 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1097 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1098 // update IntA/IntB.
1100 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1101 // MBB is hotter than CopyLeftBB.
1102 if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1103 return false;
1105 // Now (almost sure it's) ok to move copy.
1106 if (CopyLeftBB) {
1107 // Position in CopyLeftBB where we should insert new copy.
1108 auto InsPos = CopyLeftBB->getFirstTerminator();
1110 // Make sure that B isn't referenced in the terminators (if any) at the end
1111 // of the predecessor since we're about to insert a new definition of B
1112 // before them.
1113 if (InsPos != CopyLeftBB->end()) {
1114 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1115 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1116 return false;
1119 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1120 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1122 // Insert new copy to CopyLeftBB.
1123 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1124 TII->get(TargetOpcode::COPY), IntB.reg)
1125 .addReg(IntA.reg);
1126 SlotIndex NewCopyIdx =
1127 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1128 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1129 for (LiveInterval::SubRange &SR : IntB.subranges())
1130 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1132 // If the newly created Instruction has an address of an instruction that was
1133 // deleted before (object recycled by the allocator) it needs to be removed from
1134 // the deleted list.
1135 ErasedInstrs.erase(NewCopyMI);
1136 } else {
1137 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1138 << printMBBReference(MBB) << '\t' << CopyMI);
1141 // Remove CopyMI.
1142 // Note: This is fine to remove the copy before updating the live-ranges.
1143 // While updating the live-ranges, we only look at slot indices and
1144 // never go back to the instruction.
1145 // Mark instructions as deleted.
1146 deleteInstr(&CopyMI);
1148 // Update the liveness.
1149 SmallVector<SlotIndex, 8> EndPoints;
1150 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1151 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1152 &EndPoints);
1153 BValNo->markUnused();
1154 // Extend IntB to the EndPoints of its original live interval.
1155 LIS->extendToIndices(IntB, EndPoints);
1157 // Now, do the same for its subranges.
1158 for (LiveInterval::SubRange &SR : IntB.subranges()) {
1159 EndPoints.clear();
1160 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1161 assert(BValNo && "All sublanes should be live");
1162 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1163 BValNo->markUnused();
1164 // We can have a situation where the result of the original copy is live,
1165 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1166 // the copy appear as an endpoint from pruneValue(), but we don't want it
1167 // to because the copy has been removed. We can go ahead and remove that
1168 // endpoint; there is no other situation here that there could be a use at
1169 // the same place as we know that the copy is a full copy.
1170 for (unsigned I = 0; I != EndPoints.size(); ) {
1171 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1172 EndPoints[I] = EndPoints.back();
1173 EndPoints.pop_back();
1174 continue;
1176 ++I;
1178 LIS->extendToIndices(SR, EndPoints);
1180 // If any dead defs were extended, truncate them.
1181 shrinkToUses(&IntB);
1183 // Finally, update the live-range of IntA.
1184 shrinkToUses(&IntA);
1185 return true;
1188 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1189 /// defining a subregister.
1190 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1191 assert(!Register::isPhysicalRegister(Reg) &&
1192 "This code cannot handle physreg aliasing");
1193 for (const MachineOperand &Op : MI.operands()) {
1194 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1195 continue;
1196 // Return true if we define the full register or don't care about the value
1197 // inside other subregisters.
1198 if (Op.getSubReg() == 0 || Op.isUndef())
1199 return true;
1201 return false;
1204 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1205 MachineInstr *CopyMI,
1206 bool &IsDefCopy) {
1207 IsDefCopy = false;
1208 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1209 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1210 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1211 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1212 if (Register::isPhysicalRegister(SrcReg))
1213 return false;
1215 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1216 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1217 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1218 if (!ValNo)
1219 return false;
1220 if (ValNo->isPHIDef() || ValNo->isUnused())
1221 return false;
1222 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1223 if (!DefMI)
1224 return false;
1225 if (DefMI->isCopyLike()) {
1226 IsDefCopy = true;
1227 return false;
1229 if (!TII->isAsCheapAsAMove(*DefMI))
1230 return false;
1231 if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1232 return false;
1233 if (!definesFullReg(*DefMI, SrcReg))
1234 return false;
1235 bool SawStore = false;
1236 if (!DefMI->isSafeToMove(AA, SawStore))
1237 return false;
1238 const MCInstrDesc &MCID = DefMI->getDesc();
1239 if (MCID.getNumDefs() != 1)
1240 return false;
1241 // Only support subregister destinations when the def is read-undef.
1242 MachineOperand &DstOperand = CopyMI->getOperand(0);
1243 Register CopyDstReg = DstOperand.getReg();
1244 if (DstOperand.getSubReg() && !DstOperand.isUndef())
1245 return false;
1247 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1248 // the register substantially (beyond both source and dest size). This is bad
1249 // for performance since it can cascade through a function, introducing many
1250 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1251 // around after a few subreg copies).
1252 if (SrcIdx && DstIdx)
1253 return false;
1255 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1256 if (!DefMI->isImplicitDef()) {
1257 if (Register::isPhysicalRegister(DstReg)) {
1258 unsigned NewDstReg = DstReg;
1260 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1261 DefMI->getOperand(0).getSubReg());
1262 if (NewDstIdx)
1263 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1265 // Finally, make sure that the physical subregister that will be
1266 // constructed later is permitted for the instruction.
1267 if (!DefRC->contains(NewDstReg))
1268 return false;
1269 } else {
1270 // Theoretically, some stack frame reference could exist. Just make sure
1271 // it hasn't actually happened.
1272 assert(Register::isVirtualRegister(DstReg) &&
1273 "Only expect to deal with virtual or physical registers");
1277 DebugLoc DL = CopyMI->getDebugLoc();
1278 MachineBasicBlock *MBB = CopyMI->getParent();
1279 MachineBasicBlock::iterator MII =
1280 std::next(MachineBasicBlock::iterator(CopyMI));
1281 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1282 MachineInstr &NewMI = *std::prev(MII);
1283 NewMI.setDebugLoc(DL);
1285 // In a situation like the following:
1286 // %0:subreg = instr ; DefMI, subreg = DstIdx
1287 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1288 // instead of widening %1 to the register class of %0 simply do:
1289 // %1 = instr
1290 const TargetRegisterClass *NewRC = CP.getNewRC();
1291 if (DstIdx != 0) {
1292 MachineOperand &DefMO = NewMI.getOperand(0);
1293 if (DefMO.getSubReg() == DstIdx) {
1294 assert(SrcIdx == 0 && CP.isFlipped()
1295 && "Shouldn't have SrcIdx+DstIdx at this point");
1296 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1297 const TargetRegisterClass *CommonRC =
1298 TRI->getCommonSubClass(DefRC, DstRC);
1299 if (CommonRC != nullptr) {
1300 NewRC = CommonRC;
1301 DstIdx = 0;
1302 DefMO.setSubReg(0);
1303 DefMO.setIsUndef(false); // Only subregs can have def+undef.
1308 // CopyMI may have implicit operands, save them so that we can transfer them
1309 // over to the newly materialized instruction after CopyMI is removed.
1310 SmallVector<MachineOperand, 4> ImplicitOps;
1311 ImplicitOps.reserve(CopyMI->getNumOperands() -
1312 CopyMI->getDesc().getNumOperands());
1313 for (unsigned I = CopyMI->getDesc().getNumOperands(),
1314 E = CopyMI->getNumOperands();
1315 I != E; ++I) {
1316 MachineOperand &MO = CopyMI->getOperand(I);
1317 if (MO.isReg()) {
1318 assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1319 // Discard VReg implicit defs.
1320 if (Register::isPhysicalRegister(MO.getReg()))
1321 ImplicitOps.push_back(MO);
1325 LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1326 CopyMI->eraseFromParent();
1327 ErasedInstrs.insert(CopyMI);
1329 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1330 // We need to remember these so we can add intervals once we insert
1331 // NewMI into SlotIndexes.
1332 SmallVector<unsigned, 4> NewMIImplDefs;
1333 for (unsigned i = NewMI.getDesc().getNumOperands(),
1334 e = NewMI.getNumOperands();
1335 i != e; ++i) {
1336 MachineOperand &MO = NewMI.getOperand(i);
1337 if (MO.isReg() && MO.isDef()) {
1338 assert(MO.isImplicit() && MO.isDead() &&
1339 Register::isPhysicalRegister(MO.getReg()));
1340 NewMIImplDefs.push_back(MO.getReg());
1344 if (Register::isVirtualRegister(DstReg)) {
1345 unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1347 if (DefRC != nullptr) {
1348 if (NewIdx)
1349 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1350 else
1351 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1352 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1354 // Remap subranges to new lanemask and change register class.
1355 LiveInterval &DstInt = LIS->getInterval(DstReg);
1356 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1357 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1359 MRI->setRegClass(DstReg, NewRC);
1361 // Update machine operands and add flags.
1362 updateRegDefsUses(DstReg, DstReg, DstIdx);
1363 NewMI.getOperand(0).setSubReg(NewIdx);
1364 // updateRegDefUses can add an "undef" flag to the definition, since
1365 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1366 // sure that "undef" is not set.
1367 if (NewIdx == 0)
1368 NewMI.getOperand(0).setIsUndef(false);
1369 // Add dead subregister definitions if we are defining the whole register
1370 // but only part of it is live.
1371 // This could happen if the rematerialization instruction is rematerializing
1372 // more than actually is used in the register.
1373 // An example would be:
1374 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1375 // ; Copying only part of the register here, but the rest is undef.
1376 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1377 // ==>
1378 // ; Materialize all the constants but only using one
1379 // %2 = LOAD_CONSTANTS 5, 8
1381 // at this point for the part that wasn't defined before we could have
1382 // subranges missing the definition.
1383 if (NewIdx == 0 && DstInt.hasSubRanges()) {
1384 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1385 SlotIndex DefIndex =
1386 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1387 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1388 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1389 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1390 if (!SR.liveAt(DefIndex))
1391 SR.createDeadDef(DefIndex, Alloc);
1392 MaxMask &= ~SR.LaneMask;
1394 if (MaxMask.any()) {
1395 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1396 SR->createDeadDef(DefIndex, Alloc);
1400 // Make sure that the subrange for resultant undef is removed
1401 // For example:
1402 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1403 // %2 = COPY %1
1404 // ==>
1405 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1406 // ; Correct but need to remove the subrange for %2:sub0
1407 // ; as it is now undef
1408 if (NewIdx != 0 && DstInt.hasSubRanges()) {
1409 // The affected subregister segments can be removed.
