1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value. This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range. To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators. When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
16 // [F, F) = {} = Empty set
19 // [T, T) = {F, T} = Full set
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Support/raw_ostream.h"
42 ConstantRange::ConstantRange(uint32_t BitWidth
, bool Full
)
43 : Lower(Full
? APInt::getMaxValue(BitWidth
) : APInt::getMinValue(BitWidth
)),
46 ConstantRange::ConstantRange(APInt V
)
47 : Lower(std::move(V
)), Upper(Lower
+ 1) {}
49 ConstantRange::ConstantRange(APInt L
, APInt U
)
50 : Lower(std::move(L
)), Upper(std::move(U
)) {
51 assert(Lower
.getBitWidth() == Upper
.getBitWidth() &&
52 "ConstantRange with unequal bit widths");
53 assert((Lower
!= Upper
|| (Lower
.isMaxValue() || Lower
.isMinValue())) &&
54 "Lower == Upper, but they aren't min or max value!");
57 ConstantRange
ConstantRange::fromKnownBits(const KnownBits
&Known
,
59 assert(!Known
.hasConflict() && "Expected valid KnownBits");
61 if (Known
.isUnknown())
62 return getFull(Known
.getBitWidth());
64 // For unsigned ranges, or signed ranges with known sign bit, create a simple
65 // range between the smallest and largest possible value.
66 if (!IsSigned
|| Known
.isNegative() || Known
.isNonNegative())
67 return ConstantRange(Known
.One
, ~Known
.Zero
+ 1);
69 // If we don't know the sign bit, pick the lower bound as a negative number
70 // and the upper bound as a non-negative one.
71 APInt Lower
= Known
.One
, Upper
= ~Known
.Zero
;
74 return ConstantRange(Lower
, Upper
+ 1);
77 ConstantRange
ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred
,
78 const ConstantRange
&CR
) {
82 uint32_t W
= CR
.getBitWidth();
85 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
86 case CmpInst::ICMP_EQ
:
88 case CmpInst::ICMP_NE
:
89 if (CR
.isSingleElement())
90 return ConstantRange(CR
.getUpper(), CR
.getLower());
92 case CmpInst::ICMP_ULT
: {
93 APInt
UMax(CR
.getUnsignedMax());
94 if (UMax
.isMinValue())
96 return ConstantRange(APInt::getMinValue(W
), std::move(UMax
));
98 case CmpInst::ICMP_SLT
: {
99 APInt
SMax(CR
.getSignedMax());
100 if (SMax
.isMinSignedValue())
102 return ConstantRange(APInt::getSignedMinValue(W
), std::move(SMax
));
104 case CmpInst::ICMP_ULE
:
105 return getNonEmpty(APInt::getMinValue(W
), CR
.getUnsignedMax() + 1);
106 case CmpInst::ICMP_SLE
:
107 return getNonEmpty(APInt::getSignedMinValue(W
), CR
.getSignedMax() + 1);
108 case CmpInst::ICMP_UGT
: {
109 APInt
UMin(CR
.getUnsignedMin());
110 if (UMin
.isMaxValue())
112 return ConstantRange(std::move(UMin
) + 1, APInt::getNullValue(W
));
114 case CmpInst::ICMP_SGT
: {
115 APInt
SMin(CR
.getSignedMin());
116 if (SMin
.isMaxSignedValue())
118 return ConstantRange(std::move(SMin
) + 1, APInt::getSignedMinValue(W
));
120 case CmpInst::ICMP_UGE
:
121 return getNonEmpty(CR
.getUnsignedMin(), APInt::getNullValue(W
));
122 case CmpInst::ICMP_SGE
:
123 return getNonEmpty(CR
.getSignedMin(), APInt::getSignedMinValue(W
));
127 ConstantRange
ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred
,
128 const ConstantRange
&CR
) {
129 // Follows from De-Morgan's laws:
131 // ~(~A union ~B) == A intersect B.
133 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred
), CR
)
137 ConstantRange
ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred
,
139 // Computes the exact range that is equal to both the constant ranges returned
140 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
141 // when RHS is a singleton such as an APInt and so the assert is valid.
142 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
143 // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
145 assert(makeAllowedICmpRegion(Pred
, C
) == makeSatisfyingICmpRegion(Pred
, C
));
146 return makeAllowedICmpRegion(Pred
, C
);
149 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate
&Pred
,
151 bool Success
= false;
153 if (isFullSet() || isEmptySet()) {
154 Pred
= isEmptySet() ? CmpInst::ICMP_ULT
: CmpInst::ICMP_UGE
;
155 RHS
= APInt(getBitWidth(), 0);
157 } else if (auto *OnlyElt
= getSingleElement()) {
158 Pred
= CmpInst::ICMP_EQ
;
161 } else if (auto *OnlyMissingElt
= getSingleMissingElement()) {
162 Pred
= CmpInst::ICMP_NE
;
163 RHS
= *OnlyMissingElt
;
165 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
167 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT
: CmpInst::ICMP_ULT
;
170 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
172 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE
: CmpInst::ICMP_UGE
;
177 assert((!Success
|| ConstantRange::makeExactICmpRegion(Pred
, RHS
) == *this) &&
183 /// Exact mul nuw region for single element RHS.
184 static ConstantRange
makeExactMulNUWRegion(const APInt
&V
) {
185 unsigned BitWidth
= V
.getBitWidth();
187 return ConstantRange::getFull(V
.getBitWidth());
189 return ConstantRange::getNonEmpty(
190 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth
), V
,
191 APInt::Rounding::UP
),
192 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth
), V
,
193 APInt::Rounding::DOWN
) + 1);
196 /// Exact mul nsw region for single element RHS.
197 static ConstantRange
makeExactMulNSWRegion(const APInt
&V
) {
198 // Handle special case for 0, -1 and 1. See the last for reason why we
199 // specialize -1 and 1.
200 unsigned BitWidth
= V
.getBitWidth();
201 if (V
== 0 || V
.isOneValue())
202 return ConstantRange::getFull(BitWidth
);
204 APInt MinValue
= APInt::getSignedMinValue(BitWidth
);
205 APInt MaxValue
= APInt::getSignedMaxValue(BitWidth
);
206 // e.g. Returning [-127, 127], represented as [-127, -128).
207 if (V
.isAllOnesValue())
208 return ConstantRange(-MaxValue
, MinValue
);
211 if (V
.isNegative()) {
212 Lower
= APIntOps::RoundingSDiv(MaxValue
, V
, APInt::Rounding::UP
);
213 Upper
= APIntOps::RoundingSDiv(MinValue
, V
, APInt::Rounding::DOWN
);
215 Lower
= APIntOps::RoundingSDiv(MinValue
, V
, APInt::Rounding::UP
);
216 Upper
= APIntOps::RoundingSDiv(MaxValue
, V
, APInt::Rounding::DOWN
);
218 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
219 // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
220 // and 1 are already handled as special cases.
