1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "ARMFeatures.h"
10 #include "ARMBaseInstrInfo.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMInstPrinter.h"
15 #include "MCTargetDesc/ARMMCExpr.h"
16 #include "MCTargetDesc/ARMMCTargetDesc.h"
17 #include "TargetInfo/ARMTargetInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCInstrInfo.h"
34 #include "llvm/MC/MCObjectFileInfo.h"
35 #include "llvm/MC/MCParser/MCAsmLexer.h"
36 #include "llvm/MC/MCParser/MCAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
38 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
40 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSubtargetInfo.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/SubtargetFeature.h"
47 #include "llvm/Support/ARMBuildAttributes.h"
48 #include "llvm/Support/ARMEHABI.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/SMLoc.h"
55 #include "llvm/Support/TargetParser.h"
56 #include "llvm/Support/TargetRegistry.h"
57 #include "llvm/Support/raw_ostream.h"
69 #define DEBUG_TYPE "asm-parser"
74 extern const MCInstrDesc ARMInsts
[];
75 } // end namespace llvm
79 enum class ImplicitItModeTy
{ Always
, Never
, ARMOnly
, ThumbOnly
};
81 static cl::opt
<ImplicitItModeTy
> ImplicitItMode(
82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly
),
83 cl::desc("Allow conditional instructions outdside of an IT block"),
84 cl::values(clEnumValN(ImplicitItModeTy::Always
, "always",
85 "Accept in both ISAs, emit implicit ITs in Thumb"),
86 clEnumValN(ImplicitItModeTy::Never
, "never",
87 "Warn in ARM, reject in Thumb"),
88 clEnumValN(ImplicitItModeTy::ARMOnly
, "arm",
89 "Accept in ARM, reject in Thumb"),
90 clEnumValN(ImplicitItModeTy::ThumbOnly
, "thumb",
91 "Warn in ARM, emit implicit ITs in Thumb")));
93 static cl::opt
<bool> AddBuildAttributes("arm-add-build-attributes",
96 enum VectorLaneTy
{ NoLanes
, AllLanes
, IndexedLane
};
98 static inline unsigned extractITMaskBit(unsigned Mask
, unsigned Position
) {
99 // Position==0 means we're not in an IT block at all. Position==1
100 // means we want the first state bit, which is always 0 (Then).
101 // Position==2 means we want the second state bit, stored at bit 3
102 // of Mask, and so on downwards. So (5 - Position) will shift the
103 // right bit down to bit 0, including the always-0 bit at bit 4 for
104 // the mandatory initial Then.
105 return (Mask
>> (5 - Position
) & 1);
108 class UnwindContext
{
109 using Locs
= SmallVector
<SMLoc
, 4>;
114 Locs PersonalityLocs
;
115 Locs PersonalityIndexLocs
;
116 Locs HandlerDataLocs
;
120 UnwindContext(MCAsmParser
&P
) : Parser(P
), FPReg(ARM::SP
) {}
122 bool hasFnStart() const { return !FnStartLocs
.empty(); }
123 bool cantUnwind() const { return !CantUnwindLocs
.empty(); }
124 bool hasHandlerData() const { return !HandlerDataLocs
.empty(); }
126 bool hasPersonality() const {
127 return !(PersonalityLocs
.empty() && PersonalityIndexLocs
.empty());
130 void recordFnStart(SMLoc L
) { FnStartLocs
.push_back(L
); }
131 void recordCantUnwind(SMLoc L
) { CantUnwindLocs
.push_back(L
); }
132 void recordPersonality(SMLoc L
) { PersonalityLocs
.push_back(L
); }
133 void recordHandlerData(SMLoc L
) { HandlerDataLocs
.push_back(L
); }
134 void recordPersonalityIndex(SMLoc L
) { PersonalityIndexLocs
.push_back(L
); }
136 void saveFPReg(int Reg
) { FPReg
= Reg
; }
137 int getFPReg() const { return FPReg
; }
139 void emitFnStartLocNotes() const {
140 for (Locs::const_iterator FI
= FnStartLocs
.begin(), FE
= FnStartLocs
.end();
142 Parser
.Note(*FI
, ".fnstart was specified here");
145 void emitCantUnwindLocNotes() const {
146 for (Locs::const_iterator UI
= CantUnwindLocs
.begin(),
147 UE
= CantUnwindLocs
.end(); UI
!= UE
; ++UI
)
148 Parser
.Note(*UI
, ".cantunwind was specified here");
151 void emitHandlerDataLocNotes() const {
152 for (Locs::const_iterator HI
= HandlerDataLocs
.begin(),
153 HE
= HandlerDataLocs
.end(); HI
!= HE
; ++HI
)
154 Parser
.Note(*HI
, ".handlerdata was specified here");
157 void emitPersonalityLocNotes() const {
158 for (Locs::const_iterator PI
= PersonalityLocs
.begin(),
159 PE
= PersonalityLocs
.end(),
160 PII
= PersonalityIndexLocs
.begin(),
161 PIE
= PersonalityIndexLocs
.end();
162 PI
!= PE
|| PII
!= PIE
;) {
163 if (PI
!= PE
&& (PII
== PIE
|| PI
->getPointer() < PII
->getPointer()))
164 Parser
.Note(*PI
++, ".personality was specified here");
165 else if (PII
!= PIE
&& (PI
== PE
|| PII
->getPointer() < PI
->getPointer()))
166 Parser
.Note(*PII
++, ".personalityindex was specified here");
168 llvm_unreachable(".personality and .personalityindex cannot be "
169 "at the same location");
174 FnStartLocs
= Locs();
175 CantUnwindLocs
= Locs();
176 PersonalityLocs
= Locs();
177 HandlerDataLocs
= Locs();
178 PersonalityIndexLocs
= Locs();
184 class ARMAsmParser
: public MCTargetAsmParser
{
185 const MCRegisterInfo
*MRI
;
188 ARMTargetStreamer
&getTargetStreamer() {
189 assert(getParser().getStreamer().getTargetStreamer() &&
190 "do not have a target streamer");
191 MCTargetStreamer
&TS
= *getParser().getStreamer().getTargetStreamer();
192 return static_cast<ARMTargetStreamer
&>(TS
);
195 // Map of register aliases registers via the .req directive.
196 StringMap
<unsigned> RegisterReqs
;
198 bool NextSymbolIsThumb
;
200 bool useImplicitITThumb() const {
201 return ImplicitItMode
== ImplicitItModeTy::Always
||
202 ImplicitItMode
== ImplicitItModeTy::ThumbOnly
;
205 bool useImplicitITARM() const {
206 return ImplicitItMode
== ImplicitItModeTy::Always
||
207 ImplicitItMode
== ImplicitItModeTy::ARMOnly
;
211 ARMCC::CondCodes Cond
; // Condition for IT block.
212 unsigned Mask
:4; // Condition mask for instructions.
213 // Starting at first 1 (from lsb).
214 // '1' condition as indicated in IT.
215 // '0' inverse of condition (else).
216 // Count of instructions in IT block is
217 // 4 - trailingzeroes(mask)
218 // Note that this does not have the same encoding
219 // as in the IT instruction, which also depends
220 // on the low bit of the condition code.
222 unsigned CurPosition
; // Current position in parsing of IT
223 // block. In range [0,4], with 0 being the IT
224 // instruction itself. Initialized according to
225 // count of instructions in block. ~0U if no
228 bool IsExplicit
; // true - The IT instruction was present in the
229 // input, we should not modify it.
230 // false - The IT instruction was added
231 // implicitly, we can extend it if that
235 SmallVector
<MCInst
, 4> PendingConditionalInsts
;
237 void flushPendingInstructions(MCStreamer
&Out
) override
{
238 if (!inImplicitITBlock()) {
239 assert(PendingConditionalInsts
.size() == 0);
243 // Emit the IT instruction
245 ITInst
.setOpcode(ARM::t2IT
);
246 ITInst
.addOperand(MCOperand::createImm(ITState
.Cond
));
247 ITInst
.addOperand(MCOperand::createImm(ITState
.Mask
));
248 Out
.EmitInstruction(ITInst
, getSTI());
250 // Emit the conditonal instructions
251 assert(PendingConditionalInsts
.size() <= 4);
252 for (const MCInst
&Inst
: PendingConditionalInsts
) {
253 Out
.EmitInstruction(Inst
, getSTI());
255 PendingConditionalInsts
.clear();
257 // Clear the IT state
259 ITState
.CurPosition
= ~0U;
262 bool inITBlock() { return ITState
.CurPosition
!= ~0U; }
263 bool inExplicitITBlock() { return inITBlock() && ITState
.IsExplicit
; }
264 bool inImplicitITBlock() { return inITBlock() && !ITState
.IsExplicit
; }
266 bool lastInITBlock() {
267 return ITState
.CurPosition
== 4 - countTrailingZeros(ITState
.Mask
);
270 void forwardITPosition() {
271 if (!inITBlock()) return;
272 // Move to the next instruction in the IT block, if there is one. If not,
273 // mark the block as done, except for implicit IT blocks, which we leave
274 // open until we find an instruction that can't be added to it.
275 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
276 if (++ITState
.CurPosition
== 5 - TZ
&& ITState
.IsExplicit
)
277 ITState
.CurPosition
= ~0U; // Done with the IT block after this.
280 // Rewind the state of the current IT block, removing the last slot from it.
281 void rewindImplicitITPosition() {
282 assert(inImplicitITBlock());
283 assert(ITState
.CurPosition
> 1);
284 ITState
.CurPosition
--;
285 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
286 unsigned NewMask
= 0;
287 NewMask
|= ITState
.Mask
& (0xC << TZ
);
288 NewMask
|= 0x2 << TZ
;
289 ITState
.Mask
= NewMask
;
292 // Rewind the state of the current IT block, removing the last slot from it.
293 // If we were at the first slot, this closes the IT block.
294 void discardImplicitITBlock() {
295 assert(inImplicitITBlock());
296 assert(ITState
.CurPosition
== 1);
297 ITState
.CurPosition
= ~0U;
300 // Return the low-subreg of a given Q register.
301 unsigned getDRegFromQReg(unsigned QReg
) const {
302 return MRI
->getSubReg(QReg
, ARM::dsub_0
);
305 // Get the condition code corresponding to the current IT block slot.
306 ARMCC::CondCodes
currentITCond() {
307 unsigned MaskBit
= extractITMaskBit(ITState
.Mask
, ITState
.CurPosition
);
308 return MaskBit
? ARMCC::getOppositeCondition(ITState
.Cond
) : ITState
.Cond
;
311 // Invert the condition of the current IT block slot without changing any
312 // other slots in the same block.
313 void invertCurrentITCondition() {
314 if (ITState
.CurPosition
== 1) {
315 ITState
.Cond
= ARMCC::getOppositeCondition(ITState
.Cond
);
317 ITState
.Mask
^= 1 << (5 - ITState
.CurPosition
);
321 // Returns true if the current IT block is full (all 4 slots used).
322 bool isITBlockFull() {
323 return inITBlock() && (ITState
.Mask
& 1);
326 // Extend the current implicit IT block to have one more slot with the given
328 void extendImplicitITBlock(ARMCC::CondCodes Cond
) {
329 assert(inImplicitITBlock());
330 assert(!isITBlockFull());
331 assert(Cond
== ITState
.Cond
||
332 Cond
== ARMCC::getOppositeCondition(ITState
.Cond
));
333 unsigned TZ
= countTrailingZeros(ITState
.Mask
);
334 unsigned NewMask
= 0;
335 // Keep any existing condition bits.
336 NewMask
|= ITState
.Mask
& (0xE << TZ
);
337 // Insert the new condition bit.
338 NewMask
|= (Cond
!= ITState
.Cond
) << TZ
;
339 // Move the trailing 1 down one bit.
340 NewMask
|= 1 << (TZ
- 1);
341 ITState
.Mask
= NewMask
;
344 // Create a new implicit IT block with a dummy condition code.
345 void startImplicitITBlock() {
346 assert(!inITBlock());
347 ITState
.Cond
= ARMCC::AL
;
349 ITState
.CurPosition
= 1;
350 ITState
.IsExplicit
= false;
353 // Create a new explicit IT block with the given condition and mask.
354 // The mask should be in the format used in ARMOperand and
355 // MCOperand, with a 1 implying 'e', regardless of the low bit of
357 void startExplicitITBlock(ARMCC::CondCodes Cond
, unsigned Mask
) {
358 assert(!inITBlock());
361 ITState
.CurPosition
= 0;
362 ITState
.IsExplicit
= true;
367 unsigned CurPosition
;
369 bool inVPTBlock() { return VPTState
.CurPosition
!= ~0U; }
370 void forwardVPTPosition() {
371 if (!inVPTBlock()) return;
372 unsigned TZ
= countTrailingZeros(VPTState
.Mask
);
373 if (++VPTState
.CurPosition
== 5 - TZ
)
374 VPTState
.CurPosition
= ~0U;
377 void Note(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
378 return getParser().Note(L
, Msg
, Range
);
381 bool Warning(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
382 return getParser().Warning(L
, Msg
, Range
);
385 bool Error(SMLoc L
, const Twine
&Msg
, SMRange Range
= None
) {
386 return getParser().Error(L
, Msg
, Range
);
389 bool validatetLDMRegList(const MCInst
&Inst
, const OperandVector
&Operands
,
390 unsigned ListNo
, bool IsARPop
= false);
391 bool validatetSTMRegList(const MCInst
&Inst
, const OperandVector
&Operands
,
394 int tryParseRegister();
395 bool tryParseRegisterWithWriteBack(OperandVector
&);
396 int tryParseShiftRegister(OperandVector
&);
397 bool parseRegisterList(OperandVector
&, bool EnforceOrder
= true);
398 bool parseMemory(OperandVector
&);
399 bool parseOperand(OperandVector
&, StringRef Mnemonic
);
400 bool parsePrefix(ARMMCExpr::VariantKind
&RefKind
);
401 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc
&ShiftType
,
402 unsigned &ShiftAmount
);
403 bool parseLiteralValues(unsigned Size
, SMLoc L
);
404 bool parseDirectiveThumb(SMLoc L
);
405 bool parseDirectiveARM(SMLoc L
);
406 bool parseDirectiveThumbFunc(SMLoc L
);
407 bool parseDirectiveCode(SMLoc L
);
408 bool parseDirectiveSyntax(SMLoc L
);
409 bool parseDirectiveReq(StringRef Name
, SMLoc L
);
410 bool parseDirectiveUnreq(SMLoc L
);
411 bool parseDirectiveArch(SMLoc L
);
412 bool parseDirectiveEabiAttr(SMLoc L
);
413 bool parseDirectiveCPU(SMLoc L
);
414 bool parseDirectiveFPU(SMLoc L
);
415 bool parseDirectiveFnStart(SMLoc L
);
416 bool parseDirectiveFnEnd(SMLoc L
);
417 bool parseDirectiveCantUnwind(SMLoc L
);
418 bool parseDirectivePersonality(SMLoc L
);
419 bool parseDirectiveHandlerData(SMLoc L
);
420 bool parseDirectiveSetFP(SMLoc L
);
421 bool parseDirectivePad(SMLoc L
);
422 bool parseDirectiveRegSave(SMLoc L
, bool IsVector
);
423 bool parseDirectiveInst(SMLoc L
, char Suffix
= '\0');
424 bool parseDirectiveLtorg(SMLoc L
);
425 bool parseDirectiveEven(SMLoc L
);
426 bool parseDirectivePersonalityIndex(SMLoc L
);
427 bool parseDirectiveUnwindRaw(SMLoc L
);
428 bool parseDirectiveTLSDescSeq(SMLoc L
);
429 bool parseDirectiveMovSP(SMLoc L
);
430 bool parseDirectiveObjectArch(SMLoc L
);
431 bool parseDirectiveArchExtension(SMLoc L
);
432 bool parseDirectiveAlign(SMLoc L
);
433 bool parseDirectiveThumbSet(SMLoc L
);
435 bool isMnemonicVPTPredicable(StringRef Mnemonic
, StringRef ExtraToken
);
436 StringRef
splitMnemonic(StringRef Mnemonic
, StringRef ExtraToken
,
437 unsigned &PredicationCode
,
438 unsigned &VPTPredicationCode
, bool &CarrySetting
,
439 unsigned &ProcessorIMod
, StringRef
&ITMask
);
440 void getMnemonicAcceptInfo(StringRef Mnemonic
, StringRef ExtraToken
,
441 StringRef FullInst
, bool &CanAcceptCarrySet
,
442 bool &CanAcceptPredicationCode
,
443 bool &CanAcceptVPTPredicationCode
);
445 void tryConvertingToTwoOperandForm(StringRef Mnemonic
, bool CarrySetting
,
446 OperandVector
&Operands
);
447 bool isThumb() const {
448 // FIXME: Can tablegen auto-generate this?
449 return getSTI().getFeatureBits()[ARM::ModeThumb
];
452 bool isThumbOne() const {
453 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2
];
456 bool isThumbTwo() const {
457 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2
];
460 bool hasThumb() const {
461 return getSTI().getFeatureBits()[ARM::HasV4TOps
];
464 bool hasThumb2() const {
465 return getSTI().getFeatureBits()[ARM::FeatureThumb2
];
468 bool hasV6Ops() const {
469 return getSTI().getFeatureBits()[ARM::HasV6Ops
];
472 bool hasV6T2Ops() const {
473 return getSTI().getFeatureBits()[ARM::HasV6T2Ops
];
476 bool hasV6MOps() const {
477 return getSTI().getFeatureBits()[ARM::HasV6MOps
];
480 bool hasV7Ops() const {
481 return getSTI().getFeatureBits()[ARM::HasV7Ops
];
484 bool hasV8Ops() const {
485 return getSTI().getFeatureBits()[ARM::HasV8Ops
];
488 bool hasV8MBaseline() const {
489 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps
];
492 bool hasV8MMainline() const {
493 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps
];
495 bool hasV8_1MMainline() const {
496 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps
];
498 bool hasMVE() const {
499 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps
];
501 bool hasMVEFloat() const {
502 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps
];
504 bool has8MSecExt() const {
505 return getSTI().getFeatureBits()[ARM::Feature8MSecExt
];
508 bool hasARM() const {
509 return !getSTI().getFeatureBits()[ARM::FeatureNoARM
];
512 bool hasDSP() const {
513 return getSTI().getFeatureBits()[ARM::FeatureDSP
];
516 bool hasD32() const {
517 return getSTI().getFeatureBits()[ARM::FeatureD32
];
520 bool hasV8_1aOps() const {
521 return getSTI().getFeatureBits()[ARM::HasV8_1aOps
];
524 bool hasRAS() const {
525 return getSTI().getFeatureBits()[ARM::FeatureRAS
];
529 MCSubtargetInfo
&STI
= copySTI();
530 auto FB
= ComputeAvailableFeatures(STI
.ToggleFeature(ARM::ModeThumb
));
531 setAvailableFeatures(FB
);
534 void FixModeAfterArchChange(bool WasThumb
, SMLoc Loc
);
536 bool isMClass() const {
537 return getSTI().getFeatureBits()[ARM::FeatureMClass
];
540 /// @name Auto-generated Match Functions
543 #define GET_ASSEMBLER_HEADER
544 #include "ARMGenAsmMatcher.inc"
548 OperandMatchResultTy
parseITCondCode(OperandVector
&);
549 OperandMatchResultTy
parseCoprocNumOperand(OperandVector
&);
550 OperandMatchResultTy
parseCoprocRegOperand(OperandVector
&);
551 OperandMatchResultTy
parseCoprocOptionOperand(OperandVector
&);
552 OperandMatchResultTy
parseMemBarrierOptOperand(OperandVector
&);
553 OperandMatchResultTy
parseTraceSyncBarrierOptOperand(OperandVector
&);
554 OperandMatchResultTy
parseInstSyncBarrierOptOperand(OperandVector
&);
555 OperandMatchResultTy
parseProcIFlagsOperand(OperandVector
&);
556 OperandMatchResultTy
parseMSRMaskOperand(OperandVector
&);
557 OperandMatchResultTy
parseBankedRegOperand(OperandVector
&);
558 OperandMatchResultTy
parsePKHImm(OperandVector
&O
, StringRef Op
, int Low
,
560 OperandMatchResultTy
parsePKHLSLImm(OperandVector
&O
) {
561 return parsePKHImm(O
, "lsl", 0, 31);
563 OperandMatchResultTy
parsePKHASRImm(OperandVector
&O
) {
564 return parsePKHImm(O
, "asr", 1, 32);
566 OperandMatchResultTy
parseSetEndImm(OperandVector
&);
567 OperandMatchResultTy
parseShifterImm(OperandVector
&);
568 OperandMatchResultTy
parseRotImm(OperandVector
&);
569 OperandMatchResultTy
parseModImm(OperandVector
&);
570 OperandMatchResultTy
parseBitfield(OperandVector
&);
571 OperandMatchResultTy
parsePostIdxReg(OperandVector
&);
572 OperandMatchResultTy
parseAM3Offset(OperandVector
&);
573 OperandMatchResultTy
parseFPImm(OperandVector
&);
574 OperandMatchResultTy
parseVectorList(OperandVector
&);
575 OperandMatchResultTy
parseVectorLane(VectorLaneTy
&LaneKind
, unsigned &Index
,
578 // Asm Match Converter Methods
579 void cvtThumbMultiply(MCInst
&Inst
, const OperandVector
&);
580 void cvtThumbBranches(MCInst
&Inst
, const OperandVector
&);
581 void cvtMVEVMOVQtoDReg(MCInst
&Inst
, const OperandVector
&);
583 bool validateInstruction(MCInst
&Inst
, const OperandVector
&Ops
);
584 bool processInstruction(MCInst
&Inst
, const OperandVector
&Ops
, MCStreamer
&Out
);
585 bool shouldOmitCCOutOperand(StringRef Mnemonic
, OperandVector
&Operands
);
586 bool shouldOmitPredicateOperand(StringRef Mnemonic
, OperandVector
&Operands
);
587 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic
, OperandVector
&Operands
);
588 bool isITBlockTerminator(MCInst
&Inst
) const;
589 void fixupGNULDRDAlias(StringRef Mnemonic
, OperandVector
&Operands
);
590 bool validateLDRDSTRD(MCInst
&Inst
, const OperandVector
&Operands
,
591 bool Load
, bool ARMMode
, bool Writeback
);
594 enum ARMMatchResultTy
{
595 Match_RequiresITBlock
= FIRST_TARGET_MATCH_RESULT_TY
,
596 Match_RequiresNotITBlock
,
598 Match_RequiresThumb2
,
600 Match_RequiresFlagSetting
,
601 #define GET_OPERAND_DIAGNOSTIC_TYPES
602 #include "ARMGenAsmMatcher.inc"
606 ARMAsmParser(const MCSubtargetInfo
&STI
, MCAsmParser
&Parser
,
607 const MCInstrInfo
&MII
, const MCTargetOptions
&Options
)
608 : MCTargetAsmParser(Options
, STI
, MII
), UC(Parser
) {
609 MCAsmParserExtension::Initialize(Parser
);
611 // Cache the MCRegisterInfo.
612 MRI
= getContext().getRegisterInfo();
614 // Initialize the set of available features.
615 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
617 // Add build attributes based on the selected target.
618 if (AddBuildAttributes
)
619 getTargetStreamer().emitTargetAttributes(STI
);
621 // Not in an ITBlock to start with.
622 ITState
.CurPosition
= ~0U;
624 VPTState
.CurPosition
= ~0U;
626 NextSymbolIsThumb
= false;
629 // Implementation of the MCTargetAsmParser interface:
630 bool ParseRegister(unsigned &RegNo
, SMLoc
&StartLoc
, SMLoc
&EndLoc
) override
;
631 bool ParseInstruction(ParseInstructionInfo
&Info
, StringRef Name
,
632 SMLoc NameLoc
, OperandVector
&Operands
) override
;
633 bool ParseDirective(AsmToken DirectiveID
) override
;
635 unsigned validateTargetOperandClass(MCParsedAsmOperand
&Op
,
636 unsigned Kind
) override
;
637 unsigned checkTargetMatchPredicate(MCInst
&Inst
) override
;
639 bool MatchAndEmitInstruction(SMLoc IDLoc
, unsigned &Opcode
,
640 OperandVector
&Operands
, MCStreamer
&Out
,
642 bool MatchingInlineAsm
) override
;
643 unsigned MatchInstruction(OperandVector
&Operands
, MCInst
&Inst
,
644 SmallVectorImpl
<NearMissInfo
> &NearMisses
,
645 bool MatchingInlineAsm
, bool &EmitInITBlock
,
648 struct NearMissMessage
{
650 SmallString
<128> Message
;
653 const char *getCustomOperandDiag(ARMMatchResultTy MatchError
);
655 void FilterNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMissesIn
,
656 SmallVectorImpl
<NearMissMessage
> &NearMissesOut
,
657 SMLoc IDLoc
, OperandVector
&Operands
);
658 void ReportNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMisses
, SMLoc IDLoc
,
659 OperandVector
&Operands
);
661 void doBeforeLabelEmit(MCSymbol
*Symbol
) override
;
663 void onLabelParsed(MCSymbol
*Symbol
) override
;
666 /// ARMOperand - Instances of this class represent a parsed ARM machine
668 class ARMOperand
: public MCParsedAsmOperand
{
679 k_InstSyncBarrierOpt
,
680 k_TraceSyncBarrierOpt
,
689 k_RegisterListWithAPSR
,
692 k_FPSRegisterListWithVPR
,
693 k_FPDRegisterListWithVPR
,
695 k_VectorListAllLanes
,
702 k_ConstantPoolImmediate
,
703 k_BitfieldDescriptor
,
707 SMLoc StartLoc
, EndLoc
, AlignmentLoc
;
708 SmallVector
<unsigned, 8> Registers
;
711 ARMCC::CondCodes Val
;
715 ARMVCC::VPTCodes Val
;
722 struct CoprocOptionOp
{
735 ARM_ISB::InstSyncBOpt Val
;
739 ARM_TSB::TraceSyncBOpt Val
;
743 ARM_PROC::IFlags Val
;
763 // A vector register list is a sequential list of 1 to 4 registers.
764 struct VectorListOp
{
771 struct VectorIndexOp
{
779 /// Combined record for all forms of ARM address expressions.
782 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
784 const MCConstantExpr
*OffsetImm
; // Offset immediate value
785 unsigned OffsetRegNum
; // Offset register num, when OffsetImm == NULL
786 ARM_AM::ShiftOpc ShiftType
; // Shift type for OffsetReg
787 unsigned ShiftImm
; // shift for OffsetReg.
788 unsigned Alignment
; // 0 = no alignment specified
789 // n = alignment in bytes (2, 4, 8, 16, or 32)
790 unsigned isNegative
: 1; // Negated OffsetReg? (~'U' bit)
793 struct PostIdxRegOp
{
796 ARM_AM::ShiftOpc ShiftTy
;
800 struct ShifterImmOp
{
805 struct RegShiftedRegOp
{
806 ARM_AM::ShiftOpc ShiftTy
;
812 struct RegShiftedImmOp
{
813 ARM_AM::ShiftOpc ShiftTy
;
836 struct CoprocOptionOp CoprocOption
;
837 struct MBOptOp MBOpt
;
838 struct ISBOptOp ISBOpt
;
839 struct TSBOptOp TSBOpt
;
840 struct ITMaskOp ITMask
;
841 struct IFlagsOp IFlags
;
842 struct MMaskOp MMask
;
843 struct BankedRegOp BankedReg
;
846 struct VectorListOp VectorList
;
847 struct VectorIndexOp VectorIndex
;
849 struct MemoryOp Memory
;
850 struct PostIdxRegOp PostIdxReg
;
851 struct ShifterImmOp ShifterImm
;
852 struct RegShiftedRegOp RegShiftedReg
;
853 struct RegShiftedImmOp RegShiftedImm
;
854 struct RotImmOp RotImm
;
855 struct ModImmOp ModImm
;
856 struct BitfieldOp Bitfield
;
860 ARMOperand(KindTy K
) : MCParsedAsmOperand(), Kind(K
) {}
862 /// getStartLoc - Get the location of the first token of this operand.
863 SMLoc
getStartLoc() const override
{ return StartLoc
; }
865 /// getEndLoc - Get the location of the last token of this operand.
866 SMLoc
getEndLoc() const override
{ return EndLoc
; }
868 /// getLocRange - Get the range between the first and last token of this
870 SMRange
getLocRange() const { return SMRange(StartLoc
, EndLoc
); }
872 /// getAlignmentLoc - Get the location of the Alignment token of this operand.
873 SMLoc
getAlignmentLoc() const {
874 assert(Kind
== k_Memory
&& "Invalid access!");
878 ARMCC::CondCodes
getCondCode() const {
879 assert(Kind
== k_CondCode
&& "Invalid access!");
883 ARMVCC::VPTCodes
getVPTPred() const {
884 assert(isVPTPred() && "Invalid access!");
888 unsigned getCoproc() const {
889 assert((Kind
== k_CoprocNum
|| Kind
== k_CoprocReg
) && "Invalid access!");
893 StringRef
getToken() const {
894 assert(Kind
== k_Token
&& "Invalid access!");
895 return StringRef(Tok
.Data
, Tok
.Length
);
898 unsigned getReg() const override
{
899 assert((Kind
== k_Register
|| Kind
== k_CCOut
) && "Invalid access!");
903 const SmallVectorImpl
<unsigned> &getRegList() const {
904 assert((Kind
== k_RegisterList
|| Kind
== k_RegisterListWithAPSR
||
905 Kind
== k_DPRRegisterList
|| Kind
== k_SPRRegisterList
||
906 Kind
== k_FPSRegisterListWithVPR
||
907 Kind
== k_FPDRegisterListWithVPR
) &&
912 const MCExpr
*getImm() const {
913 assert(isImm() && "Invalid access!");
917 const MCExpr
*getConstantPoolImm() const {
918 assert(isConstantPoolImm() && "Invalid access!");
922 unsigned getVectorIndex() const {
923 assert(Kind
== k_VectorIndex
&& "Invalid access!");
924 return VectorIndex
.Val
;
927 ARM_MB::MemBOpt
getMemBarrierOpt() const {
928 assert(Kind
== k_MemBarrierOpt
&& "Invalid access!");
932 ARM_ISB::InstSyncBOpt
getInstSyncBarrierOpt() const {
933 assert(Kind
== k_InstSyncBarrierOpt
&& "Invalid access!");
937 ARM_TSB::TraceSyncBOpt
getTraceSyncBarrierOpt() const {
938 assert(Kind
== k_TraceSyncBarrierOpt
&& "Invalid access!");
942 ARM_PROC::IFlags
getProcIFlags() const {
943 assert(Kind
== k_ProcIFlags
&& "Invalid access!");
947 unsigned getMSRMask() const {
948 assert(Kind
== k_MSRMask
&& "Invalid access!");
952 unsigned getBankedReg() const {
953 assert(Kind
== k_BankedReg
&& "Invalid access!");
954 return BankedReg
.Val
;
957 bool isCoprocNum() const { return Kind
== k_CoprocNum
; }
958 bool isCoprocReg() const { return Kind
== k_CoprocReg
; }
959 bool isCoprocOption() const { return Kind
== k_CoprocOption
; }
960 bool isCondCode() const { return Kind
== k_CondCode
; }
961 bool isVPTPred() const { return Kind
== k_VPTPred
; }
962 bool isCCOut() const { return Kind
== k_CCOut
; }
963 bool isITMask() const { return Kind
== k_ITCondMask
; }
964 bool isITCondCode() const { return Kind
== k_CondCode
; }
965 bool isImm() const override
{
966 return Kind
== k_Immediate
;
969 bool isARMBranchTarget() const {
970 if (!isImm()) return false;
972 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm()))
973 return CE
->getValue() % 4 == 0;
978 bool isThumbBranchTarget() const {
979 if (!isImm()) return false;
981 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm()))
982 return CE
->getValue() % 2 == 0;
986 // checks whether this operand is an unsigned offset which fits is a field
987 // of specified width and scaled by a specific number of bits
988 template<unsigned width
, unsigned scale
>
989 bool isUnsignedOffset() const {
990 if (!isImm()) return false;
991 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
992 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
)) {
993 int64_t Val
= CE
->getValue();
994 int64_t Align
= 1LL << scale
;
995 int64_t Max
= Align
* ((1LL << width
) - 1);
996 return ((Val
% Align
) == 0) && (Val
>= 0) && (Val
<= Max
);
1001 // checks whether this operand is an signed offset which fits is a field
1002 // of specified width and scaled by a specific number of bits
1003 template<unsigned width
, unsigned scale
>
1004 bool isSignedOffset() const {
1005 if (!isImm()) return false;
1006 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
1007 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
)) {
1008 int64_t Val
= CE
->getValue();
1009 int64_t Align
= 1LL << scale
;
1010 int64_t Max
= Align
* ((1LL << (width
-1)) - 1);
1011 int64_t Min
= -Align
* (1LL << (width
-1));
1012 return ((Val
% Align
) == 0) && (Val
>= Min
) && (Val
<= Max
);
1017 // checks whether this operand is an offset suitable for the LE /
1018 // LETP instructions in Arm v8.1M
1019 bool isLEOffset() const {
1020 if (!isImm()) return false;
1021 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
1022 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
)) {
1023 int64_t Val
= CE
->getValue();
1024 return Val
< 0 && Val
>= -4094 && (Val
& 1) == 0;
1029 // checks whether this operand is a memory operand computed as an offset
1030 // applied to PC. the offset may have 8 bits of magnitude and is represented
1031 // with two bits of shift. textually it may be either [pc, #imm], #imm or
1032 // relocable expression...
1033 bool isThumbMemPC() const {
1036 if (isa
<MCSymbolRefExpr
>(Imm
.Val
)) return true;
1037 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm
.Val
);
1038 if (!CE
) return false;
1039 Val
= CE
->getValue();
1041 else if (isGPRMem()) {
1042 if(!Memory
.OffsetImm
|| Memory
.OffsetRegNum
) return false;
1043 if(Memory
.BaseRegNum
!= ARM::PC
) return false;
1044 Val
= Memory
.OffsetImm
->getValue();
1047 return ((Val
% 4) == 0) && (Val
>= 0) && (Val
<= 1020);
1050 bool isFPImm() const {
1051 if (!isImm()) return false;
1052 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1053 if (!CE
) return false;
1054 int Val
= ARM_AM::getFP32Imm(APInt(32, CE
->getValue()));
1058 template<int64_t N
, int64_t M
>
1059 bool isImmediate() const {
1060 if (!isImm()) return false;
1061 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1062 if (!CE
) return false;
1063 int64_t Value
= CE
->getValue();
1064 return Value
>= N
&& Value
<= M
;
1067 template<int64_t N
, int64_t M
>
1068 bool isImmediateS4() const {
1069 if (!isImm()) return false;
1070 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1071 if (!CE
) return false;
1072 int64_t Value
= CE
->getValue();
1073 return ((Value
& 3) == 0) && Value
>= N
&& Value
<= M
;
1075 template<int64_t N
, int64_t M
>
1076 bool isImmediateS2() const {
1077 if (!isImm()) return false;
1078 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1079 if (!CE
) return false;
1080 int64_t Value
= CE
->getValue();
1081 return ((Value
& 1) == 0) && Value
>= N
&& Value
<= M
;
1083 bool isFBits16() const {
1084 return isImmediate
<0, 17>();
1086 bool isFBits32() const {
1087 return isImmediate
<1, 33>();
1089 bool isImm8s4() const {
1090 return isImmediateS4
<-1020, 1020>();
1092 bool isImm7s4() const {
1093 return isImmediateS4
<-508, 508>();
1095 bool isImm7Shift0() const {
1096 return isImmediate
<-127, 127>();
1098 bool isImm7Shift1() const {
1099 return isImmediateS2
<-255, 255>();
1101 bool isImm7Shift2() const {
1102 return isImmediateS4
<-511, 511>();
1104 bool isImm7() const {
1105 return isImmediate
<-127, 127>();
1107 bool isImm0_1020s4() const {
1108 return isImmediateS4
<0, 1020>();
1110 bool isImm0_508s4() const {
1111 return isImmediateS4
<0, 508>();
1113 bool isImm0_508s4Neg() const {
1114 if (!isImm()) return false;
1115 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1116 if (!CE
) return false;
1117 int64_t Value
= -CE
->getValue();
1118 // explicitly exclude zero. we want that to use the normal 0_508 version.
1119 return ((Value
& 3) == 0) && Value
> 0 && Value
<= 508;
1122 bool isImm0_4095Neg() const {
1123 if (!isImm()) return false;
1124 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1125 if (!CE
) return false;
1126 // isImm0_4095Neg is used with 32-bit immediates only.
1127 // 32-bit immediates are zero extended to 64-bit when parsed,
1128 // thus simple -CE->getValue() results in a big negative number,
1129 // not a small positive number as intended
1130 if ((CE
->getValue() >> 32) > 0) return false;
1131 uint32_t Value
= -static_cast<uint32_t>(CE
->getValue());
1132 return Value
> 0 && Value
< 4096;
1135 bool isImm0_7() const {
1136 return isImmediate
<0, 7>();
1139 bool isImm1_16() const {
1140 return isImmediate
<1, 16>();
1143 bool isImm1_32() const {
1144 return isImmediate
<1, 32>();
1147 bool isImm8_255() const {
1148 return isImmediate
<8, 255>();
1151 bool isImm256_65535Expr() const {
1152 if (!isImm()) return false;
1153 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1154 // If it's not a constant expression, it'll generate a fixup and be
1156 if (!CE
) return true;
1157 int64_t Value
= CE
->getValue();
1158 return Value
>= 256 && Value
< 65536;
1161 bool isImm0_65535Expr() const {
1162 if (!isImm()) return false;
1163 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1164 // If it's not a constant expression, it'll generate a fixup and be
1166 if (!CE
) return true;
1167 int64_t Value
= CE
->getValue();
1168 return Value
>= 0 && Value
< 65536;
1171 bool isImm24bit() const {
1172 return isImmediate
<0, 0xffffff + 1>();
1175 bool isImmThumbSR() const {
1176 return isImmediate
<1, 33>();
1180 bool isExpImmValue(uint64_t Value
) const {
1181 uint64_t mask
= (1 << shift
) - 1;
1182 if ((Value
& mask
) != 0 || (Value
>> shift
) > 0xff)
1188 bool isExpImm() const {
1189 if (!isImm()) return false;
1190 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1191 if (!CE
) return false;
1193 return isExpImmValue
<shift
>(CE
->getValue());
1196 template<int shift
, int size
>
1197 bool isInvertedExpImm() const {
1198 if (!isImm()) return false;
1199 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1200 if (!CE
) return false;
1202 uint64_t OriginalValue
= CE
->getValue();
1203 uint64_t InvertedValue
= OriginalValue
^ (((uint64_t)1 << size
) - 1);
1204 return isExpImmValue
<shift
>(InvertedValue
);
1207 bool isPKHLSLImm() const {
1208 return isImmediate
<0, 32>();
1211 bool isPKHASRImm() const {
1212 return isImmediate
<0, 33>();
1215 bool isAdrLabel() const {
1216 // If we have an immediate that's not a constant, treat it as a label
1217 // reference needing a fixup.
1218 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1221 // If it is a constant, it must fit into a modified immediate encoding.
1222 if (!isImm()) return false;
1223 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1224 if (!CE
) return false;
1225 int64_t Value
= CE
->getValue();
1226 return (ARM_AM::getSOImmVal(Value
) != -1 ||
1227 ARM_AM::getSOImmVal(-Value
) != -1);
1230 bool isT2SOImm() const {
1231 // If we have an immediate that's not a constant, treat it as an expression
1233 if (isImm() && !isa
<MCConstantExpr
>(getImm())) {
1234 // We want to avoid matching :upper16: and :lower16: as we want these
1235 // expressions to match in isImm0_65535Expr()
1236 const ARMMCExpr
*ARM16Expr
= dyn_cast
<ARMMCExpr
>(getImm());
1237 return (!ARM16Expr
|| (ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_HI16
&&
1238 ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_LO16
));
1240 if (!isImm()) return false;
1241 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1242 if (!CE
) return false;
1243 int64_t Value
= CE
->getValue();
1244 return ARM_AM::getT2SOImmVal(Value
) != -1;
1247 bool isT2SOImmNot() const {
1248 if (!isImm()) return false;
1249 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1250 if (!CE
) return false;
1251 int64_t Value
= CE
->getValue();
1252 return ARM_AM::getT2SOImmVal(Value
) == -1 &&
1253 ARM_AM::getT2SOImmVal(~Value
) != -1;
1256 bool isT2SOImmNeg() const {
1257 if (!isImm()) return false;
1258 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1259 if (!CE
) return false;
1260 int64_t Value
= CE
->getValue();
1261 // Only use this when not representable as a plain so_imm.
1262 return ARM_AM::getT2SOImmVal(Value
) == -1 &&
1263 ARM_AM::getT2SOImmVal(-Value
) != -1;
1266 bool isSetEndImm() const {
1267 if (!isImm()) return false;
1268 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1269 if (!CE
) return false;
1270 int64_t Value
= CE
->getValue();
1271 return Value
== 1 || Value
== 0;
1274 bool isReg() const override
{ return Kind
== k_Register
; }
1275 bool isRegList() const { return Kind
== k_RegisterList
; }
1276 bool isRegListWithAPSR() const {
1277 return Kind
== k_RegisterListWithAPSR
|| Kind
== k_RegisterList
;
1279 bool isDPRRegList() const { return Kind
== k_DPRRegisterList
; }
1280 bool isSPRRegList() const { return Kind
== k_SPRRegisterList
; }
1281 bool isFPSRegListWithVPR() const { return Kind
== k_FPSRegisterListWithVPR
; }
1282 bool isFPDRegListWithVPR() const { return Kind
== k_FPDRegisterListWithVPR
; }
1283 bool isToken() const override
{ return Kind
== k_Token
; }
1284 bool isMemBarrierOpt() const { return Kind
== k_MemBarrierOpt
; }
1285 bool isInstSyncBarrierOpt() const { return Kind
== k_InstSyncBarrierOpt
; }
1286 bool isTraceSyncBarrierOpt() const { return Kind
== k_TraceSyncBarrierOpt
; }
1287 bool isMem() const override
{
1288 return isGPRMem() || isMVEMem();
1290 bool isMVEMem() const {
1291 if (Kind
!= k_Memory
)
1293 if (Memory
.BaseRegNum
&&
1294 !ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Memory
.BaseRegNum
) &&
1295 !ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(Memory
.BaseRegNum
))
1297 if (Memory
.OffsetRegNum
&&
1298 !ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(
1299 Memory
.OffsetRegNum
))
1303 bool isGPRMem() const {
1304 if (Kind
!= k_Memory
)
1306 if (Memory
.BaseRegNum
&&
1307 !ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Memory
.BaseRegNum
))
1309 if (Memory
.OffsetRegNum
&&
1310 !ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Memory
.OffsetRegNum
))
1314 bool isShifterImm() const { return Kind
== k_ShifterImmediate
; }
1315 bool isRegShiftedReg() const {
1316 return Kind
== k_ShiftedRegister
&&
1317 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1318 RegShiftedReg
.SrcReg
) &&
1319 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1320 RegShiftedReg
.ShiftReg
);
1322 bool isRegShiftedImm() const {
1323 return Kind
== k_ShiftedImmediate
&&
1324 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(
1325 RegShiftedImm
.SrcReg
);
1327 bool isRotImm() const { return Kind
== k_RotateImmediate
; }
1329 template<unsigned Min
, unsigned Max
>
1330 bool isPowerTwoInRange() const {
1331 if (!isImm()) return false;
1332 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1333 if (!CE
) return false;
1334 int64_t Value
= CE
->getValue();
1335 return Value
> 0 && countPopulation((uint64_t)Value
) == 1 &&
1336 Value
>= Min
&& Value
<= Max
;
1338 bool isModImm() const { return Kind
== k_ModifiedImmediate
; }
1340 bool isModImmNot() const {
1341 if (!isImm()) return false;
1342 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1343 if (!CE
) return false;
1344 int64_t Value
= CE
->getValue();
1345 return ARM_AM::getSOImmVal(~Value
) != -1;
1348 bool isModImmNeg() const {
1349 if (!isImm()) return false;
1350 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1351 if (!CE
) return false;
1352 int64_t Value
= CE
->getValue();
1353 return ARM_AM::getSOImmVal(Value
) == -1 &&
1354 ARM_AM::getSOImmVal(-Value
) != -1;
1357 bool isThumbModImmNeg1_7() const {
1358 if (!isImm()) return false;
1359 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1360 if (!CE
) return false;
1361 int32_t Value
= -(int32_t)CE
->getValue();
1362 return 0 < Value
&& Value
< 8;
1365 bool isThumbModImmNeg8_255() const {
1366 if (!isImm()) return false;
1367 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1368 if (!CE
) return false;
1369 int32_t Value
= -(int32_t)CE
->getValue();
1370 return 7 < Value
&& Value
< 256;
1373 bool isConstantPoolImm() const { return Kind
== k_ConstantPoolImmediate
; }
1374 bool isBitfield() const { return Kind
== k_BitfieldDescriptor
; }
1375 bool isPostIdxRegShifted() const {
1376 return Kind
== k_PostIndexRegister
&&
1377 ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(PostIdxReg
.RegNum
);
1379 bool isPostIdxReg() const {
1380 return isPostIdxRegShifted() && PostIdxReg
.ShiftTy
== ARM_AM::no_shift
;
1382 bool isMemNoOffset(bool alignOK
= false, unsigned Alignment
= 0) const {
1385 // No offset of any kind.
1386 return Memory
.OffsetRegNum
== 0 && Memory
.OffsetImm
== nullptr &&
1387 (alignOK
|| Memory
.Alignment
== Alignment
);
1389 bool isMemNoOffsetT2(bool alignOK
= false, unsigned Alignment
= 0) const {
1393 if (!ARMMCRegisterClasses
[ARM::GPRnopcRegClassID
].contains(
1397 // No offset of any kind.
1398 return Memory
.OffsetRegNum
== 0 && Memory
.OffsetImm
== nullptr &&
1399 (alignOK
|| Memory
.Alignment
== Alignment
);
1401 bool isMemNoOffsetT2NoSp(bool alignOK
= false, unsigned Alignment
= 0) const {
1405 if (!ARMMCRegisterClasses
[ARM::rGPRRegClassID
].contains(
1409 // No offset of any kind.
1410 return Memory
.OffsetRegNum
== 0 && Memory
.OffsetImm
== nullptr &&
1411 (alignOK
|| Memory
.Alignment
== Alignment
);
1413 bool isMemNoOffsetT(bool alignOK
= false, unsigned Alignment
= 0) const {
1417 if (!ARMMCRegisterClasses
[ARM::tGPRRegClassID
].contains(
1421 // No offset of any kind.
1422 return Memory
.OffsetRegNum
== 0 && Memory
.OffsetImm
== nullptr &&
1423 (alignOK
|| Memory
.Alignment
== Alignment
);
1425 bool isMemPCRelImm12() const {
1426 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1428 // Base register must be PC.
1429 if (Memory
.BaseRegNum
!= ARM::PC
)
1431 // Immediate offset in range [-4095, 4095].
1432 if (!Memory
.OffsetImm
) return true;
1433 int64_t Val
= Memory
.OffsetImm
->getValue();
1434 return (Val
> -4096 && Val
< 4096) ||
1435 (Val
== std::numeric_limits
<int32_t>::min());
1438 bool isAlignedMemory() const {
1439 return isMemNoOffset(true);
1442 bool isAlignedMemoryNone() const {
1443 return isMemNoOffset(false, 0);
1446 bool isDupAlignedMemoryNone() const {
1447 return isMemNoOffset(false, 0);
1450 bool isAlignedMemory16() const {
1451 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1453 return isMemNoOffset(false, 0);
1456 bool isDupAlignedMemory16() const {
1457 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1459 return isMemNoOffset(false, 0);
1462 bool isAlignedMemory32() const {
1463 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1465 return isMemNoOffset(false, 0);
1468 bool isDupAlignedMemory32() const {
1469 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1471 return isMemNoOffset(false, 0);
1474 bool isAlignedMemory64() const {
1475 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1477 return isMemNoOffset(false, 0);
1480 bool isDupAlignedMemory64() const {
1481 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1483 return isMemNoOffset(false, 0);
1486 bool isAlignedMemory64or128() const {
1487 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1489 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1491 return isMemNoOffset(false, 0);
1494 bool isDupAlignedMemory64or128() const {
1495 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1497 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1499 return isMemNoOffset(false, 0);
1502 bool isAlignedMemory64or128or256() const {
1503 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1505 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1507 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1509 return isMemNoOffset(false, 0);
1512 bool isAddrMode2() const {
1513 if (!isGPRMem() || Memory
.Alignment
!= 0) return false;
1514 // Check for register offset.
1515 if (Memory
.OffsetRegNum
) return true;
1516 // Immediate offset in range [-4095, 4095].
1517 if (!Memory
.OffsetImm
) return true;
1518 int64_t Val
= Memory
.OffsetImm
->getValue();
1519 return Val
> -4096 && Val
< 4096;
1522 bool isAM2OffsetImm() const {
1523 if (!isImm()) return false;
1524 // Immediate offset in range [-4095, 4095].
1525 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1526 if (!CE
) return false;
1527 int64_t Val
= CE
->getValue();
1528 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1529 (Val
> -4096 && Val
< 4096);
1532 bool isAddrMode3() const {
1533 // If we have an immediate that's not a constant, treat it as a label
1534 // reference needing a fixup. If it is a constant, it's something else
1535 // and we reject it.
1536 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1538 if (!isGPRMem() || Memory
.Alignment
!= 0) return false;
1539 // No shifts are legal for AM3.
1540 if (Memory
.ShiftType
!= ARM_AM::no_shift
) return false;
1541 // Check for register offset.
1542 if (Memory
.OffsetRegNum
) return true;
1543 // Immediate offset in range [-255, 255].
1544 if (!Memory
.OffsetImm
) return true;
1545 int64_t Val
= Memory
.OffsetImm
->getValue();
1546 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1547 // have to check for this too.
1548 return (Val
> -256 && Val
< 256) ||
1549 Val
== std::numeric_limits
<int32_t>::min();
1552 bool isAM3Offset() const {
1557 // Immediate offset in range [-255, 255].
1558 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1559 if (!CE
) return false;
1560 int64_t Val
= CE
->getValue();
1561 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1562 return (Val
> -256 && Val
< 256) ||
1563 Val
== std::numeric_limits
<int32_t>::min();
1566 bool isAddrMode5() const {
1567 // If we have an immediate that's not a constant, treat it as a label
1568 // reference needing a fixup. If it is a constant, it's something else
1569 // and we reject it.
1570 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1572 if (!isGPRMem() || Memory
.Alignment
!= 0) return false;
1573 // Check for register offset.
1574 if (Memory
.OffsetRegNum
) return false;
1575 // Immediate offset in range [-1020, 1020] and a multiple of 4.
1576 if (!Memory
.OffsetImm
) return true;
1577 int64_t Val
= Memory
.OffsetImm
->getValue();
1578 return (Val
>= -1020 && Val
<= 1020 && ((Val
& 3) == 0)) ||
1579 Val
== std::numeric_limits
<int32_t>::min();
1582 bool isAddrMode5FP16() const {
1583 // If we have an immediate that's not a constant, treat it as a label
1584 // reference needing a fixup. If it is a constant, it's something else
1585 // and we reject it.
1586 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1588 if (!isGPRMem() || Memory
.Alignment
!= 0) return false;
1589 // Check for register offset.
1590 if (Memory
.OffsetRegNum
) return false;
1591 // Immediate offset in range [-510, 510] and a multiple of 2.
1592 if (!Memory
.OffsetImm
) return true;
1593 int64_t Val
= Memory
.OffsetImm
->getValue();
1594 return (Val
>= -510 && Val
<= 510 && ((Val
& 1) == 0)) ||
1595 Val
== std::numeric_limits
<int32_t>::min();
1598 bool isMemTBB() const {
1599 if (!isGPRMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1600 Memory
.ShiftType
!= ARM_AM::no_shift
|| Memory
.Alignment
!= 0)
1605 bool isMemTBH() const {
1606 if (!isGPRMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1607 Memory
.ShiftType
!= ARM_AM::lsl
|| Memory
.ShiftImm
!= 1 ||
1608 Memory
.Alignment
!= 0 )
1613 bool isMemRegOffset() const {
1614 if (!isGPRMem() || !Memory
.OffsetRegNum
|| Memory
.Alignment
!= 0)
1619 bool isT2MemRegOffset() const {
1620 if (!isGPRMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1621 Memory
.Alignment
!= 0 || Memory
.BaseRegNum
== ARM::PC
)
1623 // Only lsl #{0, 1, 2, 3} allowed.
1624 if (Memory
.ShiftType
== ARM_AM::no_shift
)
1626 if (Memory
.ShiftType
!= ARM_AM::lsl
|| Memory
.ShiftImm
> 3)
1631 bool isMemThumbRR() const {
1632 // Thumb reg+reg addressing is simple. Just two registers, a base and
1633 // an offset. No shifts, negations or any other complicating factors.
1634 if (!isGPRMem() || !Memory
.OffsetRegNum
|| Memory
.isNegative
||
1635 Memory
.ShiftType
!= ARM_AM::no_shift
|| Memory
.Alignment
!= 0)
1637 return isARMLowRegister(Memory
.BaseRegNum
) &&
1638 (!Memory
.OffsetRegNum
|| isARMLowRegister(Memory
.OffsetRegNum
));
1641 bool isMemThumbRIs4() const {
1642 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 ||
1643 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1645 // Immediate offset, multiple of 4 in range [0, 124].
1646 if (!Memory
.OffsetImm
) return true;
1647 int64_t Val
= Memory
.OffsetImm
->getValue();
1648 return Val
>= 0 && Val
<= 124 && (Val
% 4) == 0;
1651 bool isMemThumbRIs2() const {
1652 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 ||
1653 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1655 // Immediate offset, multiple of 4 in range [0, 62].
1656 if (!Memory
.OffsetImm
) return true;
1657 int64_t Val
= Memory
.OffsetImm
->getValue();
1658 return Val
>= 0 && Val
<= 62 && (Val
% 2) == 0;
1661 bool isMemThumbRIs1() const {
1662 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 ||
1663 !isARMLowRegister(Memory
.BaseRegNum
) || Memory
.Alignment
!= 0)
1665 // Immediate offset in range [0, 31].
1666 if (!Memory
.OffsetImm
) return true;
1667 int64_t Val
= Memory
.OffsetImm
->getValue();
1668 return Val
>= 0 && Val
<= 31;
1671 bool isMemThumbSPI() const {
1672 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 ||
1673 Memory
.BaseRegNum
!= ARM::SP
|| Memory
.Alignment
!= 0)
1675 // Immediate offset, multiple of 4 in range [0, 1020].
1676 if (!Memory
.OffsetImm
) return true;
1677 int64_t Val
= Memory
.OffsetImm
->getValue();
1678 return Val
>= 0 && Val
<= 1020 && (Val
% 4) == 0;
1681 bool isMemImm8s4Offset() const {
1682 // If we have an immediate that's not a constant, treat it as a label
1683 // reference needing a fixup. If it is a constant, it's something else
1684 // and we reject it.
1685 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1687 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1689 // Immediate offset a multiple of 4 in range [-1020, 1020].
1690 if (!Memory
.OffsetImm
) return true;
1691 int64_t Val
= Memory
.OffsetImm
->getValue();
1692 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1693 return (Val
>= -1020 && Val
<= 1020 && (Val
& 3) == 0) ||
1694 Val
== std::numeric_limits
<int32_t>::min();
1696 bool isMemImm7s4Offset() const {
1697 // If we have an immediate that's not a constant, treat it as a label
1698 // reference needing a fixup. If it is a constant, it's something else
1699 // and we reject it.
1700 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1702 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0 ||
1703 !ARMMCRegisterClasses
[ARM::GPRnopcRegClassID
].contains(
1706 // Immediate offset a multiple of 4 in range [-508, 508].
