[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / AArch64 / AArch64FrameLowering.cpp
blob68e1e6a30224454a4e006ab5def9214d8bf1367c
1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
11 // On AArch64, stack frames are structured as follows:
13 // The stack grows downward.
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
19 // At function entry, the "frame" looks as follows:
21 // | | Higher address
22 // |-----------------------------------|
23 // | |
24 // | arguments passed on the stack |
25 // | |
26 // |-----------------------------------| <- sp
27 // | | Lower address
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
36 // | | Higher address
37 // |-----------------------------------|
38 // | |
39 // | arguments passed on the stack |
40 // | |
41 // |-----------------------------------|
42 // | |
43 // | (Win64 only) varargs from reg |
44 // | |
45 // |-----------------------------------|
46 // | |
47 // | callee-saved gpr registers | <--.
48 // | | | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50 // | | | (frame record first)
51 // | prev_fp, prev_lr | <--'
52 // | (a.k.a. "frame record") |
53 // |-----------------------------------| <- fp(=x29)
54 // | |
55 // | callee-saved fp/simd/SVE regs |
56 // | |
57 // |-----------------------------------|
58 // | |
59 // | SVE stack objects |
60 // | |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.16-byte.alignment....| compile time; if present)
65 // |-----------------------------------|
66 // | |
67 // | local variables of fixed size |
68 // | including spill slots |
69 // |-----------------------------------| <- bp(not defined by ABI,
70 // |.variable-sized.local.variables....| LLVM chooses X19)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................| compile time)
73 // |-----------------------------------| <- sp
74 // | | Lower address
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 // variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 // more-than-default alignment requirements.
91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
92 // callee-saved area, since the unwind encoding does not allow for encoding
93 // this dynamically and existing tools depend on this layout. For other
94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
95 // area to allow SVE stack objects (allocated directly below the callee-saves,
96 // if available) to be accessed directly from the framepointer.
97 // The SVE spill/fill instructions have VL-scaled addressing modes such
98 // as:
99 // ldr z8, [fp, #-7 mul vl]
100 // For SVE the size of the vector length (VL) is not known at compile-time, so
101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
102 // layout, we don't need to add an unscaled offset to the framepointer before
103 // accessing the SVE object in the frame.
105 // In some cases when a base pointer is not strictly needed, it is generated
106 // anyway when offsets from the frame pointer to access local variables become
107 // so large that the offset can't be encoded in the immediate fields of loads
108 // or stores.
110 // FIXME: also explain the redzone concept.
111 // FIXME: also explain the concept of reserved call frames.
113 //===----------------------------------------------------------------------===//
115 #include "AArch64FrameLowering.h"
116 #include "AArch64InstrInfo.h"
117 #include "AArch64MachineFunctionInfo.h"
118 #include "AArch64RegisterInfo.h"
119 #include "AArch64StackOffset.h"
120 #include "AArch64Subtarget.h"
121 #include "AArch64TargetMachine.h"
122 #include "MCTargetDesc/AArch64AddressingModes.h"
123 #include "llvm/ADT/ScopeExit.h"
124 #include "llvm/ADT/SmallVector.h"
125 #include "llvm/ADT/Statistic.h"
126 #include "llvm/CodeGen/LivePhysRegs.h"
127 #include "llvm/CodeGen/MachineBasicBlock.h"
128 #include "llvm/CodeGen/MachineFrameInfo.h"
129 #include "llvm/CodeGen/MachineFunction.h"
130 #include "llvm/CodeGen/MachineInstr.h"
131 #include "llvm/CodeGen/MachineInstrBuilder.h"
132 #include "llvm/CodeGen/MachineMemOperand.h"
133 #include "llvm/CodeGen/MachineModuleInfo.h"
134 #include "llvm/CodeGen/MachineOperand.h"
135 #include "llvm/CodeGen/MachineRegisterInfo.h"
136 #include "llvm/CodeGen/RegisterScavenging.h"
137 #include "llvm/CodeGen/TargetInstrInfo.h"
138 #include "llvm/CodeGen/TargetRegisterInfo.h"
139 #include "llvm/CodeGen/TargetSubtargetInfo.h"
140 #include "llvm/CodeGen/WinEHFuncInfo.h"
141 #include "llvm/IR/Attributes.h"
142 #include "llvm/IR/CallingConv.h"
143 #include "llvm/IR/DataLayout.h"
144 #include "llvm/IR/DebugLoc.h"
145 #include "llvm/IR/Function.h"
146 #include "llvm/MC/MCAsmInfo.h"
147 #include "llvm/MC/MCDwarf.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Debug.h"
150 #include "llvm/Support/ErrorHandling.h"
151 #include "llvm/Support/MathExtras.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetOptions.h"
155 #include <cassert>
156 #include <cstdint>
157 #include <iterator>
158 #include <vector>
160 using namespace llvm;
162 #define DEBUG_TYPE "frame-info"
164 static cl::opt<bool> EnableRedZone("aarch64-redzone",
165 cl::desc("enable use of redzone on AArch64"),
166 cl::init(false), cl::Hidden);
168 static cl::opt<bool>
169 ReverseCSRRestoreSeq("reverse-csr-restore-seq",
170 cl::desc("reverse the CSR restore sequence"),
171 cl::init(false), cl::Hidden);
173 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
175 /// This is the biggest offset to the stack pointer we can encode in aarch64
176 /// instructions (without using a separate calculation and a temp register).
177 /// Note that the exception here are vector stores/loads which cannot encode any
178 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
179 static const unsigned DefaultSafeSPDisplacement = 255;
181 /// Look at each instruction that references stack frames and return the stack
182 /// size limit beyond which some of these instructions will require a scratch
183 /// register during their expansion later.
184 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
185 // FIXME: For now, just conservatively guestimate based on unscaled indexing
186 // range. We'll end up allocating an unnecessary spill slot a lot, but
187 // realistically that's not a big deal at this stage of the game.
188 for (MachineBasicBlock &MBB : MF) {
189 for (MachineInstr &MI : MBB) {
190 if (MI.isDebugInstr() || MI.isPseudo() ||
191 MI.getOpcode() == AArch64::ADDXri ||
192 MI.getOpcode() == AArch64::ADDSXri)
193 continue;
195 for (const MachineOperand &MO : MI.operands()) {
196 if (!MO.isFI())
197 continue;
199 StackOffset Offset;
200 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
201 AArch64FrameOffsetCannotUpdate)
202 return 0;
206 return DefaultSafeSPDisplacement;
209 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
210 static StackOffset getSVEStackSize(const MachineFunction &MF) {
211 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
212 return {(int64_t)AFI->getStackSizeSVE(), MVT::nxv1i8};
215 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
216 if (!EnableRedZone)
217 return false;
218 // Don't use the red zone if the function explicitly asks us not to.
219 // This is typically used for kernel code.
220 if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
221 return false;
223 const MachineFrameInfo &MFI = MF.getFrameInfo();
224 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
225 unsigned NumBytes = AFI->getLocalStackSize();
227 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 ||
228 getSVEStackSize(MF));
231 /// hasFP - Return true if the specified function should have a dedicated frame
232 /// pointer register.
233 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
234 const MachineFrameInfo &MFI = MF.getFrameInfo();
235 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
236 // Win64 EH requires a frame pointer if funclets are present, as the locals
237 // are accessed off the frame pointer in both the parent function and the
238 // funclets.
239 if (MF.hasEHFunclets())
240 return true;
241 // Retain behavior of always omitting the FP for leaf functions when possible.
242 if (MFI.hasCalls() && MF.getTarget().Options.DisableFramePointerElim(MF))
243 return true;
244 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
245 MFI.hasStackMap() || MFI.hasPatchPoint() ||
246 RegInfo->needsStackRealignment(MF))
247 return true;
248 // With large callframes around we may need to use FP to access the scavenging
249 // emergency spillslot.
251 // Unfortunately some calls to hasFP() like machine verifier ->
252 // getReservedReg() -> hasFP in the middle of global isel are too early
253 // to know the max call frame size. Hopefully conservatively returning "true"
254 // in those cases is fine.
255 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
256 if (!MFI.isMaxCallFrameSizeComputed() ||
257 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
258 return true;
260 return false;
263 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
264 /// not required, we reserve argument space for call sites in the function
265 /// immediately on entry to the current function. This eliminates the need for
266 /// add/sub sp brackets around call sites. Returns true if the call frame is
267 /// included as part of the stack frame.
268 bool
269 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
270 return !MF.getFrameInfo().hasVarSizedObjects();
273 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
274 MachineFunction &MF, MachineBasicBlock &MBB,
275 MachineBasicBlock::iterator I) const {
276 const AArch64InstrInfo *TII =
277 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
278 DebugLoc DL = I->getDebugLoc();
279 unsigned Opc = I->getOpcode();
280 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
281 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
283 if (!hasReservedCallFrame(MF)) {
284 unsigned Align = getStackAlignment();
286 int64_t Amount = I->getOperand(0).getImm();
287 Amount = alignTo(Amount, Align);
288 if (!IsDestroy)
289 Amount = -Amount;
291 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
292 // doesn't have to pop anything), then the first operand will be zero too so
293 // this adjustment is a no-op.
294 if (CalleePopAmount == 0) {
295 // FIXME: in-function stack adjustment for calls is limited to 24-bits
296 // because there's no guaranteed temporary register available.
298 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
299 // 1) For offset <= 12-bit, we use LSL #0
300 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
301 // LSL #0, and the other uses LSL #12.
303 // Most call frames will be allocated at the start of a function so
304 // this is OK, but it is a limitation that needs dealing with.
305 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
306 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, {Amount, MVT::i8},
307 TII);
309 } else if (CalleePopAmount != 0) {
310 // If the calling convention demands that the callee pops arguments from the
311 // stack, we want to add it back if we have a reserved call frame.
