[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
blob2df71a5e5e7415bd43f353e9fefd2e21631f755f
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include <mutex>
26 #include <future>
28 using namespace llvm;
29 using namespace llvm::object;
31 #define DEBUG_TYPE "dyld"
33 namespace {
35 enum RuntimeDyldErrorCode {
36 GenericRTDyldError = 1
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory : public std::error_category {
43 public:
44 const char *name() const noexcept override { return "runtimedyld"; }
46 std::string message(int Condition) const override {
47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48 case GenericRTDyldError: return "Generic RuntimeDyld error";
50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
58 char RuntimeDyldError::ID = 0;
60 void RuntimeDyldError::log(raw_ostream &OS) const {
61 OS << ErrMsg << "\n";
64 std::error_code RuntimeDyldError::convertToErrorCode() const {
65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
74 namespace llvm {
76 void RuntimeDyldImpl::registerEHFrames() {}
78 void RuntimeDyldImpl::deregisterEHFrames() {
79 MemMgr.deregisterEHFrames();
82 #ifndef NDEBUG
83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84 dbgs() << "----- Contents of section " << S.getName() << " " << State
85 << " -----";
87 if (S.getAddress() == nullptr) {
88 dbgs() << "\n <section not emitted>\n";
89 return;
92 const unsigned ColsPerRow = 16;
94 uint8_t *DataAddr = S.getAddress();
95 uint64_t LoadAddr = S.getLoadAddress();
97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98 unsigned BytesRemaining = S.getSize();
100 if (StartPadding) {
101 dbgs() << "\n" << format("0x%016" PRIx64,
102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103 while (StartPadding--)
104 dbgs() << " ";
107 while (BytesRemaining > 0) {
108 if ((LoadAddr & (ColsPerRow - 1)) == 0)
109 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
111 dbgs() << " " << format("%02x", *DataAddr);
113 ++DataAddr;
114 ++LoadAddr;
115 --BytesRemaining;
118 dbgs() << "\n";
120 #endif
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124 std::lock_guard<sys::Mutex> locked(lock);
126 // Print out the sections prior to relocation.
127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
128 dumpSectionMemory(Sections[i], "before relocations"););
130 // First, resolve relocations associated with external symbols.
131 if (auto Err = resolveExternalSymbols()) {
132 HasError = true;
133 ErrorStr = toString(std::move(Err));
136 resolveLocalRelocations();
138 // Print out sections after relocation.
139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
140 dumpSectionMemory(Sections[i], "after relocations"););
143 void RuntimeDyldImpl::resolveLocalRelocations() {
144 // Iterate over all outstanding relocations
145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146 // The Section here (Sections[i]) refers to the section in which the
147 // symbol for the relocation is located. The SectionID in the relocation
148 // entry provides the section to which the relocation will be applied.
149 int Idx = it->first;
150 uint64_t Addr = Sections[Idx].getLoadAddress();
151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
152 << format("%p", (uintptr_t)Addr) << "\n");
153 resolveRelocationList(it->second, Addr);
155 Relocations.clear();
158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159 uint64_t TargetAddress) {
160 std::lock_guard<sys::Mutex> locked(lock);
161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162 if (Sections[i].getAddress() == LocalAddress) {
163 reassignSectionAddress(i, TargetAddress);
164 return;
167 llvm_unreachable("Attempting to remap address of unknown section!");
170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171 uint64_t &Result) {
172 Expected<uint64_t> AddressOrErr = Sym.getAddress();
173 if (!AddressOrErr)
174 return AddressOrErr.takeError();
175 Result = *AddressOrErr - Sec.getAddress();
176 return Error::success();
179 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181 std::lock_guard<sys::Mutex> locked(lock);
183 // Save information about our target
184 Arch = (Triple::ArchType)Obj.getArch();
185 IsTargetLittleEndian = Obj.isLittleEndian();
186 setMipsABI(Obj);
188 // Compute the memory size required to load all sections to be loaded
189 // and pass this information to the memory manager
190 if (MemMgr.needsToReserveAllocationSpace()) {
191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193 if (auto Err = computeTotalAllocSize(Obj,
194 CodeSize, CodeAlign,
195 RODataSize, RODataAlign,
196 RWDataSize, RWDataAlign))
197 return std::move(Err);
198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199 RWDataSize, RWDataAlign);
202 // Used sections from the object file
203 ObjSectionToIDMap LocalSections;
205 // Common symbols requiring allocation, with their sizes and alignments
206 CommonSymbolList CommonSymbolsToAllocate;
208 uint64_t CommonSize = 0;
209 uint32_t CommonAlign = 0;
211 // First, collect all weak and common symbols. We need to know if stronger
212 // definitions occur elsewhere.
213 JITSymbolResolver::LookupSet ResponsibilitySet;
215 JITSymbolResolver::LookupSet Symbols;
216 for (auto &Sym : Obj.symbols()) {
217 uint32_t Flags = Sym.getFlags();
218 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
219 // Get symbol name.
220 if (auto NameOrErr = Sym.getName())
221 Symbols.insert(*NameOrErr);
222 else
223 return NameOrErr.takeError();
227 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
228 ResponsibilitySet = std::move(*ResultOrErr);
229 else
230 return ResultOrErr.takeError();
233 // Parse symbols
234 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
235 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
236 ++I) {
237 uint32_t Flags = I->getFlags();
239 // Skip undefined symbols.
