[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / CodeGen / SwitchLoweringUtils.cpp
blob83acf7f80715beb6edffb1711d2210a36174fa70
1 //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains switch inst lowering optimizations and utilities for
10 // codegen, so that it can be used for both SelectionDAG and GlobalISel.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineJumpTableInfo.h"
15 #include "llvm/CodeGen/SwitchLoweringUtils.h"
17 using namespace llvm;
18 using namespace SwitchCG;
20 uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters,
21 unsigned First, unsigned Last) {
22 assert(Last >= First);
23 const APInt &LowCase = Clusters[First].Low->getValue();
24 const APInt &HighCase = Clusters[Last].High->getValue();
25 assert(LowCase.getBitWidth() == HighCase.getBitWidth());
27 // FIXME: A range of consecutive cases has 100% density, but only requires one
28 // comparison to lower. We should discriminate against such consecutive ranges
29 // in jump tables.
30 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
33 uint64_t
34 SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases,
35 unsigned First, unsigned Last) {
36 assert(Last >= First);
37 assert(TotalCases[Last] >= TotalCases[First]);
38 uint64_t NumCases =
39 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
40 return NumCases;
43 void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters,
44 const SwitchInst *SI,
45 MachineBasicBlock *DefaultMBB) {
46 #ifndef NDEBUG
47 // Clusters must be non-empty, sorted, and only contain Range clusters.
48 assert(!Clusters.empty());
49 for (CaseCluster &C : Clusters)
50 assert(C.Kind == CC_Range);
51 for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
52 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
53 #endif
55 assert(TLI && "TLI not set!");
56 if (!TLI->areJTsAllowed(SI->getParent()->getParent()))
57 return;
59 const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries();
60 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
62 // Bail if not enough cases.
63 const int64_t N = Clusters.size();
64 if (N < 2 || N < MinJumpTableEntries)
65 return;
67 // Accumulated number of cases in each cluster and those prior to it.
68 SmallVector<unsigned, 8> TotalCases(N);
69 for (unsigned i = 0; i < N; ++i) {
70 const APInt &Hi = Clusters[i].High->getValue();
71 const APInt &Lo = Clusters[i].Low->getValue();
72 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
73 if (i != 0)
74 TotalCases[i] += TotalCases[i - 1];
77 uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
78 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
79 assert(NumCases < UINT64_MAX / 100);
80 assert(Range >= NumCases);
82 // Cheap case: the whole range may be suitable for jump table.
83 if (TLI->isSuitableForJumpTable(SI, NumCases, Range)) {
84 CaseCluster JTCluster;
85 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
86 Clusters[0] = JTCluster;
87 Clusters.resize(1);
88 return;
92 // The algorithm below is not suitable for -O0.
93 if (TM->getOptLevel() == CodeGenOpt::None)
94 return;
96 // Split Clusters into minimum number of dense partitions. The algorithm uses
97 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
98 // for the Case Statement'" (1994), but builds the MinPartitions array in
99 // reverse order to make it easier to reconstruct the partitions in ascending
100 // order. In the choice between two optimal partitionings, it picks the one
101 // which yields more jump tables.
103 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
104 SmallVector<unsigned, 8> MinPartitions(N);
105 // LastElement[i] is the last element of the partition starting at i.
106 SmallVector<unsigned, 8> LastElement(N);
107 // PartitionsScore[i] is used to break ties when choosing between two
108 // partitionings resulting in the same number of partitions.
109 SmallVector<unsigned, 8> PartitionsScore(N);
110 // For PartitionsScore, a small number of comparisons is considered as good as
111 // a jump table and a single comparison is considered better than a jump
112 // table.
113 enum PartitionScores : unsigned {
114 NoTable = 0,
115 Table = 1,
116 FewCases = 1,
117 SingleCase = 2
120 // Base case: There is only one way to partition Clusters[N-1].
121 MinPartitions[N - 1] = 1;
122 LastElement[N - 1] = N - 1;
123 PartitionsScore[N - 1] = PartitionScores::SingleCase;
125 // Note: loop indexes are signed to avoid underflow.