312 assert(CalleePopAmount < 0xffffff && "call frame too large");
313 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
314 {-(int64_t)CalleePopAmount, MVT::i8}, TII);
316 return MBB.erase(I);
319 static bool ShouldSignReturnAddress(MachineFunction &MF) {
320 // The function should be signed in the following situations:
321 // - sign-return-address=all
322 // - sign-return-address=non-leaf and the functions spills the LR
324 const Function &F = MF.getFunction();
325 if (!F.hasFnAttribute("sign-return-address"))
326 return false;
328 StringRef Scope = F.getFnAttribute("sign-return-address").getValueAsString();
329 if (Scope.equals("none"))
330 return false;
332 if (Scope.equals("all"))
333 return true;
335 assert(Scope.equals("non-leaf") && "Expected all, none or non-leaf");
337 for (const auto &Info : MF.getFrameInfo().getCalleeSavedInfo())
338 if (Info.getReg() == AArch64::LR)
339 return true;
341 return false;
344 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
345 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
346 MachineFunction &MF = *MBB.getParent();
347 MachineFrameInfo &MFI = MF.getFrameInfo();
348 const TargetSubtargetInfo &STI = MF.getSubtarget();
349 const MCRegisterInfo *MRI = STI.getRegisterInfo();
350 const TargetInstrInfo *TII = STI.getInstrInfo();
351 DebugLoc DL = MBB.findDebugLoc(MBBI);
353 // Add callee saved registers to move list.
354 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
355 if (CSI.empty())
356 return;
358 for (const auto &Info : CSI) {
359 unsigned Reg = Info.getReg();
360 int64_t Offset =
361 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
362 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
363 unsigned CFIIndex = MF.addFrameInst(
364 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
365 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
366 .addCFIIndex(CFIIndex)
367 .setMIFlags(MachineInstr::FrameSetup);
371 // Find a scratch register that we can use at the start of the prologue to
372 // re-align the stack pointer. We avoid using callee-save registers since they
373 // may appear to be free when this is called from canUseAsPrologue (during
374 // shrink wrapping), but then no longer be free when this is called from
375 // emitPrologue.
377 // FIXME: This is a bit conservative, since in the above case we could use one
378 // of the callee-save registers as a scratch temp to re-align the stack pointer,
379 // but we would then have to make sure that we were in fact saving at least one
380 // callee-save register in the prologue, which is additional complexity that
381 // doesn't seem worth the benefit.
382 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
383 MachineFunction *MF = MBB->getParent();
385 // If MBB is an entry block, use X9 as the scratch register
386 if (&MF->front() == MBB)
387 return AArch64::X9;
389 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
390 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
391 LivePhysRegs LiveRegs(TRI);
392 LiveRegs.addLiveIns(*MBB);
394 // Mark callee saved registers as used so we will not choose them.
395 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
396 for (unsigned i = 0; CSRegs[i]; ++i)
397 LiveRegs.addReg(CSRegs[i]);
399 // Prefer X9 since it was historically used for the prologue scratch reg.
400 const MachineRegisterInfo &MRI = MF->getRegInfo();
401 if (LiveRegs.available(MRI, AArch64::X9))
402 return AArch64::X9;
404 for (unsigned Reg : AArch64::GPR64RegClass) {
405 if (LiveRegs.available(MRI, Reg))
406 return Reg;
408 return AArch64::NoRegister;
411 bool AArch64FrameLowering::canUseAsPrologue(
412 const MachineBasicBlock &MBB) const {
413 const MachineFunction *MF = MBB.getParent();
414 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
415 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
416 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
418 // Don't need a scratch register if we're not going to re-align the stack.
419 if (!RegInfo->needsStackRealignment(*MF))
420 return true;
421 // Otherwise, we can use any block as long as it has a scratch register
422 // available.
423 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
426 static bool windowsRequiresStackProbe(MachineFunction &MF,
427 unsigned StackSizeInBytes) {
428 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
429 if (!Subtarget.isTargetWindows())
430 return false;
431 const Function &F = MF.getFunction();
432 // TODO: When implementing stack protectors, take that into account
433 // for the probe threshold.
434 unsigned StackProbeSize = 4096;
435 if (F.hasFnAttribute("stack-probe-size"))
436 F.getFnAttribute("stack-probe-size")
437 .getValueAsString()
438 .getAsInteger(0, StackProbeSize);
439 return (StackSizeInBytes >= StackProbeSize) &&
440 !F.hasFnAttribute("no-stack-arg-probe");
443 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
444 MachineFunction &MF, unsigned StackBumpBytes) const {
445 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
446 const MachineFrameInfo &MFI = MF.getFrameInfo();
447 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
448 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
450 if (MF.getFunction().hasOptSize())
451 return false;
453 if (AFI->getLocalStackSize() == 0)
454 return false;
456 // 512 is the maximum immediate for stp/ldp that will be used for
457 // callee-save save/restores
458 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
459 return false;
461 if (MFI.hasVarSizedObjects())
462 return false;
464 if (RegInfo->needsStackRealignment(MF))
465 return false;
467 // This isn't strictly necessary, but it simplifies things a bit since the
468 // current RedZone handling code assumes the SP is adjusted by the
469 // callee-save save/restore code.
470 if (canUseRedZone(MF))
471 return false;
473 // When there is an SVE area on the stack, always allocate the
474 // callee-saves and spills/locals separately.
475 if (getSVEStackSize(MF))
476 return false;
478 return true;
481 // Given a load or a store instruction, generate an appropriate unwinding SEH
482 // code on Windows.
483 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
484 const TargetInstrInfo &TII,
485 MachineInstr::MIFlag Flag) {
486 unsigned Opc = MBBI->getOpcode();
487 MachineBasicBlock *MBB = MBBI->getParent();
488 MachineFunction &MF = *MBB->getParent();
489 DebugLoc DL = MBBI->getDebugLoc();
490 unsigned ImmIdx = MBBI->getNumOperands() - 1;
491 int Imm = MBBI->getOperand(ImmIdx).getImm();
492 MachineInstrBuilder MIB;
493 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
494 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
496 switch (Opc) {
497 default:
498 llvm_unreachable("No SEH Opcode for this instruction");
499 case AArch64::LDPDpost:
500 Imm = -Imm;
501 LLVM_FALLTHROUGH;
502 case AArch64::STPDpre: {
503 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
504 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
505 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
506 .addImm(Reg0)
507 .addImm(Reg1)
508 .addImm(Imm * 8)
509 .setMIFlag(Flag);
510 break;
512 case AArch64::LDPXpost:
513 Imm = -Imm;
514 LLVM_FALLTHROUGH;
515 case AArch64::STPXpre: {
516 Register Reg0 = MBBI->getOperand(1).getReg();
517 Register Reg1 = MBBI->getOperand(2).getReg();
518 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
519 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
520 .addImm(Imm * 8)
521 .setMIFlag(Flag);
522 else
523 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
524 .addImm(RegInfo->getSEHRegNum(Reg0))
525 .addImm(RegInfo->getSEHRegNum(Reg1))
526 .addImm(Imm * 8)
527 .setMIFlag(Flag);
528 break;
530 case AArch64::LDRDpost:
531 Imm = -Imm;
532 LLVM_FALLTHROUGH;
533 case AArch64::STRDpre: {
534 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
535 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
536 .addImm(Reg)
537 .addImm(Imm)
538 .setMIFlag(Flag);
539 break;
541 case AArch64::LDRXpost:
542 Imm = -Imm;
543 LLVM_FALLTHROUGH;
544 case AArch64::STRXpre: {
545 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
546 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
547 .addImm(Reg)
548 .addImm(Imm)
549 .setMIFlag(Flag);
550 break;
552 case AArch64::STPDi:
553 case AArch64::LDPDi: {
554 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
555 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
556 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
557 .addImm(Reg0)
558 .addImm(Reg1)
559 .addImm(Imm * 8)
560 .setMIFlag(Flag);
561 break;
563 case AArch64::STPXi:
564 case AArch64::LDPXi: {
565 Register Reg0 = MBBI->getOperand(0).getReg();
566 Register Reg1 = MBBI->getOperand(1).getReg();
567 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
568 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
569 .addImm(Imm * 8)
570 .setMIFlag(Flag);
571 else
572 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
573 .addImm(RegInfo->getSEHRegNum(Reg0))
574 .addImm(RegInfo->getSEHRegNum(Reg1))
575 .addImm(Imm * 8)
576 .setMIFlag(Flag);
577 break;
579 case AArch64::STRXui:
580 case AArch64::LDRXui: {
581 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
582 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
583 .addImm(Reg)
584 .addImm(Imm * 8)
585 .setMIFlag(Flag);
586 break;
588 case AArch64::STRDui:
589 case AArch64::LDRDui: {
590 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
591 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
592 .addImm(Reg)
593 .addImm(Imm * 8)
594 .setMIFlag(Flag);
595 break;
598 auto I = MBB->insertAfter(MBBI, MIB);
599 return I;
602 // Fix up the SEH opcode associated with the save/restore instruction.
603 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
604 unsigned LocalStackSize) {
605 MachineOperand *ImmOpnd = nullptr;
606 unsigned ImmIdx = MBBI->getNumOperands() - 1;
607 switch (MBBI->getOpcode()) {
608 default:
609 llvm_unreachable("Fix the offset in the SEH instruction");
610 case AArch64::SEH_SaveFPLR:
611 case AArch64::SEH_SaveRegP:
612 case AArch64::SEH_SaveReg:
613 case AArch64::SEH_SaveFRegP:
614 case AArch64::SEH_SaveFReg:
615 ImmOpnd = &MBBI->getOperand(ImmIdx);
616 break;
618 if (ImmOpnd)
619 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
622 // Convert callee-save register save/restore instruction to do stack pointer
623 // decrement/increment to allocate/deallocate the callee-save stack area by
624 // converting store/load to use pre/post increment version.
625 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
626 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
627 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
628 bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) {
629 // Ignore instructions that do not operate on SP, i.e. shadow call stack
630 // instructions and associated CFI instruction.
631 while (MBBI->getOpcode() == AArch64::STRXpost ||
632 MBBI->getOpcode() == AArch64::LDRXpre ||
633 MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) {
634 if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION)
635 assert(MBBI->getOperand(0).getReg() != AArch64::SP);
636 ++MBBI;
638 unsigned NewOpc;
639 int Scale = 1;
640 switch (MBBI->getOpcode()) {
641 default:
642 llvm_unreachable("Unexpected callee-save save/restore opcode!");
643 case AArch64::STPXi:
644 NewOpc = AArch64::STPXpre;
645 Scale = 8;
646 break;
647 case AArch64::STPDi:
648 NewOpc = AArch64::STPDpre;
649 Scale = 8;
650 break;
651 case AArch64::STPQi:
652 NewOpc = AArch64::STPQpre;
653 Scale = 16;
654 break;
655 case AArch64::STRXui:
656 NewOpc = AArch64::STRXpre;
657 break;
658 case AArch64::STRDui:
659 NewOpc = AArch64::STRDpre;
660 break;
661 case AArch64::STRQui:
662 NewOpc = AArch64::STRQpre;
663 break;
664 case AArch64::LDPXi:
665 NewOpc = AArch64::LDPXpost;
666 Scale = 8;
667 break;
668 case AArch64::LDPDi:
669 NewOpc = AArch64::LDPDpost;
670 Scale = 8;
671 break;
672 case AArch64::LDPQi:
673 NewOpc = AArch64::LDPQpost;
674 Scale = 16;
675 break;
676 case AArch64::LDRXui:
677 NewOpc = AArch64::LDRXpost;
678 break;
679 case AArch64::LDRDui:
680 NewOpc = AArch64::LDRDpost;
681 break;
682 case AArch64::LDRQui:
683 NewOpc = AArch64::LDRQpost;
684 break;
686 // Get rid of the SEH code associated with the old instruction.