221 return ConstantRange(Lower
, Upper
+ 1);
225 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp
,
226 const ConstantRange
&Other
,
227 unsigned NoWrapKind
) {
228 using OBO
= OverflowingBinaryOperator
;
230 assert(Instruction::isBinaryOp(BinOp
) && "Binary operators only!");
232 assert((NoWrapKind
== OBO::NoSignedWrap
||
233 NoWrapKind
== OBO::NoUnsignedWrap
) &&
234 "NoWrapKind invalid!");
236 bool Unsigned
= NoWrapKind
== OBO::NoUnsignedWrap
;
237 unsigned BitWidth
= Other
.getBitWidth();
241 llvm_unreachable("Unsupported binary op");
243 case Instruction::Add
: {
245 return getNonEmpty(APInt::getNullValue(BitWidth
),
246 -Other
.getUnsignedMax());
248 APInt SignedMinVal
= APInt::getSignedMinValue(BitWidth
);
249 APInt SMin
= Other
.getSignedMin(), SMax
= Other
.getSignedMax();
251 SMin
.isNegative() ? SignedMinVal
- SMin
: SignedMinVal
,
252 SMax
.isStrictlyPositive() ? SignedMinVal
- SMax
: SignedMinVal
);
255 case Instruction::Sub
: {
257 return getNonEmpty(Other
.getUnsignedMax(), APInt::getMinValue(BitWidth
));
259 APInt SignedMinVal
= APInt::getSignedMinValue(BitWidth
);
260 APInt SMin
= Other
.getSignedMin(), SMax
= Other
.getSignedMax();
262 SMax
.isStrictlyPositive() ? SignedMinVal
+ SMax
: SignedMinVal
,
263 SMin
.isNegative() ? SignedMinVal
+ SMin
: SignedMinVal
);
266 case Instruction::Mul
:
268 return makeExactMulNUWRegion(Other
.getUnsignedMax());
270 return makeExactMulNSWRegion(Other
.getSignedMin())
271 .intersectWith(makeExactMulNSWRegion(Other
.getSignedMax()));
273 case Instruction::Shl
: {
274 // For given range of shift amounts, if we ignore all illegal shift amounts
275 // (that always produce poison), what shift amount range is left?
276 ConstantRange ShAmt
= Other
.intersectWith(
277 ConstantRange(APInt(BitWidth
, 0), APInt(BitWidth
, (BitWidth
- 1) + 1)));
278 if (ShAmt
.isEmptySet()) {
279 // If the entire range of shift amounts is already poison-producing,
280 // then we can freely add more poison-producing flags ontop of that.
281 return getFull(BitWidth
);
283 // There are some legal shift amounts, we can compute conservatively-correct
284 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
285 // to be at most bitwidth-1, which results in most conservative range.
286 APInt ShAmtUMax
= ShAmt
.getUnsignedMax();
288 return getNonEmpty(APInt::getNullValue(BitWidth
),
289 APInt::getMaxValue(BitWidth
).lshr(ShAmtUMax
) + 1);
290 return getNonEmpty(APInt::getSignedMinValue(BitWidth
).ashr(ShAmtUMax
),
291 APInt::getSignedMaxValue(BitWidth
).ashr(ShAmtUMax
) + 1);
296 ConstantRange
ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp
,
298 unsigned NoWrapKind
) {
299 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
300 // "for all" and "for any" coincide in this case.
301 return makeGuaranteedNoWrapRegion(BinOp
, ConstantRange(Other
), NoWrapKind
);
304 bool ConstantRange::isFullSet() const {
305 return Lower
== Upper
&& Lower
.isMaxValue();
308 bool ConstantRange::isEmptySet() const {
309 return Lower
== Upper
&& Lower
.isMinValue();
312 bool ConstantRange::isWrappedSet() const {
313 return Lower
.ugt(Upper
) && !Upper
.isNullValue();
316 bool ConstantRange::isUpperWrapped() const {
317 return Lower
.ugt(Upper
);
320 bool ConstantRange::isSignWrappedSet() const {
321 return Lower
.sgt(Upper
) && !Upper
.isMinSignedValue();
324 bool ConstantRange::isUpperSignWrapped() const {
325 return Lower
.sgt(Upper
);
329 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange
&Other
) const {
330 assert(getBitWidth() == Other
.getBitWidth());
333 if (Other
.isFullSet())
335 return (Upper
- Lower
).ult(Other
.Upper
- Other
.Lower
);
339 ConstantRange::isSizeLargerThan(uint64_t MaxSize
) const {
340 assert(MaxSize
&& "MaxSize can't be 0.");
341 // If this a full set, we need special handling to avoid needing an extra bit
342 // to represent the size.
344 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize
- 1);
346 return (Upper
- Lower
).ugt(MaxSize
);
349 bool ConstantRange::isAllNegative() const {
350 // Empty set is all negative, full set is not.
356 return !isUpperSignWrapped() && !Upper
.isStrictlyPositive();
359 bool ConstantRange::isAllNonNegative() const {
360 // Empty and full set are automatically treated correctly.
361 return !isSignWrappedSet() && Lower
.isNonNegative();
364 APInt
ConstantRange::getUnsignedMax() const {
365 if (isFullSet() || isUpperWrapped())
366 return APInt::getMaxValue(getBitWidth());
367 return getUpper() - 1;
370 APInt
ConstantRange::getUnsignedMin() const {
371 if (isFullSet() || isWrappedSet())
372 return APInt::getMinValue(getBitWidth());
376 APInt
ConstantRange::getSignedMax() const {
377 if (isFullSet() || isUpperSignWrapped())
378 return APInt::getSignedMaxValue(getBitWidth());
379 return getUpper() - 1;
382 APInt
ConstantRange::getSignedMin() const {
383 if (isFullSet() || isSignWrappedSet())
384 return APInt::getSignedMinValue(getBitWidth());
388 bool ConstantRange::contains(const APInt
&V
) const {
392 if (!isUpperWrapped())
393 return Lower
.ule(V
) && V
.ult(Upper
);
394 return Lower
.ule(V
) || V
.ult(Upper
);
397 bool ConstantRange::contains(const ConstantRange
&Other
) const {
398 if (isFullSet() || Other
.isEmptySet()) return true;
399 if (isEmptySet() || Other
.isFullSet()) return false;
401 if (!isUpperWrapped()) {
402 if (Other
.isUpperWrapped())
405 return Lower
.ule(Other
.getLower()) && Other
.getUpper().ule(Upper
);
408 if (!Other
.isUpperWrapped())
409 return Other
.getUpper().ule(Upper
) ||
410 Lower
.ule(Other
.getLower());
412 return Other
.getUpper().ule(Upper
) && Lower
.ule(Other
.getLower());
415 ConstantRange
ConstantRange::subtract(const APInt
&Val
) const {
416 assert(Val
.getBitWidth() == getBitWidth() && "Wrong bit width");
417 // If the set is empty or full, don't modify the endpoints.
