[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / CodeGen / SelectionDAG / LegalizeVectorOps.cpp
blob15c3a0b6cfadf0847538299dfe0e851891c05cad
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types. For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
50 using namespace llvm;
52 #define DEBUG_TYPE "legalizevectorops"
54 namespace {
56 class VectorLegalizer {
57 SelectionDAG& DAG;
58 const TargetLowering &TLI;
59 bool Changed = false; // Keep track of whether anything changed
61 /// For nodes that are of legal width, and that have more than one use, this
62 /// map indicates what regularized operand to use. This allows us to avoid
63 /// legalizing the same thing more than once.
64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
66 /// Adds a node to the translation cache.
67 void AddLegalizedOperand(SDValue From, SDValue To) {
68 LegalizedNodes.insert(std::make_pair(From, To));
69 // If someone requests legalization of the new node, return itself.
70 if (From != To)
71 LegalizedNodes.insert(std::make_pair(To, To));
74 /// Legalizes the given node.
75 SDValue LegalizeOp(SDValue Op);
77 /// Assuming the node is legal, "legalize" the results.
78 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
80 /// Implements unrolling a VSETCC.
81 SDValue UnrollVSETCC(SDValue Op);
83 /// Implement expand-based legalization of vector operations.
84 ///
85 /// This is just a high-level routine to dispatch to specific code paths for
86 /// operations to legalize them.
87 SDValue Expand(SDValue Op);
89 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
90 /// FP_TO_SINT isn't legal.
91 SDValue ExpandFP_TO_UINT(SDValue Op);
93 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
94 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
95 SDValue ExpandUINT_TO_FLOAT(SDValue Op);
97 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
98 SDValue ExpandSEXTINREG(SDValue Op);
100 /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
102 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
103 /// type. The contents of the bits in the extended part of each element are
104 /// undef.
105 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
107 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
109 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
110 /// type, then shifts left and arithmetic shifts right to introduce a sign
111 /// extension.
112 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
114 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
116 /// Shuffles the low lanes of the operand into place and blends zeros into
117 /// the remaining lanes, finally bitcasting to the proper type.
118 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
120 /// Implement expand-based legalization of ABS vector operations.
121 /// If following expanding is legal/custom then do it:
122 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
123 /// else unroll the operation.
124 SDValue ExpandABS(SDValue Op);
126 /// Expand bswap of vectors into a shuffle if legal.
127 SDValue ExpandBSWAP(SDValue Op);
129 /// Implement vselect in terms of XOR, AND, OR when blend is not
130 /// supported by the target.
131 SDValue ExpandVSELECT(SDValue Op);
132 SDValue ExpandSELECT(SDValue Op);
133 SDValue ExpandLoad(SDValue Op);
134 SDValue ExpandStore(SDValue Op);
135 SDValue ExpandFNEG(SDValue Op);
136 SDValue ExpandFSUB(SDValue Op);
137 SDValue ExpandBITREVERSE(SDValue Op);
138 SDValue ExpandCTPOP(SDValue Op);
139 SDValue ExpandCTLZ(SDValue Op);
140 SDValue ExpandCTTZ(SDValue Op);
141 SDValue ExpandFunnelShift(SDValue Op);
142 SDValue ExpandROT(SDValue Op);
143 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
144 SDValue ExpandUADDSUBO(SDValue Op);
145 SDValue ExpandSADDSUBO(SDValue Op);
146 SDValue ExpandMULO(SDValue Op);
147 SDValue ExpandAddSubSat(SDValue Op);
148 SDValue ExpandFixedPointMul(SDValue Op);
149 SDValue ExpandStrictFPOp(SDValue Op);
151 /// Implements vector promotion.
153 /// This is essentially just bitcasting the operands to a different type and
154 /// bitcasting the result back to the original type.
155 SDValue Promote(SDValue Op);
157 /// Implements [SU]INT_TO_FP vector promotion.
159 /// This is a [zs]ext of the input operand to a larger integer type.
160 SDValue PromoteINT_TO_FP(SDValue Op);
162 /// Implements FP_TO_[SU]INT vector promotion of the result type.
164 /// It is promoted to a larger integer type. The result is then
165 /// truncated back to the original type.
166 SDValue PromoteFP_TO_INT(SDValue Op);
168 public:
169 VectorLegalizer(SelectionDAG& dag) :
170 DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
172 /// Begin legalizer the vector operations in the DAG.
173 bool Run();
176 } // end anonymous namespace
178 bool VectorLegalizer::Run() {
179 // Before we start legalizing vector nodes, check if there are any vectors.
180 bool HasVectors = false;
181 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
182 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
183 // Check if the values of the nodes contain vectors. We don't need to check
184 // the operands because we are going to check their values at some point.
185 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
186 J != E; ++J)
187 HasVectors |= J->isVector();
189 // If we found a vector node we can start the legalization.
190 if (HasVectors)
191 break;
194 // If this basic block has no vectors then no need to legalize vectors.
195 if (!HasVectors)
196 return false;
198 // The legalize process is inherently a bottom-up recursive process (users
199 // legalize their uses before themselves). Given infinite stack space, we
200 // could just start legalizing on the root and traverse the whole graph. In
201 // practice however, this causes us to run out of stack space on large basic
202 // blocks. To avoid this problem, compute an ordering of the nodes where each
203 // node is only legalized after all of its operands are legalized.
204 DAG.AssignTopologicalOrder();
205 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
206 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
207 LegalizeOp(SDValue(&*I, 0));
209 // Finally, it's possible the root changed. Get the new root.