687 if (NeedsWinCFI) {
688 auto SEH = std::next(MBBI);
689 if (AArch64InstrInfo::isSEHInstruction(*SEH))
690 SEH->eraseFromParent();
693 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
694 MIB.addReg(AArch64::SP, RegState::Define);
696 // Copy all operands other than the immediate offset.
697 unsigned OpndIdx = 0;
698 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
699 ++OpndIdx)
700 MIB.add(MBBI->getOperand(OpndIdx));
702 assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
703 "Unexpected immediate offset in first/last callee-save save/restore "
704 "instruction!");
705 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
706 "Unexpected base register in callee-save save/restore instruction!");
707 assert(CSStackSizeInc % Scale == 0);
708 MIB.addImm(CSStackSizeInc / Scale);
710 MIB.setMIFlags(MBBI->getFlags());
711 MIB.setMemRefs(MBBI->memoperands());
713 // Generate a new SEH code that corresponds to the new instruction.
714 if (NeedsWinCFI) {
715 *HasWinCFI = true;
716 InsertSEH(*MIB, *TII,
717 InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy);
720 return std::prev(MBB.erase(MBBI));
723 // Fixup callee-save register save/restore instructions to take into account
724 // combined SP bump by adding the local stack size to the stack offsets.
725 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
726 unsigned LocalStackSize,
727 bool NeedsWinCFI,
728 bool *HasWinCFI) {
729 if (AArch64InstrInfo::isSEHInstruction(MI))
730 return;
732 unsigned Opc = MI.getOpcode();
734 // Ignore instructions that do not operate on SP, i.e. shadow call stack
735 // instructions and associated CFI instruction.
736 if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre ||
737 Opc == AArch64::CFI_INSTRUCTION) {
738 if (Opc != AArch64::CFI_INSTRUCTION)
739 assert(MI.getOperand(0).getReg() != AArch64::SP);
740 return;
743 unsigned Scale;
744 switch (Opc) {
745 case AArch64::STPXi:
746 case AArch64::STRXui:
747 case AArch64::STPDi:
748 case AArch64::STRDui:
749 case AArch64::LDPXi:
750 case AArch64::LDRXui:
751 case AArch64::LDPDi:
752 case AArch64::LDRDui:
753 Scale = 8;
754 break;
755 case AArch64::STPQi:
756 case AArch64::STRQui:
757 case AArch64::LDPQi:
758 case AArch64::LDRQui:
759 Scale = 16;
760 break;
761 default:
762 llvm_unreachable("Unexpected callee-save save/restore opcode!");
765 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
766 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
767 "Unexpected base register in callee-save save/restore instruction!");
768 // Last operand is immediate offset that needs fixing.
769 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
770 // All generated opcodes have scaled offsets.
771 assert(LocalStackSize % Scale == 0);
772 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
774 if (NeedsWinCFI) {
775 *HasWinCFI = true;
776 auto MBBI = std::next(MachineBasicBlock::iterator(MI));
777 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
778 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
779 "Expecting a SEH instruction");
780 fixupSEHOpcode(MBBI, LocalStackSize);
784 static void adaptForLdStOpt(MachineBasicBlock &MBB,
785 MachineBasicBlock::iterator FirstSPPopI,
786 MachineBasicBlock::iterator LastPopI) {
787 // Sometimes (when we restore in the same order as we save), we can end up
788 // with code like this:
790 // ldp x26, x25, [sp]
791 // ldp x24, x23, [sp, #16]
792 // ldp x22, x21, [sp, #32]
793 // ldp x20, x19, [sp, #48]
794 // add sp, sp, #64
796 // In this case, it is always better to put the first ldp at the end, so
797 // that the load-store optimizer can run and merge the ldp and the add into
798 // a post-index ldp.
799 // If we managed to grab the first pop instruction, move it to the end.
800 if (ReverseCSRRestoreSeq)
801 MBB.splice(FirstSPPopI, &MBB, LastPopI);
802 // We should end up with something like this now:
804 // ldp x24, x23, [sp, #16]
805 // ldp x22, x21, [sp, #32]
806 // ldp x20, x19, [sp, #48]
807 // ldp x26, x25, [sp]
808 // add sp, sp, #64
810 // and the load-store optimizer can merge the last two instructions into:
812 // ldp x26, x25, [sp], #64
816 static bool ShouldSignWithAKey(MachineFunction &MF) {
817 const Function &F = MF.getFunction();
818 if (!F.hasFnAttribute("sign-return-address-key"))
819 return true;
821 const StringRef Key =
822 F.getFnAttribute("sign-return-address-key").getValueAsString();
823 assert(Key.equals_lower("a_key") || Key.equals_lower("b_key"));
824 return Key.equals_lower("a_key");
827 static bool needsWinCFI(const MachineFunction &MF) {
828 const Function &F = MF.getFunction();
829 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
830 F.needsUnwindTableEntry();
833 static bool isTargetDarwin(const MachineFunction &MF) {
834 return MF.getSubtarget<AArch64Subtarget>().isTargetDarwin();
837 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
838 MachineBasicBlock &MBB) const {
839 MachineBasicBlock::iterator MBBI = MBB.begin();
840 const MachineFrameInfo &MFI = MF.getFrameInfo();
841 const Function &F = MF.getFunction();
842 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
843 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
844 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
845 MachineModuleInfo &MMI = MF.getMMI();
846 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
847 bool needsFrameMoves = (MMI.hasDebugInfo() || F.needsUnwindTableEntry()) &&
848 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
849 bool HasFP = hasFP(MF);
850 bool NeedsWinCFI = needsWinCFI(MF);
851 bool HasWinCFI = false;
852 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
854 bool IsFunclet = MBB.isEHFuncletEntry();
856 // At this point, we're going to decide whether or not the function uses a
857 // redzone. In most cases, the function doesn't have a redzone so let's
858 // assume that's false and set it to true in the case that there's a redzone.
859 AFI->setHasRedZone(false);
861 // Debug location must be unknown since the first debug location is used
862 // to determine the end of the prologue.
863 DebugLoc DL;
865 if (ShouldSignReturnAddress(MF)) {
866 if (ShouldSignWithAKey(MF))
867 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP))
868 .setMIFlag(MachineInstr::FrameSetup);
869 else {
870 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
871 .setMIFlag(MachineInstr::FrameSetup);
872 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP))
873 .setMIFlag(MachineInstr::FrameSetup);
876 unsigned CFIIndex =
877 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
878 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
879 .addCFIIndex(CFIIndex)
880 .setMIFlags(MachineInstr::FrameSetup);
883 // All calls are tail calls in GHC calling conv, and functions have no
884 // prologue/epilogue.
885 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
886 return;
888 // Set tagged base pointer to the bottom of the stack frame.
889 // Ideally it should match SP value after prologue.
890 AFI->setTaggedBasePointerOffset(MFI.getStackSize());
892 const StackOffset &SVEStackSize = getSVEStackSize(MF);
894 // getStackSize() includes all the locals in its size calculation. We don't
895 // include these locals when computing the stack size of a funclet, as they
896 // are allocated in the parent's stack frame and accessed via the frame
897 // pointer from the funclet. We only save the callee saved registers in the
898 // funclet, which are really the callee saved registers of the parent
899 // function, including the funclet.
900 int NumBytes = IsFunclet ? (int)getWinEHFuncletFrameSize(MF)
901 : (int)MFI.getStackSize();
902 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
903 assert(!HasFP && "unexpected function without stack frame but with FP");
904 assert(!SVEStackSize &&
905 "unexpected function without stack frame but with SVE objects");
906 // All of the stack allocation is for locals.
907 AFI->setLocalStackSize(NumBytes);
908 if (!NumBytes)
909 return;
910 // REDZONE: If the stack size is less than 128 bytes, we don't need
911 // to actually allocate.
912 if (canUseRedZone(MF)) {
913 AFI->setHasRedZone(true);
914 ++NumRedZoneFunctions;
915 } else {
916 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
917 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup,
918 false, NeedsWinCFI, &HasWinCFI);
919 if (!NeedsWinCFI) {
920 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
921 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
922 // Encode the stack size of the leaf function.
923 unsigned CFIIndex = MF.addFrameInst(
924 MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
925 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
926 .addCFIIndex(CFIIndex)
927 .setMIFlags(MachineInstr::FrameSetup);
931 if (NeedsWinCFI) {
932 HasWinCFI = true;
933 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
934 .setMIFlag(MachineInstr::FrameSetup);
937 return;
940 bool IsWin64 =
941 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
942 // Var args are accounted for in the containing function, so don't
943 // include them for funclets.
944 unsigned FixedObject = (IsWin64 && !IsFunclet) ?
945 alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
947 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
948 // All of the remaining stack allocations are for locals.
949 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
950 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
951 if (CombineSPBump) {
952 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
953 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
954 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, false,
955 NeedsWinCFI, &HasWinCFI);
956 NumBytes = 0;
957 } else if (PrologueSaveSize != 0) {
958 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
959 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI);
960 NumBytes -= PrologueSaveSize;
962 assert(NumBytes >= 0 && "Negative stack allocation size!?");
964 // Move past the saves of the callee-saved registers, fixing up the offsets
965 // and pre-inc if we decided to combine the callee-save and local stack
966 // pointer bump above.
967 MachineBasicBlock::iterator End = MBB.end();
968 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup)) {
969 if (CombineSPBump)
970 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
971 NeedsWinCFI, &HasWinCFI);
972 ++MBBI;
975 // The code below is not applicable to funclets. We have emitted all the SEH
976 // opcodes that we needed to emit. The FP and BP belong to the containing
977 // function.
978 if (IsFunclet) {
979 if (NeedsWinCFI) {
980 HasWinCFI = true;
981 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
982 .setMIFlag(MachineInstr::FrameSetup);
985 // SEH funclets are passed the frame pointer in X1. If the parent
986 // function uses the base register, then the base register is used
987 // directly, and is not retrieved from X1.