420 return ConstantRange(Lower
- Val
, Upper
- Val
);
423 ConstantRange
ConstantRange::difference(const ConstantRange
&CR
) const {
424 return intersectWith(CR
.inverse());
427 static ConstantRange
getPreferredRange(
428 const ConstantRange
&CR1
, const ConstantRange
&CR2
,
429 ConstantRange::PreferredRangeType Type
) {
430 if (Type
== ConstantRange::Unsigned
) {
431 if (!CR1
.isWrappedSet() && CR2
.isWrappedSet())
433 if (CR1
.isWrappedSet() && !CR2
.isWrappedSet())
435 } else if (Type
== ConstantRange::Signed
) {
436 if (!CR1
.isSignWrappedSet() && CR2
.isSignWrappedSet())
438 if (CR1
.isSignWrappedSet() && !CR2
.isSignWrappedSet())
442 if (CR1
.isSizeStrictlySmallerThan(CR2
))
447 ConstantRange
ConstantRange::intersectWith(const ConstantRange
&CR
,
448 PreferredRangeType Type
) const {
449 assert(getBitWidth() == CR
.getBitWidth() &&
450 "ConstantRange types don't agree!");
452 // Handle common cases.
453 if ( isEmptySet() || CR
.isFullSet()) return *this;
454 if (CR
.isEmptySet() || isFullSet()) return CR
;
456 if (!isUpperWrapped() && CR
.isUpperWrapped())
457 return CR
.intersectWith(*this, Type
);
459 if (!isUpperWrapped() && !CR
.isUpperWrapped()) {
460 if (Lower
.ult(CR
.Lower
)) {
463 if (Upper
.ule(CR
.Lower
))
468 if (Upper
.ult(CR
.Upper
))
469 return ConstantRange(CR
.Lower
, Upper
);
477 if (Upper
.ult(CR
.Upper
))
482 if (Lower
.ult(CR
.Upper
))
483 return ConstantRange(Lower
, CR
.Upper
);
490 if (isUpperWrapped() && !CR
.isUpperWrapped()) {
491 if (CR
.Lower
.ult(Upper
)) {
492 // ------U L--- : this
494 if (CR
.Upper
.ult(Upper
))
497 // ------U L--- : this
499 if (CR
.Upper
.ule(Lower
))
500 return ConstantRange(CR
.Lower
, Upper
);
502 // ------U L--- : this
504 return getPreferredRange(*this, CR
, Type
);
506 if (CR
.Lower
.ult(Lower
)) {
509 if (CR
.Upper
.ule(Lower
))
514 return ConstantRange(Lower
, CR
.Upper
);
517 // --U L------ : this
522 if (CR
.Upper
.ult(Upper
)) {
523 // ------U L-- : this
525 if (CR
.Lower
.ult(Upper
))
526 return getPreferredRange(*this, CR
, Type
);
530 if (CR
.Lower
.ult(Lower
))
531 return ConstantRange(Lower
, CR
.Upper
);
533 // ----U L---- : this
537 if (CR
.Upper
.ule(Lower
)) {
540 if (CR
.Lower
.ult(Lower
))
545 return ConstantRange(CR
.Lower
, Upper
);
548 // --U L------ : this
550 return getPreferredRange(*this, CR
, Type
);
553 ConstantRange
ConstantRange::unionWith(const ConstantRange
&CR
,
554 PreferredRangeType Type
) const {
555 assert(getBitWidth() == CR
.getBitWidth() &&
556 "ConstantRange types don't agree!");
558 if ( isFullSet() || CR
.isEmptySet()) return *this;
559 if (CR
.isFullSet() || isEmptySet()) return CR
;
561 if (!isUpperWrapped() && CR
.isUpperWrapped())
562 return CR
.unionWith(*this, Type
);
564 if (!isUpperWrapped() && !CR
.isUpperWrapped()) {
565 // L---U and L---U : this
570 if (CR
.Upper
.ult(Lower
) || Upper
.ult(CR
.Lower
))
571 return getPreferredRange(
572 ConstantRange(Lower
, CR
.Upper
), ConstantRange(CR
.Lower
, Upper
), Type
);
574 APInt L
= CR
.Lower
.ult(Lower
) ? CR
.Lower
: Lower
;
575 APInt U
= (CR
.Upper
- 1).ugt(Upper
- 1) ? CR
.Upper
: Upper
;
577 if (L
.isNullValue() && U
.isNullValue())
580 return ConstantRange(std::move(L
), std::move(U
));
583 if (!CR
.isUpperWrapped()) {
584 // ------U L----- and ------U L----- : this
586 if (CR
.Upper
.ule(Upper
) || CR
.Lower
.uge(Lower
))
589 // ------U L----- : this
591 if (CR
.Lower
.ule(Upper
) && Lower
.ule(CR
.Upper
))
594 // ----U L---- : this
599 if (Upper
.ult(CR
.Lower
) && CR
.Upper
.ult(Lower
))
600 return getPreferredRange(
601 ConstantRange(Lower
, CR
.Upper
), ConstantRange(CR
.Lower
, Upper
), Type
);
603 // ----U L----- : this
605 if (Upper
.ult(CR
.Lower
) && Lower
.ule(CR
.Upper
))
606 return ConstantRange(CR
.Lower
, Upper
);
608 // ------U L---- : this
610 assert(CR
.Lower
.ule(Upper
) && CR
.Upper
.ult(Lower
) &&
611 "ConstantRange::unionWith missed a case with one range wrapped");
612 return ConstantRange(Lower
, CR
.Upper
);
615 // ------U L---- and ------U L---- : this
616 // -U L----------- and ------------U L : CR
617 if (CR
.Lower
.ule(Upper
) || Lower
.ule(CR
.Upper
))
620 APInt L
= CR
.Lower
.ult(Lower
) ? CR
.Lower
: Lower
;
621 APInt U
= CR
.Upper
.ugt(Upper
) ? CR
.Upper
: Upper
;
623 return ConstantRange(std::move(L
), std::move(U
));
626 ConstantRange
ConstantRange::castOp(Instruction::CastOps CastOp
,
627 uint32_t ResultBitWidth
) const {
630 llvm_unreachable("unsupported cast type");
631 case Instruction::Trunc
:
632 return truncate(ResultBitWidth
);
633 case Instruction::SExt
:
634 return signExtend(ResultBitWidth
);
635 case Instruction::ZExt
:
636 return zeroExtend(ResultBitWidth
);
637 case Instruction::BitCast
:
639 case Instruction::FPToUI
:
640 case Instruction::FPToSI
:
641 if (getBitWidth() == ResultBitWidth
)
645 case Instruction::UIToFP
: {
646 // TODO: use input range if available
647 auto BW
= getBitWidth();
648 APInt Min
= APInt::getMinValue(BW
).zextOrSelf(ResultBitWidth
);
649 APInt Max
= APInt::getMaxValue(BW
).zextOrSelf(ResultBitWidth
);
650 return ConstantRange(std::move(Min
), std::move(Max
));
652 case Instruction::SIToFP
: {
653 // TODO: use input range if available
654 auto BW
= getBitWidth();
655 APInt SMin
= APInt::getSignedMinValue(BW
).sextOrSelf(ResultBitWidth
);
656 APInt SMax
= APInt::getSignedMaxValue(BW
).sextOrSelf(ResultBitWidth
);
657 return ConstantRange(std::move(SMin
), std::move(SMax
));
659 case Instruction::FPTrunc
:
660 case Instruction::FPExt
:
661 case Instruction::IntToPtr
:
662 case Instruction::PtrToInt
:
663 case Instruction::AddrSpaceCast
:
664 // Conservatively return getFull set.