210 SDValue OldRoot = DAG.getRoot();
211 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
212 DAG.setRoot(LegalizedNodes[OldRoot]);
214 LegalizedNodes.clear();
216 // Remove dead nodes now.
217 DAG.RemoveDeadNodes();
219 return Changed;
222 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
223 // Generic legalization: just pass the operand through.
224 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
225 AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
226 return Result.getValue(Op.getResNo());
229 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
230 // Note that LegalizeOp may be reentered even from single-use nodes, which
231 // means that we always must cache transformed nodes.
232 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
233 if (I != LegalizedNodes.end()) return I->second;
235 SDNode* Node = Op.getNode();
237 // Legalize the operands
238 SmallVector<SDValue, 8> Ops;
239 for (const SDValue &Op : Node->op_values())
240 Ops.push_back(LegalizeOp(Op));
242 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
243 Op.getResNo());
245 if (Op.getOpcode() == ISD::LOAD) {
246 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
247 ISD::LoadExtType ExtType = LD->getExtensionType();
248 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
249 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
250 Node->dump(&DAG));
251 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
252 LD->getMemoryVT())) {
253 default: llvm_unreachable("This action is not supported yet!");
254 case TargetLowering::Legal:
255 return TranslateLegalizeResults(Op, Result);
256 case TargetLowering::Custom:
257 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
258 assert(Lowered->getNumValues() == Op->getNumValues() &&
259 "Unexpected number of results");
260 if (Lowered != Result) {
261 // Make sure the new code is also legal.
262 Lowered = LegalizeOp(Lowered);
263 Changed = true;
265 return TranslateLegalizeResults(Op, Lowered);
267 LLVM_FALLTHROUGH;
268 case TargetLowering::Expand:
269 Changed = true;
270 return ExpandLoad(Op);
273 } else if (Op.getOpcode() == ISD::STORE) {
274 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
275 EVT StVT = ST->getMemoryVT();
276 MVT ValVT = ST->getValue().getSimpleValueType();
277 if (StVT.isVector() && ST->isTruncatingStore()) {
278 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
279 Node->dump(&DAG));
280 switch (TLI.getTruncStoreAction(ValVT, StVT)) {
281 default: llvm_unreachable("This action is not supported yet!");
282 case TargetLowering::Legal:
283 return TranslateLegalizeResults(Op, Result);
284 case TargetLowering::Custom: {
285 SDValue Lowered = TLI.LowerOperation(Result, DAG);
286 if (Lowered != Result) {
287 // Make sure the new code is also legal.
288 Lowered = LegalizeOp(Lowered);
289 Changed = true;
291 return TranslateLegalizeResults(Op, Lowered);
293 case TargetLowering::Expand:
294 Changed = true;
295 return ExpandStore(Op);
300 bool HasVectorValueOrOp = false;
301 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J)
302 HasVectorValueOrOp |= J->isVector();
303 for (const SDValue &Op : Node->op_values())
304 HasVectorValueOrOp |= Op.getValueType().isVector();
306 if (!HasVectorValueOrOp)
307 return TranslateLegalizeResults(Op, Result);
309 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
310 switch (Op.getOpcode()) {
311 default:
312 return TranslateLegalizeResults(Op, Result);
313 case ISD::STRICT_FADD:
314 case ISD::STRICT_FSUB:
315 case ISD::STRICT_FMUL:
316 case ISD::STRICT_FDIV:
317 case ISD::STRICT_FREM:
318 case ISD::STRICT_FSQRT:
319 case ISD::STRICT_FMA:
320 case ISD::STRICT_FPOW:
321 case ISD::STRICT_FPOWI:
322 case ISD::STRICT_FSIN:
323 case ISD::STRICT_FCOS:
324 case ISD::STRICT_FEXP:
325 case ISD::STRICT_FEXP2:
326 case ISD::STRICT_FLOG:
327 case ISD::STRICT_FLOG10:
328 case ISD::STRICT_FLOG2:
329 case ISD::STRICT_FRINT:
330 case ISD::STRICT_FNEARBYINT:
331 case ISD::STRICT_FMAXNUM:
332 case ISD::STRICT_FMINNUM:
333 case ISD::STRICT_FCEIL:
334 case ISD::STRICT_FFLOOR:
335 case ISD::STRICT_FROUND:
336 case ISD::STRICT_FTRUNC:
337 case ISD::STRICT_FP_TO_SINT:
338 case ISD::STRICT_FP_TO_UINT:
339 case ISD::STRICT_FP_ROUND:
340 case ISD::STRICT_FP_EXTEND:
341 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
342 // If we're asked to expand a strict vector floating-point operation,
343 // by default we're going to simply unroll it. That is usually the
344 // best approach, except in the case where the resulting strict (scalar)
345 // operations would themselves use the fallback mutation to non-strict.
346 // In that specific case, just do the fallback on the vector op.