988 if (F.hasPersonalityFn()) {
989 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
990 if (isAsynchronousEHPersonality(Per)) {
991 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
992 .addReg(AArch64::X1).setMIFlag(MachineInstr::FrameSetup);
993 MBB.addLiveIn(AArch64::X1);
997 return;
1000 if (HasFP) {
1001 // Only set up FP if we actually need to.
1002 int FPOffset = isTargetDarwin(MF) ? (AFI->getCalleeSavedStackSize() - 16) : 0;
1004 if (CombineSPBump)
1005 FPOffset += AFI->getLocalStackSize();
1007 // Issue sub fp, sp, FPOffset or
1008 // mov fp,sp when FPOffset is zero.
1009 // Note: All stores of callee-saved registers are marked as "FrameSetup".
1010 // This code marks the instruction(s) that set the FP also.
1011 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1012 {FPOffset, MVT::i8}, TII, MachineInstr::FrameSetup, false,
1013 NeedsWinCFI, &HasWinCFI);
1016 if (windowsRequiresStackProbe(MF, NumBytes)) {
1017 uint32_t NumWords = NumBytes >> 4;
1018 if (NeedsWinCFI) {
1019 HasWinCFI = true;
1020 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1021 // exceed this amount. We need to move at most 2^24 - 1 into x15.
1022 // This is at most two instructions, MOVZ follwed by MOVK.
1023 // TODO: Fix to use multiple stack alloc unwind codes for stacks
1024 // exceeding 256MB in size.
1025 if (NumBytes >= (1 << 28))
1026 report_fatal_error("Stack size cannot exceed 256MB for stack "
1027 "unwinding purposes");
1029 uint32_t LowNumWords = NumWords & 0xFFFF;
1030 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1031 .addImm(LowNumWords)
1032 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1033 .setMIFlag(MachineInstr::FrameSetup);
1034 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1035 .setMIFlag(MachineInstr::FrameSetup);
1036 if ((NumWords & 0xFFFF0000) != 0) {
1037 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1038 .addReg(AArch64::X15)
1039 .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1040 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1041 .setMIFlag(MachineInstr::FrameSetup);
1042 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1043 .setMIFlag(MachineInstr::FrameSetup);
1045 } else {
1046 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1047 .addImm(NumWords)
1048 .setMIFlags(MachineInstr::FrameSetup);
1051 switch (MF.getTarget().getCodeModel()) {
1052 case CodeModel::Tiny:
1053 case CodeModel::Small:
1054 case CodeModel::Medium:
1055 case CodeModel::Kernel:
1056 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1057 .addExternalSymbol("__chkstk")
1058 .addReg(AArch64::X15, RegState::Implicit)
1059 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1060 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1061 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1062 .setMIFlags(MachineInstr::FrameSetup);
1063 if (NeedsWinCFI) {
1064 HasWinCFI = true;
1065 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1066 .setMIFlag(MachineInstr::FrameSetup);
1068 break;
1069 case CodeModel::Large:
1070 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1071 .addReg(AArch64::X16, RegState::Define)
1072 .addExternalSymbol("__chkstk")
1073 .addExternalSymbol("__chkstk")
1074 .setMIFlags(MachineInstr::FrameSetup);
1075 if (NeedsWinCFI) {
1076 HasWinCFI = true;
1077 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1078 .setMIFlag(MachineInstr::FrameSetup);
1081 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR))
1082 .addReg(AArch64::X16, RegState::Kill)
1083 .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1084 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1085 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1086 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1087 .setMIFlags(MachineInstr::FrameSetup);
1088 if (NeedsWinCFI) {
1089 HasWinCFI = true;
1090 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1091 .setMIFlag(MachineInstr::FrameSetup);
1093 break;
1096 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1097 .addReg(AArch64::SP, RegState::Kill)
1098 .addReg(AArch64::X15, RegState::Kill)
1099 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1100 .setMIFlags(MachineInstr::FrameSetup);
1101 if (NeedsWinCFI) {
1102 HasWinCFI = true;
1103 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1104 .addImm(NumBytes)
1105 .setMIFlag(MachineInstr::FrameSetup);
1107 NumBytes = 0;
1110 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -SVEStackSize, TII,
1111 MachineInstr::FrameSetup);
1113 // Allocate space for the rest of the frame.
1114 if (NumBytes) {
1115 const bool NeedsRealignment = RegInfo->needsStackRealignment(MF);
1116 unsigned scratchSPReg = AArch64::SP;
1118 if (NeedsRealignment) {
1119 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1120 assert(scratchSPReg != AArch64::NoRegister);
1123 // If we're a leaf function, try using the red zone.
1124 if (!canUseRedZone(MF))
1125 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1126 // the correct value here, as NumBytes also includes padding bytes,
1127 // which shouldn't be counted here.
1128 emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1129 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup,
1130 false, NeedsWinCFI, &HasWinCFI);
1132 if (NeedsRealignment) {
1133 const unsigned Alignment = MFI.getMaxAlignment();
1134 const unsigned NrBitsToZero = countTrailingZeros(Alignment);
1135 assert(NrBitsToZero > 1);
1136 assert(scratchSPReg != AArch64::SP);
1138 // SUB X9, SP, NumBytes
1139 // -- X9 is temporary register, so shouldn't contain any live data here,
1140 // -- free to use. This is already produced by emitFrameOffset above.
1141 // AND SP, X9, 0b11111...0000
1142 // The logical immediates have a non-trivial encoding. The following
1143 // formula computes the encoded immediate with all ones but
1144 // NrBitsToZero zero bits as least significant bits.
1145 uint32_t andMaskEncoded = (1 << 12) // = N
1146 | ((64 - NrBitsToZero) << 6) // immr
1147 | ((64 - NrBitsToZero - 1) << 0); // imms
1149 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1150 .addReg(scratchSPReg, RegState::Kill)
1151 .addImm(andMaskEncoded);
1152 AFI->setStackRealigned(true);
1153 if (NeedsWinCFI) {
1154 HasWinCFI = true;
1155 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1156 .addImm(NumBytes & andMaskEncoded)
1157 .setMIFlag(MachineInstr::FrameSetup);
1162 // If we need a base pointer, set it up here. It's whatever the value of the
1163 // stack pointer is at this point. Any variable size objects will be allocated
1164 // after this, so we can still use the base pointer to reference locals.
1166 // FIXME: Clarify FrameSetup flags here.
1167 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1168 // needed.
1169 if (RegInfo->hasBasePointer(MF)) {
1170 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1171 false);
1172 if (NeedsWinCFI) {
1173 HasWinCFI = true;
1174 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1175 .setMIFlag(MachineInstr::FrameSetup);
1179 // The very last FrameSetup instruction indicates the end of prologue. Emit a
1180 // SEH opcode indicating the prologue end.
1181 if (NeedsWinCFI && HasWinCFI) {
1182 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1183 .setMIFlag(MachineInstr::FrameSetup);
1186 if (needsFrameMoves) {
1187 const DataLayout &TD = MF.getDataLayout();
1188 const int StackGrowth = isTargetDarwin(MF)
1189 ? (2 * -TD.getPointerSize(0))
1190 : -AFI->getCalleeSavedStackSize();
1191 Register FramePtr = RegInfo->getFrameRegister(MF);
1192 // An example of the prologue:
1194 // .globl __foo
1195 // .align 2
1196 // __foo:
1197 // Ltmp0:
1198 // .cfi_startproc
1199 // .cfi_personality 155, ___gxx_personality_v0
1200 // Leh_func_begin:
1201 // .cfi_lsda 16, Lexception33
1203 // stp xa,bx, [sp, -#offset]!
1204 // ...
1205 // stp x28, x27, [sp, #offset-32]
1206 // stp fp, lr, [sp, #offset-16]
1207 // add fp, sp, #offset - 16
1208 // sub sp, sp, #1360
1210 // The Stack:
1211 // +-------------------------------------------+
1212 // 10000 | ........ | ........ | ........ | ........ |
1213 // 10004 | ........ | ........ | ........ | ........ |
1214 // +-------------------------------------------+
1215 // 10008 | ........ | ........ | ........ | ........ |
1216 // 1000c | ........ | ........ | ........ | ........ |
1217 // +===========================================+
1218 // 10010 | X28 Register |
1219 // 10014 | X28 Register |
1220 // +-------------------------------------------+
1221 // 10018 | X27 Register |
1222 // 1001c | X27 Register |
1223 // +===========================================+
1224 // 10020 | Frame Pointer |
1225 // 10024 | Frame Pointer |
1226 // +-------------------------------------------+
1227 // 10028 | Link Register |
1228 // 1002c | Link Register |
1229 // +===========================================+
1230 // 10030 | ........ | ........ | ........ | ........ |
1231 // 10034 | ........ | ........ | ........ | ........ |
1232 // +-------------------------------------------+
1233 // 10038 | ........ | ........ | ........ | ........ |
1234 // 1003c | ........ | ........ | ........ | ........ |
1235 // +-------------------------------------------+
1237 // [sp] = 10030 :: >>initial value<<
1238 // sp = 10020 :: stp fp, lr, [sp, #-16]!
1239 // fp = sp == 10020 :: mov fp, sp
1240 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
1241 // sp == 10010 :: >>final value<<
1243 // The frame pointer (w29) points to address 10020. If we use an offset of
1244 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
1245 // for w27, and -32 for w28:
1247 // Ltmp1:
1248 // .cfi_def_cfa w29, 16
1249 // Ltmp2:
1250 // .cfi_offset w30, -8
1251 // Ltmp3:
1252 // .cfi_offset w29, -16
1253 // Ltmp4:
1254 // .cfi_offset w27, -24
1255 // Ltmp5:
1256 // .cfi_offset w28, -32
1258 if (HasFP) {
1259 // Define the current CFA rule to use the provided FP.
1260 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
1261 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
1262 nullptr, Reg, StackGrowth - FixedObject));
1263 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1264 .addCFIIndex(CFIIndex)
1265 .setMIFlags(MachineInstr::FrameSetup);
1266 } else {
1267 // Encode the stack size of the leaf function.
1268 unsigned CFIIndex = MF.addFrameInst(
1269 MCCFIInstruction::createDefCfaOffset(nullptr, -MFI.getStackSize()));
1270 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1271 .addCFIIndex(CFIIndex)
1272 .setMIFlags(MachineInstr::FrameSetup);
1275 // Now emit the moves for whatever callee saved regs we have (including FP,
1276 // LR if those are saved).