1410 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1411 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1412 bool UpdatedSubRanges = false;
1413 for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1414 if ((SR.LaneMask & DstMask).none()) {
1415 LLVM_DEBUG(dbgs()
1416 << "Removing undefined SubRange "
1417 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1418 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1419 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1420 SR.removeValNo(RmValNo);
1421 UpdatedSubRanges = true;
1425 if (UpdatedSubRanges)
1426 DstInt.removeEmptySubRanges();
1428 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1429 // The New instruction may be defining a sub-register of what's actually
1430 // been asked for. If so it must implicitly define the whole thing.
1431 assert(Register::isPhysicalRegister(DstReg) &&
1432 "Only expect virtual or physical registers in remat");
1433 NewMI.getOperand(0).setIsDead(true);
1434 NewMI.addOperand(MachineOperand::CreateReg(
1435 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1436 // Record small dead def live-ranges for all the subregisters
1437 // of the destination register.
1438 // Otherwise, variables that live through may miss some
1439 // interferences, thus creating invalid allocation.
1440 // E.g., i386 code:
1441 // %1 = somedef ; %1 GR8
1442 // %2 = remat ; %2 GR32
1443 // CL = COPY %2.sub_8bit
1444 // = somedef %1 ; %1 GR8
1445 // =>
1446 // %1 = somedef ; %1 GR8
1447 // dead ECX = remat ; implicit-def CL
1448 // = somedef %1 ; %1 GR8
1449 // %1 will see the interferences with CL but not with CH since
1450 // no live-ranges would have been created for ECX.
1451 // Fix that!
1452 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1453 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1454 Units.isValid(); ++Units)
1455 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1456 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1459 if (NewMI.getOperand(0).getSubReg())
1460 NewMI.getOperand(0).setIsUndef();
1462 // Transfer over implicit operands to the rematerialized instruction.
1463 for (MachineOperand &MO : ImplicitOps)
1464 NewMI.addOperand(MO);
1466 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1467 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1468 unsigned Reg = NewMIImplDefs[i];
1469 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1470 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1471 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1474 LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1475 ++NumReMats;
1477 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1478 // to describe DstReg instead.
1479 if (MRI->use_nodbg_empty(SrcReg)) {
1480 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1481 MachineInstr *UseMI = UseMO.getParent();
1482 if (UseMI->isDebugValue()) {
1483 if (Register::isPhysicalRegister(DstReg))
1484 UseMO.substPhysReg(DstReg, *TRI);
1485 else
1486 UseMO.setReg(DstReg);
1487 // Move the debug value directly after the def of the rematerialized
1488 // value in DstReg.
1489 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1490 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1495 if (ToBeUpdated.count(SrcReg))
1496 return true;
1498 unsigned NumCopyUses = 0;
1499 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1500 if (UseMO.getParent()->isCopyLike())
1501 NumCopyUses++;
1503 if (NumCopyUses < LateRematUpdateThreshold) {
1504 // The source interval can become smaller because we removed a use.
1505 shrinkToUses(&SrcInt, &DeadDefs);
1506 if (!DeadDefs.empty())
1507 eliminateDeadDefs();
1508 } else {
1509 ToBeUpdated.insert(SrcReg);
1511 return true;
1514 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1515 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1516 // removes local variables. When we have a copy like:
1518 // %1 = COPY undef %2
1520 // We delete the copy and remove the corresponding value number from %1.
1521 // Any uses of that value number are marked as <undef>.
1523 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1524 // CoalescerPair may have a new register class with adjusted subreg indices
1525 // at this point.
1526 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1527 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1528 return nullptr;
1530 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1531 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1532 // CopyMI is undef iff SrcReg is not live before the instruction.
1533 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1534 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1535 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1536 if ((SR.LaneMask & SrcMask).none())
1537 continue;
1538 if (SR.liveAt(Idx))
1539 return nullptr;
1541 } else if (SrcLI.liveAt(Idx))
1542 return nullptr;
1544 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1545 // then replace it with an IMPLICIT_DEF.
1546 LiveInterval &DstLI = LIS->getInterval(DstReg);
1547 SlotIndex RegIndex = Idx.getRegSlot();
1548 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1549 assert(Seg != nullptr && "No segment for defining instruction");
1550 if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1551 if (V->isPHIDef()) {
1552 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1553 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1554 MachineOperand &MO = CopyMI->getOperand(i-1);
1555 if (MO.isReg() && MO.isUse())
1556 CopyMI->RemoveOperand(i-1);
1558 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1559 "implicit def\n");
1560 return CopyMI;
1564 // Remove any DstReg segments starting at the instruction.
1565 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1567 // Remove value or merge with previous one in case of a subregister def.
1568 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1569 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1570 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1572 // The affected subregister segments can be removed.
1573 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1574 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1575 if ((SR.LaneMask & DstMask).none())
1576 continue;
1578 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1579 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1580 SR.removeValNo(SVNI);
1582 DstLI.removeEmptySubRanges();
1583 } else
1584 LIS->removeVRegDefAt(DstLI, RegIndex);
1586 // Mark uses as undef.
1587 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1588 if (MO.isDef() /*|| MO.isUndef()*/)
1589 continue;
1590 const MachineInstr &MI = *MO.getParent();
1591 SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1592 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1593 bool isLive;
1594 if (!UseMask.all() && DstLI.hasSubRanges()) {
1595 isLive = false;
1596 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1597 if ((SR.LaneMask & UseMask).none())
1598 continue;
1599 if (SR.liveAt(UseIdx)) {
1600 isLive = true;
1601 break;
1604 } else
1605 isLive = DstLI.liveAt(UseIdx);
1606 if (isLive)
1607 continue;
1608 MO.setIsUndef(true);
1609 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1612 // A def of a subregister may be a use of the other subregisters, so
1613 // deleting a def of a subregister may also remove uses. Since CopyMI
1614 // is still part of the function (but about to be erased), mark all
1615 // defs of DstReg in it as <undef>, so that shrinkToUses would
1616 // ignore them.
1617 for (MachineOperand &MO : CopyMI->operands())
1618 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1619 MO.setIsUndef(true);
1620 LIS->shrinkToUses(&DstLI);
1622 return CopyMI;
1625 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1626 MachineOperand &MO, unsigned SubRegIdx) {
1627 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1628 if (MO.isDef())
1629 Mask = ~Mask;
1630 bool IsUndef = true;
1631 for (const LiveInterval::SubRange &S : Int.subranges()) {
1632 if ((S.LaneMask & Mask).none())
1633 continue;
1634 if (S.liveAt(UseIdx)) {
1635 IsUndef = false;
1636 break;
1639 if (IsUndef) {
1640 MO.setIsUndef(true);
1641 // We found out some subregister use is actually reading an undefined
1642 // value. In some cases the whole vreg has become undefined at this
1643 // point so we have to potentially shrink the main range if the
1644 // use was ending a live segment there.
1645 LiveQueryResult Q = Int.Query(UseIdx);
1646 if (Q.valueOut() == nullptr)
1647 ShrinkMainRange = true;
1651 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1652 unsigned DstReg,
1653 unsigned SubIdx) {
1654 bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1655 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1657 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1658 for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1659 unsigned SubReg = MO.getSubReg();
1660 if (SubReg == 0 || MO.isUndef())
1661 continue;
1662 MachineInstr &MI = *MO.getParent();
1663 if (MI.isDebugValue())
1664 continue;
1665 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1666 addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1670 SmallPtrSet<MachineInstr*, 8> Visited;
1671 for (MachineRegisterInfo::reg_instr_iterator
1672 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1673 I != E; ) {
1674 MachineInstr *UseMI = &*(I++);
1676 // Each instruction can only be rewritten once because sub-register
1677 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1678 // the UseMI operands removes them from the SrcReg use-def chain, but when
1679 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1680 // operands mentioning the virtual register.
1681 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1682 continue;
1684 SmallVector<unsigned,8> Ops;
1685 bool Reads, Writes;
1686 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1688 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1689 // because SrcReg is a sub-register.
1690 if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1691 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1693 // Replace SrcReg with DstReg in all UseMI operands.
1694 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1695 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1697 // Adjust <undef> flags in case of sub-register joins. We don't want to
1698 // turn a full def into a read-modify-write sub-register def and vice
1699 // versa.
1700 if (SubIdx && MO.isDef())
1701 MO.setIsUndef(!Reads);
1703 // A subreg use of a partially undef (super) register may be a complete
1704 // undef use now and then has to be marked that way.
1705 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1706 if (!DstInt->hasSubRanges()) {
1707 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1708 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1709 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1711 SlotIndex MIIdx = UseMI->isDebugValue()
1712 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1713 : LIS->getInstructionIndex(*UseMI);
1714 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1715 addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1718 if (DstIsPhys)
1719 MO.substPhysReg(DstReg, *TRI);
1720 else
1721 MO.substVirtReg(DstReg, SubIdx, *TRI);
1724 LLVM_DEBUG({
1725 dbgs() << "\t\tupdated: ";
1726 if (!UseMI->isDebugValue())
1727 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1728 dbgs() << *UseMI;
1733 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1734 // Always join simple intervals that are defined by a single copy from a
1735 // reserved register. This doesn't increase register pressure, so it is
1736 // always beneficial.
1737 if (!MRI->isReserved(CP.getDstReg())) {
1738 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1739 return false;
1742 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1743 if (JoinVInt.containsOneValue())
1744 return true;
1746 LLVM_DEBUG(
1747 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1748 return false;
1751 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1752 Again = false;
1753 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1755 CoalescerPair CP(*TRI);
1756 if (!CP.setRegisters(CopyMI)) {
1757 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1758 return false;
1761 if (CP.getNewRC()) {
1762 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1763 auto DstRC = MRI->getRegClass(CP.getDstReg());
1764 unsigned SrcIdx = CP.getSrcIdx();
1765 unsigned DstIdx = CP.getDstIdx();
1766 if (CP.isFlipped()) {
1767 std::swap(SrcIdx, DstIdx);
1768 std::swap(SrcRC, DstRC);
1770 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1771 CP.getNewRC(), *LIS)) {
1772 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1773 return false;
1777 // Dead code elimination. This really should be handled by MachineDCE, but
1778 // sometimes dead copies slip through, and we can't generate invalid live
1779 // ranges.