240 if (Flags & SymbolRef::SF_Undefined)
241 continue;
243 // Get the symbol type.
244 object::SymbolRef::Type SymType;
245 if (auto SymTypeOrErr = I->getType())
246 SymType = *SymTypeOrErr;
247 else
248 return SymTypeOrErr.takeError();
250 // Get symbol name.
251 StringRef Name;
252 if (auto NameOrErr = I->getName())
253 Name = *NameOrErr;
254 else
255 return NameOrErr.takeError();
257 // Compute JIT symbol flags.
258 auto JITSymFlags = getJITSymbolFlags(*I);
259 if (!JITSymFlags)
260 return JITSymFlags.takeError();
262 // If this is a weak definition, check to see if there's a strong one.
263 // If there is, skip this symbol (we won't be providing it: the strong
264 // definition will). If there's no strong definition, make this definition
265 // strong.
266 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
267 // First check whether there's already a definition in this instance.
268 if (GlobalSymbolTable.count(Name))
269 continue;
271 // If we're not responsible for this symbol, skip it.
272 if (!ResponsibilitySet.count(Name))
273 continue;
275 // Otherwise update the flags on the symbol to make this definition
276 // strong.
277 if (JITSymFlags->isWeak())
278 *JITSymFlags &= ~JITSymbolFlags::Weak;
279 if (JITSymFlags->isCommon()) {
280 *JITSymFlags &= ~JITSymbolFlags::Common;
281 uint32_t Align = I->getAlignment();
282 uint64_t Size = I->getCommonSize();
283 if (!CommonAlign)
284 CommonAlign = Align;
285 CommonSize = alignTo(CommonSize, Align) + Size;
286 CommonSymbolsToAllocate.push_back(*I);
290 if (Flags & SymbolRef::SF_Absolute &&
291 SymType != object::SymbolRef::ST_File) {
292 uint64_t Addr = 0;
293 if (auto AddrOrErr = I->getAddress())
294 Addr = *AddrOrErr;
295 else
296 return AddrOrErr.takeError();
298 unsigned SectionID = AbsoluteSymbolSection;
300 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
301 << " SID: " << SectionID
302 << " Offset: " << format("%p", (uintptr_t)Addr)
303 << " flags: " << Flags << "\n");
304 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
305 } else if (SymType == object::SymbolRef::ST_Function ||
306 SymType == object::SymbolRef::ST_Data ||
307 SymType == object::SymbolRef::ST_Unknown ||
308 SymType == object::SymbolRef::ST_Other) {
310 section_iterator SI = Obj.section_end();
311 if (auto SIOrErr = I->getSection())
312 SI = *SIOrErr;
313 else
314 return SIOrErr.takeError();
316 if (SI == Obj.section_end())
317 continue;
319 // Get symbol offset.
320 uint64_t SectOffset;
321 if (auto Err = getOffset(*I, *SI, SectOffset))
322 return std::move(Err);
324 bool IsCode = SI->isText();
325 unsigned SectionID;
326 if (auto SectionIDOrErr =
327 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
328 SectionID = *SectionIDOrErr;
329 else
330 return SectionIDOrErr.takeError();
332 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
333 << " SID: " << SectionID
334 << " Offset: " << format("%p", (uintptr_t)SectOffset)
335 << " flags: " << Flags << "\n");
336 GlobalSymbolTable[Name] =
337 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
341 // Allocate common symbols
342 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
343 CommonAlign))
344 return std::move(Err);
346 // Parse and process relocations
347 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
348 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
349 SI != SE; ++SI) {
350 StubMap Stubs;
352 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
353 if (!RelSecOrErr)
354 return RelSecOrErr.takeError();
356 section_iterator RelocatedSection = *RelSecOrErr;
357 if (RelocatedSection == SE)
358 continue;
360 relocation_iterator I = SI->relocation_begin();
361 relocation_iterator E = SI->relocation_end();
363 if (I == E && !ProcessAllSections)
364 continue;
366 bool IsCode = RelocatedSection->isText();
367 unsigned SectionID = 0;
368 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
369 LocalSections))
370 SectionID = *SectionIDOrErr;
371 else
372 return SectionIDOrErr.takeError();
374 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
376 for (; I != E;)
377 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
378 I = *IOrErr;
379 else
380 return IOrErr.takeError();
382 // If there is a NotifyStubEmitted callback set, call it to register any
383 // stubs created for this section.
384 if (NotifyStubEmitted) {
385 StringRef FileName = Obj.getFileName();
386 StringRef SectionName = Sections[SectionID].getName();
387 for (auto &KV : Stubs) {
389 auto &VR = KV.first;
390 uint64_t StubAddr = KV.second;
392 // If this is a named stub, just call NotifyStubEmitted.
393 if (VR.SymbolName) {
394 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
395 StubAddr);
396 continue;
399 // Otherwise we will have to try a reverse lookup on the globla symbol table.
