[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / CodeGen / StackProtector.cpp
blob5683d1db473c0b8ca41d4721898a612cc4a3d898
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/User.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include <utility>
51 using namespace llvm;
53 #define DEBUG_TYPE "stack-protector"
55 STATISTIC(NumFunProtected, "Number of functions protected");
56 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
57 " taken.");
59 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
60 cl::init(true), cl::Hidden);
62 char StackProtector::ID = 0;
64 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
65 "Insert stack protectors", false, true)
66 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
67 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
68 "Insert stack protectors", false, true)
70 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
72 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
73 AU.addRequired<TargetPassConfig>();
74 AU.addPreserved<DominatorTreeWrapperPass>();
77 bool StackProtector::runOnFunction(Function &Fn) {
78 F = &Fn;
79 M = F->getParent();
80 DominatorTreeWrapperPass *DTWP =
81 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
82 DT = DTWP ? &DTWP->getDomTree() : nullptr;
83 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
84 Trip = TM->getTargetTriple();
85 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
86 HasPrologue = false;
87 HasIRCheck = false;
89 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
90 if (Attr.isStringAttribute() &&
91 Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
92 return false; // Invalid integer string
94 if (!RequiresStackProtector())
95 return false;
97 // TODO(etienneb): Functions with funclets are not correctly supported now.
98 // Do nothing if this is funclet-based personality.
99 if (Fn.hasPersonalityFn()) {
100 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
101 if (isFuncletEHPersonality(Personality))
102 return false;
105 ++NumFunProtected;
106 return InsertStackProtectors();
109 /// \param [out] IsLarge is set to true if a protectable array is found and
110 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
111 /// multiple arrays, this gets set if any of them is large.
112 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
113 bool Strong,
114 bool InStruct) const {
115 if (!Ty)
116 return false;
117 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
118 if (!AT->getElementType()->isIntegerTy(8)) {
119 // If we're on a non-Darwin platform or we're inside of a structure, don't
120 // add stack protectors unless the array is a character array.
121 // However, in strong mode any array, regardless of type and size,
122 // triggers a protector.
123 if (!Strong && (InStruct || !Trip.isOSDarwin()))
124 return false;
127 // If an array has more than SSPBufferSize bytes of allocated space, then we
128 // emit stack protectors.
129 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
130 IsLarge = true;
131 return true;
134 if (Strong)
135 // Require a protector for all arrays in strong mode
136 return true;
139 const StructType *ST = dyn_cast<StructType>(Ty);
140 if (!ST)
141 return false;
143 bool NeedsProtector = false;
144 for (StructType::element_iterator I = ST->element_begin(),
145 E = ST->element_end();
146 I != E; ++I)
147 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
148 // If the element is a protectable array and is large (>= SSPBufferSize)
149 // then we are done. If the protectable array is not large, then
150 // keep looking in case a subsequent element is a large array.
151 if (IsLarge)
152 return true;
153 NeedsProtector = true;
156 return NeedsProtector;
159 bool StackProtector::HasAddressTaken(const Instruction *AI) {
160 for (const User *U : AI->users()) {
161 const auto *I = cast<Instruction>(U);
162 switch (I->getOpcode()) {
163 case Instruction::Store:
164 if (AI == cast<StoreInst>(I)->getValueOperand())
165 return true;
166 break;
167 case Instruction::AtomicCmpXchg:
168 // cmpxchg conceptually includes both a load and store from the same
169 // location. So, like store, the value being stored is what matters.
170 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
171 return true;
172 break;
173 case Instruction::PtrToInt:
174 if (AI == cast<PtrToIntInst>(I)->getOperand(0))
175 return true;
176 break;
177 case Instruction::Call: {
178 // Ignore intrinsics that do not become real instructions.
179 // TODO: Narrow this to intrinsics that have store-like effects.
