[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / AArch64 / AArch64InstructionSelector.cpp
blob961f38cad1e4aea11c1fa158766867b282765569
1 //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the InstructionSelector class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
14 #include "AArch64InstrInfo.h"
15 #include "AArch64MachineFunctionInfo.h"
16 #include "AArch64RegisterBankInfo.h"
17 #include "AArch64RegisterInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetMachine.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
24 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
25 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
26 #include "llvm/CodeGen/GlobalISel/Utils.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
38 #define DEBUG_TYPE "aarch64-isel"
40 using namespace llvm;
42 namespace {
44 #define GET_GLOBALISEL_PREDICATE_BITSET
45 #include "AArch64GenGlobalISel.inc"
46 #undef GET_GLOBALISEL_PREDICATE_BITSET
48 class AArch64InstructionSelector : public InstructionSelector {
49 public:
50 AArch64InstructionSelector(const AArch64TargetMachine &TM,
51 const AArch64Subtarget &STI,
52 const AArch64RegisterBankInfo &RBI);
54 bool select(MachineInstr &I) override;
55 static const char *getName() { return DEBUG_TYPE; }
57 void setupMF(MachineFunction &MF, GISelKnownBits &KB,
58 CodeGenCoverage &CoverageInfo) override {
59 InstructionSelector::setupMF(MF, KB, CoverageInfo);
61 // hasFnAttribute() is expensive to call on every BRCOND selection, so
62 // cache it here for each run of the selector.
63 ProduceNonFlagSettingCondBr =
64 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
67 private:
68 /// tblgen-erated 'select' implementation, used as the initial selector for
69 /// the patterns that don't require complex C++.
70 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
72 // A lowering phase that runs before any selection attempts.
74 void preISelLower(MachineInstr &I) const;
76 // An early selection function that runs before the selectImpl() call.
77 bool earlySelect(MachineInstr &I) const;
79 bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
81 /// Eliminate same-sized cross-bank copies into stores before selectImpl().
82 void contractCrossBankCopyIntoStore(MachineInstr &I,
83 MachineRegisterInfo &MRI) const;
85 bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
86 MachineRegisterInfo &MRI) const;
87 bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
88 MachineRegisterInfo &MRI) const;
90 bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
91 MachineRegisterInfo &MRI) const;
93 bool selectVectorASHR(MachineInstr &I, MachineRegisterInfo &MRI) const;
94 bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
96 // Helper to generate an equivalent of scalar_to_vector into a new register,
97 // returned via 'Dst'.
98 MachineInstr *emitScalarToVector(unsigned EltSize,
99 const TargetRegisterClass *DstRC,
100 Register Scalar,
101 MachineIRBuilder &MIRBuilder) const;
103 /// Emit a lane insert into \p DstReg, or a new vector register if None is
104 /// provided.
106 /// The lane inserted into is defined by \p LaneIdx. The vector source
107 /// register is given by \p SrcReg. The register containing the element is
108 /// given by \p EltReg.
109 MachineInstr *emitLaneInsert(Optional<Register> DstReg, Register SrcReg,
110 Register EltReg, unsigned LaneIdx,
111 const RegisterBank &RB,
112 MachineIRBuilder &MIRBuilder) const;
113 bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
114 bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
115 bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
116 bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
118 bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
119 bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
120 bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI) const;
121 bool selectSplitVectorUnmerge(MachineInstr &I,
122 MachineRegisterInfo &MRI) const;
123 bool selectIntrinsicWithSideEffects(MachineInstr &I,
124 MachineRegisterInfo &MRI) const;
125 bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI) const;
126 bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI) const;
127 bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const;
128 bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const;
129 bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI) const;
130 bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI) const;
131 bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI) const;
133 unsigned emitConstantPoolEntry(Constant *CPVal, MachineFunction &MF) const;
134 MachineInstr *emitLoadFromConstantPool(Constant *CPVal,
135 MachineIRBuilder &MIRBuilder) const;
137 // Emit a vector concat operation.
138 MachineInstr *emitVectorConcat(Optional<Register> Dst, Register Op1,
139 Register Op2,
140 MachineIRBuilder &MIRBuilder) const;
141 MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
142 MachineOperand &Predicate,
143 MachineIRBuilder &MIRBuilder) const;
144 MachineInstr *emitADD(Register DefReg, MachineOperand &LHS, MachineOperand &RHS,
145 MachineIRBuilder &MIRBuilder) const;
146 MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
147 MachineIRBuilder &MIRBuilder) const;
148 MachineInstr *emitTST(const Register &LHS, const Register &RHS,
149 MachineIRBuilder &MIRBuilder) const;
150 MachineInstr *emitExtractVectorElt(Optional<Register> DstReg,
151 const RegisterBank &DstRB, LLT ScalarTy,
152 Register VecReg, unsigned LaneIdx,
153 MachineIRBuilder &MIRBuilder) const;
155 /// Helper function for selecting G_FCONSTANT. If the G_FCONSTANT can be
156 /// materialized using a FMOV instruction, then update MI and return it.
157 /// Otherwise, do nothing and return a nullptr.
158 MachineInstr *emitFMovForFConstant(MachineInstr &MI,
159 MachineRegisterInfo &MRI) const;
161 /// Emit a CSet for a compare.
162 MachineInstr *emitCSetForICMP(Register DefReg, unsigned Pred,
163 MachineIRBuilder &MIRBuilder) const;
165 // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
166 // We use these manually instead of using the importer since it doesn't
167 // support SDNodeXForm.
168 ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
169 ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
170 ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
171 ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;
173 ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
174 ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
175 ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;
177 ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
178 unsigned Size) const;
180 ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
181 return selectAddrModeUnscaled(Root, 1);
183 ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
184 return selectAddrModeUnscaled(Root, 2);
186 ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
187 return selectAddrModeUnscaled(Root, 4);
189 ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
190 return selectAddrModeUnscaled(Root, 8);
192 ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
193 return selectAddrModeUnscaled(Root, 16);
196 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
197 unsigned Size) const;
198 template <int Width>
199 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
200 return selectAddrModeIndexed(Root, Width / 8);
203 bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
204 const MachineRegisterInfo &MRI) const;
205 ComplexRendererFns
206 selectAddrModeShiftedExtendXReg(MachineOperand &Root,
207 unsigned SizeInBytes) const;
208 ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
209 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
210 unsigned SizeInBytes) const;
211 template <int Width>
212 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
213 return selectAddrModeXRO(Root, Width / 8);
216 ComplexRendererFns selectShiftedRegister(MachineOperand &Root) const;
218 ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
219 return selectShiftedRegister(Root);
222 ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
223 // TODO: selectShiftedRegister should allow for rotates on logical shifts.
224 // For now, make them the same. The only difference between the two is that
225 // logical shifts are allowed to fold in rotates. Otherwise, these are
226 // functionally the same.
227 return selectShiftedRegister(Root);
230 /// Instructions that accept extend modifiers like UXTW expect the register
231 /// being extended to be a GPR32. Narrow ExtReg to a 32-bit register using a
232 /// subregister copy if necessary. Return either ExtReg, or the result of the
233 /// new copy.
234 Register narrowExtendRegIfNeeded(Register ExtReg,
235 MachineIRBuilder &MIB) const;
236 ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;
238 void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI) const;
239 void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I) const;
240 void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I) const;
242 // Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
243 void materializeLargeCMVal(MachineInstr &I, const Value *V,
244 unsigned OpFlags) const;
246 // Optimization methods.
247 bool tryOptVectorShuffle(MachineInstr &I) const;
248 bool tryOptVectorDup(MachineInstr &MI) const;
249 bool tryOptSelect(MachineInstr &MI) const;
250 MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
251 MachineOperand &Predicate,
252 MachineIRBuilder &MIRBuilder) const;
254 /// Return true if \p MI is a load or store of \p NumBytes bytes.
255 bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;
257 /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
258 /// register zeroed out. In other words, the result of MI has been explicitly
259 /// zero extended.
260 bool isDef32(const MachineInstr &MI) const;
262 const AArch64TargetMachine &TM;
263 const AArch64Subtarget &STI;
264 const AArch64InstrInfo &TII;
265 const AArch64RegisterInfo &TRI;
266 const AArch64RegisterBankInfo &RBI;
268 bool ProduceNonFlagSettingCondBr = false;
270 #define GET_GLOBALISEL_PREDICATES_DECL
271 #include "AArch64GenGlobalISel.inc"
272 #undef GET_GLOBALISEL_PREDICATES_DECL
274 // We declare the temporaries used by selectImpl() in the class to minimize the
275 // cost of constructing placeholder values.
276 #define GET_GLOBALISEL_TEMPORARIES_DECL
277 #include "AArch64GenGlobalISel.inc"
278 #undef GET_GLOBALISEL_TEMPORARIES_DECL
281 } // end anonymous namespace
283 #define GET_GLOBALISEL_IMPL
284 #include "AArch64GenGlobalISel.inc"
285 #undef GET_GLOBALISEL_IMPL
287 AArch64InstructionSelector::AArch64InstructionSelector(
288 const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
289 const AArch64RegisterBankInfo &RBI)
290 : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
291 TRI(*STI.getRegisterInfo()), RBI(RBI),
292 #define GET_GLOBALISEL_PREDICATES_INIT
293 #include "AArch64GenGlobalISel.inc"
294 #undef GET_GLOBALISEL_PREDICATES_INIT
295 #define GET_GLOBALISEL_TEMPORARIES_INIT
296 #include "AArch64GenGlobalISel.inc"
297 #undef GET_GLOBALISEL_TEMPORARIES_INIT
301 // FIXME: This should be target-independent, inferred from the types declared
302 // for each class in the bank.
303 static const TargetRegisterClass *
304 getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
305 const RegisterBankInfo &RBI,
306 bool GetAllRegSet = false) {
307 if (RB.getID() == AArch64::GPRRegBankID) {
308 if (Ty.getSizeInBits() <= 32)
309 return GetAllRegSet ? &AArch64::GPR32allRegClass
310 : &AArch64::GPR32RegClass;
311 if (Ty.getSizeInBits() == 64)
312 return GetAllRegSet ? &AArch64::GPR64allRegClass
313 : &AArch64::GPR64RegClass;
314 return nullptr;
317 if (RB.getID() == AArch64::FPRRegBankID) {
318 if (Ty.getSizeInBits() <= 16)
319 return &AArch64::FPR16RegClass;
320 if (Ty.getSizeInBits() == 32)
321 return &AArch64::FPR32RegClass;
322 if (Ty.getSizeInBits() == 64)
323 return &AArch64::FPR64RegClass;
324 if (Ty.getSizeInBits() == 128)
325 return &AArch64::FPR128RegClass;
326 return nullptr;
329 return nullptr;
332 /// Given a register bank, and size in bits, return the smallest register class
333 /// that can represent that combination.
334 static const TargetRegisterClass *
335 getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits,
336 bool GetAllRegSet = false) {
337 unsigned RegBankID = RB.getID();
339 if (RegBankID == AArch64::GPRRegBankID) {
340 if (SizeInBits <= 32)
341 return GetAllRegSet ? &AArch64::GPR32allRegClass
342 : &AArch64::GPR32RegClass;
343 if (SizeInBits == 64)
344 return GetAllRegSet ? &AArch64::GPR64allRegClass
345 : &AArch64::GPR64RegClass;
348 if (RegBankID == AArch64::FPRRegBankID) {
349 switch (SizeInBits) {
350 default:
351 return nullptr;
352 case 8:
353 return &AArch64::FPR8RegClass;
354 case 16:
355 return &AArch64::FPR16RegClass;
356 case 32:
357 return &AArch64::FPR32RegClass;
358 case 64:
359 return &AArch64::FPR64RegClass;
360 case 128:
361 return &AArch64::FPR128RegClass;
365 return nullptr;
368 /// Returns the correct subregister to use for a given register class.
369 static bool getSubRegForClass(const TargetRegisterClass *RC,
370 const TargetRegisterInfo &TRI, unsigned &SubReg) {
371 switch (TRI.getRegSizeInBits(*RC)) {
372 case 8:
373 SubReg = AArch64::bsub;
374 break;
375 case 16:
376 SubReg = AArch64::hsub;
377 break;
378 case 32:
379 if (RC != &AArch64::FPR32RegClass)
380 SubReg = AArch64::sub_32;
381 else
382 SubReg = AArch64::ssub;
383 break;
384 case 64:
385 SubReg = AArch64::dsub;
386 break;
387 default:
388 LLVM_DEBUG(
389 dbgs() << "Couldn't find appropriate subregister for register class.");
390 return false;
393 return true;
396 /// Check whether \p I is a currently unsupported binary operation:
397 /// - it has an unsized type
398 /// - an operand is not a vreg
399 /// - all operands are not in the same bank
400 /// These are checks that should someday live in the verifier, but right now,
401 /// these are mostly limitations of the aarch64 selector.
402 static bool unsupportedBinOp(const MachineInstr &I,
403 const AArch64RegisterBankInfo &RBI,
404 const MachineRegisterInfo &MRI,
405 const AArch64RegisterInfo &TRI) {
406 LLT Ty = MRI.getType(I.getOperand(0).getReg());
407 if (!Ty.isValid()) {
408 LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
409 return true;
412 const RegisterBank *PrevOpBank = nullptr;
413 for (auto &MO : I.operands()) {
414 // FIXME: Support non-register operands.
415 if (!MO.isReg()) {
416 LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
417 return true;
420 // FIXME: Can generic operations have physical registers operands? If
421 // so, this will need to be taught about that, and we'll need to get the
422 // bank out of the minimal class for the register.
423 // Either way, this needs to be documented (and possibly verified).
424 if (!Register::isVirtualRegister(MO.getReg())) {
425 LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
426 return true;
429 const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
430 if (!OpBank) {
431 LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
432 return true;
435 if (PrevOpBank && OpBank != PrevOpBank) {
436 LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
437 return true;
439 PrevOpBank = OpBank;
441 return false;
444 /// Select the AArch64 opcode for the basic binary operation \p GenericOpc
445 /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
446 /// and of size \p OpSize.
447 /// \returns \p GenericOpc if the combination is unsupported.
448 static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
449 unsigned OpSize) {
450 switch (RegBankID) {
451 case AArch64::GPRRegBankID:
452 if (OpSize == 32) {
453 switch (GenericOpc) {
454 case TargetOpcode::G_SHL:
455 return AArch64::LSLVWr;
456 case TargetOpcode::G_LSHR:
457 return AArch64::LSRVWr;
458 case TargetOpcode::G_ASHR:
459 return AArch64::ASRVWr;
460 default:
461 return GenericOpc;
463 } else if (OpSize == 64) {
464 switch (GenericOpc) {
465 case TargetOpcode::G_GEP:
466 return AArch64::ADDXrr;
467 case TargetOpcode::G_SHL:
468 return AArch64::LSLVXr;
469 case TargetOpcode::G_LSHR:
470 return AArch64::LSRVXr;
471 case TargetOpcode::G_ASHR:
472 return AArch64::ASRVXr;
473 default:
474 return GenericOpc;
477 break;
478 case AArch64::FPRRegBankID:
479 switch (OpSize) {
480 case 32:
481 switch (GenericOpc) {
482 case TargetOpcode::G_FADD:
483 return AArch64::FADDSrr;
484 case TargetOpcode::G_FSUB:
485 return AArch64::FSUBSrr;
486 case TargetOpcode::G_FMUL:
487 return AArch64::FMULSrr;
488 case TargetOpcode::G_FDIV:
489 return AArch64::FDIVSrr;
490 default:
491 return GenericOpc;
493 case 64:
494 switch (GenericOpc) {
495 case TargetOpcode::G_FADD:
496 return AArch64::FADDDrr;
497 case TargetOpcode::G_FSUB:
498 return AArch64::FSUBDrr;
499 case TargetOpcode::G_FMUL:
500 return AArch64::FMULDrr;
501 case TargetOpcode::G_FDIV:
502 return AArch64::FDIVDrr;
503 case TargetOpcode::G_OR:
504 return AArch64::ORRv8i8;
505 default:
506 return GenericOpc;
509 break;
511 return GenericOpc;
514 /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
515 /// appropriate for the (value) register bank \p RegBankID and of memory access
516 /// size \p OpSize. This returns the variant with the base+unsigned-immediate
517 /// addressing mode (e.g., LDRXui).
518 /// \returns \p GenericOpc if the combination is unsupported.
519 static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
520 unsigned OpSize) {
521 const bool isStore = GenericOpc == TargetOpcode::G_STORE;
522 switch (RegBankID) {
523 case AArch64::GPRRegBankID:
524 switch (OpSize) {
525 case 8:
526 return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
527 case 16:
528 return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
529 case 32:
530 return isStore ? AArch64::STRWui : AArch64::LDRWui;
531 case 64:
532 return isStore ? AArch64::STRXui : AArch64::LDRXui;
534 break;
535 case AArch64::FPRRegBankID:
536 switch (OpSize) {
537 case 8:
538 return isStore ? AArch64::STRBui : AArch64::LDRBui;
539 case 16:
540 return isStore ? AArch64::STRHui : AArch64::LDRHui;
541 case 32:
542 return isStore ? AArch64::STRSui : AArch64::LDRSui;
543 case 64:
544 return isStore ? AArch64::STRDui : AArch64::LDRDui;
546 break;
548 return GenericOpc;
551 #ifndef NDEBUG
552 /// Helper function that verifies that we have a valid copy at the end of
553 /// selectCopy. Verifies that the source and dest have the expected sizes and
554 /// then returns true.
555 static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank,
556 const MachineRegisterInfo &MRI,
557 const TargetRegisterInfo &TRI,
558 const RegisterBankInfo &RBI) {
559 const Register DstReg = I.getOperand(0).getReg();
560 const Register SrcReg = I.getOperand(1).getReg();
561 const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
562 const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
564 // Make sure the size of the source and dest line up.
565 assert(
566 (DstSize == SrcSize ||
567 // Copies are a mean to setup initial types, the number of
568 // bits may not exactly match.
569 (Register::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) ||
570 // Copies are a mean to copy bits around, as long as we are
571 // on the same register class, that's fine. Otherwise, that
572 // means we need some SUBREG_TO_REG or AND & co.
573 (((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) &&
574 "Copy with different width?!");
576 // Check the size of the destination.
577 assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) &&
578 "GPRs cannot get more than 64-bit width values");
580 return true;
582 #endif
584 /// Helper function for selectCopy. Inserts a subregister copy from
585 /// \p *From to \p *To, linking it up to \p I.
587 /// e.g, given I = "Dst = COPY SrcReg", we'll transform that into
589 /// CopyReg (From class) = COPY SrcReg
590 /// SubRegCopy (To class) = COPY CopyReg:SubReg
591 /// Dst = COPY SubRegCopy
592 static bool selectSubregisterCopy(MachineInstr &I, MachineRegisterInfo &MRI,
593 const RegisterBankInfo &RBI, Register SrcReg,
594 const TargetRegisterClass *From,
595 const TargetRegisterClass *To,
596 unsigned SubReg) {
597 MachineIRBuilder MIB(I);
598 auto Copy = MIB.buildCopy({From}, {SrcReg});
599 auto SubRegCopy = MIB.buildInstr(TargetOpcode::COPY, {To}, {})
600 .addReg(Copy.getReg(0), 0, SubReg);
601 MachineOperand &RegOp = I.getOperand(1);
602 RegOp.setReg(SubRegCopy.getReg(0));
604 // It's possible that the destination register won't be constrained. Make
605 // sure that happens.
606 if (!Register::isPhysicalRegister(I.getOperand(0).getReg()))
607 RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);
609 return true;
612 /// Helper function to get the source and destination register classes for a
613 /// copy. Returns a std::pair containing the source register class for the
614 /// copy, and the destination register class for the copy. If a register class
615 /// cannot be determined, then it will be nullptr.