1277 emitCalleeSavedFrameMoves(MBB, MBBI);
1281 static void InsertReturnAddressAuth(MachineFunction &MF,
1282 MachineBasicBlock &MBB) {
1283 if (!ShouldSignReturnAddress(MF))
1284 return;
1285 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1286 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1288 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1289 DebugLoc DL;
1290 if (MBBI != MBB.end())
1291 DL = MBBI->getDebugLoc();
1293 // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1294 // this instruction can safely used for any v8a architecture.
1295 // From v8.3a onwards there are optimised authenticate LR and return
1296 // instructions, namely RETA{A,B}, that can be used instead.
1297 if (Subtarget.hasV8_3aOps() && MBBI != MBB.end() &&
1298 MBBI->getOpcode() == AArch64::RET_ReallyLR) {
1299 BuildMI(MBB, MBBI, DL,
1300 TII->get(ShouldSignWithAKey(MF) ? AArch64::RETAA : AArch64::RETAB))
1301 .copyImplicitOps(*MBBI);
1302 MBB.erase(MBBI);
1303 } else {
1304 BuildMI(
1305 MBB, MBBI, DL,
1306 TII->get(ShouldSignWithAKey(MF) ? AArch64::AUTIASP : AArch64::AUTIBSP))
1307 .setMIFlag(MachineInstr::FrameDestroy);
1311 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1312 switch (MI.getOpcode()) {
1313 default:
1314 return false;
1315 case AArch64::CATCHRET:
1316 case AArch64::CLEANUPRET:
1317 return true;
1321 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1322 MachineBasicBlock &MBB) const {
1323 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1324 MachineFrameInfo &MFI = MF.getFrameInfo();
1325 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1326 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1327 DebugLoc DL;
1328 bool IsTailCallReturn = false;
1329 bool NeedsWinCFI = needsWinCFI(MF);
1330 bool HasWinCFI = false;
1331 bool IsFunclet = false;
1332 auto WinCFI = make_scope_exit([&]() {
1333 if (!MF.hasWinCFI())
1334 MF.setHasWinCFI(HasWinCFI);
1337 if (MBB.end() != MBBI) {
1338 DL = MBBI->getDebugLoc();
1339 unsigned RetOpcode = MBBI->getOpcode();
1340 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
1341 RetOpcode == AArch64::TCRETURNri ||
1342 RetOpcode == AArch64::TCRETURNriBTI;
1343 IsFunclet = isFuncletReturnInstr(*MBBI);
1346 int NumBytes = IsFunclet ? (int)getWinEHFuncletFrameSize(MF)
1347 : MFI.getStackSize();
1348 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1350 // All calls are tail calls in GHC calling conv, and functions have no
1351 // prologue/epilogue.
1352 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1353 return;
1355 // Initial and residual are named for consistency with the prologue. Note that
1356 // in the epilogue, the residual adjustment is executed first.
1357 uint64_t ArgumentPopSize = 0;
1358 if (IsTailCallReturn) {
1359 MachineOperand &StackAdjust = MBBI->getOperand(1);
1361 // For a tail-call in a callee-pops-arguments environment, some or all of
1362 // the stack may actually be in use for the call's arguments, this is
1363 // calculated during LowerCall and consumed here...
1364 ArgumentPopSize = StackAdjust.getImm();
1365 } else {
1366 // ... otherwise the amount to pop is *all* of the argument space,
1367 // conveniently stored in the MachineFunctionInfo by
1368 // LowerFormalArguments. This will, of course, be zero for the C calling
1369 // convention.
1370 ArgumentPopSize = AFI->getArgumentStackToRestore();
1373 // The stack frame should be like below,
1375 // ---------------------- ---
1376 // | | |
1377 // | BytesInStackArgArea| CalleeArgStackSize
1378 // | (NumReusableBytes) | (of tail call)
1379 // | | ---
1380 // | | |
1381 // ---------------------| --- |
1382 // | | | |
1383 // | CalleeSavedReg | | |
1384 // | (CalleeSavedStackSize)| | |
1385 // | | | |
1386 // ---------------------| | NumBytes
1387 // | | StackSize (StackAdjustUp)
1388 // | LocalStackSize | | |
1389 // | (covering callee | | |
1390 // | args) | | |
1391 // | | | |
1392 // ---------------------- --- ---
1394 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
1395 // = StackSize + ArgumentPopSize
1397 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
1398 // it as the 2nd argument of AArch64ISD::TC_RETURN.
1400 auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); });
1402 bool IsWin64 =
1403 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1404 // Var args are accounted for in the containing function, so don't
1405 // include them for funclets.
1406 unsigned FixedObject =
1407 (IsWin64 && !IsFunclet) ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
1409 uint64_t AfterCSRPopSize = ArgumentPopSize;
1410 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1411 // We cannot rely on the local stack size set in emitPrologue if the function
1412 // has funclets, as funclets have different local stack size requirements, and
1413 // the current value set in emitPrologue may be that of the containing
1414 // function.
1415 if (MF.hasEHFunclets())
1416 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1417 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1418 // Assume we can't combine the last pop with the sp restore.
1420 if (!CombineSPBump && PrologueSaveSize != 0) {
1421 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
1422 while (AArch64InstrInfo::isSEHInstruction(*Pop))
1423 Pop = std::prev(Pop);
1424 // Converting the last ldp to a post-index ldp is valid only if the last
1425 // ldp's offset is 0.
1426 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
1427 // If the offset is 0, convert it to a post-index ldp.
1428 if (OffsetOp.getImm() == 0)
1429 convertCalleeSaveRestoreToSPPrePostIncDec(
1430 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false);
1431 else {
1432 // If not, make sure to emit an add after the last ldp.
1433 // We're doing this by transfering the size to be restored from the
1434 // adjustment *before* the CSR pops to the adjustment *after* the CSR
1435 // pops.
1436 AfterCSRPopSize += PrologueSaveSize;
1440 // Move past the restores of the callee-saved registers.
1441 // If we plan on combining the sp bump of the local stack size and the callee
1442 // save stack size, we might need to adjust the CSR save and restore offsets.
1443 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
1444 MachineBasicBlock::iterator Begin = MBB.begin();
1445 while (LastPopI != Begin) {
1446 --LastPopI;
1447 if (!LastPopI->getFlag(MachineInstr::FrameDestroy)) {
1448 ++LastPopI;
1449 break;
1450 } else if (CombineSPBump)
1451 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
1452 NeedsWinCFI, &HasWinCFI);
1455 if (NeedsWinCFI) {
1456 HasWinCFI = true;
1457 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
1458 .setMIFlag(MachineInstr::FrameDestroy);
1461 const StackOffset &SVEStackSize = getSVEStackSize(MF);
1463 // If there is a single SP update, insert it before the ret and we're done.
1464 if (CombineSPBump) {
1465 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1466 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
1467 {NumBytes + (int64_t)AfterCSRPopSize, MVT::i8}, TII,
1468 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1469 if (NeedsWinCFI && HasWinCFI)
1470 BuildMI(MBB, MBB.getFirstTerminator(), DL,
1471 TII->get(AArch64::SEH_EpilogEnd))
1472 .setMIFlag(MachineInstr::FrameDestroy);
1473 return;
1476 NumBytes -= PrologueSaveSize;
1477 assert(NumBytes >= 0 && "Negative stack allocation size!?");
1479 // Deallocate the SVE area.
1480 if (SVEStackSize)
1481 if (!AFI->isStackRealigned())
1482 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, SVEStackSize,
1483 TII, MachineInstr::FrameDestroy);
1485 if (!hasFP(MF)) {
1486 bool RedZone = canUseRedZone(MF);
1487 // If this was a redzone leaf function, we don't need to restore the
1488 // stack pointer (but we may need to pop stack args for fastcc).
1489 if (RedZone && AfterCSRPopSize == 0)
1490 return;
1492 bool NoCalleeSaveRestore = PrologueSaveSize == 0;
1493 int StackRestoreBytes = RedZone ? 0 : NumBytes;
1494 if (NoCalleeSaveRestore)
1495 StackRestoreBytes += AfterCSRPopSize;
1497 // If we were able to combine the local stack pop with the argument pop,
1498 // then we're done.
1499 bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0;
1501 // If we're done after this, make sure to help the load store optimizer.
1502 if (Done)
1503 adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI);
1505 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1506 {StackRestoreBytes, MVT::i8}, TII,
1507 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1508 if (Done) {
1509 if (NeedsWinCFI) {
1510 HasWinCFI = true;
1511 BuildMI(MBB, MBB.getFirstTerminator(), DL,
1512 TII->get(AArch64::SEH_EpilogEnd))
1513 .setMIFlag(MachineInstr::FrameDestroy);
1515 return;
1518 NumBytes = 0;
1521 // Restore the original stack pointer.
1522 // FIXME: Rather than doing the math here, we should instead just use
1523 // non-post-indexed loads for the restores if we aren't actually going to
1524 // be able to save any instructions.
1525 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
1526 int64_t OffsetToFrameRecord =
1527 isTargetDarwin(MF) ? (-(int64_t)AFI->getCalleeSavedStackSize() + 16) : 0;
1528 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
1529 {OffsetToFrameRecord, MVT::i8},
1530 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
1531 } else if (NumBytes)
1532 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1533 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy, false,
1534 NeedsWinCFI);
1536 // This must be placed after the callee-save restore code because that code
1537 // assumes the SP is at the same location as it was after the callee-save save
1538 // code in the prologue.
1539 if (AfterCSRPopSize) {
1540 // Find an insertion point for the first ldp so that it goes before the
1541 // shadow call stack epilog instruction. This ensures that the restore of
1542 // lr from x18 is placed after the restore from sp.
1543 auto FirstSPPopI = MBB.getFirstTerminator();
1544 while (FirstSPPopI != Begin) {
1545 auto Prev = std::prev(FirstSPPopI);
1546 if (Prev->getOpcode() != AArch64::LDRXpre ||
1547 Prev->getOperand(0).getReg() == AArch64::SP)
1548 break;
1549 FirstSPPopI = Prev;
1552 adaptForLdStOpt(MBB, FirstSPPopI, LastPopI);
1554 emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP,
1555 {(int64_t)AfterCSRPopSize, MVT::i8}, TII,
1556 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1558 if (NeedsWinCFI && HasWinCFI)
1559 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd))
1560 .setMIFlag(MachineInstr::FrameDestroy);
1562 MF.setHasWinCFI(HasWinCFI);
1565 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1566 /// debug info. It's the same as what we use for resolving the code-gen
1567 /// references for now. FIXME: This can go wrong when references are
1568 /// SP-relative and simple call frames aren't used.