180 const auto *CI = cast<CallInst>(I);
181 if (!isa<DbgInfoIntrinsic>(CI) && !CI->isLifetimeStartOrEnd())
182 return true;
183 break;
185 case Instruction::Invoke:
186 return true;
187 case Instruction::BitCast:
188 case Instruction::GetElementPtr:
189 case Instruction::Select:
190 case Instruction::AddrSpaceCast:
191 if (HasAddressTaken(I))
192 return true;
193 break;
194 case Instruction::PHI: {
195 // Keep track of what PHI nodes we have already visited to ensure
196 // they are only visited once.
197 const auto *PN = cast<PHINode>(I);
198 if (VisitedPHIs.insert(PN).second)
199 if (HasAddressTaken(PN))
200 return true;
201 break;
203 case Instruction::Load:
204 case Instruction::AtomicRMW:
205 case Instruction::Ret:
206 // These instructions take an address operand, but have load-like or
207 // other innocuous behavior that should not trigger a stack protector.
208 // atomicrmw conceptually has both load and store semantics, but the
209 // value being stored must be integer; so if a pointer is being stored,
210 // we'll catch it in the PtrToInt case above.
211 break;
212 default:
213 // Conservatively return true for any instruction that takes an address
214 // operand, but is not handled above.
215 return true;
218 return false;
221 /// Search for the first call to the llvm.stackprotector intrinsic and return it
222 /// if present.
223 static const CallInst *findStackProtectorIntrinsic(Function &F) {
224 for (const BasicBlock &BB : F)
225 for (const Instruction &I : BB)
226 if (const CallInst *CI = dyn_cast<CallInst>(&I))
227 if (CI->getCalledFunction() ==
228 Intrinsic::getDeclaration(F.getParent(), Intrinsic::stackprotector))
229 return CI;
230 return nullptr;
233 /// Check whether or not this function needs a stack protector based
234 /// upon the stack protector level.
236 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
237 /// The standard heuristic which will add a guard variable to functions that
238 /// call alloca with a either a variable size or a size >= SSPBufferSize,
239 /// functions with character buffers larger than SSPBufferSize, and functions
240 /// with aggregates containing character buffers larger than SSPBufferSize. The
241 /// strong heuristic will add a guard variables to functions that call alloca
242 /// regardless of size, functions with any buffer regardless of type and size,
243 /// functions with aggregates that contain any buffer regardless of type and
244 /// size, and functions that contain stack-based variables that have had their
245 /// address taken.
246 bool StackProtector::RequiresStackProtector() {
247 bool Strong = false;
248 bool NeedsProtector = false;
249 HasPrologue = findStackProtectorIntrinsic(*F);
251 if (F->hasFnAttribute(Attribute::SafeStack))
252 return false;
254 // We are constructing the OptimizationRemarkEmitter on the fly rather than
255 // using the analysis pass to avoid building DominatorTree and LoopInfo which
256 // are not available this late in the IR pipeline.
257 OptimizationRemarkEmitter ORE(F);
259 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
260 ORE.emit([&]() {
261 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
262 << "Stack protection applied to function "
263 << ore::NV("Function", F)
264 << " due to a function attribute or command-line switch";
266 NeedsProtector = true;
267 Strong = true; // Use the same heuristic as strong to determine SSPLayout
268 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
269 Strong = true;
270 else if (HasPrologue)
271 NeedsProtector = true;
272 else if (!F->hasFnAttribute(Attribute::StackProtect))
273 return false;
275 for (const BasicBlock &BB : *F) {
276 for (const Instruction &I : BB) {
277 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
278 if (AI->isArrayAllocation()) {
279 auto RemarkBuilder = [&]() {
280 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
282 << "Stack protection applied to function "
283 << ore::NV("Function", F)
284 << " due to a call to alloca or use of a variable length "
285 "array";
287 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
288 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
289 // A call to alloca with size >= SSPBufferSize requires
290 // stack protectors.
291 Layout.insert(std::make_pair(AI,
292 MachineFrameInfo::SSPLK_LargeArray));
293 ORE.emit(RemarkBuilder);
294 NeedsProtector = true;
295 } else if (Strong) {
296 // Require protectors for all alloca calls in strong mode.