669 ConstantRange
ConstantRange::zeroExtend(uint32_t DstTySize
) const {
670 if (isEmptySet()) return getEmpty(DstTySize
);
672 unsigned SrcTySize
= getBitWidth();
673 assert(SrcTySize
< DstTySize
&& "Not a value extension");
674 if (isFullSet() || isUpperWrapped()) {
675 // Change into [0, 1 << src bit width)
676 APInt
LowerExt(DstTySize
, 0);
677 if (!Upper
) // special case: [X, 0) -- not really wrapping around
678 LowerExt
= Lower
.zext(DstTySize
);
679 return ConstantRange(std::move(LowerExt
),
680 APInt::getOneBitSet(DstTySize
, SrcTySize
));
683 return ConstantRange(Lower
.zext(DstTySize
), Upper
.zext(DstTySize
));
686 ConstantRange
ConstantRange::signExtend(uint32_t DstTySize
) const {
687 if (isEmptySet()) return getEmpty(DstTySize
);
689 unsigned SrcTySize
= getBitWidth();
690 assert(SrcTySize
< DstTySize
&& "Not a value extension");
692 // special case: [X, INT_MIN) -- not really wrapping around
693 if (Upper
.isMinSignedValue())
694 return ConstantRange(Lower
.sext(DstTySize
), Upper
.zext(DstTySize
));
696 if (isFullSet() || isSignWrappedSet()) {
697 return ConstantRange(APInt::getHighBitsSet(DstTySize
,DstTySize
-SrcTySize
+1),
698 APInt::getLowBitsSet(DstTySize
, SrcTySize
-1) + 1);
701 return ConstantRange(Lower
.sext(DstTySize
), Upper
.sext(DstTySize
));
704 ConstantRange
ConstantRange::truncate(uint32_t DstTySize
) const {
705 assert(getBitWidth() > DstTySize
&& "Not a value truncation");
707 return getEmpty(DstTySize
);
709 return getFull(DstTySize
);
711 APInt
LowerDiv(Lower
), UpperDiv(Upper
);
712 ConstantRange
Union(DstTySize
, /*isFullSet=*/false);
714 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
715 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
716 // then we do the union with [MaxValue, Upper)
717 if (isUpperWrapped()) {
718 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
720 if (Upper
.getActiveBits() > DstTySize
||
721 Upper
.countTrailingOnes() == DstTySize
)
722 return getFull(DstTySize
);
724 Union
= ConstantRange(APInt::getMaxValue(DstTySize
),Upper
.trunc(DstTySize
));
725 UpperDiv
.setAllBits();
727 // Union covers the MaxValue case, so return if the remaining range is just
729 if (LowerDiv
== UpperDiv
)
733 // Chop off the most significant bits that are past the destination bitwidth.
734 if (LowerDiv
.getActiveBits() > DstTySize
) {
735 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
736 APInt Adjust
= LowerDiv
& APInt::getBitsSetFrom(getBitWidth(), DstTySize
);
741 unsigned UpperDivWidth
= UpperDiv
.getActiveBits();
742 if (UpperDivWidth
<= DstTySize
)
743 return ConstantRange(LowerDiv
.trunc(DstTySize
),
744 UpperDiv
.trunc(DstTySize
)).unionWith(Union
);
746 // The truncated value wraps around. Check if we can do better than fullset.
747 if (UpperDivWidth
== DstTySize
+ 1) {
748 // Clear the MSB so that UpperDiv wraps around.
749 UpperDiv
.clearBit(DstTySize
);
750 if (UpperDiv
.ult(LowerDiv
))
751 return ConstantRange(LowerDiv
.trunc(DstTySize
),
752 UpperDiv
.trunc(DstTySize
)).unionWith(Union
);
755 return getFull(DstTySize
);
758 ConstantRange
ConstantRange::zextOrTrunc(uint32_t DstTySize
) const {
759 unsigned SrcTySize
= getBitWidth();
760 if (SrcTySize
> DstTySize
)
761 return truncate(DstTySize
);
762 if (SrcTySize
< DstTySize
)
763 return zeroExtend(DstTySize
);
767 ConstantRange
ConstantRange::sextOrTrunc(uint32_t DstTySize
) const {
768 unsigned SrcTySize
= getBitWidth();
769 if (SrcTySize
> DstTySize
)
770 return truncate(DstTySize
);
771 if (SrcTySize
< DstTySize
)
772 return signExtend(DstTySize
);
776 ConstantRange
ConstantRange::binaryOp(Instruction::BinaryOps BinOp
,
777 const ConstantRange
&Other
) const {
778 assert(Instruction::isBinaryOp(BinOp
) && "Binary operators only!");
781 case Instruction::Add
:
783 case Instruction::Sub
:
785 case Instruction::Mul
:
786 return multiply(Other
);
787 case Instruction::UDiv
:
789 case Instruction::SDiv
:
791 case Instruction::URem
:
793 case Instruction::SRem
:
795 case Instruction::Shl
:
797 case Instruction::LShr
:
799 case Instruction::AShr
:
801 case Instruction::And
:
802 return binaryAnd(Other
);
803 case Instruction::Or
:
804 return binaryOr(Other
);
805 // Note: floating point operations applied to abstract ranges are just
806 // ideal integer operations with a lossy representation
807 case Instruction::FAdd
:
809 case Instruction::FSub
:
811 case Instruction::FMul
:
812 return multiply(Other
);
814 // Conservatively return getFull set.
820 ConstantRange::add(const ConstantRange
&Other
) const {
821 if (isEmptySet() || Other
.isEmptySet())
823 if (isFullSet() || Other
.isFullSet())
826 APInt NewLower
= getLower() + Other
.getLower();
827 APInt NewUpper
= getUpper() + Other
.getUpper() - 1;
828 if (NewLower
== NewUpper
)
831 ConstantRange X
= ConstantRange(std::move(NewLower
), std::move(NewUpper
));
832 if (X
.isSizeStrictlySmallerThan(*this) ||
833 X
.isSizeStrictlySmallerThan(Other
))
834 // We've wrapped, therefore, full set.