347 if (Action == TargetLowering::Expand &&
348 TLI.getStrictFPOperationAction(Node->getOpcode(),
349 Node->getValueType(0))
350 == TargetLowering::Legal) {
351 EVT EltVT = Node->getValueType(0).getVectorElementType();
352 if (TLI.getOperationAction(Node->getOpcode(), EltVT)
353 == TargetLowering::Expand &&
354 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
355 == TargetLowering::Legal)
356 Action = TargetLowering::Legal;
358 break;
359 case ISD::ADD:
360 case ISD::SUB:
361 case ISD::MUL:
362 case ISD::MULHS:
363 case ISD::MULHU:
364 case ISD::SDIV:
365 case ISD::UDIV:
366 case ISD::SREM:
367 case ISD::UREM:
368 case ISD::SDIVREM:
369 case ISD::UDIVREM:
370 case ISD::FADD:
371 case ISD::FSUB:
372 case ISD::FMUL:
373 case ISD::FDIV:
374 case ISD::FREM:
375 case ISD::AND:
376 case ISD::OR:
377 case ISD::XOR:
378 case ISD::SHL:
379 case ISD::SRA:
380 case ISD::SRL:
381 case ISD::FSHL:
382 case ISD::FSHR:
383 case ISD::ROTL:
384 case ISD::ROTR:
385 case ISD::ABS:
386 case ISD::BSWAP:
387 case ISD::BITREVERSE:
388 case ISD::CTLZ:
389 case ISD::CTTZ:
390 case ISD::CTLZ_ZERO_UNDEF:
391 case ISD::CTTZ_ZERO_UNDEF:
392 case ISD::CTPOP:
393 case ISD::SELECT:
394 case ISD::VSELECT:
395 case ISD::SELECT_CC:
396 case ISD::SETCC:
397 case ISD::ZERO_EXTEND:
398 case ISD::ANY_EXTEND:
399 case ISD::TRUNCATE:
400 case ISD::SIGN_EXTEND:
401 case ISD::FP_TO_SINT:
402 case ISD::FP_TO_UINT:
403 case ISD::FNEG:
404 case ISD::FABS:
405 case ISD::FMINNUM:
406 case ISD::FMAXNUM:
407 case ISD::FMINNUM_IEEE:
408 case ISD::FMAXNUM_IEEE:
409 case ISD::FMINIMUM:
410 case ISD::FMAXIMUM:
411 case ISD::FCOPYSIGN:
412 case ISD::FSQRT:
413 case ISD::FSIN:
414 case ISD::FCOS:
415 case ISD::FPOWI:
416 case ISD::FPOW:
417 case ISD::FLOG:
418 case ISD::FLOG2:
419 case ISD::FLOG10:
420 case ISD::FEXP:
421 case ISD::FEXP2:
422 case ISD::FCEIL:
423 case ISD::FTRUNC:
424 case ISD::FRINT:
425 case ISD::FNEARBYINT:
426 case ISD::FROUND:
427 case ISD::FFLOOR:
428 case ISD::FP_ROUND:
429 case ISD::FP_EXTEND:
430 case ISD::FMA:
431 case ISD::SIGN_EXTEND_INREG:
432 case ISD::ANY_EXTEND_VECTOR_INREG:
433 case ISD::SIGN_EXTEND_VECTOR_INREG:
434 case ISD::ZERO_EXTEND_VECTOR_INREG:
435 case ISD::SMIN:
436 case ISD::SMAX:
437 case ISD::UMIN:
438 case ISD::UMAX:
439 case ISD::SMUL_LOHI:
440 case ISD::UMUL_LOHI:
441 case ISD::SADDO:
442 case ISD::UADDO:
443 case ISD::SSUBO:
444 case ISD::USUBO:
445 case ISD::SMULO:
446 case ISD::UMULO:
447 case ISD::FCANONICALIZE:
448 case ISD::SADDSAT:
449 case ISD::UADDSAT:
450 case ISD::SSUBSAT:
451 case ISD::USUBSAT:
452 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
453 break;
454 case ISD::SMULFIX:
455 case ISD::SMULFIXSAT:
456 case ISD::UMULFIX:
457 case ISD::UMULFIXSAT: {
458 unsigned Scale = Node->getConstantOperandVal(2);
459 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
460 Node->getValueType(0), Scale);
461 break;
463 case ISD::SINT_TO_FP:
464 case ISD::UINT_TO_FP:
465 case ISD::VECREDUCE_ADD:
466 case ISD::VECREDUCE_MUL:
467 case ISD::VECREDUCE_AND:
468 case ISD::VECREDUCE_OR:
469 case ISD::VECREDUCE_XOR:
470 case ISD::VECREDUCE_SMAX:
471 case ISD::VECREDUCE_SMIN:
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VECREDUCE_UMIN:
474 case ISD::VECREDUCE_FADD:
475 case ISD::VECREDUCE_FMUL:
476 case ISD::VECREDUCE_FMAX:
477 case ISD::VECREDUCE_FMIN:
478 Action = TLI.getOperationAction(Node->getOpcode(),
479 Node->getOperand(0).getValueType());
480 break;
483 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
485 switch (Action) {
486 default: llvm_unreachable("This action is not supported yet!");
487 case TargetLowering::Promote:
488 Result = Promote(Op);
489 Changed = true;
490 break;
491 case TargetLowering::Legal:
492 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
493 break;
494 case TargetLowering::Custom: {
495 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
496 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
497 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
498 Result = Tmp1;
499 break;
501 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
502 LLVM_FALLTHROUGH;
504 case TargetLowering::Expand:
505 Result = Expand(Op);
508 // Make sure that the generated code is itself legal.
509 if (Result != Op) {
510 Result = LegalizeOp(Result);
511 Changed = true;
514 // Note that LegalizeOp may be reentered even from single-use nodes, which
515 // means that we always must cache transformed nodes.
516 AddLegalizedOperand(Op, Result);
517 return Result;
520 SDValue VectorLegalizer::Promote(SDValue Op) {
521 // For a few operations there is a specific concept for promotion based on
522 // the operand's type.