1780 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1781 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1782 DeadDefs.push_back(CopyMI);
1783 eliminateDeadDefs();
1784 return true;
1787 // Eliminate undefs.
1788 if (!CP.isPhys()) {
1789 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1790 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1791 if (UndefMI->isImplicitDef())
1792 return false;
1793 deleteInstr(CopyMI);
1794 return false; // Not coalescable.
1798 // Coalesced copies are normally removed immediately, but transformations
1799 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1800 // When that happens, just join the values and remove the copy.
1801 if (CP.getSrcReg() == CP.getDstReg()) {
1802 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1803 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1804 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1805 LiveQueryResult LRQ = LI.Query(CopyIdx);
1806 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1807 VNInfo *ReadVNI = LRQ.valueIn();
1808 assert(ReadVNI && "No value before copy and no <undef> flag.");
1809 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1810 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1812 // Process subregister liveranges.
1813 for (LiveInterval::SubRange &S : LI.subranges()) {
1814 LiveQueryResult SLRQ = S.Query(CopyIdx);
1815 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1816 VNInfo *SReadVNI = SLRQ.valueIn();
1817 S.MergeValueNumberInto(SDefVNI, SReadVNI);
1820 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
1822 deleteInstr(CopyMI);
1823 return true;
1826 // Enforce policies.
1827 if (CP.isPhys()) {
1828 LLVM_DEBUG(dbgs() << "\tConsidering merging "
1829 << printReg(CP.getSrcReg(), TRI) << " with "
1830 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1831 if (!canJoinPhys(CP)) {
1832 // Before giving up coalescing, if definition of source is defined by
1833 // trivial computation, try rematerializing it.
1834 bool IsDefCopy;
1835 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1836 return true;
1837 if (IsDefCopy)
1838 Again = true; // May be possible to coalesce later.
1839 return false;
1841 } else {
1842 // When possible, let DstReg be the larger interval.
1843 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1844 LIS->getInterval(CP.getDstReg()).size())
1845 CP.flip();
1847 LLVM_DEBUG({
1848 dbgs() << "\tConsidering merging to "
1849 << TRI->getRegClassName(CP.getNewRC()) << " with ";
1850 if (CP.getDstIdx() && CP.getSrcIdx())
1851 dbgs() << printReg(CP.getDstReg()) << " in "
1852 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1853 << printReg(CP.getSrcReg()) << " in "
1854 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1855 else
1856 dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1857 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1861 ShrinkMask = LaneBitmask::getNone();
1862 ShrinkMainRange = false;
1864 // Okay, attempt to join these two intervals. On failure, this returns false.
1865 // Otherwise, if one of the intervals being joined is a physreg, this method
1866 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1867 // been modified, so we can use this information below to update aliases.
1868 if (!joinIntervals(CP)) {
1869 // Coalescing failed.
1871 // If definition of source is defined by trivial computation, try
1872 // rematerializing it.
1873 bool IsDefCopy;
1874 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1875 return true;
1877 // If we can eliminate the copy without merging the live segments, do so
1878 // now.
1879 if (!CP.isPartial() && !CP.isPhys()) {
1880 bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1881 bool Shrink = false;
1882 if (!Changed)
1883 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1884 if (Changed) {
1885 deleteInstr(CopyMI);
1886 if (Shrink) {
1887 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1888 LiveInterval &DstLI = LIS->getInterval(DstReg);
1889 shrinkToUses(&DstLI);
1890 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
1892 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1893 return true;
1897 // Try and see if we can partially eliminate the copy by moving the copy to
1898 // its predecessor.
1899 if (!CP.isPartial() && !CP.isPhys())
1900 if (removePartialRedundancy(CP, *CopyMI))
1901 return true;
1903 // Otherwise, we are unable to join the intervals.
1904 LLVM_DEBUG(dbgs() << "\tInterference!\n");
1905 Again = true; // May be possible to coalesce later.
1906 return false;
1909 // Coalescing to a virtual register that is of a sub-register class of the
1910 // other. Make sure the resulting register is set to the right register class.
1911 if (CP.isCrossClass()) {
1912 ++numCrossRCs;
1913 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1916 // Removing sub-register copies can ease the register class constraints.
1917 // Make sure we attempt to inflate the register class of DstReg.
1918 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1919 InflateRegs.push_back(CP.getDstReg());
1921 // CopyMI has been erased by joinIntervals at this point. Remove it from
1922 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1923 // to the work list. This keeps ErasedInstrs from growing needlessly.
1924 ErasedInstrs.erase(CopyMI);
1926 // Rewrite all SrcReg operands to DstReg.
1927 // Also update DstReg operands to include DstIdx if it is set.
1928 if (CP.getDstIdx())
1929 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1930 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1932 // Shrink subregister ranges if necessary.
1933 if (ShrinkMask.any()) {
1934 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1935 for (LiveInterval::SubRange &S : LI.subranges()) {
1936 if ((S.LaneMask & ShrinkMask).none())
1937 continue;
1938 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1939 << ")\n");
1940 LIS->shrinkToUses(S, LI.reg);
1942 LI.removeEmptySubRanges();
1945 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
1946 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
1947 // is not up-to-date, need to update the merged live interval here.
1948 if (ToBeUpdated.count(CP.getSrcReg()))
1949 ShrinkMainRange = true;
1951 if (ShrinkMainRange) {
1952 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1953 shrinkToUses(&LI);
1956 // SrcReg is guaranteed to be the register whose live interval that is
1957 // being merged.
1958 LIS->removeInterval(CP.getSrcReg());
1960 // Update regalloc hint.
1961 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1963 LLVM_DEBUG({
1964 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1965 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1966 dbgs() << "\tResult = ";
1967 if (CP.isPhys())
1968 dbgs() << printReg(CP.getDstReg(), TRI);
1969 else
1970 dbgs() << LIS->getInterval(CP.getDstReg());
1971 dbgs() << '\n';
1974 ++numJoins;
1975 return true;
1978 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1979 unsigned DstReg = CP.getDstReg();
1980 unsigned SrcReg = CP.getSrcReg();
1981 assert(CP.isPhys() && "Must be a physreg copy");
1982 assert(MRI->isReserved(DstReg) && "Not a reserved register");
1983 LiveInterval &RHS = LIS->getInterval(SrcReg);
1984 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1986 assert(RHS.containsOneValue() && "Invalid join with reserved register");
1988 // Optimization for reserved registers like ESP. We can only merge with a
1989 // reserved physreg if RHS has a single value that is a copy of DstReg.
1990 // The live range of the reserved register will look like a set of dead defs
1991 // - we don't properly track the live range of reserved registers.
1993 // Deny any overlapping intervals. This depends on all the reserved
1994 // register live ranges to look like dead defs.
1995 if (!MRI->isConstantPhysReg(DstReg)) {
1996 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1997 // Abort if not all the regunits are reserved.
1998 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
1999 if (!MRI->isReserved(*RI))
2000 return false;
2002 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2003 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2004 << '\n');
2005 return false;
2009 // We must also check for overlaps with regmask clobbers.
2010 BitVector RegMaskUsable;
2011 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2012 !RegMaskUsable.test(DstReg)) {
2013 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2014 return false;
2018 // Skip any value computations, we are not adding new values to the
2019 // reserved register. Also skip merging the live ranges, the reserved
2020 // register live range doesn't need to be accurate as long as all the
2021 // defs are there.
2023 // Delete the identity copy.
2024 MachineInstr *CopyMI;
2025 if (CP.isFlipped()) {
2026 // Physreg is copied into vreg
2027 // %y = COPY %physreg_x
2028 // ... //< no other def of %physreg_x here
2029 // use %y
2030 // =>
2031 // ...
2032 // use %physreg_x
2033 CopyMI = MRI->getVRegDef(SrcReg);
2034 } else {
2035 // VReg is copied into physreg:
2036 // %y = def
2037 // ... //< no other def or use of %physreg_x here
2038 // %physreg_x = COPY %y
2039 // =>
2040 // %physreg_x = def
2041 // ...
2042 if (!MRI->hasOneNonDBGUse(SrcReg)) {
2043 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2044 return false;
2047 if (!LIS->intervalIsInOneMBB(RHS)) {
2048 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2049 return false;
2052 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2053 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2054 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2055 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2057 if (!MRI->isConstantPhysReg(DstReg)) {
2058 // We checked above that there are no interfering defs of the physical
2059 // register. However, for this case, where we intend to move up the def of
2060 // the physical register, we also need to check for interfering uses.
2061 SlotIndexes *Indexes = LIS->getSlotIndexes();
2062 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2063 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2064 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2065 if (MI->readsRegister(DstReg, TRI)) {
2066 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2067 return false;
2072 // We're going to remove the copy which defines a physical reserved
2073 // register, so remove its valno, etc.
2074 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2075 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2077 LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2078 // Create a new dead def at the new def location.
2079 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2080 LiveRange &LR = LIS->getRegUnit(*UI);
2081 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2085 deleteInstr(CopyMI);
2087 // We don't track kills for reserved registers.
2088 MRI->clearKillFlags(CP.getSrcReg());
2090 return true;
2093 //===----------------------------------------------------------------------===//
2094 // Interference checking and interval joining
2095 //===----------------------------------------------------------------------===//
2097 // In the easiest case, the two live ranges being joined are disjoint, and
2098 // there is no interference to consider. It is quite common, though, to have
2099 // overlapping live ranges, and we need to check if the interference can be
2100 // resolved.
2102 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2103 // This means that two SSA values overlap if and only if the def of one value
2104 // is contained in the live range of the other value. As a special case, the
2105 // overlapping values can be defined at the same index.
2107 // The interference from an overlapping def can be resolved in these cases:
2109 // 1. Coalescable copies. The value is defined by a copy that would become an
2110 // identity copy after joining SrcReg and DstReg. The copy instruction will
2111 // be removed, and the value will be merged with the source value.
2113 // There can be several copies back and forth, causing many values to be
2114 // merged into one. We compute a list of ultimate values in the joined live
2115 // range as well as a mappings from the old value numbers.
2117 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2118 // predecessors have a live out value. It doesn't cause real interference,
2119 // and can be merged into the value it overlaps. Like a coalescable copy, it
2120 // can be erased after joining.