839 ConstantRange
ConstantRange::addWithNoWrap(const ConstantRange
&Other
,
841 PreferredRangeType RangeType
) const {
842 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
843 // (X is from this, and Y is from Other)
844 if (isEmptySet() || Other
.isEmptySet())
846 if (isFullSet() && Other
.isFullSet())
849 using OBO
= OverflowingBinaryOperator
;
850 ConstantRange Result
= add(Other
);
852 auto addWithNoUnsignedWrap
= [this](const ConstantRange
&Other
) {
853 APInt LMin
= getUnsignedMin(), LMax
= getUnsignedMax();
854 APInt RMin
= Other
.getUnsignedMin(), RMax
= Other
.getUnsignedMax();
856 APInt NewMin
= LMin
.uadd_ov(RMin
, Overflow
);
859 APInt NewMax
= LMax
.uadd_sat(RMax
);
860 return getNonEmpty(std::move(NewMin
), std::move(NewMax
) + 1);
863 auto addWithNoSignedWrap
= [this](const ConstantRange
&Other
) {
864 APInt LMin
= getSignedMin(), LMax
= getSignedMax();
865 APInt RMin
= Other
.getSignedMin(), RMax
= Other
.getSignedMax();
866 if (LMin
.isNonNegative()) {
868 APInt Temp
= LMin
.sadd_ov(RMin
, Overflow
);
872 if (LMax
.isNegative()) {
874 APInt Temp
= LMax
.sadd_ov(RMax
, Overflow
);
878 APInt NewMin
= LMin
.sadd_sat(RMin
);
879 APInt NewMax
= LMax
.sadd_sat(RMax
);
880 return getNonEmpty(std::move(NewMin
), std::move(NewMax
) + 1);
883 if (NoWrapKind
& OBO::NoSignedWrap
)
884 Result
= Result
.intersectWith(addWithNoSignedWrap(Other
), RangeType
);
885 if (NoWrapKind
& OBO::NoUnsignedWrap
)
886 Result
= Result
.intersectWith(addWithNoUnsignedWrap(Other
), RangeType
);
891 ConstantRange::sub(const ConstantRange
&Other
) const {
892 if (isEmptySet() || Other
.isEmptySet())
894 if (isFullSet() || Other
.isFullSet())
897 APInt NewLower
= getLower() - Other
.getUpper() + 1;
898 APInt NewUpper
= getUpper() - Other
.getLower();
899 if (NewLower
== NewUpper
)
902 ConstantRange X
= ConstantRange(std::move(NewLower
), std::move(NewUpper
));
903 if (X
.isSizeStrictlySmallerThan(*this) ||
904 X
.isSizeStrictlySmallerThan(Other
))
905 // We've wrapped, therefore, full set.
911 ConstantRange::multiply(const ConstantRange
&Other
) const {
912 // TODO: If either operand is a single element and the multiply is known to
913 // be non-wrapping, round the result min and max value to the appropriate
914 // multiple of that element. If wrapping is possible, at least adjust the
915 // range according to the greatest power-of-two factor of the single element.
917 if (isEmptySet() || Other
.isEmptySet())
920 // Multiplication is signedness-independent. However different ranges can be
921 // obtained depending on how the input ranges are treated. These different
922 // ranges are all conservatively correct, but one might be better than the
923 // other. We calculate two ranges; one treating the inputs as unsigned
924 // and the other signed, then return the smallest of these ranges.
926 // Unsigned range first.
927 APInt this_min
= getUnsignedMin().zext(getBitWidth() * 2);
928 APInt this_max
= getUnsignedMax().zext(getBitWidth() * 2);
929 APInt Other_min
= Other
.getUnsignedMin().zext(getBitWidth() * 2);
930 APInt Other_max
= Other
.getUnsignedMax().zext(getBitWidth() * 2);
932 ConstantRange Result_zext
= ConstantRange(this_min
* Other_min
,
933 this_max
* Other_max
+ 1);
934 ConstantRange UR
= Result_zext
.truncate(getBitWidth());
936 // If the unsigned range doesn't wrap, and isn't negative then it's a range
937 // from one positive number to another which is as good as we can generate.
938 // In this case, skip the extra work of generating signed ranges which aren't
939 // going to be better than this range.
940 if (!UR
.isUpperWrapped() &&
941 (UR
.getUpper().isNonNegative() || UR
.getUpper().isMinSignedValue()))
944 // Now the signed range. Because we could be dealing with negative numbers
945 // here, the lower bound is the smallest of the cartesian product of the
946 // lower and upper ranges; for example:
947 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
948 // Similarly for the upper bound, swapping min for max.
950 this_min
= getSignedMin().sext(getBitWidth() * 2);
951 this_max
= getSignedMax().sext(getBitWidth() * 2);
952 Other_min
= Other
.getSignedMin().sext(getBitWidth() * 2);
953 Other_max
= Other
.getSignedMax().sext(getBitWidth() * 2);
955 auto L
= {this_min
* Other_min
, this_min
* Other_max
,
956 this_max
* Other_min
, this_max
* Other_max
};
957 auto Compare
= [](const APInt
&A
, const APInt
&B
) { return A
.slt(B
); };
958 ConstantRange
Result_sext(std::min(L
, Compare
), std::max(L
, Compare
) + 1);
959 ConstantRange SR
= Result_sext
.truncate(getBitWidth());
961 return UR
.isSizeStrictlySmallerThan(SR
) ? UR
: SR
;
965 ConstantRange::smax(const ConstantRange
&Other
) const {
966 // X smax Y is: range(smax(X_smin, Y_smin),
967 // smax(X_smax, Y_smax))
968 if (isEmptySet() || Other
.isEmptySet())
970 APInt NewL
= APIntOps::smax(getSignedMin(), Other
.getSignedMin());
971 APInt NewU
= APIntOps::smax(getSignedMax(), Other
.getSignedMax()) + 1;
972 return getNonEmpty(std::move(NewL
), std::move(NewU
));
976 ConstantRange::umax(const ConstantRange
&Other
) const {
977 // X umax Y is: range(umax(X_umin, Y_umin),
978 // umax(X_umax, Y_umax))
979 if (isEmptySet() || Other
.isEmptySet())
981 APInt NewL
= APIntOps::umax(getUnsignedMin(), Other
.getUnsignedMin());
982 APInt NewU
= APIntOps::umax(getUnsignedMax(), Other
.getUnsignedMax()) + 1;
983 return getNonEmpty(std::move(NewL
), std::move(NewU
));
987 ConstantRange::smin(const ConstantRange
&Other
) const {
988 // X smin Y is: range(smin(X_smin, Y_smin),
989 // smin(X_smax, Y_smax))
990 if (isEmptySet() || Other
.isEmptySet())
992 APInt NewL
= APIntOps::smin(getSignedMin(), Other
.getSignedMin());
993 APInt NewU
= APIntOps::smin(getSignedMax(), Other
.getSignedMax()) + 1;
994 return getNonEmpty(std::move(NewL
), std::move(NewU
));
998 ConstantRange::umin(const ConstantRange
&Other
) const {
999 // X umin Y is: range(umin(X_umin, Y_umin),
1000 // umin(X_umax, Y_umax))
1001 if (isEmptySet() || Other
.isEmptySet())
1003 APInt NewL
= APIntOps::umin(getUnsignedMin(), Other
.getUnsignedMin());
1004 APInt NewU
= APIntOps::umin(getUnsignedMax(), Other
.getUnsignedMax()) + 1;
1005 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1009 ConstantRange::udiv(const ConstantRange
&RHS
) const {
1010 if (isEmptySet() || RHS
.isEmptySet() || RHS
.getUnsignedMax().isNullValue())
1013 APInt Lower
= getUnsignedMin().udiv(RHS
.getUnsignedMax());
1015 APInt RHS_umin
= RHS
.getUnsignedMin();
1016 if (RHS_umin
.isNullValue()) {
1017 // We want the lowest value in RHS excluding zero. Usually that would be 1
1018 // except for a range in the form of [X, 1) in which case it would be X.