400 for (auto &GSTMapEntry : GlobalSymbolTable) {
401 StringRef SymbolName = GSTMapEntry.first();
402 auto &GSTEntry = GSTMapEntry.second;
403 if (GSTEntry.getSectionID() == VR.SectionID &&
404 GSTEntry.getOffset() == VR.Offset) {
405 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
406 StubAddr);
407 break;
414 // Process remaining sections
415 if (ProcessAllSections) {
416 LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
417 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
418 SI != SE; ++SI) {
420 /* Ignore already loaded sections */
421 if (LocalSections.find(*SI) != LocalSections.end())
422 continue;
424 bool IsCode = SI->isText();
425 if (auto SectionIDOrErr =
426 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
427 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
428 else
429 return SectionIDOrErr.takeError();
433 // Give the subclasses a chance to tie-up any loose ends.
434 if (auto Err = finalizeLoad(Obj, LocalSections))
435 return std::move(Err);
437 // for (auto E : LocalSections)
438 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
440 return LocalSections;
443 // A helper method for computeTotalAllocSize.
444 // Computes the memory size required to allocate sections with the given sizes,
445 // assuming that all sections are allocated with the given alignment
446 static uint64_t
447 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
448 uint64_t Alignment) {
449 uint64_t TotalSize = 0;
450 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
451 uint64_t AlignedSize =
452 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
453 TotalSize += AlignedSize;
455 return TotalSize;
458 static bool isRequiredForExecution(const SectionRef Section) {
459 const ObjectFile *Obj = Section.getObject();
460 if (isa<object::ELFObjectFileBase>(Obj))
461 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
462 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
463 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
464 // Avoid loading zero-sized COFF sections.
465 // In PE files, VirtualSize gives the section size, and SizeOfRawData
466 // may be zero for sections with content. In Obj files, SizeOfRawData
467 // gives the section size, and VirtualSize is always zero. Hence
468 // the need to check for both cases below.
469 bool HasContent =
470 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
471 bool IsDiscardable =
472 CoffSection->Characteristics &
473 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
474 return HasContent && !IsDiscardable;
477 assert(isa<MachOObjectFile>(Obj));
478 return true;
481 static bool isReadOnlyData(const SectionRef Section) {
482 const ObjectFile *Obj = Section.getObject();
483 if (isa<object::ELFObjectFileBase>(Obj))
484 return !(ELFSectionRef(Section).getFlags() &
485 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
486 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
487 return ((COFFObj->getCOFFSection(Section)->Characteristics &
488 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
489 | COFF::IMAGE_SCN_MEM_READ
490 | COFF::IMAGE_SCN_MEM_WRITE))
492 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
493 | COFF::IMAGE_SCN_MEM_READ));
495 assert(isa<MachOObjectFile>(Obj));
496 return false;
499 static bool isZeroInit(const SectionRef Section) {
500 const ObjectFile *Obj = Section.getObject();
501 if (isa<object::ELFObjectFileBase>(Obj))
502 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
503 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
504 return COFFObj->getCOFFSection(Section)->Characteristics &
505 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
507 auto *MachO = cast<MachOObjectFile>(Obj);
508 unsigned SectionType = MachO->getSectionType(Section);
509 return SectionType == MachO::S_ZEROFILL ||
510 SectionType == MachO::S_GB_ZEROFILL;
513 // Compute an upper bound of the memory size that is required to load all
514 // sections
515 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
516 uint64_t &CodeSize,
517 uint32_t &CodeAlign,
518 uint64_t &RODataSize,
519 uint32_t &RODataAlign,
520 uint64_t &RWDataSize,
521 uint32_t &RWDataAlign) {
522 // Compute the size of all sections required for execution
523 std::vector<uint64_t> CodeSectionSizes;
524 std::vector<uint64_t> ROSectionSizes;
525 std::vector<uint64_t> RWSectionSizes;
527 // Collect sizes of all sections to be loaded;
528 // also determine the max alignment of all sections
529 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
530 SI != SE; ++SI) {
531 const SectionRef &Section = *SI;
533 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
535 // Consider only the sections that are required to be loaded for execution
536 if (IsRequired) {
537 uint64_t DataSize = Section.getSize();
538 uint64_t Alignment64 = Section.getAlignment();
539 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
540 bool IsCode = Section.isText();
541 bool IsReadOnly = isReadOnlyData(Section);
543 Expected<StringRef> NameOrErr = Section.getName();
544 if (!NameOrErr)
545 return NameOrErr.takeError();
546 StringRef Name = *NameOrErr;
548 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
550 uint64_t PaddingSize = 0;
551 if (Name == ".eh_frame")
552 PaddingSize += 4;
553 if (StubBufSize != 0)
554 PaddingSize += getStubAlignment() - 1;
556 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
558 // The .eh_frame section (at least on Linux) needs an extra four bytes
559 // padded
560 // with zeroes added at the end. For MachO objects, this section has a
561 // slightly different name, so this won't have any effect for MachO
562 // objects.
563 if (Name == ".eh_frame")
564 SectionSize += 4;
566 if (!SectionSize)
567 SectionSize = 1;
569 if (IsCode) {
570 CodeAlign = std::max(CodeAlign, Alignment);
571 CodeSectionSizes.push_back(SectionSize);
572 } else if (IsReadOnly) {
573 RODataAlign = std::max(RODataAlign, Alignment);
574 ROSectionSizes.push_back(SectionSize);
575 } else {
576 RWDataAlign = std::max(RWDataAlign, Alignment);
577 RWSectionSizes.push_back(SectionSize);
582 // Compute Global Offset Table size. If it is not zero we
583 // also update alignment, which is equal to a size of a
584 // single GOT entry.