126 for (int64_t i = N - 2; i >= 0; i--) {
127 // Find optimal partitioning of Clusters[i..N-1].
128 // Baseline: Put Clusters[i] into a partition on its own.
129 MinPartitions[i] = MinPartitions[i + 1] + 1;
130 LastElement[i] = i;
131 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
133 // Search for a solution that results in fewer partitions.
134 for (int64_t j = N - 1; j > i; j--) {
135 // Try building a partition from Clusters[i..j].
136 Range = getJumpTableRange(Clusters, i, j);
137 NumCases = getJumpTableNumCases(TotalCases, i, j);
138 assert(NumCases < UINT64_MAX / 100);
139 assert(Range >= NumCases);
141 if (TLI->isSuitableForJumpTable(SI, NumCases, Range)) {
142 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
143 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
144 int64_t NumEntries = j - i + 1;
146 if (NumEntries == 1)
147 Score += PartitionScores::SingleCase;
148 else if (NumEntries <= SmallNumberOfEntries)
149 Score += PartitionScores::FewCases;
150 else if (NumEntries >= MinJumpTableEntries)
151 Score += PartitionScores::Table;
153 // If this leads to fewer partitions, or to the same number of
154 // partitions with better score, it is a better partitioning.
155 if (NumPartitions < MinPartitions[i] ||
156 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
157 MinPartitions[i] = NumPartitions;
158 LastElement[i] = j;
159 PartitionsScore[i] = Score;
165 // Iterate over the partitions, replacing some with jump tables in-place.
166 unsigned DstIndex = 0;
167 for (unsigned First = 0, Last; First < N; First = Last + 1) {
168 Last = LastElement[First];
169 assert(Last >= First);
170 assert(DstIndex <= First);
171 unsigned NumClusters = Last - First + 1;
173 CaseCluster JTCluster;
174 if (NumClusters >= MinJumpTableEntries &&
175 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
176 Clusters[DstIndex++] = JTCluster;
177 } else {
178 for (unsigned I = First; I <= Last; ++I)
179 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
182 Clusters.resize(DstIndex);
185 bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters,
186 unsigned First, unsigned Last,
187 const SwitchInst *SI,
188 MachineBasicBlock *DefaultMBB,
189 CaseCluster &JTCluster) {
190 assert(First <= Last);
192 auto Prob = BranchProbability::getZero();
193 unsigned NumCmps = 0;
194 std::vector<MachineBasicBlock*> Table;
195 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
197 // Initialize probabilities in JTProbs.
198 for (unsigned I = First; I <= Last; ++I)
199 JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
201 for (unsigned I = First; I <= Last; ++I) {
202 assert(Clusters[I].Kind == CC_Range);
203 Prob += Clusters[I].Prob;
204 const APInt &Low = Clusters[I].Low->getValue();
205 const APInt &High = Clusters[I].High->getValue();
206 NumCmps += (Low == High) ? 1 : 2;
207 if (I != First) {
208 // Fill the gap between this and the previous cluster.
209 const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
210 assert(PreviousHigh.slt(Low));
211 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
212 for (uint64_t J = 0; J < Gap; J++)
213 Table.push_back(DefaultMBB);
215 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
216 for (uint64_t J = 0; J < ClusterSize; ++J)
217 Table.push_back(Clusters[I].MBB);
218 JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
221 unsigned NumDests = JTProbs.size();
222 if (TLI->isSuitableForBitTests(NumDests, NumCmps,
223 Clusters[First].Low->getValue(),
224 Clusters[Last].High->getValue(), *DL)) {
225 // Clusters[First..Last] should be lowered as bit tests instead.
226 return false;
229 // Create the MBB that will load from and jump through the table.
230 // Note: We create it here, but it's not inserted into the function yet.
231 MachineFunction *CurMF = FuncInfo.MF;
232 MachineBasicBlock *JumpTableMBB =
233 CurMF->CreateMachineBasicBlock(SI->getParent());
235 // Add successors. Note: use table order for determinism.