1569 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
1570 int FI,
1571 unsigned &FrameReg) const {
1572 return resolveFrameIndexReference(
1573 MF, FI, FrameReg,
1574 /*PreferFP=*/
1575 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
1576 /*ForSimm=*/false)
1577 .getBytes();
1580 int AArch64FrameLowering::getNonLocalFrameIndexReference(
1581 const MachineFunction &MF, int FI) const {
1582 return getSEHFrameIndexOffset(MF, FI);
1585 static StackOffset getFPOffset(const MachineFunction &MF, int ObjectOffset) {
1586 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1587 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1588 bool IsWin64 =
1589 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1590 unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
1591 unsigned FPAdjust = isTargetDarwin(MF) ? 16 : AFI->getCalleeSavedStackSize();
1592 return {ObjectOffset + FixedObject + FPAdjust, MVT::i8};
1595 static StackOffset getStackOffset(const MachineFunction &MF, int ObjectOffset) {
1596 const auto &MFI = MF.getFrameInfo();
1597 return {ObjectOffset + (int)MFI.getStackSize(), MVT::i8};
1600 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
1601 int FI) const {
1602 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1603 MF.getSubtarget().getRegisterInfo());
1604 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
1605 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
1606 ? getFPOffset(MF, ObjectOffset).getBytes()
1607 : getStackOffset(MF, ObjectOffset).getBytes();
1610 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
1611 const MachineFunction &MF, int FI, unsigned &FrameReg, bool PreferFP,
1612 bool ForSimm) const {
1613 const auto &MFI = MF.getFrameInfo();
1614 int ObjectOffset = MFI.getObjectOffset(FI);
1615 bool isFixed = MFI.isFixedObjectIndex(FI);
1616 bool isSVE = MFI.getStackID(FI) == TargetStackID::SVEVector;
1617 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
1618 PreferFP, ForSimm);
1621 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
1622 const MachineFunction &MF, int ObjectOffset, bool isFixed, bool isSVE,
1623 unsigned &FrameReg, bool PreferFP, bool ForSimm) const {
1624 const auto &MFI = MF.getFrameInfo();
1625 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1626 MF.getSubtarget().getRegisterInfo());
1627 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1628 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1630 int FPOffset = getFPOffset(MF, ObjectOffset).getBytes();
1631 int Offset = getStackOffset(MF, ObjectOffset).getBytes();
1632 bool isCSR =
1633 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize());
1635 const StackOffset &SVEStackSize = getSVEStackSize(MF);
1637 // Use frame pointer to reference fixed objects. Use it for locals if
1638 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
1639 // reliable as a base). Make sure useFPForScavengingIndex() does the
1640 // right thing for the emergency spill slot.
1641 bool UseFP = false;
1642 if (AFI->hasStackFrame() && !isSVE) {
1643 // We shouldn't prefer using the FP when there is an SVE area
1644 // in between the FP and the non-SVE locals/spills.
1645 PreferFP &= !SVEStackSize;
1647 // Note: Keeping the following as multiple 'if' statements rather than
1648 // merging to a single expression for readability.
1650 // Argument access should always use the FP.
1651 if (isFixed) {
1652 UseFP = hasFP(MF);
1653 } else if (isCSR && RegInfo->needsStackRealignment(MF)) {
1654 // References to the CSR area must use FP if we're re-aligning the stack
1655 // since the dynamically-sized alignment padding is between the SP/BP and
1656 // the CSR area.
1657 assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
1658 UseFP = true;
1659 } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) {
1660 // If the FPOffset is negative and we're producing a signed immediate, we
1661 // have to keep in mind that the available offset range for negative
1662 // offsets is smaller than for positive ones. If an offset is available
1663 // via the FP and the SP, use whichever is closest.
1664 bool FPOffsetFits = !ForSimm || FPOffset >= -256;
1665 PreferFP |= Offset > -FPOffset;
1667 if (MFI.hasVarSizedObjects()) {
1668 // If we have variable sized objects, we can use either FP or BP, as the
1669 // SP offset is unknown. We can use the base pointer if we have one and
1670 // FP is not preferred. If not, we're stuck with using FP.
1671 bool CanUseBP = RegInfo->hasBasePointer(MF);
1672 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
1673 UseFP = PreferFP;
1674 else if (!CanUseBP) { // Can't use BP. Forced to use FP.
1675 assert(!SVEStackSize && "Expected BP to be available");
1676 UseFP = true;
1678 // else we can use BP and FP, but the offset from FP won't fit.
1679 // That will make us scavenge registers which we can probably avoid by
1680 // using BP. If it won't fit for BP either, we'll scavenge anyway.
1681 } else if (FPOffset >= 0) {
1682 // Use SP or FP, whichever gives us the best chance of the offset
1683 // being in range for direct access. If the FPOffset is positive,
1684 // that'll always be best, as the SP will be even further away.
1685 UseFP = true;
1686 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
1687 // Funclets access the locals contained in the parent's stack frame
1688 // via the frame pointer, so we have to use the FP in the parent
1689 // function.
1690 (void) Subtarget;
1691 assert(
1692 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
1693 "Funclets should only be present on Win64");
1694 UseFP = true;
1695 } else {
1696 // We have the choice between FP and (SP or BP).
1697 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
1698 UseFP = true;
1703 assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
1704 "In the presence of dynamic stack pointer realignment, "
1705 "non-argument/CSR objects cannot be accessed through the frame pointer");
1707 if (isSVE) {
1708 int64_t OffsetToSVEArea =
1709 MFI.getStackSize() - AFI->getCalleeSavedStackSize();
1710 StackOffset FPOffset = {ObjectOffset, MVT::nxv1i8};
1711 StackOffset SPOffset = SVEStackSize +
1712 StackOffset(ObjectOffset, MVT::nxv1i8) +
1713 StackOffset(OffsetToSVEArea, MVT::i8);
1714 // Always use the FP for SVE spills if available and beneficial.
1715 if (hasFP(MF) &&
1716 (SPOffset.getBytes() ||
1717 FPOffset.getScalableBytes() < SPOffset.getScalableBytes() ||
1718 RegInfo->needsStackRealignment(MF))) {
1719 FrameReg = RegInfo->getFrameRegister(MF);
1720 return FPOffset;
1723 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
1724 : (unsigned)AArch64::SP;
1725 return SPOffset;
1728 StackOffset ScalableOffset = {};
1729 if (UseFP && !(isFixed || isCSR))
1730 ScalableOffset = -SVEStackSize;
1731 if (!UseFP && (isFixed || isCSR))
1732 ScalableOffset = SVEStackSize;
1734 if (UseFP) {
1735 FrameReg = RegInfo->getFrameRegister(MF);
1736 return StackOffset(FPOffset, MVT::i8) + ScalableOffset;
1739 // Use the base pointer if we have one.
1740 if (RegInfo->hasBasePointer(MF))
1741 FrameReg = RegInfo->getBaseRegister();
1742 else {
1743 assert(!MFI.hasVarSizedObjects() &&
1744 "Can't use SP when we have var sized objects.");
1745 FrameReg = AArch64::SP;
1746 // If we're using the red zone for this function, the SP won't actually
1747 // be adjusted, so the offsets will be negative. They're also all
1748 // within range of the signed 9-bit immediate instructions.
1749 if (canUseRedZone(MF))
1750 Offset -= AFI->getLocalStackSize();
1753 return StackOffset(Offset, MVT::i8) + ScalableOffset;
1756 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
1757 // Do not set a kill flag on values that are also marked as live-in. This
1758 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
1759 // callee saved registers.
1760 // Omitting the kill flags is conservatively correct even if the live-in
1761 // is not used after all.
1762 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
1763 return getKillRegState(!IsLiveIn);
1766 static bool produceCompactUnwindFrame(MachineFunction &MF) {
1767 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1768 AttributeList Attrs = MF.getFunction().getAttributes();
1769 return Subtarget.isTargetMachO() &&
1770 !(Subtarget.getTargetLowering()->supportSwiftError() &&
1771 Attrs.hasAttrSomewhere(Attribute::SwiftError));
1774 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
1775 bool NeedsWinCFI) {
1776 // If we are generating register pairs for a Windows function that requires
1777 // EH support, then pair consecutive registers only. There are no unwind
1778 // opcodes for saves/restores of non-consectuve register pairs.
1779 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x.
1780 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
1782 // TODO: LR can be paired with any register. We don't support this yet in
1783 // the MCLayer. We need to add support for the save_lrpair unwind code.
1784 if (!NeedsWinCFI)
1785 return false;
1786 if (Reg2 == Reg1 + 1)
1787 return false;
1788 return true;
1791 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
1792 /// WindowsCFI requires that only consecutive registers can be paired.
1793 /// LR and FP need to be allocated together when the frame needs to save
1794 /// the frame-record. This means any other register pairing with LR is invalid.
1795 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
1796 bool NeedsWinCFI, bool NeedsFrameRecord) {
1797 if (NeedsWinCFI)
1798 return invalidateWindowsRegisterPairing(Reg1, Reg2, true);
1800 // If we need to store the frame record, don't pair any register
1801 // with LR other than FP.
1802 if (NeedsFrameRecord)
1803 return Reg2 == AArch64::LR;
1805 return false;
1808 namespace {
1810 struct RegPairInfo {
1811 unsigned Reg1 = AArch64::NoRegister;
1812 unsigned Reg2 = AArch64::NoRegister;
1813 int FrameIdx;
1814 int Offset;
1815 enum RegType { GPR, FPR64, FPR128 } Type;
1817 RegPairInfo() = default;
1819 bool isPaired() const { return Reg2 != AArch64::NoRegister; }
1822 } // end anonymous namespace
1824 static void computeCalleeSaveRegisterPairs(
1825 MachineFunction &MF, const std::vector<CalleeSavedInfo> &CSI,
1826 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
1827 bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) {
1829 if (CSI.empty())
1830 return;
1832 bool NeedsWinCFI = needsWinCFI(MF);
1833 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1834 MachineFrameInfo &MFI = MF.getFrameInfo();
1835 CallingConv::ID CC = MF.getFunction().getCallingConv();
1836 unsigned Count = CSI.size();
1837 (void)CC;
1838 // MachO's compact unwind format relies on all registers being stored in
1839 // pairs.