585 if (unsigned GotSize = computeGOTSize(Obj)) {
586 RWSectionSizes.push_back(GotSize);
587 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
590 // Compute the size of all common symbols
591 uint64_t CommonSize = 0;
592 uint32_t CommonAlign = 1;
593 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
594 ++I) {
595 uint32_t Flags = I->getFlags();
596 if (Flags & SymbolRef::SF_Common) {
597 // Add the common symbols to a list. We'll allocate them all below.
598 uint64_t Size = I->getCommonSize();
599 uint32_t Align = I->getAlignment();
600 // If this is the first common symbol, use its alignment as the alignment
601 // for the common symbols section.
602 if (CommonSize == 0)
603 CommonAlign = Align;
604 CommonSize = alignTo(CommonSize, Align) + Size;
607 if (CommonSize != 0) {
608 RWSectionSizes.push_back(CommonSize);
609 RWDataAlign = std::max(RWDataAlign, CommonAlign);
612 // Compute the required allocation space for each different type of sections
613 // (code, read-only data, read-write data) assuming that all sections are
614 // allocated with the max alignment. Note that we cannot compute with the
615 // individual alignments of the sections, because then the required size
616 // depends on the order, in which the sections are allocated.
617 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
618 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
619 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
621 return Error::success();
624 // compute GOT size
625 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
626 size_t GotEntrySize = getGOTEntrySize();
627 if (!GotEntrySize)
628 return 0;
630 size_t GotSize = 0;
631 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
632 SI != SE; ++SI) {
634 for (const RelocationRef &Reloc : SI->relocations())
635 if (relocationNeedsGot(Reloc))
636 GotSize += GotEntrySize;
639 return GotSize;
642 // compute stub buffer size for the given section
643 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
644 const SectionRef &Section) {
645 unsigned StubSize = getMaxStubSize();
646 if (StubSize == 0) {
647 return 0;
649 // FIXME: this is an inefficient way to handle this. We should computed the
650 // necessary section allocation size in loadObject by walking all the sections
651 // once.
652 unsigned StubBufSize = 0;
653 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
654 SI != SE; ++SI) {
656 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
657 if (!RelSecOrErr)
658 report_fatal_error(toString(RelSecOrErr.takeError()));
660 section_iterator RelSecI = *RelSecOrErr;
661 if (!(RelSecI == Section))
662 continue;
664 for (const RelocationRef &Reloc : SI->relocations())
665 if (relocationNeedsStub(Reloc))
666 StubBufSize += StubSize;
669 // Get section data size and alignment
670 uint64_t DataSize = Section.getSize();
671 uint64_t Alignment64 = Section.getAlignment();
673 // Add stubbuf size alignment
674 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
675 unsigned StubAlignment = getStubAlignment();
676 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
677 if (StubAlignment > EndAlignment)
678 StubBufSize += StubAlignment - EndAlignment;
679 return StubBufSize;
682 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
683 unsigned Size) const {
684 uint64_t Result = 0;
685 if (IsTargetLittleEndian) {
686 Src += Size - 1;
687 while (Size--)
688 Result = (Result << 8) | *Src--;
689 } else
690 while (Size--)
691 Result = (Result << 8) | *Src++;
693 return Result;
696 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
697 unsigned Size) const {
698 if (IsTargetLittleEndian) {
699 while (Size--) {
700 *Dst++ = Value & 0xFF;
701 Value >>= 8;
703 } else {
704 Dst += Size - 1;
705 while (Size--) {
706 *Dst-- = Value & 0xFF;
707 Value >>= 8;
712 Expected<JITSymbolFlags>
713 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
714 return JITSymbolFlags::fromObjectSymbol(SR);
717 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
718 CommonSymbolList &SymbolsToAllocate,
719 uint64_t CommonSize,
720 uint32_t CommonAlign) {
721 if (SymbolsToAllocate.empty())
722 return Error::success();
724 // Allocate memory for the section
725 unsigned SectionID = Sections.size();
726 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
727 "<common symbols>", false);
728 if (!Addr)
729 report_fatal_error("Unable to allocate memory for common symbols!");
730 uint64_t Offset = 0;
731 Sections.push_back(
732 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
733 memset(Addr, 0, CommonSize);
735 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
736 << " new addr: " << format("%p", Addr)
737 << " DataSize: " << CommonSize << "\n");
739 // Assign the address of each symbol
740 for (auto &Sym : SymbolsToAllocate) {
741 uint32_t Alignment = Sym.getAlignment();
742 uint64_t Size = Sym.getCommonSize();
743 StringRef Name;
744 if (auto NameOrErr = Sym.getName())
745 Name = *NameOrErr;
746 else
747 return NameOrErr.takeError();
748 if (Alignment) {
749 // This symbol has an alignment requirement.