616 static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
617 getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
618 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
619 const RegisterBankInfo &RBI) {
620 Register DstReg = I.getOperand(0).getReg();
621 Register SrcReg = I.getOperand(1).getReg();
622 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
623 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
624 unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
625 unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
627 // Special casing for cross-bank copies of s1s. We can technically represent
628 // a 1-bit value with any size of register. The minimum size for a GPR is 32
629 // bits. So, we need to put the FPR on 32 bits as well.
631 // FIXME: I'm not sure if this case holds true outside of copies. If it does,
632 // then we can pull it into the helpers that get the appropriate class for a
633 // register bank. Or make a new helper that carries along some constraint
634 // information.
635 if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1))
636 SrcSize = DstSize = 32;
638 return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
639 getMinClassForRegBank(DstRegBank, DstSize, true)};
642 static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
643 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
644 const RegisterBankInfo &RBI) {
646 Register DstReg = I.getOperand(0).getReg();
647 Register SrcReg = I.getOperand(1).getReg();
648 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
649 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
651 // Find the correct register classes for the source and destination registers.
652 const TargetRegisterClass *SrcRC;
653 const TargetRegisterClass *DstRC;
654 std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);
656 if (!DstRC) {
657 LLVM_DEBUG(dbgs() << "Unexpected dest size "
658 << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
659 return false;
662 // A couple helpers below, for making sure that the copy we produce is valid.
664 // Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want
665 // to verify that the src and dst are the same size, since that's handled by
666 // the SUBREG_TO_REG.
667 bool KnownValid = false;
669 // Returns true, or asserts if something we don't expect happens. Instead of
670 // returning true, we return isValidCopy() to ensure that we verify the
671 // result.
672 auto CheckCopy = [&]() {
673 // If we have a bitcast or something, we can't have physical registers.
674 assert((I.isCopy() ||
675 (!Register::isPhysicalRegister(I.getOperand(0).getReg()) &&
676 !Register::isPhysicalRegister(I.getOperand(1).getReg()))) &&
677 "No phys reg on generic operator!");
678 assert(KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI));
679 (void)KnownValid;
680 return true;
683 // Is this a copy? If so, then we may need to insert a subregister copy, or
684 // a SUBREG_TO_REG.
685 if (I.isCopy()) {
686 // Yes. Check if there's anything to fix up.
687 if (!SrcRC) {
688 LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
689 return false;
692 unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC);
693 unsigned DstSize = TRI.getRegSizeInBits(*DstRC);
695 // If we're doing a cross-bank copy on different-sized registers, we need
696 // to do a bit more work.
697 if (SrcSize > DstSize) {
698 // We're doing a cross-bank copy into a smaller register. We need a
699 // subregister copy. First, get a register class that's on the same bank
700 // as the destination, but the same size as the source.
701 const TargetRegisterClass *SubregRC =
702 getMinClassForRegBank(DstRegBank, SrcSize, true);
703 assert(SubregRC && "Didn't get a register class for subreg?");
705 // Get the appropriate subregister for the destination.
706 unsigned SubReg = 0;
707 if (!getSubRegForClass(DstRC, TRI, SubReg)) {
708 LLVM_DEBUG(dbgs() << "Couldn't determine subregister for copy.\n");
709 return false;
712 // Now, insert a subregister copy using the new register class.
713 selectSubregisterCopy(I, MRI, RBI, SrcReg, SubregRC, DstRC, SubReg);
714 return CheckCopy();
717 // Is this a cross-bank copy?
718 if (DstRegBank.getID() != SrcRegBank.getID()) {
719 if (DstRegBank.getID() == AArch64::GPRRegBankID && DstSize == 32 &&
720 SrcSize == 16) {
721 // Special case for FPR16 to GPR32.
722 // FIXME: This can probably be generalized like the above case.
723 Register PromoteReg =
724 MRI.createVirtualRegister(&AArch64::FPR32RegClass);
725 BuildMI(*I.getParent(), I, I.getDebugLoc(),
726 TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
727 .addImm(0)
728 .addUse(SrcReg)
729 .addImm(AArch64::hsub);
730 MachineOperand &RegOp = I.getOperand(1);
731 RegOp.setReg(PromoteReg);
733 // Promise that the copy is implicitly validated by the SUBREG_TO_REG.
734 KnownValid = true;
738 // If the destination is a physical register, then there's nothing to
739 // change, so we're done.
740 if (Register::isPhysicalRegister(DstReg))
741 return CheckCopy();
744 // No need to constrain SrcReg. It will get constrained when we hit another
745 // of its use or its defs. Copies do not have constraints.
746 if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
747 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
748 << " operand\n");
749 return false;
751 I.setDesc(TII.get(AArch64::COPY));
752 return CheckCopy();
755 static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
756 if (!DstTy.isScalar() || !SrcTy.isScalar())
757 return GenericOpc;
759 const unsigned DstSize = DstTy.getSizeInBits();
760 const unsigned SrcSize = SrcTy.getSizeInBits();
762 switch (DstSize) {
763 case 32:
764 switch (SrcSize) {
765 case 32:
766 switch (GenericOpc) {
767 case TargetOpcode::G_SITOFP:
768 return AArch64::SCVTFUWSri;
769 case TargetOpcode::G_UITOFP:
770 return AArch64::UCVTFUWSri;
771 case TargetOpcode::G_FPTOSI:
772 return AArch64::FCVTZSUWSr;
773 case TargetOpcode::G_FPTOUI:
774 return AArch64::FCVTZUUWSr;
775 default:
776 return GenericOpc;
778 case 64:
779 switch (GenericOpc) {
780 case TargetOpcode::G_SITOFP:
781 return AArch64::SCVTFUXSri;
782 case TargetOpcode::G_UITOFP:
783 return AArch64::UCVTFUXSri;
784 case TargetOpcode::G_FPTOSI:
785 return AArch64::FCVTZSUWDr;
786 case TargetOpcode::G_FPTOUI:
787 return AArch64::FCVTZUUWDr;
788 default:
789 return GenericOpc;
791 default:
792 return GenericOpc;
794 case 64:
795 switch (SrcSize) {
796 case 32:
797 switch (GenericOpc) {
798 case TargetOpcode::G_SITOFP:
799 return AArch64::SCVTFUWDri;
800 case TargetOpcode::G_UITOFP:
801 return AArch64::UCVTFUWDri;
802 case TargetOpcode::G_FPTOSI:
803 return AArch64::FCVTZSUXSr;
804 case TargetOpcode::G_FPTOUI:
805 return AArch64::FCVTZUUXSr;
806 default:
807 return GenericOpc;
809 case 64:
810 switch (GenericOpc) {
811 case TargetOpcode::G_SITOFP:
812 return AArch64::SCVTFUXDri;
813 case TargetOpcode::G_UITOFP:
814 return AArch64::UCVTFUXDri;
815 case TargetOpcode::G_FPTOSI:
816 return AArch64::FCVTZSUXDr;
817 case TargetOpcode::G_FPTOUI:
818 return AArch64::FCVTZUUXDr;
819 default:
820 return GenericOpc;
822 default:
823 return GenericOpc;
825 default:
826 return GenericOpc;
828 return GenericOpc;
831 static unsigned selectSelectOpc(MachineInstr &I, MachineRegisterInfo &MRI,
832 const RegisterBankInfo &RBI) {
833 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
834 bool IsFP = (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
835 AArch64::GPRRegBankID);
836 LLT Ty = MRI.getType(I.getOperand(0).getReg());
837 if (Ty == LLT::scalar(32))
838 return IsFP ? AArch64::FCSELSrrr : AArch64::CSELWr;
839 else if (Ty == LLT::scalar(64) || Ty == LLT::pointer(0, 64))
840 return IsFP ? AArch64::FCSELDrrr : AArch64::CSELXr;
841 return 0;
844 /// Helper function to select the opcode for a G_FCMP.
845 static unsigned selectFCMPOpc(MachineInstr &I, MachineRegisterInfo &MRI) {
846 // If this is a compare against +0.0, then we don't have to explicitly
847 // materialize a constant.
848 const ConstantFP *FPImm = getConstantFPVRegVal(I.getOperand(3).getReg(), MRI);
849 bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative());
850 unsigned OpSize = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
851 if (OpSize != 32 && OpSize != 64)
852 return 0;
853 unsigned CmpOpcTbl[2][2] = {{AArch64::FCMPSrr, AArch64::FCMPDrr},
854 {AArch64::FCMPSri, AArch64::FCMPDri}};
855 return CmpOpcTbl[ShouldUseImm][OpSize == 64];
858 /// Returns true if \p P is an unsigned integer comparison predicate.
859 static bool isUnsignedICMPPred(const CmpInst::Predicate P) {
860 switch (P) {
861 default:
862 return false;
863 case CmpInst::ICMP_UGT:
864 case CmpInst::ICMP_UGE:
865 case CmpInst::ICMP_ULT:
866 case CmpInst::ICMP_ULE:
867 return true;
871 static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
872 switch (P) {
873 default:
874 llvm_unreachable("Unknown condition code!");
875 case CmpInst::ICMP_NE:
876 return AArch64CC::NE;
877 case CmpInst::ICMP_EQ:
878 return AArch64CC::EQ;
879 case CmpInst::ICMP_SGT:
880 return AArch64CC::GT;
881 case CmpInst::ICMP_SGE:
882 return AArch64CC::GE;
883 case CmpInst::ICMP_SLT:
884 return AArch64CC::LT;
885 case CmpInst::ICMP_SLE:
886 return AArch64CC::LE;
887 case CmpInst::ICMP_UGT:
888 return AArch64CC::HI;
889 case CmpInst::ICMP_UGE:
890 return AArch64CC::HS;
891 case CmpInst::ICMP_ULT:
892 return AArch64CC::LO;
893 case CmpInst::ICMP_ULE:
894 return AArch64CC::LS;
898 static void changeFCMPPredToAArch64CC(CmpInst::Predicate P,
899 AArch64CC::CondCode &CondCode,
900 AArch64CC::CondCode &CondCode2) {
901 CondCode2 = AArch64CC::AL;
902 switch (P) {
903 default:
904 llvm_unreachable("Unknown FP condition!");
905 case CmpInst::FCMP_OEQ:
906 CondCode = AArch64CC::EQ;
907 break;
908 case CmpInst::FCMP_OGT:
909 CondCode = AArch64CC::GT;
910 break;
911 case CmpInst::FCMP_OGE:
912 CondCode = AArch64CC::GE;
913 break;
914 case CmpInst::FCMP_OLT:
915 CondCode = AArch64CC::MI;
916 break;
917 case CmpInst::FCMP_OLE:
918 CondCode = AArch64CC::LS;
919 break;
920 case CmpInst::FCMP_ONE:
921 CondCode = AArch64CC::MI;
922 CondCode2 = AArch64CC::GT;
923 break;
924 case CmpInst::FCMP_ORD:
925 CondCode = AArch64CC::VC;
926 break;
927 case CmpInst::FCMP_UNO:
928 CondCode = AArch64CC::VS;
929 break;
930 case CmpInst::FCMP_UEQ:
931 CondCode = AArch64CC::EQ;
932 CondCode2 = AArch64CC::VS;
933 break;
934 case CmpInst::FCMP_UGT:
935 CondCode = AArch64CC::HI;
936 break;
937 case CmpInst::FCMP_UGE:
938 CondCode = AArch64CC::PL;
939 break;
940 case CmpInst::FCMP_ULT:
941 CondCode = AArch64CC::LT;
942 break;
943 case CmpInst::FCMP_ULE:
944 CondCode = AArch64CC::LE;
945 break;
946 case CmpInst::FCMP_UNE:
947 CondCode = AArch64CC::NE;
948 break;
952 bool AArch64InstructionSelector::selectCompareBranch(
953 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
955 const Register CondReg = I.getOperand(0).getReg();
956 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
957 MachineInstr *CCMI = MRI.getVRegDef(CondReg);
958 if (CCMI->getOpcode() == TargetOpcode::G_TRUNC)
959 CCMI = MRI.getVRegDef(CCMI->getOperand(1).getReg());
960 if (CCMI->getOpcode() != TargetOpcode::G_ICMP)
961 return false;
963 Register LHS = CCMI->getOperand(2).getReg();
964 Register RHS = CCMI->getOperand(3).getReg();
965 auto VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
966 if (!VRegAndVal)
967 std::swap(RHS, LHS);
969 VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
970 if (!VRegAndVal || VRegAndVal->Value != 0) {
971 MachineIRBuilder MIB(I);
972 // If we can't select a CBZ then emit a cmp + Bcc.
973 if (!emitIntegerCompare(CCMI->getOperand(2), CCMI->getOperand(3),
974 CCMI->getOperand(1), MIB))
975 return false;
976 const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(
977 (CmpInst::Predicate)CCMI->getOperand(1).getPredicate());
978 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB);
979 I.eraseFromParent();
980 return true;
983 const RegisterBank &RB = *RBI.getRegBank(LHS, MRI, TRI);
984 if (RB.getID() != AArch64::GPRRegBankID)
985 return false;
987 const auto Pred = (CmpInst::Predicate)CCMI->getOperand(1).getPredicate();
988 if (Pred != CmpInst::ICMP_NE && Pred != CmpInst::ICMP_EQ)
989 return false;
991 const unsigned CmpWidth = MRI.getType(LHS).getSizeInBits();
992 unsigned CBOpc = 0;
993 if (CmpWidth <= 32)
994 CBOpc = (Pred == CmpInst::ICMP_EQ ? AArch64::CBZW : AArch64::CBNZW);
995 else if (CmpWidth == 64)
996 CBOpc = (Pred == CmpInst::ICMP_EQ ? AArch64::CBZX : AArch64::CBNZX);
997 else
998 return false;
1000 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CBOpc))
1001 .addUse(LHS)
1002 .addMBB(DestMBB)
1003 .constrainAllUses(TII, TRI, RBI);
1005 I.eraseFromParent();
1006 return true;
1009 bool AArch64InstructionSelector::selectVectorSHL(
1010 MachineInstr &I, MachineRegisterInfo &MRI) const {
1011 assert(I.getOpcode() == TargetOpcode::G_SHL);
1012 Register DstReg = I.getOperand(0).getReg();
1013 const LLT Ty = MRI.getType(DstReg);
1014 Register Src1Reg = I.getOperand(1).getReg();
1015 Register Src2Reg = I.getOperand(2).getReg();
1017 if (!Ty.isVector())
1018 return false;
1020 unsigned Opc = 0;
1021 if (Ty == LLT::vector(2, 64)) {
1022 Opc = AArch64::USHLv2i64;
1023 } else if (Ty == LLT::vector(4, 32)) {
1024 Opc = AArch64::USHLv4i32;
1025 } else if (Ty == LLT::vector(2, 32)) {
1026 Opc = AArch64::USHLv2i32;
1027 } else {
1028 LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
1029 return false;
1032 MachineIRBuilder MIB(I);
1033 auto UShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Src2Reg});
1034 constrainSelectedInstRegOperands(*UShl, TII, TRI, RBI);
1035 I.eraseFromParent();
1036 return true;
1039 bool AArch64InstructionSelector::selectVectorASHR(
1040 MachineInstr &I, MachineRegisterInfo &MRI) const {
1041 assert(I.getOpcode() == TargetOpcode::G_ASHR);
1042 Register DstReg = I.getOperand(0).getReg();
1043 const LLT Ty = MRI.getType(DstReg);
1044 Register Src1Reg = I.getOperand(1).getReg();
1045 Register Src2Reg = I.getOperand(2).getReg();
1047 if (!Ty.isVector())
1048 return false;
1050 // There is not a shift right register instruction, but the shift left
1051 // register instruction takes a signed value, where negative numbers specify a
1052 // right shift.
1054 unsigned Opc = 0;
1055 unsigned NegOpc = 0;
1056 const TargetRegisterClass *RC = nullptr;
1057 if (Ty == LLT::vector(2, 64)) {
1058 Opc = AArch64::SSHLv2i64;
1059 NegOpc = AArch64::NEGv2i64;
1060 RC = &AArch64::FPR128RegClass;
1061 } else if (Ty == LLT::vector(4, 32)) {
1062 Opc = AArch64::SSHLv4i32;
1063 NegOpc = AArch64::NEGv4i32;
1064 RC = &AArch64::FPR128RegClass;
1065 } else if (Ty == LLT::vector(2, 32)) {
1066 Opc = AArch64::SSHLv2i32;
1067 NegOpc = AArch64::NEGv2i32;
1068 RC = &AArch64::FPR64RegClass;
1069 } else {
1070 LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
1071 return false;
1074 MachineIRBuilder MIB(I);
1075 auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
1076 constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
1077 auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
1078 constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
1079 I.eraseFromParent();
1080 return true;
1083 bool AArch64InstructionSelector::selectVaStartAAPCS(
1084 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1085 return false;
1088 bool AArch64InstructionSelector::selectVaStartDarwin(
1089 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1090 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1091 Register ListReg = I.getOperand(0).getReg();
1093 Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1095 auto MIB =
1096 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
1097 .addDef(ArgsAddrReg)
1098 .addFrameIndex(FuncInfo->getVarArgsStackIndex())
1099 .addImm(0)
1100 .addImm(0);
1102 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
1104 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
1105 .addUse(ArgsAddrReg)
1106 .addUse(ListReg)
1107 .addImm(0)
1108 .addMemOperand(*I.memoperands_begin());
1110 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
1111 I.eraseFromParent();
1112 return true;
1115 void AArch64InstructionSelector::materializeLargeCMVal(
1116 MachineInstr &I, const Value *V, unsigned OpFlags) const {
1117 MachineBasicBlock &MBB = *I.getParent();
1118 MachineFunction &MF = *MBB.getParent();
1119 MachineRegisterInfo &MRI = MF.getRegInfo();
1120 MachineIRBuilder MIB(I);
1122 auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
1123 MovZ->addOperand(MF, I.getOperand(1));
1124 MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
1125 AArch64II::MO_NC);
1126 MovZ->addOperand(MF, MachineOperand::CreateImm(0));
1127 constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);
1129 auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
1130 Register ForceDstReg) {
1131 Register DstReg = ForceDstReg
1132 ? ForceDstReg
1133 : MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1134 auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
1135 if (auto *GV = dyn_cast<GlobalValue>(V)) {
1136 MovI->addOperand(MF, MachineOperand::CreateGA(
1137 GV, MovZ->getOperand(1).getOffset(), Flags));
1138 } else {
1139 MovI->addOperand(
1140 MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
1141 MovZ->getOperand(1).getOffset(), Flags));
1143 MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
1144 constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
1145 return DstReg;
1147 Register DstReg = BuildMovK(MovZ.getReg(0),
1148 AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
1149 DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
1150 BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
1151 return;
1154 void AArch64InstructionSelector::preISelLower(MachineInstr &I) const {
1155 MachineBasicBlock &MBB = *I.getParent();
1156 MachineFunction &MF = *MBB.getParent();
1157 MachineRegisterInfo &MRI = MF.getRegInfo();
1159 switch (I.getOpcode()) {
1160 case TargetOpcode::G_SHL:
1161 case TargetOpcode::G_ASHR:
1162 case TargetOpcode::G_LSHR: {
1163 // These shifts are legalized to have 64 bit shift amounts because we want
1164 // to take advantage of the existing imported selection patterns that assume
1165 // the immediates are s64s. However, if the shifted type is 32 bits and for
1166 // some reason we receive input GMIR that has an s64 shift amount that's not
1167 // a G_CONSTANT, insert a truncate so that we can still select the s32
1168 // register-register variant.