236 SmallPtrSet<MachineBasicBlock *, 8> Done;
237 for (MachineBasicBlock *Succ : Table) {
238 if (Done.count(Succ))
239 continue;
240 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
241 Done.insert(Succ);
243 JumpTableMBB->normalizeSuccProbs();
245 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding())
246 ->createJumpTableIndex(Table);
248 // Set up the jump table info.
249 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
250 JumpTableHeader JTH(Clusters[First].Low->getValue(),
251 Clusters[Last].High->getValue(), SI->getCondition(),
252 nullptr, false);
253 JTCases.emplace_back(std::move(JTH), std::move(JT));
255 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
256 JTCases.size() - 1, Prob);
257 return true;
260 void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters,
261 const SwitchInst *SI) {
262 // Partition Clusters into as few subsets as possible, where each subset has a
263 // range that fits in a machine word and has <= 3 unique destinations.
265 #ifndef NDEBUG
266 // Clusters must be sorted and contain Range or JumpTable clusters.
267 assert(!Clusters.empty());
268 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
269 for (const CaseCluster &C : Clusters)
270 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
271 for (unsigned i = 1; i < Clusters.size(); ++i)
272 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
273 #endif
275 // The algorithm below is not suitable for -O0.
276 if (TM->getOptLevel() == CodeGenOpt::None)
277 return;
279 // If target does not have legal shift left, do not emit bit tests at all.
280 EVT PTy = TLI->getPointerTy(*DL);
281 if (!TLI->isOperationLegal(ISD::SHL, PTy))
282 return;
284 int BitWidth = PTy.getSizeInBits();
285 const int64_t N = Clusters.size();
287 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
288 SmallVector<unsigned, 8> MinPartitions(N);
289 // LastElement[i] is the last element of the partition starting at i.
290 SmallVector<unsigned, 8> LastElement(N);
292 // FIXME: This might not be the best algorithm for finding bit test clusters.
294 // Base case: There is only one way to partition Clusters[N-1].
295 MinPartitions[N - 1] = 1;
296 LastElement[N - 1] = N - 1;
298 // Note: loop indexes are signed to avoid underflow.
299 for (int64_t i = N - 2; i >= 0; --i) {
300 // Find optimal partitioning of Clusters[i..N-1].
301 // Baseline: Put Clusters[i] into a partition on its own.
302 MinPartitions[i] = MinPartitions[i + 1] + 1;
303 LastElement[i] = i;
305 // Search for a solution that results in fewer partitions.
306 // Note: the search is limited by BitWidth, reducing time complexity.
307 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
308 // Try building a partition from Clusters[i..j].
310 // Check the range.
311 if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(),
312 Clusters[j].High->getValue(), *DL))
313 continue;
315 // Check nbr of destinations and cluster types.
316 // FIXME: This works, but doesn't seem very efficient.
317 bool RangesOnly = true;
318 BitVector Dests(FuncInfo.MF->getNumBlockIDs());
319 for (int64_t k = i; k <= j; k++) {
320 if (Clusters[k].Kind != CC_Range) {
321 RangesOnly = false;
322 break;
324 Dests.set(Clusters[k].MBB->getNumber());
326 if (!RangesOnly || Dests.count() > 3)
327 break;
329 // Check if it's a better partition.
330 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
331 if (NumPartitions < MinPartitions[i]) {
332 // Found a better partition.
333 MinPartitions[i] = NumPartitions;
334 LastElement[i] = j;
339 // Iterate over the partitions, replacing with bit-test clusters in-place.