750 uint64_t AlignOffset =
751 offsetToAlignment((uint64_t)Addr, Align(Alignment));
752 Addr += AlignOffset;
753 Offset += AlignOffset;
755 auto JITSymFlags = getJITSymbolFlags(Sym);
757 if (!JITSymFlags)
758 return JITSymFlags.takeError();
760 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
761 << format("%p", Addr) << "\n");
762 GlobalSymbolTable[Name] =
763 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
764 Offset += Size;
765 Addr += Size;
768 return Error::success();
771 Expected<unsigned>
772 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
773 const SectionRef &Section,
774 bool IsCode) {
775 StringRef data;
776 uint64_t Alignment64 = Section.getAlignment();
778 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
779 unsigned PaddingSize = 0;
780 unsigned StubBufSize = 0;
781 bool IsRequired = isRequiredForExecution(Section);
782 bool IsVirtual = Section.isVirtual();
783 bool IsZeroInit = isZeroInit(Section);
784 bool IsReadOnly = isReadOnlyData(Section);
785 uint64_t DataSize = Section.getSize();
787 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
788 // while being more "polite". Other formats do not support 0-aligned sections
789 // anyway, so we should guarantee that the alignment is always at least 1.
790 Alignment = std::max(1u, Alignment);
792 Expected<StringRef> NameOrErr = Section.getName();
793 if (!NameOrErr)
794 return NameOrErr.takeError();
795 StringRef Name = *NameOrErr;
797 StubBufSize = computeSectionStubBufSize(Obj, Section);
799 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
800 // with zeroes added at the end. For MachO objects, this section has a
801 // slightly different name, so this won't have any effect for MachO objects.
802 if (Name == ".eh_frame")
803 PaddingSize = 4;
805 uintptr_t Allocate;
806 unsigned SectionID = Sections.size();
807 uint8_t *Addr;
808 const char *pData = nullptr;
810 // If this section contains any bits (i.e. isn't a virtual or bss section),
811 // grab a reference to them.
812 if (!IsVirtual && !IsZeroInit) {
813 // In either case, set the location of the unrelocated section in memory,
814 // since we still process relocations for it even if we're not applying them.
815 if (Expected<StringRef> E = Section.getContents())
816 data = *E;
817 else
818 return E.takeError();
819 pData = data.data();
822 // If there are any stubs then the section alignment needs to be at least as
823 // high as stub alignment or padding calculations may by incorrect when the
824 // section is remapped.
825 if (StubBufSize != 0) {
826 Alignment = std::max(Alignment, getStubAlignment());
827 PaddingSize += getStubAlignment() - 1;
830 // Some sections, such as debug info, don't need to be loaded for execution.
831 // Process those only if explicitly requested.
832 if (IsRequired || ProcessAllSections) {
833 Allocate = DataSize + PaddingSize + StubBufSize;
834 if (!Allocate)
835 Allocate = 1;
836 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
837 Name)
838 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
839 Name, IsReadOnly);
840 if (!Addr)
841 report_fatal_error("Unable to allocate section memory!");
843 // Zero-initialize or copy the data from the image
844 if (IsZeroInit || IsVirtual)
845 memset(Addr, 0, DataSize);
846 else
847 memcpy(Addr, pData, DataSize);
849 // Fill in any extra bytes we allocated for padding
850 if (PaddingSize != 0) {
851 memset(Addr + DataSize, 0, PaddingSize);
852 // Update the DataSize variable to include padding.
853 DataSize += PaddingSize;
855 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
856 // have been increased above to account for this).
857 if (StubBufSize > 0)
858 DataSize &= -(uint64_t)getStubAlignment();
861 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
862 << Name << " obj addr: " << format("%p", pData)
863 << " new addr: " << format("%p", Addr) << " DataSize: "
864 << DataSize << " StubBufSize: " << StubBufSize
865 << " Allocate: " << Allocate << "\n");
866 } else {
867 // Even if we didn't load the section, we need to record an entry for it
868 // to handle later processing (and by 'handle' I mean don't do anything
869 // with these sections).
870 Allocate = 0;
871 Addr = nullptr;
872 LLVM_DEBUG(
873 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
874 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
875 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
876 << " Allocate: " << Allocate << "\n");
879 Sections.push_back(
880 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
882 // Debug info sections are linked as if their load address was zero
883 if (!IsRequired)
884 Sections.back().setLoadAddress(0);
886 return SectionID;
889 Expected<unsigned>
890 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
891 const SectionRef &Section,
892 bool IsCode,
893 ObjSectionToIDMap &LocalSections) {
895 unsigned SectionID = 0;
896 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
897 if (i != LocalSections.end())
898 SectionID = i->second;
899 else {
900 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
901 SectionID = *SectionIDOrErr;
902 else
903 return SectionIDOrErr.takeError();
904 LocalSections[Section] = SectionID;
906 return SectionID;
909 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
910 unsigned SectionID) {
911 Relocations[SectionID].push_back(RE);
914 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
915 StringRef SymbolName) {
916 // Relocation by symbol. If the symbol is found in the global symbol table,
917 // create an appropriate section relocation. Otherwise, add it to
918 // ExternalSymbolRelocations.
919 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
920 if (Loc == GlobalSymbolTable.end()) {
921 ExternalSymbolRelocations[SymbolName].push_back(RE);
922 } else {
923 // Copy the RE since we want to modify its addend.
924 RelocationEntry RECopy = RE;
925 const auto &SymInfo = Loc->second;
926 RECopy.Addend += SymInfo.getOffset();
927 Relocations[SymInfo.getSectionID()].push_back(RECopy);
931 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
932 unsigned AbiVariant) {
933 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
934 Arch == Triple::aarch64_32) {
935 // This stub has to be able to access the full address space,
936 // since symbol lookup won't necessarily find a handy, in-range,
937 // PLT stub for functions which could be anywhere.