297 Layout.insert(std::make_pair(AI,
298 MachineFrameInfo::SSPLK_SmallArray));
299 ORE.emit(RemarkBuilder);
300 NeedsProtector = true;
302 } else {
303 // A call to alloca with a variable size requires protectors.
304 Layout.insert(std::make_pair(AI,
305 MachineFrameInfo::SSPLK_LargeArray));
306 ORE.emit(RemarkBuilder);
307 NeedsProtector = true;
309 continue;
312 bool IsLarge = false;
313 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
314 Layout.insert(std::make_pair(AI, IsLarge
315 ? MachineFrameInfo::SSPLK_LargeArray
316 : MachineFrameInfo::SSPLK_SmallArray));
317 ORE.emit([&]() {
318 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
319 << "Stack protection applied to function "
320 << ore::NV("Function", F)
321 << " due to a stack allocated buffer or struct containing a "
322 "buffer";
324 NeedsProtector = true;
325 continue;
328 if (Strong && HasAddressTaken(AI)) {
329 ++NumAddrTaken;
330 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
331 ORE.emit([&]() {
332 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
334 << "Stack protection applied to function "
335 << ore::NV("Function", F)
336 << " due to the address of a local variable being taken";
338 NeedsProtector = true;
344 return NeedsProtector;
347 /// Create a stack guard loading and populate whether SelectionDAG SSP is
348 /// supported.
349 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
350 IRBuilder<> &B,
351 bool *SupportsSelectionDAGSP = nullptr) {
352 if (Value *Guard = TLI->getIRStackGuard(B))
353 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
355 // Use SelectionDAG SSP handling, since there isn't an IR guard.
357 // This is more or less weird, since we optionally output whether we
358 // should perform a SelectionDAG SP here. The reason is that it's strictly
359 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
360 // mutating. There is no way to get this bit without mutating the IR, so
361 // getting this bit has to happen in this right time.
363 // We could have define a new function TLI::supportsSelectionDAGSP(), but that
364 // will put more burden on the backends' overriding work, especially when it
365 // actually conveys the same information getIRStackGuard() already gives.
366 if (SupportsSelectionDAGSP)
367 *SupportsSelectionDAGSP = true;
368 TLI->insertSSPDeclarations(*M);
369 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
372 /// Insert code into the entry block that stores the stack guard
373 /// variable onto the stack:
375 /// entry:
376 /// StackGuardSlot = alloca i8*
377 /// StackGuard = <stack guard>
378 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
380 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
381 /// node.
382 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
383 const TargetLoweringBase *TLI, AllocaInst *&AI) {
384 bool SupportsSelectionDAGSP = false;
385 IRBuilder<> B(&F->getEntryBlock().front());
386 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
387 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
389 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
390 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
391 {GuardSlot, AI});
392 return SupportsSelectionDAGSP;
395 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
396 /// function.
398 /// - The prologue code loads and stores the stack guard onto the stack.
399 /// - The epilogue checks the value stored in the prologue against the original
400 /// value. It calls __stack_chk_fail if they differ.
401 bool StackProtector::InsertStackProtectors() {
402 // If the target wants to XOR the frame pointer into the guard value, it's
403 // impossible to emit the check in IR, so the target *must* support stack
404 // protection in SDAG.
405 bool SupportsSelectionDAGSP =
406 TLI->useStackGuardXorFP() ||
407 (EnableSelectionDAGSP && !TM->Options.EnableFastISel &&
408 !TM->Options.EnableGlobalISel);
409 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
411 for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
412 BasicBlock *BB = &*I++;
413 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
414 if (!RI)
415 continue;
417 // Generate prologue instrumentation if not already generated.
418 if (!HasPrologue) {
419 HasPrologue = true;
420 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
423 // SelectionDAG based code generation. Nothing else needs to be done here.
424 // The epilogue instrumentation is postponed to SelectionDAG.
425 if (SupportsSelectionDAGSP)
426 break;
428 // Find the stack guard slot if the prologue was not created by this pass
429 // itself via a previous call to CreatePrologue().