523 switch (Op.getOpcode()) {
524 case ISD::SINT_TO_FP:
525 case ISD::UINT_TO_FP:
526 // "Promote" the operation by extending the operand.
527 return PromoteINT_TO_FP(Op);
528 case ISD::FP_TO_UINT:
529 case ISD::FP_TO_SINT:
530 // Promote the operation by extending the operand.
531 return PromoteFP_TO_INT(Op);
534 // There are currently two cases of vector promotion:
535 // 1) Bitcasting a vector of integers to a different type to a vector of the
536 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
537 // 2) Extending a vector of floats to a vector of the same number of larger
538 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
539 MVT VT = Op.getSimpleValueType();
540 assert(Op.getNode()->getNumValues() == 1 &&
541 "Can't promote a vector with multiple results!");
542 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
543 SDLoc dl(Op);
544 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
546 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
547 if (Op.getOperand(j).getValueType().isVector())
548 if (Op.getOperand(j)
549 .getValueType()
550 .getVectorElementType()
551 .isFloatingPoint() &&
552 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
553 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
554 else
555 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
556 else
557 Operands[j] = Op.getOperand(j);
560 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
561 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
562 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
563 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
564 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
565 else
566 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
569 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
570 // INT_TO_FP operations may require the input operand be promoted even
571 // when the type is otherwise legal.
572 MVT VT = Op.getOperand(0).getSimpleValueType();
573 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
574 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
575 "Vectors have different number of elements!");
577 SDLoc dl(Op);
578 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
580 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
581 ISD::SIGN_EXTEND;
582 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
583 if (Op.getOperand(j).getValueType().isVector())
584 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
585 else
586 Operands[j] = Op.getOperand(j);
589 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
592 // For FP_TO_INT we promote the result type to a vector type with wider
593 // elements and then truncate the result. This is different from the default
594 // PromoteVector which uses bitcast to promote thus assumning that the
595 // promoted vector type has the same overall size.
596 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
597 MVT VT = Op.getSimpleValueType();
598 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
599 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
600 "Vectors have different number of elements!");
602 unsigned NewOpc = Op->getOpcode();
603 // Change FP_TO_UINT to FP_TO_SINT if possible.
604 // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
605 if (NewOpc == ISD::FP_TO_UINT &&
606 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
607 NewOpc = ISD::FP_TO_SINT;
609 SDLoc dl(Op);
610 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
612 // Assert that the converted value fits in the original type. If it doesn't
613 // (eg: because the value being converted is too big), then the result of the
614 // original operation was undefined anyway, so the assert is still correct.
615 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
616 : ISD::AssertSext,
617 dl, NVT, Promoted,
618 DAG.getValueType(VT.getScalarType()));
619 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
622 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
623 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
625 EVT SrcVT = LD->getMemoryVT();
626 EVT SrcEltVT = SrcVT.getScalarType();
627 unsigned NumElem = SrcVT.getVectorNumElements();
629 SDValue NewChain;
630 SDValue Value;
631 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
632 SDLoc dl(Op);
634 SmallVector<SDValue, 8> Vals;
635 SmallVector<SDValue, 8> LoadChains;
637 EVT DstEltVT = LD->getValueType(0).getScalarType();
638 SDValue Chain = LD->getChain();
639 SDValue BasePTR = LD->getBasePtr();
640 ISD::LoadExtType ExtType = LD->getExtensionType();
642 // When elements in a vector is not byte-addressable, we cannot directly
643 // load each element by advancing pointer, which could only address bytes.
644 // Instead, we load all significant words, mask bits off, and concatenate
645 // them to form each element. Finally, they are extended to destination
646 // scalar type to build the destination vector.
647 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
649 assert(WideVT.isRound() &&
650 "Could not handle the sophisticated case when the widest integer is"
651 " not power of 2.");
652 assert(WideVT.bitsGE(SrcEltVT) &&
653 "Type is not legalized?");
655 unsigned WideBytes = WideVT.getStoreSize();
656 unsigned Offset = 0;
657 unsigned RemainingBytes = SrcVT.getStoreSize();
658 SmallVector<SDValue, 8> LoadVals;
659 while (RemainingBytes > 0) {
660 SDValue ScalarLoad;
661 unsigned LoadBytes = WideBytes;
663 if (RemainingBytes >= LoadBytes) {
664 ScalarLoad =
665 DAG.getLoad(WideVT, dl, Chain, BasePTR,
666 LD->getPointerInfo().getWithOffset(Offset),
667 MinAlign(LD->getAlignment(), Offset),
668 LD->getMemOperand()->getFlags(), LD->getAAInfo());
669 } else {
670 EVT LoadVT = WideVT;
671 while (RemainingBytes < LoadBytes) {
672 LoadBytes >>= 1; // Reduce the load size by half.
673 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
675 ScalarLoad =
676 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
677 LD->getPointerInfo().getWithOffset(Offset), LoadVT,
678 MinAlign(LD->getAlignment(), Offset),
679 LD->getMemOperand()->getFlags(), LD->getAAInfo());
682 RemainingBytes -= LoadBytes;
683 Offset += LoadBytes;
685 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
687 LoadVals.push_back(ScalarLoad.getValue(0));
688 LoadChains.push_back(ScalarLoad.getValue(1));
691 unsigned BitOffset = 0;
692 unsigned WideIdx = 0;
693 unsigned WideBits = WideVT.getSizeInBits();
695 // Extract bits, pack and extend/trunc them into destination type.