938 // Stub can use ip0 (== x16) to calculate address
939 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
940 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
941 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
942 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
943 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
945 return Addr;
946 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
947 // TODO: There is only ARM far stub now. We should add the Thumb stub,
948 // and stubs for branches Thumb - ARM and ARM - Thumb.
949 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
950 return Addr + 4;
951 } else if (IsMipsO32ABI || IsMipsN32ABI) {
952 // 0: 3c190000 lui t9,%hi(addr).
953 // 4: 27390000 addiu t9,t9,%lo(addr).
954 // 8: 03200008 jr t9.
955 // c: 00000000 nop.
956 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
957 const unsigned NopInstr = 0x0;
958 unsigned JrT9Instr = 0x03200008;
959 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
960 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
961 JrT9Instr = 0x03200009;
963 writeBytesUnaligned(LuiT9Instr, Addr, 4);
964 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
965 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
966 writeBytesUnaligned(NopInstr, Addr + 12, 4);
967 return Addr;
968 } else if (IsMipsN64ABI) {
969 // 0: 3c190000 lui t9,%highest(addr).
970 // 4: 67390000 daddiu t9,t9,%higher(addr).
971 // 8: 0019CC38 dsll t9,t9,16.
972 // c: 67390000 daddiu t9,t9,%hi(addr).
973 // 10: 0019CC38 dsll t9,t9,16.
974 // 14: 67390000 daddiu t9,t9,%lo(addr).
975 // 18: 03200008 jr t9.
976 // 1c: 00000000 nop.
977 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
978 DsllT9Instr = 0x19CC38;
979 const unsigned NopInstr = 0x0;
980 unsigned JrT9Instr = 0x03200008;
981 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
982 JrT9Instr = 0x03200009;
984 writeBytesUnaligned(LuiT9Instr, Addr, 4);
985 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
986 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
987 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
988 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
989 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
990 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
991 writeBytesUnaligned(NopInstr, Addr + 28, 4);
992 return Addr;
993 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
994 // Depending on which version of the ELF ABI is in use, we need to
995 // generate one of two variants of the stub. They both start with
996 // the same sequence to load the target address into r12.
997 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
998 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
999 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
1000 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
1001 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
1002 if (AbiVariant == 2) {
1003 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1004 // The address is already in r12 as required by the ABI. Branch to it.
1005 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
1006 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1007 writeInt32BE(Addr+28, 0x4E800420); // bctr
1008 } else {
1009 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1010 // Load the function address on r11 and sets it to control register. Also
1011 // loads the function TOC in r2 and environment pointer to r11.
1012 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
1013 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
1014 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
1015 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1016 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
1017 writeInt32BE(Addr+40, 0x4E800420); // bctr
1019 return Addr;
1020 } else if (Arch == Triple::systemz) {
1021 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
1022 writeInt16BE(Addr+2, 0x0000);
1023 writeInt16BE(Addr+4, 0x0004);
1024 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
1025 // 8-byte address stored at Addr + 8
1026 return Addr;
1027 } else if (Arch == Triple::x86_64) {
1028 *Addr = 0xFF; // jmp
1029 *(Addr+1) = 0x25; // rip
1030 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1031 } else if (Arch == Triple::x86) {
1032 *Addr = 0xE9; // 32-bit pc-relative jump.
1034 return Addr;
1037 // Assign an address to a symbol name and resolve all the relocations
1038 // associated with it.
1039 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1040 uint64_t Addr) {
1041 // The address to use for relocation resolution is not
1042 // the address of the local section buffer. We must be doing
1043 // a remote execution environment of some sort. Relocations can't
1044 // be applied until all the sections have been moved. The client must
1045 // trigger this with a call to MCJIT::finalize() or
1046 // RuntimeDyld::resolveRelocations().
1048 // Addr is a uint64_t because we can't assume the pointer width
1049 // of the target is the same as that of the host. Just use a generic
1050 // "big enough" type.
1051 LLVM_DEBUG(
1052 dbgs() << "Reassigning address for section " << SectionID << " ("
1053 << Sections[SectionID].getName() << "): "
1054 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1055 << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1056 Sections[SectionID].setLoadAddress(Addr);
1059 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1060 uint64_t Value) {
1061 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1062 const RelocationEntry &RE = Relocs[i];
1063 // Ignore relocations for sections that were not loaded
1064 if (Sections[RE.SectionID].getAddress() == nullptr)
1065 continue;
1066 resolveRelocation(RE, Value);
1070 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1071 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1072 while (!ExternalSymbolRelocations.empty()) {
1074 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1076 StringRef Name = i->first();
1077 if (Name.size() == 0) {
1078 // This is an absolute symbol, use an address of zero.