1169 Register SrcReg = I.getOperand(1).getReg();
1170 Register ShiftReg = I.getOperand(2).getReg();
1171 const LLT ShiftTy = MRI.getType(ShiftReg);
1172 const LLT SrcTy = MRI.getType(SrcReg);
1173 if (SrcTy.isVector())
1174 return;
1175 assert(!ShiftTy.isVector() && "unexpected vector shift ty");
1176 if (SrcTy.getSizeInBits() != 32 || ShiftTy.getSizeInBits() != 64)
1177 return;
1178 auto *AmtMI = MRI.getVRegDef(ShiftReg);
1179 assert(AmtMI && "could not find a vreg definition for shift amount");
1180 if (AmtMI->getOpcode() != TargetOpcode::G_CONSTANT) {
1181 // Insert a subregister copy to implement a 64->32 trunc
1182 MachineIRBuilder MIB(I);
1183 auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
1184 .addReg(ShiftReg, 0, AArch64::sub_32);
1185 MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
1186 I.getOperand(2).setReg(Trunc.getReg(0));
1188 return;
1190 case TargetOpcode::G_STORE:
1191 contractCrossBankCopyIntoStore(I, MRI);
1192 return;
1193 default:
1194 return;
1198 bool AArch64InstructionSelector::earlySelectSHL(
1199 MachineInstr &I, MachineRegisterInfo &MRI) const {
1200 // We try to match the immediate variant of LSL, which is actually an alias
1201 // for a special case of UBFM. Otherwise, we fall back to the imported
1202 // selector which will match the register variant.
1203 assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
1204 const auto &MO = I.getOperand(2);
1205 auto VRegAndVal = getConstantVRegVal(MO.getReg(), MRI);
1206 if (!VRegAndVal)
1207 return false;
1209 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
1210 if (DstTy.isVector())
1211 return false;
1212 bool Is64Bit = DstTy.getSizeInBits() == 64;
1213 auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
1214 auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
1215 MachineIRBuilder MIB(I);
1217 if (!Imm1Fn || !Imm2Fn)
1218 return false;
1220 auto NewI =
1221 MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
1222 {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});
1224 for (auto &RenderFn : *Imm1Fn)
1225 RenderFn(NewI);
1226 for (auto &RenderFn : *Imm2Fn)
1227 RenderFn(NewI);
1229 I.eraseFromParent();
1230 return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
1233 void AArch64InstructionSelector::contractCrossBankCopyIntoStore(
1234 MachineInstr &I, MachineRegisterInfo &MRI) const {
1235 assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
1236 // If we're storing a scalar, it doesn't matter what register bank that
1237 // scalar is on. All that matters is the size.
1239 // So, if we see something like this (with a 32-bit scalar as an example):
1241 // %x:gpr(s32) = ... something ...
1242 // %y:fpr(s32) = COPY %x:gpr(s32)
1243 // G_STORE %y:fpr(s32)
1245 // We can fix this up into something like this:
1247 // G_STORE %x:gpr(s32)
1249 // And then continue the selection process normally.
1250 MachineInstr *Def = getDefIgnoringCopies(I.getOperand(0).getReg(), MRI);
1251 if (!Def)
1252 return;
1253 Register DefDstReg = Def->getOperand(0).getReg();
1254 LLT DefDstTy = MRI.getType(DefDstReg);
1255 Register StoreSrcReg = I.getOperand(0).getReg();
1256 LLT StoreSrcTy = MRI.getType(StoreSrcReg);
1258 // If we get something strange like a physical register, then we shouldn't
1259 // go any further.
1260 if (!DefDstTy.isValid())
1261 return;
1263 // Are the source and dst types the same size?
1264 if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
1265 return;
1267 if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
1268 RBI.getRegBank(DefDstReg, MRI, TRI))
1269 return;
1271 // We have a cross-bank copy, which is entering a store. Let's fold it.
1272 I.getOperand(0).setReg(DefDstReg);
1275 bool AArch64InstructionSelector::earlySelect(MachineInstr &I) const {
1276 assert(I.getParent() && "Instruction should be in a basic block!");
1277 assert(I.getParent()->getParent() && "Instruction should be in a function!");
1279 MachineBasicBlock &MBB = *I.getParent();
1280 MachineFunction &MF = *MBB.getParent();
1281 MachineRegisterInfo &MRI = MF.getRegInfo();
1283 switch (I.getOpcode()) {
1284 case TargetOpcode::G_SHL:
1285 return earlySelectSHL(I, MRI);
1286 case TargetOpcode::G_CONSTANT: {
1287 bool IsZero = false;
1288 if (I.getOperand(1).isCImm())
1289 IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0;
1290 else if (I.getOperand(1).isImm())
1291 IsZero = I.getOperand(1).getImm() == 0;
1293 if (!IsZero)
1294 return false;
1296 Register DefReg = I.getOperand(0).getReg();
1297 LLT Ty = MRI.getType(DefReg);
1298 if (Ty != LLT::scalar(64) && Ty != LLT::scalar(32))
1299 return false;
1301 if (Ty == LLT::scalar(64)) {
1302 I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
1303 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
1304 } else {
1305 I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
1306 RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
1308 I.setDesc(TII.get(TargetOpcode::COPY));
1309 return true;
1311 default:
1312 return false;
1316 bool AArch64InstructionSelector::select(MachineInstr &I) {
1317 assert(I.getParent() && "Instruction should be in a basic block!");
1318 assert(I.getParent()->getParent() && "Instruction should be in a function!");
1320 MachineBasicBlock &MBB = *I.getParent();
1321 MachineFunction &MF = *MBB.getParent();
1322 MachineRegisterInfo &MRI = MF.getRegInfo();
1324 unsigned Opcode = I.getOpcode();
1325 // G_PHI requires same handling as PHI
1326 if (!isPreISelGenericOpcode(Opcode) || Opcode == TargetOpcode::G_PHI) {
1327 // Certain non-generic instructions also need some special handling.
1329 if (Opcode == TargetOpcode::LOAD_STACK_GUARD)
1330 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1332 if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
1333 const Register DefReg = I.getOperand(0).getReg();
1334 const LLT DefTy = MRI.getType(DefReg);
1336 const RegClassOrRegBank &RegClassOrBank =
1337 MRI.getRegClassOrRegBank(DefReg);
1339 const TargetRegisterClass *DefRC
1340 = RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
1341 if (!DefRC) {
1342 if (!DefTy.isValid()) {
1343 LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
1344 return false;
1346 const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
1347 DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI);
1348 if (!DefRC) {
1349 LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
1350 return false;
1354 I.setDesc(TII.get(TargetOpcode::PHI));
1356 return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
1359 if (I.isCopy())
1360 return selectCopy(I, TII, MRI, TRI, RBI);
1362 return true;
1366 if (I.getNumOperands() != I.getNumExplicitOperands()) {
1367 LLVM_DEBUG(
1368 dbgs() << "Generic instruction has unexpected implicit operands\n");
1369 return false;
1372 // Try to do some lowering before we start instruction selecting. These
1373 // lowerings are purely transformations on the input G_MIR and so selection
1374 // must continue after any modification of the instruction.
1375 preISelLower(I);
1377 // There may be patterns where the importer can't deal with them optimally,
1378 // but does select it to a suboptimal sequence so our custom C++ selection
1379 // code later never has a chance to work on it. Therefore, we have an early
1380 // selection attempt here to give priority to certain selection routines
1381 // over the imported ones.
1382 if (earlySelect(I))
1383 return true;
1385 if (selectImpl(I, *CoverageInfo))
1386 return true;
1388 LLT Ty =
1389 I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};
1391 MachineIRBuilder MIB(I);
1393 switch (Opcode) {
1394 case TargetOpcode::G_BRCOND: {
1395 if (Ty.getSizeInBits() > 32) {
1396 // We shouldn't need this on AArch64, but it would be implemented as an
1397 // EXTRACT_SUBREG followed by a TBNZW because TBNZX has no encoding if the
1398 // bit being tested is < 32.
1399 LLVM_DEBUG(dbgs() << "G_BRCOND has type: " << Ty
1400 << ", expected at most 32-bits");
1401 return false;
1404 const Register CondReg = I.getOperand(0).getReg();
1405 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1407 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1408 // instructions will not be produced, as they are conditional branch
1409 // instructions that do not set flags.
1410 bool ProduceNonFlagSettingCondBr =
1411 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
1412 if (ProduceNonFlagSettingCondBr && selectCompareBranch(I, MF, MRI))
1413 return true;
1415 if (ProduceNonFlagSettingCondBr) {
1416 auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::TBNZW))
1417 .addUse(CondReg)
1418 .addImm(/*bit offset=*/0)
1419 .addMBB(DestMBB);
1421 I.eraseFromParent();
1422 return constrainSelectedInstRegOperands(*MIB.getInstr(), TII, TRI, RBI);
1423 } else {
1424 auto CMP = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri))
1425 .addDef(AArch64::WZR)
1426 .addUse(CondReg)
1427 .addImm(1);
1428 constrainSelectedInstRegOperands(*CMP.getInstr(), TII, TRI, RBI);
1429 auto Bcc =
1430 BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::Bcc))
1431 .addImm(AArch64CC::EQ)
1432 .addMBB(DestMBB);
1434 I.eraseFromParent();
1435 return constrainSelectedInstRegOperands(*Bcc.getInstr(), TII, TRI, RBI);
1439 case TargetOpcode::G_BRINDIRECT: {
1440 I.setDesc(TII.get(AArch64::BR));
1441 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1444 case TargetOpcode::G_BRJT:
1445 return selectBrJT(I, MRI);
1447 case TargetOpcode::G_BSWAP: {
1448 // Handle vector types for G_BSWAP directly.
1449 Register DstReg = I.getOperand(0).getReg();
1450 LLT DstTy = MRI.getType(DstReg);
1452 // We should only get vector types here; everything else is handled by the
1453 // importer right now.
1454 if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) {
1455 LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n");
1456 return false;
1459 // Only handle 4 and 2 element vectors for now.
1460 // TODO: 16-bit elements.
1461 unsigned NumElts = DstTy.getNumElements();
1462 if (NumElts != 4 && NumElts != 2) {
1463 LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n");
1464 return false;
1467 // Choose the correct opcode for the supported types. Right now, that's
1468 // v2s32, v4s32, and v2s64.
1469 unsigned Opc = 0;
1470 unsigned EltSize = DstTy.getElementType().getSizeInBits();
1471 if (EltSize == 32)
1472 Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8
1473 : AArch64::REV32v16i8;
1474 else if (EltSize == 64)
1475 Opc = AArch64::REV64v16i8;
1477 // We should always get something by the time we get here...
1478 assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?");
1480 I.setDesc(TII.get(Opc));
1481 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1484 case TargetOpcode::G_FCONSTANT:
1485 case TargetOpcode::G_CONSTANT: {
1486 const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;
1488 const LLT s8 = LLT::scalar(8);
1489 const LLT s16 = LLT::scalar(16);
1490 const LLT s32 = LLT::scalar(32);
1491 const LLT s64 = LLT::scalar(64);
1492 const LLT p0 = LLT::pointer(0, 64);
1494 const Register DefReg = I.getOperand(0).getReg();
1495 const LLT DefTy = MRI.getType(DefReg);
1496 const unsigned DefSize = DefTy.getSizeInBits();
1497 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
1499 // FIXME: Redundant check, but even less readable when factored out.
1500 if (isFP) {
1501 if (Ty != s32 && Ty != s64) {
1502 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
1503 << " constant, expected: " << s32 << " or " << s64
1504 << '\n');
1505 return false;
1508 if (RB.getID() != AArch64::FPRRegBankID) {
1509 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
1510 << " constant on bank: " << RB
1511 << ", expected: FPR\n");
1512 return false;
1515 // The case when we have 0.0 is covered by tablegen. Reject it here so we
1516 // can be sure tablegen works correctly and isn't rescued by this code.
1517 if (I.getOperand(1).getFPImm()->getValueAPF().isExactlyValue(0.0))
1518 return false;
1519 } else {
1520 // s32 and s64 are covered by tablegen.
1521 if (Ty != p0 && Ty != s8 && Ty != s16) {
1522 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
1523 << " constant, expected: " << s32 << ", " << s64
1524 << ", or " << p0 << '\n');
1525 return false;
1528 if (RB.getID() != AArch64::GPRRegBankID) {
1529 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
1530 << " constant on bank: " << RB
1531 << ", expected: GPR\n");
1532 return false;
1536 // We allow G_CONSTANT of types < 32b.
1537 const unsigned MovOpc =
1538 DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;
1540 if (isFP) {
1541 // Either emit a FMOV, or emit a copy to emit a normal mov.
1542 const TargetRegisterClass &GPRRC =
1543 DefSize == 32 ? AArch64::GPR32RegClass : AArch64::GPR64RegClass;
1544 const TargetRegisterClass &FPRRC =
1545 DefSize == 32 ? AArch64::FPR32RegClass : AArch64::FPR64RegClass;
1547 // Can we use a FMOV instruction to represent the immediate?
1548 if (emitFMovForFConstant(I, MRI))
1549 return true;
1551 // Nope. Emit a copy and use a normal mov instead.
1552 const Register DefGPRReg = MRI.createVirtualRegister(&GPRRC);
1553 MachineOperand &RegOp = I.getOperand(0);
1554 RegOp.setReg(DefGPRReg);
1555 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
1556 MIB.buildCopy({DefReg}, {DefGPRReg});
1558 if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
1559 LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
1560 return false;
1563 MachineOperand &ImmOp = I.getOperand(1);
1564 // FIXME: Is going through int64_t always correct?
1565 ImmOp.ChangeToImmediate(
1566 ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
1567 } else if (I.getOperand(1).isCImm()) {
1568 uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
1569 I.getOperand(1).ChangeToImmediate(Val);
1570 } else if (I.getOperand(1).isImm()) {
1571 uint64_t Val = I.getOperand(1).getImm();
1572 I.getOperand(1).ChangeToImmediate(Val);
1575 I.setDesc(TII.get(MovOpc));
1576 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1577 return true;
1579 case TargetOpcode::G_EXTRACT: {
1580 Register DstReg = I.getOperand(0).getReg();
1581 Register SrcReg = I.getOperand(1).getReg();
1582 LLT SrcTy = MRI.getType(SrcReg);
1583 LLT DstTy = MRI.getType(DstReg);
1584 (void)DstTy;
1585 unsigned SrcSize = SrcTy.getSizeInBits();
1587 if (SrcTy.getSizeInBits() > 64) {
1588 // This should be an extract of an s128, which is like a vector extract.
1589 if (SrcTy.getSizeInBits() != 128)
1590 return false;
1591 // Only support extracting 64 bits from an s128 at the moment.
1592 if (DstTy.getSizeInBits() != 64)
1593 return false;
1595 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
1596 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
1597 // Check we have the right regbank always.
1598 assert(SrcRB.getID() == AArch64::FPRRegBankID &&
1599 DstRB.getID() == AArch64::FPRRegBankID &&
1600 "Wrong extract regbank!");
1601 (void)SrcRB;
1603 // Emit the same code as a vector extract.
1604 // Offset must be a multiple of 64.
1605 unsigned Offset = I.getOperand(2).getImm();
1606 if (Offset % 64 != 0)
1607 return false;
1608 unsigned LaneIdx = Offset / 64;
1609 MachineIRBuilder MIB(I);
1610 MachineInstr *Extract = emitExtractVectorElt(
1611 DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
1612 if (!Extract)
1613 return false;
1614 I.eraseFromParent();
1615 return true;
1618 I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
1619 MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
1620 Ty.getSizeInBits() - 1);
1622 if (SrcSize < 64) {
1623 assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
1624 "unexpected G_EXTRACT types");
1625 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1628 DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
1629 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
1630 MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
1631 .addReg(DstReg, 0, AArch64::sub_32);
1632 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
1633 AArch64::GPR32RegClass, MRI);
1634 I.getOperand(0).setReg(DstReg);
1636 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1639 case TargetOpcode::G_INSERT: {
1640 LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
1641 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
1642 unsigned DstSize = DstTy.getSizeInBits();
1643 // Larger inserts are vectors, same-size ones should be something else by
1644 // now (split up or turned into COPYs).
1645 if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
1646 return false;
1648 I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
1649 unsigned LSB = I.getOperand(3).getImm();
1650 unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
1651 I.getOperand(3).setImm((DstSize - LSB) % DstSize);
1652 MachineInstrBuilder(MF, I).addImm(Width - 1);
1654 if (DstSize < 64) {
1655 assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
1656 "unexpected G_INSERT types");
1657 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1660 Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
1661 BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
1662 TII.get(AArch64::SUBREG_TO_REG))
1663 .addDef(SrcReg)
1664 .addImm(0)
1665 .addUse(I.getOperand(2).getReg())
1666 .addImm(AArch64::sub_32);
1667 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
1668 AArch64::GPR32RegClass, MRI);
1669 I.getOperand(2).setReg(SrcReg);
1671 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1673 case TargetOpcode::G_FRAME_INDEX: {
1674 // allocas and G_FRAME_INDEX are only supported in addrspace(0).
1675 if (Ty != LLT::pointer(0, 64)) {
1676 LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
1677 << ", expected: " << LLT::pointer(0, 64) << '\n');
1678 return false;
1680 I.setDesc(TII.get(AArch64::ADDXri));
1682 // MOs for a #0 shifted immediate.
1683 I.addOperand(MachineOperand::CreateImm(0));
1684 I.addOperand(MachineOperand::CreateImm(0));
1686 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1689 case TargetOpcode::G_GLOBAL_VALUE: {
1690 auto GV = I.getOperand(1).getGlobal();
1691 if (GV->isThreadLocal())
1692 return selectTLSGlobalValue(I, MRI);
1694 unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
1695 if (OpFlags & AArch64II::MO_GOT) {
1696 I.setDesc(TII.get(AArch64::LOADgot));
1697 I.getOperand(1).setTargetFlags(OpFlags);
1698 } else if (TM.getCodeModel() == CodeModel::Large) {
1699 // Materialize the global using movz/movk instructions.
1700 materializeLargeCMVal(I, GV, OpFlags);
1701 I.eraseFromParent();
1702 return true;
1703 } else if (TM.getCodeModel() == CodeModel::Tiny) {
1704 I.setDesc(TII.get(AArch64::ADR));
1705 I.getOperand(1).setTargetFlags(OpFlags);
1706 } else {
1707 I.setDesc(TII.get(AArch64::MOVaddr));
1708 I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
1709 MachineInstrBuilder MIB(MF, I);
1710 MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
1711 OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
1713 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1716 case TargetOpcode::G_ZEXTLOAD:
1717 case TargetOpcode::G_LOAD:
1718 case TargetOpcode::G_STORE: {
1719 bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
1720 MachineIRBuilder MIB(I);
1722 LLT PtrTy = MRI.getType(I.getOperand(1).getReg());
1724 if (PtrTy != LLT::pointer(0, 64)) {
1725 LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
1726 << ", expected: " << LLT::pointer(0, 64) << '\n');
1727 return false;
1730 auto &MemOp = **I.memoperands_begin();
1731 if (MemOp.isAtomic()) {
1732 // For now we just support s8 acquire loads to be able to compile stack
1733 // protector code.
1734 if (MemOp.getOrdering() == AtomicOrdering::Acquire &&
1735 MemOp.getSize() == 1) {
1736 I.setDesc(TII.get(AArch64::LDARB));
1737 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1739 LLVM_DEBUG(dbgs() << "Atomic load/store not fully supported yet\n");
1740 return false;
1742 unsigned MemSizeInBits = MemOp.getSize() * 8;
1744 const Register PtrReg = I.getOperand(1).getReg();
1745 #ifndef NDEBUG
1746 const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
1747 // Sanity-check the pointer register.