1019 if (RHS
.getUpper() == 1)
1020 RHS_umin
= RHS
.getLower();
1025 APInt Upper
= getUnsignedMax().udiv(RHS_umin
) + 1;
1026 return getNonEmpty(std::move(Lower
), std::move(Upper
));
1029 ConstantRange
ConstantRange::sdiv(const ConstantRange
&RHS
) const {
1030 // We split up the LHS and RHS into positive and negative components
1031 // and then also compute the positive and negative components of the result
1032 // separately by combining division results with the appropriate signs.
1033 APInt Zero
= APInt::getNullValue(getBitWidth());
1034 APInt SignedMin
= APInt::getSignedMinValue(getBitWidth());
1035 ConstantRange
PosFilter(APInt(getBitWidth(), 1), SignedMin
);
1036 ConstantRange
NegFilter(SignedMin
, Zero
);
1037 ConstantRange PosL
= intersectWith(PosFilter
);
1038 ConstantRange NegL
= intersectWith(NegFilter
);
1039 ConstantRange PosR
= RHS
.intersectWith(PosFilter
);
1040 ConstantRange NegR
= RHS
.intersectWith(NegFilter
);
1042 ConstantRange PosRes
= getEmpty();
1043 if (!PosL
.isEmptySet() && !PosR
.isEmptySet())
1045 PosRes
= ConstantRange(PosL
.Lower
.sdiv(PosR
.Upper
- 1),
1046 (PosL
.Upper
- 1).sdiv(PosR
.Lower
) + 1);
1048 if (!NegL
.isEmptySet() && !NegR
.isEmptySet()) {
1051 // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1052 // IR level, so we'll want to exclude this case when calculating bounds.
1053 // (For APInts the operation is well-defined and yields SignedMin.) We
1054 // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1055 APInt Lo
= (NegL
.Upper
- 1).sdiv(NegR
.Lower
);
1056 if (NegL
.Lower
.isMinSignedValue() && NegR
.Upper
.isNullValue()) {
1057 // Remove -1 from the LHS. Skip if it's the only element, as this would
1058 // leave us with an empty set.
1059 if (!NegR
.Lower
.isAllOnesValue()) {
1061 if (RHS
.Lower
.isAllOnesValue())
1062 // Negative part of [-1, X] without -1 is [SignedMin, X].
1063 AdjNegRUpper
= RHS
.Upper
;
1065 // [X, -1] without -1 is [X, -2].
1066 AdjNegRUpper
= NegR
.Upper
- 1;
1068 PosRes
= PosRes
.unionWith(
1069 ConstantRange(Lo
, NegL
.Lower
.sdiv(AdjNegRUpper
- 1) + 1));
1072 // Remove SignedMin from the RHS. Skip if it's the only element, as this
1073 // would leave us with an empty set.
1074 if (NegL
.Upper
!= SignedMin
+ 1) {
1076 if (Upper
== SignedMin
+ 1)
1077 // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1078 AdjNegLLower
= Lower
;
1080 // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1081 AdjNegLLower
= NegL
.Lower
+ 1;
1083 PosRes
= PosRes
.unionWith(
1084 ConstantRange(std::move(Lo
),
1085 AdjNegLLower
.sdiv(NegR
.Upper
- 1) + 1));
1088 PosRes
= PosRes
.unionWith(
1089 ConstantRange(std::move(Lo
), NegL
.Lower
.sdiv(NegR
.Upper
- 1) + 1));
1093 ConstantRange NegRes
= getEmpty();
1094 if (!PosL
.isEmptySet() && !NegR
.isEmptySet())
1096 NegRes
= ConstantRange((PosL
.Upper
- 1).sdiv(NegR
.Upper
- 1),
1097 PosL
.Lower
.sdiv(NegR
.Lower
) + 1);
1099 if (!NegL
.isEmptySet() && !PosR
.isEmptySet())
1101 NegRes
= NegRes
.unionWith(
1102 ConstantRange(NegL
.Lower
.sdiv(PosR
.Lower
),
1103 (NegL
.Upper
- 1).sdiv(PosR
.Upper
- 1) + 1));
1105 // Prefer a non-wrapping signed range here.
1106 ConstantRange Res
= NegRes
.unionWith(PosRes
, PreferredRangeType::Signed
);
1108 // Preserve the zero that we dropped when splitting the LHS by sign.
1109 if (contains(Zero
) && (!PosR
.isEmptySet() || !NegR
.isEmptySet()))
1110 Res
= Res
.unionWith(ConstantRange(Zero
));
1114 ConstantRange
ConstantRange::urem(const ConstantRange
&RHS
) const {
1115 if (isEmptySet() || RHS
.isEmptySet() || RHS
.getUnsignedMax().isNullValue())
1118 // L % R for L < R is L.
1119 if (getUnsignedMax().ult(RHS
.getUnsignedMin()))
1122 // L % R is <= L and < R.
1123 APInt Upper
= APIntOps::umin(getUnsignedMax(), RHS
.getUnsignedMax() - 1) + 1;
1124 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper
));
1127 ConstantRange
ConstantRange::srem(const ConstantRange
&RHS
) const {
1128 if (isEmptySet() || RHS
.isEmptySet())
1131 ConstantRange AbsRHS
= RHS
.abs();
1132 APInt MinAbsRHS
= AbsRHS
.getUnsignedMin();
1133 APInt MaxAbsRHS
= AbsRHS
.getUnsignedMax();
1135 // Modulus by zero is UB.
1136 if (MaxAbsRHS
.isNullValue())
1139 if (MinAbsRHS
.isNullValue())
1142 APInt MinLHS
= getSignedMin(), MaxLHS
= getSignedMax();
1144 if (MinLHS
.isNonNegative()) {
1145 // L % R for L < R is L.
1146 if (MaxLHS
.ult(MinAbsRHS
))
1149 // L % R is <= L and < R.