696 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
697 SDValue SrcEltBitMask = DAG.getConstant(
698 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT);
700 for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
701 assert(BitOffset < WideBits && "Unexpected offset!");
703 SDValue ShAmt = DAG.getConstant(
704 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
705 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
707 BitOffset += SrcEltBits;
708 if (BitOffset >= WideBits) {
709 WideIdx++;
710 BitOffset -= WideBits;
711 if (BitOffset > 0) {
712 ShAmt = DAG.getConstant(
713 SrcEltBits - BitOffset, dl,
714 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
715 SDValue Hi =
716 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
717 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
721 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
723 switch (ExtType) {
724 default: llvm_unreachable("Unknown extended-load op!");
725 case ISD::EXTLOAD:
726 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
727 break;
728 case ISD::ZEXTLOAD:
729 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
730 break;
731 case ISD::SEXTLOAD:
732 ShAmt =
733 DAG.getConstant(WideBits - SrcEltBits, dl,
734 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
735 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
736 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
737 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
738 break;
740 Vals.push_back(Lo);
743 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
744 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
745 } else {
746 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
747 // Skip past MERGE_VALUE node if known.
748 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
749 NewChain = Scalarized.getOperand(1);
750 Value = Scalarized.getOperand(0);
751 } else {
752 NewChain = Scalarized.getValue(1);
753 Value = Scalarized.getValue(0);
757 AddLegalizedOperand(Op.getValue(0), Value);
758 AddLegalizedOperand(Op.getValue(1), NewChain);
760 return (Op.getResNo() ? NewChain : Value);
763 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
764 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
765 SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
766 AddLegalizedOperand(Op, TF);
767 return TF;
770 SDValue VectorLegalizer::Expand(SDValue Op) {
771 switch (Op->getOpcode()) {
772 case ISD::SIGN_EXTEND_INREG:
773 return ExpandSEXTINREG(Op);
774 case ISD::ANY_EXTEND_VECTOR_INREG:
775 return ExpandANY_EXTEND_VECTOR_INREG(Op);
776 case ISD::SIGN_EXTEND_VECTOR_INREG:
777 return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
778 case ISD::ZERO_EXTEND_VECTOR_INREG:
779 return ExpandZERO_EXTEND_VECTOR_INREG(Op);
780 case ISD::BSWAP:
781 return ExpandBSWAP(Op);
782 case ISD::VSELECT:
783 return ExpandVSELECT(Op);
784 case ISD::SELECT:
785 return ExpandSELECT(Op);
786 case ISD::FP_TO_UINT:
787 return ExpandFP_TO_UINT(Op);
788 case ISD::UINT_TO_FP:
789 return ExpandUINT_TO_FLOAT(Op);
790 case ISD::FNEG:
791 return ExpandFNEG(Op);
792 case ISD::FSUB:
793 return ExpandFSUB(Op);
794 case ISD::SETCC:
795 return UnrollVSETCC(Op);
796 case ISD::ABS:
797 return ExpandABS(Op);
798 case ISD::BITREVERSE:
799 return ExpandBITREVERSE(Op);
800 case ISD::CTPOP:
801 return ExpandCTPOP(Op);
802 case ISD::CTLZ:
803 case ISD::CTLZ_ZERO_UNDEF:
804 return ExpandCTLZ(Op);
805 case ISD::CTTZ:
806 case ISD::CTTZ_ZERO_UNDEF:
807 return ExpandCTTZ(Op);
808 case ISD::FSHL:
809 case ISD::FSHR:
810 return ExpandFunnelShift(Op);
811 case ISD::ROTL:
812 case ISD::ROTR:
813 return ExpandROT(Op);
814 case ISD::FMINNUM:
815 case ISD::FMAXNUM:
816 return ExpandFMINNUM_FMAXNUM(Op);
817 case ISD::UADDO:
818 case ISD::USUBO:
819 return ExpandUADDSUBO(Op);
820 case ISD::SADDO:
821 case ISD::SSUBO:
822 return ExpandSADDSUBO(Op);
823 case ISD::UMULO:
824 case ISD::SMULO:
825 return ExpandMULO(Op);
826 case ISD::USUBSAT:
827 case ISD::SSUBSAT:
828 case ISD::UADDSAT:
829 case ISD::SADDSAT:
830 return ExpandAddSubSat(Op);
831 case ISD::SMULFIX:
832 case ISD::UMULFIX:
833 return ExpandFixedPointMul(Op);
834 case ISD::SMULFIXSAT:
835 case ISD::UMULFIXSAT:
836 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
837 // why. Maybe it results in worse codegen compared to the unroll for some
838 // targets? This should probably be investigated. And if we still prefer to
839 // unroll an explanation could be helpful.