1707 if (!Memory
.OffsetImm
) return true;
1708 int64_t Val
= Memory
.OffsetImm
->getValue();
1709 // Special case, #-0 is INT32_MIN.
1710 return (Val
>= -508 && Val
<= 508 && (Val
& 3) == 0) || Val
== INT32_MIN
;
1712 bool isMemImm0_1020s4Offset() const {
1713 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1715 // Immediate offset a multiple of 4 in range [0, 1020].
1716 if (!Memory
.OffsetImm
) return true;
1717 int64_t Val
= Memory
.OffsetImm
->getValue();
1718 return Val
>= 0 && Val
<= 1020 && (Val
& 3) == 0;
1721 bool isMemImm8Offset() const {
1722 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1724 // Base reg of PC isn't allowed for these encodings.
1725 if (Memory
.BaseRegNum
== ARM::PC
) return false;
1726 // Immediate offset in range [-255, 255].
1727 if (!Memory
.OffsetImm
) return true;
1728 int64_t Val
= Memory
.OffsetImm
->getValue();
1729 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1730 (Val
> -256 && Val
< 256);
1733 template<unsigned Bits
, unsigned RegClassID
>
1734 bool isMemImm7ShiftedOffset() const {
1735 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0 ||
1736 !ARMMCRegisterClasses
[RegClassID
].contains(Memory
.BaseRegNum
))
1739 // Expect an immediate offset equal to an element of the range
1740 // [-127, 127], shifted left by Bits.
1742 if (!Memory
.OffsetImm
) return true;
1743 int64_t Val
= Memory
.OffsetImm
->getValue();
1745 // INT32_MIN is a special-case value (indicating the encoding with
1746 // zero offset and the subtract bit set)
1747 if (Val
== INT32_MIN
)
1750 unsigned Divisor
= 1U << Bits
;
1752 // Check that the low bits are zero
1753 if (Val
% Divisor
!= 0)
1756 // Check that the remaining offset is within range.
1758 return (Val
>= -127 && Val
<= 127);
1761 template <int shift
> bool isMemRegRQOffset() const {
1762 if (!isMVEMem() || Memory
.OffsetImm
!= 0 || Memory
.Alignment
!= 0)
1765 if (!ARMMCRegisterClasses
[ARM::GPRnopcRegClassID
].contains(
1768 if (!ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(
1769 Memory
.OffsetRegNum
))
1772 if (shift
== 0 && Memory
.ShiftType
!= ARM_AM::no_shift
)
1776 (Memory
.ShiftType
!= ARM_AM::uxtw
|| Memory
.ShiftImm
!= shift
))
1782 template <int shift
> bool isMemRegQOffset() const {
1783 if (!isMVEMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1786 if (!ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(
1790 if(!Memory
.OffsetImm
) return true;
1791 static_assert(shift
< 56,
1792 "Such that we dont shift by a value higher than 62");
1793 int64_t Val
= Memory
.OffsetImm
->getValue();
1795 // The value must be a multiple of (1 << shift)
1796 if ((Val
& ((1U << shift
) - 1)) != 0)
1799 // And be in the right range, depending on the amount that it is shifted
1800 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set
1802 int64_t Range
= (1U << (7+shift
)) - 1;
1803 return (Val
== INT32_MIN
) || (Val
> -Range
&& Val
< Range
);
1806 bool isMemPosImm8Offset() const {
1807 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1809 // Immediate offset in range [0, 255].
1810 if (!Memory
.OffsetImm
) return true;
1811 int64_t Val
= Memory
.OffsetImm
->getValue();
1812 return Val
>= 0 && Val
< 256;
1815 bool isMemNegImm8Offset() const {
1816 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1818 // Base reg of PC isn't allowed for these encodings.
1819 if (Memory
.BaseRegNum
== ARM::PC
) return false;
1820 // Immediate offset in range [-255, -1].
1821 if (!Memory
.OffsetImm
) return false;
1822 int64_t Val
= Memory
.OffsetImm
->getValue();
1823 return (Val
== std::numeric_limits
<int32_t>::min()) ||
1824 (Val
> -256 && Val
< 0);
1827 bool isMemUImm12Offset() const {
1828 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1830 // Immediate offset in range [0, 4095].
1831 if (!Memory
.OffsetImm
) return true;
1832 int64_t Val
= Memory
.OffsetImm
->getValue();
1833 return (Val
>= 0 && Val
< 4096);
1836 bool isMemImm12Offset() const {
1837 // If we have an immediate that's not a constant, treat it as a label
1838 // reference needing a fixup. If it is a constant, it's something else
1839 // and we reject it.
1841 if (isImm() && !isa
<MCConstantExpr
>(getImm()))
1844 if (!isGPRMem() || Memory
.OffsetRegNum
!= 0 || Memory
.Alignment
!= 0)
1846 // Immediate offset in range [-4095, 4095].
1847 if (!Memory
.OffsetImm
) return true;
1848 int64_t Val
= Memory
.OffsetImm
->getValue();
1849 return (Val
> -4096 && Val
< 4096) ||
1850 (Val
== std::numeric_limits
<int32_t>::min());
1853 bool isConstPoolAsmImm() const {
1854 // Delay processing of Constant Pool Immediate, this will turn into
1855 // a constant. Match no other operand
1856 return (isConstantPoolImm());
1859 bool isPostIdxImm8() const {
1860 if (!isImm()) return false;
1861 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1862 if (!CE
) return false;
1863 int64_t Val
= CE
->getValue();
1864 return (Val
> -256 && Val
< 256) ||
1865 (Val
== std::numeric_limits
<int32_t>::min());
1868 bool isPostIdxImm8s4() const {
1869 if (!isImm()) return false;
1870 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
1871 if (!CE
) return false;
1872 int64_t Val
= CE
->getValue();
1873 return ((Val
& 3) == 0 && Val
>= -1020 && Val
<= 1020) ||
1874 (Val
== std::numeric_limits
<int32_t>::min());
1877 bool isMSRMask() const { return Kind
== k_MSRMask
; }
1878 bool isBankedReg() const { return Kind
== k_BankedReg
; }
1879 bool isProcIFlags() const { return Kind
== k_ProcIFlags
; }
1882 bool isSingleSpacedVectorList() const {
1883 return Kind
== k_VectorList
&& !VectorList
.isDoubleSpaced
;
1886 bool isDoubleSpacedVectorList() const {
1887 return Kind
== k_VectorList
&& VectorList
.isDoubleSpaced
;
1890 bool isVecListOneD() const {
1891 if (!isSingleSpacedVectorList()) return false;
1892 return VectorList
.Count
== 1;
1895 bool isVecListTwoMQ() const {
1896 return isSingleSpacedVectorList() && VectorList
.Count
== 2 &&
1897 ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(
1901 bool isVecListDPair() const {
1902 if (!isSingleSpacedVectorList()) return false;
1903 return (ARMMCRegisterClasses
[ARM::DPairRegClassID
]
1904 .contains(VectorList
.RegNum
));
1907 bool isVecListThreeD() const {
1908 if (!isSingleSpacedVectorList()) return false;
1909 return VectorList
.Count
== 3;
1912 bool isVecListFourD() const {
1913 if (!isSingleSpacedVectorList()) return false;
1914 return VectorList
.Count
== 4;
1917 bool isVecListDPairSpaced() const {
1918 if (Kind
!= k_VectorList
) return false;
1919 if (isSingleSpacedVectorList()) return false;
1920 return (ARMMCRegisterClasses
[ARM::DPairSpcRegClassID
]
1921 .contains(VectorList
.RegNum
));
1924 bool isVecListThreeQ() const {
1925 if (!isDoubleSpacedVectorList()) return false;
1926 return VectorList
.Count
== 3;
1929 bool isVecListFourQ() const {
1930 if (!isDoubleSpacedVectorList()) return false;
1931 return VectorList
.Count
== 4;
1934 bool isVecListFourMQ() const {
1935 return isSingleSpacedVectorList() && VectorList
.Count
== 4 &&
1936 ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(
1940 bool isSingleSpacedVectorAllLanes() const {
1941 return Kind
== k_VectorListAllLanes
&& !VectorList
.isDoubleSpaced
;
1944 bool isDoubleSpacedVectorAllLanes() const {
1945 return Kind
== k_VectorListAllLanes
&& VectorList
.isDoubleSpaced
;
1948 bool isVecListOneDAllLanes() const {
1949 if (!isSingleSpacedVectorAllLanes()) return false;
1950 return VectorList
.Count
== 1;
1953 bool isVecListDPairAllLanes() const {
1954 if (!isSingleSpacedVectorAllLanes()) return false;
1955 return (ARMMCRegisterClasses
[ARM::DPairRegClassID
]
1956 .contains(VectorList
.RegNum
));
1959 bool isVecListDPairSpacedAllLanes() const {
1960 if (!isDoubleSpacedVectorAllLanes()) return false;
1961 return VectorList
.Count
== 2;
1964 bool isVecListThreeDAllLanes() const {
1965 if (!isSingleSpacedVectorAllLanes()) return false;
1966 return VectorList
.Count
== 3;
1969 bool isVecListThreeQAllLanes() const {
1970 if (!isDoubleSpacedVectorAllLanes()) return false;
1971 return VectorList
.Count
== 3;
1974 bool isVecListFourDAllLanes() const {
1975 if (!isSingleSpacedVectorAllLanes()) return false;
1976 return VectorList
.Count
== 4;
1979 bool isVecListFourQAllLanes() const {
1980 if (!isDoubleSpacedVectorAllLanes()) return false;
1981 return VectorList
.Count
== 4;
1984 bool isSingleSpacedVectorIndexed() const {
1985 return Kind
== k_VectorListIndexed
&& !VectorList
.isDoubleSpaced
;
1988 bool isDoubleSpacedVectorIndexed() const {
1989 return Kind
== k_VectorListIndexed
&& VectorList
.isDoubleSpaced
;
1992 bool isVecListOneDByteIndexed() const {
1993 if (!isSingleSpacedVectorIndexed()) return false;
1994 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 7;
1997 bool isVecListOneDHWordIndexed() const {
1998 if (!isSingleSpacedVectorIndexed()) return false;
1999 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 3;
2002 bool isVecListOneDWordIndexed() const {
2003 if (!isSingleSpacedVectorIndexed()) return false;
2004 return VectorList
.Count
== 1 && VectorList
.LaneIndex
<= 1;
2007 bool isVecListTwoDByteIndexed() const {
2008 if (!isSingleSpacedVectorIndexed()) return false;
2009 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 7;
2012 bool isVecListTwoDHWordIndexed() const {
2013 if (!isSingleSpacedVectorIndexed()) return false;
2014 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 3;
2017 bool isVecListTwoQWordIndexed() const {
2018 if (!isDoubleSpacedVectorIndexed()) return false;
2019 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 1;
2022 bool isVecListTwoQHWordIndexed() const {
2023 if (!isDoubleSpacedVectorIndexed()) return false;
2024 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 3;
2027 bool isVecListTwoDWordIndexed() const {
2028 if (!isSingleSpacedVectorIndexed()) return false;
2029 return VectorList
.Count
== 2 && VectorList
.LaneIndex
<= 1;
2032 bool isVecListThreeDByteIndexed() const {
2033 if (!isSingleSpacedVectorIndexed()) return false;
2034 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 7;
2037 bool isVecListThreeDHWordIndexed() const {
2038 if (!isSingleSpacedVectorIndexed()) return false;
2039 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 3;
2042 bool isVecListThreeQWordIndexed() const {
2043 if (!isDoubleSpacedVectorIndexed()) return false;
2044 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 1;
2047 bool isVecListThreeQHWordIndexed() const {
2048 if (!isDoubleSpacedVectorIndexed()) return false;
2049 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 3;
2052 bool isVecListThreeDWordIndexed() const {
2053 if (!isSingleSpacedVectorIndexed()) return false;
2054 return VectorList
.Count
== 3 && VectorList
.LaneIndex
<= 1;
2057 bool isVecListFourDByteIndexed() const {
2058 if (!isSingleSpacedVectorIndexed()) return false;
2059 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 7;
2062 bool isVecListFourDHWordIndexed() const {
2063 if (!isSingleSpacedVectorIndexed()) return false;
2064 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 3;
2067 bool isVecListFourQWordIndexed() const {
2068 if (!isDoubleSpacedVectorIndexed()) return false;
2069 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 1;
2072 bool isVecListFourQHWordIndexed() const {
2073 if (!isDoubleSpacedVectorIndexed()) return false;
2074 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 3;
2077 bool isVecListFourDWordIndexed() const {
2078 if (!isSingleSpacedVectorIndexed()) return false;
2079 return VectorList
.Count
== 4 && VectorList
.LaneIndex
<= 1;
2082 bool isVectorIndex() const { return Kind
== k_VectorIndex
; }
2084 template <unsigned NumLanes
>
2085 bool isVectorIndexInRange() const {
2086 if (Kind
!= k_VectorIndex
) return false;
2087 return VectorIndex
.Val
< NumLanes
;
2090 bool isVectorIndex8() const { return isVectorIndexInRange
<8>(); }
2091 bool isVectorIndex16() const { return isVectorIndexInRange
<4>(); }
2092 bool isVectorIndex32() const { return isVectorIndexInRange
<2>(); }
2093 bool isVectorIndex64() const { return isVectorIndexInRange
<1>(); }
2095 template<int PermittedValue
, int OtherPermittedValue
>
2096 bool isMVEPairVectorIndex() const {
2097 if (Kind
!= k_VectorIndex
) return false;
2098 return VectorIndex
.Val
== PermittedValue
||
2099 VectorIndex
.Val
== OtherPermittedValue
;
2102 bool isNEONi8splat() const {
2103 if (!isImm()) return false;
2104 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2105 // Must be a constant.
2106 if (!CE
) return false;
2107 int64_t Value
= CE
->getValue();
2108 // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2110 return Value
>= 0 && Value
< 256;
2113 bool isNEONi16splat() const {
2114 if (isNEONByteReplicate(2))
2115 return false; // Leave that for bytes replication and forbid by default.
2118 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2119 // Must be a constant.
2120 if (!CE
) return false;
2121 unsigned Value
= CE
->getValue();
2122 return ARM_AM::isNEONi16splat(Value
);
2125 bool isNEONi16splatNot() const {
2128 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2129 // Must be a constant.
2130 if (!CE
) return false;
2131 unsigned Value
= CE
->getValue();
2132 return ARM_AM::isNEONi16splat(~Value
& 0xffff);
2135 bool isNEONi32splat() const {
2136 if (isNEONByteReplicate(4))
2137 return false; // Leave that for bytes replication and forbid by default.
2140 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2141 // Must be a constant.
2142 if (!CE
) return false;
2143 unsigned Value
= CE
->getValue();
2144 return ARM_AM::isNEONi32splat(Value
);
2147 bool isNEONi32splatNot() const {
2150 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2151 // Must be a constant.
2152 if (!CE
) return false;
2153 unsigned Value
= CE
->getValue();
2154 return ARM_AM::isNEONi32splat(~Value
);
2157 static bool isValidNEONi32vmovImm(int64_t Value
) {
2158 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2159 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2160 return ((Value
& 0xffffffffffffff00) == 0) ||
2161 ((Value
& 0xffffffffffff00ff) == 0) ||
2162 ((Value
& 0xffffffffff00ffff) == 0) ||
2163 ((Value
& 0xffffffff00ffffff) == 0) ||
2164 ((Value
& 0xffffffffffff00ff) == 0xff) ||
2165 ((Value
& 0xffffffffff00ffff) == 0xffff);
2168 bool isNEONReplicate(unsigned Width
, unsigned NumElems
, bool Inv
) const {
2169 assert((Width
== 8 || Width
== 16 || Width
== 32) &&
2170 "Invalid element width");
2171 assert(NumElems
* Width
<= 64 && "Invalid result width");
2175 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2176 // Must be a constant.
2179 int64_t Value
= CE
->getValue();
2181 return false; // Don't bother with zero.
2185 uint64_t Mask
= (1ull << Width
) - 1;
2186 uint64_t Elem
= Value
& Mask
;
2187 if (Width
== 16 && (Elem
& 0x00ff) != 0 && (Elem
& 0xff00) != 0)
2189 if (Width
== 32 && !isValidNEONi32vmovImm(Elem
))
2192 for (unsigned i
= 1; i
< NumElems
; ++i
) {
2194 if ((Value
& Mask
) != Elem
)
2200 bool isNEONByteReplicate(unsigned NumBytes
) const {
2201 return isNEONReplicate(8, NumBytes
, false);
2204 static void checkNeonReplicateArgs(unsigned FromW
, unsigned ToW
) {
2205 assert((FromW
== 8 || FromW
== 16 || FromW
== 32) &&
2206 "Invalid source width");
2207 assert((ToW
== 16 || ToW
== 32 || ToW
== 64) &&
2208 "Invalid destination width");
2209 assert(FromW
< ToW
&& "ToW is not less than FromW");
2212 template<unsigned FromW
, unsigned ToW
>
2213 bool isNEONmovReplicate() const {
2214 checkNeonReplicateArgs(FromW
, ToW
);
2215 if (ToW
== 64 && isNEONi64splat())
2217 return isNEONReplicate(FromW
, ToW
/ FromW
, false);
2220 template<unsigned FromW
, unsigned ToW
>
2221 bool isNEONinvReplicate() const {
2222 checkNeonReplicateArgs(FromW
, ToW
);
2223 return isNEONReplicate(FromW
, ToW
/ FromW
, true);
2226 bool isNEONi32vmov() const {
2227 if (isNEONByteReplicate(4))
2228 return false; // Let it to be classified as byte-replicate case.
2231 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2232 // Must be a constant.
2235 return isValidNEONi32vmovImm(CE
->getValue());
2238 bool isNEONi32vmovNeg() const {
2239 if (!isImm()) return false;
2240 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2241 // Must be a constant.
2242 if (!CE
) return false;
2243 return isValidNEONi32vmovImm(~CE
->getValue());
2246 bool isNEONi64splat() const {
2247 if (!isImm()) return false;
2248 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2249 // Must be a constant.
2250 if (!CE
) return false;
2251 uint64_t Value
= CE
->getValue();
2252 // i64 value with each byte being either 0 or 0xff.
2253 for (unsigned i
= 0; i
< 8; ++i
, Value
>>= 8)
2254 if ((Value
& 0xff) != 0 && (Value
& 0xff) != 0xff) return false;
2258 template<int64_t Angle
, int64_t Remainder
>
2259 bool isComplexRotation() const {
2260 if (!isImm()) return false;
2262 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2263 if (!CE
) return false;
2264 uint64_t Value
= CE
->getValue();
2266 return (Value
% Angle
== Remainder
&& Value
<= 270);
2269 bool isMVELongShift() const {
2270 if (!isImm()) return false;
2271 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2272 // Must be a constant.
2273 if (!CE
) return false;
2274 uint64_t Value
= CE
->getValue();
2275 return Value
>= 1 && Value
<= 32;
2278 bool isMveSaturateOp() const {
2279 if (!isImm()) return false;
2280 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2281 if (!CE
) return false;
2282 uint64_t Value
= CE
->getValue();
2283 return Value
== 48 || Value
== 64;
2286 bool isITCondCodeNoAL() const {
2287 if (!isITCondCode()) return false;
2288 ARMCC::CondCodes CC
= getCondCode();
2289 return CC
!= ARMCC::AL
;
2292 bool isITCondCodeRestrictedI() const {
2293 if (!isITCondCode())
2295 ARMCC::CondCodes CC
= getCondCode();
2296 return CC
== ARMCC::EQ
|| CC
== ARMCC::NE
;
2299 bool isITCondCodeRestrictedS() const {
2300 if (!isITCondCode())
2302 ARMCC::CondCodes CC
= getCondCode();
2303 return CC
== ARMCC::LT
|| CC
== ARMCC::GT
|| CC
== ARMCC::LE
||
2307 bool isITCondCodeRestrictedU() const {
2308 if (!isITCondCode())
2310 ARMCC::CondCodes CC
= getCondCode();
2311 return CC
== ARMCC::HS
|| CC
== ARMCC::HI
;
2314 bool isITCondCodeRestrictedFP() const {
2315 if (!isITCondCode())
2317 ARMCC::CondCodes CC
= getCondCode();
2318 return CC
== ARMCC::EQ
|| CC
== ARMCC::NE
|| CC
== ARMCC::LT
||
2319 CC
== ARMCC::GT
|| CC
== ARMCC::LE
|| CC
== ARMCC::GE
;
2322 void addExpr(MCInst
&Inst
, const MCExpr
*Expr
) const {
2323 // Add as immediates when possible. Null MCExpr = 0.
2325 Inst
.addOperand(MCOperand::createImm(0));
2326 else if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
))
2327 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2329 Inst
.addOperand(MCOperand::createExpr(Expr
));
2332 void addARMBranchTargetOperands(MCInst
&Inst
, unsigned N
) const {
2333 assert(N
== 1 && "Invalid number of operands!");
2334 addExpr(Inst
, getImm());
2337 void addThumbBranchTargetOperands(MCInst
&Inst
, unsigned N
) const {
2338 assert(N
== 1 && "Invalid number of operands!");
2339 addExpr(Inst
, getImm());
2342 void addCondCodeOperands(MCInst
&Inst
, unsigned N
) const {
2343 assert(N
== 2 && "Invalid number of operands!");
2344 Inst
.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2345 unsigned RegNum
= getCondCode() == ARMCC::AL
? 0: ARM::CPSR
;
2346 Inst
.addOperand(MCOperand::createReg(RegNum
));
2349 void addVPTPredNOperands(MCInst
&Inst
, unsigned N
) const {
2350 assert(N
== 2 && "Invalid number of operands!");
2351 Inst
.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2352 unsigned RegNum
= getVPTPred() == ARMVCC::None
? 0: ARM::P0
;
2353 Inst
.addOperand(MCOperand::createReg(RegNum
));
2356 void addVPTPredROperands(MCInst
&Inst
, unsigned N
) const {
2357 assert(N
== 3 && "Invalid number of operands!");
2358 addVPTPredNOperands(Inst
, N
-1);
2360 if (getVPTPred() == ARMVCC::None
) {
2363 unsigned NextOpIndex
= Inst
.getNumOperands();
2364 const MCInstrDesc
&MCID
= ARMInsts
[Inst
.getOpcode()];
2365 int TiedOp
= MCID
.getOperandConstraint(NextOpIndex
, MCOI::TIED_TO
);
2366 assert(TiedOp
>= 0 &&
2367 "Inactive register in vpred_r is not tied to an output!");
2368 RegNum
= Inst
.getOperand(TiedOp
).getReg();
2370 Inst
.addOperand(MCOperand::createReg(RegNum
));
2373 void addCoprocNumOperands(MCInst
&Inst
, unsigned N
) const {
2374 assert(N
== 1 && "Invalid number of operands!");
2375 Inst
.addOperand(MCOperand::createImm(getCoproc()));
2378 void addCoprocRegOperands(MCInst
&Inst
, unsigned N
) const {
2379 assert(N
== 1 && "Invalid number of operands!");
2380 Inst
.addOperand(MCOperand::createImm(getCoproc()));
2383 void addCoprocOptionOperands(MCInst
&Inst
, unsigned N
) const {
2384 assert(N
== 1 && "Invalid number of operands!");
2385 Inst
.addOperand(MCOperand::createImm(CoprocOption
.Val
));
2388 void addITMaskOperands(MCInst
&Inst
, unsigned N
) const {
2389 assert(N
== 1 && "Invalid number of operands!");
2390 Inst
.addOperand(MCOperand::createImm(ITMask
.Mask
));
2393 void addITCondCodeOperands(MCInst
&Inst
, unsigned N
) const {
2394 assert(N
== 1 && "Invalid number of operands!");
2395 Inst
.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2398 void addITCondCodeInvOperands(MCInst
&Inst
, unsigned N
) const {
2399 assert(N
== 1 && "Invalid number of operands!");
2400 Inst
.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2403 void addCCOutOperands(MCInst
&Inst
, unsigned N
) const {
2404 assert(N
== 1 && "Invalid number of operands!");
2405 Inst
.addOperand(MCOperand::createReg(getReg()));
2408 void addRegOperands(MCInst
&Inst
, unsigned N
) const {
2409 assert(N
== 1 && "Invalid number of operands!");
2410 Inst
.addOperand(MCOperand::createReg(getReg()));
2413 void addRegShiftedRegOperands(MCInst
&Inst
, unsigned N
) const {
2414 assert(N
== 3 && "Invalid number of operands!");
2415 assert(isRegShiftedReg() &&
2416 "addRegShiftedRegOperands() on non-RegShiftedReg!");
2417 Inst
.addOperand(MCOperand::createReg(RegShiftedReg
.SrcReg
));
2418 Inst
.addOperand(MCOperand::createReg(RegShiftedReg
.ShiftReg
));
2419 Inst
.addOperand(MCOperand::createImm(
2420 ARM_AM::getSORegOpc(RegShiftedReg
.ShiftTy
, RegShiftedReg
.ShiftImm
)));
2423 void addRegShiftedImmOperands(MCInst
&Inst
, unsigned N
) const {
2424 assert(N
== 2 && "Invalid number of operands!");
2425 assert(isRegShiftedImm() &&
2426 "addRegShiftedImmOperands() on non-RegShiftedImm!");
2427 Inst
.addOperand(MCOperand::createReg(RegShiftedImm
.SrcReg
));
2428 // Shift of #32 is encoded as 0 where permitted
2429 unsigned Imm
= (RegShiftedImm
.ShiftImm
== 32 ? 0 : RegShiftedImm
.ShiftImm
);
2430 Inst
.addOperand(MCOperand::createImm(
2431 ARM_AM::getSORegOpc(RegShiftedImm
.ShiftTy
, Imm
)));
2434 void addShifterImmOperands(MCInst
&Inst
, unsigned N
) const {
2435 assert(N
== 1 && "Invalid number of operands!");
2436 Inst
.addOperand(MCOperand::createImm((ShifterImm
.isASR
<< 5) |
2440 void addRegListOperands(MCInst
&Inst
, unsigned N
) const {
2441 assert(N
== 1 && "Invalid number of operands!");
2442 const SmallVectorImpl
<unsigned> &RegList
= getRegList();
2443 for (SmallVectorImpl
<unsigned>::const_iterator
2444 I
= RegList
.begin(), E
= RegList
.end(); I
!= E
; ++I
)
2445 Inst
.addOperand(MCOperand::createReg(*I
));
2448 void addRegListWithAPSROperands(MCInst
&Inst
, unsigned N
) const {
2449 assert(N
== 1 && "Invalid number of operands!");
2450 const SmallVectorImpl
<unsigned> &RegList
= getRegList();
2451 for (SmallVectorImpl
<unsigned>::const_iterator
2452 I
= RegList
.begin(), E
= RegList
.end(); I
!= E
; ++I
)
2453 Inst
.addOperand(MCOperand::createReg(*I
));
2456 void addDPRRegListOperands(MCInst
&Inst
, unsigned N
) const {
2457 addRegListOperands(Inst
, N
);
2460 void addSPRRegListOperands(MCInst
&Inst
, unsigned N
) const {
2461 addRegListOperands(Inst
, N
);
2464 void addFPSRegListWithVPROperands(MCInst
&Inst
, unsigned N
) const {
2465 addRegListOperands(Inst
, N
);
2468 void addFPDRegListWithVPROperands(MCInst
&Inst
, unsigned N
) const {
2469 addRegListOperands(Inst
, N
);
2472 void addRotImmOperands(MCInst
&Inst
, unsigned N
) const {
2473 assert(N
== 1 && "Invalid number of operands!");
2474 // Encoded as val>>3. The printer handles display as 8, 16, 24.
2475 Inst
.addOperand(MCOperand::createImm(RotImm
.Imm
>> 3));
2478 void addModImmOperands(MCInst
&Inst
, unsigned N
) const {
2479 assert(N
== 1 && "Invalid number of operands!");
2481 // Support for fixups (MCFixup)
2483 return addImmOperands(Inst
, N
);
2485 Inst
.addOperand(MCOperand::createImm(ModImm
.Bits
| (ModImm
.Rot
<< 7)));
2488 void addModImmNotOperands(MCInst
&Inst
, unsigned N
) const {
2489 assert(N
== 1 && "Invalid number of operands!");
2490 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2491 uint32_t Enc
= ARM_AM::getSOImmVal(~CE
->getValue());
2492 Inst
.addOperand(MCOperand::createImm(Enc
));
2495 void addModImmNegOperands(MCInst
&Inst
, unsigned N
) const {
2496 assert(N
== 1 && "Invalid number of operands!");
2497 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2498 uint32_t Enc
= ARM_AM::getSOImmVal(-CE
->getValue());
2499 Inst
.addOperand(MCOperand::createImm(Enc
));
2502 void addThumbModImmNeg8_255Operands(MCInst
&Inst
, unsigned N
) const {
2503 assert(N
== 1 && "Invalid number of operands!");
2504 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2505 uint32_t Val
= -CE
->getValue();
2506 Inst
.addOperand(MCOperand::createImm(Val
));
2509 void addThumbModImmNeg1_7Operands(MCInst
&Inst
, unsigned N
) const {
2510 assert(N
== 1 && "Invalid number of operands!");
2511 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2512 uint32_t Val
= -CE
->getValue();
2513 Inst
.addOperand(MCOperand::createImm(Val
));
2516 void addBitfieldOperands(MCInst
&Inst
, unsigned N
) const {
2517 assert(N
== 1 && "Invalid number of operands!");
2518 // Munge the lsb/width into a bitfield mask.
2519 unsigned lsb
= Bitfield
.LSB
;
2520 unsigned width
= Bitfield
.Width
;
2521 // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2522 uint32_t Mask
= ~(((uint32_t)0xffffffff >> lsb
) << (32 - width
) >>
2523 (32 - (lsb
+ width
)));
2524 Inst
.addOperand(MCOperand::createImm(Mask
));
2527 void addImmOperands(MCInst
&Inst
, unsigned N
) const {
2528 assert(N
== 1 && "Invalid number of operands!");
2529 addExpr(Inst
, getImm());
2532 void addFBits16Operands(MCInst
&Inst
, unsigned N
) const {
2533 assert(N
== 1 && "Invalid number of operands!");
2534 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2535 Inst
.addOperand(MCOperand::createImm(16 - CE
->getValue()));
2538 void addFBits32Operands(MCInst
&Inst
, unsigned N
) const {
2539 assert(N
== 1 && "Invalid number of operands!");
2540 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2541 Inst
.addOperand(MCOperand::createImm(32 - CE
->getValue()));
2544 void addFPImmOperands(MCInst
&Inst
, unsigned N
) const {
2545 assert(N
== 1 && "Invalid number of operands!");
2546 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2547 int Val
= ARM_AM::getFP32Imm(APInt(32, CE
->getValue()));
2548 Inst
.addOperand(MCOperand::createImm(Val
));
2551 void addImm8s4Operands(MCInst
&Inst
, unsigned N
) const {
2552 assert(N
== 1 && "Invalid number of operands!");
2553 // FIXME: We really want to scale the value here, but the LDRD/STRD
2554 // instruction don't encode operands that way yet.
2555 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2556 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2559 void addImm7s4Operands(MCInst
&Inst
, unsigned N
) const {
2560 assert(N
== 1 && "Invalid number of operands!");
2561 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2562 // instruction don't encode operands that way yet.
2563 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2564 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2567 void addImm7Shift0Operands(MCInst
&Inst
, unsigned N
) const {
2568 assert(N
== 1 && "Invalid number of operands!");
2569 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2570 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2573 void addImm7Shift1Operands(MCInst
&Inst
, unsigned N
) const {
2574 assert(N
== 1 && "Invalid number of operands!");
2575 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2576 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2579 void addImm7Shift2Operands(MCInst
&Inst
, unsigned N
) const {
2580 assert(N
== 1 && "Invalid number of operands!");
2581 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2582 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2585 void addImm7Operands(MCInst
&Inst
, unsigned N
) const {
2586 assert(N
== 1 && "Invalid number of operands!");
2587 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2588 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2591 void addImm0_1020s4Operands(MCInst
&Inst
, unsigned N
) const {
2592 assert(N
== 1 && "Invalid number of operands!");
2593 // The immediate is scaled by four in the encoding and is stored
2594 // in the MCInst as such. Lop off the low two bits here.
2595 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2596 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
2599 void addImm0_508s4NegOperands(MCInst
&Inst
, unsigned N
) const {
2600 assert(N
== 1 && "Invalid number of operands!");
2601 // The immediate is scaled by four in the encoding and is stored
2602 // in the MCInst as such. Lop off the low two bits here.
2603 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2604 Inst
.addOperand(MCOperand::createImm(-(CE
->getValue() / 4)));
2607 void addImm0_508s4Operands(MCInst
&Inst
, unsigned N
) const {
2608 assert(N
== 1 && "Invalid number of operands!");
2609 // The immediate is scaled by four in the encoding and is stored
2610 // in the MCInst as such. Lop off the low two bits here.
2611 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2612 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 4));
2615 void addImm1_16Operands(MCInst
&Inst
, unsigned N
) const {
2616 assert(N
== 1 && "Invalid number of operands!");
2617 // The constant encodes as the immediate-1, and we store in the instruction
2618 // the bits as encoded, so subtract off one here.
2619 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2620 Inst
.addOperand(MCOperand::createImm(CE
->getValue() - 1));
2623 void addImm1_32Operands(MCInst
&Inst
, unsigned N
) const {
2624 assert(N
== 1 && "Invalid number of operands!");
2625 // The constant encodes as the immediate-1, and we store in the instruction
2626 // the bits as encoded, so subtract off one here.
2627 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2628 Inst
.addOperand(MCOperand::createImm(CE
->getValue() - 1));
2631 void addImmThumbSROperands(MCInst
&Inst
, unsigned N
) const {
2632 assert(N
== 1 && "Invalid number of operands!");
2633 // The constant encodes as the immediate, except for 32, which encodes as
2635 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2636 unsigned Imm
= CE
->getValue();
2637 Inst
.addOperand(MCOperand::createImm((Imm
== 32 ? 0 : Imm
)));
2640 void addPKHASRImmOperands(MCInst
&Inst
, unsigned N
) const {
2641 assert(N
== 1 && "Invalid number of operands!");
2642 // An ASR value of 32 encodes as 0, so that's how we want to add it to
2643 // the instruction as well.
2644 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2645 int Val
= CE
->getValue();
2646 Inst
.addOperand(MCOperand::createImm(Val
== 32 ? 0 : Val
));
2649 void addT2SOImmNotOperands(MCInst
&Inst
, unsigned N
) const {
2650 assert(N
== 1 && "Invalid number of operands!");
2651 // The operand is actually a t2_so_imm, but we have its bitwise
2652 // negation in the assembly source, so twiddle it here.
2653 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2654 Inst
.addOperand(MCOperand::createImm(~(uint32_t)CE
->getValue()));
2657 void addT2SOImmNegOperands(MCInst
&Inst
, unsigned N
) const {
2658 assert(N
== 1 && "Invalid number of operands!");
2659 // The operand is actually a t2_so_imm, but we have its
2660 // negation in the assembly source, so twiddle it here.
2661 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2662 Inst
.addOperand(MCOperand::createImm(-(uint32_t)CE
->getValue()));
2665 void addImm0_4095NegOperands(MCInst
&Inst
, unsigned N
) const {
2666 assert(N
== 1 && "Invalid number of operands!");
2667 // The operand is actually an imm0_4095, but we have its
2668 // negation in the assembly source, so twiddle it here.
2669 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2670 Inst
.addOperand(MCOperand::createImm(-(uint32_t)CE
->getValue()));
2673 void addUnsignedOffset_b8s2Operands(MCInst
&Inst
, unsigned N
) const {
2674 if(const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm())) {
2675 Inst
.addOperand(MCOperand::createImm(CE
->getValue() >> 2));
2678 const MCSymbolRefExpr
*SR
= cast
<MCSymbolRefExpr
>(Imm
.Val
);
2679 Inst
.addOperand(MCOperand::createExpr(SR
));
2682 void addThumbMemPCOperands(MCInst
&Inst
, unsigned N
) const {
2683 assert(N
== 1 && "Invalid number of operands!");
2685 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2687 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
2690 const MCSymbolRefExpr
*SR
= cast
<MCSymbolRefExpr
>(Imm
.Val
);
2691 Inst
.addOperand(MCOperand::createExpr(SR
));
2695 assert(isGPRMem() && "Unknown value type!");
2696 assert(isa
<MCConstantExpr
>(Memory
.OffsetImm
) && "Unknown value type!");
2697 Inst
.addOperand(MCOperand::createImm(Memory
.OffsetImm
->getValue()));
2700 void addMemBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2701 assert(N
== 1 && "Invalid number of operands!");
2702 Inst
.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2705 void addInstSyncBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2706 assert(N
== 1 && "Invalid number of operands!");
2707 Inst
.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2710 void addTraceSyncBarrierOptOperands(MCInst
&Inst
, unsigned N
) const {
2711 assert(N
== 1 && "Invalid number of operands!");
2712 Inst
.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2715 void addMemNoOffsetOperands(MCInst
&Inst
, unsigned N
) const {
2716 assert(N
== 1 && "Invalid number of operands!");
2717 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2720 void addMemNoOffsetT2Operands(MCInst
&Inst
, unsigned N
) const {
2721 assert(N
== 1 && "Invalid number of operands!");
2722 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2725 void addMemNoOffsetT2NoSpOperands(MCInst
&Inst
, unsigned N
) const {
2726 assert(N
== 1 && "Invalid number of operands!");
2727 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2730 void addMemNoOffsetTOperands(MCInst
&Inst
, unsigned N
) const {
2731 assert(N
== 1 && "Invalid number of operands!");
2732 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2735 void addMemPCRelImm12Operands(MCInst
&Inst
, unsigned N
) const {
2736 assert(N
== 1 && "Invalid number of operands!");
2737 int32_t Imm
= Memory
.OffsetImm
->getValue();
2738 Inst
.addOperand(MCOperand::createImm(Imm
));
2741 void addAdrLabelOperands(MCInst
&Inst
, unsigned N
) const {
2742 assert(N
== 1 && "Invalid number of operands!");
2743 assert(isImm() && "Not an immediate!");
2745 // If we have an immediate that's not a constant, treat it as a label
2746 // reference needing a fixup.
2747 if (!isa
<MCConstantExpr
>(getImm())) {
2748 Inst
.addOperand(MCOperand::createExpr(getImm()));
2752 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
2753 int Val
= CE
->getValue();
2754 Inst
.addOperand(MCOperand::createImm(Val
));
2757 void addAlignedMemoryOperands(MCInst
&Inst
, unsigned N
) const {
2758 assert(N
== 2 && "Invalid number of operands!");
2759 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2760 Inst
.addOperand(MCOperand::createImm(Memory
.Alignment
));
2763 void addDupAlignedMemoryNoneOperands(MCInst
&Inst
, unsigned N
) const {
2764 addAlignedMemoryOperands(Inst
, N
);
2767 void addAlignedMemoryNoneOperands(MCInst
&Inst
, unsigned N
) const {
2768 addAlignedMemoryOperands(Inst
, N
);
2771 void addAlignedMemory16Operands(MCInst
&Inst
, unsigned N
) const {
2772 addAlignedMemoryOperands(Inst
, N
);
2775 void addDupAlignedMemory16Operands(MCInst
&Inst
, unsigned N
) const {
2776 addAlignedMemoryOperands(Inst
, N
);
2779 void addAlignedMemory32Operands(MCInst
&Inst
, unsigned N
) const {
2780 addAlignedMemoryOperands(Inst
, N
);
2783 void addDupAlignedMemory32Operands(MCInst
&Inst
, unsigned N
) const {
2784 addAlignedMemoryOperands(Inst
, N
);
2787 void addAlignedMemory64Operands(MCInst
&Inst
, unsigned N
) const {
2788 addAlignedMemoryOperands(Inst
, N
);
2791 void addDupAlignedMemory64Operands(MCInst
&Inst
, unsigned N
) const {
2792 addAlignedMemoryOperands(Inst
, N
);
2795 void addAlignedMemory64or128Operands(MCInst
&Inst
, unsigned N
) const {
2796 addAlignedMemoryOperands(Inst
, N
);
2799 void addDupAlignedMemory64or128Operands(MCInst
&Inst
, unsigned N
) const {
2800 addAlignedMemoryOperands(Inst
, N
);
2803 void addAlignedMemory64or128or256Operands(MCInst
&Inst
, unsigned N
) const {
2804 addAlignedMemoryOperands(Inst
, N
);
2807 void addAddrMode2Operands(MCInst
&Inst
, unsigned N
) const {
2808 assert(N
== 3 && "Invalid number of operands!");
2809 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2810 if (!Memory
.OffsetRegNum
) {
2811 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2812 // Special case for #-0
2813 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2814 if (Val
< 0) Val
= -Val
;
2815 Val
= ARM_AM::getAM2Opc(AddSub
, Val
, ARM_AM::no_shift
);
2817 // For register offset, we encode the shift type and negation flag
2819 Val
= ARM_AM::getAM2Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
,
2820 Memory
.ShiftImm
, Memory
.ShiftType
);
2822 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2823 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2824 Inst
.addOperand(MCOperand::createImm(Val
));
2827 void addAM2OffsetImmOperands(MCInst
&Inst
, unsigned N
) const {
2828 assert(N
== 2 && "Invalid number of operands!");
2829 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
2830 assert(CE
&& "non-constant AM2OffsetImm operand!");
2831 int32_t Val
= CE
->getValue();
2832 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2833 // Special case for #-0
2834 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2835 if (Val
< 0) Val
= -Val
;
2836 Val
= ARM_AM::getAM2Opc(AddSub
, Val
, ARM_AM::no_shift
);
2837 Inst
.addOperand(MCOperand::createReg(0));
2838 Inst
.addOperand(MCOperand::createImm(Val
));
2841 void addAddrMode3Operands(MCInst
&Inst
, unsigned N
) const {
2842 assert(N
== 3 && "Invalid number of operands!");
2843 // If we have an immediate that's not a constant, treat it as a label
2844 // reference needing a fixup. If it is a constant, it's something else
2845 // and we reject it.
2847 Inst
.addOperand(MCOperand::createExpr(getImm()));
2848 Inst
.addOperand(MCOperand::createReg(0));
2849 Inst
.addOperand(MCOperand::createImm(0));
2853 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2854 if (!Memory
.OffsetRegNum
) {
2855 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2856 // Special case for #-0
2857 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2858 if (Val
< 0) Val
= -Val
;
2859 Val
= ARM_AM::getAM3Opc(AddSub
, Val
);
2861 // For register offset, we encode the shift type and negation flag
2863 Val
= ARM_AM::getAM3Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
, 0);
2865 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2866 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2867 Inst
.addOperand(MCOperand::createImm(Val
));
2870 void addAM3OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2871 assert(N
== 2 && "Invalid number of operands!");
2872 if (Kind
== k_PostIndexRegister
) {
2874 ARM_AM::getAM3Opc(PostIdxReg
.isAdd
? ARM_AM::add
: ARM_AM::sub
, 0);
2875 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
2876 Inst
.addOperand(MCOperand::createImm(Val
));
2881 const MCConstantExpr
*CE
= static_cast<const MCConstantExpr
*>(getImm());
2882 int32_t Val
= CE
->getValue();
2883 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2884 // Special case for #-0
2885 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2886 if (Val
< 0) Val
= -Val
;
2887 Val
= ARM_AM::getAM3Opc(AddSub
, Val
);
2888 Inst
.addOperand(MCOperand::createReg(0));
2889 Inst
.addOperand(MCOperand::createImm(Val
));
2892 void addAddrMode5Operands(MCInst
&Inst
, unsigned N
) const {
2893 assert(N
== 2 && "Invalid number of operands!");
2894 // If we have an immediate that's not a constant, treat it as a label
2895 // reference needing a fixup. If it is a constant, it's something else
2896 // and we reject it.
2898 Inst
.addOperand(MCOperand::createExpr(getImm()));
2899 Inst
.addOperand(MCOperand::createImm(0));
2903 // The lower two bits are always zero and as such are not encoded.
2904 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() / 4 : 0;
2905 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2906 // Special case for #-0
2907 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2908 if (Val
< 0) Val
= -Val
;
2909 Val
= ARM_AM::getAM5Opc(AddSub
, Val
);
2910 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2911 Inst
.addOperand(MCOperand::createImm(Val
));
2914 void addAddrMode5FP16Operands(MCInst
&Inst
, unsigned N
) const {
2915 assert(N
== 2 && "Invalid number of operands!");
2916 // If we have an immediate that's not a constant, treat it as a label
2917 // reference needing a fixup. If it is a constant, it's something else
2918 // and we reject it.
2920 Inst
.addOperand(MCOperand::createExpr(getImm()));
2921 Inst
.addOperand(MCOperand::createImm(0));
2925 // The lower bit is always zero and as such is not encoded.
2926 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() / 2 : 0;
2927 ARM_AM::AddrOpc AddSub
= Val
< 0 ? ARM_AM::sub
: ARM_AM::add
;
2928 // Special case for #-0
2929 if (Val
== std::numeric_limits
<int32_t>::min()) Val
= 0;
2930 if (Val
< 0) Val
= -Val
;
2931 Val
= ARM_AM::getAM5FP16Opc(AddSub
, Val
);
2932 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2933 Inst
.addOperand(MCOperand::createImm(Val
));
2936 void addMemImm8s4OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2937 assert(N
== 2 && "Invalid number of operands!");
2938 // If we have an immediate that's not a constant, treat it as a label
2939 // reference needing a fixup. If it is a constant, it's something else
2940 // and we reject it.
2942 Inst
.addOperand(MCOperand::createExpr(getImm()));
2943 Inst
.addOperand(MCOperand::createImm(0));
2947 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2948 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2949 Inst
.addOperand(MCOperand::createImm(Val
));
2952 void addMemImm7s4OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2953 assert(N
== 2 && "Invalid number of operands!");
2954 // If we have an immediate that's not a constant, treat it as a label
2955 // reference needing a fixup. If it is a constant, it's something else
2956 // and we reject it.
2958 Inst
.addOperand(MCOperand::createExpr(getImm()));
2959 Inst
.addOperand(MCOperand::createImm(0));
2963 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2964 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2965 Inst
.addOperand(MCOperand::createImm(Val
));
2968 void addMemImm0_1020s4OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2969 assert(N
== 2 && "Invalid number of operands!");
2970 // The lower two bits are always zero and as such are not encoded.
2971 int32_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() / 4 : 0;
2972 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2973 Inst
.addOperand(MCOperand::createImm(Val
));
2976 void addMemImmOffsetOperands(MCInst
&Inst
, unsigned N
) const {
2977 assert(N
== 2 && "Invalid number of operands!");
2978 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
2979 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2980 Inst
.addOperand(MCOperand::createImm(Val
));
2983 void addMemRegRQOffsetOperands(MCInst
&Inst
, unsigned N
) const {
2984 assert(N
== 2 && "Invalid number of operands!");
2985 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
2986 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
2989 void addMemUImm12OffsetOperands(MCInst
&Inst
, unsigned N
) const {
2990 assert(N
== 2 && "Invalid number of operands!");
2991 // If this is an immediate, it's a label reference.
2993 addExpr(Inst
, getImm());
2994 Inst
.addOperand(MCOperand::createImm(0));
2998 // Otherwise, it's a normal memory reg+offset.
2999 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
3000 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3001 Inst
.addOperand(MCOperand::createImm(Val
));
3004 void addMemImm12OffsetOperands(MCInst
&Inst
, unsigned N
) const {
3005 assert(N
== 2 && "Invalid number of operands!");
3006 // If this is an immediate, it's a label reference.
3008 addExpr(Inst
, getImm());
3009 Inst
.addOperand(MCOperand::createImm(0));
3013 // Otherwise, it's a normal memory reg+offset.
3014 int64_t Val
= Memory
.OffsetImm
? Memory
.OffsetImm
->getValue() : 0;
3015 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3016 Inst
.addOperand(MCOperand::createImm(Val
));
3019 void addConstPoolAsmImmOperands(MCInst
&Inst
, unsigned N
) const {
3020 assert(N
== 1 && "Invalid number of operands!");
3021 // This is container for the immediate that we will create the constant
3023 addExpr(Inst
, getConstantPoolImm());
3027 void addMemTBBOperands(MCInst
&Inst
, unsigned N
) const {
3028 assert(N
== 2 && "Invalid number of operands!");
3029 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3030 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3033 void addMemTBHOperands(MCInst
&Inst
, unsigned N
) const {
3034 assert(N
== 2 && "Invalid number of operands!");
3035 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3036 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3039 void addMemRegOffsetOperands(MCInst
&Inst
, unsigned N
) const {
3040 assert(N
== 3 && "Invalid number of operands!");
3042 ARM_AM::getAM2Opc(Memory
.isNegative
? ARM_AM::sub
: ARM_AM::add
,
3043 Memory
.ShiftImm
, Memory
.ShiftType
);
3044 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3045 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3046 Inst
.addOperand(MCOperand::createImm(Val
));
3049 void addT2MemRegOffsetOperands(MCInst
&Inst
, unsigned N
) const {
3050 assert(N
== 3 && "Invalid number of operands!");
3051 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3052 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3053 Inst
.addOperand(MCOperand::createImm(Memory
.ShiftImm
));
3056 void addMemThumbRROperands(MCInst
&Inst
, unsigned N
) const {
3057 assert(N
== 2 && "Invalid number of operands!");
3058 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3059 Inst
.addOperand(MCOperand::createReg(Memory
.OffsetRegNum
));
3062 void addMemThumbRIs4Operands(MCInst
&Inst
, unsigned N
) const {
3063 assert(N
== 2 && "Invalid number of operands!");
3064 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue() / 4) : 0;
3065 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3066 Inst
.addOperand(MCOperand::createImm(Val
));
3069 void addMemThumbRIs2Operands(MCInst
&Inst
, unsigned N
) const {
3070 assert(N
== 2 && "Invalid number of operands!");
3071 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue() / 2) : 0;
3072 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3073 Inst
.addOperand(MCOperand::createImm(Val
));
3076 void addMemThumbRIs1Operands(MCInst
&Inst
, unsigned N
) const {
3077 assert(N
== 2 && "Invalid number of operands!");
3078 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue()) : 0;
3079 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3080 Inst
.addOperand(MCOperand::createImm(Val
));
3083 void addMemThumbSPIOperands(MCInst
&Inst
, unsigned N
) const {
3084 assert(N
== 2 && "Invalid number of operands!");
3085 int64_t Val
= Memory
.OffsetImm
? (Memory
.OffsetImm
->getValue() / 4) : 0;
3086 Inst
.addOperand(MCOperand::createReg(Memory
.BaseRegNum
));
3087 Inst
.addOperand(MCOperand::createImm(Val
));
3090 void addPostIdxImm8Operands(MCInst
&Inst
, unsigned N
) const {
3091 assert(N
== 1 && "Invalid number of operands!");
3092 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
3093 assert(CE
&& "non-constant post-idx-imm8 operand!");
3094 int Imm
= CE
->getValue();
3095 bool isAdd
= Imm
>= 0;
3096 if (Imm
== std::numeric_limits
<int32_t>::min()) Imm
= 0;
3097 Imm
= (Imm
< 0 ? -Imm
: Imm
) | (int)isAdd
<< 8;
3098 Inst
.addOperand(MCOperand::createImm(Imm
));
3101 void addPostIdxImm8s4Operands(MCInst
&Inst
, unsigned N
) const {
3102 assert(N
== 1 && "Invalid number of operands!");
3103 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(getImm());
3104 assert(CE
&& "non-constant post-idx-imm8s4 operand!");
3105 int Imm
= CE
->getValue();
3106 bool isAdd
= Imm
>= 0;
3107 if (Imm
== std::numeric_limits
<int32_t>::min()) Imm
= 0;
3108 // Immediate is scaled by 4.
3109 Imm
= ((Imm
< 0 ? -Imm
: Imm
) / 4) | (int)isAdd
<< 8;
3110 Inst
.addOperand(MCOperand::createImm(Imm
));
3113 void addPostIdxRegOperands(MCInst
&Inst
, unsigned N
) const {
3114 assert(N
== 2 && "Invalid number of operands!");
3115 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
3116 Inst
.addOperand(MCOperand::createImm(PostIdxReg
.isAdd
));
3119 void addPostIdxRegShiftedOperands(MCInst
&Inst
, unsigned N
) const {
3120 assert(N
== 2 && "Invalid number of operands!");
3121 Inst
.addOperand(MCOperand::createReg(PostIdxReg
.RegNum
));
3122 // The sign, shift type, and shift amount are encoded in a single operand
3123 // using the AM2 encoding helpers.
3124 ARM_AM::AddrOpc opc
= PostIdxReg
.isAdd
? ARM_AM::add
: ARM_AM::sub
;
3125 unsigned Imm
= ARM_AM::getAM2Opc(opc
, PostIdxReg
.ShiftImm
,
3126 PostIdxReg
.ShiftTy
);
3127 Inst
.addOperand(MCOperand::createImm(Imm
));
3130 void addPowerTwoOperands(MCInst
&Inst
, unsigned N
) const {
3131 assert(N
== 1 && "Invalid number of operands!");
3132 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3133 Inst
.addOperand(MCOperand::createImm(CE
->getValue()));
3136 void addMSRMaskOperands(MCInst
&Inst
, unsigned N
) const {
3137 assert(N
== 1 && "Invalid number of operands!");
3138 Inst
.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3141 void addBankedRegOperands(MCInst
&Inst
, unsigned N
) const {
3142 assert(N
== 1 && "Invalid number of operands!");
3143 Inst
.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3146 void addProcIFlagsOperands(MCInst
&Inst
, unsigned N
) const {
3147 assert(N
== 1 && "Invalid number of operands!");
3148 Inst
.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3151 void addVecListOperands(MCInst
&Inst
, unsigned N
) const {
3152 assert(N
== 1 && "Invalid number of operands!");
3153 Inst
.addOperand(MCOperand::createReg(VectorList
.RegNum
));
3156 void addMVEVecListOperands(MCInst
&Inst
, unsigned N
) const {
3157 assert(N
== 1 && "Invalid number of operands!");
3159 // When we come here, the VectorList field will identify a range
3160 // of q-registers by its base register and length, and it will
3161 // have already been error-checked to be the expected length of
3162 // range and contain only q-regs in the range q0-q7. So we can
3163 // count on the base register being in the range q0-q6 (for 2
3164 // regs) or q0-q4 (for 4)
3166 // The MVE instructions taking a register range of this kind will
3167 // need an operand in the QQPR or QQQQPR class, representing the
3168 // entire range as a unit. So we must translate into that class,
3169 // by finding the index of the base register in the MQPR reg
3170 // class, and returning the super-register at the corresponding
3171 // index in the target class.
3173 const MCRegisterClass
*RC_in
= &ARMMCRegisterClasses
[ARM::MQPRRegClassID
];
3174 const MCRegisterClass
*RC_out
= (VectorList
.Count
== 2) ?
3175 &ARMMCRegisterClasses
[ARM::QQPRRegClassID
] :
3176 &ARMMCRegisterClasses
[ARM::QQQQPRRegClassID
];
3178 unsigned I
, E
= RC_out
->getNumRegs();
3179 for (I
= 0; I
< E
; I
++)
3180 if (RC_in
->getRegister(I
) == VectorList
.RegNum
)
3182 assert(I
< E
&& "Invalid vector list start register!");
3184 Inst
.addOperand(MCOperand::createReg(RC_out
->getRegister(I
)));
3187 void addVecListIndexedOperands(MCInst
&Inst
, unsigned N
) const {
3188 assert(N
== 2 && "Invalid number of operands!");
3189 Inst
.addOperand(MCOperand::createReg(VectorList
.RegNum
));
3190 Inst
.addOperand(MCOperand::createImm(VectorList
.LaneIndex
));
3193 void addVectorIndex8Operands(MCInst
&Inst
, unsigned N
) const {
3194 assert(N
== 1 && "Invalid number of operands!");
3195 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3198 void addVectorIndex16Operands(MCInst
&Inst
, unsigned N
) const {
3199 assert(N
== 1 && "Invalid number of operands!");
3200 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3203 void addVectorIndex32Operands(MCInst
&Inst
, unsigned N
) const {
3204 assert(N
== 1 && "Invalid number of operands!");
3205 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3208 void addVectorIndex64Operands(MCInst
&Inst
, unsigned N
) const {
3209 assert(N
== 1 && "Invalid number of operands!");
3210 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3213 void addMVEVectorIndexOperands(MCInst
&Inst
, unsigned N
) const {
3214 assert(N
== 1 && "Invalid number of operands!");
3215 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3218 void addMVEPairVectorIndexOperands(MCInst
&Inst
, unsigned N
) const {
3219 assert(N
== 1 && "Invalid number of operands!");
3220 Inst
.addOperand(MCOperand::createImm(getVectorIndex()));
3223 void addNEONi8splatOperands(MCInst
&Inst
, unsigned N
) const {
3224 assert(N
== 1 && "Invalid number of operands!");
3225 // The immediate encodes the type of constant as well as the value.