430 if (!AI) {
431 const CallInst *SPCall = findStackProtectorIntrinsic(*F);
432 assert(SPCall && "Call to llvm.stackprotector is missing");
433 AI = cast<AllocaInst>(SPCall->getArgOperand(1));
436 // Set HasIRCheck to true, so that SelectionDAG will not generate its own
437 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
438 // instrumentation has already been generated.
439 HasIRCheck = true;
441 // Generate epilogue instrumentation. The epilogue intrumentation can be
442 // function-based or inlined depending on which mechanism the target is
443 // providing.
444 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
445 // Generate the function-based epilogue instrumentation.
446 // The target provides a guard check function, generate a call to it.
447 IRBuilder<> B(RI);
448 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
449 CallInst *Call = B.CreateCall(GuardCheck, {Guard});
450 Call->setAttributes(GuardCheck->getAttributes());
451 Call->setCallingConv(GuardCheck->getCallingConv());
452 } else {
453 // Generate the epilogue with inline instrumentation.
454 // If we do not support SelectionDAG based tail calls, generate IR level
455 // tail calls.
457 // For each block with a return instruction, convert this:
459 // return:
460 // ...
461 // ret ...
463 // into this:
465 // return:
466 // ...
467 // %1 = <stack guard>
468 // %2 = load StackGuardSlot
469 // %3 = cmp i1 %1, %2
470 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
472 // SP_return:
473 // ret ...
475 // CallStackCheckFailBlk:
476 // call void @__stack_chk_fail()
477 // unreachable
479 // Create the FailBB. We duplicate the BB every time since the MI tail
480 // merge pass will merge together all of the various BB into one including
481 // fail BB generated by the stack protector pseudo instruction.
482 BasicBlock *FailBB = CreateFailBB();
484 // Split the basic block before the return instruction.
485 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
487 // Update the dominator tree if we need to.
488 if (DT && DT->isReachableFromEntry(BB)) {
489 DT->addNewBlock(NewBB, BB);
490 DT->addNewBlock(FailBB, BB);
493 // Remove default branch instruction to the new BB.
494 BB->getTerminator()->eraseFromParent();
496 // Move the newly created basic block to the point right after the old
497 // basic block so that it's in the "fall through" position.
498 NewBB->moveAfter(BB);
500 // Generate the stack protector instructions in the old basic block.
501 IRBuilder<> B(BB);
502 Value *Guard = getStackGuard(TLI, M, B);
503 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
504 Value *Cmp = B.CreateICmpEQ(Guard, LI2);
505 auto SuccessProb =
506 BranchProbabilityInfo::getBranchProbStackProtector(true);
507 auto FailureProb =
508 BranchProbabilityInfo::getBranchProbStackProtector(false);
509 MDNode *Weights = MDBuilder(F->getContext())
510 .createBranchWeights(SuccessProb.getNumerator(),
511 FailureProb.getNumerator());
512 B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
516 // Return if we didn't modify any basic blocks. i.e., there are no return
517 // statements in the function.
518 return HasPrologue;
521 /// CreateFailBB - Create a basic block to jump to when the stack protector
522 /// check fails.
523 BasicBlock *StackProtector::CreateFailBB() {
524 LLVMContext &Context = F->getContext();
525 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
526 IRBuilder<> B(FailBB);
527 B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram()));
528 if (Trip.isOSOpenBSD()) {
529 FunctionCallee StackChkFail = M->getOrInsertFunction(
530 "__stack_smash_handler", Type::getVoidTy(Context),
531 Type::getInt8PtrTy(Context));
533 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
534 } else {
535 FunctionCallee StackChkFail =
536 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
538 B.CreateCall(StackChkFail, {});
540 B.CreateUnreachable();
541 return FailBB;
544 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
545 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
548 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
549 if (Layout.empty())
550 return;
552 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
553 if (MFI.isDeadObjectIndex(I))
554 continue;
556 const AllocaInst *AI = MFI.getObjectAllocation(I);
557 if (!AI)
558 continue;
560 SSPLayoutMap::const_iterator LI = Layout.find(AI);
561 if (LI == Layout.end())
562 continue;
564 MFI.setObjectSSPLayout(I, LI->second);