2122 // 3. Copy of external value. The overlapping def may be a copy of a value that
2123 // is already in the other register. This is like a coalescable copy, but
2124 // the live range of the source register must be trimmed after erasing the
2125 // copy instruction:
2127 // %src = COPY %ext
2128 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2130 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2131 // defining one lane at a time:
2133 // %dst:ssub0<def,read-undef> = FOO
2134 // %src = BAR
2135 // %dst:ssub1 = COPY %src
2137 // The live range of %src overlaps the %dst value defined by FOO, but
2138 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2139 // which was undef anyway.
2141 // The value mapping is more complicated in this case. The final live range
2142 // will have different value numbers for both FOO and BAR, but there is no
2143 // simple mapping from old to new values. It may even be necessary to add
2144 // new PHI values.
2146 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2147 // is live, but never read. This can happen because we don't compute
2148 // individual live ranges per lane.
2150 // %dst = FOO
2151 // %src = BAR
2152 // %dst:ssub1 = COPY %src
2154 // This kind of interference is only resolved locally. If the clobbered
2155 // lane value escapes the block, the join is aborted.
2157 namespace {
2159 /// Track information about values in a single virtual register about to be
2160 /// joined. Objects of this class are always created in pairs - one for each
2161 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2162 /// pair)
2163 class JoinVals {
2164 /// Live range we work on.
2165 LiveRange &LR;
2167 /// (Main) register we work on.
2168 const unsigned Reg;
2170 /// Reg (and therefore the values in this liverange) will end up as
2171 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2172 /// CP.SrcIdx.
2173 const unsigned SubIdx;
2175 /// The LaneMask that this liverange will occupy the coalesced register. May
2176 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2177 const LaneBitmask LaneMask;
2179 /// This is true when joining sub register ranges, false when joining main
2180 /// ranges.
2181 const bool SubRangeJoin;
2183 /// Whether the current LiveInterval tracks subregister liveness.
2184 const bool TrackSubRegLiveness;
2186 /// Values that will be present in the final live range.
2187 SmallVectorImpl<VNInfo*> &NewVNInfo;
2189 const CoalescerPair &CP;
2190 LiveIntervals *LIS;
2191 SlotIndexes *Indexes;
2192 const TargetRegisterInfo *TRI;
2194 /// Value number assignments. Maps value numbers in LI to entries in
2195 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2196 SmallVector<int, 8> Assignments;
2198 /// Conflict resolution for overlapping values.
2199 enum ConflictResolution {
2200 /// No overlap, simply keep this value.
2201 CR_Keep,
2203 /// Merge this value into OtherVNI and erase the defining instruction.
2204 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2205 /// values.
2206 CR_Erase,
2208 /// Merge this value into OtherVNI but keep the defining instruction.
2209 /// This is for the special case where OtherVNI is defined by the same
2210 /// instruction.
2211 CR_Merge,
2213 /// Keep this value, and have it replace OtherVNI where possible. This
2214 /// complicates value mapping since OtherVNI maps to two different values
2215 /// before and after this def.
2216 /// Used when clobbering undefined or dead lanes.
2217 CR_Replace,
2219 /// Unresolved conflict. Visit later when all values have been mapped.
2220 CR_Unresolved,
2222 /// Unresolvable conflict. Abort the join.
2223 CR_Impossible
2226 /// Per-value info for LI. The lane bit masks are all relative to the final
2227 /// joined register, so they can be compared directly between SrcReg and
2228 /// DstReg.
2229 struct Val {
2230 ConflictResolution Resolution = CR_Keep;
2232 /// Lanes written by this def, 0 for unanalyzed values.
2233 LaneBitmask WriteLanes;
2235 /// Lanes with defined values in this register. Other lanes are undef and
2236 /// safe to clobber.
2237 LaneBitmask ValidLanes;
2239 /// Value in LI being redefined by this def.
2240 VNInfo *RedefVNI = nullptr;
2242 /// Value in the other live range that overlaps this def, if any.
2243 VNInfo *OtherVNI = nullptr;
2245 /// Is this value an IMPLICIT_DEF that can be erased?
2247 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2248 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2249 /// safely erased if they are overlapping a live value in the other live
2250 /// interval.
2252 /// Weird control flow graphs and incomplete PHI handling in
2253 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2254 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2255 /// normal values.
2256 bool ErasableImplicitDef = false;
2258 /// True when the live range of this value will be pruned because of an
2259 /// overlapping CR_Replace value in the other live range.
2260 bool Pruned = false;
2262 /// True once Pruned above has been computed.
2263 bool PrunedComputed = false;
2265 /// True if this value is determined to be identical to OtherVNI
2266 /// (in valuesIdentical). This is used with CR_Erase where the erased
2267 /// copy is redundant, i.e. the source value is already the same as
2268 /// the destination. In such cases the subranges need to be updated
2269 /// properly. See comment at pruneSubRegValues for more info.
2270 bool Identical = false;
2272 Val() = default;
2274 bool isAnalyzed() const { return WriteLanes.any(); }
2277 /// One entry per value number in LI.
2278 SmallVector<Val, 8> Vals;
2280 /// Compute the bitmask of lanes actually written by DefMI.
2281 /// Set Redef if there are any partial register definitions that depend on the
2282 /// previous value of the register.
2283 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2285 /// Find the ultimate value that VNI was copied from.
2286 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2288 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2290 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2291 /// Return a conflict resolution when possible, but leave the hard cases as
2292 /// CR_Unresolved.
2293 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2294 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2295 /// The recursion always goes upwards in the dominator tree, making loops
2296 /// impossible.
2297 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2299 /// Compute the value assignment for ValNo in RI.
2300 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2301 /// the stack.
2302 void computeAssignment(unsigned ValNo, JoinVals &Other);
2304 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2305 /// the extent of the tainted lanes in the block.
2307 /// Multiple values in Other.LR can be affected since partial redefinitions
2308 /// can preserve previously tainted lanes.
2310 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2311 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2312 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2313 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2315 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2316 /// entry to TaintedVals.
2318 /// Returns false if the tainted lanes extend beyond the basic block.
2319 bool
2320 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2321 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2323 /// Return true if MI uses any of the given Lanes from Reg.
2324 /// This does not include partial redefinitions of Reg.
2325 bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2327 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2328 /// be pruned:
2330 /// %dst = COPY %src
2331 /// %src = COPY %dst <-- This value to be pruned.
2332 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2333 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2335 public:
2336 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2337 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2338 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2339 bool TrackSubRegLiveness)
2340 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2341 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2342 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2343 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2345 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2346 /// Returns false if any conflicts were impossible to resolve.
2347 bool mapValues(JoinVals &Other);
2349 /// Try to resolve conflicts that require all values to be mapped.
2350 /// Returns false if any conflicts were impossible to resolve.
2351 bool resolveConflicts(JoinVals &Other);
2353 /// Prune the live range of values in Other.LR where they would conflict with
2354 /// CR_Replace values in LR. Collect end points for restoring the live range
2355 /// after joining.
2356 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2357 bool changeInstrs);
2359 /// Removes subranges starting at copies that get removed. This sometimes
2360 /// happens when undefined subranges are copied around. These ranges contain
2361 /// no useful information and can be removed.
2362 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2364 /// Pruning values in subranges can lead to removing segments in these
2365 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2366 /// the main range also need to be removed. This function will mark
2367 /// the corresponding values in the main range as pruned, so that
2368 /// eraseInstrs can do the final cleanup.
2369 /// The parameter @p LI must be the interval whose main range is the
2370 /// live range LR.
2371 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2373 /// Erase any machine instructions that have been coalesced away.
2374 /// Add erased instructions to ErasedInstrs.
2375 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2376 /// the erased instrs.
2377 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2378 SmallVectorImpl<unsigned> &ShrinkRegs,
2379 LiveInterval *LI = nullptr);
2381 /// Remove liverange defs at places where implicit defs will be removed.
2382 void removeImplicitDefs();
2384 /// Get the value assignments suitable for passing to LiveInterval::join.
2385 const int *getAssignments() const { return Assignments.data(); }
2388 } // end anonymous namespace
2390 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2391 const {
2392 LaneBitmask L;
2393 for (const MachineOperand &MO : DefMI->operands()) {
2394 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2395 continue;
2396 L |= TRI->getSubRegIndexLaneMask(
2397 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2398 if (MO.readsReg())
2399 Redef = true;
2401 return L;
2404 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2405 const VNInfo *VNI) const {
2406 unsigned TrackReg = Reg;
2408 while (!VNI->isPHIDef()) {
2409 SlotIndex Def = VNI->def;
2410 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2411 assert(MI && "No defining instruction");
2412 if (!MI->isFullCopy())
2413 return std::make_pair(VNI, TrackReg);
2414 Register SrcReg = MI->getOperand(1).getReg();
2415 if (!Register::isVirtualRegister(SrcReg))
2416 return std::make_pair(VNI, TrackReg);
2418 const LiveInterval &LI = LIS->getInterval(SrcReg);
2419 const VNInfo *ValueIn;
2420 // No subrange involved.
2421 if (!SubRangeJoin || !LI.hasSubRanges()) {
2422 LiveQueryResult LRQ = LI.Query(Def);
2423 ValueIn = LRQ.valueIn();
2424 } else {
2425 // Query subranges. Ensure that all matching ones take us to the same def
2426 // (allowing some of them to be undef).
2427 ValueIn = nullptr;
2428 for (const LiveInterval::SubRange &S : LI.subranges()) {
2429 // Transform lanemask to a mask in the joined live interval.
2430 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2431 if ((SMask & LaneMask).none())
2432 continue;
2433 LiveQueryResult LRQ = S.Query(Def);
2434 if (!ValueIn) {
2435 ValueIn = LRQ.valueIn();
2436 continue;
2438 if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2439 return std::make_pair(VNI, TrackReg);
2442 if (ValueIn == nullptr) {
2443 // Reaching an undefined value is legitimate, for example:
2445 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2446 // 2 %1 = COPY %0 ;; %1 is defined here.
2447 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2448 // ;; but it's equivalent to "undef".