840 return DAG.UnrollVectorOp(Op.getNode());
841 case ISD::STRICT_FADD:
842 case ISD::STRICT_FSUB:
843 case ISD::STRICT_FMUL:
844 case ISD::STRICT_FDIV:
845 case ISD::STRICT_FREM:
846 case ISD::STRICT_FSQRT:
847 case ISD::STRICT_FMA:
848 case ISD::STRICT_FPOW:
849 case ISD::STRICT_FPOWI:
850 case ISD::STRICT_FSIN:
851 case ISD::STRICT_FCOS:
852 case ISD::STRICT_FEXP:
853 case ISD::STRICT_FEXP2:
854 case ISD::STRICT_FLOG:
855 case ISD::STRICT_FLOG10:
856 case ISD::STRICT_FLOG2:
857 case ISD::STRICT_FRINT:
858 case ISD::STRICT_FNEARBYINT:
859 case ISD::STRICT_FMAXNUM:
860 case ISD::STRICT_FMINNUM:
861 case ISD::STRICT_FCEIL:
862 case ISD::STRICT_FFLOOR:
863 case ISD::STRICT_FROUND:
864 case ISD::STRICT_FTRUNC:
865 case ISD::STRICT_FP_TO_SINT:
866 case ISD::STRICT_FP_TO_UINT:
867 return ExpandStrictFPOp(Op);
868 case ISD::VECREDUCE_ADD:
869 case ISD::VECREDUCE_MUL:
870 case ISD::VECREDUCE_AND:
871 case ISD::VECREDUCE_OR:
872 case ISD::VECREDUCE_XOR:
873 case ISD::VECREDUCE_SMAX:
874 case ISD::VECREDUCE_SMIN:
875 case ISD::VECREDUCE_UMAX:
876 case ISD::VECREDUCE_UMIN:
877 case ISD::VECREDUCE_FADD:
878 case ISD::VECREDUCE_FMUL:
879 case ISD::VECREDUCE_FMAX:
880 case ISD::VECREDUCE_FMIN:
881 return TLI.expandVecReduce(Op.getNode(), DAG);
882 default:
883 return DAG.UnrollVectorOp(Op.getNode());
887 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
888 // Lower a select instruction where the condition is a scalar and the
889 // operands are vectors. Lower this select to VSELECT and implement it
890 // using XOR AND OR. The selector bit is broadcasted.
891 EVT VT = Op.getValueType();
892 SDLoc DL(Op);
894 SDValue Mask = Op.getOperand(0);
895 SDValue Op1 = Op.getOperand(1);
896 SDValue Op2 = Op.getOperand(2);
898 assert(VT.isVector() && !Mask.getValueType().isVector()
899 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
901 // If we can't even use the basic vector operations of
902 // AND,OR,XOR, we will have to scalarize the op.
903 // Notice that the operation may be 'promoted' which means that it is
904 // 'bitcasted' to another type which is handled.
905 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
906 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
907 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
908 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
909 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
910 return DAG.UnrollVectorOp(Op.getNode());
912 // Generate a mask operand.
913 EVT MaskTy = VT.changeVectorElementTypeToInteger();
915 // What is the size of each element in the vector mask.
916 EVT BitTy = MaskTy.getScalarType();
918 Mask = DAG.getSelect(DL, BitTy, Mask,
919 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
920 BitTy),
921 DAG.getConstant(0, DL, BitTy));
923 // Broadcast the mask so that the entire vector is all-one or all zero.
924 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
926 // Bitcast the operands to be the same type as the mask.
927 // This is needed when we select between FP types because
928 // the mask is a vector of integers.
929 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
930 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
932 SDValue AllOnes = DAG.getConstant(
933 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
934 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
936 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
937 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
938 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
939 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
942 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
943 EVT VT = Op.getValueType();
945 // Make sure that the SRA and SHL instructions are available.
946 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
947 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
948 return DAG.UnrollVectorOp(Op.getNode());
950 SDLoc DL(Op);
951 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
953 unsigned BW = VT.getScalarSizeInBits();
954 unsigned OrigBW = OrigTy.getScalarSizeInBits();
955 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
957 Op = Op.getOperand(0);
958 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
959 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
962 // Generically expand a vector anyext in register to a shuffle of the relevant
963 // lanes into the appropriate locations, with other lanes left undef.
964 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
965 SDLoc DL(Op);
966 EVT VT = Op.getValueType();
967 int NumElements = VT.getVectorNumElements();
968 SDValue Src = Op.getOperand(0);
969 EVT SrcVT = Src.getValueType();
970 int NumSrcElements = SrcVT.getVectorNumElements();
972 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
973 // into a larger vector type.
974 if (SrcVT.bitsLE(VT)) {
975 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
976 "ANY_EXTEND_VECTOR_INREG vector size mismatch");
977 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
978 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
979 NumSrcElements);
980 Src = DAG.getNode(
981 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
982 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
985 // Build a base mask of undef shuffles.
986 SmallVector<int, 16> ShuffleMask;
987 ShuffleMask.resize(NumSrcElements, -1);
989 // Place the extended lanes into the correct locations.
990 int ExtLaneScale = NumSrcElements / NumElements;
991 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
992 for (int i = 0; i < NumElements; ++i)
993 ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
995 return DAG.getNode(
996 ISD::BITCAST, DL, VT,
997 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1000 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
1001 SDLoc DL(Op);
1002 EVT VT = Op.getValueType();
1003 SDValue Src = Op.getOperand(0);
1004 EVT SrcVT = Src.getValueType();
1006 // First build an any-extend node which can be legalized above when we
1007 // recurse through it.
1008 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1010 // Now we need sign extend. Do this by shifting the elements. Even if these
1011 // aren't legal operations, they have a better chance of being legalized
1012 // without full scalarization than the sign extension does.
1013 unsigned EltWidth = VT.getScalarSizeInBits();
1014 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1015 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1016 return DAG.getNode(ISD::SRA, DL, VT,
1017 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1018 ShiftAmount);
1021 // Generically expand a vector zext in register to a shuffle of the relevant
1022 // lanes into the appropriate locations, a blend of zero into the high bits,
1023 // and a bitcast to the wider element type.