3226 // Mask in that this is an i8 splat.
3227 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3228 Inst
.addOperand(MCOperand::createImm(CE
->getValue() | 0xe00));
3231 void addNEONi16splatOperands(MCInst
&Inst
, unsigned N
) const {
3232 assert(N
== 1 && "Invalid number of operands!");
3233 // The immediate encodes the type of constant as well as the value.
3234 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3235 unsigned Value
= CE
->getValue();
3236 Value
= ARM_AM::encodeNEONi16splat(Value
);
3237 Inst
.addOperand(MCOperand::createImm(Value
));
3240 void addNEONi16splatNotOperands(MCInst
&Inst
, unsigned N
) const {
3241 assert(N
== 1 && "Invalid number of operands!");
3242 // The immediate encodes the type of constant as well as the value.
3243 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3244 unsigned Value
= CE
->getValue();
3245 Value
= ARM_AM::encodeNEONi16splat(~Value
& 0xffff);
3246 Inst
.addOperand(MCOperand::createImm(Value
));
3249 void addNEONi32splatOperands(MCInst
&Inst
, unsigned N
) const {
3250 assert(N
== 1 && "Invalid number of operands!");
3251 // The immediate encodes the type of constant as well as the value.
3252 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3253 unsigned Value
= CE
->getValue();
3254 Value
= ARM_AM::encodeNEONi32splat(Value
);
3255 Inst
.addOperand(MCOperand::createImm(Value
));
3258 void addNEONi32splatNotOperands(MCInst
&Inst
, unsigned N
) const {
3259 assert(N
== 1 && "Invalid number of operands!");
3260 // The immediate encodes the type of constant as well as the value.
3261 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3262 unsigned Value
= CE
->getValue();
3263 Value
= ARM_AM::encodeNEONi32splat(~Value
);
3264 Inst
.addOperand(MCOperand::createImm(Value
));
3267 void addNEONi8ReplicateOperands(MCInst
&Inst
, bool Inv
) const {
3268 // The immediate encodes the type of constant as well as the value.
3269 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3270 assert((Inst
.getOpcode() == ARM::VMOVv8i8
||
3271 Inst
.getOpcode() == ARM::VMOVv16i8
) &&
3272 "All instructions that wants to replicate non-zero byte "
3273 "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3274 unsigned Value
= CE
->getValue();
3277 unsigned B
= Value
& 0xff;
3278 B
|= 0xe00; // cmode = 0b1110
3279 Inst
.addOperand(MCOperand::createImm(B
));
3282 void addNEONinvi8ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
3283 assert(N
== 1 && "Invalid number of operands!");
3284 addNEONi8ReplicateOperands(Inst
, true);
3287 static unsigned encodeNeonVMOVImmediate(unsigned Value
) {
3288 if (Value
>= 256 && Value
<= 0xffff)
3289 Value
= (Value
>> 8) | ((Value
& 0xff) ? 0xc00 : 0x200);
3290 else if (Value
> 0xffff && Value
<= 0xffffff)
3291 Value
= (Value
>> 16) | ((Value
& 0xff) ? 0xd00 : 0x400);
3292 else if (Value
> 0xffffff)
3293 Value
= (Value
>> 24) | 0x600;
3297 void addNEONi32vmovOperands(MCInst
&Inst
, unsigned N
) const {
3298 assert(N
== 1 && "Invalid number of operands!");
3299 // The immediate encodes the type of constant as well as the value.
3300 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3301 unsigned Value
= encodeNeonVMOVImmediate(CE
->getValue());
3302 Inst
.addOperand(MCOperand::createImm(Value
));
3305 void addNEONvmovi8ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
3306 assert(N
== 1 && "Invalid number of operands!");
3307 addNEONi8ReplicateOperands(Inst
, false);
3310 void addNEONvmovi16ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
3311 assert(N
== 1 && "Invalid number of operands!");
3312 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3313 assert((Inst
.getOpcode() == ARM::VMOVv4i16
||
3314 Inst
.getOpcode() == ARM::VMOVv8i16
||
3315 Inst
.getOpcode() == ARM::VMVNv4i16
||
3316 Inst
.getOpcode() == ARM::VMVNv8i16
) &&
3317 "All instructions that want to replicate non-zero half-word "
3318 "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3319 uint64_t Value
= CE
->getValue();
3320 unsigned Elem
= Value
& 0xffff;
3322 Elem
= (Elem
>> 8) | 0x200;
3323 Inst
.addOperand(MCOperand::createImm(Elem
));
3326 void addNEONi32vmovNegOperands(MCInst
&Inst
, unsigned N
) const {
3327 assert(N
== 1 && "Invalid number of operands!");
3328 // The immediate encodes the type of constant as well as the value.
3329 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3330 unsigned Value
= encodeNeonVMOVImmediate(~CE
->getValue());
3331 Inst
.addOperand(MCOperand::createImm(Value
));
3334 void addNEONvmovi32ReplicateOperands(MCInst
&Inst
, unsigned N
) const {
3335 assert(N
== 1 && "Invalid number of operands!");
3336 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3337 assert((Inst
.getOpcode() == ARM::VMOVv2i32
||
3338 Inst
.getOpcode() == ARM::VMOVv4i32
||
3339 Inst
.getOpcode() == ARM::VMVNv2i32
||
3340 Inst
.getOpcode() == ARM::VMVNv4i32
) &&
3341 "All instructions that want to replicate non-zero word "
3342 "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3343 uint64_t Value
= CE
->getValue();
3344 unsigned Elem
= encodeNeonVMOVImmediate(Value
& 0xffffffff);
3345 Inst
.addOperand(MCOperand::createImm(Elem
));
3348 void addNEONi64splatOperands(MCInst
&Inst
, unsigned N
) const {
3349 assert(N
== 1 && "Invalid number of operands!");
3350 // The immediate encodes the type of constant as well as the value.
3351 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3352 uint64_t Value
= CE
->getValue();
3354 for (unsigned i
= 0; i
< 8; ++i
, Value
>>= 8) {
3355 Imm
|= (Value
& 1) << i
;
3357 Inst
.addOperand(MCOperand::createImm(Imm
| 0x1e00));
3360 void addComplexRotationEvenOperands(MCInst
&Inst
, unsigned N
) const {
3361 assert(N
== 1 && "Invalid number of operands!");
3362 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3363 Inst
.addOperand(MCOperand::createImm(CE
->getValue() / 90));
3366 void addComplexRotationOddOperands(MCInst
&Inst
, unsigned N
) const {
3367 assert(N
== 1 && "Invalid number of operands!");
3368 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3369 Inst
.addOperand(MCOperand::createImm((CE
->getValue() - 90) / 180));
3372 void addMveSaturateOperands(MCInst
&Inst
, unsigned N
) const {
3373 assert(N
== 1 && "Invalid number of operands!");
3374 const MCConstantExpr
*CE
= cast
<MCConstantExpr
>(getImm());
3375 unsigned Imm
= CE
->getValue();
3376 assert((Imm
== 48 || Imm
== 64) && "Invalid saturate operand");
3377 Inst
.addOperand(MCOperand::createImm(Imm
== 48 ? 1 : 0));
3380 void print(raw_ostream
&OS
) const override
;
3382 static std::unique_ptr
<ARMOperand
> CreateITMask(unsigned Mask
, SMLoc S
) {
3383 auto Op
= std::make_unique
<ARMOperand
>(k_ITCondMask
);
3384 Op
->ITMask
.Mask
= Mask
;
3390 static std::unique_ptr
<ARMOperand
> CreateCondCode(ARMCC::CondCodes CC
,
3392 auto Op
= std::make_unique
<ARMOperand
>(k_CondCode
);
3399 static std::unique_ptr
<ARMOperand
> CreateVPTPred(ARMVCC::VPTCodes CC
,
3401 auto Op
= std::make_unique
<ARMOperand
>(k_VPTPred
);
3408 static std::unique_ptr
<ARMOperand
> CreateCoprocNum(unsigned CopVal
, SMLoc S
) {
3409 auto Op
= std::make_unique
<ARMOperand
>(k_CoprocNum
);
3410 Op
->Cop
.Val
= CopVal
;
3416 static std::unique_ptr
<ARMOperand
> CreateCoprocReg(unsigned CopVal
, SMLoc S
) {
3417 auto Op
= std::make_unique
<ARMOperand
>(k_CoprocReg
);
3418 Op
->Cop
.Val
= CopVal
;
3424 static std::unique_ptr
<ARMOperand
> CreateCoprocOption(unsigned Val
, SMLoc S
,
3426 auto Op
= std::make_unique
<ARMOperand
>(k_CoprocOption
);
3433 static std::unique_ptr
<ARMOperand
> CreateCCOut(unsigned RegNum
, SMLoc S
) {
3434 auto Op
= std::make_unique
<ARMOperand
>(k_CCOut
);
3435 Op
->Reg
.RegNum
= RegNum
;
3441 static std::unique_ptr
<ARMOperand
> CreateToken(StringRef Str
, SMLoc S
) {
3442 auto Op
= std::make_unique
<ARMOperand
>(k_Token
);
3443 Op
->Tok
.Data
= Str
.data();
3444 Op
->Tok
.Length
= Str
.size();
3450 static std::unique_ptr
<ARMOperand
> CreateReg(unsigned RegNum
, SMLoc S
,
3452 auto Op
= std::make_unique
<ARMOperand
>(k_Register
);
3453 Op
->Reg
.RegNum
= RegNum
;
3459 static std::unique_ptr
<ARMOperand
>
3460 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy
, unsigned SrcReg
,
3461 unsigned ShiftReg
, unsigned ShiftImm
, SMLoc S
,
3463 auto Op
= std::make_unique
<ARMOperand
>(k_ShiftedRegister
);
3464 Op
->RegShiftedReg
.ShiftTy
= ShTy
;
3465 Op
->RegShiftedReg
.SrcReg
= SrcReg
;
3466 Op
->RegShiftedReg
.ShiftReg
= ShiftReg
;
3467 Op
->RegShiftedReg
.ShiftImm
= ShiftImm
;
3473 static std::unique_ptr
<ARMOperand
>
3474 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy
, unsigned SrcReg
,
3475 unsigned ShiftImm
, SMLoc S
, SMLoc E
) {
3476 auto Op
= std::make_unique
<ARMOperand
>(k_ShiftedImmediate
);
3477 Op
->RegShiftedImm
.ShiftTy
= ShTy
;
3478 Op
->RegShiftedImm
.SrcReg
= SrcReg
;
3479 Op
->RegShiftedImm
.ShiftImm
= ShiftImm
;
3485 static std::unique_ptr
<ARMOperand
> CreateShifterImm(bool isASR
, unsigned Imm
,
3487 auto Op
= std::make_unique
<ARMOperand
>(k_ShifterImmediate
);
3488 Op
->ShifterImm
.isASR
= isASR
;
3489 Op
->ShifterImm
.Imm
= Imm
;
3495 static std::unique_ptr
<ARMOperand
> CreateRotImm(unsigned Imm
, SMLoc S
,
3497 auto Op
= std::make_unique
<ARMOperand
>(k_RotateImmediate
);
3498 Op
->RotImm
.Imm
= Imm
;
3504 static std::unique_ptr
<ARMOperand
> CreateModImm(unsigned Bits
, unsigned Rot
,
3506 auto Op
= std::make_unique
<ARMOperand
>(k_ModifiedImmediate
);
3507 Op
->ModImm
.Bits
= Bits
;
3508 Op
->ModImm
.Rot
= Rot
;
3514 static std::unique_ptr
<ARMOperand
>
3515 CreateConstantPoolImm(const MCExpr
*Val
, SMLoc S
, SMLoc E
) {
3516 auto Op
= std::make_unique
<ARMOperand
>(k_ConstantPoolImmediate
);
3523 static std::unique_ptr
<ARMOperand
>
3524 CreateBitfield(unsigned LSB
, unsigned Width
, SMLoc S
, SMLoc E
) {
3525 auto Op
= std::make_unique
<ARMOperand
>(k_BitfieldDescriptor
);
3526 Op
->Bitfield
.LSB
= LSB
;
3527 Op
->Bitfield
.Width
= Width
;
3533 static std::unique_ptr
<ARMOperand
>
3534 CreateRegList(SmallVectorImpl
<std::pair
<unsigned, unsigned>> &Regs
,
3535 SMLoc StartLoc
, SMLoc EndLoc
) {
3536 assert(Regs
.size() > 0 && "RegList contains no registers?");
3537 KindTy Kind
= k_RegisterList
;
3539 if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(
3540 Regs
.front().second
)) {
3541 if (Regs
.back().second
== ARM::VPR
)
3542 Kind
= k_FPDRegisterListWithVPR
;
3544 Kind
= k_DPRRegisterList
;
3545 } else if (ARMMCRegisterClasses
[ARM::SPRRegClassID
].contains(
3546 Regs
.front().second
)) {
3547 if (Regs
.back().second
== ARM::VPR
)
3548 Kind
= k_FPSRegisterListWithVPR
;
3550 Kind
= k_SPRRegisterList
;
3553 if (Kind
== k_RegisterList
&& Regs
.back().second
== ARM::APSR
)
3554 Kind
= k_RegisterListWithAPSR
;
3556 assert(std::is_sorted(Regs
.begin(), Regs
.end()) &&
3557 "Register list must be sorted by encoding");
3559 auto Op
= std::make_unique
<ARMOperand
>(Kind
);
3560 for (const auto &P
: Regs
)
3561 Op
->Registers
.push_back(P
.second
);
3563 Op
->StartLoc
= StartLoc
;
3564 Op
->EndLoc
= EndLoc
;
3568 static std::unique_ptr
<ARMOperand
> CreateVectorList(unsigned RegNum
,
3570 bool isDoubleSpaced
,
3572 auto Op
= std::make_unique
<ARMOperand
>(k_VectorList
);
3573 Op
->VectorList
.RegNum
= RegNum
;
3574 Op
->VectorList
.Count
= Count
;
3575 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3581 static std::unique_ptr
<ARMOperand
>
3582 CreateVectorListAllLanes(unsigned RegNum
, unsigned Count
, bool isDoubleSpaced
,
3584 auto Op
= std::make_unique
<ARMOperand
>(k_VectorListAllLanes
);
3585 Op
->VectorList
.RegNum
= RegNum
;
3586 Op
->VectorList
.Count
= Count
;
3587 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3593 static std::unique_ptr
<ARMOperand
>
3594 CreateVectorListIndexed(unsigned RegNum
, unsigned Count
, unsigned Index
,
3595 bool isDoubleSpaced
, SMLoc S
, SMLoc E
) {
3596 auto Op
= std::make_unique
<ARMOperand
>(k_VectorListIndexed
);
3597 Op
->VectorList
.RegNum
= RegNum
;
3598 Op
->VectorList
.Count
= Count
;
3599 Op
->VectorList
.LaneIndex
= Index
;
3600 Op
->VectorList
.isDoubleSpaced
= isDoubleSpaced
;
3606 static std::unique_ptr
<ARMOperand
>
3607 CreateVectorIndex(unsigned Idx
, SMLoc S
, SMLoc E
, MCContext
&Ctx
) {
3608 auto Op
= std::make_unique
<ARMOperand
>(k_VectorIndex
);
3609 Op
->VectorIndex
.Val
= Idx
;
3615 static std::unique_ptr
<ARMOperand
> CreateImm(const MCExpr
*Val
, SMLoc S
,
3617 auto Op
= std::make_unique
<ARMOperand
>(k_Immediate
);
3624 static std::unique_ptr
<ARMOperand
>
3625 CreateMem(unsigned BaseRegNum
, const MCConstantExpr
*OffsetImm
,
3626 unsigned OffsetRegNum
, ARM_AM::ShiftOpc ShiftType
,
3627 unsigned ShiftImm
, unsigned Alignment
, bool isNegative
, SMLoc S
,
3628 SMLoc E
, SMLoc AlignmentLoc
= SMLoc()) {
3629 auto Op
= std::make_unique
<ARMOperand
>(k_Memory
);
3630 Op
->Memory
.BaseRegNum
= BaseRegNum
;
3631 Op
->Memory
.OffsetImm
= OffsetImm
;
3632 Op
->Memory
.OffsetRegNum
= OffsetRegNum
;
3633 Op
->Memory
.ShiftType
= ShiftType
;
3634 Op
->Memory
.ShiftImm
= ShiftImm
;
3635 Op
->Memory
.Alignment
= Alignment
;
3636 Op
->Memory
.isNegative
= isNegative
;
3639 Op
->AlignmentLoc
= AlignmentLoc
;
3643 static std::unique_ptr
<ARMOperand
>
3644 CreatePostIdxReg(unsigned RegNum
, bool isAdd
, ARM_AM::ShiftOpc ShiftTy
,
3645 unsigned ShiftImm
, SMLoc S
, SMLoc E
) {
3646 auto Op
= std::make_unique
<ARMOperand
>(k_PostIndexRegister
);
3647 Op
->PostIdxReg
.RegNum
= RegNum
;
3648 Op
->PostIdxReg
.isAdd
= isAdd
;
3649 Op
->PostIdxReg
.ShiftTy
= ShiftTy
;
3650 Op
->PostIdxReg
.ShiftImm
= ShiftImm
;
3656 static std::unique_ptr
<ARMOperand
> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt
,
3658 auto Op
= std::make_unique
<ARMOperand
>(k_MemBarrierOpt
);
3659 Op
->MBOpt
.Val
= Opt
;
3665 static std::unique_ptr
<ARMOperand
>
3666 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt
, SMLoc S
) {
3667 auto Op
= std::make_unique
<ARMOperand
>(k_InstSyncBarrierOpt
);
3668 Op
->ISBOpt
.Val
= Opt
;
3674 static std::unique_ptr
<ARMOperand
>
3675 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt
, SMLoc S
) {
3676 auto Op
= std::make_unique
<ARMOperand
>(k_TraceSyncBarrierOpt
);
3677 Op
->TSBOpt
.Val
= Opt
;
3683 static std::unique_ptr
<ARMOperand
> CreateProcIFlags(ARM_PROC::IFlags IFlags
,
3685 auto Op
= std::make_unique
<ARMOperand
>(k_ProcIFlags
);
3686 Op
->IFlags
.Val
= IFlags
;
3692 static std::unique_ptr
<ARMOperand
> CreateMSRMask(unsigned MMask
, SMLoc S
) {
3693 auto Op
= std::make_unique
<ARMOperand
>(k_MSRMask
);
3694 Op
->MMask
.Val
= MMask
;
3700 static std::unique_ptr
<ARMOperand
> CreateBankedReg(unsigned Reg
, SMLoc S
) {
3701 auto Op
= std::make_unique
<ARMOperand
>(k_BankedReg
);
3702 Op
->BankedReg
.Val
= Reg
;
3709 } // end anonymous namespace.
3711 void ARMOperand::print(raw_ostream
&OS
) const {
3712 auto RegName
= [](unsigned Reg
) {
3714 return ARMInstPrinter::getRegisterName(Reg
);
3721 OS
<< "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3724 OS
<< "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3727 OS
<< "<ccout " << RegName(getReg()) << ">";
3729 case k_ITCondMask
: {
3730 static const char *const MaskStr
[] = {
3731 "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3732 "(tt)", "(ttet)", "(tte)", "(ttee)",
3733 "(t)", "(tett)", "(tet)", "(tete)",
3734 "(te)", "(teet)", "(tee)", "(teee)",
3736 assert((ITMask
.Mask
& 0xf) == ITMask
.Mask
);
3737 OS
<< "<it-mask " << MaskStr
[ITMask
.Mask
] << ">";
3741 OS
<< "<coprocessor number: " << getCoproc() << ">";
3744 OS
<< "<coprocessor register: " << getCoproc() << ">";
3746 case k_CoprocOption
:
3747 OS
<< "<coprocessor option: " << CoprocOption
.Val
<< ">";
3750 OS
<< "<mask: " << getMSRMask() << ">";
3753 OS
<< "<banked reg: " << getBankedReg() << ">";
3758 case k_MemBarrierOpt
:
3759 OS
<< "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3761 case k_InstSyncBarrierOpt
:
3762 OS
<< "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3764 case k_TraceSyncBarrierOpt
:
3765 OS
<< "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3769 if (Memory
.BaseRegNum
)
3770 OS
<< " base:" << RegName(Memory
.BaseRegNum
);
3771 if (Memory
.OffsetImm
)
3772 OS
<< " offset-imm:" << *Memory
.OffsetImm
;
3773 if (Memory
.OffsetRegNum
)
3774 OS
<< " offset-reg:" << (Memory
.isNegative
? "-" : "")
3775 << RegName(Memory
.OffsetRegNum
);
3776 if (Memory
.ShiftType
!= ARM_AM::no_shift
) {
3777 OS
<< " shift-type:" << ARM_AM::getShiftOpcStr(Memory
.ShiftType
);
3778 OS
<< " shift-imm:" << Memory
.ShiftImm
;
3780 if (Memory
.Alignment
)
3781 OS
<< " alignment:" << Memory
.Alignment
;
3784 case k_PostIndexRegister
:
3785 OS
<< "post-idx register " << (PostIdxReg
.isAdd
? "" : "-")
3786 << RegName(PostIdxReg
.RegNum
);
3787 if (PostIdxReg
.ShiftTy
!= ARM_AM::no_shift
)
3788 OS
<< ARM_AM::getShiftOpcStr(PostIdxReg
.ShiftTy
) << " "
3789 << PostIdxReg
.ShiftImm
;
3792 case k_ProcIFlags
: {
3793 OS
<< "<ARM_PROC::";
3794 unsigned IFlags
= getProcIFlags();
3795 for (int i
=2; i
>= 0; --i
)
3796 if (IFlags
& (1 << i
))
3797 OS
<< ARM_PROC::IFlagsToString(1 << i
);
3802 OS
<< "<register " << RegName(getReg()) << ">";
3804 case k_ShifterImmediate
:
3805 OS
<< "<shift " << (ShifterImm
.isASR
? "asr" : "lsl")
3806 << " #" << ShifterImm
.Imm
<< ">";
3808 case k_ShiftedRegister
:
3809 OS
<< "<so_reg_reg " << RegName(RegShiftedReg
.SrcReg
) << " "
3810 << ARM_AM::getShiftOpcStr(RegShiftedReg
.ShiftTy
) << " "
3811 << RegName(RegShiftedReg
.ShiftReg
) << ">";
3813 case k_ShiftedImmediate
:
3814 OS
<< "<so_reg_imm " << RegName(RegShiftedImm
.SrcReg
) << " "
3815 << ARM_AM::getShiftOpcStr(RegShiftedImm
.ShiftTy
) << " #"
3816 << RegShiftedImm
.ShiftImm
<< ">";
3818 case k_RotateImmediate
:
3819 OS
<< "<ror " << " #" << (RotImm
.Imm
* 8) << ">";
3821 case k_ModifiedImmediate
:
3822 OS
<< "<mod_imm #" << ModImm
.Bits
<< ", #"
3823 << ModImm
.Rot
<< ")>";
3825 case k_ConstantPoolImmediate
:
3826 OS
<< "<constant_pool_imm #" << *getConstantPoolImm();
3828 case k_BitfieldDescriptor
:
3829 OS
<< "<bitfield " << "lsb: " << Bitfield
.LSB
3830 << ", width: " << Bitfield
.Width
<< ">";
3832 case k_RegisterList
:
3833 case k_RegisterListWithAPSR
:
3834 case k_DPRRegisterList
:
3835 case k_SPRRegisterList
:
3836 case k_FPSRegisterListWithVPR
:
3837 case k_FPDRegisterListWithVPR
: {
3838 OS
<< "<register_list ";
3840 const SmallVectorImpl
<unsigned> &RegList
= getRegList();
3841 for (SmallVectorImpl
<unsigned>::const_iterator
3842 I
= RegList
.begin(), E
= RegList
.end(); I
!= E
; ) {
3844 if (++I
< E
) OS
<< ", ";
3851 OS
<< "<vector_list " << VectorList
.Count
<< " * "
3852 << RegName(VectorList
.RegNum
) << ">";
3854 case k_VectorListAllLanes
:
3855 OS
<< "<vector_list(all lanes) " << VectorList
.Count
<< " * "
3856 << RegName(VectorList
.RegNum
) << ">";
3858 case k_VectorListIndexed
:
3859 OS
<< "<vector_list(lane " << VectorList
.LaneIndex
<< ") "
3860 << VectorList
.Count
<< " * " << RegName(VectorList
.RegNum
) << ">";
3863 OS
<< "'" << getToken() << "'";
3866 OS
<< "<vectorindex " << getVectorIndex() << ">";
3871 /// @name Auto-generated Match Functions
3874 static unsigned MatchRegisterName(StringRef Name
);
3878 bool ARMAsmParser::ParseRegister(unsigned &RegNo
,
3879 SMLoc
&StartLoc
, SMLoc
&EndLoc
) {
3880 const AsmToken
&Tok
= getParser().getTok();
3881 StartLoc
= Tok
.getLoc();
3882 EndLoc
= Tok
.getEndLoc();
3883 RegNo
= tryParseRegister();
3885 return (RegNo
== (unsigned)-1);
3888 /// Try to parse a register name. The token must be an Identifier when called,
3889 /// and if it is a register name the token is eaten and the register number is
3890 /// returned. Otherwise return -1.
3891 int ARMAsmParser::tryParseRegister() {
3892 MCAsmParser
&Parser
= getParser();
3893 const AsmToken
&Tok
= Parser
.getTok();
3894 if (Tok
.isNot(AsmToken::Identifier
)) return -1;
3896 std::string lowerCase
= Tok
.getString().lower();
3897 unsigned RegNum
= MatchRegisterName(lowerCase
);
3899 RegNum
= StringSwitch
<unsigned>(lowerCase
)
3900 .Case("r13", ARM::SP
)
3901 .Case("r14", ARM::LR
)
3902 .Case("r15", ARM::PC
)
3903 .Case("ip", ARM::R12
)
3904 // Additional register name aliases for 'gas' compatibility.
3905 .Case("a1", ARM::R0
)
3906 .Case("a2", ARM::R1
)
3907 .Case("a3", ARM::R2
)
3908 .Case("a4", ARM::R3
)
3909 .Case("v1", ARM::R4
)
3910 .Case("v2", ARM::R5
)
3911 .Case("v3", ARM::R6
)
3912 .Case("v4", ARM::R7
)
3913 .Case("v5", ARM::R8
)
3914 .Case("v6", ARM::R9
)
3915 .Case("v7", ARM::R10
)
3916 .Case("v8", ARM::R11
)
3917 .Case("sb", ARM::R9
)
3918 .Case("sl", ARM::R10
)
3919 .Case("fp", ARM::R11
)
3923 // Check for aliases registered via .req. Canonicalize to lower case.
3924 // That's more consistent since register names are case insensitive, and
3925 // it's how the original entry was passed in from MC/MCParser/AsmParser.
3926 StringMap
<unsigned>::const_iterator Entry
= RegisterReqs
.find(lowerCase
);
3927 // If no match, return failure.
3928 if (Entry
== RegisterReqs
.end())
3930 Parser
.Lex(); // Eat identifier token.
3931 return Entry
->getValue();
3934 // Some FPUs only have 16 D registers, so D16-D31 are invalid
3935 if (!hasD32() && RegNum
>= ARM::D16
&& RegNum
<= ARM::D31
)
3938 Parser
.Lex(); // Eat identifier token.
3943 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
3944 // If a recoverable error occurs, return 1. If an irrecoverable error
3945 // occurs, return -1. An irrecoverable error is one where tokens have been
3946 // consumed in the process of trying to parse the shifter (i.e., when it is
3947 // indeed a shifter operand, but malformed).
3948 int ARMAsmParser::tryParseShiftRegister(OperandVector
&Operands
) {
3949 MCAsmParser
&Parser
= getParser();
3950 SMLoc S
= Parser
.getTok().getLoc();
3951 const AsmToken
&Tok
= Parser
.getTok();
3952 if (Tok
.isNot(AsmToken::Identifier
))
3955 std::string lowerCase
= Tok
.getString().lower();
3956 ARM_AM::ShiftOpc ShiftTy
= StringSwitch
<ARM_AM::ShiftOpc
>(lowerCase
)
3957 .Case("asl", ARM_AM::lsl
)
3958 .Case("lsl", ARM_AM::lsl
)
3959 .Case("lsr", ARM_AM::lsr
)
3960 .Case("asr", ARM_AM::asr
)
3961 .Case("ror", ARM_AM::ror
)
3962 .Case("rrx", ARM_AM::rrx
)
3963 .Default(ARM_AM::no_shift
);
3965 if (ShiftTy
== ARM_AM::no_shift
)
3968 Parser
.Lex(); // Eat the operator.
3970 // The source register for the shift has already been added to the
3971 // operand list, so we need to pop it off and combine it into the shifted
3972 // register operand instead.
3973 std::unique_ptr
<ARMOperand
> PrevOp(
3974 (ARMOperand
*)Operands
.pop_back_val().release());
3975 if (!PrevOp
->isReg())
3976 return Error(PrevOp
->getStartLoc(), "shift must be of a register");
3977 int SrcReg
= PrevOp
->getReg();
3982 if (ShiftTy
== ARM_AM::rrx
) {
3983 // RRX Doesn't have an explicit shift amount. The encoder expects
3984 // the shift register to be the same as the source register. Seems odd,
3988 // Figure out if this is shifted by a constant or a register (for non-RRX).
3989 if (Parser
.getTok().is(AsmToken::Hash
) ||
3990 Parser
.getTok().is(AsmToken::Dollar
)) {
3991 Parser
.Lex(); // Eat hash.
3992 SMLoc ImmLoc
= Parser
.getTok().getLoc();
3993 const MCExpr
*ShiftExpr
= nullptr;
3994 if (getParser().parseExpression(ShiftExpr
, EndLoc
)) {
3995 Error(ImmLoc
, "invalid immediate shift value");
3998 // The expression must be evaluatable as an immediate.
3999 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftExpr
);
4001 Error(ImmLoc
, "invalid immediate shift value");
4004 // Range check the immediate.
4005 // lsl, ror: 0 <= imm <= 31
4006 // lsr, asr: 0 <= imm <= 32
4007 Imm
= CE
->getValue();
4009 ((ShiftTy
== ARM_AM::lsl
|| ShiftTy
== ARM_AM::ror
) && Imm
> 31) ||
4010 ((ShiftTy
== ARM_AM::lsr
|| ShiftTy
== ARM_AM::asr
) && Imm
> 32)) {
4011 Error(ImmLoc
, "immediate shift value out of range");
4014 // shift by zero is a nop. Always send it through as lsl.
4015 // ('as' compatibility)
4017 ShiftTy
= ARM_AM::lsl
;
4018 } else if (Parser
.getTok().is(AsmToken::Identifier
)) {
4019 SMLoc L
= Parser
.getTok().getLoc();
4020 EndLoc
= Parser
.getTok().getEndLoc();
4021 ShiftReg
= tryParseRegister();
4022 if (ShiftReg
== -1) {
4023 Error(L
, "expected immediate or register in shift operand");
4027 Error(Parser
.getTok().getLoc(),
4028 "expected immediate or register in shift operand");
4033 if (ShiftReg
&& ShiftTy
!= ARM_AM::rrx
)
4034 Operands
.push_back(ARMOperand::CreateShiftedRegister(ShiftTy
, SrcReg
,
4038 Operands
.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy
, SrcReg
, Imm
,
4044 /// Try to parse a register name. The token must be an Identifier when called.
4045 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4046 /// if there is a "writeback". 'true' if it's not a register.
4048 /// TODO this is likely to change to allow different register types and or to
4049 /// parse for a specific register type.
4050 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector
&Operands
) {
4051 MCAsmParser
&Parser
= getParser();
4052 SMLoc RegStartLoc
= Parser
.getTok().getLoc();
4053 SMLoc RegEndLoc
= Parser
.getTok().getEndLoc();
4054 int RegNo
= tryParseRegister();
4058 Operands
.push_back(ARMOperand::CreateReg(RegNo
, RegStartLoc
, RegEndLoc
));
4060 const AsmToken
&ExclaimTok
= Parser
.getTok();
4061 if (ExclaimTok
.is(AsmToken::Exclaim
)) {
4062 Operands
.push_back(ARMOperand::CreateToken(ExclaimTok
.getString(),
4063 ExclaimTok
.getLoc()));
4064 Parser
.Lex(); // Eat exclaim token
4068 // Also check for an index operand. This is only legal for vector registers,
4069 // but that'll get caught OK in operand matching, so we don't need to
4070 // explicitly filter everything else out here.
4071 if (Parser
.getTok().is(AsmToken::LBrac
)) {
4072 SMLoc SIdx
= Parser
.getTok().getLoc();
4073 Parser
.Lex(); // Eat left bracket token.
4075 const MCExpr
*ImmVal
;
4076 if (getParser().parseExpression(ImmVal
))
4078 const MCConstantExpr
*MCE
= dyn_cast
<MCConstantExpr
>(ImmVal
);
4080 return TokError("immediate value expected for vector index");
4082 if (Parser
.getTok().isNot(AsmToken::RBrac
))
4083 return Error(Parser
.getTok().getLoc(), "']' expected");
4085 SMLoc E
= Parser
.getTok().getEndLoc();
4086 Parser
.Lex(); // Eat right bracket token.
4088 Operands
.push_back(ARMOperand::CreateVectorIndex(MCE
->getValue(),
4096 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4097 /// instruction with a symbolic operand name.
4098 /// We accept "crN" syntax for GAS compatibility.
4099 /// <operand-name> ::= <prefix><number>
4100 /// If CoprocOp is 'c', then:
4101 /// <prefix> ::= c | cr
4102 /// If CoprocOp is 'p', then :
4104 /// <number> ::= integer in range [0, 15]
4105 static int MatchCoprocessorOperandName(StringRef Name
, char CoprocOp
) {
4106 // Use the same layout as the tablegen'erated register name matcher. Ugly,
4108 if (Name
.size() < 2 || Name
[0] != CoprocOp
)
4110 Name
= (Name
[1] == 'r') ? Name
.drop_front(2) : Name
.drop_front();
4112 switch (Name
.size()) {
4133 // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4134 // However, old cores (v5/v6) did use them in that way.
4135 case '0': return 10;
4136 case '1': return 11;
4137 case '2': return 12;
4138 case '3': return 13;
4139 case '4': return 14;
4140 case '5': return 15;
4145 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4146 OperandMatchResultTy
4147 ARMAsmParser::parseITCondCode(OperandVector
&Operands
) {
4148 MCAsmParser
&Parser
= getParser();
4149 SMLoc S
= Parser
.getTok().getLoc();
4150 const AsmToken
&Tok
= Parser
.getTok();
4151 if (!Tok
.is(AsmToken::Identifier
))
4152 return MatchOperand_NoMatch
;
4153 unsigned CC
= ARMCondCodeFromString(Tok
.getString());
4155 return MatchOperand_NoMatch
;
4156 Parser
.Lex(); // Eat the token.
4158 Operands
.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC
), S
));
4160 return MatchOperand_Success
;
4163 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4164 /// token must be an Identifier when called, and if it is a coprocessor
4165 /// number, the token is eaten and the operand is added to the operand list.
4166 OperandMatchResultTy
4167 ARMAsmParser::parseCoprocNumOperand(OperandVector
&Operands
) {
4168 MCAsmParser
&Parser
= getParser();
4169 SMLoc S
= Parser
.getTok().getLoc();
4170 const AsmToken
&Tok
= Parser
.getTok();
4171 if (Tok
.isNot(AsmToken::Identifier
))
4172 return MatchOperand_NoMatch
;
4174 int Num
= MatchCoprocessorOperandName(Tok
.getString().lower(), 'p');
4176 return MatchOperand_NoMatch
;
4177 if (!isValidCoprocessorNumber(Num
, getSTI().getFeatureBits()))
4178 return MatchOperand_NoMatch
;
4180 Parser
.Lex(); // Eat identifier token.
4181 Operands
.push_back(ARMOperand::CreateCoprocNum(Num
, S
));
4182 return MatchOperand_Success
;
4185 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4186 /// token must be an Identifier when called, and if it is a coprocessor
4187 /// number, the token is eaten and the operand is added to the operand list.
4188 OperandMatchResultTy
4189 ARMAsmParser::parseCoprocRegOperand(OperandVector
&Operands
) {
4190 MCAsmParser
&Parser
= getParser();
4191 SMLoc S
= Parser
.getTok().getLoc();
4192 const AsmToken
&Tok
= Parser
.getTok();
4193 if (Tok
.isNot(AsmToken::Identifier
))
4194 return MatchOperand_NoMatch
;
4196 int Reg
= MatchCoprocessorOperandName(Tok
.getString().lower(), 'c');
4198 return MatchOperand_NoMatch
;
4200 Parser
.Lex(); // Eat identifier token.
4201 Operands
.push_back(ARMOperand::CreateCoprocReg(Reg
, S
));
4202 return MatchOperand_Success
;
4205 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4206 /// coproc_option : '{' imm0_255 '}'
4207 OperandMatchResultTy
4208 ARMAsmParser::parseCoprocOptionOperand(OperandVector
&Operands
) {
4209 MCAsmParser
&Parser
= getParser();
4210 SMLoc S
= Parser
.getTok().getLoc();
4212 // If this isn't a '{', this isn't a coprocessor immediate operand.
4213 if (Parser
.getTok().isNot(AsmToken::LCurly
))
4214 return MatchOperand_NoMatch
;
4215 Parser
.Lex(); // Eat the '{'
4218 SMLoc Loc
= Parser
.getTok().getLoc();
4219 if (getParser().parseExpression(Expr
)) {
4220 Error(Loc
, "illegal expression");
4221 return MatchOperand_ParseFail
;
4223 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
4224 if (!CE
|| CE
->getValue() < 0 || CE
->getValue() > 255) {
4225 Error(Loc
, "coprocessor option must be an immediate in range [0, 255]");
4226 return MatchOperand_ParseFail
;
4228 int Val
= CE
->getValue();
4230 // Check for and consume the closing '}'
4231 if (Parser
.getTok().isNot(AsmToken::RCurly
))
4232 return MatchOperand_ParseFail
;
4233 SMLoc E
= Parser
.getTok().getEndLoc();
4234 Parser
.Lex(); // Eat the '}'
4236 Operands
.push_back(ARMOperand::CreateCoprocOption(Val
, S
, E
));
4237 return MatchOperand_Success
;
4240 // For register list parsing, we need to map from raw GPR register numbering
4241 // to the enumeration values. The enumeration values aren't sorted by
4242 // register number due to our using "sp", "lr" and "pc" as canonical names.
4243 static unsigned getNextRegister(unsigned Reg
) {
4244 // If this is a GPR, we need to do it manually, otherwise we can rely
4245 // on the sort ordering of the enumeration since the other reg-classes
4247 if (!ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
4250 default: llvm_unreachable("Invalid GPR number!");
4251 case ARM::R0
: return ARM::R1
; case ARM::R1
: return ARM::R2
;
4252 case ARM::R2
: return ARM::R3
; case ARM::R3
: return ARM::R4
;
4253 case ARM::R4
: return ARM::R5
; case ARM::R5
: return ARM::R6
;
4254 case ARM::R6
: return ARM::R7
; case ARM::R7
: return ARM::R8
;
4255 case ARM::R8
: return ARM::R9
; case ARM::R9
: return ARM::R10
;
4256 case ARM::R10
: return ARM::R11
; case ARM::R11
: return ARM::R12
;
4257 case ARM::R12
: return ARM::SP
; case ARM::SP
: return ARM::LR
;
4258 case ARM::LR
: return ARM::PC
; case ARM::PC
: return ARM::R0
;
4262 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4263 // success, or false, if duplicate encoding found.
4265 insertNoDuplicates(SmallVectorImpl
<std::pair
<unsigned, unsigned>> &Regs
,
4266 unsigned Enc
, unsigned Reg
) {
4267 Regs
.emplace_back(Enc
, Reg
);
4268 for (auto I
= Regs
.rbegin(), J
= I
+ 1, E
= Regs
.rend(); J
!= E
; ++I
, ++J
) {
4269 if (J
->first
== Enc
) {
4270 Regs
.erase(J
.base());
4280 /// Parse a register list.
4281 bool ARMAsmParser::parseRegisterList(OperandVector
&Operands
,
4282 bool EnforceOrder
) {
4283 MCAsmParser
&Parser
= getParser();
4284 if (Parser
.getTok().isNot(AsmToken::LCurly
))
4285 return TokError("Token is not a Left Curly Brace");
4286 SMLoc S
= Parser
.getTok().getLoc();
4287 Parser
.Lex(); // Eat '{' token.
4288 SMLoc RegLoc
= Parser
.getTok().getLoc();
4290 // Check the first register in the list to see what register class
4291 // this is a list of.
4292 int Reg
= tryParseRegister();
4294 return Error(RegLoc
, "register expected");
4296 // The reglist instructions have at most 16 registers, so reserve
4297 // space for that many.
4299 SmallVector
<std::pair
<unsigned, unsigned>, 16> Registers
;
4301 // Allow Q regs and just interpret them as the two D sub-registers.
4302 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4303 Reg
= getDRegFromQReg(Reg
);
4304 EReg
= MRI
->getEncodingValue(Reg
);
4305 Registers
.emplace_back(EReg
, Reg
);
4308 const MCRegisterClass
*RC
;
4309 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
4310 RC
= &ARMMCRegisterClasses
[ARM::GPRRegClassID
];
4311 else if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
))
4312 RC
= &ARMMCRegisterClasses
[ARM::DPRRegClassID
];
4313 else if (ARMMCRegisterClasses
[ARM::SPRRegClassID
].contains(Reg
))
4314 RC
= &ARMMCRegisterClasses
[ARM::SPRRegClassID
];
4315 else if (ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
].contains(Reg
))
4316 RC
= &ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
];
4318 return Error(RegLoc
, "invalid register in register list");
4320 // Store the register.
4321 EReg
= MRI
->getEncodingValue(Reg
);
4322 Registers
.emplace_back(EReg
, Reg
);
4324 // This starts immediately after the first register token in the list,
4325 // so we can see either a comma or a minus (range separator) as a legal
4327 while (Parser
.getTok().is(AsmToken::Comma
) ||
4328 Parser
.getTok().is(AsmToken::Minus
)) {
4329 if (Parser
.getTok().is(AsmToken::Minus
)) {
4330 Parser
.Lex(); // Eat the minus.
4331 SMLoc AfterMinusLoc
= Parser
.getTok().getLoc();
4332 int EndReg
= tryParseRegister();
4334 return Error(AfterMinusLoc
, "register expected");
4335 // Allow Q regs and just interpret them as the two D sub-registers.
4336 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(EndReg
))
4337 EndReg
= getDRegFromQReg(EndReg
) + 1;
4338 // If the register is the same as the start reg, there's nothing
4342 // The register must be in the same register class as the first.
4343 if (!RC
->contains(EndReg
))
4344 return Error(AfterMinusLoc
, "invalid register in register list");
4345 // Ranges must go from low to high.
4346 if (MRI
->getEncodingValue(Reg
) > MRI
->getEncodingValue(EndReg
))
4347 return Error(AfterMinusLoc
, "bad range in register list");
4349 // Add all the registers in the range to the register list.
4350 while (Reg
!= EndReg
) {
4351 Reg
= getNextRegister(Reg
);
4352 EReg
= MRI
->getEncodingValue(Reg
);
4353 if (!insertNoDuplicates(Registers
, EReg
, Reg
)) {
4354 Warning(AfterMinusLoc
, StringRef("duplicated register (") +
4355 ARMInstPrinter::getRegisterName(Reg
) +
4356 ") in register list");
4361 Parser
.Lex(); // Eat the comma.
4362 RegLoc
= Parser
.getTok().getLoc();
4364 const AsmToken RegTok
= Parser
.getTok();
4365 Reg
= tryParseRegister();
4367 return Error(RegLoc
, "register expected");
4368 // Allow Q regs and just interpret them as the two D sub-registers.
4369 bool isQReg
= false;
4370 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4371 Reg
= getDRegFromQReg(Reg
);
4374 if (!RC
->contains(Reg
) &&
4375 RC
->getID() == ARMMCRegisterClasses
[ARM::GPRRegClassID
].getID() &&
4376 ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
].contains(Reg
)) {
4377 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4378 // subset of GPRRegClassId except it contains APSR as well.
4379 RC
= &ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
];
4381 if (Reg
== ARM::VPR
&&
4382 (RC
== &ARMMCRegisterClasses
[ARM::SPRRegClassID
] ||
4383 RC
== &ARMMCRegisterClasses
[ARM::DPRRegClassID
] ||
4384 RC
== &ARMMCRegisterClasses
[ARM::FPWithVPRRegClassID
])) {
4385 RC
= &ARMMCRegisterClasses
[ARM::FPWithVPRRegClassID
];
4386 EReg
= MRI
->getEncodingValue(Reg
);
4387 if (!insertNoDuplicates(Registers
, EReg
, Reg
)) {
4388 Warning(RegLoc
, "duplicated register (" + RegTok
.getString() +
4389 ") in register list");
4393 // The register must be in the same register class as the first.
4394 if (!RC
->contains(Reg
))
4395 return Error(RegLoc
, "invalid register in register list");
4396 // In most cases, the list must be monotonically increasing. An
4397 // exception is CLRM, which is order-independent anyway, so
4398 // there's no potential for confusion if you write clrm {r2,r1}
4399 // instead of clrm {r1,r2}.
4401 MRI
->getEncodingValue(Reg
) < MRI
->getEncodingValue(OldReg
)) {
4402 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
4403 Warning(RegLoc
, "register list not in ascending order");
4404 else if (!ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
].contains(Reg
))
4405 return Error(RegLoc
, "register list not in ascending order");
4407 // VFP register lists must also be contiguous.
4408 if (RC
!= &ARMMCRegisterClasses
[ARM::GPRRegClassID
] &&
4409 RC
!= &ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
] &&
4411 return Error(RegLoc
, "non-contiguous register range");
4412 EReg
= MRI
->getEncodingValue(Reg
);
4413 if (!insertNoDuplicates(Registers
, EReg
, Reg
)) {
4414 Warning(RegLoc
, "duplicated register (" + RegTok
.getString() +
4415 ") in register list");
4418 EReg
= MRI
->getEncodingValue(++Reg
);
4419 Registers
.emplace_back(EReg
, Reg
);
4423 if (Parser
.getTok().isNot(AsmToken::RCurly
))
4424 return Error(Parser
.getTok().getLoc(), "'}' expected");
4425 SMLoc E
= Parser
.getTok().getEndLoc();
4426 Parser
.Lex(); // Eat '}' token.
4428 // Push the register list operand.
4429 Operands
.push_back(ARMOperand::CreateRegList(Registers
, S
, E
));
4431 // The ARM system instruction variants for LDM/STM have a '^' token here.
4432 if (Parser
.getTok().is(AsmToken::Caret
)) {
4433 Operands
.push_back(ARMOperand::CreateToken("^",Parser
.getTok().getLoc()));
4434 Parser
.Lex(); // Eat '^' token.
4440 // Helper function to parse the lane index for vector lists.
4441 OperandMatchResultTy
ARMAsmParser::
4442 parseVectorLane(VectorLaneTy
&LaneKind
, unsigned &Index
, SMLoc
&EndLoc
) {
4443 MCAsmParser
&Parser
= getParser();
4444 Index
= 0; // Always return a defined index value.
4445 if (Parser
.getTok().is(AsmToken::LBrac
)) {
4446 Parser
.Lex(); // Eat the '['.
4447 if (Parser
.getTok().is(AsmToken::RBrac
)) {
4448 // "Dn[]" is the 'all lanes' syntax.
4449 LaneKind
= AllLanes
;
4450 EndLoc
= Parser
.getTok().getEndLoc();
4451 Parser
.Lex(); // Eat the ']'.
4452 return MatchOperand_Success
;
4455 // There's an optional '#' token here. Normally there wouldn't be, but
4456 // inline assemble puts one in, and it's friendly to accept that.
4457 if (Parser
.getTok().is(AsmToken::Hash
))
4458 Parser
.Lex(); // Eat '#' or '$'.
4460 const MCExpr
*LaneIndex
;
4461 SMLoc Loc
= Parser
.getTok().getLoc();
4462 if (getParser().parseExpression(LaneIndex
)) {
4463 Error(Loc
, "illegal expression");
4464 return MatchOperand_ParseFail
;
4466 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(LaneIndex
);
4468 Error(Loc
, "lane index must be empty or an integer");
4469 return MatchOperand_ParseFail
;
4471 if (Parser
.getTok().isNot(AsmToken::RBrac
)) {
4472 Error(Parser
.getTok().getLoc(), "']' expected");
4473 return MatchOperand_ParseFail
;
4475 EndLoc
= Parser
.getTok().getEndLoc();
4476 Parser
.Lex(); // Eat the ']'.
4477 int64_t Val
= CE
->getValue();
4479 // FIXME: Make this range check context sensitive for .8, .16, .32.
4480 if (Val
< 0 || Val
> 7) {
4481 Error(Parser
.getTok().getLoc(), "lane index out of range");
4482 return MatchOperand_ParseFail
;
4485 LaneKind
= IndexedLane
;
4486 return MatchOperand_Success
;
4489 return MatchOperand_Success
;
4492 // parse a vector register list
4493 OperandMatchResultTy
4494 ARMAsmParser::parseVectorList(OperandVector
&Operands
) {
4495 MCAsmParser
&Parser
= getParser();
4496 VectorLaneTy LaneKind
;
4498 SMLoc S
= Parser
.getTok().getLoc();
4499 // As an extension (to match gas), support a plain D register or Q register
4500 // (without encosing curly braces) as a single or double entry list,
4502 if (!hasMVE() && Parser
.getTok().is(AsmToken::Identifier
)) {
4503 SMLoc E
= Parser
.getTok().getEndLoc();
4504 int Reg
= tryParseRegister();
4506 return MatchOperand_NoMatch
;
4507 if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
)) {
4508 OperandMatchResultTy Res
= parseVectorLane(LaneKind
, LaneIndex
, E
);
4509 if (Res
!= MatchOperand_Success
)
4513 Operands
.push_back(ARMOperand::CreateVectorList(Reg
, 1, false, S
, E
));
4516 Operands
.push_back(ARMOperand::CreateVectorListAllLanes(Reg
, 1, false,
4520 Operands
.push_back(ARMOperand::CreateVectorListIndexed(Reg
, 1,
4525 return MatchOperand_Success
;
4527 if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4528 Reg
= getDRegFromQReg(Reg
);
4529 OperandMatchResultTy Res
= parseVectorLane(LaneKind
, LaneIndex
, E
);
4530 if (Res
!= MatchOperand_Success
)
4534 Reg
= MRI
->getMatchingSuperReg(Reg
, ARM::dsub_0
,
4535 &ARMMCRegisterClasses
[ARM::DPairRegClassID
]);
4536 Operands
.push_back(ARMOperand::CreateVectorList(Reg
, 2, false, S
, E
));
4539 Reg
= MRI
->getMatchingSuperReg(Reg
, ARM::dsub_0
,
4540 &ARMMCRegisterClasses
[ARM::DPairRegClassID
]);
4541 Operands
.push_back(ARMOperand::CreateVectorListAllLanes(Reg
, 2, false,
4545 Operands
.push_back(ARMOperand::CreateVectorListIndexed(Reg
, 2,
4550 return MatchOperand_Success
;
4552 Error(S
, "vector register expected");
4553 return MatchOperand_ParseFail
;
4556 if (Parser
.getTok().isNot(AsmToken::LCurly
))
4557 return MatchOperand_NoMatch
;
4559 Parser
.Lex(); // Eat '{' token.
4560 SMLoc RegLoc
= Parser
.getTok().getLoc();
4562 int Reg
= tryParseRegister();
4564 Error(RegLoc
, "register expected");
4565 return MatchOperand_ParseFail
;
4569 unsigned FirstReg
= Reg
;
4571 if (hasMVE() && !ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(Reg
)) {
4572 Error(Parser
.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4573 return MatchOperand_ParseFail
;
4575 // The list is of D registers, but we also allow Q regs and just interpret
4576 // them as the two D sub-registers.
4577 else if (!hasMVE() && ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4578 FirstReg
= Reg
= getDRegFromQReg(Reg
);
4579 Spacing
= 1; // double-spacing requires explicit D registers, otherwise
4580 // it's ambiguous with four-register single spaced.
4586 if (parseVectorLane(LaneKind
, LaneIndex
, E
) != MatchOperand_Success
)
4587 return MatchOperand_ParseFail
;
4589 while (Parser
.getTok().is(AsmToken::Comma
) ||
4590 Parser
.getTok().is(AsmToken::Minus
)) {
4591 if (Parser
.getTok().is(AsmToken::Minus
)) {
4593 Spacing
= 1; // Register range implies a single spaced list.
4594 else if (Spacing
== 2) {
4595 Error(Parser
.getTok().getLoc(),
4596 "sequential registers in double spaced list");
4597 return MatchOperand_ParseFail
;
4599 Parser
.Lex(); // Eat the minus.
4600 SMLoc AfterMinusLoc
= Parser
.getTok().getLoc();
4601 int EndReg
= tryParseRegister();
4603 Error(AfterMinusLoc
, "register expected");
4604 return MatchOperand_ParseFail
;
4606 // Allow Q regs and just interpret them as the two D sub-registers.
4607 if (!hasMVE() && ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(EndReg
))
4608 EndReg
= getDRegFromQReg(EndReg
) + 1;
4609 // If the register is the same as the start reg, there's nothing
4613 // The register must be in the same register class as the first.
4615 !ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(EndReg
)) ||
4617 !ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(EndReg
))) {
4618 Error(AfterMinusLoc
, "invalid register in register list");
4619 return MatchOperand_ParseFail
;
4621 // Ranges must go from low to high.
4623 Error(AfterMinusLoc
, "bad range in register list");
4624 return MatchOperand_ParseFail
;
4626 // Parse the lane specifier if present.
4627 VectorLaneTy NextLaneKind
;
4628 unsigned NextLaneIndex
;
4629 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) !=
4630 MatchOperand_Success
)
4631 return MatchOperand_ParseFail
;
4632 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4633 Error(AfterMinusLoc
, "mismatched lane index in register list");
4634 return MatchOperand_ParseFail
;
4637 // Add all the registers in the range to the register list.
4638 Count
+= EndReg
- Reg
;
4642 Parser
.Lex(); // Eat the comma.
4643 RegLoc
= Parser
.getTok().getLoc();
4645 Reg
= tryParseRegister();
4647 Error(RegLoc
, "register expected");
4648 return MatchOperand_ParseFail
;
4652 if (!ARMMCRegisterClasses
[ARM::MQPRRegClassID
].contains(Reg
)) {
4653 Error(RegLoc
, "vector register in range Q0-Q7 expected");
4654 return MatchOperand_ParseFail
;
4658 // vector register lists must be contiguous.
4659 // It's OK to use the enumeration values directly here rather, as the
4660 // VFP register classes have the enum sorted properly.
4662 // The list is of D registers, but we also allow Q regs and just interpret
4663 // them as the two D sub-registers.