1079 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1080 << "\n");
1081 RelocationList &Relocs = i->second;
1082 resolveRelocationList(Relocs, 0);
1083 } else {
1084 uint64_t Addr = 0;
1085 JITSymbolFlags Flags;
1086 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1087 if (Loc == GlobalSymbolTable.end()) {
1088 auto RRI = ExternalSymbolMap.find(Name);
1089 assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1090 Addr = RRI->second.getAddress();
1091 Flags = RRI->second.getFlags();
1092 // The call to getSymbolAddress may have caused additional modules to
1093 // be loaded, which may have added new entries to the
1094 // ExternalSymbolRelocations map. Consquently, we need to update our
1095 // iterator. This is also why retrieval of the relocation list
1096 // associated with this symbol is deferred until below this point.
1097 // New entries may have been added to the relocation list.
1098 i = ExternalSymbolRelocations.find(Name);
1099 } else {
1100 // We found the symbol in our global table. It was probably in a
1101 // Module that we loaded previously.
1102 const auto &SymInfo = Loc->second;
1103 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1104 SymInfo.getOffset();
1105 Flags = SymInfo.getFlags();
1108 // FIXME: Implement error handling that doesn't kill the host program!
1109 if (!Addr)
1110 report_fatal_error("Program used external function '" + Name +
1111 "' which could not be resolved!");
1113 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1114 // manually and we shouldn't resolve its relocations.
1115 if (Addr != UINT64_MAX) {
1117 // Tweak the address based on the symbol flags if necessary.
1118 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1119 // if the target symbol is Thumb.
1120 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1122 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1123 << format("0x%lx", Addr) << "\n");
1124 // This list may have been updated when we called getSymbolAddress, so
1125 // don't change this code to get the list earlier.
1126 RelocationList &Relocs = i->second;
1127 resolveRelocationList(Relocs, Addr);
1131 ExternalSymbolRelocations.erase(i);
1135 Error RuntimeDyldImpl::resolveExternalSymbols() {
1136 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1138 // Resolution can trigger emission of more symbols, so iterate until
1139 // we've resolved *everything*.
1141 JITSymbolResolver::LookupSet ResolvedSymbols;
1143 while (true) {
1144 JITSymbolResolver::LookupSet NewSymbols;
1146 for (auto &RelocKV : ExternalSymbolRelocations) {
1147 StringRef Name = RelocKV.first();
1148 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1149 !ResolvedSymbols.count(Name))
1150 NewSymbols.insert(Name);
1153 if (NewSymbols.empty())
1154 break;
1156 #ifdef _MSC_VER
1157 using ExpectedLookupResult =
1158 MSVCPExpected<JITSymbolResolver::LookupResult>;
1159 #else
1160 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1161 #endif
1163 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1164 auto NewSymbolsF = NewSymbolsP->get_future();
1165 Resolver.lookup(NewSymbols,
1166 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1167 NewSymbolsP->set_value(std::move(Result));
1170 auto NewResolverResults = NewSymbolsF.get();
1172 if (!NewResolverResults)
1173 return NewResolverResults.takeError();
1175 assert(NewResolverResults->size() == NewSymbols.size() &&
1176 "Should have errored on unresolved symbols");
1178 for (auto &RRKV : *NewResolverResults) {
1179 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1180 ExternalSymbolMap.insert(RRKV);
1181 ResolvedSymbols.insert(RRKV.first);
1186 applyExternalSymbolRelocations(ExternalSymbolMap);
1188 return Error::success();
1191 void RuntimeDyldImpl::finalizeAsync(
1192 std::unique_ptr<RuntimeDyldImpl> This,
1193 unique_function<void(Error)> OnEmitted,
1194 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1196 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1197 auto PostResolveContinuation =
1198 [SharedThis, OnEmitted = std::move(OnEmitted),
1199 UnderlyingBuffer = std::move(UnderlyingBuffer)](
1200 Expected<JITSymbolResolver::LookupResult> Result) mutable {
1201 if (!Result) {
1202 OnEmitted(Result.takeError());
1203 return;
1206 /// Copy the result into a StringMap, where the keys are held by value.
1207 StringMap<JITEvaluatedSymbol> Resolved;
1208 for (auto &KV : *Result)
1209 Resolved[KV.first] = KV.second;
1211 SharedThis->applyExternalSymbolRelocations(Resolved);
1212 SharedThis->resolveLocalRelocations();
1213 SharedThis->registerEHFrames();
1214 std::string ErrMsg;
1215 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1216 OnEmitted(make_error<StringError>(std::move(ErrMsg),
1217 inconvertibleErrorCode()));
1218 else
1219 OnEmitted(Error::success());
1222 JITSymbolResolver::LookupSet Symbols;
1224 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1225 StringRef Name = RelocKV.first();
1226 assert(!Name.empty() && "Symbol has no name?");
1227 assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1228 "Name already processed. RuntimeDyld instances can not be re-used "
1229 "when finalizing with finalizeAsync.");
1230 Symbols.insert(Name);
1233 if (!Symbols.empty()) {
1234 SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1235 } else
1236 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1239 //===----------------------------------------------------------------------===//
1240 // RuntimeDyld class implementation
1242 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1243 const object::SectionRef &Sec) const {
1245 auto I = ObjSecToIDMap.find(Sec);
1246 if (I != ObjSecToIDMap.end())
1247 return RTDyld.Sections[I->second].getLoadAddress();
1249 return 0;
1252 void RuntimeDyld::MemoryManager::anchor() {}
1253 void JITSymbolResolver::anchor() {}
1254 void LegacyJITSymbolResolver::anchor() {}
1256 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1257 JITSymbolResolver &Resolver)
1258 : MemMgr(MemMgr), Resolver(Resolver) {
1259 // FIXME: There's a potential issue lurking here if a single instance of
1260 // RuntimeDyld is used to load multiple objects. The current implementation
1261 // associates a single memory manager with a RuntimeDyld instance. Even
1262 // though the public class spawns a new 'impl' instance for each load,
1263 // they share a single memory manager. This can become a problem when page
1264 // permissions are applied.