1024 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
1025 SDLoc DL(Op);
1026 EVT VT = Op.getValueType();
1027 int NumElements = VT.getVectorNumElements();
1028 SDValue Src = Op.getOperand(0);
1029 EVT SrcVT = Src.getValueType();
1030 int NumSrcElements = SrcVT.getVectorNumElements();
1032 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1033 // into a larger vector type.
1034 if (SrcVT.bitsLE(VT)) {
1035 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1036 "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1037 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1038 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1039 NumSrcElements);
1040 Src = DAG.getNode(
1041 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
1042 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
1045 // Build up a zero vector to blend into this one.
1046 SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1048 // Shuffle the incoming lanes into the correct position, and pull all other
1049 // lanes from the zero vector.
1050 SmallVector<int, 16> ShuffleMask;
1051 ShuffleMask.reserve(NumSrcElements);
1052 for (int i = 0; i < NumSrcElements; ++i)
1053 ShuffleMask.push_back(i);
1055 int ExtLaneScale = NumSrcElements / NumElements;
1056 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1057 for (int i = 0; i < NumElements; ++i)
1058 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1060 return DAG.getNode(ISD::BITCAST, DL, VT,
1061 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1064 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1065 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1066 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1067 for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1068 ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1071 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
1072 EVT VT = Op.getValueType();
1074 // Generate a byte wise shuffle mask for the BSWAP.
1075 SmallVector<int, 16> ShuffleMask;
1076 createBSWAPShuffleMask(VT, ShuffleMask);
1077 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1079 // Only emit a shuffle if the mask is legal.
1080 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1081 return DAG.UnrollVectorOp(Op.getNode());
1083 SDLoc DL(Op);
1084 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1085 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1086 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1089 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
1090 EVT VT = Op.getValueType();
1092 // If we have the scalar operation, it's probably cheaper to unroll it.
1093 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
1094 return DAG.UnrollVectorOp(Op.getNode());
1096 // If the vector element width is a whole number of bytes, test if its legal
1097 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1098 // vector. This greatly reduces the number of bit shifts necessary.
1099 unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1100 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1101 SmallVector<int, 16> BSWAPMask;
1102 createBSWAPShuffleMask(VT, BSWAPMask);
1104 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1105 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1106 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1107 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1108 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1109 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1110 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1111 SDLoc DL(Op);
1112 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1113 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1114 BSWAPMask);
1115 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1116 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1120 // If we have the appropriate vector bit operations, it is better to use them
1121 // than unrolling and expanding each component.
1122 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1123 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1124 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1125 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1126 return DAG.UnrollVectorOp(Op.getNode());
1128 // Let LegalizeDAG handle this later.
1129 return Op;
1132 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1133 // Implement VSELECT in terms of XOR, AND, OR
1134 // on platforms which do not support blend natively.
1135 SDLoc DL(Op);
1137 SDValue Mask = Op.getOperand(0);
1138 SDValue Op1 = Op.getOperand(1);
1139 SDValue Op2 = Op.getOperand(2);
1141 EVT VT = Mask.getValueType();
1143 // If we can't even use the basic vector operations of
1144 // AND,OR,XOR, we will have to scalarize the op.
1145 // Notice that the operation may be 'promoted' which means that it is
1146 // 'bitcasted' to another type which is handled.
1147 // This operation also isn't safe with AND, OR, XOR when the boolean
1148 // type is 0/1 as we need an all ones vector constant to mask with.
1149 // FIXME: Sign extend 1 to all ones if thats legal on the target.
1150 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1151 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1152 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1153 TLI.getBooleanContents(Op1.getValueType()) !=
1154 TargetLowering::ZeroOrNegativeOneBooleanContent)
1155 return DAG.UnrollVectorOp(Op.getNode());
1157 // If the mask and the type are different sizes, unroll the vector op. This
1158 // can occur when getSetCCResultType returns something that is different in
1159 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1160 if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1161 return DAG.UnrollVectorOp(Op.getNode());
1163 // Bitcast the operands to be the same type as the mask.
1164 // This is needed when we select between FP types because
1165 // the mask is a vector of integers.
1166 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1167 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1169 SDValue AllOnes = DAG.getConstant(
1170 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1171 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1173 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1174 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1175 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1176 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1179 SDValue VectorLegalizer::ExpandABS(SDValue Op) {
1180 // Attempt to expand using TargetLowering.
1181 SDValue Result;
1182 if (TLI.expandABS(Op.getNode(), Result, DAG))
1183 return Result;
1185 // Otherwise go ahead and unroll.
1186 return DAG.UnrollVectorOp(Op.getNode());
1189 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1190 // Attempt to expand using TargetLowering.
1191 SDValue Result, Chain;
1192 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, Chain, DAG)) {
1193 if (Op.getNode()->isStrictFPOpcode())
1194 // Relink the chain
1195 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Chain);
1196 return Result;
1199 // Otherwise go ahead and unroll.
1200 return DAG.UnrollVectorOp(Op.getNode());
1203 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1204 EVT VT = Op.getOperand(0).getValueType();
1205 SDLoc DL(Op);
1207 // Attempt to expand using TargetLowering.
1208 SDValue Result;
1209 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1210 return Result;
1212 // Make sure that the SINT_TO_FP and SRL instructions are available.
1213 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1214 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
1215 return DAG.UnrollVectorOp(Op.getNode());
1217 unsigned BW = VT.getScalarSizeInBits();
1218 assert((BW == 64 || BW == 32) &&
1219 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1221 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1223 // Constants to clear the upper part of the word.