4664 else if (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(Reg
)) {
4666 Spacing
= 1; // Register range implies a single spaced list.
4667 else if (Spacing
== 2) {
4669 "invalid register in double-spaced list (must be 'D' register')");
4670 return MatchOperand_ParseFail
;
4672 Reg
= getDRegFromQReg(Reg
);
4673 if (Reg
!= OldReg
+ 1) {
4674 Error(RegLoc
, "non-contiguous register range");
4675 return MatchOperand_ParseFail
;
4679 // Parse the lane specifier if present.
4680 VectorLaneTy NextLaneKind
;
4681 unsigned NextLaneIndex
;
4682 SMLoc LaneLoc
= Parser
.getTok().getLoc();
4683 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) !=
4684 MatchOperand_Success
)
4685 return MatchOperand_ParseFail
;
4686 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4687 Error(LaneLoc
, "mismatched lane index in register list");
4688 return MatchOperand_ParseFail
;
4692 // Normal D register.
4693 // Figure out the register spacing (single or double) of the list if
4694 // we don't know it already.
4696 Spacing
= 1 + (Reg
== OldReg
+ 2);
4698 // Just check that it's contiguous and keep going.
4699 if (Reg
!= OldReg
+ Spacing
) {
4700 Error(RegLoc
, "non-contiguous register range");
4701 return MatchOperand_ParseFail
;
4704 // Parse the lane specifier if present.
4705 VectorLaneTy NextLaneKind
;
4706 unsigned NextLaneIndex
;
4707 SMLoc EndLoc
= Parser
.getTok().getLoc();
4708 if (parseVectorLane(NextLaneKind
, NextLaneIndex
, E
) != MatchOperand_Success
)
4709 return MatchOperand_ParseFail
;
4710 if (NextLaneKind
!= LaneKind
|| LaneIndex
!= NextLaneIndex
) {
4711 Error(EndLoc
, "mismatched lane index in register list");
4712 return MatchOperand_ParseFail
;
4716 if (Parser
.getTok().isNot(AsmToken::RCurly
)) {
4717 Error(Parser
.getTok().getLoc(), "'}' expected");
4718 return MatchOperand_ParseFail
;
4720 E
= Parser
.getTok().getEndLoc();
4721 Parser
.Lex(); // Eat '}' token.
4726 // Two-register operands have been converted to the
4727 // composite register classes.
4728 if (Count
== 2 && !hasMVE()) {
4729 const MCRegisterClass
*RC
= (Spacing
== 1) ?
4730 &ARMMCRegisterClasses
[ARM::DPairRegClassID
] :
4731 &ARMMCRegisterClasses
[ARM::DPairSpcRegClassID
];
4732 FirstReg
= MRI
->getMatchingSuperReg(FirstReg
, ARM::dsub_0
, RC
);
4734 auto Create
= (LaneKind
== NoLanes
? ARMOperand::CreateVectorList
:
4735 ARMOperand::CreateVectorListAllLanes
);
4736 Operands
.push_back(Create(FirstReg
, Count
, (Spacing
== 2), S
, E
));
4740 Operands
.push_back(ARMOperand::CreateVectorListIndexed(FirstReg
, Count
,
4746 return MatchOperand_Success
;
4749 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4750 OperandMatchResultTy
4751 ARMAsmParser::parseMemBarrierOptOperand(OperandVector
&Operands
) {
4752 MCAsmParser
&Parser
= getParser();
4753 SMLoc S
= Parser
.getTok().getLoc();
4754 const AsmToken
&Tok
= Parser
.getTok();
4757 if (Tok
.is(AsmToken::Identifier
)) {
4758 StringRef OptStr
= Tok
.getString();
4760 Opt
= StringSwitch
<unsigned>(OptStr
.slice(0, OptStr
.size()).lower())
4761 .Case("sy", ARM_MB::SY
)
4762 .Case("st", ARM_MB::ST
)
4763 .Case("ld", ARM_MB::LD
)
4764 .Case("sh", ARM_MB::ISH
)
4765 .Case("ish", ARM_MB::ISH
)
4766 .Case("shst", ARM_MB::ISHST
)
4767 .Case("ishst", ARM_MB::ISHST
)
4768 .Case("ishld", ARM_MB::ISHLD
)
4769 .Case("nsh", ARM_MB::NSH
)
4770 .Case("un", ARM_MB::NSH
)
4771 .Case("nshst", ARM_MB::NSHST
)
4772 .Case("nshld", ARM_MB::NSHLD
)
4773 .Case("unst", ARM_MB::NSHST
)
4774 .Case("osh", ARM_MB::OSH
)
4775 .Case("oshst", ARM_MB::OSHST
)
4776 .Case("oshld", ARM_MB::OSHLD
)
4779 // ishld, oshld, nshld and ld are only available from ARMv8.
4780 if (!hasV8Ops() && (Opt
== ARM_MB::ISHLD
|| Opt
== ARM_MB::OSHLD
||
4781 Opt
== ARM_MB::NSHLD
|| Opt
== ARM_MB::LD
))
4785 return MatchOperand_NoMatch
;
4787 Parser
.Lex(); // Eat identifier token.
4788 } else if (Tok
.is(AsmToken::Hash
) ||
4789 Tok
.is(AsmToken::Dollar
) ||
4790 Tok
.is(AsmToken::Integer
)) {
4791 if (Parser
.getTok().isNot(AsmToken::Integer
))
4792 Parser
.Lex(); // Eat '#' or '$'.
4793 SMLoc Loc
= Parser
.getTok().getLoc();
4795 const MCExpr
*MemBarrierID
;
4796 if (getParser().parseExpression(MemBarrierID
)) {
4797 Error(Loc
, "illegal expression");
4798 return MatchOperand_ParseFail
;
4801 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(MemBarrierID
);
4803 Error(Loc
, "constant expression expected");
4804 return MatchOperand_ParseFail
;
4807 int Val
= CE
->getValue();
4809 Error(Loc
, "immediate value out of range");
4810 return MatchOperand_ParseFail
;
4813 Opt
= ARM_MB::RESERVED_0
+ Val
;
4815 return MatchOperand_ParseFail
;
4817 Operands
.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt
)Opt
, S
));
4818 return MatchOperand_Success
;
4821 OperandMatchResultTy
4822 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector
&Operands
) {
4823 MCAsmParser
&Parser
= getParser();
4824 SMLoc S
= Parser
.getTok().getLoc();
4825 const AsmToken
&Tok
= Parser
.getTok();
4827 if (Tok
.isNot(AsmToken::Identifier
))
4828 return MatchOperand_NoMatch
;
4830 if (!Tok
.getString().equals_lower("csync"))
4831 return MatchOperand_NoMatch
;
4833 Parser
.Lex(); // Eat identifier token.
4835 Operands
.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC
, S
));
4836 return MatchOperand_Success
;
4839 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4840 OperandMatchResultTy
4841 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector
&Operands
) {
4842 MCAsmParser
&Parser
= getParser();
4843 SMLoc S
= Parser
.getTok().getLoc();
4844 const AsmToken
&Tok
= Parser
.getTok();
4847 if (Tok
.is(AsmToken::Identifier
)) {
4848 StringRef OptStr
= Tok
.getString();
4850 if (OptStr
.equals_lower("sy"))
4853 return MatchOperand_NoMatch
;
4855 Parser
.Lex(); // Eat identifier token.
4856 } else if (Tok
.is(AsmToken::Hash
) ||
4857 Tok
.is(AsmToken::Dollar
) ||
4858 Tok
.is(AsmToken::Integer
)) {
4859 if (Parser
.getTok().isNot(AsmToken::Integer
))
4860 Parser
.Lex(); // Eat '#' or '$'.
4861 SMLoc Loc
= Parser
.getTok().getLoc();
4863 const MCExpr
*ISBarrierID
;
4864 if (getParser().parseExpression(ISBarrierID
)) {
4865 Error(Loc
, "illegal expression");
4866 return MatchOperand_ParseFail
;
4869 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ISBarrierID
);
4871 Error(Loc
, "constant expression expected");
4872 return MatchOperand_ParseFail
;
4875 int Val
= CE
->getValue();
4877 Error(Loc
, "immediate value out of range");
4878 return MatchOperand_ParseFail
;
4881 Opt
= ARM_ISB::RESERVED_0
+ Val
;
4883 return MatchOperand_ParseFail
;
4885 Operands
.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4886 (ARM_ISB::InstSyncBOpt
)Opt
, S
));
4887 return MatchOperand_Success
;
4891 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4892 OperandMatchResultTy
4893 ARMAsmParser::parseProcIFlagsOperand(OperandVector
&Operands
) {
4894 MCAsmParser
&Parser
= getParser();
4895 SMLoc S
= Parser
.getTok().getLoc();
4896 const AsmToken
&Tok
= Parser
.getTok();
4897 if (!Tok
.is(AsmToken::Identifier
))
4898 return MatchOperand_NoMatch
;
4899 StringRef IFlagsStr
= Tok
.getString();
4901 // An iflags string of "none" is interpreted to mean that none of the AIF
4902 // bits are set. Not a terribly useful instruction, but a valid encoding.
4903 unsigned IFlags
= 0;
4904 if (IFlagsStr
!= "none") {
4905 for (int i
= 0, e
= IFlagsStr
.size(); i
!= e
; ++i
) {
4906 unsigned Flag
= StringSwitch
<unsigned>(IFlagsStr
.substr(i
, 1).lower())
4907 .Case("a", ARM_PROC::A
)
4908 .Case("i", ARM_PROC::I
)
4909 .Case("f", ARM_PROC::F
)
4912 // If some specific iflag is already set, it means that some letter is
4913 // present more than once, this is not acceptable.
4914 if (Flag
== ~0U || (IFlags
& Flag
))
4915 return MatchOperand_NoMatch
;
4921 Parser
.Lex(); // Eat identifier token.
4922 Operands
.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags
)IFlags
, S
));
4923 return MatchOperand_Success
;
4926 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4927 OperandMatchResultTy
4928 ARMAsmParser::parseMSRMaskOperand(OperandVector
&Operands
) {
4929 MCAsmParser
&Parser
= getParser();
4930 SMLoc S
= Parser
.getTok().getLoc();
4931 const AsmToken
&Tok
= Parser
.getTok();
4933 if (Tok
.is(AsmToken::Integer
)) {
4934 int64_t Val
= Tok
.getIntVal();
4935 if (Val
> 255 || Val
< 0) {
4936 return MatchOperand_NoMatch
;
4938 unsigned SYSmvalue
= Val
& 0xFF;
4940 Operands
.push_back(ARMOperand::CreateMSRMask(SYSmvalue
, S
));
4941 return MatchOperand_Success
;
4944 if (!Tok
.is(AsmToken::Identifier
))
4945 return MatchOperand_NoMatch
;
4946 StringRef Mask
= Tok
.getString();
4949 auto TheReg
= ARMSysReg::lookupMClassSysRegByName(Mask
.lower());
4950 if (!TheReg
|| !TheReg
->hasRequiredFeatures(getSTI().getFeatureBits()))
4951 return MatchOperand_NoMatch
;
4953 unsigned SYSmvalue
= TheReg
->Encoding
& 0xFFF;
4955 Parser
.Lex(); // Eat identifier token.
4956 Operands
.push_back(ARMOperand::CreateMSRMask(SYSmvalue
, S
));
4957 return MatchOperand_Success
;
4960 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4961 size_t Start
= 0, Next
= Mask
.find('_');
4962 StringRef Flags
= "";
4963 std::string SpecReg
= Mask
.slice(Start
, Next
).lower();
4964 if (Next
!= StringRef::npos
)
4965 Flags
= Mask
.slice(Next
+1, Mask
.size());
4967 // FlagsVal contains the complete mask:
4969 // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4970 unsigned FlagsVal
= 0;
4972 if (SpecReg
== "apsr") {
4973 FlagsVal
= StringSwitch
<unsigned>(Flags
)
4974 .Case("nzcvq", 0x8) // same as CPSR_f
4975 .Case("g", 0x4) // same as CPSR_s
4976 .Case("nzcvqg", 0xc) // same as CPSR_fs
4979 if (FlagsVal
== ~0U) {
4981 return MatchOperand_NoMatch
;
4983 FlagsVal
= 8; // No flag
4985 } else if (SpecReg
== "cpsr" || SpecReg
== "spsr") {
4986 // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4987 if (Flags
== "all" || Flags
== "")
4989 for (int i
= 0, e
= Flags
.size(); i
!= e
; ++i
) {
4990 unsigned Flag
= StringSwitch
<unsigned>(Flags
.substr(i
, 1))
4997 // If some specific flag is already set, it means that some letter is
4998 // present more than once, this is not acceptable.
4999 if (Flag
== ~0U || (FlagsVal
& Flag
))
5000 return MatchOperand_NoMatch
;
5003 } else // No match for special register.
5004 return MatchOperand_NoMatch
;
5006 // Special register without flags is NOT equivalent to "fc" flags.
5007 // NOTE: This is a divergence from gas' behavior. Uncommenting the following
5008 // two lines would enable gas compatibility at the expense of breaking
5014 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5015 if (SpecReg
== "spsr")
5018 Parser
.Lex(); // Eat identifier token.
5019 Operands
.push_back(ARMOperand::CreateMSRMask(FlagsVal
, S
));
5020 return MatchOperand_Success
;
5023 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5024 /// use in the MRS/MSR instructions added to support virtualization.
5025 OperandMatchResultTy
5026 ARMAsmParser::parseBankedRegOperand(OperandVector
&Operands
) {
5027 MCAsmParser
&Parser
= getParser();
5028 SMLoc S
= Parser
.getTok().getLoc();
5029 const AsmToken
&Tok
= Parser
.getTok();
5030 if (!Tok
.is(AsmToken::Identifier
))
5031 return MatchOperand_NoMatch
;
5032 StringRef RegName
= Tok
.getString();
5034 auto TheReg
= ARMBankedReg::lookupBankedRegByName(RegName
.lower());
5036 return MatchOperand_NoMatch
;
5037 unsigned Encoding
= TheReg
->Encoding
;
5039 Parser
.Lex(); // Eat identifier token.
5040 Operands
.push_back(ARMOperand::CreateBankedReg(Encoding
, S
));
5041 return MatchOperand_Success
;
5044 OperandMatchResultTy
5045 ARMAsmParser::parsePKHImm(OperandVector
&Operands
, StringRef Op
, int Low
,
5047 MCAsmParser
&Parser
= getParser();
5048 const AsmToken
&Tok
= Parser
.getTok();
5049 if (Tok
.isNot(AsmToken::Identifier
)) {
5050 Error(Parser
.getTok().getLoc(), Op
+ " operand expected.");
5051 return MatchOperand_ParseFail
;
5053 StringRef ShiftName
= Tok
.getString();
5054 std::string LowerOp
= Op
.lower();
5055 std::string UpperOp
= Op
.upper();
5056 if (ShiftName
!= LowerOp
&& ShiftName
!= UpperOp
) {
5057 Error(Parser
.getTok().getLoc(), Op
+ " operand expected.");
5058 return MatchOperand_ParseFail
;
5060 Parser
.Lex(); // Eat shift type token.
5062 // There must be a '#' and a shift amount.
5063 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5064 Parser
.getTok().isNot(AsmToken::Dollar
)) {
5065 Error(Parser
.getTok().getLoc(), "'#' expected");
5066 return MatchOperand_ParseFail
;
5068 Parser
.Lex(); // Eat hash token.
5070 const MCExpr
*ShiftAmount
;
5071 SMLoc Loc
= Parser
.getTok().getLoc();
5073 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
5074 Error(Loc
, "illegal expression");
5075 return MatchOperand_ParseFail
;
5077 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
5079 Error(Loc
, "constant expression expected");
5080 return MatchOperand_ParseFail
;
5082 int Val
= CE
->getValue();
5083 if (Val
< Low
|| Val
> High
) {
5084 Error(Loc
, "immediate value out of range");
5085 return MatchOperand_ParseFail
;
5088 Operands
.push_back(ARMOperand::CreateImm(CE
, Loc
, EndLoc
));
5090 return MatchOperand_Success
;
5093 OperandMatchResultTy
5094 ARMAsmParser::parseSetEndImm(OperandVector
&Operands
) {
5095 MCAsmParser
&Parser
= getParser();
5096 const AsmToken
&Tok
= Parser
.getTok();
5097 SMLoc S
= Tok
.getLoc();
5098 if (Tok
.isNot(AsmToken::Identifier
)) {
5099 Error(S
, "'be' or 'le' operand expected");
5100 return MatchOperand_ParseFail
;
5102 int Val
= StringSwitch
<int>(Tok
.getString().lower())
5106 Parser
.Lex(); // Eat the token.
5109 Error(S
, "'be' or 'le' operand expected");
5110 return MatchOperand_ParseFail
;
5112 Operands
.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val
,
5114 S
, Tok
.getEndLoc()));
5115 return MatchOperand_Success
;
5118 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5119 /// instructions. Legal values are:
5120 /// lsl #n 'n' in [0,31]
5121 /// asr #n 'n' in [1,32]
5122 /// n == 32 encoded as n == 0.
5123 OperandMatchResultTy
5124 ARMAsmParser::parseShifterImm(OperandVector
&Operands
) {
5125 MCAsmParser
&Parser
= getParser();
5126 const AsmToken
&Tok
= Parser
.getTok();
5127 SMLoc S
= Tok
.getLoc();
5128 if (Tok
.isNot(AsmToken::Identifier
)) {
5129 Error(S
, "shift operator 'asr' or 'lsl' expected");
5130 return MatchOperand_ParseFail
;
5132 StringRef ShiftName
= Tok
.getString();
5134 if (ShiftName
== "lsl" || ShiftName
== "LSL")
5136 else if (ShiftName
== "asr" || ShiftName
== "ASR")
5139 Error(S
, "shift operator 'asr' or 'lsl' expected");
5140 return MatchOperand_ParseFail
;
5142 Parser
.Lex(); // Eat the operator.
5144 // A '#' and a shift amount.
5145 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5146 Parser
.getTok().isNot(AsmToken::Dollar
)) {
5147 Error(Parser
.getTok().getLoc(), "'#' expected");
5148 return MatchOperand_ParseFail
;
5150 Parser
.Lex(); // Eat hash token.
5151 SMLoc ExLoc
= Parser
.getTok().getLoc();
5153 const MCExpr
*ShiftAmount
;
5155 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
5156 Error(ExLoc
, "malformed shift expression");
5157 return MatchOperand_ParseFail
;
5159 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
5161 Error(ExLoc
, "shift amount must be an immediate");
5162 return MatchOperand_ParseFail
;
5165 int64_t Val
= CE
->getValue();
5167 // Shift amount must be in [1,32]
5168 if (Val
< 1 || Val
> 32) {
5169 Error(ExLoc
, "'asr' shift amount must be in range [1,32]");
5170 return MatchOperand_ParseFail
;
5172 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5173 if (isThumb() && Val
== 32) {
5174 Error(ExLoc
, "'asr #32' shift amount not allowed in Thumb mode");
5175 return MatchOperand_ParseFail
;
5177 if (Val
== 32) Val
= 0;
5179 // Shift amount must be in [1,32]
5180 if (Val
< 0 || Val
> 31) {
5181 Error(ExLoc
, "'lsr' shift amount must be in range [0,31]");
5182 return MatchOperand_ParseFail
;
5186 Operands
.push_back(ARMOperand::CreateShifterImm(isASR
, Val
, S
, EndLoc
));
5188 return MatchOperand_Success
;
5191 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5192 /// of instructions. Legal values are:
5193 /// ror #n 'n' in {0, 8, 16, 24}
5194 OperandMatchResultTy
5195 ARMAsmParser::parseRotImm(OperandVector
&Operands
) {
5196 MCAsmParser
&Parser
= getParser();
5197 const AsmToken
&Tok
= Parser
.getTok();
5198 SMLoc S
= Tok
.getLoc();
5199 if (Tok
.isNot(AsmToken::Identifier
))
5200 return MatchOperand_NoMatch
;
5201 StringRef ShiftName
= Tok
.getString();
5202 if (ShiftName
!= "ror" && ShiftName
!= "ROR")
5203 return MatchOperand_NoMatch
;
5204 Parser
.Lex(); // Eat the operator.
5206 // A '#' and a rotate amount.
5207 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5208 Parser
.getTok().isNot(AsmToken::Dollar
)) {
5209 Error(Parser
.getTok().getLoc(), "'#' expected");
5210 return MatchOperand_ParseFail
;
5212 Parser
.Lex(); // Eat hash token.
5213 SMLoc ExLoc
= Parser
.getTok().getLoc();
5215 const MCExpr
*ShiftAmount
;
5217 if (getParser().parseExpression(ShiftAmount
, EndLoc
)) {
5218 Error(ExLoc
, "malformed rotate expression");
5219 return MatchOperand_ParseFail
;
5221 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ShiftAmount
);
5223 Error(ExLoc
, "rotate amount must be an immediate");
5224 return MatchOperand_ParseFail
;
5227 int64_t Val
= CE
->getValue();
5228 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5229 // normally, zero is represented in asm by omitting the rotate operand
5231 if (Val
!= 8 && Val
!= 16 && Val
!= 24 && Val
!= 0) {
5232 Error(ExLoc
, "'ror' rotate amount must be 8, 16, or 24");
5233 return MatchOperand_ParseFail
;
5236 Operands
.push_back(ARMOperand::CreateRotImm(Val
, S
, EndLoc
));
5238 return MatchOperand_Success
;
5241 OperandMatchResultTy
5242 ARMAsmParser::parseModImm(OperandVector
&Operands
) {
5243 MCAsmParser
&Parser
= getParser();
5244 MCAsmLexer
&Lexer
= getLexer();
5247 SMLoc S
= Parser
.getTok().getLoc();
5249 // 1) A mod_imm operand can appear in the place of a register name:
5251 // add r0, r0, #mod_imm
5252 // to correctly handle the latter, we bail out as soon as we see an
5255 // 2) Similarly, we do not want to parse into complex operands:
5257 // mov r0, :lower16:(_foo)
5258 if (Parser
.getTok().is(AsmToken::Identifier
) ||
5259 Parser
.getTok().is(AsmToken::Colon
))
5260 return MatchOperand_NoMatch
;
5262 // Hash (dollar) is optional as per the ARMARM
5263 if (Parser
.getTok().is(AsmToken::Hash
) ||
5264 Parser
.getTok().is(AsmToken::Dollar
)) {
5265 // Avoid parsing into complex operands (#:)
5266 if (Lexer
.peekTok().is(AsmToken::Colon
))
5267 return MatchOperand_NoMatch
;
5269 // Eat the hash (dollar)
5274 Sx1
= Parser
.getTok().getLoc();
5275 const MCExpr
*Imm1Exp
;
5276 if (getParser().parseExpression(Imm1Exp
, Ex1
)) {
5277 Error(Sx1
, "malformed expression");
5278 return MatchOperand_ParseFail
;
5281 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Imm1Exp
);
5284 // Immediate must fit within 32-bits
5285 Imm1
= CE
->getValue();
5286 int Enc
= ARM_AM::getSOImmVal(Imm1
);
5287 if (Enc
!= -1 && Parser
.getTok().is(AsmToken::EndOfStatement
)) {
5289 Operands
.push_back(ARMOperand::CreateModImm((Enc
& 0xFF),
5292 return MatchOperand_Success
;
5295 // We have parsed an immediate which is not for us, fallback to a plain
5296 // immediate. This can happen for instruction aliases. For an example,
5297 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5298 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5299 // instruction with a mod_imm operand. The alias is defined such that the
5300 // parser method is shared, that's why we have to do this here.
5301 if (Parser
.getTok().is(AsmToken::EndOfStatement
)) {
5302 Operands
.push_back(ARMOperand::CreateImm(Imm1Exp
, Sx1
, Ex1
));
5303 return MatchOperand_Success
;
5306 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5307 // MCFixup). Fallback to a plain immediate.
5308 Operands
.push_back(ARMOperand::CreateImm(Imm1Exp
, Sx1
, Ex1
));
5309 return MatchOperand_Success
;
5312 // From this point onward, we expect the input to be a (#bits, #rot) pair
5313 if (Parser
.getTok().isNot(AsmToken::Comma
)) {
5314 Error(Sx1
, "expected modified immediate operand: #[0, 255], #even[0-30]");
5315 return MatchOperand_ParseFail
;
5319 Error(Sx1
, "immediate operand must a number in the range [0, 255]");
5320 return MatchOperand_ParseFail
;
5328 Sx2
= Parser
.getTok().getLoc();
5330 // Eat the optional hash (dollar)
5331 if (Parser
.getTok().is(AsmToken::Hash
) ||
5332 Parser
.getTok().is(AsmToken::Dollar
))
5335 const MCExpr
*Imm2Exp
;
5336 if (getParser().parseExpression(Imm2Exp
, Ex2
)) {
5337 Error(Sx2
, "malformed expression");
5338 return MatchOperand_ParseFail
;
5341 CE
= dyn_cast
<MCConstantExpr
>(Imm2Exp
);
5344 Imm2
= CE
->getValue();
5345 if (!(Imm2
& ~0x1E)) {
5347 Operands
.push_back(ARMOperand::CreateModImm(Imm1
, Imm2
, S
, Ex2
));
5348 return MatchOperand_Success
;
5350 Error(Sx2
, "immediate operand must an even number in the range [0, 30]");
5351 return MatchOperand_ParseFail
;
5353 Error(Sx2
, "constant expression expected");
5354 return MatchOperand_ParseFail
;
5358 OperandMatchResultTy
5359 ARMAsmParser::parseBitfield(OperandVector
&Operands
) {
5360 MCAsmParser
&Parser
= getParser();
5361 SMLoc S
= Parser
.getTok().getLoc();
5362 // The bitfield descriptor is really two operands, the LSB and the width.
5363 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5364 Parser
.getTok().isNot(AsmToken::Dollar
)) {
5365 Error(Parser
.getTok().getLoc(), "'#' expected");
5366 return MatchOperand_ParseFail
;
5368 Parser
.Lex(); // Eat hash token.
5370 const MCExpr
*LSBExpr
;
5371 SMLoc E
= Parser
.getTok().getLoc();
5372 if (getParser().parseExpression(LSBExpr
)) {
5373 Error(E
, "malformed immediate expression");
5374 return MatchOperand_ParseFail
;
5376 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(LSBExpr
);
5378 Error(E
, "'lsb' operand must be an immediate");
5379 return MatchOperand_ParseFail
;
5382 int64_t LSB
= CE
->getValue();
5383 // The LSB must be in the range [0,31]
5384 if (LSB
< 0 || LSB
> 31) {
5385 Error(E
, "'lsb' operand must be in the range [0,31]");
5386 return MatchOperand_ParseFail
;
5388 E
= Parser
.getTok().getLoc();
5390 // Expect another immediate operand.
5391 if (Parser
.getTok().isNot(AsmToken::Comma
)) {
5392 Error(Parser
.getTok().getLoc(), "too few operands");
5393 return MatchOperand_ParseFail
;
5395 Parser
.Lex(); // Eat hash token.
5396 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5397 Parser
.getTok().isNot(AsmToken::Dollar
)) {
5398 Error(Parser
.getTok().getLoc(), "'#' expected");
5399 return MatchOperand_ParseFail
;
5401 Parser
.Lex(); // Eat hash token.
5403 const MCExpr
*WidthExpr
;
5405 if (getParser().parseExpression(WidthExpr
, EndLoc
)) {
5406 Error(E
, "malformed immediate expression");
5407 return MatchOperand_ParseFail
;
5409 CE
= dyn_cast
<MCConstantExpr
>(WidthExpr
);
5411 Error(E
, "'width' operand must be an immediate");
5412 return MatchOperand_ParseFail
;
5415 int64_t Width
= CE
->getValue();
5416 // The LSB must be in the range [1,32-lsb]
5417 if (Width
< 1 || Width
> 32 - LSB
) {
5418 Error(E
, "'width' operand must be in the range [1,32-lsb]");
5419 return MatchOperand_ParseFail
;
5422 Operands
.push_back(ARMOperand::CreateBitfield(LSB
, Width
, S
, EndLoc
));
5424 return MatchOperand_Success
;
5427 OperandMatchResultTy
5428 ARMAsmParser::parsePostIdxReg(OperandVector
&Operands
) {
5429 // Check for a post-index addressing register operand. Specifically:
5430 // postidx_reg := '+' register {, shift}
5431 // | '-' register {, shift}
5432 // | register {, shift}
5434 // This method must return MatchOperand_NoMatch without consuming any tokens
5435 // in the case where there is no match, as other alternatives take other
5437 MCAsmParser
&Parser
= getParser();
5438 AsmToken Tok
= Parser
.getTok();
5439 SMLoc S
= Tok
.getLoc();
5440 bool haveEaten
= false;
5442 if (Tok
.is(AsmToken::Plus
)) {
5443 Parser
.Lex(); // Eat the '+' token.
5445 } else if (Tok
.is(AsmToken::Minus
)) {
5446 Parser
.Lex(); // Eat the '-' token.
5451 SMLoc E
= Parser
.getTok().getEndLoc();
5452 int Reg
= tryParseRegister();
5455 return MatchOperand_NoMatch
;
5456 Error(Parser
.getTok().getLoc(), "register expected");
5457 return MatchOperand_ParseFail
;
5460 ARM_AM::ShiftOpc ShiftTy
= ARM_AM::no_shift
;
5461 unsigned ShiftImm
= 0;
5462 if (Parser
.getTok().is(AsmToken::Comma
)) {
5463 Parser
.Lex(); // Eat the ','.
5464 if (parseMemRegOffsetShift(ShiftTy
, ShiftImm
))
5465 return MatchOperand_ParseFail
;
5467 // FIXME: Only approximates end...may include intervening whitespace.
5468 E
= Parser
.getTok().getLoc();
5471 Operands
.push_back(ARMOperand::CreatePostIdxReg(Reg
, isAdd
, ShiftTy
,
5474 return MatchOperand_Success
;
5477 OperandMatchResultTy
5478 ARMAsmParser::parseAM3Offset(OperandVector
&Operands
) {
5479 // Check for a post-index addressing register operand. Specifically:
5480 // am3offset := '+' register
5487 // This method must return MatchOperand_NoMatch without consuming any tokens
5488 // in the case where there is no match, as other alternatives take other
5490 MCAsmParser
&Parser
= getParser();
5491 AsmToken Tok
= Parser
.getTok();
5492 SMLoc S
= Tok
.getLoc();
5494 // Do immediates first, as we always parse those if we have a '#'.
5495 if (Parser
.getTok().is(AsmToken::Hash
) ||
5496 Parser
.getTok().is(AsmToken::Dollar
)) {
5497 Parser
.Lex(); // Eat '#' or '$'.
5498 // Explicitly look for a '-', as we need to encode negative zero
5500 bool isNegative
= Parser
.getTok().is(AsmToken::Minus
);
5501 const MCExpr
*Offset
;
5503 if (getParser().parseExpression(Offset
, E
))
5504 return MatchOperand_ParseFail
;
5505 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Offset
);
5507 Error(S
, "constant expression expected");
5508 return MatchOperand_ParseFail
;
5510 // Negative zero is encoded as the flag value
5511 // std::numeric_limits<int32_t>::min().
5512 int32_t Val
= CE
->getValue();
5513 if (isNegative
&& Val
== 0)
5514 Val
= std::numeric_limits
<int32_t>::min();
5517 ARMOperand::CreateImm(MCConstantExpr::create(Val
, getContext()), S
, E
));
5519 return MatchOperand_Success
;
5522 bool haveEaten
= false;
5524 if (Tok
.is(AsmToken::Plus
)) {
5525 Parser
.Lex(); // Eat the '+' token.
5527 } else if (Tok
.is(AsmToken::Minus
)) {
5528 Parser
.Lex(); // Eat the '-' token.
5533 Tok
= Parser
.getTok();
5534 int Reg
= tryParseRegister();
5537 return MatchOperand_NoMatch
;
5538 Error(Tok
.getLoc(), "register expected");
5539 return MatchOperand_ParseFail
;
5542 Operands
.push_back(ARMOperand::CreatePostIdxReg(Reg
, isAdd
, ARM_AM::no_shift
,
5543 0, S
, Tok
.getEndLoc()));
5545 return MatchOperand_Success
;
5548 /// Convert parsed operands to MCInst. Needed here because this instruction
5549 /// only has two register operands, but multiplication is commutative so
5550 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
5551 void ARMAsmParser::cvtThumbMultiply(MCInst
&Inst
,
5552 const OperandVector
&Operands
) {
5553 ((ARMOperand
&)*Operands
[3]).addRegOperands(Inst
, 1);
5554 ((ARMOperand
&)*Operands
[1]).addCCOutOperands(Inst
, 1);
5555 // If we have a three-operand form, make sure to set Rn to be the operand
5556 // that isn't the same as Rd.
5558 if (Operands
.size() == 6 &&
5559 ((ARMOperand
&)*Operands
[4]).getReg() ==
5560 ((ARMOperand
&)*Operands
[3]).getReg())
5562 ((ARMOperand
&)*Operands
[RegOp
]).addRegOperands(Inst
, 1);
5563 Inst
.addOperand(Inst
.getOperand(0));
5564 ((ARMOperand
&)*Operands
[2]).addCondCodeOperands(Inst
, 2);
5567 void ARMAsmParser::cvtThumbBranches(MCInst
&Inst
,
5568 const OperandVector
&Operands
) {
5569 int CondOp
= -1, ImmOp
= -1;
5570 switch(Inst
.getOpcode()) {
5572 case ARM::tBcc
: CondOp
= 1; ImmOp
= 2; break;
5575 case ARM::t2Bcc
: CondOp
= 1; ImmOp
= 3; break;
5577 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5579 // first decide whether or not the branch should be conditional
5580 // by looking at it's location relative to an IT block
5582 // inside an IT block we cannot have any conditional branches. any
5583 // such instructions needs to be converted to unconditional form
5584 switch(Inst
.getOpcode()) {
5585 case ARM::tBcc
: Inst
.setOpcode(ARM::tB
); break;
5586 case ARM::t2Bcc
: Inst
.setOpcode(ARM::t2B
); break;
5589 // outside IT blocks we can only have unconditional branches with AL
5590 // condition code or conditional branches with non-AL condition code
5591 unsigned Cond
= static_cast<ARMOperand
&>(*Operands
[CondOp
]).getCondCode();
5592 switch(Inst
.getOpcode()) {
5595 Inst
.setOpcode(Cond
== ARMCC::AL
? ARM::tB
: ARM::tBcc
);
5599 Inst
.setOpcode(Cond
== ARMCC::AL
? ARM::t2B
: ARM::t2Bcc
);
5604 // now decide on encoding size based on branch target range
5605 switch(Inst
.getOpcode()) {
5606 // classify tB as either t2B or t1B based on range of immediate operand
5608 ARMOperand
&op
= static_cast<ARMOperand
&>(*Operands
[ImmOp
]);
5609 if (!op
.isSignedOffset
<11, 1>() && isThumb() && hasV8MBaseline())
5610 Inst
.setOpcode(ARM::t2B
);
5613 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5615 ARMOperand
&op
= static_cast<ARMOperand
&>(*Operands
[ImmOp
]);
5616 if (!op
.isSignedOffset
<8, 1>() && isThumb() && hasV8MBaseline())
5617 Inst
.setOpcode(ARM::t2Bcc
);
5621 ((ARMOperand
&)*Operands
[ImmOp
]).addImmOperands(Inst
, 1);
5622 ((ARMOperand
&)*Operands
[CondOp
]).addCondCodeOperands(Inst
, 2);
5625 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5626 MCInst
&Inst
, const OperandVector
&Operands
) {
5628 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5629 assert(Operands
.size() == 8);
5631 ((ARMOperand
&)*Operands
[2]).addRegOperands(Inst
, 1); // Rt
5632 ((ARMOperand
&)*Operands
[3]).addRegOperands(Inst
, 1); // Rt2
5633 ((ARMOperand
&)*Operands
[4]).addRegOperands(Inst
, 1); // Qd
5634 ((ARMOperand
&)*Operands
[5]).addMVEPairVectorIndexOperands(Inst
, 1); // idx
5635 // skip second copy of Qd in Operands[6]
5636 ((ARMOperand
&)*Operands
[7]).addMVEPairVectorIndexOperands(Inst
, 1); // idx2
5637 ((ARMOperand
&)*Operands
[1]).addCondCodeOperands(Inst
, 2); // condition code
5640 /// Parse an ARM memory expression, return false if successful else return true
5641 /// or an error. The first token must be a '[' when called.
5642 bool ARMAsmParser::parseMemory(OperandVector
&Operands
) {
5643 MCAsmParser
&Parser
= getParser();
5645 if (Parser
.getTok().isNot(AsmToken::LBrac
))
5646 return TokError("Token is not a Left Bracket");
5647 S
= Parser
.getTok().getLoc();
5648 Parser
.Lex(); // Eat left bracket token.
5650 const AsmToken
&BaseRegTok
= Parser
.getTok();
5651 int BaseRegNum
= tryParseRegister();
5652 if (BaseRegNum
== -1)
5653 return Error(BaseRegTok
.getLoc(), "register expected");
5655 // The next token must either be a comma, a colon or a closing bracket.
5656 const AsmToken
&Tok
= Parser
.getTok();
5657 if (!Tok
.is(AsmToken::Colon
) && !Tok
.is(AsmToken::Comma
) &&
5658 !Tok
.is(AsmToken::RBrac
))
5659 return Error(Tok
.getLoc(), "malformed memory operand");
5661 if (Tok
.is(AsmToken::RBrac
)) {
5662 E
= Tok
.getEndLoc();
5663 Parser
.Lex(); // Eat right bracket token.
5665 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, 0,
5666 ARM_AM::no_shift
, 0, 0, false,
5669 // If there's a pre-indexing writeback marker, '!', just add it as a token
5670 // operand. It's rather odd, but syntactically valid.
5671 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5672 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5673 Parser
.Lex(); // Eat the '!'.
5679 assert((Tok
.is(AsmToken::Colon
) || Tok
.is(AsmToken::Comma
)) &&
5680 "Lost colon or comma in memory operand?!");
5681 if (Tok
.is(AsmToken::Comma
)) {
5682 Parser
.Lex(); // Eat the comma.
5685 // If we have a ':', it's an alignment specifier.
5686 if (Parser
.getTok().is(AsmToken::Colon
)) {
5687 Parser
.Lex(); // Eat the ':'.
5688 E
= Parser
.getTok().getLoc();
5689 SMLoc AlignmentLoc
= Tok
.getLoc();
5692 if (getParser().parseExpression(Expr
))
5695 // The expression has to be a constant. Memory references with relocations
5696 // don't come through here, as they use the <label> forms of the relevant
5698 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
5700 return Error (E
, "constant expression expected");
5703 switch (CE
->getValue()) {
5706 "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5707 case 16: Align
= 2; break;
5708 case 32: Align
= 4; break;
5709 case 64: Align
= 8; break;
5710 case 128: Align
= 16; break;
5711 case 256: Align
= 32; break;
5714 // Now we should have the closing ']'
5715 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5716 return Error(Parser
.getTok().getLoc(), "']' expected");
5717 E
= Parser
.getTok().getEndLoc();
5718 Parser
.Lex(); // Eat right bracket token.
5720 // Don't worry about range checking the value here. That's handled by
5721 // the is*() predicates.
5722 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, 0,
5723 ARM_AM::no_shift
, 0, Align
,
5724 false, S
, E
, AlignmentLoc
));
5726 // If there's a pre-indexing writeback marker, '!', just add it as a token
5728 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5729 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5730 Parser
.Lex(); // Eat the '!'.
5736 // If we have a '#' or '$', it's an immediate offset, else assume it's a
5737 // register offset. Be friendly and also accept a plain integer or expression
5738 // (without a leading hash) for gas compatibility.
5739 if (Parser
.getTok().is(AsmToken::Hash
) ||
5740 Parser
.getTok().is(AsmToken::Dollar
) ||
5741 Parser
.getTok().is(AsmToken::LParen
) ||
5742 Parser
.getTok().is(AsmToken::Integer
)) {
5743 if (Parser
.getTok().is(AsmToken::Hash
) ||
5744 Parser
.getTok().is(AsmToken::Dollar
))
5745 Parser
.Lex(); // Eat '#' or '$'
5746 E
= Parser
.getTok().getLoc();
5748 bool isNegative
= getParser().getTok().is(AsmToken::Minus
);
5749 const MCExpr
*Offset
;
5750 if (getParser().parseExpression(Offset
))
5753 // The expression has to be a constant. Memory references with relocations
5754 // don't come through here, as they use the <label> forms of the relevant
5756 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Offset
);
5758 return Error (E
, "constant expression expected");
5760 // If the constant was #-0, represent it as
5761 // std::numeric_limits<int32_t>::min().
5762 int32_t Val
= CE
->getValue();
5763 if (isNegative
&& Val
== 0)
5764 CE
= MCConstantExpr::create(std::numeric_limits
<int32_t>::min(),
5767 // Now we should have the closing ']'
5768 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5769 return Error(Parser
.getTok().getLoc(), "']' expected");
5770 E
= Parser
.getTok().getEndLoc();
5771 Parser
.Lex(); // Eat right bracket token.
5773 // Don't worry about range checking the value here. That's handled by
5774 // the is*() predicates.
5775 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, CE
, 0,
5776 ARM_AM::no_shift
, 0, 0,
5779 // If there's a pre-indexing writeback marker, '!', just add it as a token
5781 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5782 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5783 Parser
.Lex(); // Eat the '!'.
5789 // The register offset is optionally preceded by a '+' or '-'
5790 bool isNegative
= false;
5791 if (Parser
.getTok().is(AsmToken::Minus
)) {
5793 Parser
.Lex(); // Eat the '-'.
5794 } else if (Parser
.getTok().is(AsmToken::Plus
)) {
5796 Parser
.Lex(); // Eat the '+'.
5799 E
= Parser
.getTok().getLoc();
5800 int OffsetRegNum
= tryParseRegister();
5801 if (OffsetRegNum
== -1)
5802 return Error(E
, "register expected");
5804 // If there's a shift operator, handle it.
5805 ARM_AM::ShiftOpc ShiftType
= ARM_AM::no_shift
;
5806 unsigned ShiftImm
= 0;
5807 if (Parser
.getTok().is(AsmToken::Comma
)) {
5808 Parser
.Lex(); // Eat the ','.
5809 if (parseMemRegOffsetShift(ShiftType
, ShiftImm
))
5813 // Now we should have the closing ']'
5814 if (Parser
.getTok().isNot(AsmToken::RBrac
))
5815 return Error(Parser
.getTok().getLoc(), "']' expected");
5816 E
= Parser
.getTok().getEndLoc();
5817 Parser
.Lex(); // Eat right bracket token.
5819 Operands
.push_back(ARMOperand::CreateMem(BaseRegNum
, nullptr, OffsetRegNum
,
5820 ShiftType
, ShiftImm
, 0, isNegative
,
5823 // If there's a pre-indexing writeback marker, '!', just add it as a token
5825 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
5826 Operands
.push_back(ARMOperand::CreateToken("!",Parser
.getTok().getLoc()));
5827 Parser
.Lex(); // Eat the '!'.
5833 /// parseMemRegOffsetShift - one of these two:
5834 /// ( lsl | lsr | asr | ror ) , # shift_amount
5836 /// return true if it parses a shift otherwise it returns false.
5837 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc
&St
,
5839 MCAsmParser
&Parser
= getParser();
5840 SMLoc Loc
= Parser
.getTok().getLoc();
5841 const AsmToken
&Tok
= Parser
.getTok();
5842 if (Tok
.isNot(AsmToken::Identifier
))
5843 return Error(Loc
, "illegal shift operator");
5844 StringRef ShiftName
= Tok
.getString();
5845 if (ShiftName
== "lsl" || ShiftName
== "LSL" ||
5846 ShiftName
== "asl" || ShiftName
== "ASL")
5848 else if (ShiftName
== "lsr" || ShiftName
== "LSR")
5850 else if (ShiftName
== "asr" || ShiftName
== "ASR")
5852 else if (ShiftName
== "ror" || ShiftName
== "ROR")
5854 else if (ShiftName
== "rrx" || ShiftName
== "RRX")
5856 else if (ShiftName
== "uxtw" || ShiftName
== "UXTW")
5859 return Error(Loc
, "illegal shift operator");
5860 Parser
.Lex(); // Eat shift type token.
5862 // rrx stands alone.
5864 if (St
!= ARM_AM::rrx
) {
5865 Loc
= Parser
.getTok().getLoc();
5866 // A '#' and a shift amount.
5867 const AsmToken
&HashTok
= Parser
.getTok();
5868 if (HashTok
.isNot(AsmToken::Hash
) &&
5869 HashTok
.isNot(AsmToken::Dollar
))
5870 return Error(HashTok
.getLoc(), "'#' expected");
5871 Parser
.Lex(); // Eat hash token.
5874 if (getParser().parseExpression(Expr
))
5876 // Range check the immediate.
5877 // lsl, ror: 0 <= imm <= 31
5878 // lsr, asr: 0 <= imm <= 32
5879 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
);
5881 return Error(Loc
, "shift amount must be an immediate");
5882 int64_t Imm
= CE
->getValue();
5884 ((St
== ARM_AM::lsl
|| St
== ARM_AM::ror
) && Imm
> 31) ||
5885 ((St
== ARM_AM::lsr
|| St
== ARM_AM::asr
) && Imm
> 32))
5886 return Error(Loc
, "immediate shift value out of range");
5887 // If <ShiftTy> #0, turn it into a no_shift.
5890 // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5899 /// parseFPImm - A floating point immediate expression operand.
5900 OperandMatchResultTy
5901 ARMAsmParser::parseFPImm(OperandVector
&Operands
) {
5902 MCAsmParser
&Parser
= getParser();
5903 // Anything that can accept a floating point constant as an operand
5904 // needs to go through here, as the regular parseExpression is
5907 // This routine still creates a generic Immediate operand, containing
5908 // a bitcast of the 64-bit floating point value. The various operands
5909 // that accept floats can check whether the value is valid for them
5910 // via the standard is*() predicates.
5912 SMLoc S
= Parser
.getTok().getLoc();
5914 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
5915 Parser
.getTok().isNot(AsmToken::Dollar
))
5916 return MatchOperand_NoMatch
;
5918 // Disambiguate the VMOV forms that can accept an FP immediate.
5919 // vmov.f32 <sreg>, #imm
5920 // vmov.f64 <dreg>, #imm
5921 // vmov.f32 <dreg>, #imm @ vector f32x2
5922 // vmov.f32 <qreg>, #imm @ vector f32x4
5924 // There are also the NEON VMOV instructions which expect an
5925 // integer constant. Make sure we don't try to parse an FPImm
5927 // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5928 ARMOperand
&TyOp
= static_cast<ARMOperand
&>(*Operands
[2]);
5929 bool isVmovf
= TyOp
.isToken() &&
5930 (TyOp
.getToken() == ".f32" || TyOp
.getToken() == ".f64" ||
5931 TyOp
.getToken() == ".f16");
5932 ARMOperand
&Mnemonic
= static_cast<ARMOperand
&>(*Operands
[0]);
5933 bool isFconst
= Mnemonic
.isToken() && (Mnemonic
.getToken() == "fconstd" ||
5934 Mnemonic
.getToken() == "fconsts");
5935 if (!(isVmovf
|| isFconst
))
5936 return MatchOperand_NoMatch
;
5938 Parser
.Lex(); // Eat '#' or '$'.
5940 // Handle negation, as that still comes through as a separate token.
5941 bool isNegative
= false;
5942 if (Parser
.getTok().is(AsmToken::Minus
)) {
5946 const AsmToken
&Tok
= Parser
.getTok();
5947 SMLoc Loc
= Tok
.getLoc();
5948 if (Tok
.is(AsmToken::Real
) && isVmovf
) {
5949 APFloat
RealVal(APFloat::IEEEsingle(), Tok
.getString());
5950 uint64_t IntVal
= RealVal
.bitcastToAPInt().getZExtValue();
5951 // If we had a '-' in front, toggle the sign bit.
5952 IntVal
^= (uint64_t)isNegative
<< 31;
5953 Parser
.Lex(); // Eat the token.
5954 Operands
.push_back(ARMOperand::CreateImm(
5955 MCConstantExpr::create(IntVal
, getContext()),
5956 S
, Parser
.getTok().getLoc()));
5957 return MatchOperand_Success
;
5959 // Also handle plain integers. Instructions which allow floating point
5960 // immediates also allow a raw encoded 8-bit value.
5961 if (Tok
.is(AsmToken::Integer
) && isFconst
) {
5962 int64_t Val
= Tok
.getIntVal();
5963 Parser
.Lex(); // Eat the token.
5964 if (Val
> 255 || Val
< 0) {
5965 Error(Loc
, "encoded floating point value out of range");
5966 return MatchOperand_ParseFail
;
5968 float RealVal
= ARM_AM::getFPImmFloat(Val
);
5969 Val
= APFloat(RealVal
).bitcastToAPInt().getZExtValue();
5971 Operands
.push_back(ARMOperand::CreateImm(
5972 MCConstantExpr::create(Val
, getContext()), S
,
5973 Parser
.getTok().getLoc()));
5974 return MatchOperand_Success
;
5977 Error(Loc
, "invalid floating point immediate");
5978 return MatchOperand_ParseFail
;
5981 /// Parse a arm instruction operand. For now this parses the operand regardless
5982 /// of the mnemonic.
5983 bool ARMAsmParser::parseOperand(OperandVector
&Operands
, StringRef Mnemonic
) {
5984 MCAsmParser
&Parser
= getParser();
5987 // Check if the current operand has a custom associated parser, if so, try to
5988 // custom parse the operand, or fallback to the general approach.
5989 OperandMatchResultTy ResTy
= MatchOperandParserImpl(Operands
, Mnemonic
);
5990 if (ResTy
== MatchOperand_Success
)
5992 // If there wasn't a custom match, try the generic matcher below. Otherwise,
5993 // there was a match, but an error occurred, in which case, just return that
5994 // the operand parsing failed.
5995 if (ResTy
== MatchOperand_ParseFail
)
5998 switch (getLexer().getKind()) {
6000 Error(Parser
.getTok().getLoc(), "unexpected token in operand");
6002 case AsmToken::Identifier
: {
6003 // If we've seen a branch mnemonic, the next operand must be a label. This
6004 // is true even if the label is a register name. So "br r1" means branch to
6006 bool ExpectLabel
= Mnemonic
== "b" || Mnemonic
== "bl";
6008 if (!tryParseRegisterWithWriteBack(Operands
))
6010 int Res
= tryParseShiftRegister(Operands
);
6011 if (Res
== 0) // success
6013 else if (Res
== -1) // irrecoverable error
6015 // If this is VMRS, check for the apsr_nzcv operand.
6016 if (Mnemonic
== "vmrs" &&
6017 Parser
.getTok().getString().equals_lower("apsr_nzcv")) {
6018 S
= Parser
.getTok().getLoc();
6020 Operands
.push_back(ARMOperand::CreateToken("APSR_nzcv", S
));
6025 // Fall though for the Identifier case that is not a register or a
6029 case AsmToken::LParen
: // parenthesized expressions like (_strcmp-4)
6030 case AsmToken::Integer
: // things like 1f and 2b as a branch targets
6031 case AsmToken::String
: // quoted label names.
6032 case AsmToken::Dot
: { // . as a branch target
6033 // This was not a register so parse other operands that start with an
6034 // identifier (like labels) as expressions and create them as immediates.
6035 const MCExpr
*IdVal
;
6036 S
= Parser
.getTok().getLoc();
6037 if (getParser().parseExpression(IdVal
))
6039 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
6040 Operands
.push_back(ARMOperand::CreateImm(IdVal
, S
, E
));
6043 case AsmToken::LBrac
:
6044 return parseMemory(Operands
);
6045 case AsmToken::LCurly
:
6046 return parseRegisterList(Operands
, !Mnemonic
.startswith("clr"));
6047 case AsmToken::Dollar
:
6048 case AsmToken::Hash
:
6049 // #42 -> immediate.
6050 S
= Parser
.getTok().getLoc();
6053 if (Parser
.getTok().isNot(AsmToken::Colon
)) {
6054 bool isNegative
= Parser
.getTok().is(AsmToken::Minus
);
6055 const MCExpr
*ImmVal
;
6056 if (getParser().parseExpression(ImmVal
))
6058 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ImmVal
);
6060 int32_t Val
= CE
->getValue();
6061 if (isNegative
&& Val
== 0)
6062 ImmVal
= MCConstantExpr::create(std::numeric_limits
<int32_t>::min(),
6065 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
6066 Operands
.push_back(ARMOperand::CreateImm(ImmVal
, S
, E
));
6068 // There can be a trailing '!' on operands that we want as a separate
6069 // '!' Token operand. Handle that here. For example, the compatibility
6070 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6071 if (Parser
.getTok().is(AsmToken::Exclaim
)) {
6072 Operands
.push_back(ARMOperand::CreateToken(Parser
.getTok().getString(),
6073 Parser
.getTok().getLoc()));
6074 Parser
.Lex(); // Eat exclaim token
6078 // w/ a ':' after the '#', it's just like a plain ':'.
6081 case AsmToken::Colon
: {
6082 S
= Parser
.getTok().getLoc();
6083 // ":lower16:" and ":upper16:" expression prefixes
6084 // FIXME: Check it's an expression prefix,
6085 // e.g. (FOO - :lower16:BAR) isn't legal.
6086 ARMMCExpr::VariantKind RefKind
;
6087 if (parsePrefix(RefKind
))
6090 const MCExpr
*SubExprVal
;
6091 if (getParser().parseExpression(SubExprVal
))
6094 const MCExpr
*ExprVal
= ARMMCExpr::create(RefKind
, SubExprVal
,
6096 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
6097 Operands
.push_back(ARMOperand::CreateImm(ExprVal
, S
, E
));
6100 case AsmToken::Equal
: {
6101 S
= Parser
.getTok().getLoc();
6102 if (Mnemonic
!= "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6103 return Error(S
, "unexpected token in operand");
6104 Parser
.Lex(); // Eat '='
6105 const MCExpr
*SubExprVal
;
6106 if (getParser().parseExpression(SubExprVal
))
6108 E
= SMLoc::getFromPointer(Parser
.getTok().getLoc().getPointer() - 1);
6110 // execute-only: we assume that assembly programmers know what they are
6111 // doing and allow literal pool creation here
6112 Operands
.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal
, S
, E
));
6118 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6119 // :lower16: and :upper16:.
6120 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind
&RefKind
) {
6121 MCAsmParser
&Parser
= getParser();
6122 RefKind
= ARMMCExpr::VK_ARM_None
;
6124 // consume an optional '#' (GNU compatibility)
6125 if (getLexer().is(AsmToken::Hash
))
6128 // :lower16: and :upper16: modifiers
6129 assert(getLexer().is(AsmToken::Colon
) && "expected a :");
6130 Parser
.Lex(); // Eat ':'
6132 if (getLexer().isNot(AsmToken::Identifier
)) {
6133 Error(Parser
.getTok().getLoc(), "expected prefix identifier in operand");
6138 COFF
= (1 << MCObjectFileInfo::IsCOFF
),
6139 ELF
= (1 << MCObjectFileInfo::IsELF
),
6140 MACHO
= (1 << MCObjectFileInfo::IsMachO
),
6141 WASM
= (1 << MCObjectFileInfo::IsWasm
),
6143 static const struct PrefixEntry
{
6144 const char *Spelling
;
6145 ARMMCExpr::VariantKind VariantKind
;
6146 uint8_t SupportedFormats
;
6147 } PrefixEntries
[] = {
6148 { "lower16", ARMMCExpr::VK_ARM_LO16
, COFF
| ELF
| MACHO
},
6149 { "upper16", ARMMCExpr::VK_ARM_HI16
, COFF
| ELF
| MACHO
},
6152 StringRef IDVal
= Parser
.getTok().getIdentifier();
6154 const auto &Prefix
=
6155 std::find_if(std::begin(PrefixEntries
), std::end(PrefixEntries
),
6156 [&IDVal
](const PrefixEntry
&PE
) {
6157 return PE
.Spelling
== IDVal
;
6159 if (Prefix
== std::end(PrefixEntries
)) {
6160 Error(Parser
.getTok().getLoc(), "unexpected prefix in operand");
6164 uint8_t CurrentFormat
;
6165 switch (getContext().getObjectFileInfo()->getObjectFileType()) {
6166 case MCObjectFileInfo::IsMachO
:
6167 CurrentFormat
= MACHO
;
6169 case MCObjectFileInfo::IsELF
:
6170 CurrentFormat
= ELF
;
6172 case MCObjectFileInfo::IsCOFF
:
6173 CurrentFormat
= COFF
;
6175 case MCObjectFileInfo::IsWasm
:
6176 CurrentFormat
= WASM
;
6178 case MCObjectFileInfo::IsXCOFF
:
6179 llvm_unreachable("unexpected object format");
6183 if (~Prefix
->SupportedFormats
& CurrentFormat
) {
6184 Error(Parser
.getTok().getLoc(),
6185 "cannot represent relocation in the current file format");
6189 RefKind
= Prefix
->VariantKind
;
6192 if (getLexer().isNot(AsmToken::Colon
)) {
6193 Error(Parser
.getTok().getLoc(), "unexpected token after prefix");
6196 Parser
.Lex(); // Eat the last ':'
6201 /// Given a mnemonic, split out possible predication code and carry
6202 /// setting letters to form a canonical mnemonic and flags.