1748 assert(PtrRB.getID() == AArch64::GPRRegBankID &&
1749 "Load/Store pointer operand isn't a GPR");
1750 assert(MRI.getType(PtrReg).isPointer() &&
1751 "Load/Store pointer operand isn't a pointer");
1752 #endif
1754 const Register ValReg = I.getOperand(0).getReg();
1755 const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);
1757 const unsigned NewOpc =
1758 selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits);
1759 if (NewOpc == I.getOpcode())
1760 return false;
1762 I.setDesc(TII.get(NewOpc));
1764 uint64_t Offset = 0;
1765 auto *PtrMI = MRI.getVRegDef(PtrReg);
1767 // Try to fold a GEP into our unsigned immediate addressing mode.
1768 if (PtrMI->getOpcode() == TargetOpcode::G_GEP) {
1769 if (auto COff = getConstantVRegVal(PtrMI->getOperand(2).getReg(), MRI)) {
1770 int64_t Imm = *COff;
1771 const unsigned Size = MemSizeInBits / 8;
1772 const unsigned Scale = Log2_32(Size);
1773 if ((Imm & (Size - 1)) == 0 && Imm >= 0 && Imm < (0x1000 << Scale)) {
1774 Register Ptr2Reg = PtrMI->getOperand(1).getReg();
1775 I.getOperand(1).setReg(Ptr2Reg);
1776 PtrMI = MRI.getVRegDef(Ptr2Reg);
1777 Offset = Imm / Size;
1782 // If we haven't folded anything into our addressing mode yet, try to fold
1783 // a frame index into the base+offset.
1784 if (!Offset && PtrMI->getOpcode() == TargetOpcode::G_FRAME_INDEX)
1785 I.getOperand(1).ChangeToFrameIndex(PtrMI->getOperand(1).getIndex());
1787 I.addOperand(MachineOperand::CreateImm(Offset));
1789 // If we're storing a 0, use WZR/XZR.
1790 if (auto CVal = getConstantVRegVal(ValReg, MRI)) {
1791 if (*CVal == 0 && Opcode == TargetOpcode::G_STORE) {
1792 if (I.getOpcode() == AArch64::STRWui)
1793 I.getOperand(0).setReg(AArch64::WZR);
1794 else if (I.getOpcode() == AArch64::STRXui)
1795 I.getOperand(0).setReg(AArch64::XZR);
1799 if (IsZExtLoad) {
1800 // The zextload from a smaller type to i32 should be handled by the importer.
1801 if (MRI.getType(ValReg).getSizeInBits() != 64)
1802 return false;
1803 // If we have a ZEXTLOAD then change the load's type to be a narrower reg
1804 //and zero_extend with SUBREG_TO_REG.
1805 Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
1806 Register DstReg = I.getOperand(0).getReg();
1807 I.getOperand(0).setReg(LdReg);
1809 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
1810 MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
1811 .addImm(0)
1812 .addUse(LdReg)
1813 .addImm(AArch64::sub_32);
1814 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1815 return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
1816 MRI);
1818 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1821 case TargetOpcode::G_SMULH:
1822 case TargetOpcode::G_UMULH: {
1823 // Reject the various things we don't support yet.
1824 if (unsupportedBinOp(I, RBI, MRI, TRI))
1825 return false;
1827 const Register DefReg = I.getOperand(0).getReg();
1828 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
1830 if (RB.getID() != AArch64::GPRRegBankID) {
1831 LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n");
1832 return false;
1835 if (Ty != LLT::scalar(64)) {
1836 LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty
1837 << ", expected: " << LLT::scalar(64) << '\n');
1838 return false;
1841 unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr
1842 : AArch64::UMULHrr;
1843 I.setDesc(TII.get(NewOpc));
1845 // Now that we selected an opcode, we need to constrain the register
1846 // operands to use appropriate classes.
1847 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1849 case TargetOpcode::G_FADD:
1850 case TargetOpcode::G_FSUB:
1851 case TargetOpcode::G_FMUL:
1852 case TargetOpcode::G_FDIV:
1854 case TargetOpcode::G_ASHR:
1855 if (MRI.getType(I.getOperand(0).getReg()).isVector())
1856 return selectVectorASHR(I, MRI);
1857 LLVM_FALLTHROUGH;
1858 case TargetOpcode::G_SHL:
1859 if (Opcode == TargetOpcode::G_SHL &&
1860 MRI.getType(I.getOperand(0).getReg()).isVector())
1861 return selectVectorSHL(I, MRI);
1862 LLVM_FALLTHROUGH;
1863 case TargetOpcode::G_OR:
1864 case TargetOpcode::G_LSHR: {
1865 // Reject the various things we don't support yet.
1866 if (unsupportedBinOp(I, RBI, MRI, TRI))
1867 return false;
1869 const unsigned OpSize = Ty.getSizeInBits();
1871 const Register DefReg = I.getOperand(0).getReg();
1872 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
1874 const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
1875 if (NewOpc == I.getOpcode())
1876 return false;
1878 I.setDesc(TII.get(NewOpc));
1879 // FIXME: Should the type be always reset in setDesc?
1881 // Now that we selected an opcode, we need to constrain the register
1882 // operands to use appropriate classes.
1883 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1886 case TargetOpcode::G_GEP: {
1887 MachineIRBuilder MIRBuilder(I);
1888 emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2),
1889 MIRBuilder);
1890 I.eraseFromParent();
1891 return true;
1893 case TargetOpcode::G_UADDO: {
1894 // TODO: Support other types.
1895 unsigned OpSize = Ty.getSizeInBits();
1896 if (OpSize != 32 && OpSize != 64) {
1897 LLVM_DEBUG(
1898 dbgs()
1899 << "G_UADDO currently only supported for 32 and 64 b types.\n");
1900 return false;
1903 // TODO: Support vectors.
1904 if (Ty.isVector()) {
1905 LLVM_DEBUG(dbgs() << "G_UADDO currently only supported for scalars.\n");
1906 return false;
1909 // Add and set the set condition flag.
1910 unsigned AddsOpc = OpSize == 32 ? AArch64::ADDSWrr : AArch64::ADDSXrr;
1911 MachineIRBuilder MIRBuilder(I);
1912 auto AddsMI = MIRBuilder.buildInstr(
1913 AddsOpc, {I.getOperand(0).getReg()},
1914 {I.getOperand(2).getReg(), I.getOperand(3).getReg()});
1915 constrainSelectedInstRegOperands(*AddsMI, TII, TRI, RBI);
1917 // Now, put the overflow result in the register given by the first operand
1918 // to the G_UADDO. CSINC increments the result when the predicate is false,
1919 // so to get the increment when it's true, we need to use the inverse. In
1920 // this case, we want to increment when carry is set.
1921 auto CsetMI = MIRBuilder
1922 .buildInstr(AArch64::CSINCWr, {I.getOperand(1).getReg()},
1923 {Register(AArch64::WZR), Register(AArch64::WZR)})
1924 .addImm(getInvertedCondCode(AArch64CC::HS));
1925 constrainSelectedInstRegOperands(*CsetMI, TII, TRI, RBI);
1926 I.eraseFromParent();
1927 return true;
1930 case TargetOpcode::G_PTR_MASK: {
1931 uint64_t Align = I.getOperand(2).getImm();
1932 if (Align >= 64 || Align == 0)
1933 return false;
1935 uint64_t Mask = ~((1ULL << Align) - 1);
1936 I.setDesc(TII.get(AArch64::ANDXri));
1937 I.getOperand(2).setImm(AArch64_AM::encodeLogicalImmediate(Mask, 64));
1939 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1941 case TargetOpcode::G_PTRTOINT:
1942 case TargetOpcode::G_TRUNC: {
1943 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
1944 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
1946 const Register DstReg = I.getOperand(0).getReg();
1947 const Register SrcReg = I.getOperand(1).getReg();
1949 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
1950 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
1952 if (DstRB.getID() != SrcRB.getID()) {
1953 LLVM_DEBUG(
1954 dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
1955 return false;
1958 if (DstRB.getID() == AArch64::GPRRegBankID) {
1959 const TargetRegisterClass *DstRC =
1960 getRegClassForTypeOnBank(DstTy, DstRB, RBI);
1961 if (!DstRC)
1962 return false;
1964 const TargetRegisterClass *SrcRC =
1965 getRegClassForTypeOnBank(SrcTy, SrcRB, RBI);
1966 if (!SrcRC)
1967 return false;
1969 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
1970 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
1971 LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
1972 return false;
1975 if (DstRC == SrcRC) {
1976 // Nothing to be done
1977 } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
1978 SrcTy == LLT::scalar(64)) {
1979 llvm_unreachable("TableGen can import this case");
1980 return false;
1981 } else if (DstRC == &AArch64::GPR32RegClass &&
1982 SrcRC == &AArch64::GPR64RegClass) {
1983 I.getOperand(1).setSubReg(AArch64::sub_32);
1984 } else {
1985 LLVM_DEBUG(
1986 dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
1987 return false;
1990 I.setDesc(TII.get(TargetOpcode::COPY));
1991 return true;
1992 } else if (DstRB.getID() == AArch64::FPRRegBankID) {
1993 if (DstTy == LLT::vector(4, 16) && SrcTy == LLT::vector(4, 32)) {
1994 I.setDesc(TII.get(AArch64::XTNv4i16));
1995 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1996 return true;
1999 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
2000 MachineIRBuilder MIB(I);
2001 MachineInstr *Extract = emitExtractVectorElt(
2002 DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
2003 if (!Extract)
2004 return false;
2005 I.eraseFromParent();
2006 return true;
2010 return false;
2013 case TargetOpcode::G_ANYEXT: {
2014 const Register DstReg = I.getOperand(0).getReg();
2015 const Register SrcReg = I.getOperand(1).getReg();
2017 const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
2018 if (RBDst.getID() != AArch64::GPRRegBankID) {
2019 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
2020 << ", expected: GPR\n");
2021 return false;
2024 const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
2025 if (RBSrc.getID() != AArch64::GPRRegBankID) {
2026 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
2027 << ", expected: GPR\n");
2028 return false;
2031 const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
2033 if (DstSize == 0) {
2034 LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
2035 return false;
2038 if (DstSize != 64 && DstSize > 32) {
2039 LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
2040 << ", expected: 32 or 64\n");
2041 return false;
2043 // At this point G_ANYEXT is just like a plain COPY, but we need
2044 // to explicitly form the 64-bit value if any.
2045 if (DstSize > 32) {
2046 Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
2047 BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
2048 .addDef(ExtSrc)
2049 .addImm(0)
2050 .addUse(SrcReg)
2051 .addImm(AArch64::sub_32);
2052 I.getOperand(1).setReg(ExtSrc);
2054 return selectCopy(I, TII, MRI, TRI, RBI);
2057 case TargetOpcode::G_ZEXT:
2058 case TargetOpcode::G_SEXT: {
2059 unsigned Opcode = I.getOpcode();
2060 const bool IsSigned = Opcode == TargetOpcode::G_SEXT;
2061 const Register DefReg = I.getOperand(0).getReg();
2062 const Register SrcReg = I.getOperand(1).getReg();
2063 const LLT DstTy = MRI.getType(DefReg);
2064 const LLT SrcTy = MRI.getType(SrcReg);
2065 unsigned DstSize = DstTy.getSizeInBits();
2066 unsigned SrcSize = SrcTy.getSizeInBits();
2068 assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
2069 AArch64::GPRRegBankID &&
2070 "Unexpected ext regbank");
2072 MachineIRBuilder MIB(I);
2073 MachineInstr *ExtI;
2074 if (DstTy.isVector())
2075 return false; // Should be handled by imported patterns.
2077 // First check if we're extending the result of a load which has a dest type
2078 // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
2079 // GPR register on AArch64 and all loads which are smaller automatically
2080 // zero-extend the upper bits. E.g.
2081 // %v(s8) = G_LOAD %p, :: (load 1)
2082 // %v2(s32) = G_ZEXT %v(s8)
2083 if (!IsSigned) {
2084 auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
2085 if (LoadMI &&
2086 RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID) {
2087 const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
2088 unsigned BytesLoaded = MemOp->getSize();
2089 if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
2090 return selectCopy(I, TII, MRI, TRI, RBI);
2094 if (DstSize == 64) {
2095 // FIXME: Can we avoid manually doing this?
2096 if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass, MRI)) {
2097 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
2098 << " operand\n");
2099 return false;
2102 auto SubregToReg =
2103 MIB.buildInstr(AArch64::SUBREG_TO_REG, {&AArch64::GPR64RegClass}, {})
2104 .addImm(0)
2105 .addUse(SrcReg)
2106 .addImm(AArch64::sub_32);
2108 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
2109 {DefReg}, {SubregToReg})
2110 .addImm(0)
2111 .addImm(SrcSize - 1);
2112 } else if (DstSize <= 32) {
2113 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
2114 {DefReg}, {SrcReg})
2115 .addImm(0)
2116 .addImm(SrcSize - 1);
2117 } else {
2118 return false;
2121 constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
2122 I.eraseFromParent();
2123 return true;
2126 case TargetOpcode::G_SITOFP:
2127 case TargetOpcode::G_UITOFP:
2128 case TargetOpcode::G_FPTOSI:
2129 case TargetOpcode::G_FPTOUI: {
2130 const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
2131 SrcTy = MRI.getType(I.getOperand(1).getReg());
2132 const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
2133 if (NewOpc == Opcode)
2134 return false;
2136 I.setDesc(TII.get(NewOpc));
2137 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2139 return true;
2143 case TargetOpcode::G_INTTOPTR:
2144 // The importer is currently unable to import pointer types since they
2145 // didn't exist in SelectionDAG.
2146 return selectCopy(I, TII, MRI, TRI, RBI);
2148 case TargetOpcode::G_BITCAST:
2149 // Imported SelectionDAG rules can handle every bitcast except those that
2150 // bitcast from a type to the same type. Ideally, these shouldn't occur
2151 // but we might not run an optimizer that deletes them. The other exception
2152 // is bitcasts involving pointer types, as SelectionDAG has no knowledge
2153 // of them.
2154 return selectCopy(I, TII, MRI, TRI, RBI);
2156 case TargetOpcode::G_SELECT: {
2157 if (MRI.getType(I.getOperand(1).getReg()) != LLT::scalar(1)) {
2158 LLVM_DEBUG(dbgs() << "G_SELECT cond has type: " << Ty
2159 << ", expected: " << LLT::scalar(1) << '\n');
2160 return false;
2163 const Register CondReg = I.getOperand(1).getReg();
2164 const Register TReg = I.getOperand(2).getReg();
2165 const Register FReg = I.getOperand(3).getReg();
2167 if (tryOptSelect(I))
2168 return true;
2170 Register CSelOpc = selectSelectOpc(I, MRI, RBI);
2171 MachineInstr &TstMI =
2172 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ANDSWri))
2173 .addDef(AArch64::WZR)
2174 .addUse(CondReg)
2175 .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
2177 MachineInstr &CSelMI = *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CSelOpc))
2178 .addDef(I.getOperand(0).getReg())
2179 .addUse(TReg)
2180 .addUse(FReg)
2181 .addImm(AArch64CC::NE);
2183 constrainSelectedInstRegOperands(TstMI, TII, TRI, RBI);
2184 constrainSelectedInstRegOperands(CSelMI, TII, TRI, RBI);
2186 I.eraseFromParent();
2187 return true;
2189 case TargetOpcode::G_ICMP: {
2190 if (Ty.isVector())
2191 return selectVectorICmp(I, MRI);
2193 if (Ty != LLT::scalar(32)) {
2194 LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
2195 << ", expected: " << LLT::scalar(32) << '\n');
2196 return false;
2199 MachineIRBuilder MIRBuilder(I);
2200 if (!emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1),
2201 MIRBuilder))
2202 return false;
2203 emitCSetForICMP(I.getOperand(0).getReg(), I.getOperand(1).getPredicate(),
2204 MIRBuilder);
2205 I.eraseFromParent();
2206 return true;
2209 case TargetOpcode::G_FCMP: {
2210 if (Ty != LLT::scalar(32)) {
2211 LLVM_DEBUG(dbgs() << "G_FCMP result has type: " << Ty
2212 << ", expected: " << LLT::scalar(32) << '\n');
2213 return false;
2216 unsigned CmpOpc = selectFCMPOpc(I, MRI);
2217 if (!CmpOpc)
2218 return false;
2220 // FIXME: regbank
2222 AArch64CC::CondCode CC1, CC2;
2223 changeFCMPPredToAArch64CC(
2224 (CmpInst::Predicate)I.getOperand(1).getPredicate(), CC1, CC2);
2226 // Partially build the compare. Decide if we need to add a use for the
2227 // third operand based off whether or not we're comparing against 0.0.
2228 auto CmpMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(CmpOpc))
2229 .addUse(I.getOperand(2).getReg());
2231 // If we don't have an immediate compare, then we need to add a use of the
2232 // register which wasn't used for the immediate.
2233 // Note that the immediate will always be the last operand.
2234 if (CmpOpc != AArch64::FCMPSri && CmpOpc != AArch64::FCMPDri)
2235 CmpMI = CmpMI.addUse(I.getOperand(3).getReg());
2237 const Register DefReg = I.getOperand(0).getReg();
2238 Register Def1Reg = DefReg;
2239 if (CC2 != AArch64CC::AL)
2240 Def1Reg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2242 MachineInstr &CSetMI =
2243 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr))
2244 .addDef(Def1Reg)
2245 .addUse(AArch64::WZR)
2246 .addUse(AArch64::WZR)
2247 .addImm(getInvertedCondCode(CC1));
2249 if (CC2 != AArch64CC::AL) {
2250 Register Def2Reg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2251 MachineInstr &CSet2MI =
2252 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::CSINCWr))
2253 .addDef(Def2Reg)
2254 .addUse(AArch64::WZR)
2255 .addUse(AArch64::WZR)
2256 .addImm(getInvertedCondCode(CC2));
2257 MachineInstr &OrMI =
2258 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::ORRWrr))
2259 .addDef(DefReg)
2260 .addUse(Def1Reg)
2261 .addUse(Def2Reg);
2262 constrainSelectedInstRegOperands(OrMI, TII, TRI, RBI);
2263 constrainSelectedInstRegOperands(CSet2MI, TII, TRI, RBI);
2265 constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
2266 constrainSelectedInstRegOperands(CSetMI, TII, TRI, RBI);
2268 I.eraseFromParent();
2269 return true;
2271 case TargetOpcode::G_VASTART:
2272 return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
2273 : selectVaStartAAPCS(I, MF, MRI);
2274 case TargetOpcode::G_INTRINSIC:
2275 return selectIntrinsic(I, MRI);
2276 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
2277 return selectIntrinsicWithSideEffects(I, MRI);
2278 case TargetOpcode::G_IMPLICIT_DEF: {
2279 I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
2280 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2281 const Register DstReg = I.getOperand(0).getReg();
2282 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2283 const TargetRegisterClass *DstRC =
2284 getRegClassForTypeOnBank(DstTy, DstRB, RBI);
2285 RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
2286 return true;
2288 case TargetOpcode::G_BLOCK_ADDR: {
2289 if (TM.getCodeModel() == CodeModel::Large) {
2290 materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
2291 I.eraseFromParent();
2292 return true;
2293 } else {
2294 I.setDesc(TII.get(AArch64::MOVaddrBA));
2295 auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
2296 I.getOperand(0).getReg())
2297 .addBlockAddress(I.getOperand(1).getBlockAddress(),
2298 /* Offset */ 0, AArch64II::MO_PAGE)
2299 .addBlockAddress(
2300 I.getOperand(1).getBlockAddress(), /* Offset */ 0,
2301 AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
2302 I.eraseFromParent();
2303 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
2306 case TargetOpcode::G_INTRINSIC_TRUNC:
2307 return selectIntrinsicTrunc(I, MRI);
2308 case TargetOpcode::G_INTRINSIC_ROUND:
2309 return selectIntrinsicRound(I, MRI);
2310 case TargetOpcode::G_BUILD_VECTOR:
2311 return selectBuildVector(I, MRI);
2312 case TargetOpcode::G_MERGE_VALUES:
2313 return selectMergeValues(I, MRI);
2314 case TargetOpcode::G_UNMERGE_VALUES:
2315 return selectUnmergeValues(I, MRI);
2316 case TargetOpcode::G_SHUFFLE_VECTOR:
2317 return selectShuffleVector(I, MRI);
2318 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2319 return selectExtractElt(I, MRI);
2320 case TargetOpcode::G_INSERT_VECTOR_ELT:
2321 return selectInsertElt(I, MRI);
2322 case TargetOpcode::G_CONCAT_VECTORS:
2323 return selectConcatVectors(I, MRI);
2324 case TargetOpcode::G_JUMP_TABLE:
2325 return selectJumpTable(I, MRI);
2328 return false;
2331 bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
2332 MachineRegisterInfo &MRI) const {
2333 assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
2334 Register JTAddr = I.getOperand(0).getReg();
2335 unsigned JTI = I.getOperand(1).getIndex();
2336 Register Index = I.getOperand(2).getReg();
2337 MachineIRBuilder MIB(I);
2339 Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
2340 Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
2341 MIB.buildInstr(AArch64::JumpTableDest32, {TargetReg, ScratchReg},
2342 {JTAddr, Index})
2343 .addJumpTableIndex(JTI);
2345 // Build the indirect branch.