340 unsigned DstIndex = 0;
341 for (unsigned First = 0, Last; First < N; First = Last + 1) {
342 Last = LastElement[First];
343 assert(First <= Last);
344 assert(DstIndex <= First);
346 CaseCluster BitTestCluster;
347 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
348 Clusters[DstIndex++] = BitTestCluster;
349 } else {
350 size_t NumClusters = Last - First + 1;
351 std::memmove(&Clusters[DstIndex], &Clusters[First],
352 sizeof(Clusters[0]) * NumClusters);
353 DstIndex += NumClusters;
356 Clusters.resize(DstIndex);
359 bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters,
360 unsigned First, unsigned Last,
361 const SwitchInst *SI,
362 CaseCluster &BTCluster) {
363 assert(First <= Last);
364 if (First == Last)
365 return false;
367 BitVector Dests(FuncInfo.MF->getNumBlockIDs());
368 unsigned NumCmps = 0;
369 for (int64_t I = First; I <= Last; ++I) {
370 assert(Clusters[I].Kind == CC_Range);
371 Dests.set(Clusters[I].MBB->getNumber());
372 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
374 unsigned NumDests = Dests.count();
376 APInt Low = Clusters[First].Low->getValue();
377 APInt High = Clusters[Last].High->getValue();
378 assert(Low.slt(High));
380 if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL))
381 return false;
383 APInt LowBound;
384 APInt CmpRange;
386 const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits();
387 assert(TLI->rangeFitsInWord(Low, High, *DL) &&
388 "Case range must fit in bit mask!");
390 // Check if the clusters cover a contiguous range such that no value in the
391 // range will jump to the default statement.
392 bool ContiguousRange = true;
393 for (int64_t I = First + 1; I <= Last; ++I) {
394 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
395 ContiguousRange = false;
396 break;
400 if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
401 // Optimize the case where all the case values fit in a word without having
402 // to subtract minValue. In this case, we can optimize away the subtraction.
403 LowBound = APInt::getNullValue(Low.getBitWidth());
404 CmpRange = High;
405 ContiguousRange = false;
406 } else {
407 LowBound = Low;
408 CmpRange = High - Low;
411 CaseBitsVector CBV;
412 auto TotalProb = BranchProbability::getZero();
413 for (unsigned i = First; i <= Last; ++i) {
414 // Find the CaseBits for this destination.
415 unsigned j;
416 for (j = 0; j < CBV.size(); ++j)
417 if (CBV[j].BB == Clusters[i].MBB)
418 break;
419 if (j == CBV.size())
420 CBV.push_back(
421 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
422 CaseBits *CB = &CBV[j];
424 // Update Mask, Bits and ExtraProb.
425 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
426 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
427 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
428 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
429 CB->Bits += Hi - Lo + 1;
430 CB->ExtraProb += Clusters[i].Prob;
431 TotalProb += Clusters[i].Prob;
434 BitTestInfo BTI;
435 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
436 // Sort by probability first, number of bits second, bit mask third.
437 if (a.ExtraProb != b.ExtraProb)
438 return a.ExtraProb > b.ExtraProb;
439 if (a.Bits != b.Bits)
440 return a.Bits > b.Bits;
441 return a.Mask < b.Mask;
444 for (auto &CB : CBV) {
445 MachineBasicBlock *BitTestBB =
446 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
447 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
449 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
450 SI->getCondition(), -1U, MVT::Other, false,
451 ContiguousRange, nullptr, nullptr, std::move(BTI),
452 TotalProb);
454 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
455 BitTestCases.size() - 1, TotalProb);
456 return true;
459 void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) {
460 #ifndef NDEBUG
461 for (const CaseCluster &CC : Clusters)
462 assert(CC.Low == CC.High && "Input clusters must be single-case");
463 #endif
465 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
466 return a.Low->getValue().slt(b.Low->getValue());
469 // Merge adjacent clusters with the same destination.
470 const unsigned N = Clusters.size();
471 unsigned DstIndex = 0;
472 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
473 CaseCluster &CC = Clusters[SrcIndex];
474 const ConstantInt *CaseVal = CC.Low;
475 MachineBasicBlock *Succ = CC.MBB;
477 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
478 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
479 // If this case has the same successor and is a neighbour, merge it into
480 // the previous cluster.
481 Clusters[DstIndex - 1].High = CaseVal;
482 Clusters[DstIndex - 1].Prob += CC.Prob;
483 } else {
484 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
485 sizeof(Clusters[SrcIndex]));
488 Clusters.resize(DstIndex);