1840 assert((!produceCompactUnwindFrame(MF) ||
1841 CC == CallingConv::PreserveMost ||
1842 (Count & 1) == 0) &&
1843 "Odd number of callee-saved regs to spill!");
1844 int Offset = AFI->getCalleeSavedStackSize();
1845 // On Linux, we will have either one or zero non-paired register. On Windows
1846 // with CFI, we can have multiple unpaired registers in order to utilize the
1847 // available unwind codes. This flag assures that the alignment fixup is done
1848 // only once, as intened.
1849 bool FixupDone = false;
1850 for (unsigned i = 0; i < Count; ++i) {
1851 RegPairInfo RPI;
1852 RPI.Reg1 = CSI[i].getReg();
1854 if (AArch64::GPR64RegClass.contains(RPI.Reg1))
1855 RPI.Type = RegPairInfo::GPR;
1856 else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
1857 RPI.Type = RegPairInfo::FPR64;
1858 else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
1859 RPI.Type = RegPairInfo::FPR128;
1860 else
1861 llvm_unreachable("Unsupported register class.");
1863 // Add the next reg to the pair if it is in the same register class.
1864 if (i + 1 < Count) {
1865 unsigned NextReg = CSI[i + 1].getReg();
1866 switch (RPI.Type) {
1867 case RegPairInfo::GPR:
1868 if (AArch64::GPR64RegClass.contains(NextReg) &&
1869 !invalidateRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
1870 NeedsFrameRecord))
1871 RPI.Reg2 = NextReg;
1872 break;
1873 case RegPairInfo::FPR64:
1874 if (AArch64::FPR64RegClass.contains(NextReg) &&
1875 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI))
1876 RPI.Reg2 = NextReg;
1877 break;
1878 case RegPairInfo::FPR128:
1879 if (AArch64::FPR128RegClass.contains(NextReg))
1880 RPI.Reg2 = NextReg;
1881 break;
1885 // If either of the registers to be saved is the lr register, it means that
1886 // we also need to save lr in the shadow call stack.
1887 if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) &&
1888 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) {
1889 if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
1890 report_fatal_error("Must reserve x18 to use shadow call stack");
1891 NeedShadowCallStackProlog = true;
1894 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
1895 // list to come in sorted by frame index so that we can issue the store
1896 // pair instructions directly. Assert if we see anything otherwise.
1898 // The order of the registers in the list is controlled by
1899 // getCalleeSavedRegs(), so they will always be in-order, as well.
1900 assert((!RPI.isPaired() ||
1901 (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) &&
1902 "Out of order callee saved regs!");
1904 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
1905 RPI.Reg1 == AArch64::LR) &&
1906 "FrameRecord must be allocated together with LR");
1908 // MachO's compact unwind format relies on all registers being stored in
1909 // adjacent register pairs.
1910 assert((!produceCompactUnwindFrame(MF) ||
1911 CC == CallingConv::PreserveMost ||
1912 (RPI.isPaired() &&
1913 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
1914 RPI.Reg1 + 1 == RPI.Reg2))) &&
1915 "Callee-save registers not saved as adjacent register pair!");
1917 RPI.FrameIdx = CSI[i].getFrameIdx();
1919 int Scale = RPI.Type == RegPairInfo::FPR128 ? 16 : 8;
1920 Offset -= RPI.isPaired() ? 2 * Scale : Scale;
1922 // Round up size of non-pair to pair size if we need to pad the
1923 // callee-save area to ensure 16-byte alignment.
1924 if (AFI->hasCalleeSaveStackFreeSpace() && !FixupDone &&
1925 RPI.Type != RegPairInfo::FPR128 && !RPI.isPaired()) {
1926 FixupDone = true;
1927 Offset -= 8;
1928 assert(Offset % 16 == 0);
1929 assert(MFI.getObjectAlignment(RPI.FrameIdx) <= 16);
1930 MFI.setObjectAlignment(RPI.FrameIdx, 16);
1933 assert(Offset % Scale == 0);
1934 RPI.Offset = Offset / Scale;
1935 assert((RPI.Offset >= -64 && RPI.Offset <= 63) &&
1936 "Offset out of bounds for LDP/STP immediate");
1938 RegPairs.push_back(RPI);
1939 if (RPI.isPaired())
1940 ++i;
1944 bool AArch64FrameLowering::spillCalleeSavedRegisters(
1945 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1946 const std::vector<CalleeSavedInfo> &CSI,
1947 const TargetRegisterInfo *TRI) const {
1948 MachineFunction &MF = *MBB.getParent();
1949 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1950 bool NeedsWinCFI = needsWinCFI(MF);
1951 DebugLoc DL;
1952 SmallVector<RegPairInfo, 8> RegPairs;
1954 bool NeedShadowCallStackProlog = false;
1955 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
1956 NeedShadowCallStackProlog, hasFP(MF));
1957 const MachineRegisterInfo &MRI = MF.getRegInfo();
1959 if (NeedShadowCallStackProlog) {
1960 // Shadow call stack prolog: str x30, [x18], #8
1961 BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost))
1962 .addReg(AArch64::X18, RegState::Define)
1963 .addReg(AArch64::LR)
1964 .addReg(AArch64::X18)
1965 .addImm(8)
1966 .setMIFlag(MachineInstr::FrameSetup);
1968 if (NeedsWinCFI)
1969 BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop))
1970 .setMIFlag(MachineInstr::FrameSetup);
1972 if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) {
1973 // Emit a CFI instruction that causes 8 to be subtracted from the value of
1974 // x18 when unwinding past this frame.
1975 static const char CFIInst[] = {
1976 dwarf::DW_CFA_val_expression,
1977 18, // register
1978 2, // length
1979 static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1980 static_cast<char>(-8) & 0x7f, // addend (sleb128)
1982 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1983 nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1984 BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1985 .addCFIIndex(CFIIndex)
1986 .setMIFlag(MachineInstr::FrameSetup);
1989 // This instruction also makes x18 live-in to the entry block.
1990 MBB.addLiveIn(AArch64::X18);
1993 for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE;
1994 ++RPII) {
1995 RegPairInfo RPI = *RPII;
1996 unsigned Reg1 = RPI.Reg1;
1997 unsigned Reg2 = RPI.Reg2;
1998 unsigned StrOpc;
2000 // Issue sequence of spills for cs regs. The first spill may be converted
2001 // to a pre-decrement store later by emitPrologue if the callee-save stack
2002 // area allocation can't be combined with the local stack area allocation.
2003 // For example:
2004 // stp x22, x21, [sp, #0] // addImm(+0)
2005 // stp x20, x19, [sp, #16] // addImm(+2)
2006 // stp fp, lr, [sp, #32] // addImm(+4)
2007 // Rationale: This sequence saves uop updates compared to a sequence of
2008 // pre-increment spills like stp xi,xj,[sp,#-16]!
2009 // Note: Similar rationale and sequence for restores in epilog.
2010 unsigned Size, Align;
2011 switch (RPI.Type) {
2012 case RegPairInfo::GPR:
2013 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2014 Size = 8;
2015 Align = 8;
2016 break;
2017 case RegPairInfo::FPR64:
2018 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2019 Size = 8;
2020 Align = 8;
2021 break;
2022 case RegPairInfo::FPR128:
2023 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2024 Size = 16;
2025 Align = 16;
2026 break;
2028 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2029 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2030 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2031 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2032 dbgs() << ")\n");
2034 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2035 "Windows unwdinding requires a consecutive (FP,LR) pair");
2036 // Windows unwind codes require consecutive registers if registers are
2037 // paired. Make the switch here, so that the code below will save (x,x+1)
2038 // and not (x+1,x).
2039 unsigned FrameIdxReg1 = RPI.FrameIdx;
2040 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2041 if (NeedsWinCFI && RPI.isPaired()) {
2042 std::swap(Reg1, Reg2);
2043 std::swap(FrameIdxReg1, FrameIdxReg2);
2045 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2046 if (!MRI.isReserved(Reg1))
2047 MBB.addLiveIn(Reg1);
2048 if (RPI.isPaired()) {
2049 if (!MRI.isReserved(Reg2))
2050 MBB.addLiveIn(Reg2);
2051 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2052 MIB.addMemOperand(MF.getMachineMemOperand(
2053 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2054 MachineMemOperand::MOStore, Size, Align));
2056 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2057 .addReg(AArch64::SP)
2058 .addImm(RPI.Offset) // [sp, #offset*scale],
2059 // where factor*scale is implicit
2060 .setMIFlag(MachineInstr::FrameSetup);
2061 MIB.addMemOperand(MF.getMachineMemOperand(
2062 MachinePointerInfo::getFixedStack(MF,FrameIdxReg1),
2063 MachineMemOperand::MOStore, Size, Align));
2064 if (NeedsWinCFI)
2065 InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2068 return true;
2071 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2072 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2073 std::vector<CalleeSavedInfo> &CSI,
2074 const TargetRegisterInfo *TRI) const {
2075 MachineFunction &MF = *MBB.getParent();
2076 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2077 DebugLoc DL;
2078 SmallVector<RegPairInfo, 8> RegPairs;
2079 bool NeedsWinCFI = needsWinCFI(MF);
2081 if (MI != MBB.end())
2082 DL = MI->getDebugLoc();
2084 bool NeedShadowCallStackProlog = false;
2085 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2086 NeedShadowCallStackProlog, hasFP(MF));
2088 auto EmitMI = [&](const RegPairInfo &RPI) {
2089 unsigned Reg1 = RPI.Reg1;
2090 unsigned Reg2 = RPI.Reg2;
2092 // Issue sequence of restores for cs regs. The last restore may be converted
2093 // to a post-increment load later by emitEpilogue if the callee-save stack
2094 // area allocation can't be combined with the local stack area allocation.
2095 // For example:
2096 // ldp fp, lr, [sp, #32] // addImm(+4)
2097 // ldp x20, x19, [sp, #16] // addImm(+2)
2098 // ldp x22, x21, [sp, #0] // addImm(+0)
2099 // Note: see comment in spillCalleeSavedRegisters()
2100 unsigned LdrOpc;
2101 unsigned Size, Align;
2102 switch (RPI.Type) {
2103 case RegPairInfo::GPR:
2104 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2105 Size = 8;
2106 Align = 8;
2107 break;
2108 case RegPairInfo::FPR64:
2109 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2110 Size = 8;
2111 Align = 8;
2112 break;
2113 case RegPairInfo::FPR128:
2114 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2115 Size = 16;
2116 Align = 16;
2117 break;
2119 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2120 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2121 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2122 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2123 dbgs() << ")\n");
2125 // Windows unwind codes require consecutive registers if registers are
2126 // paired. Make the switch here, so that the code below will save (x,x+1)
2127 // and not (x+1,x).