2346 MIB.buildInstr(AArch64::BR, {}, {TargetReg});
2347 I.eraseFromParent();
2348 return true;
2351 bool AArch64InstructionSelector::selectJumpTable(
2352 MachineInstr &I, MachineRegisterInfo &MRI) const {
2353 assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
2354 assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");
2356 Register DstReg = I.getOperand(0).getReg();
2357 unsigned JTI = I.getOperand(1).getIndex();
2358 // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
2359 MachineIRBuilder MIB(I);
2360 auto MovMI =
2361 MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
2362 .addJumpTableIndex(JTI, AArch64II::MO_PAGE)
2363 .addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
2364 I.eraseFromParent();
2365 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
2368 bool AArch64InstructionSelector::selectTLSGlobalValue(
2369 MachineInstr &I, MachineRegisterInfo &MRI) const {
2370 if (!STI.isTargetMachO())
2371 return false;
2372 MachineFunction &MF = *I.getParent()->getParent();
2373 MF.getFrameInfo().setAdjustsStack(true);
2375 const GlobalValue &GV = *I.getOperand(1).getGlobal();
2376 MachineIRBuilder MIB(I);
2378 MIB.buildInstr(AArch64::LOADgot, {AArch64::X0}, {})
2379 .addGlobalAddress(&GV, 0, AArch64II::MO_TLS);
2381 auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
2382 {Register(AArch64::X0)})
2383 .addImm(0);
2385 // TLS calls preserve all registers except those that absolutely must be
2386 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
2387 // silly).
2388 MIB.buildInstr(AArch64::BLR, {}, {Load})
2389 .addDef(AArch64::X0, RegState::Implicit)
2390 .addRegMask(TRI.getTLSCallPreservedMask());
2392 MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
2393 RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
2394 MRI);
2395 I.eraseFromParent();
2396 return true;
2399 bool AArch64InstructionSelector::selectIntrinsicTrunc(
2400 MachineInstr &I, MachineRegisterInfo &MRI) const {
2401 const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
2403 // Select the correct opcode.
2404 unsigned Opc = 0;
2405 if (!SrcTy.isVector()) {
2406 switch (SrcTy.getSizeInBits()) {
2407 default:
2408 case 16:
2409 Opc = AArch64::FRINTZHr;
2410 break;
2411 case 32:
2412 Opc = AArch64::FRINTZSr;
2413 break;
2414 case 64:
2415 Opc = AArch64::FRINTZDr;
2416 break;
2418 } else {
2419 unsigned NumElts = SrcTy.getNumElements();
2420 switch (SrcTy.getElementType().getSizeInBits()) {
2421 default:
2422 break;
2423 case 16:
2424 if (NumElts == 4)
2425 Opc = AArch64::FRINTZv4f16;
2426 else if (NumElts == 8)
2427 Opc = AArch64::FRINTZv8f16;
2428 break;
2429 case 32:
2430 if (NumElts == 2)
2431 Opc = AArch64::FRINTZv2f32;
2432 else if (NumElts == 4)
2433 Opc = AArch64::FRINTZv4f32;
2434 break;
2435 case 64:
2436 if (NumElts == 2)
2437 Opc = AArch64::FRINTZv2f64;
2438 break;
2442 if (!Opc) {
2443 // Didn't get an opcode above, bail.
2444 LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n");
2445 return false;
2448 // Legalization would have set us up perfectly for this; we just need to
2449 // set the opcode and move on.
2450 I.setDesc(TII.get(Opc));
2451 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2454 bool AArch64InstructionSelector::selectIntrinsicRound(
2455 MachineInstr &I, MachineRegisterInfo &MRI) const {
2456 const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
2458 // Select the correct opcode.
2459 unsigned Opc = 0;
2460 if (!SrcTy.isVector()) {
2461 switch (SrcTy.getSizeInBits()) {
2462 default:
2463 case 16:
2464 Opc = AArch64::FRINTAHr;
2465 break;
2466 case 32:
2467 Opc = AArch64::FRINTASr;
2468 break;
2469 case 64:
2470 Opc = AArch64::FRINTADr;
2471 break;
2473 } else {
2474 unsigned NumElts = SrcTy.getNumElements();
2475 switch (SrcTy.getElementType().getSizeInBits()) {
2476 default:
2477 break;
2478 case 16:
2479 if (NumElts == 4)
2480 Opc = AArch64::FRINTAv4f16;
2481 else if (NumElts == 8)
2482 Opc = AArch64::FRINTAv8f16;
2483 break;
2484 case 32:
2485 if (NumElts == 2)
2486 Opc = AArch64::FRINTAv2f32;
2487 else if (NumElts == 4)
2488 Opc = AArch64::FRINTAv4f32;
2489 break;
2490 case 64:
2491 if (NumElts == 2)
2492 Opc = AArch64::FRINTAv2f64;
2493 break;
2497 if (!Opc) {
2498 // Didn't get an opcode above, bail.
2499 LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n");
2500 return false;
2503 // Legalization would have set us up perfectly for this; we just need to
2504 // set the opcode and move on.
2505 I.setDesc(TII.get(Opc));
2506 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2509 bool AArch64InstructionSelector::selectVectorICmp(
2510 MachineInstr &I, MachineRegisterInfo &MRI) const {
2511 Register DstReg = I.getOperand(0).getReg();
2512 LLT DstTy = MRI.getType(DstReg);
2513 Register SrcReg = I.getOperand(2).getReg();
2514 Register Src2Reg = I.getOperand(3).getReg();
2515 LLT SrcTy = MRI.getType(SrcReg);
2517 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
2518 unsigned NumElts = DstTy.getNumElements();
2520 // First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b
2521 // Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16
2522 // Third index is cc opcode:
2523 // 0 == eq
2524 // 1 == ugt
2525 // 2 == uge
2526 // 3 == ult
2527 // 4 == ule
2528 // 5 == sgt
2529 // 6 == sge
2530 // 7 == slt
2531 // 8 == sle
2532 // ne is done by negating 'eq' result.
2534 // This table below assumes that for some comparisons the operands will be
2535 // commuted.
2536 // ult op == commute + ugt op
2537 // ule op == commute + uge op
2538 // slt op == commute + sgt op
2539 // sle op == commute + sge op
2540 unsigned PredIdx = 0;
2541 bool SwapOperands = false;
2542 CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
2543 switch (Pred) {
2544 case CmpInst::ICMP_NE:
2545 case CmpInst::ICMP_EQ:
2546 PredIdx = 0;
2547 break;
2548 case CmpInst::ICMP_UGT:
2549 PredIdx = 1;
2550 break;
2551 case CmpInst::ICMP_UGE:
2552 PredIdx = 2;
2553 break;
2554 case CmpInst::ICMP_ULT:
2555 PredIdx = 3;
2556 SwapOperands = true;
2557 break;
2558 case CmpInst::ICMP_ULE:
2559 PredIdx = 4;
2560 SwapOperands = true;
2561 break;
2562 case CmpInst::ICMP_SGT:
2563 PredIdx = 5;
2564 break;
2565 case CmpInst::ICMP_SGE:
2566 PredIdx = 6;
2567 break;
2568 case CmpInst::ICMP_SLT:
2569 PredIdx = 7;
2570 SwapOperands = true;
2571 break;
2572 case CmpInst::ICMP_SLE:
2573 PredIdx = 8;
2574 SwapOperands = true;
2575 break;
2576 default:
2577 llvm_unreachable("Unhandled icmp predicate");
2578 return false;
2581 // This table obviously should be tablegen'd when we have our GISel native
2582 // tablegen selector.
2584 static const unsigned OpcTable[4][4][9] = {
2586 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2587 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2588 0 /* invalid */},
2589 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2590 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2591 0 /* invalid */},
2592 {AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8,
2593 AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8,
2594 AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8},
2595 {AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8,
2596 AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8,
2597 AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8}
2600 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2601 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2602 0 /* invalid */},
2603 {AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16,
2604 AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16,
2605 AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16},
2606 {AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16,
2607 AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16,
2608 AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16},
2609 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2610 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2611 0 /* invalid */}
2614 {AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32,
2615 AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32,
2616 AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32},
2617 {AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32,
2618 AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32,
2619 AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32},
2620 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2621 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2622 0 /* invalid */},
2623 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2624 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2625 0 /* invalid */}
2628 {AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64,
2629 AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64,
2630 AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64},
2631 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2632 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2633 0 /* invalid */},
2634 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2635 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2636 0 /* invalid */},
2637 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2638 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
2639 0 /* invalid */}
2642 unsigned EltIdx = Log2_32(SrcEltSize / 8);
2643 unsigned NumEltsIdx = Log2_32(NumElts / 2);
2644 unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx];
2645 if (!Opc) {
2646 LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode");
2647 return false;
2650 const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI);
2651 const TargetRegisterClass *SrcRC =
2652 getRegClassForTypeOnBank(SrcTy, VecRB, RBI, true);
2653 if (!SrcRC) {
2654 LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
2655 return false;
2658 unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0;
2659 if (SrcTy.getSizeInBits() == 128)
2660 NotOpc = NotOpc ? AArch64::NOTv16i8 : 0;
2662 if (SwapOperands)
2663 std::swap(SrcReg, Src2Reg);
2665 MachineIRBuilder MIB(I);
2666 auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg});
2667 constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
2669 // Invert if we had a 'ne' cc.
2670 if (NotOpc) {
2671 Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp});
2672 constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
2673 } else {
2674 MIB.buildCopy(DstReg, Cmp.getReg(0));
2676 RBI.constrainGenericRegister(DstReg, *SrcRC, MRI);
2677 I.eraseFromParent();
2678 return true;
2681 MachineInstr *AArch64InstructionSelector::emitScalarToVector(
2682 unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
2683 MachineIRBuilder &MIRBuilder) const {
2684 auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});
2686 auto BuildFn = [&](unsigned SubregIndex) {
2687 auto Ins =
2688 MIRBuilder
2689 .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
2690 .addImm(SubregIndex);
2691 constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
2692 constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
2693 return &*Ins;
2696 switch (EltSize) {
2697 case 16:
2698 return BuildFn(AArch64::hsub);
2699 case 32:
2700 return BuildFn(AArch64::ssub);
2701 case 64:
2702 return BuildFn(AArch64::dsub);
2703 default:
2704 return nullptr;
2708 bool AArch64InstructionSelector::selectMergeValues(
2709 MachineInstr &I, MachineRegisterInfo &MRI) const {
2710 assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
2711 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2712 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
2713 assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
2714 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
2716 if (I.getNumOperands() != 3)
2717 return false;
2719 // Merging 2 s64s into an s128.
2720 if (DstTy == LLT::scalar(128)) {
2721 if (SrcTy.getSizeInBits() != 64)
2722 return false;
2723 MachineIRBuilder MIB(I);
2724 Register DstReg = I.getOperand(0).getReg();
2725 Register Src1Reg = I.getOperand(1).getReg();
2726 Register Src2Reg = I.getOperand(2).getReg();
2727 auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
2728 MachineInstr *InsMI =
2729 emitLaneInsert(None, Tmp.getReg(0), Src1Reg, /* LaneIdx */ 0, RB, MIB);
2730 if (!InsMI)
2731 return false;
2732 MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
2733 Src2Reg, /* LaneIdx */ 1, RB, MIB);
2734 if (!Ins2MI)
2735 return false;
2736 constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
2737 constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
2738 I.eraseFromParent();
2739 return true;
2742 if (RB.getID() != AArch64::GPRRegBankID)
2743 return false;
2745 if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
2746 return false;
2748 auto *DstRC = &AArch64::GPR64RegClass;
2749 Register SubToRegDef = MRI.createVirtualRegister(DstRC);
2750 MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
2751 TII.get(TargetOpcode::SUBREG_TO_REG))
2752 .addDef(SubToRegDef)
2753 .addImm(0)
2754 .addUse(I.getOperand(1).getReg())
2755 .addImm(AArch64::sub_32);
2756 Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
2757 // Need to anyext the second scalar before we can use bfm
2758 MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
2759 TII.get(TargetOpcode::SUBREG_TO_REG))
2760 .addDef(SubToRegDef2)
2761 .addImm(0)
2762 .addUse(I.getOperand(2).getReg())
2763 .addImm(AArch64::sub_32);
2764 MachineInstr &BFM =
2765 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
2766 .addDef(I.getOperand(0).getReg())
2767 .addUse(SubToRegDef)
2768 .addUse(SubToRegDef2)
2769 .addImm(32)
2770 .addImm(31);
2771 constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
2772 constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
2773 constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
2774 I.eraseFromParent();
2775 return true;
2778 static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
2779 const unsigned EltSize) {
2780 // Choose a lane copy opcode and subregister based off of the size of the
2781 // vector's elements.
2782 switch (EltSize) {
2783 case 16:
2784 CopyOpc = AArch64::CPYi16;
2785 ExtractSubReg = AArch64::hsub;
2786 break;
2787 case 32:
2788 CopyOpc = AArch64::CPYi32;
2789 ExtractSubReg = AArch64::ssub;
2790 break;
2791 case 64:
2792 CopyOpc = AArch64::CPYi64;
2793 ExtractSubReg = AArch64::dsub;
2794 break;
2795 default:
2796 // Unknown size, bail out.
2797 LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
2798 return false;
2800 return true;
2803 MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
2804 Optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
2805 Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
2806 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
2807 unsigned CopyOpc = 0;
2808 unsigned ExtractSubReg = 0;
2809 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
2810 LLVM_DEBUG(
2811 dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
2812 return nullptr;
2815 const TargetRegisterClass *DstRC =
2816 getRegClassForTypeOnBank(ScalarTy, DstRB, RBI, true);
2817 if (!DstRC) {
2818 LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
2819 return nullptr;
2822 const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
2823 const LLT &VecTy = MRI.getType(VecReg);
2824 const TargetRegisterClass *VecRC =
2825 getRegClassForTypeOnBank(VecTy, VecRB, RBI, true);
2826 if (!VecRC) {
2827 LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
2828 return nullptr;
2831 // The register that we're going to copy into.
2832 Register InsertReg = VecReg;
2833 if (!DstReg)
2834 DstReg = MRI.createVirtualRegister(DstRC);
2835 // If the lane index is 0, we just use a subregister COPY.
2836 if (LaneIdx == 0) {
2837 auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
2838 .addReg(VecReg, 0, ExtractSubReg);
2839 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
2840 return &*Copy;
2843 // Lane copies require 128-bit wide registers. If we're dealing with an
2844 // unpacked vector, then we need to move up to that width. Insert an implicit
2845 // def and a subregister insert to get us there.
2846 if (VecTy.getSizeInBits() != 128) {
2847 MachineInstr *ScalarToVector = emitScalarToVector(
2848 VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
2849 if (!ScalarToVector)
2850 return nullptr;
2851 InsertReg = ScalarToVector->getOperand(0).getReg();
2854 MachineInstr *LaneCopyMI =
2855 MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
2856 constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);
2858 // Make sure that we actually constrain the initial copy.
2859 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
2860 return LaneCopyMI;
2863 bool AArch64InstructionSelector::selectExtractElt(
2864 MachineInstr &I, MachineRegisterInfo &MRI) const {
2865 assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
2866 "unexpected opcode!");
2867 Register DstReg = I.getOperand(0).getReg();
2868 const LLT NarrowTy = MRI.getType(DstReg);
2869 const Register SrcReg = I.getOperand(1).getReg();
2870 const LLT WideTy = MRI.getType(SrcReg);
2871 (void)WideTy;
2872 assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
2873 "source register size too small!");
2874 assert(NarrowTy.isScalar() && "cannot extract vector into vector!");
2876 // Need the lane index to determine the correct copy opcode.
2877 MachineOperand &LaneIdxOp = I.getOperand(2);
2878 assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");
2880 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
2881 LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
2882 return false;
2885 // Find the index to extract from.
2886 auto VRegAndVal = getConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
2887 if (!VRegAndVal)
2888 return false;
2889 unsigned LaneIdx = VRegAndVal->Value;
2891 MachineIRBuilder MIRBuilder(I);
2893 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2894 MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
2895 LaneIdx, MIRBuilder);
2896 if (!Extract)
2897 return false;
2899 I.eraseFromParent();
2900 return true;
2903 bool AArch64InstructionSelector::selectSplitVectorUnmerge(
2904 MachineInstr &I, MachineRegisterInfo &MRI) const {
2905 unsigned NumElts = I.getNumOperands() - 1;
2906 Register SrcReg = I.getOperand(NumElts).getReg();
2907 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
2908 const LLT SrcTy = MRI.getType(SrcReg);
2910 assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
2911 if (SrcTy.getSizeInBits() > 128) {
2912 LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
2913 return false;
2916 MachineIRBuilder MIB(I);
2918 // We implement a split vector operation by treating the sub-vectors as
2919 // scalars and extracting them.
2920 const RegisterBank &DstRB =
2921 *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
2922 for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
2923 Register Dst = I.getOperand(OpIdx).getReg();
2924 MachineInstr *Extract =
2925 emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
2926 if (!Extract)
2927 return false;
2929 I.eraseFromParent();
2930 return true;
2933 bool AArch64InstructionSelector::selectUnmergeValues(
2934 MachineInstr &I, MachineRegisterInfo &MRI) const {
2935 assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2936 "unexpected opcode");
2938 // TODO: Handle unmerging into GPRs and from scalars to scalars.
2939 if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
2940 AArch64::FPRRegBankID ||
2941 RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
2942 AArch64::FPRRegBankID) {
2943 LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
2944 "currently unsupported.\n");
2945 return false;
2948 // The last operand is the vector source register, and every other operand is
2949 // a register to unpack into.
2950 unsigned NumElts = I.getNumOperands() - 1;
2951 Register SrcReg = I.getOperand(NumElts).getReg();
2952 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
2953 const LLT WideTy = MRI.getType(SrcReg);
2954 (void)WideTy;
2955 assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
2956 "can only unmerge from vector or s128 types!");
2957 assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
2958 "source register size too small!");
2960 if (!NarrowTy.isScalar())
2961 return selectSplitVectorUnmerge(I, MRI);
2963 MachineIRBuilder MIB(I);
2965 // Choose a lane copy opcode and subregister based off of the size of the
2966 // vector's elements.
2967 unsigned CopyOpc = 0;
2968 unsigned ExtractSubReg = 0;
2969 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
2970 return false;
2972 // Set up for the lane copies.
2973 MachineBasicBlock &MBB = *I.getParent();
2975 // Stores the registers we'll be copying from.