1150 APInt Upper
= APIntOps::umin(MaxLHS
, MaxAbsRHS
- 1) + 1;
1151 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper
));
1154 // Same basic logic as above, but the result is negative.
1155 if (MaxLHS
.isNegative()) {
1156 if (MinLHS
.ugt(-MinAbsRHS
))
1159 APInt Lower
= APIntOps::umax(MinLHS
, -MaxAbsRHS
+ 1);
1160 return ConstantRange(std::move(Lower
), APInt(getBitWidth(), 1));
1163 // LHS range crosses zero.
1164 APInt Lower
= APIntOps::umax(MinLHS
, -MaxAbsRHS
+ 1);
1165 APInt Upper
= APIntOps::umin(MaxLHS
, MaxAbsRHS
- 1) + 1;
1166 return ConstantRange(std::move(Lower
), std::move(Upper
));
1170 ConstantRange::binaryAnd(const ConstantRange
&Other
) const {
1171 if (isEmptySet() || Other
.isEmptySet())
1174 // TODO: replace this with something less conservative
1176 APInt umin
= APIntOps::umin(Other
.getUnsignedMax(), getUnsignedMax());
1177 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin
) + 1);
1181 ConstantRange::binaryOr(const ConstantRange
&Other
) const {
1182 if (isEmptySet() || Other
.isEmptySet())
1185 // TODO: replace this with something less conservative
1187 APInt umax
= APIntOps::umax(getUnsignedMin(), Other
.getUnsignedMin());
1188 return getNonEmpty(std::move(umax
), APInt::getNullValue(getBitWidth()));
1192 ConstantRange::shl(const ConstantRange
&Other
) const {
1193 if (isEmptySet() || Other
.isEmptySet())
1196 APInt max
= getUnsignedMax();
1197 APInt Other_umax
= Other
.getUnsignedMax();
1199 // If we are shifting by maximum amount of
1200 // zero return return the original range.
1201 if (Other_umax
.isNullValue())
1203 // there's overflow!
1204 if (Other_umax
.ugt(max
.countLeadingZeros()))
1207 // FIXME: implement the other tricky cases
1209 APInt min
= getUnsignedMin();
1210 min
<<= Other
.getUnsignedMin();
1213 return ConstantRange(std::move(min
), std::move(max
) + 1);
1217 ConstantRange::lshr(const ConstantRange
&Other
) const {
1218 if (isEmptySet() || Other
.isEmptySet())
1221 APInt max
= getUnsignedMax().lshr(Other
.getUnsignedMin()) + 1;
1222 APInt min
= getUnsignedMin().lshr(Other
.getUnsignedMax());
1223 return getNonEmpty(std::move(min
), std::move(max
));
1227 ConstantRange::ashr(const ConstantRange
&Other
) const {
1228 if (isEmptySet() || Other
.isEmptySet())
1231 // May straddle zero, so handle both positive and negative cases.
1232 // 'PosMax' is the upper bound of the result of the ashr
1233 // operation, when Upper of the LHS of ashr is a non-negative.
1234 // number. Since ashr of a non-negative number will result in a
1235 // smaller number, the Upper value of LHS is shifted right with
1236 // the minimum value of 'Other' instead of the maximum value.
1237 APInt PosMax
= getSignedMax().ashr(Other
.getUnsignedMin()) + 1;
1239 // 'PosMin' is the lower bound of the result of the ashr
1240 // operation, when Lower of the LHS is a non-negative number.
1241 // Since ashr of a non-negative number will result in a smaller
1242 // number, the Lower value of LHS is shifted right with the
1243 // maximum value of 'Other'.
1244 APInt PosMin
= getSignedMin().ashr(Other
.getUnsignedMax());
1246 // 'NegMax' is the upper bound of the result of the ashr
1247 // operation, when Upper of the LHS of ashr is a negative number.
1248 // Since 'ashr' of a negative number will result in a bigger
1249 // number, the Upper value of LHS is shifted right with the
1250 // maximum value of 'Other'.
1251 APInt NegMax
= getSignedMax().ashr(Other
.getUnsignedMax()) + 1;
1253 // 'NegMin' is the lower bound of the result of the ashr
1254 // operation, when Lower of the LHS of ashr is a negative number.
1255 // Since 'ashr' of a negative number will result in a bigger
1256 // number, the Lower value of LHS is shifted right with the
1257 // minimum value of 'Other'.
1258 APInt NegMin
= getSignedMin().ashr(Other
.getUnsignedMin());
1261 if (getSignedMin().isNonNegative()) {
1262 // Upper and Lower of LHS are non-negative.
1265 } else if (getSignedMax().isNegative()) {
1266 // Upper and Lower of LHS are negative.
1270 // Upper is non-negative and Lower is negative.
1274 return getNonEmpty(std::move(min
), std::move(max
));
1277 ConstantRange
ConstantRange::uadd_sat(const ConstantRange
&Other
) const {
1278 if (isEmptySet() || Other
.isEmptySet())
1281 APInt NewL
= getUnsignedMin().uadd_sat(Other
.getUnsignedMin());
1282 APInt NewU
= getUnsignedMax().uadd_sat(Other
.getUnsignedMax()) + 1;
1283 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1286 ConstantRange
ConstantRange::sadd_sat(const ConstantRange
&Other
) const {
1287 if (isEmptySet() || Other
.isEmptySet())
1290 APInt NewL
= getSignedMin().sadd_sat(Other
.getSignedMin());
1291 APInt NewU
= getSignedMax().sadd_sat(Other
.getSignedMax()) + 1;
1292 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1295 ConstantRange
ConstantRange::usub_sat(const ConstantRange
&Other
) const {
1296 if (isEmptySet() || Other
.isEmptySet())
1299 APInt NewL
= getUnsignedMin().usub_sat(Other
.getUnsignedMax());
1300 APInt NewU
= getUnsignedMax().usub_sat(Other
.getUnsignedMin()) + 1;
1301 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1304 ConstantRange
ConstantRange::ssub_sat(const ConstantRange
&Other
) const {
1305 if (isEmptySet() || Other
.isEmptySet())
1308 APInt NewL
= getSignedMin().ssub_sat(Other
.getSignedMax());
1309 APInt NewU
= getSignedMax().ssub_sat(Other
.getSignedMin()) + 1;
1310 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1313 ConstantRange
ConstantRange::inverse() const {
1318 return ConstantRange(Upper
, Lower
);
1321 ConstantRange
ConstantRange::abs() const {
1325 if (isSignWrappedSet()) {
1327 // Check whether the range crosses zero.
1328 if (Upper
.isStrictlyPositive() || !Lower
.isStrictlyPositive())
1329 Lo
= APInt::getNullValue(getBitWidth());
1331 Lo
= APIntOps::umin(Lower
, -Upper
+ 1);
1333 // SignedMin is included in the result range.