2449 return std::make_pair(nullptr, SrcReg);
2451 VNI = ValueIn;
2452 TrackReg = SrcReg;
2454 return std::make_pair(VNI, TrackReg);
2457 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2458 const JoinVals &Other) const {
2459 const VNInfo *Orig0;
2460 unsigned Reg0;
2461 std::tie(Orig0, Reg0) = followCopyChain(Value0);
2462 if (Orig0 == Value1 && Reg0 == Other.Reg)
2463 return true;
2465 const VNInfo *Orig1;
2466 unsigned Reg1;
2467 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2468 // If both values are undefined, and the source registers are the same
2469 // register, the values are identical. Filter out cases where only one
2470 // value is defined.
2471 if (Orig0 == nullptr || Orig1 == nullptr)
2472 return Orig0 == Orig1 && Reg0 == Reg1;
2474 // The values are equal if they are defined at the same place and use the
2475 // same register. Note that we cannot compare VNInfos directly as some of
2476 // them might be from a copy created in mergeSubRangeInto() while the other
2477 // is from the original LiveInterval.
2478 return Orig0->def == Orig1->def && Reg0 == Reg1;
2481 JoinVals::ConflictResolution
2482 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2483 Val &V = Vals[ValNo];
2484 assert(!V.isAnalyzed() && "Value has already been analyzed!");
2485 VNInfo *VNI = LR.getValNumInfo(ValNo);
2486 if (VNI->isUnused()) {
2487 V.WriteLanes = LaneBitmask::getAll();
2488 return CR_Keep;
2491 // Get the instruction defining this value, compute the lanes written.
2492 const MachineInstr *DefMI = nullptr;
2493 if (VNI->isPHIDef()) {
2494 // Conservatively assume that all lanes in a PHI are valid.
2495 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2496 : TRI->getSubRegIndexLaneMask(SubIdx);
2497 V.ValidLanes = V.WriteLanes = Lanes;
2498 } else {
2499 DefMI = Indexes->getInstructionFromIndex(VNI->def);
2500 assert(DefMI != nullptr);
2501 if (SubRangeJoin) {
2502 // We don't care about the lanes when joining subregister ranges.
2503 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2504 if (DefMI->isImplicitDef()) {
2505 V.ValidLanes = LaneBitmask::getNone();
2506 V.ErasableImplicitDef = true;
2508 } else {
2509 bool Redef = false;
2510 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2512 // If this is a read-modify-write instruction, there may be more valid
2513 // lanes than the ones written by this instruction.
2514 // This only covers partial redef operands. DefMI may have normal use
2515 // operands reading the register. They don't contribute valid lanes.
2517 // This adds ssub1 to the set of valid lanes in %src:
2519 // %src:ssub1 = FOO
2521 // This leaves only ssub1 valid, making any other lanes undef:
2523 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2525 // The <read-undef> flag on the def operand means that old lane values are
2526 // not important.
2527 if (Redef) {
2528 V.RedefVNI = LR.Query(VNI->def).valueIn();
2529 assert((TrackSubRegLiveness || V.RedefVNI) &&
2530 "Instruction is reading nonexistent value");
2531 if (V.RedefVNI != nullptr) {
2532 computeAssignment(V.RedefVNI->id, Other);
2533 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2537 // An IMPLICIT_DEF writes undef values.
2538 if (DefMI->isImplicitDef()) {
2539 // We normally expect IMPLICIT_DEF values to be live only until the end
2540 // of their block. If the value is really live longer and gets pruned in
2541 // another block, this flag is cleared again.
2543 // Clearing the valid lanes is deferred until it is sure this can be
2544 // erased.
2545 V.ErasableImplicitDef = true;
2550 // Find the value in Other that overlaps VNI->def, if any.
2551 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2553 // It is possible that both values are defined by the same instruction, or
2554 // the values are PHIs defined in the same block. When that happens, the two
2555 // values should be merged into one, but not into any preceding value.
2556 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2557 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2558 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2560 // One value stays, the other is merged. Keep the earlier one, or the first
2561 // one we see.
2562 if (OtherVNI->def < VNI->def)
2563 Other.computeAssignment(OtherVNI->id, *this);
2564 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2565 // This is an early-clobber def overlapping a live-in value in the other
2566 // register. Not mergeable.
2567 V.OtherVNI = OtherLRQ.valueIn();
2568 return CR_Impossible;
2570 V.OtherVNI = OtherVNI;
2571 Val &OtherV = Other.Vals[OtherVNI->id];
2572 // Keep this value, check for conflicts when analyzing OtherVNI.
2573 if (!OtherV.isAnalyzed())
2574 return CR_Keep;
2575 // Both sides have been analyzed now.
2576 // Allow overlapping PHI values. Any real interference would show up in a
2577 // predecessor, the PHI itself can't introduce any conflicts.
2578 if (VNI->isPHIDef())
2579 return CR_Merge;
2580 if ((V.ValidLanes & OtherV.ValidLanes).any())
2581 // Overlapping lanes can't be resolved.
2582 return CR_Impossible;
2583 else
2584 return CR_Merge;
2587 // No simultaneous def. Is Other live at the def?
2588 V.OtherVNI = OtherLRQ.valueIn();
2589 if (!V.OtherVNI)
2590 // No overlap, no conflict.
2591 return CR_Keep;
2593 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2595 // We have overlapping values, or possibly a kill of Other.
2596 // Recursively compute assignments up the dominator tree.
2597 Other.computeAssignment(V.OtherVNI->id, *this);
2598 Val &OtherV = Other.Vals[V.OtherVNI->id];
2600 if (OtherV.ErasableImplicitDef) {
2601 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2602 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2603 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2604 // technically.
2606 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2607 // to erase the IMPLICIT_DEF instruction.
2608 if (DefMI &&
2609 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2610 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2611 << " extends into "
2612 << printMBBReference(*DefMI->getParent())
2613 << ", keeping it.\n");
2614 OtherV.ErasableImplicitDef = false;
2615 } else {
2616 // We deferred clearing these lanes in case we needed to save them
2617 OtherV.ValidLanes &= ~OtherV.WriteLanes;
2621 // Allow overlapping PHI values. Any real interference would show up in a
2622 // predecessor, the PHI itself can't introduce any conflicts.
2623 if (VNI->isPHIDef())
2624 return CR_Replace;
2626 // Check for simple erasable conflicts.
2627 if (DefMI->isImplicitDef()) {
2628 // We need the def for the subregister if there is nothing else live at the
2629 // subrange at this point.
2630 if (TrackSubRegLiveness
2631 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2632 return CR_Replace;
2633 return CR_Erase;
2636 // Include the non-conflict where DefMI is a coalescable copy that kills
2637 // OtherVNI. We still want the copy erased and value numbers merged.
2638 if (CP.isCoalescable(DefMI)) {
2639 // Some of the lanes copied from OtherVNI may be undef, making them undef
2640 // here too.
2641 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2642 return CR_Erase;
2645 // This may not be a real conflict if DefMI simply kills Other and defines
2646 // VNI.
2647 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2648 return CR_Keep;
2650 // Handle the case where VNI and OtherVNI can be proven to be identical:
2652 // %other = COPY %ext
2653 // %this = COPY %ext <-- Erase this copy
2655 if (DefMI->isFullCopy() && !CP.isPartial() &&
2656 valuesIdentical(VNI, V.OtherVNI, Other)) {
2657 V.Identical = true;
2658 return CR_Erase;
2661 // The remaining checks apply to the lanes, which aren't tracked here. This
2662 // was already decided to be OK via the following CR_Replace condition.
2663 // CR_Replace.
2664 if (SubRangeJoin)
2665 return CR_Replace;
2667 // If the lanes written by this instruction were all undef in OtherVNI, it is
2668 // still safe to join the live ranges. This can't be done with a simple value
2669 // mapping, though - OtherVNI will map to multiple values:
2671 // 1 %dst:ssub0 = FOO <-- OtherVNI
2672 // 2 %src = BAR <-- VNI
2673 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2674 // 4 BAZ killed %dst
2675 // 5 QUUX killed %src
2677 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2678 // handles this complex value mapping.
2679 if ((V.WriteLanes & OtherV.ValidLanes).none())
2680 return CR_Replace;
2682 // If the other live range is killed by DefMI and the live ranges are still
2683 // overlapping, it must be because we're looking at an early clobber def:
2685 // %dst<def,early-clobber> = ASM killed %src
2687 // In this case, it is illegal to merge the two live ranges since the early
2688 // clobber def would clobber %src before it was read.
2689 if (OtherLRQ.isKill()) {
2690 // This case where the def doesn't overlap the kill is handled above.
2691 assert(VNI->def.isEarlyClobber() &&
2692 "Only early clobber defs can overlap a kill");
2693 return CR_Impossible;
2696 // VNI is clobbering live lanes in OtherVNI, but there is still the
2697 // possibility that no instructions actually read the clobbered lanes.
2698 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2699 // Otherwise Other.RI wouldn't be live here.
2700 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2701 return CR_Impossible;
2703 // We need to verify that no instructions are reading the clobbered lanes. To
2704 // save compile time, we'll only check that locally. Don't allow the tainted
2705 // value to escape the basic block.
2706 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2707 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2708 return CR_Impossible;
2710 // There are still some things that could go wrong besides clobbered lanes
2711 // being read, for example OtherVNI may be only partially redefined in MBB,
2712 // and some clobbered lanes could escape the block. Save this analysis for
2713 // resolveConflicts() when all values have been mapped. We need to know
2714 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2715 // that now - the recursive analyzeValue() calls must go upwards in the
2716 // dominator tree.
2717 return CR_Unresolved;
2720 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2721 Val &V = Vals[ValNo];
2722 if (V.isAnalyzed()) {
2723 // Recursion should always move up the dominator tree, so ValNo is not
2724 // supposed to reappear before it has been assigned.
2725 assert(Assignments[ValNo] != -1 && "Bad recursion?");
2726 return;
2728 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2729 case CR_Erase:
2730 case CR_Merge:
2731 // Merge this ValNo into OtherVNI.
2732 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2733 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2734 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2735 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2736 << LR.getValNumInfo(ValNo)->def << " into "
2737 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2738 << V.OtherVNI->def << " --> @"
2739 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2740 break;
2741 case CR_Replace:
2742 case CR_Unresolved: {
2743 // The other value is going to be pruned if this join is successful.
2744 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2745 Val &OtherV = Other.Vals[V.OtherVNI->id];
2746 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2747 // its lanes.