6204 // FIXME: Would be nice to autogen this.
6205 // FIXME: This is a bit of a maze of special cases.
6206 StringRef
ARMAsmParser::splitMnemonic(StringRef Mnemonic
,
6207 StringRef ExtraToken
,
6208 unsigned &PredicationCode
,
6209 unsigned &VPTPredicationCode
,
6211 unsigned &ProcessorIMod
,
6212 StringRef
&ITMask
) {
6213 PredicationCode
= ARMCC::AL
;
6214 VPTPredicationCode
= ARMVCC::None
;
6215 CarrySetting
= false;
6218 // Ignore some mnemonics we know aren't predicated forms.
6220 // FIXME: Would be nice to autogen this.
6221 if ((Mnemonic
== "movs" && isThumb()) ||
6222 Mnemonic
== "teq" || Mnemonic
== "vceq" || Mnemonic
== "svc" ||
6223 Mnemonic
== "mls" || Mnemonic
== "smmls" || Mnemonic
== "vcls" ||
6224 Mnemonic
== "vmls" || Mnemonic
== "vnmls" || Mnemonic
== "vacge" ||
6225 Mnemonic
== "vcge" || Mnemonic
== "vclt" || Mnemonic
== "vacgt" ||
6226 Mnemonic
== "vaclt" || Mnemonic
== "vacle" || Mnemonic
== "hlt" ||
6227 Mnemonic
== "vcgt" || Mnemonic
== "vcle" || Mnemonic
== "smlal" ||
6228 Mnemonic
== "umaal" || Mnemonic
== "umlal" || Mnemonic
== "vabal" ||
6229 Mnemonic
== "vmlal" || Mnemonic
== "vpadal" || Mnemonic
== "vqdmlal" ||
6230 Mnemonic
== "fmuls" || Mnemonic
== "vmaxnm" || Mnemonic
== "vminnm" ||
6231 Mnemonic
== "vcvta" || Mnemonic
== "vcvtn" || Mnemonic
== "vcvtp" ||
6232 Mnemonic
== "vcvtm" || Mnemonic
== "vrinta" || Mnemonic
== "vrintn" ||
6233 Mnemonic
== "vrintp" || Mnemonic
== "vrintm" || Mnemonic
== "hvc" ||
6234 Mnemonic
.startswith("vsel") || Mnemonic
== "vins" || Mnemonic
== "vmovx" ||
6235 Mnemonic
== "bxns" || Mnemonic
== "blxns" ||
6236 Mnemonic
== "vudot" || Mnemonic
== "vsdot" ||
6237 Mnemonic
== "vcmla" || Mnemonic
== "vcadd" ||
6238 Mnemonic
== "vfmal" || Mnemonic
== "vfmsl" ||
6239 Mnemonic
== "wls" || Mnemonic
== "le" || Mnemonic
== "dls" ||
6240 Mnemonic
== "csel" || Mnemonic
== "csinc" ||
6241 Mnemonic
== "csinv" || Mnemonic
== "csneg" || Mnemonic
== "cinc" ||
6242 Mnemonic
== "cinv" || Mnemonic
== "cneg" || Mnemonic
== "cset" ||
6243 Mnemonic
== "csetm")
6246 // First, split out any predication code. Ignore mnemonics we know aren't
6247 // predicated but do have a carry-set and so weren't caught above.
6248 if (Mnemonic
!= "adcs" && Mnemonic
!= "bics" && Mnemonic
!= "movs" &&
6249 Mnemonic
!= "muls" && Mnemonic
!= "smlals" && Mnemonic
!= "smulls" &&
6250 Mnemonic
!= "umlals" && Mnemonic
!= "umulls" && Mnemonic
!= "lsls" &&
6251 Mnemonic
!= "sbcs" && Mnemonic
!= "rscs" &&
6253 (Mnemonic
== "vmine" ||
6254 Mnemonic
== "vshle" || Mnemonic
== "vshlt" || Mnemonic
== "vshllt" ||
6255 Mnemonic
== "vrshle" || Mnemonic
== "vrshlt" ||
6256 Mnemonic
== "vmvne" || Mnemonic
== "vorne" ||
6257 Mnemonic
== "vnege" || Mnemonic
== "vnegt" ||
6258 Mnemonic
== "vmule" || Mnemonic
== "vmult" ||
6259 Mnemonic
== "vrintne" ||
6260 Mnemonic
== "vcmult" || Mnemonic
== "vcmule" ||
6261 Mnemonic
== "vpsele" || Mnemonic
== "vpselt" ||
6262 Mnemonic
.startswith("vq")))) {
6263 unsigned CC
= ARMCondCodeFromString(Mnemonic
.substr(Mnemonic
.size()-2));
6265 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size() - 2);
6266 PredicationCode
= CC
;
6270 // Next, determine if we have a carry setting bit. We explicitly ignore all
6271 // the instructions we know end in 's'.
6272 if (Mnemonic
.endswith("s") &&
6273 !(Mnemonic
== "cps" || Mnemonic
== "mls" ||
6274 Mnemonic
== "mrs" || Mnemonic
== "smmls" || Mnemonic
== "vabs" ||
6275 Mnemonic
== "vcls" || Mnemonic
== "vmls" || Mnemonic
== "vmrs" ||
6276 Mnemonic
== "vnmls" || Mnemonic
== "vqabs" || Mnemonic
== "vrecps" ||
6277 Mnemonic
== "vrsqrts" || Mnemonic
== "srs" || Mnemonic
== "flds" ||
6278 Mnemonic
== "fmrs" || Mnemonic
== "fsqrts" || Mnemonic
== "fsubs" ||
6279 Mnemonic
== "fsts" || Mnemonic
== "fcpys" || Mnemonic
== "fdivs" ||
6280 Mnemonic
== "fmuls" || Mnemonic
== "fcmps" || Mnemonic
== "fcmpzs" ||
6281 Mnemonic
== "vfms" || Mnemonic
== "vfnms" || Mnemonic
== "fconsts" ||
6282 Mnemonic
== "bxns" || Mnemonic
== "blxns" || Mnemonic
== "vfmas" ||
6283 Mnemonic
== "vmlas" ||
6284 (Mnemonic
== "movs" && isThumb()))) {
6285 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size() - 1);
6286 CarrySetting
= true;
6289 // The "cps" instruction can have a interrupt mode operand which is glued into
6290 // the mnemonic. Check if this is the case, split it and parse the imod op
6291 if (Mnemonic
.startswith("cps")) {
6292 // Split out any imod code.
6294 StringSwitch
<unsigned>(Mnemonic
.substr(Mnemonic
.size()-2, 2))
6295 .Case("ie", ARM_PROC::IE
)
6296 .Case("id", ARM_PROC::ID
)
6299 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size()-2);
6300 ProcessorIMod
= IMod
;
6304 if (isMnemonicVPTPredicable(Mnemonic
, ExtraToken
) && Mnemonic
!= "vmovlt" &&
6305 Mnemonic
!= "vshllt" && Mnemonic
!= "vrshrnt" && Mnemonic
!= "vshrnt" &&
6306 Mnemonic
!= "vqrshrunt" && Mnemonic
!= "vqshrunt" &&
6307 Mnemonic
!= "vqrshrnt" && Mnemonic
!= "vqshrnt" && Mnemonic
!= "vmullt" &&
6308 Mnemonic
!= "vqmovnt" && Mnemonic
!= "vqmovunt" &&
6309 Mnemonic
!= "vqmovnt" && Mnemonic
!= "vmovnt" && Mnemonic
!= "vqdmullt" &&
6310 Mnemonic
!= "vpnot" && Mnemonic
!= "vcvtt" && Mnemonic
!= "vcvt") {
6311 unsigned CC
= ARMVectorCondCodeFromString(Mnemonic
.substr(Mnemonic
.size()-1));
6313 Mnemonic
= Mnemonic
.slice(0, Mnemonic
.size()-1);
6314 VPTPredicationCode
= CC
;
6319 // The "it" instruction has the condition mask on the end of the mnemonic.
6320 if (Mnemonic
.startswith("it")) {
6321 ITMask
= Mnemonic
.slice(2, Mnemonic
.size());
6322 Mnemonic
= Mnemonic
.slice(0, 2);
6325 if (Mnemonic
.startswith("vpst")) {
6326 ITMask
= Mnemonic
.slice(4, Mnemonic
.size());
6327 Mnemonic
= Mnemonic
.slice(0, 4);
6329 else if (Mnemonic
.startswith("vpt")) {
6330 ITMask
= Mnemonic
.slice(3, Mnemonic
.size());
6331 Mnemonic
= Mnemonic
.slice(0, 3);
6337 /// Given a canonical mnemonic, determine if the instruction ever allows
6338 /// inclusion of carry set or predication code operands.
6340 // FIXME: It would be nice to autogen this.
6341 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic
,
6342 StringRef ExtraToken
,
6344 bool &CanAcceptCarrySet
,
6345 bool &CanAcceptPredicationCode
,
6346 bool &CanAcceptVPTPredicationCode
) {
6347 CanAcceptVPTPredicationCode
= isMnemonicVPTPredicable(Mnemonic
, ExtraToken
);
6350 Mnemonic
== "and" || Mnemonic
== "lsl" || Mnemonic
== "lsr" ||
6351 Mnemonic
== "rrx" || Mnemonic
== "ror" || Mnemonic
== "sub" ||
6352 Mnemonic
== "add" || Mnemonic
== "adc" || Mnemonic
== "mul" ||
6353 Mnemonic
== "bic" || Mnemonic
== "asr" || Mnemonic
== "orr" ||
6354 Mnemonic
== "mvn" || Mnemonic
== "rsb" || Mnemonic
== "rsc" ||
6355 Mnemonic
== "orn" || Mnemonic
== "sbc" || Mnemonic
== "eor" ||
6356 Mnemonic
== "neg" || Mnemonic
== "vfm" || Mnemonic
== "vfnm" ||
6358 (Mnemonic
== "smull" || Mnemonic
== "mov" || Mnemonic
== "mla" ||
6359 Mnemonic
== "smlal" || Mnemonic
== "umlal" || Mnemonic
== "umull"));
6361 if (Mnemonic
== "bkpt" || Mnemonic
== "cbnz" || Mnemonic
== "setend" ||
6362 Mnemonic
== "cps" || Mnemonic
== "it" || Mnemonic
== "cbz" ||
6363 Mnemonic
== "trap" || Mnemonic
== "hlt" || Mnemonic
== "udf" ||
6364 Mnemonic
.startswith("crc32") || Mnemonic
.startswith("cps") ||
6365 Mnemonic
.startswith("vsel") || Mnemonic
== "vmaxnm" ||
6366 Mnemonic
== "vminnm" || Mnemonic
== "vcvta" || Mnemonic
== "vcvtn" ||
6367 Mnemonic
== "vcvtp" || Mnemonic
== "vcvtm" || Mnemonic
== "vrinta" ||
6368 Mnemonic
== "vrintn" || Mnemonic
== "vrintp" || Mnemonic
== "vrintm" ||
6369 Mnemonic
.startswith("aes") || Mnemonic
== "hvc" || Mnemonic
== "setpan" ||
6370 Mnemonic
.startswith("sha1") || Mnemonic
.startswith("sha256") ||
6371 (FullInst
.startswith("vmull") && FullInst
.endswith(".p64")) ||
6372 Mnemonic
== "vmovx" || Mnemonic
== "vins" ||
6373 Mnemonic
== "vudot" || Mnemonic
== "vsdot" ||
6374 Mnemonic
== "vcmla" || Mnemonic
== "vcadd" ||
6375 Mnemonic
== "vfmal" || Mnemonic
== "vfmsl" ||
6376 Mnemonic
== "sb" || Mnemonic
== "ssbb" ||
6377 Mnemonic
== "pssbb" ||
6378 Mnemonic
== "bfcsel" || Mnemonic
== "wls" ||
6379 Mnemonic
== "dls" || Mnemonic
== "le" || Mnemonic
== "csel" ||
6380 Mnemonic
== "csinc" || Mnemonic
== "csinv" || Mnemonic
== "csneg" ||
6381 Mnemonic
== "cinc" || Mnemonic
== "cinv" || Mnemonic
== "cneg" ||
6382 Mnemonic
== "cset" || Mnemonic
== "csetm" ||
6383 Mnemonic
.startswith("vpt") || Mnemonic
.startswith("vpst") ||
6385 (Mnemonic
.startswith("vst2") || Mnemonic
.startswith("vld2") ||
6386 Mnemonic
.startswith("vst4") || Mnemonic
.startswith("vld4") ||
6387 Mnemonic
.startswith("wlstp") || Mnemonic
.startswith("dlstp") ||
6388 Mnemonic
.startswith("letp")))) {
6389 // These mnemonics are never predicable
6390 CanAcceptPredicationCode
= false;
6391 } else if (!isThumb()) {
6392 // Some instructions are only predicable in Thumb mode
6393 CanAcceptPredicationCode
=
6394 Mnemonic
!= "cdp2" && Mnemonic
!= "clrex" && Mnemonic
!= "mcr2" &&
6395 Mnemonic
!= "mcrr2" && Mnemonic
!= "mrc2" && Mnemonic
!= "mrrc2" &&
6396 Mnemonic
!= "dmb" && Mnemonic
!= "dfb" && Mnemonic
!= "dsb" &&
6397 Mnemonic
!= "isb" && Mnemonic
!= "pld" && Mnemonic
!= "pli" &&
6398 Mnemonic
!= "pldw" && Mnemonic
!= "ldc2" && Mnemonic
!= "ldc2l" &&
6399 Mnemonic
!= "stc2" && Mnemonic
!= "stc2l" &&
6400 Mnemonic
!= "tsb" &&
6401 !Mnemonic
.startswith("rfe") && !Mnemonic
.startswith("srs");
6402 } else if (isThumbOne()) {
6404 CanAcceptPredicationCode
= Mnemonic
!= "movs";
6406 CanAcceptPredicationCode
= Mnemonic
!= "nop" && Mnemonic
!= "movs";
6408 CanAcceptPredicationCode
= true;
6411 // Some Thumb instructions have two operand forms that are not
6412 // available as three operand, convert to two operand form if possible.
6414 // FIXME: We would really like to be able to tablegen'erate this.
6415 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic
,
6417 OperandVector
&Operands
) {
6418 if (Operands
.size() != 6)
6421 const auto &Op3
= static_cast<ARMOperand
&>(*Operands
[3]);
6422 auto &Op4
= static_cast<ARMOperand
&>(*Operands
[4]);
6423 if (!Op3
.isReg() || !Op4
.isReg())
6426 auto Op3Reg
= Op3
.getReg();
6427 auto Op4Reg
= Op4
.getReg();
6429 // For most Thumb2 cases we just generate the 3 operand form and reduce
6430 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6431 // won't accept SP or PC so we do the transformation here taking care
6432 // with immediate range in the 'add sp, sp #imm' case.
6433 auto &Op5
= static_cast<ARMOperand
&>(*Operands
[5]);
6435 if (Mnemonic
!= "add")
6437 bool TryTransform
= Op3Reg
== ARM::PC
|| Op4Reg
== ARM::PC
||
6438 (Op5
.isReg() && Op5
.getReg() == ARM::PC
);
6439 if (!TryTransform
) {
6440 TryTransform
= (Op3Reg
== ARM::SP
|| Op4Reg
== ARM::SP
||
6441 (Op5
.isReg() && Op5
.getReg() == ARM::SP
)) &&
6442 !(Op3Reg
== ARM::SP
&& Op4Reg
== ARM::SP
&&
6443 Op5
.isImm() && !Op5
.isImm0_508s4());
6447 } else if (!isThumbOne())
6450 if (!(Mnemonic
== "add" || Mnemonic
== "sub" || Mnemonic
== "and" ||
6451 Mnemonic
== "eor" || Mnemonic
== "lsl" || Mnemonic
== "lsr" ||
6452 Mnemonic
== "asr" || Mnemonic
== "adc" || Mnemonic
== "sbc" ||
6453 Mnemonic
== "ror" || Mnemonic
== "orr" || Mnemonic
== "bic"))
6456 // If first 2 operands of a 3 operand instruction are the same
6457 // then transform to 2 operand version of the same instruction
6458 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6459 bool Transform
= Op3Reg
== Op4Reg
;
6461 // For communtative operations, we might be able to transform if we swap
6462 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
6464 const ARMOperand
*LastOp
= &Op5
;
6466 if (!Transform
&& Op5
.isReg() && Op3Reg
== Op5
.getReg() &&
6467 ((Mnemonic
== "add" && Op4Reg
!= ARM::SP
) ||
6468 Mnemonic
== "and" || Mnemonic
== "eor" ||
6469 Mnemonic
== "adc" || Mnemonic
== "orr")) {
6475 // If both registers are the same then remove one of them from
6476 // the operand list, with certain exceptions.
6478 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6479 // 2 operand forms don't exist.
6480 if (((Mnemonic
== "add" && CarrySetting
) || Mnemonic
== "sub") &&
6484 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6485 // 3-bits because the ARMARM says not to.
6486 if ((Mnemonic
== "add" || Mnemonic
== "sub") && LastOp
->isImm0_7())
6492 std::swap(Op4
, Op5
);
6493 Operands
.erase(Operands
.begin() + 3);
6497 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic
,
6498 OperandVector
&Operands
) {
6499 // FIXME: This is all horribly hacky. We really need a better way to deal
6500 // with optional operands like this in the matcher table.
6502 // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6503 // another does not. Specifically, the MOVW instruction does not. So we
6504 // special case it here and remove the defaulted (non-setting) cc_out
6505 // operand if that's the instruction we're trying to match.
6507 // We do this as post-processing of the explicit operands rather than just
6508 // conditionally adding the cc_out in the first place because we need
6509 // to check the type of the parsed immediate operand.
6510 if (Mnemonic
== "mov" && Operands
.size() > 4 && !isThumb() &&
6511 !static_cast<ARMOperand
&>(*Operands
[4]).isModImm() &&
6512 static_cast<ARMOperand
&>(*Operands
[4]).isImm0_65535Expr() &&
6513 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0)
6516 // Register-register 'add' for thumb does not have a cc_out operand
6517 // when there are only two register operands.
6518 if (isThumb() && Mnemonic
== "add" && Operands
.size() == 5 &&
6519 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6520 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6521 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0)
6523 // Register-register 'add' for thumb does not have a cc_out operand
6524 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6525 // have to check the immediate range here since Thumb2 has a variant
6526 // that can handle a different range and has a cc_out operand.
6527 if (((isThumb() && Mnemonic
== "add") ||
6528 (isThumbTwo() && Mnemonic
== "sub")) &&
6529 Operands
.size() == 6 && static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6530 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6531 static_cast<ARMOperand
&>(*Operands
[4]).getReg() == ARM::SP
&&
6532 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
6533 ((Mnemonic
== "add" && static_cast<ARMOperand
&>(*Operands
[5]).isReg()) ||
6534 static_cast<ARMOperand
&>(*Operands
[5]).isImm0_1020s4()))
6536 // For Thumb2, add/sub immediate does not have a cc_out operand for the
6537 // imm0_4095 variant. That's the least-preferred variant when
6538 // selecting via the generic "add" mnemonic, so to know that we
6539 // should remove the cc_out operand, we have to explicitly check that
6540 // it's not one of the other variants. Ugh.
6541 if (isThumbTwo() && (Mnemonic
== "add" || Mnemonic
== "sub") &&
6542 Operands
.size() == 6 && static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6543 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6544 static_cast<ARMOperand
&>(*Operands
[5]).isImm()) {
6545 // Nest conditions rather than one big 'if' statement for readability.
6547 // If both registers are low, we're in an IT block, and the immediate is
6548 // in range, we should use encoding T1 instead, which has a cc_out.
6550 isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) &&
6551 isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) &&
6552 static_cast<ARMOperand
&>(*Operands
[5]).isImm0_7())
6554 // Check against T3. If the second register is the PC, this is an
6555 // alternate form of ADR, which uses encoding T4, so check for that too.
6556 if (static_cast<ARMOperand
&>(*Operands
[4]).getReg() != ARM::PC
&&
6557 static_cast<ARMOperand
&>(*Operands
[5]).isT2SOImm())
6560 // Otherwise, we use encoding T4, which does not have a cc_out
6565 // The thumb2 multiply instruction doesn't have a CCOut register, so
6566 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6567 // use the 16-bit encoding or not.
6568 if (isThumbTwo() && Mnemonic
== "mul" && Operands
.size() == 6 &&
6569 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
6570 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6571 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6572 static_cast<ARMOperand
&>(*Operands
[5]).isReg() &&
6573 // If the registers aren't low regs, the destination reg isn't the
6574 // same as one of the source regs, or the cc_out operand is zero
6575 // outside of an IT block, we have to use the 32-bit encoding, so
6576 // remove the cc_out operand.
6577 (!isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) ||
6578 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) ||
6579 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[5]).getReg()) ||
6580 !inITBlock() || (static_cast<ARMOperand
&>(*Operands
[3]).getReg() !=
6581 static_cast<ARMOperand
&>(*Operands
[5]).getReg() &&
6582 static_cast<ARMOperand
&>(*Operands
[3]).getReg() !=
6583 static_cast<ARMOperand
&>(*Operands
[4]).getReg())))
6586 // Also check the 'mul' syntax variant that doesn't specify an explicit
6587 // destination register.
6588 if (isThumbTwo() && Mnemonic
== "mul" && Operands
.size() == 5 &&
6589 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
6590 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6591 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
6592 // If the registers aren't low regs or the cc_out operand is zero
6593 // outside of an IT block, we have to use the 32-bit encoding, so
6594 // remove the cc_out operand.
6595 (!isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[3]).getReg()) ||
6596 !isARMLowRegister(static_cast<ARMOperand
&>(*Operands
[4]).getReg()) ||
6600 // Register-register 'add/sub' for thumb does not have a cc_out operand
6601 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6602 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6603 // right, this will result in better diagnostics (which operand is off)
6605 if (isThumb() && (Mnemonic
== "add" || Mnemonic
== "sub") &&
6606 (Operands
.size() == 5 || Operands
.size() == 6) &&
6607 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
6608 static_cast<ARMOperand
&>(*Operands
[3]).getReg() == ARM::SP
&&
6609 static_cast<ARMOperand
&>(*Operands
[1]).getReg() == 0 &&
6610 (static_cast<ARMOperand
&>(*Operands
[4]).isImm() ||
6611 (Operands
.size() == 6 &&
6612 static_cast<ARMOperand
&>(*Operands
[5]).isImm())))
6618 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic
,
6619 OperandVector
&Operands
) {
6620 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6621 unsigned RegIdx
= 3;
6622 if ((((Mnemonic
== "vrintz" || Mnemonic
== "vrintx") && !hasMVE()) ||
6623 Mnemonic
== "vrintr") &&
6624 (static_cast<ARMOperand
&>(*Operands
[2]).getToken() == ".f32" ||
6625 static_cast<ARMOperand
&>(*Operands
[2]).getToken() == ".f16")) {
6626 if (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
6627 (static_cast<ARMOperand
&>(*Operands
[3]).getToken() == ".f32" ||
6628 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == ".f16"))
6631 if (static_cast<ARMOperand
&>(*Operands
[RegIdx
]).isReg() &&
6632 (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(
6633 static_cast<ARMOperand
&>(*Operands
[RegIdx
]).getReg()) ||
6634 ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(
6635 static_cast<ARMOperand
&>(*Operands
[RegIdx
]).getReg())))
6641 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic
,
6642 OperandVector
&Operands
) {
6643 if (!hasMVE() || Operands
.size() < 3)
6646 if (Mnemonic
.startswith("vld2") || Mnemonic
.startswith("vld4") ||
6647 Mnemonic
.startswith("vst2") || Mnemonic
.startswith("vst4"))
6650 if (Mnemonic
.startswith("vctp") || Mnemonic
.startswith("vpnot"))
6653 if (Mnemonic
.startswith("vmov") &&
6654 !(Mnemonic
.startswith("vmovl") || Mnemonic
.startswith("vmovn") ||
6655 Mnemonic
.startswith("vmovx"))) {
6656 for (auto &Operand
: Operands
) {
6657 if (static_cast<ARMOperand
&>(*Operand
).isVectorIndex() ||
6658 ((*Operand
).isReg() &&
6659 (ARMMCRegisterClasses
[ARM::SPRRegClassID
].contains(
6660 (*Operand
).getReg()) ||
6661 ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(
6662 (*Operand
).getReg())))) {
6668 for (auto &Operand
: Operands
) {
6669 // We check the larger class QPR instead of just the legal class
6670 // MQPR, to more accurately report errors when using Q registers
6671 // outside of the allowed range.
6672 if (static_cast<ARMOperand
&>(*Operand
).isVectorIndex() ||
6673 (Operand
->isReg() &&
6674 (ARMMCRegisterClasses
[ARM::QPRRegClassID
].contains(
6675 Operand
->getReg()))))
6682 static bool isDataTypeToken(StringRef Tok
) {
6683 return Tok
== ".8" || Tok
== ".16" || Tok
== ".32" || Tok
== ".64" ||
6684 Tok
== ".i8" || Tok
== ".i16" || Tok
== ".i32" || Tok
== ".i64" ||
6685 Tok
== ".u8" || Tok
== ".u16" || Tok
== ".u32" || Tok
== ".u64" ||
6686 Tok
== ".s8" || Tok
== ".s16" || Tok
== ".s32" || Tok
== ".s64" ||
6687 Tok
== ".p8" || Tok
== ".p16" || Tok
== ".f32" || Tok
== ".f64" ||
6688 Tok
== ".f" || Tok
== ".d";
6691 // FIXME: This bit should probably be handled via an explicit match class
6692 // in the .td files that matches the suffix instead of having it be
6693 // a literal string token the way it is now.
6694 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic
, StringRef DT
) {
6695 return Mnemonic
.startswith("vldm") || Mnemonic
.startswith("vstm");
6698 static void applyMnemonicAliases(StringRef
&Mnemonic
,
6699 const FeatureBitset
&Features
,
6700 unsigned VariantID
);
6702 // The GNU assembler has aliases of ldrd and strd with the second register
6703 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6705 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6706 // the assmebly parser could then generate confusing diagnostics refering to
6707 // it. If we do find anything that prevents us from doing the transformation we
6708 // bail out, and let the assembly parser report an error on the instruction as
6710 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic
,
6711 OperandVector
&Operands
) {
6712 if (Mnemonic
!= "ldrd" && Mnemonic
!= "strd")
6714 if (Operands
.size() < 4)
6717 ARMOperand
&Op2
= static_cast<ARMOperand
&>(*Operands
[2]);
6718 ARMOperand
&Op3
= static_cast<ARMOperand
&>(*Operands
[3]);
6722 if (!Op3
.isGPRMem())
6725 const MCRegisterClass
&GPR
= MRI
->getRegClass(ARM::GPRRegClassID
);
6726 if (!GPR
.contains(Op2
.getReg()))
6729 unsigned RtEncoding
= MRI
->getEncodingValue(Op2
.getReg());
6730 if (!isThumb() && (RtEncoding
& 1)) {
6731 // In ARM mode, the registers must be from an aligned pair, this
6732 // restriction does not apply in Thumb mode.
6735 if (Op2
.getReg() == ARM::PC
)
6737 unsigned PairedReg
= GPR
.getRegister(RtEncoding
+ 1);
6738 if (!PairedReg
|| PairedReg
== ARM::PC
||
6739 (PairedReg
== ARM::SP
&& !hasV8Ops()))
6743 Operands
.begin() + 3,
6744 ARMOperand::CreateReg(PairedReg
, Op2
.getStartLoc(), Op2
.getEndLoc()));
6747 /// Parse an arm instruction mnemonic followed by its operands.
6748 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo
&Info
, StringRef Name
,
6749 SMLoc NameLoc
, OperandVector
&Operands
) {
6750 MCAsmParser
&Parser
= getParser();
6752 // Apply mnemonic aliases before doing anything else, as the destination
6753 // mnemonic may include suffices and we want to handle them normally.
6754 // The generic tblgen'erated code does this later, at the start of
6755 // MatchInstructionImpl(), but that's too late for aliases that include
6756 // any sort of suffix.
6757 const FeatureBitset
&AvailableFeatures
= getAvailableFeatures();
6758 unsigned AssemblerDialect
= getParser().getAssemblerDialect();
6759 applyMnemonicAliases(Name
, AvailableFeatures
, AssemblerDialect
);
6761 // First check for the ARM-specific .req directive.
6762 if (Parser
.getTok().is(AsmToken::Identifier
) &&
6763 Parser
.getTok().getIdentifier() == ".req") {
6764 parseDirectiveReq(Name
, NameLoc
);
6765 // We always return 'error' for this, as we're done with this
6766 // statement and don't need to match the 'instruction."
6770 // Create the leading tokens for the mnemonic, split by '.' characters.
6771 size_t Start
= 0, Next
= Name
.find('.');
6772 StringRef Mnemonic
= Name
.slice(Start
, Next
);
6773 StringRef ExtraToken
= Name
.slice(Next
, Name
.find(' ', Next
+ 1));
6775 // Split out the predication code and carry setting flag from the mnemonic.
6776 unsigned PredicationCode
;
6777 unsigned VPTPredicationCode
;
6778 unsigned ProcessorIMod
;
6781 Mnemonic
= splitMnemonic(Mnemonic
, ExtraToken
, PredicationCode
, VPTPredicationCode
,
6782 CarrySetting
, ProcessorIMod
, ITMask
);
6784 // In Thumb1, only the branch (B) instruction can be predicated.
6785 if (isThumbOne() && PredicationCode
!= ARMCC::AL
&& Mnemonic
!= "b") {
6786 return Error(NameLoc
, "conditional execution not supported in Thumb1");
6789 Operands
.push_back(ARMOperand::CreateToken(Mnemonic
, NameLoc
));
6791 // Handle the mask for IT and VPT instructions. In ARMOperand and
6792 // MCOperand, this is stored in a format independent of the
6793 // condition code: the lowest set bit indicates the end of the
6794 // encoding, and above that, a 1 bit indicates 'else', and an 0
6795 // indicates 'then'. E.g.
6797 // ITx -> x100 (ITT -> 0100, ITE -> 1100)
6798 // ITxy -> xy10 (e.g. ITET -> 1010)
6799 // ITxyz -> xyz1 (e.g. ITEET -> 1101)
6800 if (Mnemonic
== "it" || Mnemonic
.startswith("vpt") ||
6801 Mnemonic
.startswith("vpst")) {
6802 SMLoc Loc
= Mnemonic
== "it" ? SMLoc::getFromPointer(NameLoc
.getPointer() + 2) :
6803 Mnemonic
== "vpt" ? SMLoc::getFromPointer(NameLoc
.getPointer() + 3) :
6804 SMLoc::getFromPointer(NameLoc
.getPointer() + 4);
6805 if (ITMask
.size() > 3) {
6806 if (Mnemonic
== "it")
6807 return Error(Loc
, "too many conditions on IT instruction");
6808 return Error(Loc
, "too many conditions on VPT instruction");
6811 for (unsigned i
= ITMask
.size(); i
!= 0; --i
) {
6812 char pos
= ITMask
[i
- 1];
6813 if (pos
!= 't' && pos
!= 'e') {
6814 return Error(Loc
, "illegal IT block condition mask '" + ITMask
+ "'");
6817 if (ITMask
[i
- 1] == 'e')
6820 Operands
.push_back(ARMOperand::CreateITMask(Mask
, Loc
));
6823 // FIXME: This is all a pretty gross hack. We should automatically handle
6824 // optional operands like this via tblgen.
6826 // Next, add the CCOut and ConditionCode operands, if needed.
6828 // For mnemonics which can ever incorporate a carry setting bit or predication
6829 // code, our matching model involves us always generating CCOut and
6830 // ConditionCode operands to match the mnemonic "as written" and then we let
6831 // the matcher deal with finding the right instruction or generating an
6832 // appropriate error.
6833 bool CanAcceptCarrySet
, CanAcceptPredicationCode
, CanAcceptVPTPredicationCode
;
6834 getMnemonicAcceptInfo(Mnemonic
, ExtraToken
, Name
, CanAcceptCarrySet
,
6835 CanAcceptPredicationCode
, CanAcceptVPTPredicationCode
);
6837 // If we had a carry-set on an instruction that can't do that, issue an
6839 if (!CanAcceptCarrySet
&& CarrySetting
) {
6840 return Error(NameLoc
, "instruction '" + Mnemonic
+
6841 "' can not set flags, but 's' suffix specified");
6843 // If we had a predication code on an instruction that can't do that, issue an
6845 if (!CanAcceptPredicationCode
&& PredicationCode
!= ARMCC::AL
) {
6846 return Error(NameLoc
, "instruction '" + Mnemonic
+
6847 "' is not predicable, but condition code specified");
6850 // If we had a VPT predication code on an instruction that can't do that, issue an
6852 if (!CanAcceptVPTPredicationCode
&& VPTPredicationCode
!= ARMVCC::None
) {
6853 return Error(NameLoc
, "instruction '" + Mnemonic
+
6854 "' is not VPT predicable, but VPT code T/E is specified");
6857 // Add the carry setting operand, if necessary.
6858 if (CanAcceptCarrySet
) {
6859 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Mnemonic
.size());
6860 Operands
.push_back(ARMOperand::CreateCCOut(CarrySetting
? ARM::CPSR
: 0,
6864 // Add the predication code operand, if necessary.
6865 if (CanAcceptPredicationCode
) {
6866 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Mnemonic
.size() +
6868 Operands
.push_back(ARMOperand::CreateCondCode(
6869 ARMCC::CondCodes(PredicationCode
), Loc
));
6872 // Add the VPT predication code operand, if necessary.
6873 // FIXME: We don't add them for the instructions filtered below as these can
6874 // have custom operands which need special parsing. This parsing requires
6875 // the operand to be in the same place in the OperandVector as their
6876 // definition in tblgen. Since these instructions may also have the
6877 // scalar predication operand we do not add the vector one and leave until
6878 // now to fix it up.
6879 if (CanAcceptVPTPredicationCode
&& Mnemonic
!= "vmov" &&
6880 !Mnemonic
.startswith("vcmp") &&
6881 !(Mnemonic
.startswith("vcvt") && Mnemonic
!= "vcvta" &&
6882 Mnemonic
!= "vcvtn" && Mnemonic
!= "vcvtp" && Mnemonic
!= "vcvtm")) {
6883 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Mnemonic
.size() +
6885 Operands
.push_back(ARMOperand::CreateVPTPred(
6886 ARMVCC::VPTCodes(VPTPredicationCode
), Loc
));
6889 // Add the processor imod operand, if necessary.
6890 if (ProcessorIMod
) {
6891 Operands
.push_back(ARMOperand::CreateImm(
6892 MCConstantExpr::create(ProcessorIMod
, getContext()),
6894 } else if (Mnemonic
== "cps" && isMClass()) {
6895 return Error(NameLoc
, "instruction 'cps' requires effect for M-class");
6898 // Add the remaining tokens in the mnemonic.
6899 while (Next
!= StringRef::npos
) {
6901 Next
= Name
.find('.', Start
+ 1);
6902 ExtraToken
= Name
.slice(Start
, Next
);
6904 // Some NEON instructions have an optional datatype suffix that is
6905 // completely ignored. Check for that.
6906 if (isDataTypeToken(ExtraToken
) &&
6907 doesIgnoreDataTypeSuffix(Mnemonic
, ExtraToken
))
6910 // For for ARM mode generate an error if the .n qualifier is used.
6911 if (ExtraToken
== ".n" && !isThumb()) {
6912 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Start
);
6913 return Error(Loc
, "instruction with .n (narrow) qualifier not allowed in "
6917 // The .n qualifier is always discarded as that is what the tables
6918 // and matcher expect. In ARM mode the .w qualifier has no effect,
6919 // so discard it to avoid errors that can be caused by the matcher.
6920 if (ExtraToken
!= ".n" && (isThumb() || ExtraToken
!= ".w")) {
6921 SMLoc Loc
= SMLoc::getFromPointer(NameLoc
.getPointer() + Start
);
6922 Operands
.push_back(ARMOperand::CreateToken(ExtraToken
, Loc
));
6926 // Read the remaining operands.
6927 if (getLexer().isNot(AsmToken::EndOfStatement
)) {
6928 // Read the first operand.
6929 if (parseOperand(Operands
, Mnemonic
)) {
6933 while (parseOptionalToken(AsmToken::Comma
)) {
6934 // Parse and remember the operand.
6935 if (parseOperand(Operands
, Mnemonic
)) {
6941 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in argument list"))
6944 tryConvertingToTwoOperandForm(Mnemonic
, CarrySetting
, Operands
);
6946 // Some instructions, mostly Thumb, have forms for the same mnemonic that
6947 // do and don't have a cc_out optional-def operand. With some spot-checks
6948 // of the operand list, we can figure out which variant we're trying to
6949 // parse and adjust accordingly before actually matching. We shouldn't ever
6950 // try to remove a cc_out operand that was explicitly set on the
6951 // mnemonic, of course (CarrySetting == true). Reason number #317 the
6952 // table driven matcher doesn't fit well with the ARM instruction set.
6953 if (!CarrySetting
&& shouldOmitCCOutOperand(Mnemonic
, Operands
))
6954 Operands
.erase(Operands
.begin() + 1);
6956 // Some instructions have the same mnemonic, but don't always
6957 // have a predicate. Distinguish them here and delete the
6958 // appropriate predicate if needed. This could be either the scalar
6959 // predication code or the vector predication code.
6960 if (PredicationCode
== ARMCC::AL
&&
6961 shouldOmitPredicateOperand(Mnemonic
, Operands
))
6962 Operands
.erase(Operands
.begin() + 1);
6966 if (!shouldOmitVectorPredicateOperand(Mnemonic
, Operands
) &&
6967 Mnemonic
== "vmov" && PredicationCode
== ARMCC::LT
) {
6968 // Very nasty hack to deal with the vector predicated variant of vmovlt
6969 // the scalar predicated vmov with condition 'lt'. We can not tell them
6970 // apart until we have parsed their operands.
6971 Operands
.erase(Operands
.begin() + 1);
6972 Operands
.erase(Operands
.begin());
6973 SMLoc MLoc
= SMLoc::getFromPointer(NameLoc
.getPointer());
6974 SMLoc PLoc
= SMLoc::getFromPointer(NameLoc
.getPointer() +
6975 Mnemonic
.size() - 1 + CarrySetting
);
6976 Operands
.insert(Operands
.begin(),
6977 ARMOperand::CreateVPTPred(ARMVCC::None
, PLoc
));
6978 Operands
.insert(Operands
.begin(),
6979 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc
));
6980 } else if (Mnemonic
== "vcvt" && PredicationCode
== ARMCC::NE
&&
6981 !shouldOmitVectorPredicateOperand(Mnemonic
, Operands
)) {
6982 // Another nasty hack to deal with the ambiguity between vcvt with scalar
6983 // predication 'ne' and vcvtn with vector predication 'e'. As above we
6984 // can only distinguish between the two after we have parsed their
6986 Operands
.erase(Operands
.begin() + 1);
6987 Operands
.erase(Operands
.begin());
6988 SMLoc MLoc
= SMLoc::getFromPointer(NameLoc
.getPointer());
6989 SMLoc PLoc
= SMLoc::getFromPointer(NameLoc
.getPointer() +
6990 Mnemonic
.size() - 1 + CarrySetting
);
6991 Operands
.insert(Operands
.begin(),
6992 ARMOperand::CreateVPTPred(ARMVCC::Else
, PLoc
));
6993 Operands
.insert(Operands
.begin(),
6994 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc
));
6995 } else if (Mnemonic
== "vmul" && PredicationCode
== ARMCC::LT
&&
6996 !shouldOmitVectorPredicateOperand(Mnemonic
, Operands
)) {
6997 // Another hack, this time to distinguish between scalar predicated vmul
6998 // with 'lt' predication code and the vector instruction vmullt with
6999 // vector predication code "none"
7000 Operands
.erase(Operands
.begin() + 1);
7001 Operands
.erase(Operands
.begin());
7002 SMLoc MLoc
= SMLoc::getFromPointer(NameLoc
.getPointer());
7003 Operands
.insert(Operands
.begin(),
7004 ARMOperand::CreateToken(StringRef("vmullt"), MLoc
));
7006 // For vmov and vcmp, as mentioned earlier, we did not add the vector
7007 // predication code, since these may contain operands that require
7008 // special parsing. So now we have to see if they require vector
7009 // predication and replace the scalar one with the vector predication
7010 // operand if that is the case.
7011 else if (Mnemonic
== "vmov" || Mnemonic
.startswith("vcmp") ||
7012 (Mnemonic
.startswith("vcvt") && !Mnemonic
.startswith("vcvta") &&
7013 !Mnemonic
.startswith("vcvtn") && !Mnemonic
.startswith("vcvtp") &&
7014 !Mnemonic
.startswith("vcvtm"))) {
7015 if (!shouldOmitVectorPredicateOperand(Mnemonic
, Operands
)) {
7016 // We could not split the vector predicate off vcvt because it might
7017 // have been the scalar vcvtt instruction. Now we know its a vector
7018 // instruction, we still need to check whether its the vector
7019 // predicated vcvt with 'Then' predication or the vector vcvtt. We can
7020 // distinguish the two based on the suffixes, if it is any of
7021 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7022 if (Mnemonic
.startswith("vcvtt") && Operands
.size() >= 4) {
7023 auto Sz1
= static_cast<ARMOperand
&>(*Operands
[2]);
7024 auto Sz2
= static_cast<ARMOperand
&>(*Operands
[3]);
7025 if (!(Sz1
.isToken() && Sz1
.getToken().startswith(".f") &&
7026 Sz2
.isToken() && Sz2
.getToken().startswith(".f"))) {
7027 Operands
.erase(Operands
.begin());
7028 SMLoc MLoc
= SMLoc::getFromPointer(NameLoc
.getPointer());
7029 VPTPredicationCode
= ARMVCC::Then
;
7031 Mnemonic
= Mnemonic
.substr(0, 4);
7032 Operands
.insert(Operands
.begin(),
7033 ARMOperand::CreateToken(Mnemonic
, MLoc
));
7036 Operands
.erase(Operands
.begin() + 1);
7037 SMLoc PLoc
= SMLoc::getFromPointer(NameLoc
.getPointer() +
7038 Mnemonic
.size() + CarrySetting
);
7039 Operands
.insert(Operands
.begin() + 1,
7040 ARMOperand::CreateVPTPred(
7041 ARMVCC::VPTCodes(VPTPredicationCode
), PLoc
));
7043 } else if (CanAcceptVPTPredicationCode
) {
7044 // For all other instructions, make sure only one of the two
7045 // predication operands is left behind, depending on whether we should
7046 // use the vector predication.
7047 if (shouldOmitVectorPredicateOperand(Mnemonic
, Operands
)) {
7048 if (CanAcceptPredicationCode
)
7049 Operands
.erase(Operands
.begin() + 2);
7051 Operands
.erase(Operands
.begin() + 1);
7052 } else if (CanAcceptPredicationCode
&& PredicationCode
== ARMCC::AL
) {
7053 Operands
.erase(Operands
.begin() + 1);
7058 if (VPTPredicationCode
!= ARMVCC::None
) {
7059 bool usedVPTPredicationCode
= false;
7060 for (unsigned I
= 1; I
< Operands
.size(); ++I
)
7061 if (static_cast<ARMOperand
&>(*Operands
[I
]).isVPTPred())
7062 usedVPTPredicationCode
= true;
7063 if (!usedVPTPredicationCode
) {
7064 // If we have a VPT predication code and we haven't just turned it
7065 // into an operand, then it was a mistake for splitMnemonic to
7066 // separate it from the rest of the mnemonic in the first place,
7067 // and this may lead to wrong disassembly (e.g. scalar floating
7068 // point VCMPE is actually a different instruction from VCMP, so
7069 // we mustn't treat them the same). In that situation, glue it
7071 Mnemonic
= Name
.slice(0, Mnemonic
.size() + 1);
7072 Operands
.erase(Operands
.begin());
7073 Operands
.insert(Operands
.begin(),
7074 ARMOperand::CreateToken(Mnemonic
, NameLoc
));
7078 // ARM mode 'blx' need special handling, as the register operand version
7079 // is predicable, but the label operand version is not. So, we can't rely
7080 // on the Mnemonic based checking to correctly figure out when to put
7081 // a k_CondCode operand in the list. If we're trying to match the label
7082 // version, remove the k_CondCode operand here.
7083 if (!isThumb() && Mnemonic
== "blx" && Operands
.size() == 3 &&
7084 static_cast<ARMOperand
&>(*Operands
[2]).isImm())
7085 Operands
.erase(Operands
.begin() + 1);
7087 // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7088 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7089 // a single GPRPair reg operand is used in the .td file to replace the two
7090 // GPRs. However, when parsing from asm, the two GRPs cannot be
7092 // expressed as a GPRPair, so we have to manually merge them.
7093 // FIXME: We would really like to be able to tablegen'erate this.
7094 if (!isThumb() && Operands
.size() > 4 &&
7095 (Mnemonic
== "ldrexd" || Mnemonic
== "strexd" || Mnemonic
== "ldaexd" ||
7096 Mnemonic
== "stlexd")) {
7097 bool isLoad
= (Mnemonic
== "ldrexd" || Mnemonic
== "ldaexd");
7098 unsigned Idx
= isLoad
? 2 : 3;
7099 ARMOperand
&Op1
= static_cast<ARMOperand
&>(*Operands
[Idx
]);
7100 ARMOperand
&Op2
= static_cast<ARMOperand
&>(*Operands
[Idx
+ 1]);
7102 const MCRegisterClass
&MRC
= MRI
->getRegClass(ARM::GPRRegClassID
);
7103 // Adjust only if Op1 and Op2 are GPRs.
7104 if (Op1
.isReg() && Op2
.isReg() && MRC
.contains(Op1
.getReg()) &&
7105 MRC
.contains(Op2
.getReg())) {
7106 unsigned Reg1
= Op1
.getReg();
7107 unsigned Reg2
= Op2
.getReg();
7108 unsigned Rt
= MRI
->getEncodingValue(Reg1
);
7109 unsigned Rt2
= MRI
->getEncodingValue(Reg2
);
7111 // Rt2 must be Rt + 1 and Rt must be even.
7112 if (Rt
+ 1 != Rt2
|| (Rt
& 1)) {
7113 return Error(Op2
.getStartLoc(),
7114 isLoad
? "destination operands must be sequential"
7115 : "source operands must be sequential");
7117 unsigned NewReg
= MRI
->getMatchingSuperReg(
7118 Reg1
, ARM::gsub_0
, &(MRI
->getRegClass(ARM::GPRPairRegClassID
)));
7120 ARMOperand::CreateReg(NewReg
, Op1
.getStartLoc(), Op2
.getEndLoc());
7121 Operands
.erase(Operands
.begin() + Idx
+ 1);
7125 // GNU Assembler extension (compatibility).
7126 fixupGNULDRDAlias(Mnemonic
, Operands
);
7128 // FIXME: As said above, this is all a pretty gross hack. This instruction
7129 // does not fit with other "subs" and tblgen.
7130 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7131 // so the Mnemonic is the original name "subs" and delete the predicate
7132 // operand so it will match the table entry.
7133 if (isThumbTwo() && Mnemonic
== "sub" && Operands
.size() == 6 &&
7134 static_cast<ARMOperand
&>(*Operands
[3]).isReg() &&
7135 static_cast<ARMOperand
&>(*Operands
[3]).getReg() == ARM::PC
&&
7136 static_cast<ARMOperand
&>(*Operands
[4]).isReg() &&
7137 static_cast<ARMOperand
&>(*Operands
[4]).getReg() == ARM::LR
&&
7138 static_cast<ARMOperand
&>(*Operands
[5]).isImm()) {
7139 Operands
.front() = ARMOperand::CreateToken(Name
, NameLoc
);
7140 Operands
.erase(Operands
.begin() + 1);
7145 // Validate context-sensitive operand constraints.
7147 // return 'true' if register list contains non-low GPR registers,
7148 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7149 // 'containsReg' to true.
7150 static bool checkLowRegisterList(const MCInst
&Inst
, unsigned OpNo
,
7151 unsigned Reg
, unsigned HiReg
,
7152 bool &containsReg
) {
7153 containsReg
= false;
7154 for (unsigned i
= OpNo
; i
< Inst
.getNumOperands(); ++i
) {
7155 unsigned OpReg
= Inst
.getOperand(i
).getReg();
7158 // Anything other than a low register isn't legal here.
7159 if (!isARMLowRegister(OpReg
) && (!HiReg
|| OpReg
!= HiReg
))
7165 // Check if the specified regisgter is in the register list of the inst,
7166 // starting at the indicated operand number.
7167 static bool listContainsReg(const MCInst
&Inst
, unsigned OpNo
, unsigned Reg
) {
7168 for (unsigned i
= OpNo
, e
= Inst
.getNumOperands(); i
< e
; ++i
) {
7169 unsigned OpReg
= Inst
.getOperand(i
).getReg();
7176 // Return true if instruction has the interesting property of being
7177 // allowed in IT blocks, but not being predicable.
7178 static bool instIsBreakpoint(const MCInst
&Inst
) {
7179 return Inst
.getOpcode() == ARM::tBKPT
||
7180 Inst
.getOpcode() == ARM::BKPT
||
7181 Inst
.getOpcode() == ARM::tHLT
||
7182 Inst
.getOpcode() == ARM::HLT
;
7185 bool ARMAsmParser::validatetLDMRegList(const MCInst
&Inst
,
7186 const OperandVector
&Operands
,
7187 unsigned ListNo
, bool IsARPop
) {
7188 const ARMOperand
&Op
= static_cast<const ARMOperand
&>(*Operands
[ListNo
]);
7189 bool HasWritebackToken
= Op
.isToken() && Op
.getToken() == "!";
7191 bool ListContainsSP
= listContainsReg(Inst
, ListNo
, ARM::SP
);
7192 bool ListContainsLR
= listContainsReg(Inst
, ListNo
, ARM::LR
);
7193 bool ListContainsPC
= listContainsReg(Inst
, ListNo
, ARM::PC
);
7195 if (!IsARPop
&& ListContainsSP
)
7196 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
7197 "SP may not be in the register list");
7198 else if (ListContainsPC
&& ListContainsLR
)
7199 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
7200 "PC and LR may not be in the register list simultaneously");
7204 bool ARMAsmParser::validatetSTMRegList(const MCInst
&Inst
,
7205 const OperandVector
&Operands
,
7207 const ARMOperand
&Op
= static_cast<const ARMOperand
&>(*Operands
[ListNo
]);
7208 bool HasWritebackToken
= Op
.isToken() && Op
.getToken() == "!";
7210 bool ListContainsSP
= listContainsReg(Inst
, ListNo
, ARM::SP
);
7211 bool ListContainsPC
= listContainsReg(Inst
, ListNo
, ARM::PC
);
7213 if (ListContainsSP
&& ListContainsPC
)
7214 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
7215 "SP and PC may not be in the register list");
7216 else if (ListContainsSP
)
7217 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
7218 "SP may not be in the register list");
7219 else if (ListContainsPC
)
7220 return Error(Operands
[ListNo
+ HasWritebackToken
]->getStartLoc(),
7221 "PC may not be in the register list");
7225 bool ARMAsmParser::validateLDRDSTRD(MCInst
&Inst
,
7226 const OperandVector
&Operands
,
7227 bool Load
, bool ARMMode
, bool Writeback
) {
7228 unsigned RtIndex
= Load
|| !Writeback
? 0 : 1;
7229 unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(RtIndex
).getReg());
7230 unsigned Rt2
= MRI
->getEncodingValue(Inst
.getOperand(RtIndex
+ 1).getReg());
7235 return Error(Operands
[3]->getStartLoc(),
7238 // Rt must be even-numbered.
7240 return Error(Operands
[3]->getStartLoc(),
7241 "Rt must be even-numbered");
7243 // Rt2 must be Rt + 1.
7244 if (Rt2
!= Rt
+ 1) {
7246 return Error(Operands
[3]->getStartLoc(),
7247 "destination operands must be sequential");
7249 return Error(Operands
[3]->getStartLoc(),
7250 "source operands must be sequential");
7253 // FIXME: Diagnose m == 15
7254 // FIXME: Diagnose ldrd with m == t || m == t2.
7257 if (!ARMMode
&& Load
) {
7259 return Error(Operands
[3]->getStartLoc(),
7260 "destination operands can't be identical");
7264 unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(3).getReg());
7266 if (Rn
== Rt
|| Rn
== Rt2
) {
7268 return Error(Operands
[3]->getStartLoc(),
7269 "base register needs to be different from destination "
7272 return Error(Operands
[3]->getStartLoc(),
7273 "source register and base register can't be identical");
7276 // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7277 // (Except the immediate form of ldrd?)
7283 static int findFirstVectorPredOperandIdx(const MCInstrDesc
&MCID
) {
7284 for (unsigned i
= 0; i
< MCID
.NumOperands
; ++i
) {
7285 if (ARM::isVpred(MCID
.OpInfo
[i
].OperandType
))
7291 static bool isVectorPredicable(const MCInstrDesc
&MCID
) {
7292 return findFirstVectorPredOperandIdx(MCID
) != -1;
7295 // FIXME: We would really like to be able to tablegen'erate this.
7296 bool ARMAsmParser::validateInstruction(MCInst
&Inst
,
7297 const OperandVector
&Operands
) {
7298 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
7299 SMLoc Loc
= Operands
[0]->getStartLoc();
7301 // Check the IT block state first.
7302 // NOTE: BKPT and HLT instructions have the interesting property of being
7303 // allowed in IT blocks, but not being predicable. They just always execute.
7304 if (inITBlock() && !instIsBreakpoint(Inst
)) {
7305 // The instruction must be predicable.
7306 if (!MCID
.isPredicable())
7307 return Error(Loc
, "instructions in IT block must be predicable");
7308 ARMCC::CondCodes Cond
= ARMCC::CondCodes(
7309 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm());
7310 if (Cond
!= currentITCond()) {
7311 // Find the condition code Operand to get its SMLoc information.
7313 for (unsigned I
= 1; I
< Operands
.size(); ++I
)
7314 if (static_cast<ARMOperand
&>(*Operands
[I
]).isCondCode())
7315 CondLoc
= Operands
[I
]->getStartLoc();
7316 return Error(CondLoc
, "incorrect condition in IT block; got '" +
7317 StringRef(ARMCondCodeToString(Cond
)) +
7318 "', but expected '" +
7319 ARMCondCodeToString(currentITCond()) + "'");
7321 // Check for non-'al' condition codes outside of the IT block.