1334 return ConstantRange(Lo
, APInt::getSignedMinValue(getBitWidth()) + 1);
1337 APInt SMin
= getSignedMin(), SMax
= getSignedMax();
1339 // All non-negative.
1340 if (SMin
.isNonNegative())
1344 if (SMax
.isNegative())
1345 return ConstantRange(-SMax
, -SMin
+ 1);
1347 // Range crosses zero.
1348 return ConstantRange(APInt::getNullValue(getBitWidth()),
1349 APIntOps::umax(-SMin
, SMax
) + 1);
1352 ConstantRange::OverflowResult
ConstantRange::unsignedAddMayOverflow(
1353 const ConstantRange
&Other
) const {
1354 if (isEmptySet() || Other
.isEmptySet())
1355 return OverflowResult::MayOverflow
;
1357 APInt Min
= getUnsignedMin(), Max
= getUnsignedMax();
1358 APInt OtherMin
= Other
.getUnsignedMin(), OtherMax
= Other
.getUnsignedMax();
1360 // a u+ b overflows high iff a u> ~b.
1361 if (Min
.ugt(~OtherMin
))
1362 return OverflowResult::AlwaysOverflowsHigh
;
1363 if (Max
.ugt(~OtherMax
))
1364 return OverflowResult::MayOverflow
;
1365 return OverflowResult::NeverOverflows
;
1368 ConstantRange::OverflowResult
ConstantRange::signedAddMayOverflow(
1369 const ConstantRange
&Other
) const {
1370 if (isEmptySet() || Other
.isEmptySet())
1371 return OverflowResult::MayOverflow
;
1373 APInt Min
= getSignedMin(), Max
= getSignedMax();
1374 APInt OtherMin
= Other
.getSignedMin(), OtherMax
= Other
.getSignedMax();
1376 APInt SignedMin
= APInt::getSignedMinValue(getBitWidth());
1377 APInt SignedMax
= APInt::getSignedMaxValue(getBitWidth());
1379 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1380 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1381 if (Min
.isNonNegative() && OtherMin
.isNonNegative() &&
1382 Min
.sgt(SignedMax
- OtherMin
))
1383 return OverflowResult::AlwaysOverflowsHigh
;
1384 if (Max
.isNegative() && OtherMax
.isNegative() &&
1385 Max
.slt(SignedMin
- OtherMax
))
1386 return OverflowResult::AlwaysOverflowsLow
;
1388 if (Max
.isNonNegative() && OtherMax
.isNonNegative() &&
1389 Max
.sgt(SignedMax
- OtherMax
))
1390 return OverflowResult::MayOverflow
;
1391 if (Min
.isNegative() && OtherMin
.isNegative() &&
1392 Min
.slt(SignedMin
- OtherMin
))
1393 return OverflowResult::MayOverflow
;
1395 return OverflowResult::NeverOverflows
;
1398 ConstantRange::OverflowResult
ConstantRange::unsignedSubMayOverflow(
1399 const ConstantRange
&Other
) const {
1400 if (isEmptySet() || Other
.isEmptySet())
1401 return OverflowResult::MayOverflow
;
1403 APInt Min
= getUnsignedMin(), Max
= getUnsignedMax();
1404 APInt OtherMin
= Other
.getUnsignedMin(), OtherMax
= Other
.getUnsignedMax();
1406 // a u- b overflows low iff a u< b.
1407 if (Max
.ult(OtherMin
))
1408 return OverflowResult::AlwaysOverflowsLow
;
1409 if (Min
.ult(OtherMax
))
1410 return OverflowResult::MayOverflow
;
1411 return OverflowResult::NeverOverflows
;
1414 ConstantRange::OverflowResult
ConstantRange::signedSubMayOverflow(
1415 const ConstantRange
&Other
) const {
1416 if (isEmptySet() || Other
.isEmptySet())
1417 return OverflowResult::MayOverflow
;
1419 APInt Min
= getSignedMin(), Max
= getSignedMax();
1420 APInt OtherMin
= Other
.getSignedMin(), OtherMax
= Other
.getSignedMax();
1422 APInt SignedMin
= APInt::getSignedMinValue(getBitWidth());
1423 APInt SignedMax
= APInt::getSignedMaxValue(getBitWidth());
1425 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1426 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1427 if (Min
.isNonNegative() && OtherMax
.isNegative() &&
1428 Min
.sgt(SignedMax
+ OtherMax
))
1429 return OverflowResult::AlwaysOverflowsHigh
;
1430 if (Max
.isNegative() && OtherMin
.isNonNegative() &&
1431 Max
.slt(SignedMin
+ OtherMin
))
1432 return OverflowResult::AlwaysOverflowsLow
;
1434 if (Max
.isNonNegative() && OtherMin
.isNegative() &&
1435 Max
.sgt(SignedMax
+ OtherMin
))
1436 return OverflowResult::MayOverflow
;
1437 if (Min
.isNegative() && OtherMax
.isNonNegative() &&
1438 Min
.slt(SignedMin
+ OtherMax
))
1439 return OverflowResult::MayOverflow
;
1441 return OverflowResult::NeverOverflows
;
1444 ConstantRange::OverflowResult
ConstantRange::unsignedMulMayOverflow(
1445 const ConstantRange
&Other
) const {
1446 if (isEmptySet() || Other
.isEmptySet())
1447 return OverflowResult::MayOverflow
;
1449 APInt Min
= getUnsignedMin(), Max
= getUnsignedMax();
1450 APInt OtherMin
= Other
.getUnsignedMin(), OtherMax
= Other
.getUnsignedMax();
1453 (void) Min
.umul_ov(OtherMin
, Overflow
);
1455 return OverflowResult::AlwaysOverflowsHigh
;
1457 (void) Max
.umul_ov(OtherMax
, Overflow
);
1459 return OverflowResult::MayOverflow
;
1461 return OverflowResult::NeverOverflows
;
1464 void ConstantRange::print(raw_ostream
&OS
) const {
1467 else if (isEmptySet())
1470 OS
<< "[" << Lower
<< "," << Upper
<< ")";
1473 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1474 LLVM_DUMP_METHOD
void ConstantRange::dump() const {
1479 ConstantRange
llvm::getConstantRangeFromMetadata(const MDNode
&Ranges
) {
1480 const unsigned NumRanges
= Ranges
.getNumOperands() / 2;
1481 assert(NumRanges
>= 1 && "Must have at least one range!");
1482 assert(Ranges
.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1484 auto *FirstLow
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(0));
1485 auto *FirstHigh
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(1));
1487 ConstantRange
CR(FirstLow
->getValue(), FirstHigh
->getValue());
1489 for (unsigned i
= 1; i
< NumRanges
; ++i
) {
1490 auto *Low
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(2 * i
+ 0));
1491 auto *High
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(2 * i
+ 1));
1493 // Note: unionWith will potentially create a range that contains values not
1494 // contained in any of the original N ranges.
1495 CR
= CR
.unionWith(ConstantRange(Low
->getValue(), High
->getValue()));