2748 if (OtherV.ErasableImplicitDef &&
2749 TrackSubRegLiveness &&
2750 (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2751 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2753 OtherV.ErasableImplicitDef = false;
2754 // The valid lanes written by the implicit_def were speculatively cleared
2755 // before, so make this more conservative. It may be better to track this,
2756 // I haven't found a testcase where it matters.
2757 OtherV.ValidLanes = LaneBitmask::getAll();
2760 OtherV.Pruned = true;
2761 LLVM_FALLTHROUGH;
2763 default:
2764 // This value number needs to go in the final joined live range.
2765 Assignments[ValNo] = NewVNInfo.size();
2766 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2767 break;
2771 bool JoinVals::mapValues(JoinVals &Other) {
2772 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2773 computeAssignment(i, Other);
2774 if (Vals[i].Resolution == CR_Impossible) {
2775 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2776 << '@' << LR.getValNumInfo(i)->def << '\n');
2777 return false;
2780 return true;
2783 bool JoinVals::
2784 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2785 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2786 VNInfo *VNI = LR.getValNumInfo(ValNo);
2787 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2788 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2790 // Scan Other.LR from VNI.def to MBBEnd.
2791 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2792 assert(OtherI != Other.LR.end() && "No conflict?");
2793 do {
2794 // OtherI is pointing to a tainted value. Abort the join if the tainted
2795 // lanes escape the block.
2796 SlotIndex End = OtherI->end;
2797 if (End >= MBBEnd) {
2798 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2799 << OtherI->valno->id << '@' << OtherI->start << '\n');
2800 return false;
2802 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2803 << OtherI->valno->id << '@' << OtherI->start << " to "
2804 << End << '\n');
2805 // A dead def is not a problem.
2806 if (End.isDead())
2807 break;
2808 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2810 // Check for another def in the MBB.
2811 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2812 break;
2814 // Lanes written by the new def are no longer tainted.
2815 const Val &OV = Other.Vals[OtherI->valno->id];
2816 TaintedLanes &= ~OV.WriteLanes;
2817 if (!OV.RedefVNI)
2818 break;
2819 } while (TaintedLanes.any());
2820 return true;
2823 bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2824 LaneBitmask Lanes) const {
2825 if (MI.isDebugInstr())
2826 return false;
2827 for (const MachineOperand &MO : MI.operands()) {
2828 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2829 continue;
2830 if (!MO.readsReg())
2831 continue;
2832 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2833 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2834 return true;
2836 return false;
2839 bool JoinVals::resolveConflicts(JoinVals &Other) {
2840 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2841 Val &V = Vals[i];
2842 assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2843 if (V.Resolution != CR_Unresolved)
2844 continue;
2845 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2846 << LR.getValNumInfo(i)->def << '\n');
2847 if (SubRangeJoin)
2848 return false;
2850 ++NumLaneConflicts;
2851 assert(V.OtherVNI && "Inconsistent conflict resolution.");
2852 VNInfo *VNI = LR.getValNumInfo(i);
2853 const Val &OtherV = Other.Vals[V.OtherVNI->id];
2855 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2856 // join, those lanes will be tainted with a wrong value. Get the extent of
2857 // the tainted lanes.
2858 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2859 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2860 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2861 // Tainted lanes would extend beyond the basic block.
2862 return false;
2864 assert(!TaintExtent.empty() && "There should be at least one conflict.");
2866 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2867 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2868 MachineBasicBlock::iterator MI = MBB->begin();
2869 if (!VNI->isPHIDef()) {
2870 MI = Indexes->getInstructionFromIndex(VNI->def);
2871 // No need to check the instruction defining VNI for reads.
2872 ++MI;
2874 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2875 "Interference ends on VNI->def. Should have been handled earlier");
2876 MachineInstr *LastMI =
2877 Indexes->getInstructionFromIndex(TaintExtent.front().first);
2878 assert(LastMI && "Range must end at a proper instruction");
2879 unsigned TaintNum = 0;
2880 while (true) {
2881 assert(MI != MBB->end() && "Bad LastMI");
2882 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2883 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2884 return false;
2886 // LastMI is the last instruction to use the current value.
2887 if (&*MI == LastMI) {
2888 if (++TaintNum == TaintExtent.size())
2889 break;
2890 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2891 assert(LastMI && "Range must end at a proper instruction");
2892 TaintedLanes = TaintExtent[TaintNum].second;
2894 ++MI;
2897 // The tainted lanes are unused.
2898 V.Resolution = CR_Replace;
2899 ++NumLaneResolves;
2901 return true;
2904 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2905 Val &V = Vals[ValNo];
2906 if (V.Pruned || V.PrunedComputed)
2907 return V.Pruned;
2909 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2910 return V.Pruned;
2912 // Follow copies up the dominator tree and check if any intermediate value
2913 // has been pruned.
2914 V.PrunedComputed = true;
2915 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2916 return V.Pruned;
2919 void JoinVals::pruneValues(JoinVals &Other,
2920 SmallVectorImpl<SlotIndex> &EndPoints,
2921 bool changeInstrs) {
2922 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2923 SlotIndex Def = LR.getValNumInfo(i)->def;
2924 switch (Vals[i].Resolution) {
2925 case CR_Keep:
2926 break;
2927 case CR_Replace: {
2928 // This value takes precedence over the value in Other.LR.
2929 LIS->pruneValue(Other.LR, Def, &EndPoints);
2930 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2931 // instructions are only inserted to provide a live-out value for PHI
2932 // predecessors, so the instruction should simply go away once its value
2933 // has been replaced.
2934 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2935 bool EraseImpDef = OtherV.ErasableImplicitDef &&
2936 OtherV.Resolution == CR_Keep;
2937 if (!Def.isBlock()) {
2938 if (changeInstrs) {
2939 // Remove <def,read-undef> flags. This def is now a partial redef.
2940 // Also remove dead flags since the joined live range will
2941 // continue past this instruction.
2942 for (MachineOperand &MO :
2943 Indexes->getInstructionFromIndex(Def)->operands()) {
2944 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2945 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
2946 MO.setIsUndef(false);
2947 MO.setIsDead(false);
2951 // This value will reach instructions below, but we need to make sure
2952 // the live range also reaches the instruction at Def.
2953 if (!EraseImpDef)
2954 EndPoints.push_back(Def);
2956 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
2957 << ": " << Other.LR << '\n');
2958 break;
2960 case CR_Erase:
2961 case CR_Merge:
2962 if (isPrunedValue(i, Other)) {
2963 // This value is ultimately a copy of a pruned value in LR or Other.LR.
2964 // We can no longer trust the value mapping computed by
2965 // computeAssignment(), the value that was originally copied could have
2966 // been replaced.
2967 LIS->pruneValue(LR, Def, &EndPoints);
2968 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
2969 << Def << ": " << LR << '\n');
2971 break;
2972 case CR_Unresolved:
2973 case CR_Impossible:
2974 llvm_unreachable("Unresolved conflicts");
2979 /// Consider the following situation when coalescing the copy between
2980 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
2982 /// Main range Subrange 0004 (sub2)
2983 /// %31 %45 %31 %45
2984 /// 544 %45 = COPY %28 + +
2985 /// | v1 | v1
2986 /// 560B bb.1: + +
2987 /// 624 = %45.sub2 | v2 | v2
2988 /// 800 %31 = COPY %45 + + + +
2989 /// | v0 | v0
2990 /// 816 %31.sub1 = ... + |
2991 /// 880 %30 = COPY %31 | v1 +
2992 /// 928 %45 = COPY %30 | + +
2993 /// | | v0 | v0 <--+
2994 /// 992B ; backedge -> bb.1 | + + |
2995 /// 1040 = %31.sub0 + |
2996 /// This value must remain
2997 /// live-out!
2999 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3000 /// redundant, since it copies the value from %45 back into it. The
3001 /// conflict resolution for the main range determines that %45.v0 is
3002 /// to be erased, which is ok since %31.v1 is identical to it.
3003 /// The problem happens with the subrange for sub2: it has to be live
3004 /// on exit from the block, but since 928 was actually a point of
3005 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3006 /// to that definition. As a result, when 928 was erased, the value v0
3007 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3008 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3009 /// providing an incorrect value to the use at 624.
3011 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3012 /// identical, the corresponding values in subranges must also be the
3013 /// same. A redundant copy is removed because it's not needed, and not
3014 /// because it copied an undefined value, so any liveness that originated
3015 /// from that copy cannot disappear. When pruning a value that started
3016 /// at the removed copy, the corresponding identical value must be
3017 /// extended to replace it.
3018 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3019 // Look for values being erased.
3020 bool DidPrune = false;
3021 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3022 Val &V = Vals[i];
3023 // We should trigger in all cases in which eraseInstrs() does something.
3024 // match what eraseInstrs() is doing, print a message so
3025 if (V.Resolution != CR_Erase &&
3026 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3027 continue;
3029 // Check subranges at the point where the copy will be removed.
3030 SlotIndex Def = LR.getValNumInfo(i)->def;
3031 SlotIndex OtherDef;
3032 if (V.Identical)
3033 OtherDef = V.OtherVNI->def;
3035 // Print message so mismatches with eraseInstrs() can be diagnosed.
3036 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3037 << '\n');
3038 for (LiveInterval::SubRange &S : LI.subranges()) {
3039 LiveQueryResult Q = S.Query(Def);
3041 // If a subrange starts at the copy then an undefined value has been
3042 // copied and we must remove that subrange value as well.
3043 VNInfo *ValueOut = Q.valueOutOrDead();
3044 if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3045 (V.Identical && V.Resolution == CR_Erase &&
3046 ValueOut->def == Def))) {
3047 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3048 << " at " << Def << "\n");
3049 SmallVector<SlotIndex,8> EndPoints;
3050 LIS->pruneValue(S, Def, &EndPoints);
3051 DidPrune = true;
3052 // Mark value number as unused.
3053 ValueOut->markUnused();
3055 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3056 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3057 // then we can't simply prune V from S. V needs to be replaced
3058 // with V.OtherVNI.
3059 LIS->extendToIndices(S, EndPoints);
3061 continue;
3063 // If a subrange ends at the copy, then a value was copied but only
3064 // partially used later. Shrink the subregister range appropriately.