1265 Dyld = nullptr;
1266 ProcessAllSections = false;
1269 RuntimeDyld::~RuntimeDyld() {}
1271 static std::unique_ptr<RuntimeDyldCOFF>
1272 createRuntimeDyldCOFF(
1273 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1274 JITSymbolResolver &Resolver, bool ProcessAllSections,
1275 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1276 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1277 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1278 Dyld->setProcessAllSections(ProcessAllSections);
1279 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1280 return Dyld;
1283 static std::unique_ptr<RuntimeDyldELF>
1284 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1285 JITSymbolResolver &Resolver, bool ProcessAllSections,
1286 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1287 std::unique_ptr<RuntimeDyldELF> Dyld =
1288 RuntimeDyldELF::create(Arch, MM, Resolver);
1289 Dyld->setProcessAllSections(ProcessAllSections);
1290 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1291 return Dyld;
1294 static std::unique_ptr<RuntimeDyldMachO>
1295 createRuntimeDyldMachO(
1296 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1297 JITSymbolResolver &Resolver,
1298 bool ProcessAllSections,
1299 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1300 std::unique_ptr<RuntimeDyldMachO> Dyld =
1301 RuntimeDyldMachO::create(Arch, MM, Resolver);
1302 Dyld->setProcessAllSections(ProcessAllSections);
1303 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1304 return Dyld;
1307 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1308 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1309 if (!Dyld) {
1310 if (Obj.isELF())
1311 Dyld =
1312 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1313 MemMgr, Resolver, ProcessAllSections,
1314 std::move(NotifyStubEmitted));
1315 else if (Obj.isMachO())
1316 Dyld = createRuntimeDyldMachO(
1317 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1318 ProcessAllSections, std::move(NotifyStubEmitted));
1319 else if (Obj.isCOFF())
1320 Dyld = createRuntimeDyldCOFF(
1321 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1322 ProcessAllSections, std::move(NotifyStubEmitted));
1323 else
1324 report_fatal_error("Incompatible object format!");
1327 if (!Dyld->isCompatibleFile(Obj))
1328 report_fatal_error("Incompatible object format!");
1330 auto LoadedObjInfo = Dyld->loadObject(Obj);
1331 MemMgr.notifyObjectLoaded(*this, Obj);
1332 return LoadedObjInfo;
1335 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1336 if (!Dyld)
1337 return nullptr;
1338 return Dyld->getSymbolLocalAddress(Name);
1341 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1342 assert(Dyld && "No RuntimeDyld instance attached");
1343 return Dyld->getSymbolSectionID(Name);
1346 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1347 if (!Dyld)
1348 return nullptr;
1349 return Dyld->getSymbol(Name);
1352 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1353 if (!Dyld)
1354 return std::map<StringRef, JITEvaluatedSymbol>();
1355 return Dyld->getSymbolTable();
1358 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1360 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1361 Dyld->reassignSectionAddress(SectionID, Addr);
1364 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1365 uint64_t TargetAddress) {
1366 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1369 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1371 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1373 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1374 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1375 MemMgr.FinalizationLocked = true;
1376 resolveRelocations();
1377 registerEHFrames();
1378 if (!MemoryFinalizationLocked) {
1379 MemMgr.finalizeMemory();
1380 MemMgr.FinalizationLocked = false;
1384 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1385 assert(Dyld && "No Dyld instance attached");
1386 return Dyld->getSectionContent(SectionID);
1389 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1390 assert(Dyld && "No Dyld instance attached");
1391 return Dyld->getSectionLoadAddress(SectionID);
1394 void RuntimeDyld::registerEHFrames() {
1395 if (Dyld)
1396 Dyld->registerEHFrames();
1399 void RuntimeDyld::deregisterEHFrames() {
1400 if (Dyld)
1401 Dyld->deregisterEHFrames();
1403 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1404 // so that we can re-use RuntimeDyld's implementation without twisting the
1405 // interface any further for ORC's purposes.
1406 void jitLinkForORC(object::ObjectFile &Obj,
1407 std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1408 RuntimeDyld::MemoryManager &MemMgr,
1409 JITSymbolResolver &Resolver, bool ProcessAllSections,
1410 unique_function<Error(
1411 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1412 std::map<StringRef, JITEvaluatedSymbol>)>
1413 OnLoaded,
1414 unique_function<void(Error)> OnEmitted) {
1416 RuntimeDyld RTDyld(MemMgr, Resolver);
1417 RTDyld.setProcessAllSections(ProcessAllSections);
1419 auto Info = RTDyld.loadObject(Obj);
1421 if (RTDyld.hasError()) {
1422 OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
1423 inconvertibleErrorCode()));
1424 return;
1427 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1428 OnEmitted(std::move(Err));
1430 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1431 std::move(UnderlyingBuffer));
1434 } // end namespace llvm