7322 } else if (isThumbTwo() && MCID
.isPredicable() &&
7323 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm() !=
7324 ARMCC::AL
&& Inst
.getOpcode() != ARM::tBcc
&&
7325 Inst
.getOpcode() != ARM::t2Bcc
&&
7326 Inst
.getOpcode() != ARM::t2BFic
) {
7327 return Error(Loc
, "predicated instructions must be in IT block");
7328 } else if (!isThumb() && !useImplicitITARM() && MCID
.isPredicable() &&
7329 Inst
.getOperand(MCID
.findFirstPredOperandIdx()).getImm() !=
7331 return Warning(Loc
, "predicated instructions should be in IT block");
7332 } else if (!MCID
.isPredicable()) {
7333 // Check the instruction doesn't have a predicate operand anyway
7334 // that it's not allowed to use. Sometimes this happens in order
7335 // to keep instructions the same shape even though one cannot
7336 // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7337 for (unsigned i
= 0, e
= MCID
.getNumOperands(); i
!= e
; ++i
) {
7338 if (MCID
.OpInfo
[i
].isPredicate()) {
7339 if (Inst
.getOperand(i
).getImm() != ARMCC::AL
)
7340 return Error(Loc
, "instruction is not predicable");
7346 // PC-setting instructions in an IT block, but not the last instruction of
7347 // the block, are UNPREDICTABLE.
7348 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst
)) {
7349 return Error(Loc
, "instruction must be outside of IT block or the last instruction in an IT block");
7352 if (inVPTBlock() && !instIsBreakpoint(Inst
)) {
7353 unsigned Bit
= extractITMaskBit(VPTState
.Mask
, VPTState
.CurPosition
);
7354 if (!isVectorPredicable(MCID
))
7355 return Error(Loc
, "instruction in VPT block must be predicable");
7356 unsigned Pred
= Inst
.getOperand(findFirstVectorPredOperandIdx(MCID
)).getImm();
7357 unsigned VPTPred
= Bit
? ARMVCC::Else
: ARMVCC::Then
;
7358 if (Pred
!= VPTPred
) {
7360 for (unsigned I
= 1; I
< Operands
.size(); ++I
)
7361 if (static_cast<ARMOperand
&>(*Operands
[I
]).isVPTPred())
7362 PredLoc
= Operands
[I
]->getStartLoc();
7363 return Error(PredLoc
, "incorrect predication in VPT block; got '" +
7364 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred
))) +
7365 "', but expected '" +
7366 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred
)) + "'");
7369 else if (isVectorPredicable(MCID
) &&
7370 Inst
.getOperand(findFirstVectorPredOperandIdx(MCID
)).getImm() !=
7372 return Error(Loc
, "VPT predicated instructions must be in VPT block");
7374 const unsigned Opcode
= Inst
.getOpcode();
7377 // Encoding is unpredictable if it ever results in a notional 'NV'
7378 // predicate. Since we don't parse 'NV' directly this means an 'AL'
7379 // predicate with an "else" mask bit.
7380 unsigned Cond
= Inst
.getOperand(0).getImm();
7381 unsigned Mask
= Inst
.getOperand(1).getImm();
7383 // Conditions only allowing a 't' are those with no set bit except
7384 // the lowest-order one that indicates the end of the sequence. In
7385 // other words, powers of 2.
7386 if (Cond
== ARMCC::AL
&& countPopulation(Mask
) != 1)
7387 return Error(Loc
, "unpredictable IT predicate sequence");
7391 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/true,
7392 /*Writeback*/false))
7396 case ARM::LDRD_POST
:
7397 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/true,
7402 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/false,
7403 /*Writeback*/false))
7406 case ARM::t2LDRD_PRE
:
7407 case ARM::t2LDRD_POST
:
7408 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/true, /*ARMMode*/false,
7413 const unsigned RmReg
= Inst
.getOperand(0).getReg();
7414 // Rm = SP is no longer unpredictable in v8-A
7415 if (RmReg
== ARM::SP
&& !hasV8Ops())
7416 return Error(Operands
[2]->getStartLoc(),
7417 "r13 (SP) is an unpredictable operand to BXJ");
7421 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/true,
7422 /*Writeback*/false))
7426 case ARM::STRD_POST
:
7427 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/true,
7431 case ARM::t2STRD_PRE
:
7432 case ARM::t2STRD_POST
:
7433 if (validateLDRDSTRD(Inst
, Operands
, /*Load*/false, /*ARMMode*/false,
7437 case ARM::STR_PRE_IMM
:
7438 case ARM::STR_PRE_REG
:
7439 case ARM::t2STR_PRE
:
7440 case ARM::STR_POST_IMM
:
7441 case ARM::STR_POST_REG
:
7442 case ARM::t2STR_POST
:
7444 case ARM::t2STRH_PRE
:
7445 case ARM::STRH_POST
:
7446 case ARM::t2STRH_POST
:
7447 case ARM::STRB_PRE_IMM
:
7448 case ARM::STRB_PRE_REG
:
7449 case ARM::t2STRB_PRE
:
7450 case ARM::STRB_POST_IMM
:
7451 case ARM::STRB_POST_REG
:
7452 case ARM::t2STRB_POST
: {
7453 // Rt must be different from Rn.
7454 const unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(1).getReg());
7455 const unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
7458 return Error(Operands
[3]->getStartLoc(),
7459 "source register and base register can't be identical");
7462 case ARM::LDR_PRE_IMM
:
7463 case ARM::LDR_PRE_REG
:
7464 case ARM::t2LDR_PRE
:
7465 case ARM::LDR_POST_IMM
:
7466 case ARM::LDR_POST_REG
:
7467 case ARM::t2LDR_POST
:
7469 case ARM::t2LDRH_PRE
:
7470 case ARM::LDRH_POST
:
7471 case ARM::t2LDRH_POST
:
7472 case ARM::LDRSH_PRE
:
7473 case ARM::t2LDRSH_PRE
:
7474 case ARM::LDRSH_POST
:
7475 case ARM::t2LDRSH_POST
:
7476 case ARM::LDRB_PRE_IMM
:
7477 case ARM::LDRB_PRE_REG
:
7478 case ARM::t2LDRB_PRE
:
7479 case ARM::LDRB_POST_IMM
:
7480 case ARM::LDRB_POST_REG
:
7481 case ARM::t2LDRB_POST
:
7482 case ARM::LDRSB_PRE
:
7483 case ARM::t2LDRSB_PRE
:
7484 case ARM::LDRSB_POST
:
7485 case ARM::t2LDRSB_POST
: {
7486 // Rt must be different from Rn.
7487 const unsigned Rt
= MRI
->getEncodingValue(Inst
.getOperand(0).getReg());
7488 const unsigned Rn
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
7491 return Error(Operands
[3]->getStartLoc(),
7492 "destination register and base register can't be identical");
7496 case ARM::MVE_VLDRBU8_rq
:
7497 case ARM::MVE_VLDRBU16_rq
:
7498 case ARM::MVE_VLDRBS16_rq
:
7499 case ARM::MVE_VLDRBU32_rq
:
7500 case ARM::MVE_VLDRBS32_rq
:
7501 case ARM::MVE_VLDRHU16_rq
:
7502 case ARM::MVE_VLDRHU16_rq_u
:
7503 case ARM::MVE_VLDRHU32_rq
:
7504 case ARM::MVE_VLDRHU32_rq_u
:
7505 case ARM::MVE_VLDRHS32_rq
:
7506 case ARM::MVE_VLDRHS32_rq_u
:
7507 case ARM::MVE_VLDRWU32_rq
:
7508 case ARM::MVE_VLDRWU32_rq_u
:
7509 case ARM::MVE_VLDRDU64_rq
:
7510 case ARM::MVE_VLDRDU64_rq_u
:
7511 case ARM::MVE_VLDRWU32_qi
:
7512 case ARM::MVE_VLDRWU32_qi_pre
:
7513 case ARM::MVE_VLDRDU64_qi
:
7514 case ARM::MVE_VLDRDU64_qi_pre
: {
7515 // Qd must be different from Qm.
7516 unsigned QdIdx
= 0, QmIdx
= 2;
7517 bool QmIsPointer
= false;
7519 case ARM::MVE_VLDRWU32_qi
:
7520 case ARM::MVE_VLDRDU64_qi
:
7524 case ARM::MVE_VLDRWU32_qi_pre
:
7525 case ARM::MVE_VLDRDU64_qi_pre
:
7531 const unsigned Qd
= MRI
->getEncodingValue(Inst
.getOperand(QdIdx
).getReg());
7532 const unsigned Qm
= MRI
->getEncodingValue(Inst
.getOperand(QmIdx
).getReg());
7535 return Error(Operands
[3]->getStartLoc(),
7536 Twine("destination vector register and vector ") +
7537 (QmIsPointer
? "pointer" : "offset") +
7538 " register can't be identical");
7547 // Width must be in range [1, 32-lsb].
7548 unsigned LSB
= Inst
.getOperand(2).getImm();
7549 unsigned Widthm1
= Inst
.getOperand(3).getImm();
7550 if (Widthm1
>= 32 - LSB
)
7551 return Error(Operands
[5]->getStartLoc(),
7552 "bitfield width must be in range [1,32-lsb]");
7555 // Notionally handles ARM::tLDMIA_UPD too.
7557 // If we're parsing Thumb2, the .w variant is available and handles
7558 // most cases that are normally illegal for a Thumb1 LDM instruction.
7559 // We'll make the transformation in processInstruction() if necessary.
7561 // Thumb LDM instructions are writeback iff the base register is not
7562 // in the register list.
7563 unsigned Rn
= Inst
.getOperand(0).getReg();
7564 bool HasWritebackToken
=
7565 (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
7566 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == "!");
7567 bool ListContainsBase
;
7568 if (checkLowRegisterList(Inst
, 3, Rn
, 0, ListContainsBase
) && !isThumbTwo())
7569 return Error(Operands
[3 + HasWritebackToken
]->getStartLoc(),
7570 "registers must be in range r0-r7");
7571 // If we should have writeback, then there should be a '!' token.
7572 if (!ListContainsBase
&& !HasWritebackToken
&& !isThumbTwo())
7573 return Error(Operands
[2]->getStartLoc(),
7574 "writeback operator '!' expected");
7575 // If we should not have writeback, there must not be a '!'. This is
7576 // true even for the 32-bit wide encodings.
7577 if (ListContainsBase
&& HasWritebackToken
)
7578 return Error(Operands
[3]->getStartLoc(),
7579 "writeback operator '!' not allowed when base register "
7580 "in register list");
7582 if (validatetLDMRegList(Inst
, Operands
, 3))
7586 case ARM::LDMIA_UPD
:
7587 case ARM::LDMDB_UPD
:
7588 case ARM::LDMIB_UPD
:
7589 case ARM::LDMDA_UPD
:
7590 // ARM variants loading and updating the same register are only officially
7591 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7594 if (listContainsReg(Inst
, 3, Inst
.getOperand(0).getReg()))
7595 return Error(Operands
.back()->getStartLoc(),
7596 "writeback register not allowed in register list");
7600 if (validatetLDMRegList(Inst
, Operands
, 3))
7605 if (validatetSTMRegList(Inst
, Operands
, 3))
7608 case ARM::t2LDMIA_UPD
:
7609 case ARM::t2LDMDB_UPD
:
7610 case ARM::t2STMIA_UPD
:
7611 case ARM::t2STMDB_UPD
:
7612 if (listContainsReg(Inst
, 3, Inst
.getOperand(0).getReg()))
7613 return Error(Operands
.back()->getStartLoc(),
7614 "writeback register not allowed in register list");
7616 if (Opcode
== ARM::t2LDMIA_UPD
|| Opcode
== ARM::t2LDMDB_UPD
) {
7617 if (validatetLDMRegList(Inst
, Operands
, 3))
7620 if (validatetSTMRegList(Inst
, Operands
, 3))
7625 case ARM::sysLDMIA_UPD
:
7626 case ARM::sysLDMDA_UPD
:
7627 case ARM::sysLDMDB_UPD
:
7628 case ARM::sysLDMIB_UPD
:
7629 if (!listContainsReg(Inst
, 3, ARM::PC
))
7630 return Error(Operands
[4]->getStartLoc(),
7631 "writeback register only allowed on system LDM "
7632 "if PC in register-list");
7634 case ARM::sysSTMIA_UPD
:
7635 case ARM::sysSTMDA_UPD
:
7636 case ARM::sysSTMDB_UPD
:
7637 case ARM::sysSTMIB_UPD
:
7638 return Error(Operands
[2]->getStartLoc(),
7639 "system STM cannot have writeback register");
7641 // The second source operand must be the same register as the destination
7644 // In this case, we must directly check the parsed operands because the
7645 // cvtThumbMultiply() function is written in such a way that it guarantees
7646 // this first statement is always true for the new Inst. Essentially, the
7647 // destination is unconditionally copied into the second source operand
7648 // without checking to see if it matches what we actually parsed.
7649 if (Operands
.size() == 6 && (((ARMOperand
&)*Operands
[3]).getReg() !=
7650 ((ARMOperand
&)*Operands
[5]).getReg()) &&
7651 (((ARMOperand
&)*Operands
[3]).getReg() !=
7652 ((ARMOperand
&)*Operands
[4]).getReg())) {
7653 return Error(Operands
[3]->getStartLoc(),
7654 "destination register must match source register");
7658 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
7659 // so only issue a diagnostic for thumb1. The instructions will be
7660 // switched to the t2 encodings in processInstruction() if necessary.
7662 bool ListContainsBase
;
7663 if (checkLowRegisterList(Inst
, 2, 0, ARM::PC
, ListContainsBase
) &&
7665 return Error(Operands
[2]->getStartLoc(),
7666 "registers must be in range r0-r7 or pc");
7667 if (validatetLDMRegList(Inst
, Operands
, 2, !isMClass()))
7672 bool ListContainsBase
;
7673 if (checkLowRegisterList(Inst
, 2, 0, ARM::LR
, ListContainsBase
) &&
7675 return Error(Operands
[2]->getStartLoc(),
7676 "registers must be in range r0-r7 or lr");
7677 if (validatetSTMRegList(Inst
, Operands
, 2))
7681 case ARM::tSTMIA_UPD
: {
7682 bool ListContainsBase
, InvalidLowList
;
7683 InvalidLowList
= checkLowRegisterList(Inst
, 4, Inst
.getOperand(0).getReg(),
7684 0, ListContainsBase
);
7685 if (InvalidLowList
&& !isThumbTwo())
7686 return Error(Operands
[4]->getStartLoc(),
7687 "registers must be in range r0-r7");
7689 // This would be converted to a 32-bit stm, but that's not valid if the
7690 // writeback register is in the list.
7691 if (InvalidLowList
&& ListContainsBase
)
7692 return Error(Operands
[4]->getStartLoc(),
7693 "writeback operator '!' not allowed when base register "
7694 "in register list");
7696 if (validatetSTMRegList(Inst
, Operands
, 4))
7701 // If the non-SP source operand and the destination operand are not the
7702 // same, we need thumb2 (for the wide encoding), or we have an error.
7703 if (!isThumbTwo() &&
7704 Inst
.getOperand(0).getReg() != Inst
.getOperand(2).getReg()) {
7705 return Error(Operands
[4]->getStartLoc(),
7706 "source register must be the same as destination");
7711 case ARM::t2ADDri12
:
7715 case ARM::t2SUBri12
:
7718 if (Inst
.getOperand(0).getReg() == ARM::SP
&&
7719 Inst
.getOperand(1).getReg() != ARM::SP
)
7720 return Error(Operands
[4]->getStartLoc(),
7721 "source register must be sp if destination is sp");
7724 // Final range checking for Thumb unconditional branch instructions.
7726 if (!(static_cast<ARMOperand
&>(*Operands
[2])).isSignedOffset
<11, 1>())
7727 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
7730 int op
= (Operands
[2]->isImm()) ? 2 : 3;
7731 if (!static_cast<ARMOperand
&>(*Operands
[op
]).isSignedOffset
<24, 1>())
7732 return Error(Operands
[op
]->getStartLoc(), "branch target out of range");
7735 // Final range checking for Thumb conditional branch instructions.
7737 if (!static_cast<ARMOperand
&>(*Operands
[2]).isSignedOffset
<8, 1>())
7738 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
7741 int Op
= (Operands
[2]->isImm()) ? 2 : 3;
7742 if (!static_cast<ARMOperand
&>(*Operands
[Op
]).isSignedOffset
<20, 1>())
7743 return Error(Operands
[Op
]->getStartLoc(), "branch target out of range");
7748 if (!static_cast<ARMOperand
&>(*Operands
[2]).isUnsignedOffset
<6, 1>())
7749 return Error(Operands
[2]->getStartLoc(), "branch target out of range");
7755 case ARM::t2MOVTi16
:
7757 // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
7758 // especially when we turn it into a movw and the expression <symbol> does
7759 // not have a :lower16: or :upper16 as part of the expression. We don't
7760 // want the behavior of silently truncating, which can be unexpected and
7761 // lead to bugs that are difficult to find since this is an easy mistake
7763 int i
= (Operands
[3]->isImm()) ? 3 : 4;
7764 ARMOperand
&Op
= static_cast<ARMOperand
&>(*Operands
[i
]);
7765 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm());
7767 const MCExpr
*E
= dyn_cast
<MCExpr
>(Op
.getImm());
7769 const ARMMCExpr
*ARM16Expr
= dyn_cast
<ARMMCExpr
>(E
);
7770 if (!ARM16Expr
|| (ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_HI16
&&
7771 ARM16Expr
->getKind() != ARMMCExpr::VK_ARM_LO16
))
7774 "immediate expression for mov requires :lower16: or :upper16");
7779 unsigned Imm8
= Inst
.getOperand(0).getImm();
7780 unsigned Pred
= Inst
.getOperand(1).getImm();
7781 // ESB is not predicable (pred must be AL). Without the RAS extension, this
7782 // behaves as any other unallocated hint.
7783 if (Imm8
== 0x10 && Pred
!= ARMCC::AL
&& hasRAS())
7784 return Error(Operands
[1]->getStartLoc(), "instruction 'esb' is not "
7785 "predicable, but condition "
7787 if (Imm8
== 0x14 && Pred
!= ARMCC::AL
)
7788 return Error(Operands
[1]->getStartLoc(), "instruction 'csdb' is not "
7789 "predicable, but condition "
7797 if (!static_cast<ARMOperand
&>(*Operands
[2]).isUnsignedOffset
<4, 1>() ||
7798 (Inst
.getOperand(0).isImm() && Inst
.getOperand(0).getImm() == 0))
7799 return Error(Operands
[2]->getStartLoc(),
7800 "branch location out of range or not a multiple of 2");
7802 if (Opcode
== ARM::t2BFi
) {
7803 if (!static_cast<ARMOperand
&>(*Operands
[3]).isSignedOffset
<16, 1>())
7804 return Error(Operands
[3]->getStartLoc(),
7805 "branch target out of range or not a multiple of 2");
7806 } else if (Opcode
== ARM::t2BFLi
) {
7807 if (!static_cast<ARMOperand
&>(*Operands
[3]).isSignedOffset
<18, 1>())
7808 return Error(Operands
[3]->getStartLoc(),
7809 "branch target out of range or not a multiple of 2");
7814 if (!static_cast<ARMOperand
&>(*Operands
[1]).isUnsignedOffset
<4, 1>() ||
7815 (Inst
.getOperand(0).isImm() && Inst
.getOperand(0).getImm() == 0))
7816 return Error(Operands
[1]->getStartLoc(),
7817 "branch location out of range or not a multiple of 2");
7819 if (!static_cast<ARMOperand
&>(*Operands
[2]).isSignedOffset
<16, 1>())
7820 return Error(Operands
[2]->getStartLoc(),
7821 "branch target out of range or not a multiple of 2");
7823 assert(Inst
.getOperand(0).isImm() == Inst
.getOperand(2).isImm() &&
7824 "branch location and else branch target should either both be "
7825 "immediates or both labels");
7827 if (Inst
.getOperand(0).isImm() && Inst
.getOperand(2).isImm()) {
7828 int Diff
= Inst
.getOperand(2).getImm() - Inst
.getOperand(0).getImm();
7829 if (Diff
!= 4 && Diff
!= 2)
7831 Operands
[3]->getStartLoc(),
7832 "else branch target must be 2 or 4 greater than the branch location");
7837 for (unsigned i
= 2; i
< Inst
.getNumOperands(); i
++) {
7838 if (Inst
.getOperand(i
).isReg() &&
7839 !ARMMCRegisterClasses
[ARM::GPRwithAPSRnospRegClassID
].contains(
7840 Inst
.getOperand(i
).getReg())) {
7841 return Error(Operands
[2]->getStartLoc(),
7842 "invalid register in register list. Valid registers are "
7843 "r0-r12, lr/r14 and APSR.");
7851 if (Inst
.getNumOperands() < 2)
7854 unsigned Option
= Inst
.getOperand(0).getImm();
7855 unsigned Pred
= Inst
.getOperand(1).getImm();
7857 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
7858 if (Option
== 0 && Pred
!= ARMCC::AL
)
7859 return Error(Operands
[1]->getStartLoc(),
7860 "instruction 'ssbb' is not predicable, but condition code "
7862 if (Option
== 4 && Pred
!= ARMCC::AL
)
7863 return Error(Operands
[1]->getStartLoc(),
7864 "instruction 'pssbb' is not predicable, but condition code "
7868 case ARM::VMOVRRS
: {
7869 // Source registers must be sequential.
7870 const unsigned Sm
= MRI
->getEncodingValue(Inst
.getOperand(2).getReg());
7871 const unsigned Sm1
= MRI
->getEncodingValue(Inst
.getOperand(3).getReg());
7873 return Error(Operands
[5]->getStartLoc(),
7874 "source operands must be sequential");
7877 case ARM::VMOVSRR
: {
7878 // Destination registers must be sequential.
7879 const unsigned Sm
= MRI
->getEncodingValue(Inst
.getOperand(0).getReg());
7880 const unsigned Sm1
= MRI
->getEncodingValue(Inst
.getOperand(1).getReg());
7882 return Error(Operands
[3]->getStartLoc(),
7883 "destination operands must be sequential");
7887 case ARM::VSTMDIA
: {
7888 ARMOperand
&Op
= static_cast<ARMOperand
&>(*Operands
[3]);
7889 auto &RegList
= Op
.getRegList();
7890 if (RegList
.size() < 1 || RegList
.size() > 16)
7891 return Error(Operands
[3]->getStartLoc(),
7892 "list of registers must be at least 1 and at most 16");
7895 case ARM::MVE_VQDMULLs32bh
:
7896 case ARM::MVE_VQDMULLs32th
:
7897 case ARM::MVE_VCMULf32
:
7898 case ARM::MVE_VMULLs32bh
:
7899 case ARM::MVE_VMULLs32th
:
7900 case ARM::MVE_VMULLu32bh
:
7901 case ARM::MVE_VMULLu32th
: {
7902 if (Operands
[3]->getReg() == Operands
[4]->getReg()) {
7903 return Error (Operands
[3]->getStartLoc(),
7904 "Qd register and Qn register can't be identical");
7906 if (Operands
[3]->getReg() == Operands
[5]->getReg()) {
7907 return Error (Operands
[3]->getStartLoc(),
7908 "Qd register and Qm register can't be identical");
7912 case ARM::MVE_VMOV_rr_q
: {
7913 if (Operands
[4]->getReg() != Operands
[6]->getReg())
7914 return Error (Operands
[4]->getStartLoc(), "Q-registers must be the same");
7915 if (static_cast<ARMOperand
&>(*Operands
[5]).getVectorIndex() !=
7916 static_cast<ARMOperand
&>(*Operands
[7]).getVectorIndex() + 2)
7917 return Error (Operands
[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
7920 case ARM::MVE_VMOV_q_rr
: {
7921 if (Operands
[2]->getReg() != Operands
[4]->getReg())
7922 return Error (Operands
[2]->getStartLoc(), "Q-registers must be the same");
7923 if (static_cast<ARMOperand
&>(*Operands
[3]).getVectorIndex() !=
7924 static_cast<ARMOperand
&>(*Operands
[5]).getVectorIndex() + 2)
7925 return Error (Operands
[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
7933 static unsigned getRealVSTOpcode(unsigned Opc
, unsigned &Spacing
) {
7935 default: llvm_unreachable("unexpected opcode!");
7937 case ARM::VST1LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST1LNd8_UPD
;
7938 case ARM::VST1LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST1LNd16_UPD
;
7939 case ARM::VST1LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST1LNd32_UPD
;
7940 case ARM::VST1LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST1LNd8_UPD
;
7941 case ARM::VST1LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST1LNd16_UPD
;
7942 case ARM::VST1LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST1LNd32_UPD
;
7943 case ARM::VST1LNdAsm_8
: Spacing
= 1; return ARM::VST1LNd8
;
7944 case ARM::VST1LNdAsm_16
: Spacing
= 1; return ARM::VST1LNd16
;
7945 case ARM::VST1LNdAsm_32
: Spacing
= 1; return ARM::VST1LNd32
;
7948 case ARM::VST2LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST2LNd8_UPD
;
7949 case ARM::VST2LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST2LNd16_UPD
;
7950 case ARM::VST2LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST2LNd32_UPD
;
7951 case ARM::VST2LNqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST2LNq16_UPD
;
7952 case ARM::VST2LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST2LNq32_UPD
;
7954 case ARM::VST2LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST2LNd8_UPD
;
7955 case ARM::VST2LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST2LNd16_UPD
;
7956 case ARM::VST2LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST2LNd32_UPD
;
7957 case ARM::VST2LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST2LNq16_UPD
;
7958 case ARM::VST2LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST2LNq32_UPD
;
7960 case ARM::VST2LNdAsm_8
: Spacing
= 1; return ARM::VST2LNd8
;
7961 case ARM::VST2LNdAsm_16
: Spacing
= 1; return ARM::VST2LNd16
;
7962 case ARM::VST2LNdAsm_32
: Spacing
= 1; return ARM::VST2LNd32
;
7963 case ARM::VST2LNqAsm_16
: Spacing
= 2; return ARM::VST2LNq16
;
7964 case ARM::VST2LNqAsm_32
: Spacing
= 2; return ARM::VST2LNq32
;
7967 case ARM::VST3LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST3LNd8_UPD
;
7968 case ARM::VST3LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3LNd16_UPD
;
7969 case ARM::VST3LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST3LNd32_UPD
;
7970 case ARM::VST3LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3LNq16_UPD
;
7971 case ARM::VST3LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST3LNq32_UPD
;
7972 case ARM::VST3LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST3LNd8_UPD
;
7973 case ARM::VST3LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST3LNd16_UPD
;
7974 case ARM::VST3LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST3LNd32_UPD
;
7975 case ARM::VST3LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST3LNq16_UPD
;
7976 case ARM::VST3LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST3LNq32_UPD
;
7977 case ARM::VST3LNdAsm_8
: Spacing
= 1; return ARM::VST3LNd8
;
7978 case ARM::VST3LNdAsm_16
: Spacing
= 1; return ARM::VST3LNd16
;
7979 case ARM::VST3LNdAsm_32
: Spacing
= 1; return ARM::VST3LNd32
;
7980 case ARM::VST3LNqAsm_16
: Spacing
= 2; return ARM::VST3LNq16
;
7981 case ARM::VST3LNqAsm_32
: Spacing
= 2; return ARM::VST3LNq32
;
7984 case ARM::VST3dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST3d8_UPD
;
7985 case ARM::VST3dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST3d16_UPD
;
7986 case ARM::VST3dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST3d32_UPD
;
7987 case ARM::VST3qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VST3q8_UPD
;
7988 case ARM::VST3qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST3q16_UPD
;
7989 case ARM::VST3qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST3q32_UPD
;
7990 case ARM::VST3dWB_register_Asm_8
: Spacing
= 1; return ARM::VST3d8_UPD
;
7991 case ARM::VST3dWB_register_Asm_16
: Spacing
= 1; return ARM::VST3d16_UPD
;
7992 case ARM::VST3dWB_register_Asm_32
: Spacing
= 1; return ARM::VST3d32_UPD
;
7993 case ARM::VST3qWB_register_Asm_8
: Spacing
= 2; return ARM::VST3q8_UPD
;
7994 case ARM::VST3qWB_register_Asm_16
: Spacing
= 2; return ARM::VST3q16_UPD
;
7995 case ARM::VST3qWB_register_Asm_32
: Spacing
= 2; return ARM::VST3q32_UPD
;
7996 case ARM::VST3dAsm_8
: Spacing
= 1; return ARM::VST3d8
;
7997 case ARM::VST3dAsm_16
: Spacing
= 1; return ARM::VST3d16
;
7998 case ARM::VST3dAsm_32
: Spacing
= 1; return ARM::VST3d32
;
7999 case ARM::VST3qAsm_8
: Spacing
= 2; return ARM::VST3q8
;
8000 case ARM::VST3qAsm_16
: Spacing
= 2; return ARM::VST3q16
;
8001 case ARM::VST3qAsm_32
: Spacing
= 2; return ARM::VST3q32
;
8004 case ARM::VST4LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST4LNd8_UPD
;
8005 case ARM::VST4LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4LNd16_UPD
;
8006 case ARM::VST4LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST4LNd32_UPD
;
8007 case ARM::VST4LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4LNq16_UPD
;
8008 case ARM::VST4LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST4LNq32_UPD
;
8009 case ARM::VST4LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VST4LNd8_UPD
;
8010 case ARM::VST4LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VST4LNd16_UPD
;
8011 case ARM::VST4LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VST4LNd32_UPD
;
8012 case ARM::VST4LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VST4LNq16_UPD
;
8013 case ARM::VST4LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VST4LNq32_UPD
;
8014 case ARM::VST4LNdAsm_8
: Spacing
= 1; return ARM::VST4LNd8
;
8015 case ARM::VST4LNdAsm_16
: Spacing
= 1; return ARM::VST4LNd16
;
8016 case ARM::VST4LNdAsm_32
: Spacing
= 1; return ARM::VST4LNd32
;
8017 case ARM::VST4LNqAsm_16
: Spacing
= 2; return ARM::VST4LNq16
;
8018 case ARM::VST4LNqAsm_32
: Spacing
= 2; return ARM::VST4LNq32
;
8021 case ARM::VST4dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VST4d8_UPD
;
8022 case ARM::VST4dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VST4d16_UPD
;
8023 case ARM::VST4dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VST4d32_UPD
;
8024 case ARM::VST4qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VST4q8_UPD
;
8025 case ARM::VST4qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VST4q16_UPD
;
8026 case ARM::VST4qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VST4q32_UPD
;
8027 case ARM::VST4dWB_register_Asm_8
: Spacing
= 1; return ARM::VST4d8_UPD
;
8028 case ARM::VST4dWB_register_Asm_16
: Spacing
= 1; return ARM::VST4d16_UPD
;
8029 case ARM::VST4dWB_register_Asm_32
: Spacing
= 1; return ARM::VST4d32_UPD
;
8030 case ARM::VST4qWB_register_Asm_8
: Spacing
= 2; return ARM::VST4q8_UPD
;
8031 case ARM::VST4qWB_register_Asm_16
: Spacing
= 2; return ARM::VST4q16_UPD
;
8032 case ARM::VST4qWB_register_Asm_32
: Spacing
= 2; return ARM::VST4q32_UPD
;
8033 case ARM::VST4dAsm_8
: Spacing
= 1; return ARM::VST4d8
;
8034 case ARM::VST4dAsm_16
: Spacing
= 1; return ARM::VST4d16
;
8035 case ARM::VST4dAsm_32
: Spacing
= 1; return ARM::VST4d32
;
8036 case ARM::VST4qAsm_8
: Spacing
= 2; return ARM::VST4q8
;
8037 case ARM::VST4qAsm_16
: Spacing
= 2; return ARM::VST4q16
;
8038 case ARM::VST4qAsm_32
: Spacing
= 2; return ARM::VST4q32
;
8042 static unsigned getRealVLDOpcode(unsigned Opc
, unsigned &Spacing
) {
8044 default: llvm_unreachable("unexpected opcode!");
8046 case ARM::VLD1LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD1LNd8_UPD
;
8047 case ARM::VLD1LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD1LNd16_UPD
;
8048 case ARM::VLD1LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD1LNd32_UPD
;
8049 case ARM::VLD1LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD1LNd8_UPD
;
8050 case ARM::VLD1LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD1LNd16_UPD
;
8051 case ARM::VLD1LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD1LNd32_UPD
;
8052 case ARM::VLD1LNdAsm_8
: Spacing
= 1; return ARM::VLD1LNd8
;
8053 case ARM::VLD1LNdAsm_16
: Spacing
= 1; return ARM::VLD1LNd16
;
8054 case ARM::VLD1LNdAsm_32
: Spacing
= 1; return ARM::VLD1LNd32
;
8057 case ARM::VLD2LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD2LNd8_UPD
;
8058 case ARM::VLD2LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD2LNd16_UPD
;
8059 case ARM::VLD2LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD2LNd32_UPD
;
8060 case ARM::VLD2LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD2LNq16_UPD
;
8061 case ARM::VLD2LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD2LNq32_UPD
;
8062 case ARM::VLD2LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD2LNd8_UPD
;
8063 case ARM::VLD2LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD2LNd16_UPD
;
8064 case ARM::VLD2LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD2LNd32_UPD
;
8065 case ARM::VLD2LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD2LNq16_UPD
;
8066 case ARM::VLD2LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD2LNq32_UPD
;
8067 case ARM::VLD2LNdAsm_8
: Spacing
= 1; return ARM::VLD2LNd8
;
8068 case ARM::VLD2LNdAsm_16
: Spacing
= 1; return ARM::VLD2LNd16
;
8069 case ARM::VLD2LNdAsm_32
: Spacing
= 1; return ARM::VLD2LNd32
;
8070 case ARM::VLD2LNqAsm_16
: Spacing
= 2; return ARM::VLD2LNq16
;
8071 case ARM::VLD2LNqAsm_32
: Spacing
= 2; return ARM::VLD2LNq32
;
8074 case ARM::VLD3DUPdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3DUPd8_UPD
;
8075 case ARM::VLD3DUPdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3DUPd16_UPD
;
8076 case ARM::VLD3DUPdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3DUPd32_UPD
;
8077 case ARM::VLD3DUPqWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3DUPq8_UPD
;
8078 case ARM::VLD3DUPqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD3DUPq16_UPD
;
8079 case ARM::VLD3DUPqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3DUPq32_UPD
;
8080 case ARM::VLD3DUPdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3DUPd8_UPD
;
8081 case ARM::VLD3DUPdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3DUPd16_UPD
;
8082 case ARM::VLD3DUPdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3DUPd32_UPD
;
8083 case ARM::VLD3DUPqWB_register_Asm_8
: Spacing
= 2; return ARM::VLD3DUPq8_UPD
;
8084 case ARM::VLD3DUPqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3DUPq16_UPD
;
8085 case ARM::VLD3DUPqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3DUPq32_UPD
;
8086 case ARM::VLD3DUPdAsm_8
: Spacing
= 1; return ARM::VLD3DUPd8
;
8087 case ARM::VLD3DUPdAsm_16
: Spacing
= 1; return ARM::VLD3DUPd16
;
8088 case ARM::VLD3DUPdAsm_32
: Spacing
= 1; return ARM::VLD3DUPd32
;
8089 case ARM::VLD3DUPqAsm_8
: Spacing
= 2; return ARM::VLD3DUPq8
;
8090 case ARM::VLD3DUPqAsm_16
: Spacing
= 2; return ARM::VLD3DUPq16
;
8091 case ARM::VLD3DUPqAsm_32
: Spacing
= 2; return ARM::VLD3DUPq32
;
8094 case ARM::VLD3LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3LNd8_UPD
;
8095 case ARM::VLD3LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3LNd16_UPD
;
8096 case ARM::VLD3LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3LNd32_UPD
;
8097 case ARM::VLD3LNqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3LNq16_UPD
;
8098 case ARM::VLD3LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3LNq32_UPD
;
8099 case ARM::VLD3LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3LNd8_UPD
;
8100 case ARM::VLD3LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3LNd16_UPD
;
8101 case ARM::VLD3LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3LNd32_UPD
;
8102 case ARM::VLD3LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3LNq16_UPD
;
8103 case ARM::VLD3LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3LNq32_UPD
;
8104 case ARM::VLD3LNdAsm_8
: Spacing
= 1; return ARM::VLD3LNd8
;
8105 case ARM::VLD3LNdAsm_16
: Spacing
= 1; return ARM::VLD3LNd16
;
8106 case ARM::VLD3LNdAsm_32
: Spacing
= 1; return ARM::VLD3LNd32
;
8107 case ARM::VLD3LNqAsm_16
: Spacing
= 2; return ARM::VLD3LNq16
;
8108 case ARM::VLD3LNqAsm_32
: Spacing
= 2; return ARM::VLD3LNq32
;
8111 case ARM::VLD3dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD3d8_UPD
;
8112 case ARM::VLD3dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD3d16_UPD
;
8113 case ARM::VLD3dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD3d32_UPD
;
8114 case ARM::VLD3qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VLD3q8_UPD
;
8115 case ARM::VLD3qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD3q16_UPD
;
8116 case ARM::VLD3qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD3q32_UPD
;
8117 case ARM::VLD3dWB_register_Asm_8
: Spacing
= 1; return ARM::VLD3d8_UPD
;
8118 case ARM::VLD3dWB_register_Asm_16
: Spacing
= 1; return ARM::VLD3d16_UPD
;
8119 case ARM::VLD3dWB_register_Asm_32
: Spacing
= 1; return ARM::VLD3d32_UPD
;
8120 case ARM::VLD3qWB_register_Asm_8
: Spacing
= 2; return ARM::VLD3q8_UPD
;
8121 case ARM::VLD3qWB_register_Asm_16
: Spacing
= 2; return ARM::VLD3q16_UPD
;
8122 case ARM::VLD3qWB_register_Asm_32
: Spacing
= 2; return ARM::VLD3q32_UPD
;
8123 case ARM::VLD3dAsm_8
: Spacing
= 1; return ARM::VLD3d8
;
8124 case ARM::VLD3dAsm_16
: Spacing
= 1; return ARM::VLD3d16
;
8125 case ARM::VLD3dAsm_32
: Spacing
= 1; return ARM::VLD3d32
;
8126 case ARM::VLD3qAsm_8
: Spacing
= 2; return ARM::VLD3q8
;
8127 case ARM::VLD3qAsm_16
: Spacing
= 2; return ARM::VLD3q16
;
8128 case ARM::VLD3qAsm_32
: Spacing
= 2; return ARM::VLD3q32
;
8131 case ARM::VLD4LNdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4LNd8_UPD
;
8132 case ARM::VLD4LNdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4LNd16_UPD
;
8133 case ARM::VLD4LNdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4LNd32_UPD
;
8134 case ARM::VLD4LNqWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD4LNq16_UPD
;
8135 case ARM::VLD4LNqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4LNq32_UPD
;
8136 case ARM::VLD4LNdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4LNd8_UPD
;
8137 case ARM::VLD4LNdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4LNd16_UPD
;
8138 case ARM::VLD4LNdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4LNd32_UPD
;
8139 case ARM::VLD4LNqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4LNq16_UPD
;
8140 case ARM::VLD4LNqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4LNq32_UPD
;
8141 case ARM::VLD4LNdAsm_8
: Spacing
= 1; return ARM::VLD4LNd8
;
8142 case ARM::VLD4LNdAsm_16
: Spacing
= 1; return ARM::VLD4LNd16
;
8143 case ARM::VLD4LNdAsm_32
: Spacing
= 1; return ARM::VLD4LNd32
;
8144 case ARM::VLD4LNqAsm_16
: Spacing
= 2; return ARM::VLD4LNq16
;
8145 case ARM::VLD4LNqAsm_32
: Spacing
= 2; return ARM::VLD4LNq32
;
8148 case ARM::VLD4DUPdWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4DUPd8_UPD
;
8149 case ARM::VLD4DUPdWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4DUPd16_UPD
;
8150 case ARM::VLD4DUPdWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4DUPd32_UPD
;
8151 case ARM::VLD4DUPqWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4DUPq8_UPD
;
8152 case ARM::VLD4DUPqWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4DUPq16_UPD
;
8153 case ARM::VLD4DUPqWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4DUPq32_UPD
;
8154 case ARM::VLD4DUPdWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4DUPd8_UPD
;
8155 case ARM::VLD4DUPdWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4DUPd16_UPD
;
8156 case ARM::VLD4DUPdWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4DUPd32_UPD
;
8157 case ARM::VLD4DUPqWB_register_Asm_8
: Spacing
= 2; return ARM::VLD4DUPq8_UPD
;
8158 case ARM::VLD4DUPqWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4DUPq16_UPD
;
8159 case ARM::VLD4DUPqWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4DUPq32_UPD
;
8160 case ARM::VLD4DUPdAsm_8
: Spacing
= 1; return ARM::VLD4DUPd8
;
8161 case ARM::VLD4DUPdAsm_16
: Spacing
= 1; return ARM::VLD4DUPd16
;
8162 case ARM::VLD4DUPdAsm_32
: Spacing
= 1; return ARM::VLD4DUPd32
;
8163 case ARM::VLD4DUPqAsm_8
: Spacing
= 2; return ARM::VLD4DUPq8
;
8164 case ARM::VLD4DUPqAsm_16
: Spacing
= 2; return ARM::VLD4DUPq16
;
8165 case ARM::VLD4DUPqAsm_32
: Spacing
= 2; return ARM::VLD4DUPq32
;
8168 case ARM::VLD4dWB_fixed_Asm_8
: Spacing
= 1; return ARM::VLD4d8_UPD
;
8169 case ARM::VLD4dWB_fixed_Asm_16
: Spacing
= 1; return ARM::VLD4d16_UPD
;
8170 case ARM::VLD4dWB_fixed_Asm_32
: Spacing
= 1; return ARM::VLD4d32_UPD
;
8171 case ARM::VLD4qWB_fixed_Asm_8
: Spacing
= 2; return ARM::VLD4q8_UPD
;
8172 case ARM::VLD4qWB_fixed_Asm_16
: Spacing
= 2; return ARM::VLD4q16_UPD
;
8173 case ARM::VLD4qWB_fixed_Asm_32
: Spacing
= 2; return ARM::VLD4q32_UPD
;
8174 case ARM::VLD4dWB_register_Asm_8
: Spacing
= 1; return ARM::VLD4d8_UPD
;
8175 case ARM::VLD4dWB_register_Asm_16
: Spacing
= 1; return ARM::VLD4d16_UPD
;
8176 case ARM::VLD4dWB_register_Asm_32
: Spacing
= 1; return ARM::VLD4d32_UPD
;
8177 case ARM::VLD4qWB_register_Asm_8
: Spacing
= 2; return ARM::VLD4q8_UPD
;
8178 case ARM::VLD4qWB_register_Asm_16
: Spacing
= 2; return ARM::VLD4q16_UPD
;
8179 case ARM::VLD4qWB_register_Asm_32
: Spacing
= 2; return ARM::VLD4q32_UPD
;
8180 case ARM::VLD4dAsm_8
: Spacing
= 1; return ARM::VLD4d8
;
8181 case ARM::VLD4dAsm_16
: Spacing
= 1; return ARM::VLD4d16
;
8182 case ARM::VLD4dAsm_32
: Spacing
= 1; return ARM::VLD4d32
;
8183 case ARM::VLD4qAsm_8
: Spacing
= 2; return ARM::VLD4q8
;
8184 case ARM::VLD4qAsm_16
: Spacing
= 2; return ARM::VLD4q16
;
8185 case ARM::VLD4qAsm_32
: Spacing
= 2; return ARM::VLD4q32
;
8189 bool ARMAsmParser::processInstruction(MCInst
&Inst
,
8190 const OperandVector
&Operands
,
8192 // Check if we have the wide qualifier, because if it's present we
8193 // must avoid selecting a 16-bit thumb instruction.
8194 bool HasWideQualifier
= false;
8195 for (auto &Op
: Operands
) {
8196 ARMOperand
&ARMOp
= static_cast<ARMOperand
&>(*Op
);
8197 if (ARMOp
.isToken() && ARMOp
.getToken() == ".w") {
8198 HasWideQualifier
= true;
8203 switch (Inst
.getOpcode()) {
8204 case ARM::MVE_VORNIZ0v4i32
:
8205 case ARM::MVE_VORNIZ0v8i16
:
8206 case ARM::MVE_VORNIZ8v4i32
:
8207 case ARM::MVE_VORNIZ8v8i16
:
8208 case ARM::MVE_VORNIZ16v4i32
:
8209 case ARM::MVE_VORNIZ24v4i32
:
8210 case ARM::MVE_VANDIZ0v4i32
:
8211 case ARM::MVE_VANDIZ0v8i16
:
8212 case ARM::MVE_VANDIZ8v4i32
:
8213 case ARM::MVE_VANDIZ8v8i16
:
8214 case ARM::MVE_VANDIZ16v4i32
:
8215 case ARM::MVE_VANDIZ24v4i32
: {
8218 switch(Inst
.getOpcode()) {
8219 case ARM::MVE_VORNIZ0v4i32
: Opcode
= ARM::MVE_VORRIZ0v4i32
; break;
8220 case ARM::MVE_VORNIZ0v8i16
: Opcode
= ARM::MVE_VORRIZ0v8i16
; imm16
= true; break;
8221 case ARM::MVE_VORNIZ8v4i32
: Opcode
= ARM::MVE_VORRIZ8v4i32
; break;
8222 case ARM::MVE_VORNIZ8v8i16
: Opcode
= ARM::MVE_VORRIZ8v8i16
; imm16
= true; break;
8223 case ARM::MVE_VORNIZ16v4i32
: Opcode
= ARM::MVE_VORRIZ16v4i32
; break;
8224 case ARM::MVE_VORNIZ24v4i32
: Opcode
= ARM::MVE_VORRIZ24v4i32
; break;
8225 case ARM::MVE_VANDIZ0v4i32
: Opcode
= ARM::MVE_VBICIZ0v4i32
; break;
8226 case ARM::MVE_VANDIZ0v8i16
: Opcode
= ARM::MVE_VBICIZ0v8i16
; imm16
= true; break;
8227 case ARM::MVE_VANDIZ8v4i32
: Opcode
= ARM::MVE_VBICIZ8v4i32
; break;
8228 case ARM::MVE_VANDIZ8v8i16
: Opcode
= ARM::MVE_VBICIZ8v8i16
; imm16
= true; break;
8229 case ARM::MVE_VANDIZ16v4i32
: Opcode
= ARM::MVE_VBICIZ16v4i32
; break;
8230 case ARM::MVE_VANDIZ24v4i32
: Opcode
= ARM::MVE_VBICIZ24v4i32
; break;
8231 default: llvm_unreachable("unexpected opcode");
8235 TmpInst
.setOpcode(Opcode
);
8236 TmpInst
.addOperand(Inst
.getOperand(0));
8237 TmpInst
.addOperand(Inst
.getOperand(1));
8240 unsigned imm
= ~Inst
.getOperand(2).getImm() & (imm16
? 0xffff : 0xffffffff);
8241 TmpInst
.addOperand(MCOperand::createImm(imm
));
8243 TmpInst
.addOperand(Inst
.getOperand(3));
8244 TmpInst
.addOperand(Inst
.getOperand(4));
8248 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8249 case ARM::LDRT_POST
:
8250 case ARM::LDRBT_POST
: {
8251 const unsigned Opcode
=
8252 (Inst
.getOpcode() == ARM::LDRT_POST
) ? ARM::LDRT_POST_IMM
8253 : ARM::LDRBT_POST_IMM
;
8255 TmpInst
.setOpcode(Opcode
);
8256 TmpInst
.addOperand(Inst
.getOperand(0));
8257 TmpInst
.addOperand(Inst
.getOperand(1));
8258 TmpInst
.addOperand(Inst
.getOperand(1));
8259 TmpInst
.addOperand(MCOperand::createReg(0));
8260 TmpInst
.addOperand(MCOperand::createImm(0));
8261 TmpInst
.addOperand(Inst
.getOperand(2));
8262 TmpInst
.addOperand(Inst
.getOperand(3));
8266 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8267 case ARM::STRT_POST
:
8268 case ARM::STRBT_POST
: {
8269 const unsigned Opcode
=
8270 (Inst
.getOpcode() == ARM::STRT_POST
) ? ARM::STRT_POST_IMM
8271 : ARM::STRBT_POST_IMM
;
8273 TmpInst
.setOpcode(Opcode
);
8274 TmpInst
.addOperand(Inst
.getOperand(1));
8275 TmpInst
.addOperand(Inst
.getOperand(0));
8276 TmpInst
.addOperand(Inst
.getOperand(1));
8277 TmpInst
.addOperand(MCOperand::createReg(0));
8278 TmpInst
.addOperand(MCOperand::createImm(0));
8279 TmpInst
.addOperand(Inst
.getOperand(2));
8280 TmpInst
.addOperand(Inst
.getOperand(3));
8284 // Alias for alternate form of 'ADR Rd, #imm' instruction.
8286 if (Inst
.getOperand(1).getReg() != ARM::PC
||
8287 Inst
.getOperand(5).getReg() != 0 ||
8288 !(Inst
.getOperand(2).isExpr() || Inst
.getOperand(2).isImm()))
8291 TmpInst
.setOpcode(ARM::ADR
);
8292 TmpInst
.addOperand(Inst
.getOperand(0));
8293 if (Inst
.getOperand(2).isImm()) {
8294 // Immediate (mod_imm) will be in its encoded form, we must unencode it
8295 // before passing it to the ADR instruction.
8296 unsigned Enc
= Inst
.getOperand(2).getImm();
8297 TmpInst
.addOperand(MCOperand::createImm(
8298 ARM_AM::rotr32(Enc
& 0xFF, (Enc
& 0xF00) >> 7)));
8300 // Turn PC-relative expression into absolute expression.
8301 // Reading PC provides the start of the current instruction + 8 and
8302 // the transform to adr is biased by that.
8303 MCSymbol
*Dot
= getContext().createTempSymbol();
8305 const MCExpr
*OpExpr
= Inst
.getOperand(2).getExpr();
8306 const MCExpr
*InstPC
= MCSymbolRefExpr::create(Dot
,
8307 MCSymbolRefExpr::VK_None
,
8309 const MCExpr
*Const8
= MCConstantExpr::create(8, getContext());
8310 const MCExpr
*ReadPC
= MCBinaryExpr::createAdd(InstPC
, Const8
,
8312 const MCExpr
*FixupAddr
= MCBinaryExpr::createAdd(ReadPC
, OpExpr
,
8314 TmpInst
.addOperand(MCOperand::createExpr(FixupAddr
));
8316 TmpInst
.addOperand(Inst
.getOperand(3));
8317 TmpInst
.addOperand(Inst
.getOperand(4));
8321 // Aliases for alternate PC+imm syntax of LDR instructions.
8322 case ARM::t2LDRpcrel
:
8323 // Select the narrow version if the immediate will fit.
8324 if (Inst
.getOperand(1).getImm() > 0 &&
8325 Inst
.getOperand(1).getImm() <= 0xff &&
8327 Inst
.setOpcode(ARM::tLDRpci
);
8329 Inst
.setOpcode(ARM::t2LDRpci
);
8331 case ARM::t2LDRBpcrel
:
8332 Inst
.setOpcode(ARM::t2LDRBpci
);
8334 case ARM::t2LDRHpcrel
:
8335 Inst
.setOpcode(ARM::t2LDRHpci
);
8337 case ARM::t2LDRSBpcrel
:
8338 Inst
.setOpcode(ARM::t2LDRSBpci
);
8340 case ARM::t2LDRSHpcrel
:
8341 Inst
.setOpcode(ARM::t2LDRSHpci
);
8343 case ARM::LDRConstPool
:
8344 case ARM::tLDRConstPool
:
8345 case ARM::t2LDRConstPool
: {
8346 // Pseudo instruction ldr rt, =immediate is converted to a
8347 // MOV rt, immediate if immediate is known and representable
8348 // otherwise we create a constant pool entry that we load from.
8350 if (Inst
.getOpcode() == ARM::LDRConstPool
)
8351 TmpInst
.setOpcode(ARM::LDRi12
);
8352 else if (Inst
.getOpcode() == ARM::tLDRConstPool
)
8353 TmpInst
.setOpcode(ARM::tLDRpci
);
8354 else if (Inst
.getOpcode() == ARM::t2LDRConstPool
)
8355 TmpInst
.setOpcode(ARM::t2LDRpci
);
8356 const ARMOperand
&PoolOperand
=
8358 static_cast<ARMOperand
&>(*Operands
[4]) :
8359 static_cast<ARMOperand
&>(*Operands
[3]));
8360 const MCExpr
*SubExprVal
= PoolOperand
.getConstantPoolImm();
8361 // If SubExprVal is a constant we may be able to use a MOV
8362 if (isa
<MCConstantExpr
>(SubExprVal
) &&
8363 Inst
.getOperand(0).getReg() != ARM::PC
&&
8364 Inst
.getOperand(0).getReg() != ARM::SP
) {
8366 (int64_t) (cast
<MCConstantExpr
>(SubExprVal
))->getValue();
8368 bool MovHasS
= true;
8369 if (Inst
.getOpcode() == ARM::LDRConstPool
) {
8371 if (ARM_AM::getSOImmVal(Value
) != -1) {
8372 Value
= ARM_AM::getSOImmVal(Value
);
8373 TmpInst
.setOpcode(ARM::MOVi
);
8375 else if (ARM_AM::getSOImmVal(~Value
) != -1) {
8376 Value
= ARM_AM::getSOImmVal(~Value
);
8377 TmpInst
.setOpcode(ARM::MVNi
);
8379 else if (hasV6T2Ops() &&
8380 Value
>=0 && Value
< 65536) {
8381 TmpInst
.setOpcode(ARM::MOVi16
);
8388 // Thumb/Thumb2 Constant
8390 ARM_AM::getT2SOImmVal(Value
) != -1)
8391 TmpInst
.setOpcode(ARM::t2MOVi
);
8392 else if (hasThumb2() &&
8393 ARM_AM::getT2SOImmVal(~Value
) != -1) {
8394 TmpInst
.setOpcode(ARM::t2MVNi
);
8397 else if (hasV8MBaseline() &&
8398 Value
>=0 && Value
< 65536) {
8399 TmpInst
.setOpcode(ARM::t2MOVi16
);
8406 TmpInst
.addOperand(Inst
.getOperand(0)); // Rt
8407 TmpInst
.addOperand(MCOperand::createImm(Value
)); // Immediate
8408 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8409 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8411 TmpInst
.addOperand(MCOperand::createReg(0)); // S
8416 // No opportunity to use MOV/MVN create constant pool
8417 const MCExpr
*CPLoc
=
8418 getTargetStreamer().addConstantPoolEntry(SubExprVal
,
8419 PoolOperand
.getStartLoc());
8420 TmpInst
.addOperand(Inst
.getOperand(0)); // Rt
8421 TmpInst
.addOperand(MCOperand::createExpr(CPLoc
)); // offset to constpool
8422 if (TmpInst
.getOpcode() == ARM::LDRi12
)
8423 TmpInst
.addOperand(MCOperand::createImm(0)); // unused offset
8424 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
8425 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
8429 // Handle NEON VST complex aliases.