2976 SmallVector<Register, 4> InsertRegs;
2978 // We'll use the first register twice, so we only need NumElts-1 registers.
2979 unsigned NumInsertRegs = NumElts - 1;
2981 // If our elements fit into exactly 128 bits, then we can copy from the source
2982 // directly. Otherwise, we need to do a bit of setup with some subregister
2983 // inserts.
2984 if (NarrowTy.getSizeInBits() * NumElts == 128) {
2985 InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
2986 } else {
2987 // No. We have to perform subregister inserts. For each insert, create an
2988 // implicit def and a subregister insert, and save the register we create.
2989 for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
2990 Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
2991 MachineInstr &ImpDefMI =
2992 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
2993 ImpDefReg);
2995 // Now, create the subregister insert from SrcReg.
2996 Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
2997 MachineInstr &InsMI =
2998 *BuildMI(MBB, I, I.getDebugLoc(),
2999 TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
3000 .addUse(ImpDefReg)
3001 .addUse(SrcReg)
3002 .addImm(AArch64::dsub);
3004 constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
3005 constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);
3007 // Save the register so that we can copy from it after.
3008 InsertRegs.push_back(InsertReg);
3012 // Now that we've created any necessary subregister inserts, we can
3013 // create the copies.
3015 // Perform the first copy separately as a subregister copy.
3016 Register CopyTo = I.getOperand(0).getReg();
3017 auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
3018 .addReg(InsertRegs[0], 0, ExtractSubReg);
3019 constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);
3021 // Now, perform the remaining copies as vector lane copies.
3022 unsigned LaneIdx = 1;
3023 for (Register InsReg : InsertRegs) {
3024 Register CopyTo = I.getOperand(LaneIdx).getReg();
3025 MachineInstr &CopyInst =
3026 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
3027 .addUse(InsReg)
3028 .addImm(LaneIdx);
3029 constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
3030 ++LaneIdx;
3033 // Separately constrain the first copy's destination. Because of the
3034 // limitation in constrainOperandRegClass, we can't guarantee that this will
3035 // actually be constrained. So, do it ourselves using the second operand.
3036 const TargetRegisterClass *RC =
3037 MRI.getRegClassOrNull(I.getOperand(1).getReg());
3038 if (!RC) {
3039 LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
3040 return false;
3043 RBI.constrainGenericRegister(CopyTo, *RC, MRI);
3044 I.eraseFromParent();
3045 return true;
3048 bool AArch64InstructionSelector::selectConcatVectors(
3049 MachineInstr &I, MachineRegisterInfo &MRI) const {
3050 assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
3051 "Unexpected opcode");
3052 Register Dst = I.getOperand(0).getReg();
3053 Register Op1 = I.getOperand(1).getReg();
3054 Register Op2 = I.getOperand(2).getReg();
3055 MachineIRBuilder MIRBuilder(I);
3056 MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIRBuilder);
3057 if (!ConcatMI)
3058 return false;
3059 I.eraseFromParent();
3060 return true;
3063 unsigned
3064 AArch64InstructionSelector::emitConstantPoolEntry(Constant *CPVal,
3065 MachineFunction &MF) const {
3066 Type *CPTy = CPVal->getType();
3067 unsigned Align = MF.getDataLayout().getPrefTypeAlignment(CPTy);
3068 if (Align == 0)
3069 Align = MF.getDataLayout().getTypeAllocSize(CPTy);
3071 MachineConstantPool *MCP = MF.getConstantPool();
3072 return MCP->getConstantPoolIndex(CPVal, Align);
3075 MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
3076 Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
3077 unsigned CPIdx = emitConstantPoolEntry(CPVal, MIRBuilder.getMF());
3079 auto Adrp =
3080 MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
3081 .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);
3083 MachineInstr *LoadMI = nullptr;
3084 switch (MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType())) {
3085 case 16:
3086 LoadMI =
3087 &*MIRBuilder
3088 .buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp})
3089 .addConstantPoolIndex(CPIdx, 0,
3090 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3091 break;
3092 case 8:
3093 LoadMI = &*MIRBuilder
3094 .buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp})
3095 .addConstantPoolIndex(
3096 CPIdx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3097 break;
3098 default:
3099 LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
3100 << *CPVal->getType());
3101 return nullptr;
3103 constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
3104 constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
3105 return LoadMI;
3108 /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
3109 /// size and RB.
3110 static std::pair<unsigned, unsigned>
3111 getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
3112 unsigned Opc, SubregIdx;
3113 if (RB.getID() == AArch64::GPRRegBankID) {
3114 if (EltSize == 32) {
3115 Opc = AArch64::INSvi32gpr;
3116 SubregIdx = AArch64::ssub;
3117 } else if (EltSize == 64) {
3118 Opc = AArch64::INSvi64gpr;
3119 SubregIdx = AArch64::dsub;
3120 } else {
3121 llvm_unreachable("invalid elt size!");
3123 } else {
3124 if (EltSize == 8) {
3125 Opc = AArch64::INSvi8lane;
3126 SubregIdx = AArch64::bsub;
3127 } else if (EltSize == 16) {
3128 Opc = AArch64::INSvi16lane;
3129 SubregIdx = AArch64::hsub;
3130 } else if (EltSize == 32) {
3131 Opc = AArch64::INSvi32lane;
3132 SubregIdx = AArch64::ssub;
3133 } else if (EltSize == 64) {
3134 Opc = AArch64::INSvi64lane;
3135 SubregIdx = AArch64::dsub;
3136 } else {
3137 llvm_unreachable("invalid elt size!");
3140 return std::make_pair(Opc, SubregIdx);
3143 MachineInstr *
3144 AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
3145 MachineOperand &RHS,
3146 MachineIRBuilder &MIRBuilder) const {
3147 assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
3148 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
3149 static const unsigned OpcTable[2][2]{{AArch64::ADDXrr, AArch64::ADDXri},
3150 {AArch64::ADDWrr, AArch64::ADDWri}};
3151 bool Is32Bit = MRI.getType(LHS.getReg()).getSizeInBits() == 32;
3152 auto ImmFns = selectArithImmed(RHS);
3153 unsigned Opc = OpcTable[Is32Bit][ImmFns.hasValue()];
3154 auto AddMI = MIRBuilder.buildInstr(Opc, {DefReg}, {LHS.getReg()});
3156 // If we matched a valid constant immediate, add those operands.
3157 if (ImmFns) {
3158 for (auto &RenderFn : *ImmFns)
3159 RenderFn(AddMI);
3160 } else {
3161 AddMI.addUse(RHS.getReg());
3164 constrainSelectedInstRegOperands(*AddMI, TII, TRI, RBI);
3165 return &*AddMI;
3168 MachineInstr *
3169 AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
3170 MachineIRBuilder &MIRBuilder) const {
3171 assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
3172 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
3173 static const unsigned OpcTable[2][2]{{AArch64::ADDSXrr, AArch64::ADDSXri},
3174 {AArch64::ADDSWrr, AArch64::ADDSWri}};
3175 bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
3176 auto ImmFns = selectArithImmed(RHS);
3177 unsigned Opc = OpcTable[Is32Bit][ImmFns.hasValue()];
3178 Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
3180 auto CmpMI = MIRBuilder.buildInstr(Opc, {ZReg}, {LHS.getReg()});
3182 // If we matched a valid constant immediate, add those operands.
3183 if (ImmFns) {
3184 for (auto &RenderFn : *ImmFns)
3185 RenderFn(CmpMI);
3186 } else {
3187 CmpMI.addUse(RHS.getReg());
3190 constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
3191 return &*CmpMI;
3194 MachineInstr *
3195 AArch64InstructionSelector::emitTST(const Register &LHS, const Register &RHS,
3196 MachineIRBuilder &MIRBuilder) const {
3197 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
3198 unsigned RegSize = MRI.getType(LHS).getSizeInBits();
3199 bool Is32Bit = (RegSize == 32);
3200 static const unsigned OpcTable[2][2]{{AArch64::ANDSXrr, AArch64::ANDSXri},
3201 {AArch64::ANDSWrr, AArch64::ANDSWri}};
3202 Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
3204 // We might be able to fold in an immediate into the TST. We need to make sure
3205 // it's a logical immediate though, since ANDS requires that.
3206 auto ValAndVReg = getConstantVRegValWithLookThrough(RHS, MRI);
3207 bool IsImmForm = ValAndVReg.hasValue() &&
3208 AArch64_AM::isLogicalImmediate(ValAndVReg->Value, RegSize);
3209 unsigned Opc = OpcTable[Is32Bit][IsImmForm];
3210 auto TstMI = MIRBuilder.buildInstr(Opc, {ZReg}, {LHS});
3212 if (IsImmForm)
3213 TstMI.addImm(
3214 AArch64_AM::encodeLogicalImmediate(ValAndVReg->Value, RegSize));
3215 else
3216 TstMI.addUse(RHS);
3218 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
3219 return &*TstMI;
3222 MachineInstr *AArch64InstructionSelector::emitIntegerCompare(
3223 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
3224 MachineIRBuilder &MIRBuilder) const {
3225 assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
3226 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
3228 // Fold the compare if possible.
3229 MachineInstr *FoldCmp =
3230 tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder);
3231 if (FoldCmp)
3232 return FoldCmp;
3234 // Can't fold into a CMN. Just emit a normal compare.
3235 unsigned CmpOpc = 0;
3236 Register ZReg;
3238 LLT CmpTy = MRI.getType(LHS.getReg());
3239 assert((CmpTy.isScalar() || CmpTy.isPointer()) &&
3240 "Expected scalar or pointer");
3241 if (CmpTy == LLT::scalar(32)) {
3242 CmpOpc = AArch64::SUBSWrr;
3243 ZReg = AArch64::WZR;
3244 } else if (CmpTy == LLT::scalar(64) || CmpTy.isPointer()) {
3245 CmpOpc = AArch64::SUBSXrr;
3246 ZReg = AArch64::XZR;
3247 } else {
3248 return nullptr;
3251 // Try to match immediate forms.
3252 auto ImmFns = selectArithImmed(RHS);
3253 if (ImmFns)
3254 CmpOpc = CmpOpc == AArch64::SUBSWrr ? AArch64::SUBSWri : AArch64::SUBSXri;
3256 auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addDef(ZReg).addUse(LHS.getReg());
3257 // If we matched a valid constant immediate, add those operands.
3258 if (ImmFns) {
3259 for (auto &RenderFn : *ImmFns)
3260 RenderFn(CmpMI);
3261 } else {
3262 CmpMI.addUse(RHS.getReg());
3265 // Make sure that we can constrain the compare that we emitted.
3266 constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
3267 return &*CmpMI;
3270 MachineInstr *AArch64InstructionSelector::emitVectorConcat(
3271 Optional<Register> Dst, Register Op1, Register Op2,
3272 MachineIRBuilder &MIRBuilder) const {
3273 // We implement a vector concat by:
3274 // 1. Use scalar_to_vector to insert the lower vector into the larger dest
3275 // 2. Insert the upper vector into the destination's upper element
3276 // TODO: some of this code is common with G_BUILD_VECTOR handling.
3277 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
3279 const LLT Op1Ty = MRI.getType(Op1);
3280 const LLT Op2Ty = MRI.getType(Op2);
3282 if (Op1Ty != Op2Ty) {
3283 LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
3284 return nullptr;
3286 assert(Op1Ty.isVector() && "Expected a vector for vector concat");
3288 if (Op1Ty.getSizeInBits() >= 128) {
3289 LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
3290 return nullptr;
3293 // At the moment we just support 64 bit vector concats.
3294 if (Op1Ty.getSizeInBits() != 64) {
3295 LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
3296 return nullptr;
3299 const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
3300 const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
3301 const TargetRegisterClass *DstRC =
3302 getMinClassForRegBank(FPRBank, Op1Ty.getSizeInBits() * 2);
3304 MachineInstr *WidenedOp1 =
3305 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
3306 MachineInstr *WidenedOp2 =
3307 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
3308 if (!WidenedOp1 || !WidenedOp2) {
3309 LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
3310 return nullptr;
3313 // Now do the insert of the upper element.
3314 unsigned InsertOpc, InsSubRegIdx;
3315 std::tie(InsertOpc, InsSubRegIdx) =
3316 getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());
3318 if (!Dst)
3319 Dst = MRI.createVirtualRegister(DstRC);
3320 auto InsElt =
3321 MIRBuilder
3322 .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
3323 .addImm(1) /* Lane index */
3324 .addUse(WidenedOp2->getOperand(0).getReg())
3325 .addImm(0);
3326 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
3327 return &*InsElt;
3330 MachineInstr *AArch64InstructionSelector::emitFMovForFConstant(
3331 MachineInstr &I, MachineRegisterInfo &MRI) const {
3332 assert(I.getOpcode() == TargetOpcode::G_FCONSTANT &&
3333 "Expected a G_FCONSTANT!");
3334 MachineOperand &ImmOp = I.getOperand(1);
3335 unsigned DefSize = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();
3337 // Only handle 32 and 64 bit defs for now.
3338 if (DefSize != 32 && DefSize != 64)
3339 return nullptr;
3341 // Don't handle null values using FMOV.
3342 if (ImmOp.getFPImm()->isNullValue())
3343 return nullptr;
3345 // Get the immediate representation for the FMOV.
3346 const APFloat &ImmValAPF = ImmOp.getFPImm()->getValueAPF();
3347 int Imm = DefSize == 32 ? AArch64_AM::getFP32Imm(ImmValAPF)
3348 : AArch64_AM::getFP64Imm(ImmValAPF);
3350 // If this is -1, it means the immediate can't be represented as the requested
3351 // floating point value. Bail.
3352 if (Imm == -1)
3353 return nullptr;
3355 // Update MI to represent the new FMOV instruction, constrain it, and return.
3356 ImmOp.ChangeToImmediate(Imm);
3357 unsigned MovOpc = DefSize == 32 ? AArch64::FMOVSi : AArch64::FMOVDi;
3358 I.setDesc(TII.get(MovOpc));
3359 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3360 return &I;
3363 MachineInstr *
3364 AArch64InstructionSelector::emitCSetForICMP(Register DefReg, unsigned Pred,
3365 MachineIRBuilder &MIRBuilder) const {
3366 // CSINC increments the result when the predicate is false. Invert it.
3367 const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC(
3368 CmpInst::getInversePredicate((CmpInst::Predicate)Pred));
3369 auto I =
3370 MIRBuilder
3371 .buildInstr(AArch64::CSINCWr, {DefReg}, {Register(AArch64::WZR), Register(AArch64::WZR)})
3372 .addImm(InvCC);
3373 constrainSelectedInstRegOperands(*I, TII, TRI, RBI);
3374 return &*I;
3377 bool AArch64InstructionSelector::tryOptSelect(MachineInstr &I) const {
3378 MachineIRBuilder MIB(I);
3379 MachineRegisterInfo &MRI = *MIB.getMRI();
3380 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3382 // We want to recognize this pattern:
3384 // $z = G_FCMP pred, $x, $y
3385 // ...
3386 // $w = G_SELECT $z, $a, $b
3388 // Where the value of $z is *only* ever used by the G_SELECT (possibly with
3389 // some copies/truncs in between.)
3391 // If we see this, then we can emit something like this:
3393 // fcmp $x, $y
3394 // fcsel $w, $a, $b, pred
3396 // Rather than emitting both of the rather long sequences in the standard
3397 // G_FCMP/G_SELECT select methods.
3399 // First, check if the condition is defined by a compare.
3400 MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
3401 while (CondDef) {
3402 // We can only fold if all of the defs have one use.
3403 if (!MRI.hasOneUse(CondDef->getOperand(0).getReg()))
3404 return false;
3406 // We can skip over G_TRUNC since the condition is 1-bit.
3407 // Truncating/extending can have no impact on the value.
3408 unsigned Opc = CondDef->getOpcode();
3409 if (Opc != TargetOpcode::COPY && Opc != TargetOpcode::G_TRUNC)
3410 break;
3412 // Can't see past copies from physregs.
3413 if (Opc == TargetOpcode::COPY &&
3414 Register::isPhysicalRegister(CondDef->getOperand(1).getReg()))
3415 return false;
3417 CondDef = MRI.getVRegDef(CondDef->getOperand(1).getReg());
3420 // Is the condition defined by a compare?
3421 if (!CondDef)
3422 return false;
3424 unsigned CondOpc = CondDef->getOpcode();
3425 if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP)
3426 return false;
3428 AArch64CC::CondCode CondCode;
3429 if (CondOpc == TargetOpcode::G_ICMP) {
3430 CondCode = changeICMPPredToAArch64CC(
3431 (CmpInst::Predicate)CondDef->getOperand(1).getPredicate());
3432 if (!emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3),
3433 CondDef->getOperand(1), MIB)) {
3434 LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n");
3435 return false;
3437 } else {
3438 // Get the condition code for the select.
3439 AArch64CC::CondCode CondCode2;
3440 changeFCMPPredToAArch64CC(
3441 (CmpInst::Predicate)CondDef->getOperand(1).getPredicate(), CondCode,
3442 CondCode2);
3444 // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
3445 // instructions to emit the comparison.
3446 // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
3447 // unnecessary.
3448 if (CondCode2 != AArch64CC::AL)
3449 return false;
3451 // Make sure we'll be able to select the compare.
3452 unsigned CmpOpc = selectFCMPOpc(*CondDef, MRI);
3453 if (!CmpOpc)
3454 return false;
3456 // Emit a new compare.
3457 auto Cmp = MIB.buildInstr(CmpOpc, {}, {CondDef->getOperand(2).getReg()});
3458 if (CmpOpc != AArch64::FCMPSri && CmpOpc != AArch64::FCMPDri)
3459 Cmp.addUse(CondDef->getOperand(3).getReg());
3460 constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
3463 // Emit the select.
3464 unsigned CSelOpc = selectSelectOpc(I, MRI, RBI);
3465 auto CSel =
3466 MIB.buildInstr(CSelOpc, {I.getOperand(0).getReg()},
3467 {I.getOperand(2).getReg(), I.getOperand(3).getReg()})
3468 .addImm(CondCode);
3469 constrainSelectedInstRegOperands(*CSel, TII, TRI, RBI);
3470 I.eraseFromParent();
3471 return true;
3474 MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
3475 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
3476 MachineIRBuilder &MIRBuilder) const {
3477 assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
3478 "Unexpected MachineOperand");
3479 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
3480 // We want to find this sort of thing:
3481 // x = G_SUB 0, y
3482 // G_ICMP z, x
3484 // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
3485 // e.g:
3487 // cmn z, y
3489 // Helper lambda to detect the subtract followed by the compare.
3490 // Takes in the def of the LHS or RHS, and checks if it's a subtract from 0.
3491 auto IsCMN = [&](MachineInstr *DefMI, const AArch64CC::CondCode &CC) {
3492 if (!DefMI || DefMI->getOpcode() != TargetOpcode::G_SUB)
3493 return false;
3495 // Need to make sure NZCV is the same at the end of the transformation.
3496 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
3497 return false;
3499 // We want to match against SUBs.
3500 if (DefMI->getOpcode() != TargetOpcode::G_SUB)
3501 return false;
3503 // Make sure that we're getting
3504 // x = G_SUB 0, y
3505 auto ValAndVReg =
3506 getConstantVRegValWithLookThrough(DefMI->getOperand(1).getReg(), MRI);
3507 if (!ValAndVReg || ValAndVReg->Value != 0)
3508 return false;
3510 // This can safely be represented as a CMN.