1224 // Notice that we can also use SHL+SHR, but using a constant is slightly
1225 // faster on x86.
1226 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1227 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1229 // Two to the power of half-word-size.
1230 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1232 // Clear upper part of LO, lower HI
1233 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1234 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1236 // Convert hi and lo to floats
1237 // Convert the hi part back to the upper values
1238 // TODO: Can any fast-math-flags be set on these nodes?
1239 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1240 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1241 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1243 // Add the two halves
1244 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1247 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1248 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1249 SDLoc DL(Op);
1250 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1251 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1252 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1253 Zero, Op.getOperand(0));
1255 return DAG.UnrollVectorOp(Op.getNode());
1258 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1259 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1260 // we can defer this to operation legalization where it will be lowered as
1261 // a+(-b).
1262 EVT VT = Op.getValueType();
1263 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1264 TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1265 return Op; // Defer to LegalizeDAG
1267 return DAG.UnrollVectorOp(Op.getNode());
1270 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1271 SDValue Result;
1272 if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1273 return Result;
1275 return DAG.UnrollVectorOp(Op.getNode());
1278 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1279 SDValue Result;
1280 if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1281 return Result;
1283 return DAG.UnrollVectorOp(Op.getNode());
1286 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1287 SDValue Result;
1288 if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1289 return Result;
1291 return DAG.UnrollVectorOp(Op.getNode());
1294 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1295 SDValue Result;
1296 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1297 return Result;
1299 return DAG.UnrollVectorOp(Op.getNode());
1302 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1303 SDValue Result;
1304 if (TLI.expandROT(Op.getNode(), Result, DAG))
1305 return Result;
1307 return DAG.UnrollVectorOp(Op.getNode());
1310 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1311 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1312 return Expanded;
1313 return DAG.UnrollVectorOp(Op.getNode());
1316 SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) {
1317 SDValue Result, Overflow;
1318 TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG);
1320 if (Op.getResNo() == 0) {
1321 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1322 return Result;
1323 } else {
1324 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1325 return Overflow;
1329 SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) {
1330 SDValue Result, Overflow;
1331 TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG);
1333 if (Op.getResNo() == 0) {
1334 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1335 return Result;
1336 } else {
1337 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1338 return Overflow;
1342 SDValue VectorLegalizer::ExpandMULO(SDValue Op) {
1343 SDValue Result, Overflow;
1344 if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG))
1345 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode());
1347 if (Op.getResNo() == 0) {
1348 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1349 return Result;
1350 } else {
1351 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1352 return Overflow;
1356 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) {
1357 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG))
1358 return Expanded;
1359 return DAG.UnrollVectorOp(Op.getNode());
1362 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) {
1363 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG))
1364 return Expanded;
1365 return DAG.UnrollVectorOp(Op.getNode());
1368 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1369 EVT VT = Op.getValueType();
1370 EVT EltVT = VT.getVectorElementType();
1371 unsigned NumElems = VT.getVectorNumElements();
1372 unsigned NumOpers = Op.getNumOperands();
1373 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1374 EVT ValueVTs[] = {EltVT, MVT::Other};
1375 SDValue Chain = Op.getOperand(0);
1376 SDLoc dl(Op);
1378 SmallVector<SDValue, 32> OpValues;
1379 SmallVector<SDValue, 32> OpChains;
1380 for (unsigned i = 0; i < NumElems; ++i) {
1381 SmallVector<SDValue, 4> Opers;
1382 SDValue Idx = DAG.getConstant(i, dl,
1383 TLI.getVectorIdxTy(DAG.getDataLayout()));
1385 // The Chain is the first operand.
1386 Opers.push_back(Chain);
1388 // Now process the remaining operands.
1389 for (unsigned j = 1; j < NumOpers; ++j) {
1390 SDValue Oper = Op.getOperand(j);
1391 EVT OperVT = Oper.getValueType();
1393 if (OperVT.isVector())
1394 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1395 OperVT.getVectorElementType(), Oper, Idx);
1397 Opers.push_back(Oper);
1400 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1402 OpValues.push_back(ScalarOp.getValue(0));
1403 OpChains.push_back(ScalarOp.getValue(1));
1406 SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1407 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1409 AddLegalizedOperand(Op.getValue(0), Result);
1410 AddLegalizedOperand(Op.getValue(1), NewChain);
1412 return Op.getResNo() ? NewChain : Result;
1415 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1416 EVT VT = Op.getValueType();
1417 unsigned NumElems = VT.getVectorNumElements();
1418 EVT EltVT = VT.getVectorElementType();
1419 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1420 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1421 SDLoc dl(Op);
1422 SmallVector<SDValue, 8> Ops(NumElems);
1423 for (unsigned i = 0; i < NumElems; ++i) {
1424 SDValue LHSElem = DAG.getNode(
1425 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1426 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1427 SDValue RHSElem = DAG.getNode(
1428 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1429 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1430 Ops[i] = DAG.getNode(ISD::SETCC, dl,
1431 TLI.getSetCCResultType(DAG.getDataLayout(),
1432 *DAG.getContext(), TmpEltVT),
1433 LHSElem, RHSElem, CC);
1434 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1435 DAG.getConstant(APInt::getAllOnesValue
1436 (EltVT.getSizeInBits()), dl, EltVT),
1437 DAG.getConstant(0, dl, EltVT));
1439 return DAG.getBuildVector(VT, dl, Ops);
1442 bool SelectionDAG::LegalizeVectors() {
1443 return VectorLegalizer(*this).Run();