8430 case ARM::VST1LNdWB_register_Asm_8
:
8431 case ARM::VST1LNdWB_register_Asm_16
:
8432 case ARM::VST1LNdWB_register_Asm_32
: {
8434 // Shuffle the operands around so the lane index operand is in the
8437 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8438 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8439 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8440 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8441 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8442 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8443 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8444 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8445 TmpInst
.addOperand(Inst
.getOperand(6));
8450 case ARM::VST2LNdWB_register_Asm_8
:
8451 case ARM::VST2LNdWB_register_Asm_16
:
8452 case ARM::VST2LNdWB_register_Asm_32
:
8453 case ARM::VST2LNqWB_register_Asm_16
:
8454 case ARM::VST2LNqWB_register_Asm_32
: {
8456 // Shuffle the operands around so the lane index operand is in the
8459 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8460 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8461 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8462 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8463 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8464 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8465 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8467 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8468 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8469 TmpInst
.addOperand(Inst
.getOperand(6));
8474 case ARM::VST3LNdWB_register_Asm_8
:
8475 case ARM::VST3LNdWB_register_Asm_16
:
8476 case ARM::VST3LNdWB_register_Asm_32
:
8477 case ARM::VST3LNqWB_register_Asm_16
:
8478 case ARM::VST3LNqWB_register_Asm_32
: {
8480 // Shuffle the operands around so the lane index operand is in the
8483 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8484 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8485 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8486 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8487 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8488 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8489 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8491 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8493 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8494 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8495 TmpInst
.addOperand(Inst
.getOperand(6));
8500 case ARM::VST4LNdWB_register_Asm_8
:
8501 case ARM::VST4LNdWB_register_Asm_16
:
8502 case ARM::VST4LNdWB_register_Asm_32
:
8503 case ARM::VST4LNqWB_register_Asm_16
:
8504 case ARM::VST4LNqWB_register_Asm_32
: {
8506 // Shuffle the operands around so the lane index operand is in the
8509 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8510 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8511 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8512 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8513 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8514 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8515 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8517 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8519 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8521 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8522 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8523 TmpInst
.addOperand(Inst
.getOperand(6));
8528 case ARM::VST1LNdWB_fixed_Asm_8
:
8529 case ARM::VST1LNdWB_fixed_Asm_16
:
8530 case ARM::VST1LNdWB_fixed_Asm_32
: {
8532 // Shuffle the operands around so the lane index operand is in the
8535 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8536 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8537 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8538 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8539 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8540 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8541 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8542 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8543 TmpInst
.addOperand(Inst
.getOperand(5));
8548 case ARM::VST2LNdWB_fixed_Asm_8
:
8549 case ARM::VST2LNdWB_fixed_Asm_16
:
8550 case ARM::VST2LNdWB_fixed_Asm_32
:
8551 case ARM::VST2LNqWB_fixed_Asm_16
:
8552 case ARM::VST2LNqWB_fixed_Asm_32
: {
8554 // Shuffle the operands around so the lane index operand is in the
8557 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8558 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8559 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8560 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8561 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8562 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8563 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8565 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8566 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8567 TmpInst
.addOperand(Inst
.getOperand(5));
8572 case ARM::VST3LNdWB_fixed_Asm_8
:
8573 case ARM::VST3LNdWB_fixed_Asm_16
:
8574 case ARM::VST3LNdWB_fixed_Asm_32
:
8575 case ARM::VST3LNqWB_fixed_Asm_16
:
8576 case ARM::VST3LNqWB_fixed_Asm_32
: {
8578 // Shuffle the operands around so the lane index operand is in the
8581 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8582 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8583 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8584 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8585 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8586 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8587 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8589 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8591 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8592 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8593 TmpInst
.addOperand(Inst
.getOperand(5));
8598 case ARM::VST4LNdWB_fixed_Asm_8
:
8599 case ARM::VST4LNdWB_fixed_Asm_16
:
8600 case ARM::VST4LNdWB_fixed_Asm_32
:
8601 case ARM::VST4LNqWB_fixed_Asm_16
:
8602 case ARM::VST4LNqWB_fixed_Asm_32
: {
8604 // Shuffle the operands around so the lane index operand is in the
8607 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8608 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8609 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8610 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8611 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8612 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8613 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8615 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8617 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8619 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8620 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8621 TmpInst
.addOperand(Inst
.getOperand(5));
8626 case ARM::VST1LNdAsm_8
:
8627 case ARM::VST1LNdAsm_16
:
8628 case ARM::VST1LNdAsm_32
: {
8630 // Shuffle the operands around so the lane index operand is in the
8633 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8634 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8635 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8636 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8637 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8638 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8639 TmpInst
.addOperand(Inst
.getOperand(5));
8644 case ARM::VST2LNdAsm_8
:
8645 case ARM::VST2LNdAsm_16
:
8646 case ARM::VST2LNdAsm_32
:
8647 case ARM::VST2LNqAsm_16
:
8648 case ARM::VST2LNqAsm_32
: {
8650 // Shuffle the operands around so the lane index operand is in the
8653 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8654 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8655 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8656 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8657 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8659 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8660 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8661 TmpInst
.addOperand(Inst
.getOperand(5));
8666 case ARM::VST3LNdAsm_8
:
8667 case ARM::VST3LNdAsm_16
:
8668 case ARM::VST3LNdAsm_32
:
8669 case ARM::VST3LNqAsm_16
:
8670 case ARM::VST3LNqAsm_32
: {
8672 // Shuffle the operands around so the lane index operand is in the
8675 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8676 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8677 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8678 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8679 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8681 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8683 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8684 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8685 TmpInst
.addOperand(Inst
.getOperand(5));
8690 case ARM::VST4LNdAsm_8
:
8691 case ARM::VST4LNdAsm_16
:
8692 case ARM::VST4LNdAsm_32
:
8693 case ARM::VST4LNqAsm_16
:
8694 case ARM::VST4LNqAsm_32
: {
8696 // Shuffle the operands around so the lane index operand is in the
8699 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
8700 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8701 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8702 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8703 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8705 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8707 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8709 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8710 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8711 TmpInst
.addOperand(Inst
.getOperand(5));
8716 // Handle NEON VLD complex aliases.
8717 case ARM::VLD1LNdWB_register_Asm_8
:
8718 case ARM::VLD1LNdWB_register_Asm_16
:
8719 case ARM::VLD1LNdWB_register_Asm_32
: {
8721 // Shuffle the operands around so the lane index operand is in the
8724 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8725 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8726 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8727 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8728 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8729 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8730 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
8731 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8732 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8733 TmpInst
.addOperand(Inst
.getOperand(6));
8738 case ARM::VLD2LNdWB_register_Asm_8
:
8739 case ARM::VLD2LNdWB_register_Asm_16
:
8740 case ARM::VLD2LNdWB_register_Asm_32
:
8741 case ARM::VLD2LNqWB_register_Asm_16
:
8742 case ARM::VLD2LNqWB_register_Asm_32
: {
8744 // Shuffle the operands around so the lane index operand is in the
8747 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8748 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8749 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8751 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8752 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8753 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8754 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8755 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
8756 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8758 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8759 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8760 TmpInst
.addOperand(Inst
.getOperand(6));
8765 case ARM::VLD3LNdWB_register_Asm_8
:
8766 case ARM::VLD3LNdWB_register_Asm_16
:
8767 case ARM::VLD3LNdWB_register_Asm_32
:
8768 case ARM::VLD3LNqWB_register_Asm_16
:
8769 case ARM::VLD3LNqWB_register_Asm_32
: {
8771 // Shuffle the operands around so the lane index operand is in the
8774 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8775 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8776 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8778 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8780 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8781 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8782 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8783 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8784 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
8785 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8787 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8789 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8790 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8791 TmpInst
.addOperand(Inst
.getOperand(6));
8796 case ARM::VLD4LNdWB_register_Asm_8
:
8797 case ARM::VLD4LNdWB_register_Asm_16
:
8798 case ARM::VLD4LNdWB_register_Asm_32
:
8799 case ARM::VLD4LNqWB_register_Asm_16
:
8800 case ARM::VLD4LNqWB_register_Asm_32
: {
8802 // Shuffle the operands around so the lane index operand is in the
8805 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8806 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8807 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8809 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8811 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8813 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8814 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8815 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8816 TmpInst
.addOperand(Inst
.getOperand(4)); // Rm
8817 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
8818 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8820 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8822 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8824 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8825 TmpInst
.addOperand(Inst
.getOperand(5)); // CondCode
8826 TmpInst
.addOperand(Inst
.getOperand(6));
8831 case ARM::VLD1LNdWB_fixed_Asm_8
:
8832 case ARM::VLD1LNdWB_fixed_Asm_16
:
8833 case ARM::VLD1LNdWB_fixed_Asm_32
: {
8835 // Shuffle the operands around so the lane index operand is in the
8838 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8839 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8840 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8841 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8842 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8843 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8844 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
8845 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8846 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8847 TmpInst
.addOperand(Inst
.getOperand(5));
8852 case ARM::VLD2LNdWB_fixed_Asm_8
:
8853 case ARM::VLD2LNdWB_fixed_Asm_16
:
8854 case ARM::VLD2LNdWB_fixed_Asm_32
:
8855 case ARM::VLD2LNqWB_fixed_Asm_16
:
8856 case ARM::VLD2LNqWB_fixed_Asm_32
: {
8858 // Shuffle the operands around so the lane index operand is in the
8861 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8862 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8863 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8865 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8866 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8867 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8868 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8869 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
8870 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8872 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8873 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8874 TmpInst
.addOperand(Inst
.getOperand(5));
8879 case ARM::VLD3LNdWB_fixed_Asm_8
:
8880 case ARM::VLD3LNdWB_fixed_Asm_16
:
8881 case ARM::VLD3LNdWB_fixed_Asm_32
:
8882 case ARM::VLD3LNqWB_fixed_Asm_16
:
8883 case ARM::VLD3LNqWB_fixed_Asm_32
: {
8885 // Shuffle the operands around so the lane index operand is in the
8888 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8889 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8890 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8892 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8894 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8895 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8896 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8897 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8898 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
8899 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8901 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8903 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8904 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8905 TmpInst
.addOperand(Inst
.getOperand(5));
8910 case ARM::VLD4LNdWB_fixed_Asm_8
:
8911 case ARM::VLD4LNdWB_fixed_Asm_16
:
8912 case ARM::VLD4LNdWB_fixed_Asm_32
:
8913 case ARM::VLD4LNqWB_fixed_Asm_16
:
8914 case ARM::VLD4LNqWB_fixed_Asm_32
: {
8916 // Shuffle the operands around so the lane index operand is in the
8919 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8920 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8921 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8923 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8925 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8927 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn_wb
8928 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8929 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8930 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
8931 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
8932 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8934 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8936 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8938 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8939 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8940 TmpInst
.addOperand(Inst
.getOperand(5));
8945 case ARM::VLD1LNdAsm_8
:
8946 case ARM::VLD1LNdAsm_16
:
8947 case ARM::VLD1LNdAsm_32
: {
8949 // Shuffle the operands around so the lane index operand is in the
8952 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8953 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8954 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8955 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8956 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
8957 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8958 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8959 TmpInst
.addOperand(Inst
.getOperand(5));
8964 case ARM::VLD2LNdAsm_8
:
8965 case ARM::VLD2LNdAsm_16
:
8966 case ARM::VLD2LNdAsm_32
:
8967 case ARM::VLD2LNqAsm_16
:
8968 case ARM::VLD2LNqAsm_32
: {
8970 // Shuffle the operands around so the lane index operand is in the
8973 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8974 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
8975 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8977 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
8978 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
8979 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
8980 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
8982 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
8983 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
8984 TmpInst
.addOperand(Inst
.getOperand(5));
8989 case ARM::VLD3LNdAsm_8
:
8990 case ARM::VLD3LNdAsm_16
:
8991 case ARM::VLD3LNdAsm_32
:
8992 case ARM::VLD3LNqAsm_16
:
8993 case ARM::VLD3LNqAsm_32
: {
8995 // Shuffle the operands around so the lane index operand is in the
8998 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
8999 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9000 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9002 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9004 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9005 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9006 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9007 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9009 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9011 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9012 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9013 TmpInst
.addOperand(Inst
.getOperand(5));
9018 case ARM::VLD4LNdAsm_8
:
9019 case ARM::VLD4LNdAsm_16
:
9020 case ARM::VLD4LNdAsm_32
:
9021 case ARM::VLD4LNqAsm_16
:
9022 case ARM::VLD4LNqAsm_32
: {
9024 // Shuffle the operands around so the lane index operand is in the
9027 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9028 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9029 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9031 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9033 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9035 TmpInst
.addOperand(Inst
.getOperand(2)); // Rn
9036 TmpInst
.addOperand(Inst
.getOperand(3)); // alignment
9037 TmpInst
.addOperand(Inst
.getOperand(0)); // Tied operand src (== Vd)
9038 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9040 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9042 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9044 TmpInst
.addOperand(Inst
.getOperand(1)); // lane
9045 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9046 TmpInst
.addOperand(Inst
.getOperand(5));
9051 // VLD3DUP single 3-element structure to all lanes instructions.
9052 case ARM::VLD3DUPdAsm_8
:
9053 case ARM::VLD3DUPdAsm_16
:
9054 case ARM::VLD3DUPdAsm_32
:
9055 case ARM::VLD3DUPqAsm_8
:
9056 case ARM::VLD3DUPqAsm_16
:
9057 case ARM::VLD3DUPqAsm_32
: {
9060 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9061 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9062 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9064 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9066 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9067 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9068 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9069 TmpInst
.addOperand(Inst
.getOperand(4));
9074 case ARM::VLD3DUPdWB_fixed_Asm_8
:
9075 case ARM::VLD3DUPdWB_fixed_Asm_16
:
9076 case ARM::VLD3DUPdWB_fixed_Asm_32
:
9077 case ARM::VLD3DUPqWB_fixed_Asm_8
:
9078 case ARM::VLD3DUPqWB_fixed_Asm_16
:
9079 case ARM::VLD3DUPqWB_fixed_Asm_32
: {
9082 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9083 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9084 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9086 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9088 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9089 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9090 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9091 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9092 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9093 TmpInst
.addOperand(Inst
.getOperand(4));
9098 case ARM::VLD3DUPdWB_register_Asm_8
:
9099 case ARM::VLD3DUPdWB_register_Asm_16
:
9100 case ARM::VLD3DUPdWB_register_Asm_32
:
9101 case ARM::VLD3DUPqWB_register_Asm_8
:
9102 case ARM::VLD3DUPqWB_register_Asm_16
:
9103 case ARM::VLD3DUPqWB_register_Asm_32
: {
9106 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9107 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9108 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9110 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9112 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9113 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9114 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9115 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9116 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9117 TmpInst
.addOperand(Inst
.getOperand(5));
9122 // VLD3 multiple 3-element structure instructions.
9123 case ARM::VLD3dAsm_8
:
9124 case ARM::VLD3dAsm_16
:
9125 case ARM::VLD3dAsm_32
:
9126 case ARM::VLD3qAsm_8
:
9127 case ARM::VLD3qAsm_16
:
9128 case ARM::VLD3qAsm_32
: {
9131 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9132 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9133 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9135 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9137 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9138 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9139 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9140 TmpInst
.addOperand(Inst
.getOperand(4));
9145 case ARM::VLD3dWB_fixed_Asm_8
:
9146 case ARM::VLD3dWB_fixed_Asm_16
:
9147 case ARM::VLD3dWB_fixed_Asm_32
:
9148 case ARM::VLD3qWB_fixed_Asm_8
:
9149 case ARM::VLD3qWB_fixed_Asm_16
:
9150 case ARM::VLD3qWB_fixed_Asm_32
: {
9153 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9154 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9155 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9157 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9159 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9160 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9161 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9162 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9163 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9164 TmpInst
.addOperand(Inst
.getOperand(4));
9169 case ARM::VLD3dWB_register_Asm_8
:
9170 case ARM::VLD3dWB_register_Asm_16
:
9171 case ARM::VLD3dWB_register_Asm_32
:
9172 case ARM::VLD3qWB_register_Asm_8
:
9173 case ARM::VLD3qWB_register_Asm_16
:
9174 case ARM::VLD3qWB_register_Asm_32
: {
9177 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9178 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9179 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9181 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9183 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9184 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9185 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9186 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9187 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9188 TmpInst
.addOperand(Inst
.getOperand(5));
9193 // VLD4DUP single 3-element structure to all lanes instructions.
9194 case ARM::VLD4DUPdAsm_8
:
9195 case ARM::VLD4DUPdAsm_16
:
9196 case ARM::VLD4DUPdAsm_32
:
9197 case ARM::VLD4DUPqAsm_8
:
9198 case ARM::VLD4DUPqAsm_16
:
9199 case ARM::VLD4DUPqAsm_32
: {
9202 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9203 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9204 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9206 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9208 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9210 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9211 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9212 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9213 TmpInst
.addOperand(Inst
.getOperand(4));
9218 case ARM::VLD4DUPdWB_fixed_Asm_8
:
9219 case ARM::VLD4DUPdWB_fixed_Asm_16
:
9220 case ARM::VLD4DUPdWB_fixed_Asm_32
:
9221 case ARM::VLD4DUPqWB_fixed_Asm_8
:
9222 case ARM::VLD4DUPqWB_fixed_Asm_16
:
9223 case ARM::VLD4DUPqWB_fixed_Asm_32
: {
9226 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9227 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9228 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9230 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9232 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9234 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9235 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9236 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9237 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9238 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9239 TmpInst
.addOperand(Inst
.getOperand(4));
9244 case ARM::VLD4DUPdWB_register_Asm_8
:
9245 case ARM::VLD4DUPdWB_register_Asm_16
:
9246 case ARM::VLD4DUPdWB_register_Asm_32
:
9247 case ARM::VLD4DUPqWB_register_Asm_8
:
9248 case ARM::VLD4DUPqWB_register_Asm_16
:
9249 case ARM::VLD4DUPqWB_register_Asm_32
: {
9252 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9253 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9254 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9256 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9258 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9260 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9261 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9262 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9263 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9264 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9265 TmpInst
.addOperand(Inst
.getOperand(5));
9270 // VLD4 multiple 4-element structure instructions.
9271 case ARM::VLD4dAsm_8
:
9272 case ARM::VLD4dAsm_16
:
9273 case ARM::VLD4dAsm_32
:
9274 case ARM::VLD4qAsm_8
:
9275 case ARM::VLD4qAsm_16
:
9276 case ARM::VLD4qAsm_32
: {
9279 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9280 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9281 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9283 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9285 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9287 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9288 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9289 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9290 TmpInst
.addOperand(Inst
.getOperand(4));
9295 case ARM::VLD4dWB_fixed_Asm_8
:
9296 case ARM::VLD4dWB_fixed_Asm_16
:
9297 case ARM::VLD4dWB_fixed_Asm_32
:
9298 case ARM::VLD4qWB_fixed_Asm_8
:
9299 case ARM::VLD4qWB_fixed_Asm_16
:
9300 case ARM::VLD4qWB_fixed_Asm_32
: {
9303 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9304 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9305 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9307 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9309 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9311 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9312 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9313 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9314 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9315 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9316 TmpInst
.addOperand(Inst
.getOperand(4));
9321 case ARM::VLD4dWB_register_Asm_8
:
9322 case ARM::VLD4dWB_register_Asm_16
:
9323 case ARM::VLD4dWB_register_Asm_32
:
9324 case ARM::VLD4qWB_register_Asm_8
:
9325 case ARM::VLD4qWB_register_Asm_16
:
9326 case ARM::VLD4qWB_register_Asm_32
: {
9329 TmpInst
.setOpcode(getRealVLDOpcode(Inst
.getOpcode(), Spacing
));
9330 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9331 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9333 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9335 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9337 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9338 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9339 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9340 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9341 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9342 TmpInst
.addOperand(Inst
.getOperand(5));
9347 // VST3 multiple 3-element structure instructions.
9348 case ARM::VST3dAsm_8
:
9349 case ARM::VST3dAsm_16
:
9350 case ARM::VST3dAsm_32
:
9351 case ARM::VST3qAsm_8
:
9352 case ARM::VST3qAsm_16
:
9353 case ARM::VST3qAsm_32
: {
9356 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9357 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9358 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9359 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9360 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9362 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9364 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9365 TmpInst
.addOperand(Inst
.getOperand(4));
9370 case ARM::VST3dWB_fixed_Asm_8
:
9371 case ARM::VST3dWB_fixed_Asm_16
:
9372 case ARM::VST3dWB_fixed_Asm_32
:
9373 case ARM::VST3qWB_fixed_Asm_8
:
9374 case ARM::VST3qWB_fixed_Asm_16
:
9375 case ARM::VST3qWB_fixed_Asm_32
: {
9378 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9379 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9380 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9381 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9382 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9383 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9384 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9386 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9388 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9389 TmpInst
.addOperand(Inst
.getOperand(4));
9394 case ARM::VST3dWB_register_Asm_8
:
9395 case ARM::VST3dWB_register_Asm_16
:
9396 case ARM::VST3dWB_register_Asm_32
:
9397 case ARM::VST3qWB_register_Asm_8
:
9398 case ARM::VST3qWB_register_Asm_16
:
9399 case ARM::VST3qWB_register_Asm_32
: {
9402 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9403 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9404 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9405 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9406 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9407 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9408 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9410 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9412 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9413 TmpInst
.addOperand(Inst
.getOperand(5));
9418 // VST4 multiple 3-element structure instructions.
9419 case ARM::VST4dAsm_8
:
9420 case ARM::VST4dAsm_16
:
9421 case ARM::VST4dAsm_32
:
9422 case ARM::VST4qAsm_8
:
9423 case ARM::VST4qAsm_16
:
9424 case ARM::VST4qAsm_32
: {
9427 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9428 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9429 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9430 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9431 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9433 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9435 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9437 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9438 TmpInst
.addOperand(Inst
.getOperand(4));
9443 case ARM::VST4dWB_fixed_Asm_8
:
9444 case ARM::VST4dWB_fixed_Asm_16
:
9445 case ARM::VST4dWB_fixed_Asm_32
:
9446 case ARM::VST4qWB_fixed_Asm_8
:
9447 case ARM::VST4qWB_fixed_Asm_16
:
9448 case ARM::VST4qWB_fixed_Asm_32
: {
9451 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9452 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9453 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9454 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9455 TmpInst
.addOperand(MCOperand::createReg(0)); // Rm
9456 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9457 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9459 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9461 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9463 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9464 TmpInst
.addOperand(Inst
.getOperand(4));
9469 case ARM::VST4dWB_register_Asm_8
:
9470 case ARM::VST4dWB_register_Asm_16
:
9471 case ARM::VST4dWB_register_Asm_32
:
9472 case ARM::VST4qWB_register_Asm_8
:
9473 case ARM::VST4qWB_register_Asm_16
:
9474 case ARM::VST4qWB_register_Asm_32
: {
9477 TmpInst
.setOpcode(getRealVSTOpcode(Inst
.getOpcode(), Spacing
));
9478 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9479 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn_wb == tied Rn
9480 TmpInst
.addOperand(Inst
.getOperand(2)); // alignment
9481 TmpInst
.addOperand(Inst
.getOperand(3)); // Rm
9482 TmpInst
.addOperand(Inst
.getOperand(0)); // Vd
9483 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9485 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9487 TmpInst
.addOperand(MCOperand::createReg(Inst
.getOperand(0).getReg() +
9489 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9490 TmpInst
.addOperand(Inst
.getOperand(5));
9495 // Handle encoding choice for the shift-immediate instructions.
9499 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
9500 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
9501 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
9502 !HasWideQualifier
) {
9504 switch (Inst
.getOpcode()) {
9505 default: llvm_unreachable("unexpected opcode");
9506 case ARM::t2LSLri
: NewOpc
= ARM::tLSLri
; break;
9507 case ARM::t2LSRri
: NewOpc
= ARM::tLSRri
; break;
9508 case ARM::t2ASRri
: NewOpc
= ARM::tASRri
; break;
9510 // The Thumb1 operands aren't in the same order. Awesome, eh?
9512 TmpInst
.setOpcode(NewOpc
);
9513 TmpInst
.addOperand(Inst
.getOperand(0));
9514 TmpInst
.addOperand(Inst
.getOperand(5));
9515 TmpInst
.addOperand(Inst
.getOperand(1));
9516 TmpInst
.addOperand(Inst
.getOperand(2));
9517 TmpInst
.addOperand(Inst
.getOperand(3));
9518 TmpInst
.addOperand(Inst
.getOperand(4));
9524 // Handle the Thumb2 mode MOV complex aliases.
9526 case ARM::t2MOVSsr
: {
9527 // Which instruction to expand to depends on the CCOut operand and
9528 // whether we're in an IT block if the register operands are low
9530 bool isNarrow
= false;
9531 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
9532 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
9533 isARMLowRegister(Inst
.getOperand(2).getReg()) &&
9534 Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() &&
9535 inITBlock() == (Inst
.getOpcode() == ARM::t2MOVsr
) &&
9540 switch(ARM_AM::getSORegShOp(Inst
.getOperand(3).getImm())) {
9541 default: llvm_unreachable("unexpected opcode!");
9542 case ARM_AM::asr
: newOpc
= isNarrow
? ARM::tASRrr
: ARM::t2ASRrr
; break;
9543 case ARM_AM::lsr
: newOpc
= isNarrow
? ARM::tLSRrr
: ARM::t2LSRrr
; break;
9544 case ARM_AM::lsl
: newOpc
= isNarrow
? ARM::tLSLrr
: ARM::t2LSLrr
; break;
9545 case ARM_AM::ror
: newOpc
= isNarrow
? ARM::tROR
: ARM::t2RORrr
; break;
9547 TmpInst
.setOpcode(newOpc
);
9548 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
9550 TmpInst
.addOperand(MCOperand::createReg(
9551 Inst
.getOpcode() == ARM::t2MOVSsr
? ARM::CPSR
: 0));
9552 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9553 TmpInst
.addOperand(Inst
.getOperand(2)); // Rm
9554 TmpInst
.addOperand(Inst
.getOperand(4)); // CondCode
9555 TmpInst
.addOperand(Inst
.getOperand(5));
9557 TmpInst
.addOperand(MCOperand::createReg(
9558 Inst
.getOpcode() == ARM::t2MOVSsr
? ARM::CPSR
: 0));
9563 case ARM::t2MOVSsi
: {
9564 // Which instruction to expand to depends on the CCOut operand and
9565 // whether we're in an IT block if the register operands are low
9567 bool isNarrow
= false;
9568 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
9569 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
9570 inITBlock() == (Inst
.getOpcode() == ARM::t2MOVsi
) &&
9575 unsigned Shift
= ARM_AM::getSORegShOp(Inst
.getOperand(2).getImm());
9576 unsigned Amount
= ARM_AM::getSORegOffset(Inst
.getOperand(2).getImm());
9578 // MOV rd, rm, LSL #0 is actually a MOV instruction
9579 if (Shift
== ARM_AM::lsl
&& Amount
== 0) {
9581 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
9582 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
9583 // unpredictable in an IT block so the 32-bit encoding T3 has to be used
9588 newOpc
= isNarrow
? ARM::tMOVSr
: ARM::t2MOVr
;
9591 default: llvm_unreachable("unexpected opcode!");
9592 case ARM_AM::asr
: newOpc
= isNarrow
? ARM::tASRri
: ARM::t2ASRri
; break;
9593 case ARM_AM::lsr
: newOpc
= isNarrow
? ARM::tLSRri
: ARM::t2LSRri
; break;
9594 case ARM_AM::lsl
: newOpc
= isNarrow
? ARM::tLSLri
: ARM::t2LSLri
; break;
9595 case ARM_AM::ror
: newOpc
= ARM::t2RORri
; isNarrow
= false; break;
9596 case ARM_AM::rrx
: isNarrow
= false; newOpc
= ARM::t2RRX
; break;
9599 if (Amount
== 32) Amount
= 0;
9600 TmpInst
.setOpcode(newOpc
);
9601 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
9602 if (isNarrow
&& !isMov
)
9603 TmpInst
.addOperand(MCOperand::createReg(
9604 Inst
.getOpcode() == ARM::t2MOVSsi
? ARM::CPSR
: 0));
9605 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9606 if (newOpc
!= ARM::t2RRX
&& !isMov
)
9607 TmpInst
.addOperand(MCOperand::createImm(Amount
));
9608 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9609 TmpInst
.addOperand(Inst
.getOperand(4));
9611 TmpInst
.addOperand(MCOperand::createReg(
9612 Inst
.getOpcode() == ARM::t2MOVSsi
? ARM::CPSR
: 0));
9616 // Handle the ARM mode MOV complex aliases.
9621 ARM_AM::ShiftOpc ShiftTy
;
9622 switch(Inst
.getOpcode()) {
9623 default: llvm_unreachable("unexpected opcode!");
9624 case ARM::ASRr
: ShiftTy
= ARM_AM::asr
; break;
9625 case ARM::LSRr
: ShiftTy
= ARM_AM::lsr
; break;
9626 case ARM::LSLr
: ShiftTy
= ARM_AM::lsl
; break;
9627 case ARM::RORr
: ShiftTy
= ARM_AM::ror
; break;
9629 unsigned Shifter
= ARM_AM::getSORegOpc(ShiftTy
, 0);
9631 TmpInst
.setOpcode(ARM::MOVsr
);
9632 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
9633 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9634 TmpInst
.addOperand(Inst
.getOperand(2)); // Rm
9635 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
9636 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9637 TmpInst
.addOperand(Inst
.getOperand(4));
9638 TmpInst
.addOperand(Inst
.getOperand(5)); // cc_out
9646 ARM_AM::ShiftOpc ShiftTy
;
9647 switch(Inst
.getOpcode()) {
9648 default: llvm_unreachable("unexpected opcode!");
9649 case ARM::ASRi
: ShiftTy
= ARM_AM::asr
; break;
9650 case ARM::LSRi
: ShiftTy
= ARM_AM::lsr
; break;
9651 case ARM::LSLi
: ShiftTy
= ARM_AM::lsl
; break;
9652 case ARM::RORi
: ShiftTy
= ARM_AM::ror
; break;
9654 // A shift by zero is a plain MOVr, not a MOVsi.
9655 unsigned Amt
= Inst
.getOperand(2).getImm();
9656 unsigned Opc
= Amt
== 0 ? ARM::MOVr
: ARM::MOVsi
;
9657 // A shift by 32 should be encoded as 0 when permitted
9658 if (Amt
== 32 && (ShiftTy
== ARM_AM::lsr
|| ShiftTy
== ARM_AM::asr
))
9660 unsigned Shifter
= ARM_AM::getSORegOpc(ShiftTy
, Amt
);
9662 TmpInst
.setOpcode(Opc
);
9663 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
9664 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9665 if (Opc
== ARM::MOVsi
)
9666 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
9667 TmpInst
.addOperand(Inst
.getOperand(3)); // CondCode
9668 TmpInst
.addOperand(Inst
.getOperand(4));
9669 TmpInst
.addOperand(Inst
.getOperand(5)); // cc_out
9674 unsigned Shifter
= ARM_AM::getSORegOpc(ARM_AM::rrx
, 0);
9676 TmpInst
.setOpcode(ARM::MOVsi
);
9677 TmpInst
.addOperand(Inst
.getOperand(0)); // Rd
9678 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9679 TmpInst
.addOperand(MCOperand::createImm(Shifter
)); // Shift value and ty
9680 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
9681 TmpInst
.addOperand(Inst
.getOperand(3));
9682 TmpInst
.addOperand(Inst
.getOperand(4)); // cc_out
9686 case ARM::t2LDMIA_UPD
: {
9687 // If this is a load of a single register, then we should use
9688 // a post-indexed LDR instruction instead, per the ARM ARM.
9689 if (Inst
.getNumOperands() != 5)
9692 TmpInst
.setOpcode(ARM::t2LDR_POST
);
9693 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
9694 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
9695 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9696 TmpInst
.addOperand(MCOperand::createImm(4));
9697 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
9698 TmpInst
.addOperand(Inst
.getOperand(3));
9702 case ARM::t2STMDB_UPD
: {
9703 // If this is a store of a single register, then we should use
9704 // a pre-indexed STR instruction instead, per the ARM ARM.
9705 if (Inst
.getNumOperands() != 5)
9708 TmpInst
.setOpcode(ARM::t2STR_PRE
);
9709 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
9710 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
9711 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9712 TmpInst
.addOperand(MCOperand::createImm(-4));
9713 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
9714 TmpInst
.addOperand(Inst
.getOperand(3));
9718 case ARM::LDMIA_UPD
:
9719 // If this is a load of a single register via a 'pop', then we should use
9720 // a post-indexed LDR instruction instead, per the ARM ARM.
9721 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() == "pop" &&
9722 Inst
.getNumOperands() == 5) {
9724 TmpInst
.setOpcode(ARM::LDR_POST_IMM
);
9725 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
9726 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
9727 TmpInst
.addOperand(Inst
.getOperand(1)); // Rn
9728 TmpInst
.addOperand(MCOperand::createReg(0)); // am2offset
9729 TmpInst
.addOperand(MCOperand::createImm(4));
9730 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
9731 TmpInst
.addOperand(Inst
.getOperand(3));
9736 case ARM::STMDB_UPD
:
9737 // If this is a store of a single register via a 'push', then we should use
9738 // a pre-indexed STR instruction instead, per the ARM ARM.
9739 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() == "push" &&
9740 Inst
.getNumOperands() == 5) {
9742 TmpInst
.setOpcode(ARM::STR_PRE_IMM
);
9743 TmpInst
.addOperand(Inst
.getOperand(0)); // Rn_wb
9744 TmpInst
.addOperand(Inst
.getOperand(4)); // Rt
9745 TmpInst
.addOperand(Inst
.getOperand(1)); // addrmode_imm12
9746 TmpInst
.addOperand(MCOperand::createImm(-4));
9747 TmpInst
.addOperand(Inst
.getOperand(2)); // CondCode
9748 TmpInst
.addOperand(Inst
.getOperand(3));
9752 case ARM::t2ADDri12
:
9753 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
9754 // mnemonic was used (not "addw"), encoding T3 is preferred.
9755 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() != "add" ||
9756 ARM_AM::getT2SOImmVal(Inst
.getOperand(2).getImm()) == -1)
9758 Inst
.setOpcode(ARM::t2ADDri
);
9759 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
9761 case ARM::t2SUBri12
:
9762 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
9763 // mnemonic was used (not "subw"), encoding T3 is preferred.
9764 if (static_cast<ARMOperand
&>(*Operands
[0]).getToken() != "sub" ||
9765 ARM_AM::getT2SOImmVal(Inst
.getOperand(2).getImm()) == -1)
9767 Inst
.setOpcode(ARM::t2SUBri
);
9768 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
9771 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
9772 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
9773 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
9774 // to encoding T1 if <Rd> is omitted."
9775 if ((unsigned)Inst
.getOperand(3).getImm() < 8 && Operands
.size() == 6) {
9776 Inst
.setOpcode(ARM::tADDi3
);
9781 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
9782 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
9783 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
9784 // to encoding T1 if <Rd> is omitted."
9785 if ((unsigned)Inst
.getOperand(3).getImm() < 8 && Operands
.size() == 6) {
9786 Inst
.setOpcode(ARM::tSUBi3
);
9791 case ARM::t2SUBri
: {
9792 // If the destination and first source operand are the same, and
9793 // the flags are compatible with the current IT status, use encoding T2
9794 // instead of T3. For compatibility with the system 'as'. Make sure the
9795 // wide encoding wasn't explicit.
9796 if (Inst
.getOperand(0).getReg() != Inst
.getOperand(1).getReg() ||
9797 !isARMLowRegister(Inst
.getOperand(0).getReg()) ||
9798 (Inst
.getOperand(2).isImm() &&
9799 (unsigned)Inst
.getOperand(2).getImm() > 255) ||
9800 Inst
.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR
) ||
9804 TmpInst
.setOpcode(Inst
.getOpcode() == ARM::t2ADDri
?
9805 ARM::tADDi8
: ARM::tSUBi8
);
9806 TmpInst
.addOperand(Inst
.getOperand(0));
9807 TmpInst
.addOperand(Inst
.getOperand(5));
9808 TmpInst
.addOperand(Inst
.getOperand(0));
9809 TmpInst
.addOperand(Inst
.getOperand(2));
9810 TmpInst
.addOperand(Inst
.getOperand(3));
9811 TmpInst
.addOperand(Inst
.getOperand(4));
9815 case ARM::t2ADDrr
: {
9816 // If the destination and first source operand are the same, and
9817 // there's no setting of the flags, use encoding T2 instead of T3.
9818 // Note that this is only for ADD, not SUB. This mirrors the system
9819 // 'as' behaviour. Also take advantage of ADD being commutative.
9820 // Make sure the wide encoding wasn't explicit.
9822 auto DestReg
= Inst
.getOperand(0).getReg();
9823 bool Transform
= DestReg
== Inst
.getOperand(1).getReg();
9824 if (!Transform
&& DestReg
== Inst
.getOperand(2).getReg()) {
9829 Inst
.getOperand(5).getReg() != 0 ||
9833 TmpInst
.setOpcode(ARM::tADDhirr
);
9834 TmpInst
.addOperand(Inst
.getOperand(0));
9835 TmpInst
.addOperand(Inst
.getOperand(0));
9836 TmpInst
.addOperand(Inst
.getOperand(Swap
? 1 : 2));
9837 TmpInst
.addOperand(Inst
.getOperand(3));
9838 TmpInst
.addOperand(Inst
.getOperand(4));
9843 // If the non-SP source operand and the destination operand are not the
9844 // same, we need to use the 32-bit encoding if it's available.
9845 if (Inst
.getOperand(0).getReg() != Inst
.getOperand(2).getReg()) {
9846 Inst
.setOpcode(ARM::t2ADDrr
);
9847 Inst
.addOperand(MCOperand::createReg(0)); // cc_out
9852 // A Thumb conditional branch outside of an IT block is a tBcc.
9853 if (Inst
.getOperand(1).getImm() != ARMCC::AL
&& !inITBlock()) {
9854 Inst
.setOpcode(ARM::tBcc
);
9859 // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
9860 if (Inst
.getOperand(1).getImm() != ARMCC::AL
&& !inITBlock()){
9861 Inst
.setOpcode(ARM::t2Bcc
);
9866 // If the conditional is AL or we're in an IT block, we really want t2B.
9867 if (Inst
.getOperand(1).getImm() == ARMCC::AL
|| inITBlock()) {
9868 Inst
.setOpcode(ARM::t2B
);
9873 // If the conditional is AL, we really want tB.
9874 if (Inst
.getOperand(1).getImm() == ARMCC::AL
) {
9875 Inst
.setOpcode(ARM::tB
);
9880 // If the register list contains any high registers, or if the writeback
9881 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
9882 // instead if we're in Thumb2. Otherwise, this should have generated
9883 // an error in validateInstruction().
9884 unsigned Rn
= Inst
.getOperand(0).getReg();
9885 bool hasWritebackToken
=
9886 (static_cast<ARMOperand
&>(*Operands
[3]).isToken() &&
9887 static_cast<ARMOperand
&>(*Operands
[3]).getToken() == "!");
9888 bool listContainsBase
;
9889 if (checkLowRegisterList(Inst
, 3, Rn
, 0, listContainsBase
) ||
9890 (!listContainsBase
&& !hasWritebackToken
) ||
9891 (listContainsBase
&& hasWritebackToken
)) {
9892 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
9893 assert(isThumbTwo());
9894 Inst
.setOpcode(hasWritebackToken
? ARM::t2LDMIA_UPD
: ARM::t2LDMIA
);
9895 // If we're switching to the updating version, we need to insert
9896 // the writeback tied operand.
9897 if (hasWritebackToken
)
9898 Inst
.insert(Inst
.begin(),
9899 MCOperand::createReg(Inst
.getOperand(0).getReg()));
9904 case ARM::tSTMIA_UPD
: {
9905 // If the register list contains any high registers, we need to use
9906 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
9907 // should have generated an error in validateInstruction().
9908 unsigned Rn
= Inst
.getOperand(0).getReg();
9909 bool listContainsBase
;
9910 if (checkLowRegisterList(Inst
, 4, Rn
, 0, listContainsBase
)) {
9911 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
9912 assert(isThumbTwo());
9913 Inst
.setOpcode(ARM::t2STMIA_UPD
);
9919 bool listContainsBase
;
9920 // If the register list contains any high registers, we need to use
9921 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
9922 // should have generated an error in validateInstruction().
9923 if (!checkLowRegisterList(Inst
, 2, 0, ARM::PC
, listContainsBase
))
9925 assert(isThumbTwo());
9926 Inst
.setOpcode(ARM::t2LDMIA_UPD
);
9927 // Add the base register and writeback operands.
9928 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
9929 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
9933 bool listContainsBase
;
9934 if (!checkLowRegisterList(Inst
, 2, 0, ARM::LR
, listContainsBase
))
9936 assert(isThumbTwo());
9937 Inst
.setOpcode(ARM::t2STMDB_UPD
);
9938 // Add the base register and writeback operands.
9939 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
9940 Inst
.insert(Inst
.begin(), MCOperand::createReg(ARM::SP
));
9944 // If we can use the 16-bit encoding and the user didn't explicitly
9945 // request the 32-bit variant, transform it here.
9946 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
9947 (Inst
.getOperand(1).isImm() &&
9948 (unsigned)Inst
.getOperand(1).getImm() <= 255) &&
9949 Inst
.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
9950 !HasWideQualifier
) {
9951 // The operands aren't in the same order for tMOVi8...
9953 TmpInst
.setOpcode(ARM::tMOVi8
);
9954 TmpInst
.addOperand(Inst
.getOperand(0));
9955 TmpInst
.addOperand(Inst
.getOperand(4));
9956 TmpInst
.addOperand(Inst
.getOperand(1));
9957 TmpInst
.addOperand(Inst
.getOperand(2));
9958 TmpInst
.addOperand(Inst
.getOperand(3));
9965 // If we can use the 16-bit encoding and the user didn't explicitly
9966 // request the 32-bit variant, transform it here.
9967 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
9968 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
9969 Inst
.getOperand(2).getImm() == ARMCC::AL
&&
9970 Inst
.getOperand(4).getReg() == ARM::CPSR
&&
9971 !HasWideQualifier
) {
9972 // The operands aren't the same for tMOV[S]r... (no cc_out)
9974 TmpInst
.setOpcode(Inst
.getOperand(4).getReg() ? ARM::tMOVSr
: ARM::tMOVr
);
9975 TmpInst
.addOperand(Inst
.getOperand(0));
9976 TmpInst
.addOperand(Inst
.getOperand(1));
9977 TmpInst
.addOperand(Inst
.getOperand(2));
9978 TmpInst
.addOperand(Inst
.getOperand(3));
9988 // If we can use the 16-bit encoding and the user didn't explicitly
9989 // request the 32-bit variant, transform it here.
9990 if (isARMLowRegister(Inst
.getOperand(0).getReg()) &&
9991 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
9992 Inst
.getOperand(2).getImm() == 0 &&
9993 !HasWideQualifier
) {
9995 switch (Inst
.getOpcode()) {
9996 default: llvm_unreachable("Illegal opcode!");
9997 case ARM::t2SXTH
: NewOpc
= ARM::tSXTH
; break;
9998 case ARM::t2SXTB
: NewOpc
= ARM::tSXTB
; break;
9999 case ARM::t2UXTH
: NewOpc
= ARM::tUXTH
; break;
10000 case ARM::t2UXTB
: NewOpc
= ARM::tUXTB
; break;
10002 // The operands aren't the same for thumb1 (no rotate operand).
10004 TmpInst
.setOpcode(NewOpc
);
10005 TmpInst
.addOperand(Inst
.getOperand(0));
10006 TmpInst
.addOperand(Inst
.getOperand(1));
10007 TmpInst
.addOperand(Inst
.getOperand(3));
10008 TmpInst
.addOperand(Inst
.getOperand(4));
10015 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(Inst
.getOperand(2).getImm());
10016 // rrx shifts and asr/lsr of #32 is encoded as 0
10017 if (SOpc
== ARM_AM::rrx
|| SOpc
== ARM_AM::asr
|| SOpc
== ARM_AM::lsr
)
10019 if (ARM_AM::getSORegOffset(Inst
.getOperand(2).getImm()) == 0) {
10020 // Shifting by zero is accepted as a vanilla 'MOVr'
10022 TmpInst
.setOpcode(ARM::MOVr
);
10023 TmpInst
.addOperand(Inst
.getOperand(0));
10024 TmpInst
.addOperand(Inst
.getOperand(1));
10025 TmpInst
.addOperand(Inst
.getOperand(3));
10026 TmpInst
.addOperand(Inst
.getOperand(4));
10027 TmpInst
.addOperand(Inst
.getOperand(5));
10038 case ARM::ADDrsi
: {
10040 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(Inst
.getOperand(3).getImm());
10041 if (SOpc
== ARM_AM::rrx
) return false;
10042 switch (Inst
.getOpcode()) {
10043 default: llvm_unreachable("unexpected opcode!");
10044 case ARM::ANDrsi
: newOpc
= ARM::ANDrr
; break;
10045 case ARM::ORRrsi
: newOpc
= ARM::ORRrr
; break;
10046 case ARM::EORrsi
: newOpc
= ARM::EORrr
; break;
10047 case ARM::BICrsi
: newOpc
= ARM::BICrr
; break;
10048 case ARM::SUBrsi
: newOpc
= ARM::SUBrr
; break;
10049 case ARM::ADDrsi
: newOpc
= ARM::ADDrr
; break;
10051 // If the shift is by zero, use the non-shifted instruction definition.
10052 // The exception is for right shifts, where 0 == 32
10053 if (ARM_AM::getSORegOffset(Inst
.getOperand(3).getImm()) == 0 &&
10054 !(SOpc
== ARM_AM::lsr
|| SOpc
== ARM_AM::asr
)) {
10056 TmpInst
.setOpcode(newOpc
);
10057 TmpInst
.addOperand(Inst
.getOperand(0));
10058 TmpInst
.addOperand(Inst
.getOperand(1));
10059 TmpInst
.addOperand(Inst
.getOperand(2));
10060 TmpInst
.addOperand(Inst
.getOperand(4));
10061 TmpInst
.addOperand(Inst
.getOperand(5));
10062 TmpInst
.addOperand(Inst
.getOperand(6));
10070 // Set up the IT block state according to the IT instruction we just
10072 assert(!inITBlock() && "nested IT blocks?!");
10073 startExplicitITBlock(ARMCC::CondCodes(Inst
.getOperand(0).getImm()),
10074 Inst
.getOperand(1).getImm());
10083 // Assemblers should use the narrow encodings of these instructions when permissible.
10084 if ((isARMLowRegister(Inst
.getOperand(1).getReg()) &&
10085 isARMLowRegister(Inst
.getOperand(2).getReg())) &&
10086 Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() &&
10087 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
10088 !HasWideQualifier
) {
10090 switch (Inst
.getOpcode()) {
10091 default: llvm_unreachable("unexpected opcode");
10092 case ARM::t2LSLrr
: NewOpc
= ARM::tLSLrr
; break;
10093 case ARM::t2LSRrr
: NewOpc
= ARM::tLSRrr
; break;
10094 case ARM::t2ASRrr
: NewOpc
= ARM::tASRrr
; break;
10095 case ARM::t2SBCrr
: NewOpc
= ARM::tSBC
; break;
10096 case ARM::t2RORrr
: NewOpc
= ARM::tROR
; break;
10097 case ARM::t2BICrr
: NewOpc
= ARM::tBIC
; break;
10100 TmpInst
.setOpcode(NewOpc
);
10101 TmpInst
.addOperand(Inst
.getOperand(0));
10102 TmpInst
.addOperand(Inst
.getOperand(5));
10103 TmpInst
.addOperand(Inst
.getOperand(1));
10104 TmpInst
.addOperand(Inst
.getOperand(2));
10105 TmpInst
.addOperand(Inst
.getOperand(3));
10106 TmpInst
.addOperand(Inst
.getOperand(4));
10116 // Assemblers should use the narrow encodings of these instructions when permissible.
10117 // These instructions are special in that they are commutable, so shorter encodings
10118 // are available more often.
10119 if ((isARMLowRegister(Inst
.getOperand(1).getReg()) &&
10120 isARMLowRegister(Inst
.getOperand(2).getReg())) &&
10121 (Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg() ||
10122 Inst
.getOperand(0).getReg() == Inst
.getOperand(2).getReg()) &&
10123 Inst
.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR
) &&
10124 !HasWideQualifier
) {
10126 switch (Inst
.getOpcode()) {
10127 default: llvm_unreachable("unexpected opcode");
10128 case ARM::t2ADCrr
: NewOpc
= ARM::tADC
; break;
10129 case ARM::t2ANDrr
: NewOpc
= ARM::tAND
; break;
10130 case ARM::t2EORrr
: NewOpc
= ARM::tEOR
; break;
10131 case ARM::t2ORRrr
: NewOpc
= ARM::tORR
; break;
10134 TmpInst
.setOpcode(NewOpc
);
10135 TmpInst
.addOperand(Inst
.getOperand(0));
10136 TmpInst
.addOperand(Inst
.getOperand(5));
10137 if (Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg()) {
10138 TmpInst
.addOperand(Inst
.getOperand(1));
10139 TmpInst
.addOperand(Inst
.getOperand(2));
10141 TmpInst
.addOperand(Inst
.getOperand(2));
10142 TmpInst
.addOperand(Inst
.getOperand(1));
10144 TmpInst
.addOperand(Inst
.getOperand(3));
10145 TmpInst
.addOperand(Inst
.getOperand(4));
10150 case ARM::MVE_VPST
:
10151 case ARM::MVE_VPTv16i8
:
10152 case ARM::MVE_VPTv8i16
:
10153 case ARM::MVE_VPTv4i32
:
10154 case ARM::MVE_VPTv16u8
:
10155 case ARM::MVE_VPTv8u16
:
10156 case ARM::MVE_VPTv4u32
:
10157 case ARM::MVE_VPTv16s8
:
10158 case ARM::MVE_VPTv8s16
:
10159 case ARM::MVE_VPTv4s32
:
10160 case ARM::MVE_VPTv4f32
:
10161 case ARM::MVE_VPTv8f16
:
10162 case ARM::MVE_VPTv16i8r
:
10163 case ARM::MVE_VPTv8i16r
:
10164 case ARM::MVE_VPTv4i32r
:
10165 case ARM::MVE_VPTv16u8r
:
10166 case ARM::MVE_VPTv8u16r
:
10167 case ARM::MVE_VPTv4u32r
:
10168 case ARM::MVE_VPTv16s8r
:
10169 case ARM::MVE_VPTv8s16r
:
10170 case ARM::MVE_VPTv4s32r
:
10171 case ARM::MVE_VPTv4f32r
:
10172 case ARM::MVE_VPTv8f16r
: {
10173 assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10174 MCOperand
&MO
= Inst
.getOperand(0);
10175 VPTState
.Mask
= MO
.getImm();
10176 VPTState
.CurPosition
= 0;
10183 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst
&Inst
) {
10184 // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10185 // suffix depending on whether they're in an IT block or not.
10186 unsigned Opc
= Inst
.getOpcode();
10187 const MCInstrDesc
&MCID
= MII
.get(Opc
);
10188 if (MCID
.TSFlags
& ARMII::ThumbArithFlagSetting
) {
10189 assert(MCID
.hasOptionalDef() &&
10190 "optionally flag setting instruction missing optional def operand");
10191 assert(MCID
.NumOperands
== Inst
.getNumOperands() &&
10192 "operand count mismatch!");
10193 // Find the optional-def operand (cc_out).
10196 !MCID
.OpInfo
[OpNo
].isOptionalDef() && OpNo
< MCID
.NumOperands
;
10199 // If we're parsing Thumb1, reject it completely.
10200 if (isThumbOne() && Inst
.getOperand(OpNo
).getReg() != ARM::CPSR
)
10201 return Match_RequiresFlagSetting
;
10202 // If we're parsing Thumb2, which form is legal depends on whether we're
10204 if (isThumbTwo() && Inst
.getOperand(OpNo
).getReg() != ARM::CPSR
&&
10206 return Match_RequiresITBlock
;
10207 if (isThumbTwo() && Inst
.getOperand(OpNo
).getReg() == ARM::CPSR
&&
10209 return Match_RequiresNotITBlock
;
10210 // LSL with zero immediate is not allowed in an IT block
10211 if (Opc
== ARM::tLSLri
&& Inst
.getOperand(3).getImm() == 0 && inITBlock())
10212 return Match_RequiresNotITBlock
;
10213 } else if (isThumbOne()) {
10214 // Some high-register supporting Thumb1 encodings only allow both registers
10215 // to be from r0-r7 when in Thumb2.
10216 if (Opc
== ARM::tADDhirr
&& !hasV6MOps() &&
10217 isARMLowRegister(Inst
.getOperand(1).getReg()) &&
10218 isARMLowRegister(Inst
.getOperand(2).getReg()))
10219 return Match_RequiresThumb2
;
10220 // Others only require ARMv6 or later.
10221 else if (Opc
== ARM::tMOVr
&& !hasV6Ops() &&
10222 isARMLowRegister(Inst
.getOperand(0).getReg()) &&
10223 isARMLowRegister(Inst
.getOperand(1).getReg()))
10224 return Match_RequiresV6
;
10227 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10228 // than the loop below can handle, so it uses the GPRnopc register class and
10229 // we do SP handling here.
10230 if (Opc
== ARM::t2MOVr
&& !hasV8Ops())
10232 // SP as both source and destination is not allowed
10233 if (Inst
.getOperand(0).getReg() == ARM::SP
&&
10234 Inst
.getOperand(1).getReg() == ARM::SP
)
10235 return Match_RequiresV8
;
10236 // When flags-setting SP as either source or destination is not allowed
10237 if (Inst
.getOperand(4).getReg() == ARM::CPSR
&&
10238 (Inst
.getOperand(0).getReg() == ARM::SP
||
10239 Inst
.getOperand(1).getReg() == ARM::SP
))
10240 return Match_RequiresV8
;
10243 switch (Inst
.getOpcode()) {
10246 case ARM::VMRS_FPCXTS
:
10247 case ARM::VMRS_FPCXTNS
:
10248 case ARM::VMSR_FPCXTS
:
10249 case ARM::VMSR_FPCXTNS
:
10250 case ARM::VMRS_FPSCR_NZCVQC
:
10251 case ARM::VMSR_FPSCR_NZCVQC
:
10253 case ARM::VMRS_VPR
:
10255 case ARM::VMSR_VPR
:
10257 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10259 if (Inst
.getOperand(0).isReg() && Inst
.getOperand(0).getReg() == ARM::SP
&&
10260 (isThumb() && !hasV8Ops()))
10261 return Match_InvalidOperand
;
10267 for (unsigned I
= 0; I
< MCID
.NumOperands
; ++I
)
10268 if (MCID
.OpInfo
[I
].RegClass
== ARM::rGPRRegClassID
) {
10269 // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10270 const auto &Op
= Inst
.getOperand(I
);
10272 // This can happen in awkward cases with tied operands, e.g. a
10273 // writeback load/store with a complex addressing mode in
10274 // which there's an output operand corresponding to the
10275 // updated written-back base register: the Tablegen-generated
10276 // AsmMatcher will have written a placeholder operand to that
10277 // slot in the form of an immediate 0, because it can't
10278 // generate the register part of the complex addressing-mode
10279 // operand ahead of time.
10283 unsigned Reg
= Op
.getReg();
10284 if ((Reg
== ARM::SP
) && !hasV8Ops())
10285 return Match_RequiresV8
;
10286 else if (Reg
== ARM::PC
)
10287 return Match_InvalidOperand
;
10290 return Match_Success
;
10295 template <> inline bool IsCPSRDead
<MCInst
>(const MCInst
*Instr
) {
10296 return true; // In an assembly source, no need to second-guess
10299 } // end namespace llvm
10301 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10302 // the last instruction in the block.
10303 bool ARMAsmParser::isITBlockTerminator(MCInst
&Inst
) const {
10304 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
10306 // All branch & call instructions terminate IT blocks with the exception of
10308 if (MCID
.isTerminator() || (MCID
.isCall() && Inst
.getOpcode() != ARM::tSVC
) ||
10309 MCID
.isReturn() || MCID
.isBranch() || MCID
.isIndirectBranch())
10312 // Any arithmetic instruction which writes to the PC also terminates the IT
10314 if (MCID
.hasDefOfPhysReg(Inst
, ARM::PC
, *MRI
))
10320 unsigned ARMAsmParser::MatchInstruction(OperandVector
&Operands
, MCInst
&Inst
,
10321 SmallVectorImpl
<NearMissInfo
> &NearMisses
,
10322 bool MatchingInlineAsm
,
10323 bool &EmitInITBlock
,
10325 // If we can't use an implicit IT block here, just match as normal.