3511 return true;
3514 // Check if the RHS or LHS of the G_ICMP is defined by a SUB
3515 MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
3516 MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
3517 CmpInst::Predicate P = (CmpInst::Predicate)Predicate.getPredicate();
3518 const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(P);
3520 // Given this:
3522 // x = G_SUB 0, y
3523 // G_ICMP x, z
3525 // Produce this:
3527 // cmn y, z
3528 if (IsCMN(LHSDef, CC))
3529 return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);
3531 // Same idea here, but with the RHS of the compare instead:
3533 // Given this:
3535 // x = G_SUB 0, y
3536 // G_ICMP z, x
3538 // Produce this:
3540 // cmn z, y
3541 if (IsCMN(RHSDef, CC))
3542 return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);
3544 // Given this:
3546 // z = G_AND x, y
3547 // G_ICMP z, 0
3549 // Produce this if the compare is signed:
3551 // tst x, y
3552 if (!isUnsignedICMPPred(P) && LHSDef &&
3553 LHSDef->getOpcode() == TargetOpcode::G_AND) {
3554 // Make sure that the RHS is 0.
3555 auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI);
3556 if (!ValAndVReg || ValAndVReg->Value != 0)
3557 return nullptr;
3559 return emitTST(LHSDef->getOperand(1).getReg(),
3560 LHSDef->getOperand(2).getReg(), MIRBuilder);
3563 return nullptr;
3566 bool AArch64InstructionSelector::tryOptVectorDup(MachineInstr &I) const {
3567 // Try to match a vector splat operation into a dup instruction.
3568 // We're looking for this pattern:
3569 // %scalar:gpr(s64) = COPY $x0
3570 // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
3571 // %cst0:gpr(s32) = G_CONSTANT i32 0
3572 // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
3573 // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
3574 // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef,
3575 // %zerovec(<2 x s32>)
3577 // ...into:
3578 // %splat = DUP %scalar
3579 // We use the regbank of the scalar to determine which kind of dup to use.
3580 MachineIRBuilder MIB(I);
3581 MachineRegisterInfo &MRI = *MIB.getMRI();
3582 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3583 using namespace TargetOpcode;
3584 using namespace MIPatternMatch;
3586 // Begin matching the insert.
3587 auto *InsMI =
3588 getOpcodeDef(G_INSERT_VECTOR_ELT, I.getOperand(1).getReg(), MRI);
3589 if (!InsMI)
3590 return false;
3591 // Match the undef vector operand.
3592 auto *UndefMI =
3593 getOpcodeDef(G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(), MRI);
3594 if (!UndefMI)
3595 return false;
3596 // Match the scalar being splatted.
3597 Register ScalarReg = InsMI->getOperand(2).getReg();
3598 const RegisterBank *ScalarRB = RBI.getRegBank(ScalarReg, MRI, TRI);
3599 // Match the index constant 0.
3600 int64_t Index = 0;
3601 if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ICst(Index)) || Index)
3602 return false;
3604 // The shuffle's second operand doesn't matter if the mask is all zero.
3605 const Constant *Mask = I.getOperand(3).getShuffleMask();
3606 if (!isa<ConstantAggregateZero>(Mask))
3607 return false;
3609 // We're done, now find out what kind of splat we need.
3610 LLT VecTy = MRI.getType(I.getOperand(0).getReg());
3611 LLT EltTy = VecTy.getElementType();
3612 if (VecTy.getSizeInBits() != 128 || EltTy.getSizeInBits() < 32) {
3613 LLVM_DEBUG(dbgs() << "Could not optimize splat pattern < 128b yet");
3614 return false;
3616 bool IsFP = ScalarRB->getID() == AArch64::FPRRegBankID;
3617 static const unsigned OpcTable[2][2] = {
3618 {AArch64::DUPv4i32gpr, AArch64::DUPv2i64gpr},
3619 {AArch64::DUPv4i32lane, AArch64::DUPv2i64lane}};
3620 unsigned Opc = OpcTable[IsFP][EltTy.getSizeInBits() == 64];
3622 // For FP splats, we need to widen the scalar reg via undef too.
3623 if (IsFP) {
3624 MachineInstr *Widen = emitScalarToVector(
3625 EltTy.getSizeInBits(), &AArch64::FPR128RegClass, ScalarReg, MIB);
3626 if (!Widen)
3627 return false;
3628 ScalarReg = Widen->getOperand(0).getReg();
3630 auto Dup = MIB.buildInstr(Opc, {I.getOperand(0).getReg()}, {ScalarReg});
3631 if (IsFP)
3632 Dup.addImm(0);
3633 constrainSelectedInstRegOperands(*Dup, TII, TRI, RBI);
3634 I.eraseFromParent();
3635 return true;
3638 bool AArch64InstructionSelector::tryOptVectorShuffle(MachineInstr &I) const {
3639 if (TM.getOptLevel() == CodeGenOpt::None)
3640 return false;
3641 if (tryOptVectorDup(I))
3642 return true;
3643 return false;
3646 bool AArch64InstructionSelector::selectShuffleVector(
3647 MachineInstr &I, MachineRegisterInfo &MRI) const {
3648 if (tryOptVectorShuffle(I))
3649 return true;
3650 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3651 Register Src1Reg = I.getOperand(1).getReg();
3652 const LLT Src1Ty = MRI.getType(Src1Reg);
3653 Register Src2Reg = I.getOperand(2).getReg();
3654 const LLT Src2Ty = MRI.getType(Src2Reg);
3655 const Constant *ShuffleMask = I.getOperand(3).getShuffleMask();
3657 MachineBasicBlock &MBB = *I.getParent();
3658 MachineFunction &MF = *MBB.getParent();
3659 LLVMContext &Ctx = MF.getFunction().getContext();
3661 SmallVector<int, 8> Mask;
3662 ShuffleVectorInst::getShuffleMask(ShuffleMask, Mask);
3664 // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
3665 // it's originated from a <1 x T> type. Those should have been lowered into
3666 // G_BUILD_VECTOR earlier.
3667 if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
3668 LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
3669 return false;
3672 unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;
3674 SmallVector<Constant *, 64> CstIdxs;
3675 for (int Val : Mask) {
3676 // For now, any undef indexes we'll just assume to be 0. This should be
3677 // optimized in future, e.g. to select DUP etc.
3678 Val = Val < 0 ? 0 : Val;
3679 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
3680 unsigned Offset = Byte + Val * BytesPerElt;
3681 CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
3685 MachineIRBuilder MIRBuilder(I);
3687 // Use a constant pool to load the index vector for TBL.
3688 Constant *CPVal = ConstantVector::get(CstIdxs);
3689 MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIRBuilder);
3690 if (!IndexLoad) {
3691 LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
3692 return false;
3695 if (DstTy.getSizeInBits() != 128) {
3696 assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
3697 // This case can be done with TBL1.
3698 MachineInstr *Concat = emitVectorConcat(None, Src1Reg, Src2Reg, MIRBuilder);
3699 if (!Concat) {
3700 LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
3701 return false;
3704 // The constant pool load will be 64 bits, so need to convert to FPR128 reg.
3705 IndexLoad =
3706 emitScalarToVector(64, &AArch64::FPR128RegClass,
3707 IndexLoad->getOperand(0).getReg(), MIRBuilder);
3709 auto TBL1 = MIRBuilder.buildInstr(
3710 AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
3711 {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
3712 constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);
3714 auto Copy =
3715 MIRBuilder
3716 .buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
3717 .addReg(TBL1.getReg(0), 0, AArch64::dsub);
3718 RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
3719 I.eraseFromParent();
3720 return true;
3723 // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
3724 // Q registers for regalloc.
3725 auto RegSeq = MIRBuilder
3726 .buildInstr(TargetOpcode::REG_SEQUENCE,
3727 {&AArch64::QQRegClass}, {Src1Reg})
3728 .addImm(AArch64::qsub0)
3729 .addUse(Src2Reg)
3730 .addImm(AArch64::qsub1);
3732 auto TBL2 =
3733 MIRBuilder.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0).getReg()},
3734 {RegSeq, IndexLoad->getOperand(0).getReg()});
3735 constrainSelectedInstRegOperands(*RegSeq, TII, TRI, RBI);
3736 constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
3737 I.eraseFromParent();
3738 return true;
3741 MachineInstr *AArch64InstructionSelector::emitLaneInsert(
3742 Optional<Register> DstReg, Register SrcReg, Register EltReg,
3743 unsigned LaneIdx, const RegisterBank &RB,
3744 MachineIRBuilder &MIRBuilder) const {
3745 MachineInstr *InsElt = nullptr;
3746 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
3747 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
3749 // Create a register to define with the insert if one wasn't passed in.
3750 if (!DstReg)
3751 DstReg = MRI.createVirtualRegister(DstRC);
3753 unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
3754 unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;
3756 if (RB.getID() == AArch64::FPRRegBankID) {
3757 auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
3758 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
3759 .addImm(LaneIdx)
3760 .addUse(InsSub->getOperand(0).getReg())
3761 .addImm(0);
3762 } else {
3763 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
3764 .addImm(LaneIdx)
3765 .addUse(EltReg);
3768 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
3769 return InsElt;
3772 bool AArch64InstructionSelector::selectInsertElt(
3773 MachineInstr &I, MachineRegisterInfo &MRI) const {
3774 assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
3776 // Get information on the destination.
3777 Register DstReg = I.getOperand(0).getReg();
3778 const LLT DstTy = MRI.getType(DstReg);
3779 unsigned VecSize = DstTy.getSizeInBits();
3781 // Get information on the element we want to insert into the destination.
3782 Register EltReg = I.getOperand(2).getReg();
3783 const LLT EltTy = MRI.getType(EltReg);
3784 unsigned EltSize = EltTy.getSizeInBits();
3785 if (EltSize < 16 || EltSize > 64)
3786 return false; // Don't support all element types yet.
3788 // Find the definition of the index. Bail out if it's not defined by a
3789 // G_CONSTANT.
3790 Register IdxReg = I.getOperand(3).getReg();
3791 auto VRegAndVal = getConstantVRegValWithLookThrough(IdxReg, MRI);
3792 if (!VRegAndVal)
3793 return false;
3794 unsigned LaneIdx = VRegAndVal->Value;
3796 // Perform the lane insert.
3797 Register SrcReg = I.getOperand(1).getReg();
3798 const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
3799 MachineIRBuilder MIRBuilder(I);
3801 if (VecSize < 128) {
3802 // If the vector we're inserting into is smaller than 128 bits, widen it
3803 // to 128 to do the insert.
3804 MachineInstr *ScalarToVec = emitScalarToVector(
3805 VecSize, &AArch64::FPR128RegClass, SrcReg, MIRBuilder);
3806 if (!ScalarToVec)
3807 return false;
3808 SrcReg = ScalarToVec->getOperand(0).getReg();
3811 // Create an insert into a new FPR128 register.
3812 // Note that if our vector is already 128 bits, we end up emitting an extra
3813 // register.
3814 MachineInstr *InsMI =
3815 emitLaneInsert(None, SrcReg, EltReg, LaneIdx, EltRB, MIRBuilder);
3817 if (VecSize < 128) {
3818 // If we had to widen to perform the insert, then we have to demote back to
3819 // the original size to get the result we want.
3820 Register DemoteVec = InsMI->getOperand(0).getReg();
3821 const TargetRegisterClass *RC =
3822 getMinClassForRegBank(*RBI.getRegBank(DemoteVec, MRI, TRI), VecSize);
3823 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
3824 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
3825 return false;
3827 unsigned SubReg = 0;
3828 if (!getSubRegForClass(RC, TRI, SubReg))
3829 return false;
3830 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
3831 LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize
3832 << "\n");
3833 return false;
3835 MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
3836 .addReg(DemoteVec, 0, SubReg);
3837 RBI.constrainGenericRegister(DstReg, *RC, MRI);
3838 } else {
3839 // No widening needed.
3840 InsMI->getOperand(0).setReg(DstReg);
3841 constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
3844 I.eraseFromParent();
3845 return true;
3848 bool AArch64InstructionSelector::selectBuildVector(
3849 MachineInstr &I, MachineRegisterInfo &MRI) const {
3850 assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
3851 // Until we port more of the optimized selections, for now just use a vector
3852 // insert sequence.
3853 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3854 const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
3855 unsigned EltSize = EltTy.getSizeInBits();
3856 if (EltSize < 16 || EltSize > 64)
3857 return false; // Don't support all element types yet.
3858 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
3859 MachineIRBuilder MIRBuilder(I);
3861 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
3862 MachineInstr *ScalarToVec =
3863 emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
3864 I.getOperand(1).getReg(), MIRBuilder);
3865 if (!ScalarToVec)
3866 return false;
3868 Register DstVec = ScalarToVec->getOperand(0).getReg();
3869 unsigned DstSize = DstTy.getSizeInBits();
3871 // Keep track of the last MI we inserted. Later on, we might be able to save
3872 // a copy using it.
3873 MachineInstr *PrevMI = nullptr;
3874 for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
3875 // Note that if we don't do a subregister copy, we can end up making an
3876 // extra register.
3877 PrevMI = &*emitLaneInsert(None, DstVec, I.getOperand(i).getReg(), i - 1, RB,
3878 MIRBuilder);
3879 DstVec = PrevMI->getOperand(0).getReg();
3882 // If DstTy's size in bits is less than 128, then emit a subregister copy
3883 // from DstVec to the last register we've defined.
3884 if (DstSize < 128) {
3885 // Force this to be FPR using the destination vector.
3886 const TargetRegisterClass *RC =
3887 getMinClassForRegBank(*RBI.getRegBank(DstVec, MRI, TRI), DstSize);
3888 if (!RC)
3889 return false;
3890 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
3891 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
3892 return false;
3895 unsigned SubReg = 0;
3896 if (!getSubRegForClass(RC, TRI, SubReg))
3897 return false;
3898 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
3899 LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
3900 << "\n");
3901 return false;
3904 Register Reg = MRI.createVirtualRegister(RC);
3905 Register DstReg = I.getOperand(0).getReg();
3907 MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
3908 .addReg(DstVec, 0, SubReg);
3909 MachineOperand &RegOp = I.getOperand(1);
3910 RegOp.setReg(Reg);
3911 RBI.constrainGenericRegister(DstReg, *RC, MRI);
3912 } else {
3913 // We don't need a subregister copy. Save a copy by re-using the
3914 // destination register on the final insert.
3915 assert(PrevMI && "PrevMI was null?");
3916 PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
3917 constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
3920 I.eraseFromParent();
3921 return true;
3924 /// Helper function to find an intrinsic ID on an a MachineInstr. Returns the
3925 /// ID if it exists, and 0 otherwise.
3926 static unsigned findIntrinsicID(MachineInstr &I) {
3927 auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) {
3928 return Op.isIntrinsicID();
3930 if (IntrinOp == I.operands_end())
3931 return 0;
3932 return IntrinOp->getIntrinsicID();
3935 bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
3936 MachineInstr &I, MachineRegisterInfo &MRI) const {
3937 // Find the intrinsic ID.
3938 unsigned IntrinID = findIntrinsicID(I);
3939 if (!IntrinID)
3940 return false;
3941 MachineIRBuilder MIRBuilder(I);
3943 // Select the instruction.
3944 switch (IntrinID) {
3945 default:
3946 return false;
3947 case Intrinsic::trap:
3948 MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(1);
3949 break;
3950 case Intrinsic::debugtrap:
3951 if (!STI.isTargetWindows())
3952 return false;
3953 MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(0xF000);
3954 break;
3957 I.eraseFromParent();
3958 return true;
3961 bool AArch64InstructionSelector::selectIntrinsic(
3962 MachineInstr &I, MachineRegisterInfo &MRI) const {
3963 unsigned IntrinID = findIntrinsicID(I);
3964 if (!IntrinID)
3965 return false;
3966 MachineIRBuilder MIRBuilder(I);
3968 switch (IntrinID) {
3969 default:
3970 break;
3971 case Intrinsic::aarch64_crypto_sha1h:
3972 Register DstReg = I.getOperand(0).getReg();
3973 Register SrcReg = I.getOperand(2).getReg();
3975 // FIXME: Should this be an assert?
3976 if (MRI.getType(DstReg).getSizeInBits() != 32 ||
3977 MRI.getType(SrcReg).getSizeInBits() != 32)
3978 return false;
3980 // The operation has to happen on FPRs. Set up some new FPR registers for
3981 // the source and destination if they are on GPRs.
3982 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
3983 SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
3984 MIRBuilder.buildCopy({SrcReg}, {I.getOperand(2)});
3986 // Make sure the copy ends up getting constrained properly.
3987 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
3988 AArch64::GPR32RegClass, MRI);
3991 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
3992 DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
3994 // Actually insert the instruction.
3995 auto SHA1Inst = MIRBuilder.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
3996 constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);
3998 // Did we create a new register for the destination?
3999 if (DstReg != I.getOperand(0).getReg()) {
4000 // Yep. Copy the result of the instruction back into the original
4001 // destination.
4002 MIRBuilder.buildCopy({I.getOperand(0)}, {DstReg});
4003 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
4004 AArch64::GPR32RegClass, MRI);
4007 I.eraseFromParent();
4008 return true;
4010 return false;
4013 static Optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
4014 auto &MI = *Root.getParent();
4015 auto &MBB = *MI.getParent();
4016 auto &MF = *MBB.getParent();
4017 auto &MRI = MF.getRegInfo();
4018 uint64_t Immed;
4019 if (Root.isImm())
4020 Immed = Root.getImm();
4021 else if (Root.isCImm())
4022 Immed = Root.getCImm()->getZExtValue();
4023 else if (Root.isReg()) {
4024 auto ValAndVReg =
4025 getConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
4026 if (!ValAndVReg)
4027 return None;
4028 Immed = ValAndVReg->Value;
4029 } else
4030 return None;
4031 return Immed;
4034 InstructionSelector::ComplexRendererFns
4035 AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
4036 auto MaybeImmed = getImmedFromMO(Root);
4037 if (MaybeImmed == None || *MaybeImmed > 31)
4038 return None;
4039 uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
4040 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
4043 InstructionSelector::ComplexRendererFns
4044 AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
4045 auto MaybeImmed = getImmedFromMO(Root);
4046 if (MaybeImmed == None || *MaybeImmed > 31)
4047 return None;
4048 uint64_t Enc = 31 - *MaybeImmed;
4049 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
4052 InstructionSelector::ComplexRendererFns
4053 AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
4054 auto MaybeImmed = getImmedFromMO(Root);
4055 if (MaybeImmed == None || *MaybeImmed > 63)
4056 return None;
4057 uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
4058 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
4061 InstructionSelector::ComplexRendererFns
4062 AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
4063 auto MaybeImmed = getImmedFromMO(Root);
4064 if (MaybeImmed == None || *MaybeImmed > 63)
4065 return None;
4066 uint64_t Enc = 63 - *MaybeImmed;
4067 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
4070 /// Helper to select an immediate value that can be represented as a 12-bit
4071 /// value shifted left by either 0 or 12. If it is possible to do so, return
4072 /// the immediate and shift value. If not, return None.
4074 /// Used by selectArithImmed and selectNegArithImmed.
4075 InstructionSelector::ComplexRendererFns
4076 AArch64InstructionSelector::select12BitValueWithLeftShift(
4077 uint64_t Immed) const {
4078 unsigned ShiftAmt;
4079 if (Immed >> 12 == 0) {
4080 ShiftAmt = 0;
4081 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
4082 ShiftAmt = 12;
4083 Immed = Immed >> 12;
4084 } else
4085 return None;
4087 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
4088 return {{
4089 [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
4090 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
4094 /// SelectArithImmed - Select an immediate value that can be represented as
4095 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
4096 /// Val set to the 12-bit value and Shift set to the shifter operand.
4097 InstructionSelector::ComplexRendererFns
4098 AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
4099 // This function is called from the addsub_shifted_imm ComplexPattern,
4100 // which lists [imm] as the list of opcode it's interested in, however
4101 // we still need to check whether the operand is actually an immediate
4102 // here because the ComplexPattern opcode list is only used in
4103 // root-level opcode matching.