2128 unsigned FrameIdxReg1 = RPI.FrameIdx;
2129 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2130 if (NeedsWinCFI && RPI.isPaired()) {
2131 std::swap(Reg1, Reg2);
2132 std::swap(FrameIdxReg1, FrameIdxReg2);
2134 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
2135 if (RPI.isPaired()) {
2136 MIB.addReg(Reg2, getDefRegState(true));
2137 MIB.addMemOperand(MF.getMachineMemOperand(
2138 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2139 MachineMemOperand::MOLoad, Size, Align));
2141 MIB.addReg(Reg1, getDefRegState(true))
2142 .addReg(AArch64::SP)
2143 .addImm(RPI.Offset) // [sp, #offset*scale]
2144 // where factor*scale is implicit
2145 .setMIFlag(MachineInstr::FrameDestroy);
2146 MIB.addMemOperand(MF.getMachineMemOperand(
2147 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2148 MachineMemOperand::MOLoad, Size, Align));
2149 if (NeedsWinCFI)
2150 InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2152 if (ReverseCSRRestoreSeq)
2153 for (const RegPairInfo &RPI : reverse(RegPairs))
2154 EmitMI(RPI);
2155 else
2156 for (const RegPairInfo &RPI : RegPairs)
2157 EmitMI(RPI);
2159 if (NeedShadowCallStackProlog) {
2160 // Shadow call stack epilog: ldr x30, [x18, #-8]!
2161 BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre))
2162 .addReg(AArch64::X18, RegState::Define)
2163 .addReg(AArch64::LR, RegState::Define)
2164 .addReg(AArch64::X18)
2165 .addImm(-8)
2166 .setMIFlag(MachineInstr::FrameDestroy);
2169 return true;
2172 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2173 BitVector &SavedRegs,
2174 RegScavenger *RS) const {
2175 // All calls are tail calls in GHC calling conv, and functions have no
2176 // prologue/epilogue.
2177 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2178 return;
2180 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2181 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
2182 MF.getSubtarget().getRegisterInfo());
2183 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2184 unsigned UnspilledCSGPR = AArch64::NoRegister;
2185 unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2187 MachineFrameInfo &MFI = MF.getFrameInfo();
2188 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2190 unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
2191 ? RegInfo->getBaseRegister()
2192 : (unsigned)AArch64::NoRegister;
2194 unsigned ExtraCSSpill = 0;
2195 // Figure out which callee-saved registers to save/restore.
2196 for (unsigned i = 0; CSRegs[i]; ++i) {
2197 const unsigned Reg = CSRegs[i];
2199 // Add the base pointer register to SavedRegs if it is callee-save.
2200 if (Reg == BasePointerReg)
2201 SavedRegs.set(Reg);
2203 bool RegUsed = SavedRegs.test(Reg);
2204 unsigned PairedReg = CSRegs[i ^ 1];
2205 if (!RegUsed) {
2206 if (AArch64::GPR64RegClass.contains(Reg) &&
2207 !RegInfo->isReservedReg(MF, Reg)) {
2208 UnspilledCSGPR = Reg;
2209 UnspilledCSGPRPaired = PairedReg;
2211 continue;
2214 // MachO's compact unwind format relies on all registers being stored in
2215 // pairs.
2216 // FIXME: the usual format is actually better if unwinding isn't needed.
2217 if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister &&
2218 !SavedRegs.test(PairedReg)) {
2219 SavedRegs.set(PairedReg);
2220 if (AArch64::GPR64RegClass.contains(PairedReg) &&
2221 !RegInfo->isReservedReg(MF, PairedReg))
2222 ExtraCSSpill = PairedReg;
2226 // Calculates the callee saved stack size.
2227 unsigned CSStackSize = 0;
2228 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2229 const MachineRegisterInfo &MRI = MF.getRegInfo();
2230 for (unsigned Reg : SavedRegs.set_bits())
2231 CSStackSize += TRI->getRegSizeInBits(Reg, MRI) / 8;
2233 // Save number of saved regs, so we can easily update CSStackSize later.
2234 unsigned NumSavedRegs = SavedRegs.count();
2236 // The frame record needs to be created by saving the appropriate registers
2237 unsigned EstimatedStackSize = MFI.estimateStackSize(MF);
2238 if (hasFP(MF) ||
2239 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
2240 SavedRegs.set(AArch64::FP);
2241 SavedRegs.set(AArch64::LR);
2244 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
2245 for (unsigned Reg
2246 : SavedRegs.set_bits()) dbgs()
2247 << ' ' << printReg(Reg, RegInfo);
2248 dbgs() << "\n";);
2250 // If any callee-saved registers are used, the frame cannot be eliminated.
2251 unsigned MaxAlign = getStackAlignment();
2252 int64_t SVEStackSize =
2253 alignTo(determineSVEStackSize(MFI, MaxAlign), MaxAlign);
2254 assert(MaxAlign <= 16 && "Cannot align scalable vectors more than 16 bytes");
2255 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
2257 // The CSR spill slots have not been allocated yet, so estimateStackSize
2258 // won't include them.
2259 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
2261 // Conservatively always assume BigStack when there are SVE spills.
2262 bool BigStack = SVEStackSize ||
2263 (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
2264 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
2265 AFI->setHasStackFrame(true);
2267 // Estimate if we might need to scavenge a register at some point in order
2268 // to materialize a stack offset. If so, either spill one additional
2269 // callee-saved register or reserve a special spill slot to facilitate
2270 // register scavenging. If we already spilled an extra callee-saved register
2271 // above to keep the number of spills even, we don't need to do anything else
2272 // here.
2273 if (BigStack) {
2274 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
2275 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
2276 << " to get a scratch register.\n");
2277 SavedRegs.set(UnspilledCSGPR);
2278 // MachO's compact unwind format relies on all registers being stored in
2279 // pairs, so if we need to spill one extra for BigStack, then we need to
2280 // store the pair.
2281 if (produceCompactUnwindFrame(MF))
2282 SavedRegs.set(UnspilledCSGPRPaired);
2283 ExtraCSSpill = UnspilledCSGPR;
2286 // If we didn't find an extra callee-saved register to spill, create
2287 // an emergency spill slot.
2288 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
2289 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2290 const TargetRegisterClass &RC = AArch64::GPR64RegClass;
2291 unsigned Size = TRI->getSpillSize(RC);
2292 unsigned Align = TRI->getSpillAlignment(RC);
2293 int FI = MFI.CreateStackObject(Size, Align, false);
2294 RS->addScavengingFrameIndex(FI);
2295 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
2296 << " as the emergency spill slot.\n");
2300 // Adding the size of additional 64bit GPR saves.
2301 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
2302 unsigned AlignedCSStackSize = alignTo(CSStackSize, 16);
2303 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
2304 << EstimatedStackSize + AlignedCSStackSize
2305 << " bytes.\n");
2307 // Round up to register pair alignment to avoid additional SP adjustment
2308 // instructions.
2309 AFI->setCalleeSavedStackSize(AlignedCSStackSize);
2310 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
2313 bool AArch64FrameLowering::enableStackSlotScavenging(
2314 const MachineFunction &MF) const {
2315 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2316 return AFI->hasCalleeSaveStackFreeSpace();
2319 int64_t AArch64FrameLowering::determineSVEStackSize(MachineFrameInfo &MFI,
2320 unsigned &MaxAlign) const {
2321 // Process all fixed stack objects.
2322 int64_t Offset = 0;
2323 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
2324 if (MFI.getStackID(I) == TargetStackID::SVEVector) {
2325 int64_t FixedOffset = -MFI.getObjectOffset(I);
2326 if (FixedOffset > Offset)
2327 Offset = FixedOffset;
2330 // Note: We don't take allocatable stack objects into
2331 // account yet, because allocation for those is not yet
2332 // implemented.
2333 return Offset;
2336 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
2337 MachineFunction &MF, RegScavenger *RS) const {
2338 MachineFrameInfo &MFI = MF.getFrameInfo();
2340 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
2341 "Upwards growing stack unsupported");
2343 unsigned MaxAlign = getStackAlignment();
2344 int64_t SVEStackSize = determineSVEStackSize(MFI, MaxAlign);
2346 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2347 AFI->setStackSizeSVE(alignTo(SVEStackSize, MaxAlign));
2348 assert(MaxAlign <= 16 && "Cannot align scalable vectors more than 16 bytes");
2350 // If this function isn't doing Win64-style C++ EH, we don't need to do
2351 // anything.
2352 if (!MF.hasEHFunclets())
2353 return;
2354 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2355 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
2357 MachineBasicBlock &MBB = MF.front();
2358 auto MBBI = MBB.begin();
2359 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2360 ++MBBI;
2362 // Create an UnwindHelp object.
2363 int UnwindHelpFI =
2364 MFI.CreateStackObject(/*size*/8, /*alignment*/16, false);
2365 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
2366 // We need to store -2 into the UnwindHelp object at the start of the
2367 // function.
2368 DebugLoc DL;
2369 RS->enterBasicBlockEnd(MBB);
2370 RS->backward(std::prev(MBBI));
2371 unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
2372 assert(DstReg && "There must be a free register after frame setup");
2373 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
2374 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
2375 .addReg(DstReg, getKillRegState(true))
2376 .addFrameIndex(UnwindHelpFI)
2377 .addImm(0);
2380 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP before
2381 /// the update. This is easily retrieved as it is exactly the offset that is set
2382 /// in processFunctionBeforeFrameFinalized.
2383 int AArch64FrameLowering::getFrameIndexReferencePreferSP(
2384 const MachineFunction &MF, int FI, unsigned &FrameReg,
2385 bool IgnoreSPUpdates) const {
2386 const MachineFrameInfo &MFI = MF.getFrameInfo();
2387 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
2388 << MFI.getObjectOffset(FI) << "\n");
2389 FrameReg = AArch64::SP;
2390 return MFI.getObjectOffset(FI);
2393 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
2394 /// the parent's frame pointer
2395 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
2396 const MachineFunction &MF) const {
2397 return 0;
2400 /// Funclets only need to account for space for the callee saved registers,
2401 /// as the locals are accounted for in the parent's stack frame.
2402 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
2403 const MachineFunction &MF) const {
2404 // This is the size of the pushed CSRs.
2405 unsigned CSSize =
2406 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
2407 // This is the amount of stack a funclet needs to allocate.
2408 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
2409 getStackAlignment());