3065 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3066 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3067 << PrintLaneMask(S.LaneMask) << " at " << Def
3068 << "\n");
3069 ShrinkMask |= S.LaneMask;
3073 if (DidPrune)
3074 LI.removeEmptySubRanges();
3077 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3078 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3079 for (LiveInterval::SubRange &SR : LI.subranges()) {
3080 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3081 if (VNI->def == Def)
3082 return true;
3084 return false;
3087 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3088 assert(&static_cast<LiveRange&>(LI) == &LR);
3090 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3091 if (Vals[i].Resolution != CR_Keep)
3092 continue;
3093 VNInfo *VNI = LR.getValNumInfo(i);
3094 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3095 continue;
3096 Vals[i].Pruned = true;
3097 ShrinkMainRange = true;
3101 void JoinVals::removeImplicitDefs() {
3102 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3103 Val &V = Vals[i];
3104 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3105 continue;
3107 VNInfo *VNI = LR.getValNumInfo(i);
3108 VNI->markUnused();
3109 LR.removeValNo(VNI);
3113 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3114 SmallVectorImpl<unsigned> &ShrinkRegs,
3115 LiveInterval *LI) {
3116 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3117 // Get the def location before markUnused() below invalidates it.
3118 SlotIndex Def = LR.getValNumInfo(i)->def;
3119 switch (Vals[i].Resolution) {
3120 case CR_Keep: {
3121 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3122 // longer. The IMPLICIT_DEF instructions are only inserted by
3123 // PHIElimination to guarantee that all PHI predecessors have a value.
3124 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3125 break;
3126 // Remove value number i from LR.
3127 // For intervals with subranges, removing a segment from the main range
3128 // may require extending the previous segment: for each definition of
3129 // a subregister, there will be a corresponding def in the main range.
3130 // That def may fall in the middle of a segment from another subrange.
3131 // In such cases, removing this def from the main range must be
3132 // complemented by extending the main range to account for the liveness
3133 // of the other subrange.
3134 VNInfo *VNI = LR.getValNumInfo(i);
3135 SlotIndex Def = VNI->def;
3136 // The new end point of the main range segment to be extended.
3137 SlotIndex NewEnd;
3138 if (LI != nullptr) {
3139 LiveRange::iterator I = LR.FindSegmentContaining(Def);
3140 assert(I != LR.end());
3141 // Do not extend beyond the end of the segment being removed.
3142 // The segment may have been pruned in preparation for joining
3143 // live ranges.
3144 NewEnd = I->end;
3147 LR.removeValNo(VNI);
3148 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3149 // make it appear like an unused value number.
3150 VNI->markUnused();
3152 if (LI != nullptr && LI->hasSubRanges()) {
3153 assert(static_cast<LiveRange*>(LI) == &LR);
3154 // Determine the end point based on the subrange information:
3155 // minimum of (earliest def of next segment,
3156 // latest end point of containing segment)
3157 SlotIndex ED, LE;
3158 for (LiveInterval::SubRange &SR : LI->subranges()) {
3159 LiveRange::iterator I = SR.find(Def);
3160 if (I == SR.end())
3161 continue;
3162 if (I->start > Def)
3163 ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3164 else
3165 LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3167 if (LE.isValid())
3168 NewEnd = std::min(NewEnd, LE);
3169 if (ED.isValid())
3170 NewEnd = std::min(NewEnd, ED);
3172 // We only want to do the extension if there was a subrange that
3173 // was live across Def.
3174 if (LE.isValid()) {
3175 LiveRange::iterator S = LR.find(Def);
3176 if (S != LR.begin())
3177 std::prev(S)->end = NewEnd;
3180 LLVM_DEBUG({
3181 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3182 if (LI != nullptr)
3183 dbgs() << "\t\t LHS = " << *LI << '\n';
3185 LLVM_FALLTHROUGH;
3188 case CR_Erase: {
3189 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3190 assert(MI && "No instruction to erase");
3191 if (MI->isCopy()) {
3192 Register Reg = MI->getOperand(1).getReg();
3193 if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3194 Reg != CP.getDstReg())
3195 ShrinkRegs.push_back(Reg);
3197 ErasedInstrs.insert(MI);
3198 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3199 LIS->RemoveMachineInstrFromMaps(*MI);
3200 MI->eraseFromParent();
3201 break;
3203 default:
3204 break;
3209 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3210 LaneBitmask LaneMask,
3211 const CoalescerPair &CP) {
3212 SmallVector<VNInfo*, 16> NewVNInfo;
3213 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3214 NewVNInfo, CP, LIS, TRI, true, true);
3215 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3216 NewVNInfo, CP, LIS, TRI, true, true);
3218 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3219 // We should be able to resolve all conflicts here as we could successfully do
3220 // it on the mainrange already. There is however a problem when multiple
3221 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3222 // interferences.
3223 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3224 // We already determined that it is legal to merge the intervals, so this
3225 // should never fail.
3226 llvm_unreachable("*** Couldn't join subrange!\n");
3228 if (!LHSVals.resolveConflicts(RHSVals) ||
3229 !RHSVals.resolveConflicts(LHSVals)) {
3230 // We already determined that it is legal to merge the intervals, so this
3231 // should never fail.
3232 llvm_unreachable("*** Couldn't join subrange!\n");
3235 // The merging algorithm in LiveInterval::join() can't handle conflicting
3236 // value mappings, so we need to remove any live ranges that overlap a
3237 // CR_Replace resolution. Collect a set of end points that can be used to
3238 // restore the live range after joining.
3239 SmallVector<SlotIndex, 8> EndPoints;
3240 LHSVals.pruneValues(RHSVals, EndPoints, false);
3241 RHSVals.pruneValues(LHSVals, EndPoints, false);
3243 LHSVals.removeImplicitDefs();
3244 RHSVals.removeImplicitDefs();
3246 LRange.verify();
3247 RRange.verify();
3249 // Join RRange into LHS.
3250 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3251 NewVNInfo);
3253 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3254 << ' ' << LRange << "\n");
3255 if (EndPoints.empty())
3256 return;
3258 // Recompute the parts of the live range we had to remove because of
3259 // CR_Replace conflicts.
3260 LLVM_DEBUG({
3261 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3262 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3263 dbgs() << EndPoints[i];
3264 if (i != n-1)
3265 dbgs() << ',';
3267 dbgs() << ": " << LRange << '\n';
3269 LIS->extendToIndices(LRange, EndPoints);
3272 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3273 const LiveRange &ToMerge,
3274 LaneBitmask LaneMask,
3275 CoalescerPair &CP) {
3276 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3277 LI.refineSubRanges(
3278 Allocator, LaneMask,
3279 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3280 if (SR.empty()) {
3281 SR.assign(ToMerge, Allocator);
3282 } else {
3283 // joinSubRegRange() destroys the merged range, so we need a copy.
3284 LiveRange RangeCopy(ToMerge, Allocator);
3285 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3288 *LIS->getSlotIndexes(), *TRI);
3291 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3292 if (LI.valnos.size() < LargeIntervalSizeThreshold)
3293 return false;
3294 auto &Counter = LargeLIVisitCounter[LI.reg];
3295 if (Counter < LargeIntervalFreqThreshold) {
3296 Counter++;
3297 return false;
3299 return true;
3302 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3303 SmallVector<VNInfo*, 16> NewVNInfo;
3304 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3305 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3306 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3307 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3308 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3309 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3310 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3312 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3314 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3315 return false;
3317 // First compute NewVNInfo and the simple value mappings.
3318 // Detect impossible conflicts early.
3319 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3320 return false;
3322 // Some conflicts can only be resolved after all values have been mapped.
3323 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3324 return false;
3326 // All clear, the live ranges can be merged.
3327 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3328 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3330 // Transform lanemasks from the LHS to masks in the coalesced register and
3331 // create initial subranges if necessary.
3332 unsigned DstIdx = CP.getDstIdx();
3333 if (!LHS.hasSubRanges()) {
3334 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3335 : TRI->getSubRegIndexLaneMask(DstIdx);
3336 // LHS must support subregs or we wouldn't be in this codepath.
3337 assert(Mask.any());
3338 LHS.createSubRangeFrom(Allocator, Mask, LHS);
3339 } else if (DstIdx != 0) {
3340 // Transform LHS lanemasks to new register class if necessary.
3341 for (LiveInterval::SubRange &R : LHS.subranges()) {
3342 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3343 R.LaneMask = Mask;
3346 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3347 << '\n');
3349 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3350 unsigned SrcIdx = CP.getSrcIdx();
3351 if (!RHS.hasSubRanges()) {
3352 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3353 : TRI->getSubRegIndexLaneMask(SrcIdx);
3354 mergeSubRangeInto(LHS, RHS, Mask, CP);
3355 } else {
3356 // Pair up subranges and merge.
3357 for (LiveInterval::SubRange &R : RHS.subranges()) {
3358 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3359 mergeSubRangeInto(LHS, R, Mask, CP);
3362 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3364 // Pruning implicit defs from subranges may result in the main range
3365 // having stale segments.
3366 LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3368 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3369 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3372 // The merging algorithm in LiveInterval::join() can't handle conflicting
3373 // value mappings, so we need to remove any live ranges that overlap a
3374 // CR_Replace resolution. Collect a set of end points that can be used to
3375 // restore the live range after joining.
3376 SmallVector<SlotIndex, 8> EndPoints;
3377 LHSVals.pruneValues(RHSVals, EndPoints, true);
3378 RHSVals.pruneValues(LHSVals, EndPoints, true);
3380 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3381 // registers to require trimming.
3382 SmallVector<unsigned, 8> ShrinkRegs;
3383 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3384 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3385 while (!ShrinkRegs.empty())
3386 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3388 // Join RHS into LHS.
3389 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3391 // Kill flags are going to be wrong if the live ranges were overlapping.
3392 // Eventually, we should simply clear all kill flags when computing live
3393 // ranges. They are reinserted after register allocation.
3394 MRI->clearKillFlags(LHS.reg);
3395 MRI->clearKillFlags(RHS.reg);
3397 if (!EndPoints.empty()) {
3398 // Recompute the parts of the live range we had to remove because of
3399 // CR_Replace conflicts.
3400 LLVM_DEBUG({
3401 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3402 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3403 dbgs() << EndPoints[i];
3404 if (i != n-1)
3405 dbgs() << ',';
3407 dbgs() << ": " << LHS << '\n';
3409 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3412 return true;
3415 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3416 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3419 namespace {
3421 /// Information concerning MBB coalescing priority.