4104 auto MaybeImmed = getImmedFromMO(Root);
4105 if (MaybeImmed == None)
4106 return None;
4107 return select12BitValueWithLeftShift(*MaybeImmed);
4110 /// SelectNegArithImmed - As above, but negates the value before trying to
4111 /// select it.
4112 InstructionSelector::ComplexRendererFns
4113 AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
4114 // We need a register here, because we need to know if we have a 64 or 32
4115 // bit immediate.
4116 if (!Root.isReg())
4117 return None;
4118 auto MaybeImmed = getImmedFromMO(Root);
4119 if (MaybeImmed == None)
4120 return None;
4121 uint64_t Immed = *MaybeImmed;
4123 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
4124 // have the opposite effect on the C flag, so this pattern mustn't match under
4125 // those circumstances.
4126 if (Immed == 0)
4127 return None;
4129 // Check if we're dealing with a 32-bit type on the root or a 64-bit type on
4130 // the root.
4131 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
4132 if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
4133 Immed = ~((uint32_t)Immed) + 1;
4134 else
4135 Immed = ~Immed + 1ULL;
4137 if (Immed & 0xFFFFFFFFFF000000ULL)
4138 return None;
4140 Immed &= 0xFFFFFFULL;
4141 return select12BitValueWithLeftShift(Immed);
4144 /// Return true if it is worth folding MI into an extended register. That is,
4145 /// if it's safe to pull it into the addressing mode of a load or store as a
4146 /// shift.
4147 bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
4148 MachineInstr &MI, const MachineRegisterInfo &MRI) const {
4149 // Always fold if there is one use, or if we're optimizing for size.
4150 Register DefReg = MI.getOperand(0).getReg();
4151 if (MRI.hasOneUse(DefReg) ||
4152 MI.getParent()->getParent()->getFunction().hasMinSize())
4153 return true;
4155 // It's better to avoid folding and recomputing shifts when we don't have a
4156 // fastpath.
4157 if (!STI.hasLSLFast())
4158 return false;
4160 // We have a fastpath, so folding a shift in and potentially computing it
4161 // many times may be beneficial. Check if this is only used in memory ops.
4162 // If it is, then we should fold.
4163 return all_of(MRI.use_instructions(DefReg),
4164 [](MachineInstr &Use) { return Use.mayLoadOrStore(); });
4167 /// This is used for computing addresses like this:
4169 /// ldr x1, [x2, x3, lsl #3]
4171 /// Where x2 is the base register, and x3 is an offset register. The shift-left
4172 /// is a constant value specific to this load instruction. That is, we'll never
4173 /// see anything other than a 3 here (which corresponds to the size of the
4174 /// element being loaded.)
4175 InstructionSelector::ComplexRendererFns
4176 AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
4177 MachineOperand &Root, unsigned SizeInBytes) const {
4178 if (!Root.isReg())
4179 return None;
4180 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
4182 // Make sure that the memory op is a valid size.
4183 int64_t LegalShiftVal = Log2_32(SizeInBytes);
4184 if (LegalShiftVal == 0)
4185 return None;
4187 // We want to find something like this:
4189 // val = G_CONSTANT LegalShiftVal
4190 // shift = G_SHL off_reg val
4191 // ptr = G_GEP base_reg shift
4192 // x = G_LOAD ptr
4194 // And fold it into this addressing mode:
4196 // ldr x, [base_reg, off_reg, lsl #LegalShiftVal]
4198 // Check if we can find the G_GEP.
4199 MachineInstr *Gep = getOpcodeDef(TargetOpcode::G_GEP, Root.getReg(), MRI);
4200 if (!Gep || !isWorthFoldingIntoExtendedReg(*Gep, MRI))
4201 return None;
4203 // Now, try to match an opcode which will match our specific offset.
4204 // We want a G_SHL or a G_MUL.
4205 MachineInstr *OffsetInst = getDefIgnoringCopies(Gep->getOperand(2).getReg(), MRI);
4206 if (!OffsetInst)
4207 return None;
4209 unsigned OffsetOpc = OffsetInst->getOpcode();
4210 if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
4211 return None;
4213 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
4214 return None;
4216 // Now, try to find the specific G_CONSTANT. Start by assuming that the
4217 // register we will offset is the LHS, and the register containing the
4218 // constant is the RHS.
4219 Register OffsetReg = OffsetInst->getOperand(1).getReg();
4220 Register ConstantReg = OffsetInst->getOperand(2).getReg();
4221 auto ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
4222 if (!ValAndVReg) {
4223 // We didn't get a constant on the RHS. If the opcode is a shift, then
4224 // we're done.
4225 if (OffsetOpc == TargetOpcode::G_SHL)
4226 return None;
4228 // If we have a G_MUL, we can use either register. Try looking at the RHS.
4229 std::swap(OffsetReg, ConstantReg);
4230 ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
4231 if (!ValAndVReg)
4232 return None;
4235 // The value must fit into 3 bits, and must be positive. Make sure that is
4236 // true.
4237 int64_t ImmVal = ValAndVReg->Value;
4239 // Since we're going to pull this into a shift, the constant value must be
4240 // a power of 2. If we got a multiply, then we need to check this.
4241 if (OffsetOpc == TargetOpcode::G_MUL) {
4242 if (!isPowerOf2_32(ImmVal))
4243 return None;
4245 // Got a power of 2. So, the amount we'll shift is the log base-2 of that.
4246 ImmVal = Log2_32(ImmVal);
4249 if ((ImmVal & 0x7) != ImmVal)
4250 return None;
4252 // We are only allowed to shift by LegalShiftVal. This shift value is built
4253 // into the instruction, so we can't just use whatever we want.
4254 if (ImmVal != LegalShiftVal)
4255 return None;
4257 // We can use the LHS of the GEP as the base, and the LHS of the shift as an
4258 // offset. Signify that we are shifting by setting the shift flag to 1.
4259 return {{[=](MachineInstrBuilder &MIB) {
4260 MIB.addUse(Gep->getOperand(1).getReg());
4262 [=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
4263 [=](MachineInstrBuilder &MIB) {
4264 // Need to add both immediates here to make sure that they are both
4265 // added to the instruction.
4266 MIB.addImm(0);
4267 MIB.addImm(1);
4268 }}};
4271 /// This is used for computing addresses like this:
4273 /// ldr x1, [x2, x3]
4275 /// Where x2 is the base register, and x3 is an offset register.
4277 /// When possible (or profitable) to fold a G_GEP into the address calculation,
4278 /// this will do so. Otherwise, it will return None.
4279 InstructionSelector::ComplexRendererFns
4280 AArch64InstructionSelector::selectAddrModeRegisterOffset(
4281 MachineOperand &Root) const {
4282 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
4284 // We need a GEP.
4285 MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
4286 if (!Gep || Gep->getOpcode() != TargetOpcode::G_GEP)
4287 return None;
4289 // If this is used more than once, let's not bother folding.
4290 // TODO: Check if they are memory ops. If they are, then we can still fold
4291 // without having to recompute anything.
4292 if (!MRI.hasOneUse(Gep->getOperand(0).getReg()))
4293 return None;
4295 // Base is the GEP's LHS, offset is its RHS.
4296 return {{[=](MachineInstrBuilder &MIB) {
4297 MIB.addUse(Gep->getOperand(1).getReg());
4299 [=](MachineInstrBuilder &MIB) {
4300 MIB.addUse(Gep->getOperand(2).getReg());
4302 [=](MachineInstrBuilder &MIB) {
4303 // Need to add both immediates here to make sure that they are both
4304 // added to the instruction.
4305 MIB.addImm(0);
4306 MIB.addImm(0);
4307 }}};
4310 /// This is intended to be equivalent to selectAddrModeXRO in
4311 /// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
4312 InstructionSelector::ComplexRendererFns
4313 AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
4314 unsigned SizeInBytes) const {
4315 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
4317 // If we have a constant offset, then we probably don't want to match a
4318 // register offset.
4319 if (isBaseWithConstantOffset(Root, MRI))
4320 return None;
4322 // Try to fold shifts into the addressing mode.
4323 auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
4324 if (AddrModeFns)
4325 return AddrModeFns;
4327 // If that doesn't work, see if it's possible to fold in registers from
4328 // a GEP.
4329 return selectAddrModeRegisterOffset(Root);
4332 /// Select a "register plus unscaled signed 9-bit immediate" address. This
4333 /// should only match when there is an offset that is not valid for a scaled
4334 /// immediate addressing mode. The "Size" argument is the size in bytes of the
4335 /// memory reference, which is needed here to know what is valid for a scaled
4336 /// immediate.
4337 InstructionSelector::ComplexRendererFns
4338 AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
4339 unsigned Size) const {
4340 MachineRegisterInfo &MRI =
4341 Root.getParent()->getParent()->getParent()->getRegInfo();
4343 if (!Root.isReg())
4344 return None;
4346 if (!isBaseWithConstantOffset(Root, MRI))
4347 return None;
4349 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
4350 if (!RootDef)
4351 return None;
4353 MachineOperand &OffImm = RootDef->getOperand(2);
4354 if (!OffImm.isReg())
4355 return None;
4356 MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
4357 if (!RHS || RHS->getOpcode() != TargetOpcode::G_CONSTANT)
4358 return None;
4359 int64_t RHSC;
4360 MachineOperand &RHSOp1 = RHS->getOperand(1);
4361 if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
4362 return None;
4363 RHSC = RHSOp1.getCImm()->getSExtValue();
4365 // If the offset is valid as a scaled immediate, don't match here.
4366 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size)))
4367 return None;
4368 if (RHSC >= -256 && RHSC < 256) {
4369 MachineOperand &Base = RootDef->getOperand(1);
4370 return {{
4371 [=](MachineInstrBuilder &MIB) { MIB.add(Base); },
4372 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
4375 return None;
4378 /// Select a "register plus scaled unsigned 12-bit immediate" address. The
4379 /// "Size" argument is the size in bytes of the memory reference, which
4380 /// determines the scale.
4381 InstructionSelector::ComplexRendererFns
4382 AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
4383 unsigned Size) const {
4384 MachineRegisterInfo &MRI =
4385 Root.getParent()->getParent()->getParent()->getRegInfo();
4387 if (!Root.isReg())
4388 return None;
4390 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
4391 if (!RootDef)
4392 return None;
4394 if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
4395 return {{
4396 [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
4397 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
4401 if (isBaseWithConstantOffset(Root, MRI)) {
4402 MachineOperand &LHS = RootDef->getOperand(1);
4403 MachineOperand &RHS = RootDef->getOperand(2);
4404 MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
4405 MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
4406 if (LHSDef && RHSDef) {
4407 int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
4408 unsigned Scale = Log2_32(Size);
4409 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
4410 if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
4411 return {{
4412 [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
4413 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
4416 return {{
4417 [=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
4418 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
4424 // Before falling back to our general case, check if the unscaled
4425 // instructions can handle this. If so, that's preferable.
4426 if (selectAddrModeUnscaled(Root, Size).hasValue())
4427 return None;
4429 return {{
4430 [=](MachineInstrBuilder &MIB) { MIB.add(Root); },
4431 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
4435 /// Given a shift instruction, return the correct shift type for that
4436 /// instruction.
4437 static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
4438 // TODO: Handle AArch64_AM::ROR
4439 switch (MI.getOpcode()) {
4440 default:
4441 return AArch64_AM::InvalidShiftExtend;
4442 case TargetOpcode::G_SHL:
4443 return AArch64_AM::LSL;
4444 case TargetOpcode::G_LSHR:
4445 return AArch64_AM::LSR;
4446 case TargetOpcode::G_ASHR:
4447 return AArch64_AM::ASR;
4451 /// Select a "shifted register" operand. If the value is not shifted, set the
4452 /// shift operand to a default value of "lsl 0".
4454 /// TODO: Allow shifted register to be rotated in logical instructions.
4455 InstructionSelector::ComplexRendererFns
4456 AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root) const {
4457 if (!Root.isReg())
4458 return None;
4459 MachineRegisterInfo &MRI =
4460 Root.getParent()->getParent()->getParent()->getRegInfo();
4462 // Check if the operand is defined by an instruction which corresponds to
4463 // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
4465 // TODO: Handle AArch64_AM::ROR for logical instructions.
4466 MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
4467 if (!ShiftInst)
4468 return None;
4469 AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
4470 if (ShType == AArch64_AM::InvalidShiftExtend)
4471 return None;
4472 if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI))
4473 return None;
4475 // Need an immediate on the RHS.
4476 MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
4477 auto Immed = getImmedFromMO(ShiftRHS);
4478 if (!Immed)
4479 return None;
4481 // We have something that we can fold. Fold in the shift's LHS and RHS into
4482 // the instruction.
4483 MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
4484 Register ShiftReg = ShiftLHS.getReg();
4486 unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
4487 unsigned Val = *Immed & (NumBits - 1);
4488 unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);
4490 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
4491 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
4494 /// Get the correct ShiftExtendType for an extend instruction.
4495 static AArch64_AM::ShiftExtendType
4496 getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI) {
4497 unsigned Opc = MI.getOpcode();
4499 // Handle explicit extend instructions first.
4500 if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
4501 unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4502 assert(Size != 64 && "Extend from 64 bits?");
4503 switch (Size) {
4504 case 8:
4505 return AArch64_AM::SXTB;
4506 case 16:
4507 return AArch64_AM::SXTH;
4508 case 32:
4509 return AArch64_AM::SXTW;
4510 default:
4511 return AArch64_AM::InvalidShiftExtend;
4515 if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
4516 unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4517 assert(Size != 64 && "Extend from 64 bits?");
4518 switch (Size) {
4519 case 8:
4520 return AArch64_AM::UXTB;
4521 case 16:
4522 return AArch64_AM::UXTH;
4523 case 32:
4524 return AArch64_AM::UXTW;
4525 default:
4526 return AArch64_AM::InvalidShiftExtend;
4530 // Don't have an explicit extend. Try to handle a G_AND with a constant mask
4531 // on the RHS.
4532 if (Opc != TargetOpcode::G_AND)
4533 return AArch64_AM::InvalidShiftExtend;
4535 Optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
4536 if (!MaybeAndMask)
4537 return AArch64_AM::InvalidShiftExtend;
4538 uint64_t AndMask = *MaybeAndMask;
4539 switch (AndMask) {
4540 default:
4541 return AArch64_AM::InvalidShiftExtend;
4542 case 0xFF:
4543 return AArch64_AM::UXTB;
4544 case 0xFFFF:
4545 return AArch64_AM::UXTH;
4546 case 0xFFFFFFFF:
4547 return AArch64_AM::UXTW;
4551 Register AArch64InstructionSelector::narrowExtendRegIfNeeded(
4552 Register ExtReg, MachineIRBuilder &MIB) const {
4553 MachineRegisterInfo &MRI = *MIB.getMRI();
4554 if (MRI.getType(ExtReg).getSizeInBits() == 32)
4555 return ExtReg;
4557 // Insert a copy to move ExtReg to GPR32.
4558 Register NarrowReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
4559 auto Copy = MIB.buildCopy({NarrowReg}, {ExtReg});
4561 // Select the copy into a subregister copy.
4562 selectCopy(*Copy, TII, MRI, TRI, RBI);
4563 return Copy.getReg(0);
4566 /// Select an "extended register" operand. This operand folds in an extend
4567 /// followed by an optional left shift.
4568 InstructionSelector::ComplexRendererFns
4569 AArch64InstructionSelector::selectArithExtendedRegister(
4570 MachineOperand &Root) const {
4571 if (!Root.isReg())
4572 return None;
4573 MachineRegisterInfo &MRI =
4574 Root.getParent()->getParent()->getParent()->getRegInfo();
4576 uint64_t ShiftVal = 0;
4577 Register ExtReg;
4578 AArch64_AM::ShiftExtendType Ext;
4579 MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
4580 if (!RootDef)
4581 return None;
4583 if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI))
4584 return None;
4586 // Check if we can fold a shift and an extend.
4587 if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
4588 // Look for a constant on the RHS of the shift.
4589 MachineOperand &RHS = RootDef->getOperand(2);
4590 Optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
4591 if (!MaybeShiftVal)
4592 return None;
4593 ShiftVal = *MaybeShiftVal;
4594 if (ShiftVal > 4)
4595 return None;
4596 // Look for a valid extend instruction on the LHS of the shift.
4597 MachineOperand &LHS = RootDef->getOperand(1);
4598 MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
4599 if (!ExtDef)
4600 return None;
4601 Ext = getExtendTypeForInst(*ExtDef, MRI);
4602 if (Ext == AArch64_AM::InvalidShiftExtend)
4603 return None;
4604 ExtReg = ExtDef->getOperand(1).getReg();
4605 } else {
4606 // Didn't get a shift. Try just folding an extend.
4607 Ext = getExtendTypeForInst(*RootDef, MRI);
4608 if (Ext == AArch64_AM::InvalidShiftExtend)
4609 return None;
4610 ExtReg = RootDef->getOperand(1).getReg();
4612 // If we have a 32 bit instruction which zeroes out the high half of a
4613 // register, we get an implicit zero extend for free. Check if we have one.
4614 // FIXME: We actually emit the extend right now even though we don't have
4615 // to.
4616 if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
4617 MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
4618 if (ExtInst && isDef32(*ExtInst))
4619 return None;
4623 // We require a GPR32 here. Narrow the ExtReg if needed using a subregister
4624 // copy.
4625 MachineIRBuilder MIB(*RootDef);
4626 ExtReg = narrowExtendRegIfNeeded(ExtReg, MIB);
4628 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
4629 [=](MachineInstrBuilder &MIB) {
4630 MIB.addImm(getArithExtendImm(Ext, ShiftVal));
4631 }}};
4634 void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
4635 const MachineInstr &MI) const {
4636 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4637 assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && "Expected G_CONSTANT");
4638 Optional<int64_t> CstVal = getConstantVRegVal(MI.getOperand(0).getReg(), MRI);
4639 assert(CstVal && "Expected constant value");
4640 MIB.addImm(CstVal.getValue());
4643 void AArch64InstructionSelector::renderLogicalImm32(
4644 MachineInstrBuilder &MIB, const MachineInstr &I) const {
4645 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && "Expected G_CONSTANT");
4646 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
4647 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
4648 MIB.addImm(Enc);
4651 void AArch64InstructionSelector::renderLogicalImm64(
4652 MachineInstrBuilder &MIB, const MachineInstr &I) const {
4653 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && "Expected G_CONSTANT");
4654 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
4655 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
4656 MIB.addImm(Enc);
4659 bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
4660 const MachineInstr &MI, unsigned NumBytes) const {
4661 if (!MI.mayLoadOrStore())
4662 return false;
4663 assert(MI.hasOneMemOperand() &&
4664 "Expected load/store to have only one mem op!");
4665 return (*MI.memoperands_begin())->getSize() == NumBytes;
4668 bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
4669 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4670 if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
4671 return false;
4673 // Only return true if we know the operation will zero-out the high half of
4674 // the 64-bit register. Truncates can be subregister copies, which don't
4675 // zero out the high bits. Copies and other copy-like instructions can be
4676 // fed by truncates, or could be lowered as subregister copies.
4677 switch (MI.getOpcode()) {
4678 default:
4679 return true;
4680 case TargetOpcode::COPY:
4681 case TargetOpcode::G_BITCAST:
4682 case TargetOpcode::G_TRUNC:
4683 case TargetOpcode::G_PHI:
4684 return false;
4688 namespace llvm {
4689 InstructionSelector *
4690 createAArch64InstructionSelector(const AArch64TargetMachine &TM,
4691 AArch64Subtarget &Subtarget,
4692 AArch64RegisterBankInfo &RBI) {
4693 return new AArch64InstructionSelector(TM, Subtarget, RBI);