3422 struct MBBPriorityInfo {
3423 MachineBasicBlock *MBB;
3424 unsigned Depth;
3425 bool IsSplit;
3427 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3428 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3431 } // end anonymous namespace
3433 /// C-style comparator that sorts first based on the loop depth of the basic
3434 /// block (the unsigned), and then on the MBB number.
3436 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3437 static int compareMBBPriority(const MBBPriorityInfo *LHS,
3438 const MBBPriorityInfo *RHS) {
3439 // Deeper loops first
3440 if (LHS->Depth != RHS->Depth)
3441 return LHS->Depth > RHS->Depth ? -1 : 1;
3443 // Try to unsplit critical edges next.
3444 if (LHS->IsSplit != RHS->IsSplit)
3445 return LHS->IsSplit ? -1 : 1;
3447 // Prefer blocks that are more connected in the CFG. This takes care of
3448 // the most difficult copies first while intervals are short.
3449 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3450 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3451 if (cl != cr)
3452 return cl > cr ? -1 : 1;
3454 // As a last resort, sort by block number.
3455 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3458 /// \returns true if the given copy uses or defines a local live range.
3459 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3460 if (!Copy->isCopy())
3461 return false;
3463 if (Copy->getOperand(1).isUndef())
3464 return false;
3466 Register SrcReg = Copy->getOperand(1).getReg();
3467 Register DstReg = Copy->getOperand(0).getReg();
3468 if (Register::isPhysicalRegister(SrcReg) ||
3469 Register::isPhysicalRegister(DstReg))
3470 return false;
3472 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3473 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3476 void RegisterCoalescer::lateLiveIntervalUpdate() {
3477 for (unsigned reg : ToBeUpdated) {
3478 if (!LIS->hasInterval(reg))
3479 continue;
3480 LiveInterval &LI = LIS->getInterval(reg);
3481 shrinkToUses(&LI, &DeadDefs);
3482 if (!DeadDefs.empty())
3483 eliminateDeadDefs();
3485 ToBeUpdated.clear();
3488 bool RegisterCoalescer::
3489 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3490 bool Progress = false;
3491 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3492 if (!CurrList[i])
3493 continue;
3494 // Skip instruction pointers that have already been erased, for example by
3495 // dead code elimination.
3496 if (ErasedInstrs.count(CurrList[i])) {
3497 CurrList[i] = nullptr;
3498 continue;
3500 bool Again = false;
3501 bool Success = joinCopy(CurrList[i], Again);
3502 Progress |= Success;
3503 if (Success || !Again)
3504 CurrList[i] = nullptr;
3506 return Progress;
3509 /// Check if DstReg is a terminal node.
3510 /// I.e., it does not have any affinity other than \p Copy.
3511 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3512 const MachineRegisterInfo *MRI) {
3513 assert(Copy.isCopyLike());
3514 // Check if the destination of this copy as any other affinity.
3515 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3516 if (&MI != &Copy && MI.isCopyLike())
3517 return false;
3518 return true;
3521 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3522 assert(Copy.isCopyLike());
3523 if (!UseTerminalRule)
3524 return false;
3525 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3526 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3527 return false;
3528 // Check if the destination of this copy has any other affinity.
3529 if (Register::isPhysicalRegister(DstReg) ||
3530 // If SrcReg is a physical register, the copy won't be coalesced.
3531 // Ignoring it may have other side effect (like missing
3532 // rematerialization). So keep it.
3533 Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI))
3534 return false;
3536 // DstReg is a terminal node. Check if it interferes with any other
3537 // copy involving SrcReg.
3538 const MachineBasicBlock *OrigBB = Copy.getParent();
3539 const LiveInterval &DstLI = LIS->getInterval(DstReg);
3540 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3541 // Technically we should check if the weight of the new copy is
3542 // interesting compared to the other one and update the weight
3543 // of the copies accordingly. However, this would only work if
3544 // we would gather all the copies first then coalesce, whereas
3545 // right now we interleave both actions.
3546 // For now, just consider the copies that are in the same block.
3547 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3548 continue;
3549 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3550 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3551 OtherSubReg))
3552 return false;
3553 if (OtherReg == SrcReg)
3554 OtherReg = OtherSrcReg;
3555 // Check if OtherReg is a non-terminal.
3556 if (Register::isPhysicalRegister(OtherReg) ||
3557 isTerminalReg(OtherReg, MI, MRI))
3558 continue;
3559 // Check that OtherReg interfere with DstReg.
3560 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3561 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3562 << '\n');
3563 return true;
3566 return false;
3569 void
3570 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3571 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3573 // Collect all copy-like instructions in MBB. Don't start coalescing anything
3574 // yet, it might invalidate the iterator.
3575 const unsigned PrevSize = WorkList.size();
3576 if (JoinGlobalCopies) {
3577 SmallVector<MachineInstr*, 2> LocalTerminals;
3578 SmallVector<MachineInstr*, 2> GlobalTerminals;
3579 // Coalesce copies bottom-up to coalesce local defs before local uses. They
3580 // are not inherently easier to resolve, but slightly preferable until we
3581 // have local live range splitting. In particular this is required by
3582 // cmp+jmp macro fusion.
3583 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3584 MII != E; ++MII) {
3585 if (!MII->isCopyLike())
3586 continue;
3587 bool ApplyTerminalRule = applyTerminalRule(*MII);
3588 if (isLocalCopy(&(*MII), LIS)) {
3589 if (ApplyTerminalRule)
3590 LocalTerminals.push_back(&(*MII));
3591 else
3592 LocalWorkList.push_back(&(*MII));
3593 } else {
3594 if (ApplyTerminalRule)
3595 GlobalTerminals.push_back(&(*MII));
3596 else
3597 WorkList.push_back(&(*MII));
3600 // Append the copies evicted by the terminal rule at the end of the list.
3601 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3602 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3604 else {
3605 SmallVector<MachineInstr*, 2> Terminals;
3606 for (MachineInstr &MII : *MBB)
3607 if (MII.isCopyLike()) {
3608 if (applyTerminalRule(MII))
3609 Terminals.push_back(&MII);
3610 else
3611 WorkList.push_back(&MII);
3613 // Append the copies evicted by the terminal rule at the end of the list.
3614 WorkList.append(Terminals.begin(), Terminals.end());
3616 // Try coalescing the collected copies immediately, and remove the nulls.
3617 // This prevents the WorkList from getting too large since most copies are
3618 // joinable on the first attempt.
3619 MutableArrayRef<MachineInstr*>
3620 CurrList(WorkList.begin() + PrevSize, WorkList.end());
3621 if (copyCoalesceWorkList(CurrList))
3622 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3623 nullptr), WorkList.end());
3626 void RegisterCoalescer::coalesceLocals() {
3627 copyCoalesceWorkList(LocalWorkList);
3628 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3629 if (LocalWorkList[j])
3630 WorkList.push_back(LocalWorkList[j]);
3632 LocalWorkList.clear();
3635 void RegisterCoalescer::joinAllIntervals() {
3636 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3637 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3639 std::vector<MBBPriorityInfo> MBBs;
3640 MBBs.reserve(MF->size());
3641 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3642 MachineBasicBlock *MBB = &*I;
3643 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3644 JoinSplitEdges && isSplitEdge(MBB)));
3646 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3648 // Coalesce intervals in MBB priority order.
3649 unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3650 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3651 // Try coalescing the collected local copies for deeper loops.
3652 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3653 coalesceLocals();
3654 CurrDepth = MBBs[i].Depth;
3656 copyCoalesceInMBB(MBBs[i].MBB);
3658 lateLiveIntervalUpdate();
3659 coalesceLocals();
3661 // Joining intervals can allow other intervals to be joined. Iteratively join
3662 // until we make no progress.
3663 while (copyCoalesceWorkList(WorkList))
3664 /* empty */ ;
3665 lateLiveIntervalUpdate();
3668 void RegisterCoalescer::releaseMemory() {
3669 ErasedInstrs.clear();
3670 WorkList.clear();
3671 DeadDefs.clear();
3672 InflateRegs.clear();
3673 LargeLIVisitCounter.clear();
3676 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3677 MF = &fn;
3678 MRI = &fn.getRegInfo();
3679 const TargetSubtargetInfo &STI = fn.getSubtarget();
3680 TRI = STI.getRegisterInfo();
3681 TII = STI.getInstrInfo();
3682 LIS = &getAnalysis<LiveIntervals>();
3683 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3684 Loops = &getAnalysis<MachineLoopInfo>();
3685 if (EnableGlobalCopies == cl::BOU_UNSET)
3686 JoinGlobalCopies = STI.enableJoinGlobalCopies();
3687 else
3688 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3690 // The MachineScheduler does not currently require JoinSplitEdges. This will
3691 // either be enabled unconditionally or replaced by a more general live range
3692 // splitting optimization.
3693 JoinSplitEdges = EnableJoinSplits;
3695 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3696 << "********** Function: " << MF->getName() << '\n');
3698 if (VerifyCoalescing)
3699 MF->verify(this, "Before register coalescing");
3701 RegClassInfo.runOnMachineFunction(fn);
3703 // Join (coalesce) intervals if requested.
3704 if (EnableJoining)
3705 joinAllIntervals();
3707 // After deleting a lot of copies, register classes may be less constrained.
3708 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3709 // DPR inflation.
3710 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3711 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3712 InflateRegs.end());
3713 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3714 << " regs.\n");
3715 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3716 unsigned Reg = InflateRegs[i];
3717 if (MRI->reg_nodbg_empty(Reg))
3718 continue;
3719 if (MRI->recomputeRegClass(Reg)) {
3720 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3721 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3722 ++NumInflated;
3724 LiveInterval &LI = LIS->getInterval(Reg);
3725 if (LI.hasSubRanges()) {
3726 // If the inflated register class does not support subregisters anymore
3727 // remove the subranges.
3728 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3729 LI.clearSubRanges();
3730 } else {
3731 #ifndef NDEBUG
3732 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3733 // If subranges are still supported, then the same subregs
3734 // should still be supported.
3735 for (LiveInterval::SubRange &S : LI.subranges()) {
3736 assert((S.LaneMask & ~MaxMask).none());
3738 #endif
3744 LLVM_DEBUG(dump());
3745 if (VerifyCoalescing)
3746 MF->verify(this, "After register coalescing");
3747 return true;
3750 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3751 LIS->print(O, m);