10326 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10327 return MatchInstructionImpl(Operands
, Inst
, &NearMisses
, MatchingInlineAsm
);
10329 // Try to match the instruction in an extension of the current IT block (if
10331 if (inImplicitITBlock()) {
10332 extendImplicitITBlock(ITState
.Cond
);
10333 if (MatchInstructionImpl(Operands
, Inst
, nullptr, MatchingInlineAsm
) ==
10335 // The match succeded, but we still have to check that the instruction is
10336 // valid in this implicit IT block.
10337 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
10338 if (MCID
.isPredicable()) {
10339 ARMCC::CondCodes InstCond
=
10340 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
10342 ARMCC::CondCodes ITCond
= currentITCond();
10343 if (InstCond
== ITCond
) {
10344 EmitInITBlock
= true;
10345 return Match_Success
;
10346 } else if (InstCond
== ARMCC::getOppositeCondition(ITCond
)) {
10347 invertCurrentITCondition();
10348 EmitInITBlock
= true;
10349 return Match_Success
;
10353 rewindImplicitITPosition();
10356 // Finish the current IT block, and try to match outside any IT block.
10357 flushPendingInstructions(Out
);
10358 unsigned PlainMatchResult
=
10359 MatchInstructionImpl(Operands
, Inst
, &NearMisses
, MatchingInlineAsm
);
10360 if (PlainMatchResult
== Match_Success
) {
10361 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
10362 if (MCID
.isPredicable()) {
10363 ARMCC::CondCodes InstCond
=
10364 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
10366 // Some forms of the branch instruction have their own condition code
10367 // fields, so can be conditionally executed without an IT block.
10368 if (Inst
.getOpcode() == ARM::tBcc
|| Inst
.getOpcode() == ARM::t2Bcc
) {
10369 EmitInITBlock
= false;
10370 return Match_Success
;
10372 if (InstCond
== ARMCC::AL
) {
10373 EmitInITBlock
= false;
10374 return Match_Success
;
10377 EmitInITBlock
= false;
10378 return Match_Success
;
10382 // Try to match in a new IT block. The matcher doesn't check the actual
10383 // condition, so we create an IT block with a dummy condition, and fix it up
10384 // once we know the actual condition.
10385 startImplicitITBlock();
10386 if (MatchInstructionImpl(Operands
, Inst
, nullptr, MatchingInlineAsm
) ==
10388 const MCInstrDesc
&MCID
= MII
.get(Inst
.getOpcode());
10389 if (MCID
.isPredicable()) {
10391 (ARMCC::CondCodes
)Inst
.getOperand(MCID
.findFirstPredOperandIdx())
10393 EmitInITBlock
= true;
10394 return Match_Success
;
10397 discardImplicitITBlock();
10399 // If none of these succeed, return the error we got when trying to match
10400 // outside any IT blocks.
10401 EmitInITBlock
= false;
10402 return PlainMatchResult
;
10405 static std::string
ARMMnemonicSpellCheck(StringRef S
, const FeatureBitset
&FBS
,
10406 unsigned VariantID
= 0);
10408 static const char *getSubtargetFeatureName(uint64_t Val
);
10409 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc
, unsigned &Opcode
,
10410 OperandVector
&Operands
,
10411 MCStreamer
&Out
, uint64_t &ErrorInfo
,
10412 bool MatchingInlineAsm
) {
10414 unsigned MatchResult
;
10415 bool PendConditionalInstruction
= false;
10417 SmallVector
<NearMissInfo
, 4> NearMisses
;
10418 MatchResult
= MatchInstruction(Operands
, Inst
, NearMisses
, MatchingInlineAsm
,
10419 PendConditionalInstruction
, Out
);
10421 switch (MatchResult
) {
10422 case Match_Success
:
10423 LLVM_DEBUG(dbgs() << "Parsed as: ";
10424 Inst
.dump_pretty(dbgs(), MII
.getName(Inst
.getOpcode()));
10427 // Context sensitive operand constraints aren't handled by the matcher,
10428 // so check them here.
10429 if (validateInstruction(Inst
, Operands
)) {
10430 // Still progress the IT block, otherwise one wrong condition causes
10431 // nasty cascading errors.
10432 forwardITPosition();
10433 forwardVPTPosition();
10437 { // processInstruction() updates inITBlock state, we need to save it away
10438 bool wasInITBlock
= inITBlock();
10440 // Some instructions need post-processing to, for example, tweak which
10441 // encoding is selected. Loop on it while changes happen so the
10442 // individual transformations can chain off each other. E.g.,
10443 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
10444 while (processInstruction(Inst
, Operands
, Out
))
10445 LLVM_DEBUG(dbgs() << "Changed to: ";
10446 Inst
.dump_pretty(dbgs(), MII
.getName(Inst
.getOpcode()));
10449 // Only after the instruction is fully processed, we can validate it
10450 if (wasInITBlock
&& hasV8Ops() && isThumb() &&
10451 !isV8EligibleForIT(&Inst
)) {
10452 Warning(IDLoc
, "deprecated instruction in IT block");
10456 // Only move forward at the very end so that everything in validate
10457 // and process gets a consistent answer about whether we're in an IT
10459 forwardITPosition();
10460 forwardVPTPosition();
10462 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
10463 // doesn't actually encode.
10464 if (Inst
.getOpcode() == ARM::ITasm
)
10467 Inst
.setLoc(IDLoc
);
10468 if (PendConditionalInstruction
) {
10469 PendingConditionalInsts
.push_back(Inst
);
10470 if (isITBlockFull() || isITBlockTerminator(Inst
))
10471 flushPendingInstructions(Out
);
10473 Out
.EmitInstruction(Inst
, getSTI());
10476 case Match_NearMisses
:
10477 ReportNearMisses(NearMisses
, IDLoc
, Operands
);
10479 case Match_MnemonicFail
: {
10480 FeatureBitset FBS
= ComputeAvailableFeatures(getSTI().getFeatureBits());
10481 std::string Suggestion
= ARMMnemonicSpellCheck(
10482 ((ARMOperand
&)*Operands
[0]).getToken(), FBS
);
10483 return Error(IDLoc
, "invalid instruction" + Suggestion
,
10484 ((ARMOperand
&)*Operands
[0]).getLocRange());
10488 llvm_unreachable("Implement any new match types added!");
10491 /// parseDirective parses the arm specific directives
10492 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID
) {
10493 const MCObjectFileInfo::Environment Format
=
10494 getContext().getObjectFileInfo()->getObjectFileType();
10495 bool IsMachO
= Format
== MCObjectFileInfo::IsMachO
;
10496 bool IsCOFF
= Format
== MCObjectFileInfo::IsCOFF
;
10498 StringRef IDVal
= DirectiveID
.getIdentifier();
10499 if (IDVal
== ".word")
10500 parseLiteralValues(4, DirectiveID
.getLoc());
10501 else if (IDVal
== ".short" || IDVal
== ".hword")
10502 parseLiteralValues(2, DirectiveID
.getLoc());
10503 else if (IDVal
== ".thumb")
10504 parseDirectiveThumb(DirectiveID
.getLoc());
10505 else if (IDVal
== ".arm")
10506 parseDirectiveARM(DirectiveID
.getLoc());
10507 else if (IDVal
== ".thumb_func")
10508 parseDirectiveThumbFunc(DirectiveID
.getLoc());
10509 else if (IDVal
== ".code")
10510 parseDirectiveCode(DirectiveID
.getLoc());
10511 else if (IDVal
== ".syntax")
10512 parseDirectiveSyntax(DirectiveID
.getLoc());
10513 else if (IDVal
== ".unreq")
10514 parseDirectiveUnreq(DirectiveID
.getLoc());
10515 else if (IDVal
== ".fnend")
10516 parseDirectiveFnEnd(DirectiveID
.getLoc());
10517 else if (IDVal
== ".cantunwind")
10518 parseDirectiveCantUnwind(DirectiveID
.getLoc());
10519 else if (IDVal
== ".personality")
10520 parseDirectivePersonality(DirectiveID
.getLoc());
10521 else if (IDVal
== ".handlerdata")
10522 parseDirectiveHandlerData(DirectiveID
.getLoc());
10523 else if (IDVal
== ".setfp")
10524 parseDirectiveSetFP(DirectiveID
.getLoc());
10525 else if (IDVal
== ".pad")
10526 parseDirectivePad(DirectiveID
.getLoc());
10527 else if (IDVal
== ".save")
10528 parseDirectiveRegSave(DirectiveID
.getLoc(), false);
10529 else if (IDVal
== ".vsave")
10530 parseDirectiveRegSave(DirectiveID
.getLoc(), true);
10531 else if (IDVal
== ".ltorg" || IDVal
== ".pool")
10532 parseDirectiveLtorg(DirectiveID
.getLoc());
10533 else if (IDVal
== ".even")
10534 parseDirectiveEven(DirectiveID
.getLoc());
10535 else if (IDVal
== ".personalityindex")
10536 parseDirectivePersonalityIndex(DirectiveID
.getLoc());
10537 else if (IDVal
== ".unwind_raw")
10538 parseDirectiveUnwindRaw(DirectiveID
.getLoc());
10539 else if (IDVal
== ".movsp")
10540 parseDirectiveMovSP(DirectiveID
.getLoc());
10541 else if (IDVal
== ".arch_extension")
10542 parseDirectiveArchExtension(DirectiveID
.getLoc());
10543 else if (IDVal
== ".align")
10544 return parseDirectiveAlign(DirectiveID
.getLoc()); // Use Generic on failure.
10545 else if (IDVal
== ".thumb_set")
10546 parseDirectiveThumbSet(DirectiveID
.getLoc());
10547 else if (IDVal
== ".inst")
10548 parseDirectiveInst(DirectiveID
.getLoc());
10549 else if (IDVal
== ".inst.n")
10550 parseDirectiveInst(DirectiveID
.getLoc(), 'n');
10551 else if (IDVal
== ".inst.w")
10552 parseDirectiveInst(DirectiveID
.getLoc(), 'w');
10553 else if (!IsMachO
&& !IsCOFF
) {
10554 if (IDVal
== ".arch")
10555 parseDirectiveArch(DirectiveID
.getLoc());
10556 else if (IDVal
== ".cpu")
10557 parseDirectiveCPU(DirectiveID
.getLoc());
10558 else if (IDVal
== ".eabi_attribute")
10559 parseDirectiveEabiAttr(DirectiveID
.getLoc());
10560 else if (IDVal
== ".fpu")
10561 parseDirectiveFPU(DirectiveID
.getLoc());
10562 else if (IDVal
== ".fnstart")
10563 parseDirectiveFnStart(DirectiveID
.getLoc());
10564 else if (IDVal
== ".object_arch")
10565 parseDirectiveObjectArch(DirectiveID
.getLoc());
10566 else if (IDVal
== ".tlsdescseq")
10567 parseDirectiveTLSDescSeq(DirectiveID
.getLoc());
10575 /// parseLiteralValues
10576 /// ::= .hword expression [, expression]*
10577 /// ::= .short expression [, expression]*
10578 /// ::= .word expression [, expression]*
10579 bool ARMAsmParser::parseLiteralValues(unsigned Size
, SMLoc L
) {
10580 auto parseOne
= [&]() -> bool {
10581 const MCExpr
*Value
;
10582 if (getParser().parseExpression(Value
))
10584 getParser().getStreamer().EmitValue(Value
, Size
, L
);
10587 return (parseMany(parseOne
));
10590 /// parseDirectiveThumb
10592 bool ARMAsmParser::parseDirectiveThumb(SMLoc L
) {
10593 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive") ||
10594 check(!hasThumb(), L
, "target does not support Thumb mode"))
10600 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16
);
10604 /// parseDirectiveARM
10606 bool ARMAsmParser::parseDirectiveARM(SMLoc L
) {
10607 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive") ||
10608 check(!hasARM(), L
, "target does not support ARM mode"))
10613 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32
);
10617 void ARMAsmParser::doBeforeLabelEmit(MCSymbol
*Symbol
) {
10618 // We need to flush the current implicit IT block on a label, because it is
10619 // not legal to branch into an IT block.
10620 flushPendingInstructions(getStreamer());
10623 void ARMAsmParser::onLabelParsed(MCSymbol
*Symbol
) {
10624 if (NextSymbolIsThumb
) {
10625 getParser().getStreamer().EmitThumbFunc(Symbol
);
10626 NextSymbolIsThumb
= false;
10630 /// parseDirectiveThumbFunc
10631 /// ::= .thumbfunc symbol_name
10632 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L
) {
10633 MCAsmParser
&Parser
= getParser();
10634 const auto Format
= getContext().getObjectFileInfo()->getObjectFileType();
10635 bool IsMachO
= Format
== MCObjectFileInfo::IsMachO
;
10637 // Darwin asm has (optionally) function name after .thumb_func direction
10641 if (Parser
.getTok().is(AsmToken::Identifier
) ||
10642 Parser
.getTok().is(AsmToken::String
)) {
10643 MCSymbol
*Func
= getParser().getContext().getOrCreateSymbol(
10644 Parser
.getTok().getIdentifier());
10645 getParser().getStreamer().EmitThumbFunc(Func
);
10647 if (parseToken(AsmToken::EndOfStatement
,
10648 "unexpected token in '.thumb_func' directive"))
10654 if (parseToken(AsmToken::EndOfStatement
,
10655 "unexpected token in '.thumb_func' directive"))
10658 NextSymbolIsThumb
= true;
10662 /// parseDirectiveSyntax
10663 /// ::= .syntax unified | divided
10664 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L
) {
10665 MCAsmParser
&Parser
= getParser();
10666 const AsmToken
&Tok
= Parser
.getTok();
10667 if (Tok
.isNot(AsmToken::Identifier
)) {
10668 Error(L
, "unexpected token in .syntax directive");
10672 StringRef Mode
= Tok
.getString();
10674 if (check(Mode
== "divided" || Mode
== "DIVIDED", L
,
10675 "'.syntax divided' arm assembly not supported") ||
10676 check(Mode
!= "unified" && Mode
!= "UNIFIED", L
,
10677 "unrecognized syntax mode in .syntax directive") ||
10678 parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
10681 // TODO tell the MC streamer the mode
10682 // getParser().getStreamer().Emit???();
10686 /// parseDirectiveCode
10687 /// ::= .code 16 | 32
10688 bool ARMAsmParser::parseDirectiveCode(SMLoc L
) {
10689 MCAsmParser
&Parser
= getParser();
10690 const AsmToken
&Tok
= Parser
.getTok();
10691 if (Tok
.isNot(AsmToken::Integer
))
10692 return Error(L
, "unexpected token in .code directive");
10693 int64_t Val
= Parser
.getTok().getIntVal();
10694 if (Val
!= 16 && Val
!= 32) {
10695 Error(L
, "invalid operand to .code directive");
10700 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
10705 return Error(L
, "target does not support Thumb mode");
10709 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16
);
10712 return Error(L
, "target does not support ARM mode");
10716 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32
);
10722 /// parseDirectiveReq
10723 /// ::= name .req registername
10724 bool ARMAsmParser::parseDirectiveReq(StringRef Name
, SMLoc L
) {
10725 MCAsmParser
&Parser
= getParser();
10726 Parser
.Lex(); // Eat the '.req' token.
10728 SMLoc SRegLoc
, ERegLoc
;
10729 if (check(ParseRegister(Reg
, SRegLoc
, ERegLoc
), SRegLoc
,
10730 "register name expected") ||
10731 parseToken(AsmToken::EndOfStatement
,
10732 "unexpected input in .req directive."))
10735 if (RegisterReqs
.insert(std::make_pair(Name
, Reg
)).first
->second
!= Reg
)
10736 return Error(SRegLoc
,
10737 "redefinition of '" + Name
+ "' does not match original.");
10742 /// parseDirectiveUneq
10743 /// ::= .unreq registername
10744 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L
) {
10745 MCAsmParser
&Parser
= getParser();
10746 if (Parser
.getTok().isNot(AsmToken::Identifier
))
10747 return Error(L
, "unexpected input in .unreq directive.");
10748 RegisterReqs
.erase(Parser
.getTok().getIdentifier().lower());
10749 Parser
.Lex(); // Eat the identifier.
10750 if (parseToken(AsmToken::EndOfStatement
,
10751 "unexpected input in '.unreq' directive"))
10756 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
10757 // before, if supported by the new target, or emit mapping symbols for the mode
10759 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb
, SMLoc Loc
) {
10760 if (WasThumb
!= isThumb()) {
10761 if (WasThumb
&& hasThumb()) {
10762 // Stay in Thumb mode
10764 } else if (!WasThumb
&& hasARM()) {
10765 // Stay in ARM mode
10768 // Mode switch forced, because the new arch doesn't support the old mode.
10769 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
10771 // Warn about the implcit mode switch. GAS does not switch modes here,
10772 // but instead stays in the old mode, reporting an error on any following
10773 // instructions as the mode does not exist on the target.
10774 Warning(Loc
, Twine("new target does not support ") +
10775 (WasThumb
? "thumb" : "arm") + " mode, switching to " +
10776 (!WasThumb
? "thumb" : "arm") + " mode");
10781 /// parseDirectiveArch
10782 /// ::= .arch token
10783 bool ARMAsmParser::parseDirectiveArch(SMLoc L
) {
10784 StringRef Arch
= getParser().parseStringToEndOfStatement().trim();
10785 ARM::ArchKind ID
= ARM::parseArch(Arch
);
10787 if (ID
== ARM::ArchKind::INVALID
)
10788 return Error(L
, "Unknown arch name");
10790 bool WasThumb
= isThumb();
10792 MCSubtargetInfo
&STI
= copySTI();
10793 STI
.setDefaultFeatures("", ("+" + ARM::getArchName(ID
)).str());
10794 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
10795 FixModeAfterArchChange(WasThumb
, L
);
10797 getTargetStreamer().emitArch(ID
);
10801 /// parseDirectiveEabiAttr
10802 /// ::= .eabi_attribute int, int [, "str"]
10803 /// ::= .eabi_attribute Tag_name, int [, "str"]
10804 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L
) {
10805 MCAsmParser
&Parser
= getParser();
10808 TagLoc
= Parser
.getTok().getLoc();
10809 if (Parser
.getTok().is(AsmToken::Identifier
)) {
10810 StringRef Name
= Parser
.getTok().getIdentifier();
10811 Tag
= ARMBuildAttrs::AttrTypeFromString(Name
);
10813 Error(TagLoc
, "attribute name not recognised: " + Name
);
10818 const MCExpr
*AttrExpr
;
10820 TagLoc
= Parser
.getTok().getLoc();
10821 if (Parser
.parseExpression(AttrExpr
))
10824 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(AttrExpr
);
10825 if (check(!CE
, TagLoc
, "expected numeric constant"))
10828 Tag
= CE
->getValue();
10831 if (Parser
.parseToken(AsmToken::Comma
, "comma expected"))
10834 StringRef StringValue
= "";
10835 bool IsStringValue
= false;
10837 int64_t IntegerValue
= 0;
10838 bool IsIntegerValue
= false;
10840 if (Tag
== ARMBuildAttrs::CPU_raw_name
|| Tag
== ARMBuildAttrs::CPU_name
)
10841 IsStringValue
= true;
10842 else if (Tag
== ARMBuildAttrs::compatibility
) {
10843 IsStringValue
= true;
10844 IsIntegerValue
= true;
10845 } else if (Tag
< 32 || Tag
% 2 == 0)
10846 IsIntegerValue
= true;
10847 else if (Tag
% 2 == 1)
10848 IsStringValue
= true;
10850 llvm_unreachable("invalid tag type");
10852 if (IsIntegerValue
) {
10853 const MCExpr
*ValueExpr
;
10854 SMLoc ValueExprLoc
= Parser
.getTok().getLoc();
10855 if (Parser
.parseExpression(ValueExpr
))
10858 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(ValueExpr
);
10860 return Error(ValueExprLoc
, "expected numeric constant");
10861 IntegerValue
= CE
->getValue();
10864 if (Tag
== ARMBuildAttrs::compatibility
) {
10865 if (Parser
.parseToken(AsmToken::Comma
, "comma expected"))
10869 if (IsStringValue
) {
10870 if (Parser
.getTok().isNot(AsmToken::String
))
10871 return Error(Parser
.getTok().getLoc(), "bad string constant");
10873 StringValue
= Parser
.getTok().getStringContents();
10877 if (Parser
.parseToken(AsmToken::EndOfStatement
,
10878 "unexpected token in '.eabi_attribute' directive"))
10881 if (IsIntegerValue
&& IsStringValue
) {
10882 assert(Tag
== ARMBuildAttrs::compatibility
);
10883 getTargetStreamer().emitIntTextAttribute(Tag
, IntegerValue
, StringValue
);
10884 } else if (IsIntegerValue
)
10885 getTargetStreamer().emitAttribute(Tag
, IntegerValue
);
10886 else if (IsStringValue
)
10887 getTargetStreamer().emitTextAttribute(Tag
, StringValue
);
10891 /// parseDirectiveCPU
10893 bool ARMAsmParser::parseDirectiveCPU(SMLoc L
) {
10894 StringRef CPU
= getParser().parseStringToEndOfStatement().trim();
10895 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name
, CPU
);
10897 // FIXME: This is using table-gen data, but should be moved to
10898 // ARMTargetParser once that is table-gen'd.
10899 if (!getSTI().isCPUStringValid(CPU
))
10900 return Error(L
, "Unknown CPU name");
10902 bool WasThumb
= isThumb();
10903 MCSubtargetInfo
&STI
= copySTI();
10904 STI
.setDefaultFeatures(CPU
, "");
10905 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
10906 FixModeAfterArchChange(WasThumb
, L
);
10911 /// parseDirectiveFPU
10913 bool ARMAsmParser::parseDirectiveFPU(SMLoc L
) {
10914 SMLoc FPUNameLoc
= getTok().getLoc();
10915 StringRef FPU
= getParser().parseStringToEndOfStatement().trim();
10917 unsigned ID
= ARM::parseFPU(FPU
);
10918 std::vector
<StringRef
> Features
;
10919 if (!ARM::getFPUFeatures(ID
, Features
))
10920 return Error(FPUNameLoc
, "Unknown FPU name");
10922 MCSubtargetInfo
&STI
= copySTI();
10923 for (auto Feature
: Features
)
10924 STI
.ApplyFeatureFlag(Feature
);
10925 setAvailableFeatures(ComputeAvailableFeatures(STI
.getFeatureBits()));
10927 getTargetStreamer().emitFPU(ID
);
10931 /// parseDirectiveFnStart
10933 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L
) {
10934 if (parseToken(AsmToken::EndOfStatement
,
10935 "unexpected token in '.fnstart' directive"))
10938 if (UC
.hasFnStart()) {
10939 Error(L
, ".fnstart starts before the end of previous one");
10940 UC
.emitFnStartLocNotes();
10944 // Reset the unwind directives parser state
10947 getTargetStreamer().emitFnStart();
10949 UC
.recordFnStart(L
);
10953 /// parseDirectiveFnEnd
10955 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L
) {
10956 if (parseToken(AsmToken::EndOfStatement
,
10957 "unexpected token in '.fnend' directive"))
10959 // Check the ordering of unwind directives
10960 if (!UC
.hasFnStart())
10961 return Error(L
, ".fnstart must precede .fnend directive");
10963 // Reset the unwind directives parser state
10964 getTargetStreamer().emitFnEnd();
10970 /// parseDirectiveCantUnwind
10971 /// ::= .cantunwind
10972 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L
) {
10973 if (parseToken(AsmToken::EndOfStatement
,
10974 "unexpected token in '.cantunwind' directive"))
10977 UC
.recordCantUnwind(L
);
10978 // Check the ordering of unwind directives
10979 if (check(!UC
.hasFnStart(), L
, ".fnstart must precede .cantunwind directive"))
10982 if (UC
.hasHandlerData()) {
10983 Error(L
, ".cantunwind can't be used with .handlerdata directive");
10984 UC
.emitHandlerDataLocNotes();
10987 if (UC
.hasPersonality()) {
10988 Error(L
, ".cantunwind can't be used with .personality directive");
10989 UC
.emitPersonalityLocNotes();
10993 getTargetStreamer().emitCantUnwind();
10997 /// parseDirectivePersonality
10998 /// ::= .personality name
10999 bool ARMAsmParser::parseDirectivePersonality(SMLoc L
) {
11000 MCAsmParser
&Parser
= getParser();
11001 bool HasExistingPersonality
= UC
.hasPersonality();
11003 // Parse the name of the personality routine
11004 if (Parser
.getTok().isNot(AsmToken::Identifier
))
11005 return Error(L
, "unexpected input in .personality directive.");
11006 StringRef
Name(Parser
.getTok().getIdentifier());
11009 if (parseToken(AsmToken::EndOfStatement
,
11010 "unexpected token in '.personality' directive"))
11013 UC
.recordPersonality(L
);
11015 // Check the ordering of unwind directives
11016 if (!UC
.hasFnStart())
11017 return Error(L
, ".fnstart must precede .personality directive");
11018 if (UC
.cantUnwind()) {
11019 Error(L
, ".personality can't be used with .cantunwind directive");
11020 UC
.emitCantUnwindLocNotes();
11023 if (UC
.hasHandlerData()) {
11024 Error(L
, ".personality must precede .handlerdata directive");
11025 UC
.emitHandlerDataLocNotes();
11028 if (HasExistingPersonality
) {
11029 Error(L
, "multiple personality directives");
11030 UC
.emitPersonalityLocNotes();
11034 MCSymbol
*PR
= getParser().getContext().getOrCreateSymbol(Name
);
11035 getTargetStreamer().emitPersonality(PR
);
11039 /// parseDirectiveHandlerData
11040 /// ::= .handlerdata
11041 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L
) {
11042 if (parseToken(AsmToken::EndOfStatement
,
11043 "unexpected token in '.handlerdata' directive"))
11046 UC
.recordHandlerData(L
);
11047 // Check the ordering of unwind directives
11048 if (!UC
.hasFnStart())
11049 return Error(L
, ".fnstart must precede .personality directive");
11050 if (UC
.cantUnwind()) {
11051 Error(L
, ".handlerdata can't be used with .cantunwind directive");
11052 UC
.emitCantUnwindLocNotes();
11056 getTargetStreamer().emitHandlerData();
11060 /// parseDirectiveSetFP
11061 /// ::= .setfp fpreg, spreg [, offset]
11062 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L
) {
11063 MCAsmParser
&Parser
= getParser();
11064 // Check the ordering of unwind directives
11065 if (check(!UC
.hasFnStart(), L
, ".fnstart must precede .setfp directive") ||
11066 check(UC
.hasHandlerData(), L
,
11067 ".setfp must precede .handlerdata directive"))
11071 SMLoc FPRegLoc
= Parser
.getTok().getLoc();
11072 int FPReg
= tryParseRegister();
11074 if (check(FPReg
== -1, FPRegLoc
, "frame pointer register expected") ||
11075 Parser
.parseToken(AsmToken::Comma
, "comma expected"))
11079 SMLoc SPRegLoc
= Parser
.getTok().getLoc();
11080 int SPReg
= tryParseRegister();
11081 if (check(SPReg
== -1, SPRegLoc
, "stack pointer register expected") ||
11082 check(SPReg
!= ARM::SP
&& SPReg
!= UC
.getFPReg(), SPRegLoc
,
11083 "register should be either $sp or the latest fp register"))
11086 // Update the frame pointer register
11087 UC
.saveFPReg(FPReg
);
11090 int64_t Offset
= 0;
11091 if (Parser
.parseOptionalToken(AsmToken::Comma
)) {
11092 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
11093 Parser
.getTok().isNot(AsmToken::Dollar
))
11094 return Error(Parser
.getTok().getLoc(), "'#' expected");
11095 Parser
.Lex(); // skip hash token.
11097 const MCExpr
*OffsetExpr
;
11098 SMLoc ExLoc
= Parser
.getTok().getLoc();
11100 if (getParser().parseExpression(OffsetExpr
, EndLoc
))
11101 return Error(ExLoc
, "malformed setfp offset");
11102 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
11103 if (check(!CE
, ExLoc
, "setfp offset must be an immediate"))
11105 Offset
= CE
->getValue();
11108 if (Parser
.parseToken(AsmToken::EndOfStatement
))
11111 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg
),
11112 static_cast<unsigned>(SPReg
), Offset
);
11117 /// ::= .pad offset
11118 bool ARMAsmParser::parseDirectivePad(SMLoc L
) {
11119 MCAsmParser
&Parser
= getParser();
11120 // Check the ordering of unwind directives
11121 if (!UC
.hasFnStart())
11122 return Error(L
, ".fnstart must precede .pad directive");
11123 if (UC
.hasHandlerData())
11124 return Error(L
, ".pad must precede .handlerdata directive");
11126 // Parse the offset
11127 if (Parser
.getTok().isNot(AsmToken::Hash
) &&
11128 Parser
.getTok().isNot(AsmToken::Dollar
))
11129 return Error(Parser
.getTok().getLoc(), "'#' expected");
11130 Parser
.Lex(); // skip hash token.
11132 const MCExpr
*OffsetExpr
;
11133 SMLoc ExLoc
= Parser
.getTok().getLoc();
11135 if (getParser().parseExpression(OffsetExpr
, EndLoc
))
11136 return Error(ExLoc
, "malformed pad offset");
11137 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
11139 return Error(ExLoc
, "pad offset must be an immediate");
11141 if (parseToken(AsmToken::EndOfStatement
,
11142 "unexpected token in '.pad' directive"))
11145 getTargetStreamer().emitPad(CE
->getValue());
11149 /// parseDirectiveRegSave
11150 /// ::= .save { registers }
11151 /// ::= .vsave { registers }
11152 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L
, bool IsVector
) {
11153 // Check the ordering of unwind directives
11154 if (!UC
.hasFnStart())
11155 return Error(L
, ".fnstart must precede .save or .vsave directives");
11156 if (UC
.hasHandlerData())
11157 return Error(L
, ".save or .vsave must precede .handlerdata directive");
11159 // RAII object to make sure parsed operands are deleted.
11160 SmallVector
<std::unique_ptr
<MCParsedAsmOperand
>, 1> Operands
;
11162 // Parse the register list
11163 if (parseRegisterList(Operands
) ||
11164 parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
11166 ARMOperand
&Op
= (ARMOperand
&)*Operands
[0];
11167 if (!IsVector
&& !Op
.isRegList())
11168 return Error(L
, ".save expects GPR registers");
11169 if (IsVector
&& !Op
.isDPRRegList())
11170 return Error(L
, ".vsave expects DPR registers");
11172 getTargetStreamer().emitRegSave(Op
.getRegList(), IsVector
);
11176 /// parseDirectiveInst
11177 /// ::= .inst opcode [, ...]
11178 /// ::= .inst.n opcode [, ...]
11179 /// ::= .inst.w opcode [, ...]
11180 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc
, char Suffix
) {
11196 return Error(Loc
, "width suffixes are invalid in ARM mode");
11199 auto parseOne
= [&]() -> bool {
11200 const MCExpr
*Expr
;
11201 if (getParser().parseExpression(Expr
))
11203 const MCConstantExpr
*Value
= dyn_cast_or_null
<MCConstantExpr
>(Expr
);
11205 return Error(Loc
, "expected constant expression");
11208 char CurSuffix
= Suffix
;
11211 if (Value
->getValue() > 0xffff)
11212 return Error(Loc
, "inst.n operand is too big, use inst.w instead");
11215 if (Value
->getValue() > 0xffffffff)
11216 return Error(Loc
, StringRef(Suffix
? "inst.w" : "inst") +
11217 " operand is too big");
11220 // Thumb mode, no width indicated. Guess from the opcode, if possible.
11221 if (Value
->getValue() < 0xe800)
11223 else if (Value
->getValue() >= 0xe8000000)
11226 return Error(Loc
, "cannot determine Thumb instruction size, "
11227 "use inst.n/inst.w instead");
11230 llvm_unreachable("only supported widths are 2 and 4");
11233 getTargetStreamer().emitInst(Value
->getValue(), CurSuffix
);
11237 if (parseOptionalToken(AsmToken::EndOfStatement
))
11238 return Error(Loc
, "expected expression following directive");
11239 if (parseMany(parseOne
))
11244 /// parseDirectiveLtorg
11245 /// ::= .ltorg | .pool
11246 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L
) {
11247 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
11249 getTargetStreamer().emitCurrentConstantPool();
11253 bool ARMAsmParser::parseDirectiveEven(SMLoc L
) {
11254 const MCSection
*Section
= getStreamer().getCurrentSectionOnly();
11256 if (parseToken(AsmToken::EndOfStatement
, "unexpected token in directive"))
11260 getStreamer().InitSections(false);
11261 Section
= getStreamer().getCurrentSectionOnly();
11264 assert(Section
&& "must have section to emit alignment");
11265 if (Section
->UseCodeAlign())
11266 getStreamer().EmitCodeAlignment(2);
11268 getStreamer().EmitValueToAlignment(2);
11273 /// parseDirectivePersonalityIndex
11274 /// ::= .personalityindex index
11275 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L
) {
11276 MCAsmParser
&Parser
= getParser();
11277 bool HasExistingPersonality
= UC
.hasPersonality();
11279 const MCExpr
*IndexExpression
;
11280 SMLoc IndexLoc
= Parser
.getTok().getLoc();
11281 if (Parser
.parseExpression(IndexExpression
) ||
11282 parseToken(AsmToken::EndOfStatement
,
11283 "unexpected token in '.personalityindex' directive")) {
11287 UC
.recordPersonalityIndex(L
);
11289 if (!UC
.hasFnStart()) {
11290 return Error(L
, ".fnstart must precede .personalityindex directive");
11292 if (UC
.cantUnwind()) {
11293 Error(L
, ".personalityindex cannot be used with .cantunwind");
11294 UC
.emitCantUnwindLocNotes();
11297 if (UC
.hasHandlerData()) {
11298 Error(L
, ".personalityindex must precede .handlerdata directive");
11299 UC
.emitHandlerDataLocNotes();
11302 if (HasExistingPersonality
) {
11303 Error(L
, "multiple personality directives");
11304 UC
.emitPersonalityLocNotes();
11308 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(IndexExpression
);
11310 return Error(IndexLoc
, "index must be a constant number");
11311 if (CE
->getValue() < 0 || CE
->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX
)
11312 return Error(IndexLoc
,
11313 "personality routine index should be in range [0-3]");
11315 getTargetStreamer().emitPersonalityIndex(CE
->getValue());
11319 /// parseDirectiveUnwindRaw
11320 /// ::= .unwind_raw offset, opcode [, opcode...]
11321 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L
) {
11322 MCAsmParser
&Parser
= getParser();
11323 int64_t StackOffset
;
11324 const MCExpr
*OffsetExpr
;
11325 SMLoc OffsetLoc
= getLexer().getLoc();
11327 if (!UC
.hasFnStart())
11328 return Error(L
, ".fnstart must precede .unwind_raw directives");
11329 if (getParser().parseExpression(OffsetExpr
))
11330 return Error(OffsetLoc
, "expected expression");
11332 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
11334 return Error(OffsetLoc
, "offset must be a constant");
11336 StackOffset
= CE
->getValue();
11338 if (Parser
.parseToken(AsmToken::Comma
, "expected comma"))
11341 SmallVector
<uint8_t, 16> Opcodes
;
11343 auto parseOne
= [&]() -> bool {
11344 const MCExpr
*OE
= nullptr;
11345 SMLoc OpcodeLoc
= getLexer().getLoc();
11346 if (check(getLexer().is(AsmToken::EndOfStatement
) ||
11347 Parser
.parseExpression(OE
),
11348 OpcodeLoc
, "expected opcode expression"))
11350 const MCConstantExpr
*OC
= dyn_cast
<MCConstantExpr
>(OE
);
11352 return Error(OpcodeLoc
, "opcode value must be a constant");
11353 const int64_t Opcode
= OC
->getValue();
11354 if (Opcode
& ~0xff)
11355 return Error(OpcodeLoc
, "invalid opcode");
11356 Opcodes
.push_back(uint8_t(Opcode
));
11360 // Must have at least 1 element
11361 SMLoc OpcodeLoc
= getLexer().getLoc();
11362 if (parseOptionalToken(AsmToken::EndOfStatement
))
11363 return Error(OpcodeLoc
, "expected opcode expression");
11364 if (parseMany(parseOne
))
11367 getTargetStreamer().emitUnwindRaw(StackOffset
, Opcodes
);
11371 /// parseDirectiveTLSDescSeq
11372 /// ::= .tlsdescseq tls-variable
11373 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L
) {
11374 MCAsmParser
&Parser
= getParser();
11376 if (getLexer().isNot(AsmToken::Identifier
))
11377 return TokError("expected variable after '.tlsdescseq' directive");
11379 const MCSymbolRefExpr
*SRE
=
11380 MCSymbolRefExpr::create(Parser
.getTok().getIdentifier(),
11381 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ
, getContext());
11384 if (parseToken(AsmToken::EndOfStatement
,
11385 "unexpected token in '.tlsdescseq' directive"))
11388 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE
);
11392 /// parseDirectiveMovSP
11393 /// ::= .movsp reg [, #offset]
11394 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L
) {
11395 MCAsmParser
&Parser
= getParser();
11396 if (!UC
.hasFnStart())
11397 return Error(L
, ".fnstart must precede .movsp directives");
11398 if (UC
.getFPReg() != ARM::SP
)
11399 return Error(L
, "unexpected .movsp directive");
11401 SMLoc SPRegLoc
= Parser
.getTok().getLoc();
11402 int SPReg
= tryParseRegister();
11404 return Error(SPRegLoc
, "register expected");
11405 if (SPReg
== ARM::SP
|| SPReg
== ARM::PC
)
11406 return Error(SPRegLoc
, "sp and pc are not permitted in .movsp directive");
11408 int64_t Offset
= 0;
11409 if (Parser
.parseOptionalToken(AsmToken::Comma
)) {
11410 if (Parser
.parseToken(AsmToken::Hash
, "expected #constant"))
11413 const MCExpr
*OffsetExpr
;
11414 SMLoc OffsetLoc
= Parser
.getTok().getLoc();
11416 if (Parser
.parseExpression(OffsetExpr
))
11417 return Error(OffsetLoc
, "malformed offset expression");
11419 const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(OffsetExpr
);
11421 return Error(OffsetLoc
, "offset must be an immediate constant");
11423 Offset
= CE
->getValue();
11426 if (parseToken(AsmToken::EndOfStatement
,
11427 "unexpected token in '.movsp' directive"))
11430 getTargetStreamer().emitMovSP(SPReg
, Offset
);
11431 UC
.saveFPReg(SPReg
);
11436 /// parseDirectiveObjectArch
11437 /// ::= .object_arch name
11438 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L
) {
11439 MCAsmParser
&Parser
= getParser();
11440 if (getLexer().isNot(AsmToken::Identifier
))
11441 return Error(getLexer().getLoc(), "unexpected token");
11443 StringRef Arch
= Parser
.getTok().getString();
11444 SMLoc ArchLoc
= Parser
.getTok().getLoc();
11447 ARM::ArchKind ID
= ARM::parseArch(Arch
);
11449 if (ID
== ARM::ArchKind::INVALID
)
11450 return Error(ArchLoc
, "unknown architecture '" + Arch
+ "'");
11451 if (parseToken(AsmToken::EndOfStatement
))
11454 getTargetStreamer().emitObjectArch(ID
);
11458 /// parseDirectiveAlign
11460 bool ARMAsmParser::parseDirectiveAlign(SMLoc L
) {
11461 // NOTE: if this is not the end of the statement, fall back to the target
11462 // agnostic handling for this directive which will correctly handle this.
11463 if (parseOptionalToken(AsmToken::EndOfStatement
)) {
11464 // '.align' is target specifically handled to mean 2**2 byte alignment.
11465 const MCSection
*Section
= getStreamer().getCurrentSectionOnly();
11466 assert(Section
&& "must have section to emit alignment");
11467 if (Section
->UseCodeAlign())
11468 getStreamer().EmitCodeAlignment(4, 0);
11470 getStreamer().EmitValueToAlignment(4, 0, 1, 0);
11476 /// parseDirectiveThumbSet
11477 /// ::= .thumb_set name, value
11478 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L
) {
11479 MCAsmParser
&Parser
= getParser();
11482 if (check(Parser
.parseIdentifier(Name
),
11483 "expected identifier after '.thumb_set'") ||
11484 parseToken(AsmToken::Comma
, "expected comma after name '" + Name
+ "'"))
11488 const MCExpr
*Value
;
11489 if (MCParserUtils::parseAssignmentExpression(Name
, /* allow_redef */ true,
11490 Parser
, Sym
, Value
))
11493 getTargetStreamer().emitThumbSet(Sym
, Value
);
11497 /// Force static initialization.
11498 extern "C" void LLVMInitializeARMAsmParser() {
11499 RegisterMCAsmParser
<ARMAsmParser
> X(getTheARMLETarget());
11500 RegisterMCAsmParser
<ARMAsmParser
> Y(getTheARMBETarget());
11501 RegisterMCAsmParser
<ARMAsmParser
> A(getTheThumbLETarget());
11502 RegisterMCAsmParser
<ARMAsmParser
> B(getTheThumbBETarget());
11505 #define GET_REGISTER_MATCHER
11506 #define GET_SUBTARGET_FEATURE_NAME
11507 #define GET_MATCHER_IMPLEMENTATION
11508 #define GET_MNEMONIC_SPELL_CHECKER
11509 #include "ARMGenAsmMatcher.inc"
11511 // Some diagnostics need to vary with subtarget features, so they are handled
11512 // here. For example, the DPR class has either 16 or 32 registers, depending
11513 // on the FPU available.
11515 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError
) {
11516 switch (MatchError
) {
11517 // rGPR contains sp starting with ARMv8.
11519 return hasV8Ops() ? "operand must be a register in range [r0, r14]"
11520 : "operand must be a register in range [r0, r12] or r14";
11521 // DPR contains 16 registers for some FPUs, and 32 for others.
11523 return hasD32() ? "operand must be a register in range [d0, d31]"
11524 : "operand must be a register in range [d0, d15]";
11525 case Match_DPR_RegList
:
11526 return hasD32() ? "operand must be a list of registers in range [d0, d31]"
11527 : "operand must be a list of registers in range [d0, d15]";
11529 // For all other diags, use the static string from tablegen.
11531 return getMatchKindDiag(MatchError
);
11535 // Process the list of near-misses, throwing away ones we don't want to report
11536 // to the user, and converting the rest to a source location and string that
11537 // should be reported.
11539 ARMAsmParser::FilterNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMissesIn
,
11540 SmallVectorImpl
<NearMissMessage
> &NearMissesOut
,
11541 SMLoc IDLoc
, OperandVector
&Operands
) {
11542 // TODO: If operand didn't match, sub in a dummy one and run target
11543 // predicate, so that we can avoid reporting near-misses that are invalid?
11544 // TODO: Many operand types dont have SuperClasses set, so we report
11546 // TODO: Some operands are superclasses of registers (e.g.
11547 // MCK_RegShiftedImm), we don't have any way to represent that currently.
11548 // TODO: This is not all ARM-specific, can some of it be factored out?
11550 // Record some information about near-misses that we have already seen, so
11551 // that we can avoid reporting redundant ones. For example, if there are
11552 // variants of an instruction that take 8- and 16-bit immediates, we want
11553 // to only report the widest one.
11554 std::multimap
<unsigned, unsigned> OperandMissesSeen
;
11555 SmallSet
<FeatureBitset
, 4> FeatureMissesSeen
;
11556 bool ReportedTooFewOperands
= false;
11558 // Process the near-misses in reverse order, so that we see more general ones
11559 // first, and so can avoid emitting more specific ones.
11560 for (NearMissInfo
&I
: reverse(NearMissesIn
)) {
11561 switch (I
.getKind()) {
11562 case NearMissInfo::NearMissOperand
: {
11564 ((ARMOperand
&)*Operands
[I
.getOperandIndex()]).getStartLoc();
11565 const char *OperandDiag
=
11566 getCustomOperandDiag((ARMMatchResultTy
)I
.getOperandError());
11568 // If we have already emitted a message for a superclass, don't also report
11569 // the sub-class. We consider all operand classes that we don't have a
11570 // specialised diagnostic for to be equal for the propose of this check,
11571 // so that we don't report the generic error multiple times on the same
11573 unsigned DupCheckMatchClass
= OperandDiag
? I
.getOperandClass() : ~0U;
11574 auto PrevReports
= OperandMissesSeen
.equal_range(I
.getOperandIndex());
11575 if (std::any_of(PrevReports
.first
, PrevReports
.second
,
11576 [DupCheckMatchClass
](
11577 const std::pair
<unsigned, unsigned> Pair
) {
11578 if (DupCheckMatchClass
== ~0U || Pair
.second
== ~0U)
11579 return Pair
.second
== DupCheckMatchClass
;
11581 return isSubclass((MatchClassKind
)DupCheckMatchClass
,
11582 (MatchClassKind
)Pair
.second
);
11585 OperandMissesSeen
.insert(
11586 std::make_pair(I
.getOperandIndex(), DupCheckMatchClass
));
11588 NearMissMessage Message
;
11589 Message
.Loc
= OperandLoc
;
11591 Message
.Message
= OperandDiag
;
11592 } else if (I
.getOperandClass() == InvalidMatchClass
) {
11593 Message
.Message
= "too many operands for instruction";
11595 Message
.Message
= "invalid operand for instruction";
11597 dbgs() << "Missing diagnostic string for operand class "
11598 << getMatchClassName((MatchClassKind
)I
.getOperandClass())
11599 << I
.getOperandClass() << ", error " << I
.getOperandError()
11600 << ", opcode " << MII
.getName(I
.getOpcode()) << "\n");
11602 NearMissesOut
.emplace_back(Message
);
11605 case NearMissInfo::NearMissFeature
: {
11606 const FeatureBitset
&MissingFeatures
= I
.getFeatures();
11607 // Don't report the same set of features twice.
11608 if (FeatureMissesSeen
.count(MissingFeatures
))
11610 FeatureMissesSeen
.insert(MissingFeatures
);
11612 // Special case: don't report a feature set which includes arm-mode for
11613 // targets that don't have ARM mode.
11614 if (MissingFeatures
.test(Feature_IsARMBit
) && !hasARM())
11616 // Don't report any near-misses that both require switching instruction
11617 // set, and adding other subtarget features.
11618 if (isThumb() && MissingFeatures
.test(Feature_IsARMBit
) &&
11619 MissingFeatures
.count() > 1)
11621 if (!isThumb() && MissingFeatures
.test(Feature_IsThumbBit
) &&
11622 MissingFeatures
.count() > 1)
11624 if (!isThumb() && MissingFeatures
.test(Feature_IsThumb2Bit
) &&
11625 (MissingFeatures
& ~FeatureBitset({Feature_IsThumb2Bit
,
11626 Feature_IsThumbBit
})).any())
11628 if (isMClass() && MissingFeatures
.test(Feature_HasNEONBit
))
11631 NearMissMessage Message
;
11632 Message
.Loc
= IDLoc
;
11633 raw_svector_ostream
OS(Message
.Message
);
11635 OS
<< "instruction requires:";
11636 for (unsigned i
= 0, e
= MissingFeatures
.size(); i
!= e
; ++i
)
11637 if (MissingFeatures
.test(i
))
11638 OS
<< ' ' << getSubtargetFeatureName(i
);
11640 NearMissesOut
.emplace_back(Message
);
11644 case NearMissInfo::NearMissPredicate
: {
11645 NearMissMessage Message
;
11646 Message
.Loc
= IDLoc
;
11647 switch (I
.getPredicateError()) {
11648 case Match_RequiresNotITBlock
:
11649 Message
.Message
= "flag setting instruction only valid outside IT block";
11651 case Match_RequiresITBlock
:
11652 Message
.Message
= "instruction only valid inside IT block";
11654 case Match_RequiresV6
:
11655 Message
.Message
= "instruction variant requires ARMv6 or later";
11657 case Match_RequiresThumb2
:
11658 Message
.Message
= "instruction variant requires Thumb2";
11660 case Match_RequiresV8
:
11661 Message
.Message
= "instruction variant requires ARMv8 or later";
11663 case Match_RequiresFlagSetting
:
11664 Message
.Message
= "no flag-preserving variant of this instruction available";
11666 case Match_InvalidOperand
:
11667 Message
.Message
= "invalid operand for instruction";
11670 llvm_unreachable("Unhandled target predicate error");
11673 NearMissesOut
.emplace_back(Message
);
11676 case NearMissInfo::NearMissTooFewOperands
: {
11677 if (!ReportedTooFewOperands
) {
11678 SMLoc EndLoc
= ((ARMOperand
&)*Operands
.back()).getEndLoc();
11679 NearMissesOut
.emplace_back(NearMissMessage
{
11680 EndLoc
, StringRef("too few operands for instruction")});
11681 ReportedTooFewOperands
= true;
11685 case NearMissInfo::NoNearMiss
:
11686 // This should never leave the matcher.
11687 llvm_unreachable("not a near-miss");
11693 void ARMAsmParser::ReportNearMisses(SmallVectorImpl
<NearMissInfo
> &NearMisses
,
11694 SMLoc IDLoc
, OperandVector
&Operands
) {
11695 SmallVector
<NearMissMessage
, 4> Messages
;
11696 FilterNearMisses(NearMisses
, Messages
, IDLoc
, Operands
);
11698 if (Messages
.size() == 0) {
11699 // No near-misses were found, so the best we can do is "invalid
11701 Error(IDLoc
, "invalid instruction");
11702 } else if (Messages
.size() == 1) {
11703 // One near miss was found, report it as the sole error.
11704 Error(Messages
[0].Loc
, Messages
[0].Message
);
11706 // More than one near miss, so report a generic "invalid instruction"
11707 // error, followed by notes for each of the near-misses.
11708 Error(IDLoc
, "invalid instruction, any one of the following would fix this:");
11709 for (auto &M
: Messages
) {
11710 Note(M
.Loc
, M
.Message
);
11715 /// parseDirectiveArchExtension
11716 /// ::= .arch_extension [no]feature
11717 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L
) {
11718 // FIXME: This structure should be moved inside ARMTargetParser
11719 // when we start to table-generate them, and we can use the ARM
11720 // flags below, that were generated by table-gen.
11721 static const struct {
11722 const unsigned Kind
;
11723 const FeatureBitset ArchCheck
;
11724 const FeatureBitset Features
;
11726 { ARM::AEK_CRC
, {Feature_HasV8Bit
}, {ARM::FeatureCRC
} },
11727 { ARM::AEK_CRYPTO
, {Feature_HasV8Bit
},
11728 {ARM::FeatureCrypto
, ARM::FeatureNEON
, ARM::FeatureFPARMv8
} },
11729 { ARM::AEK_FP
, {Feature_HasV8Bit
},
11730 {ARM::FeatureVFP2_SP
, ARM::FeatureFPARMv8
} },
11731 { (ARM::AEK_HWDIVTHUMB
| ARM::AEK_HWDIVARM
),
11732 {Feature_HasV7Bit
, Feature_IsNotMClassBit
},
11733 {ARM::FeatureHWDivThumb
, ARM::FeatureHWDivARM
} },
11734 { ARM::AEK_MP
, {Feature_HasV7Bit
, Feature_IsNotMClassBit
},
11735 {ARM::FeatureMP
} },
11736 { ARM::AEK_SIMD
, {Feature_HasV8Bit
},
11737 {ARM::FeatureNEON
, ARM::FeatureVFP2_SP
, ARM::FeatureFPARMv8
} },
11738 { ARM::AEK_SEC
, {Feature_HasV6KBit
}, {ARM::FeatureTrustZone
} },
11739 // FIXME: Only available in A-class, isel not predicated
11740 { ARM::AEK_VIRT
, {Feature_HasV7Bit
}, {ARM::FeatureVirtualization
} },
11741 { ARM::AEK_FP16
, {Feature_HasV8_2aBit
},
11742 {ARM::FeatureFPARMv8
, ARM::FeatureFullFP16
} },
11743 { ARM::AEK_RAS
, {Feature_HasV8Bit
}, {ARM::FeatureRAS
} },
11744 { ARM::AEK_LOB
, {Feature_HasV8_1MMainlineBit
}, {ARM::FeatureLOB
} },
11745 // FIXME: Unsupported extensions.
11746 { ARM::AEK_OS
, {}, {} },
11747 { ARM::AEK_IWMMXT
, {}, {} },
11748 { ARM::AEK_IWMMXT2
, {}, {} },
11749 { ARM::AEK_MAVERICK
, {}, {} },
11750 { ARM::AEK_XSCALE
, {}, {} },
11753 MCAsmParser
&Parser
= getParser();
11755 if (getLexer().isNot(AsmToken::Identifier
))
11756 return Error(getLexer().getLoc(), "expected architecture extension name");
11758 StringRef Name
= Parser
.getTok().getString();
11759 SMLoc ExtLoc
= Parser
.getTok().getLoc();
11762 if (parseToken(AsmToken::EndOfStatement
,
11763 "unexpected token in '.arch_extension' directive"))
11766 bool EnableFeature
= true;
11767 if (Name
.startswith_lower("no")) {
11768 EnableFeature
= false;
11769 Name
= Name
.substr(2);
11771 unsigned FeatureKind
= ARM::parseArchExt(Name
);
11772 if (FeatureKind
== ARM::AEK_INVALID
)
11773 return Error(ExtLoc
, "unknown architectural extension: " + Name
);
11775 for (const auto &Extension
: Extensions
) {
11776 if (Extension
.Kind
!= FeatureKind
)
11779 if (Extension
.Features
.none())
11780 return Error(ExtLoc
, "unsupported architectural extension: " + Name
);
11782 if ((getAvailableFeatures() & Extension
.ArchCheck
) != Extension
.ArchCheck
)
11783 return Error(ExtLoc
, "architectural extension '" + Name
+
11785 "allowed for the current base architecture");
11787 MCSubtargetInfo
&STI
= copySTI();
11788 if (EnableFeature
) {
11789 STI
.SetFeatureBitsTransitively(Extension
.Features
);
11791 STI
.ClearFeatureBitsTransitively(Extension
.Features
);
11793 FeatureBitset Features
= ComputeAvailableFeatures(STI
.getFeatureBits());
11794 setAvailableFeatures(Features
);
11798 return Error(ExtLoc
, "unknown architectural extension: " + Name
);
11801 // Define this matcher function after the auto-generated include so we
11802 // have the match class enum definitions.
11803 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand
&AsmOp
,
11805 ARMOperand
&Op
= static_cast<ARMOperand
&>(AsmOp
);
11806 // If the kind is a token for a literal immediate, check if our asm
11807 // operand matches. This is for InstAliases which have a fixed-value
11808 // immediate in the syntax.
11813 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm()))
11814 if (CE
->getValue() == 0)
11815 return Match_Success
;
11819 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm()))
11820 if (CE
->getValue() == 8)
11821 return Match_Success
;
11825 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Op
.getImm()))
11826 if (CE
->getValue() == 16)
11827 return Match_Success
;
11831 const MCExpr
*SOExpr
= Op
.getImm();
11833 if (!SOExpr
->evaluateAsAbsolute(Value
))
11834 return Match_Success
;
11835 assert((Value
>= std::numeric_limits
<int32_t>::min() &&
11836 Value
<= std::numeric_limits
<uint32_t>::max()) &&
11837 "expression value must be representable in 32 bits");
11841 if (hasV8Ops() && Op
.isReg() && Op
.getReg() == ARM::SP
)
11842 return Match_Success
;
11846 MRI
->getRegClass(ARM::GPRRegClassID
).contains(Op
.getReg()))
11847 return Match_Success
;
11850 return Match_InvalidOperand
;
11853 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic
,
11854 StringRef ExtraToken
) {
11858 return Mnemonic
.startswith("vabav") || Mnemonic
.startswith("vaddv") ||
11859 Mnemonic
.startswith("vaddlv") || Mnemonic
.startswith("vminnmv") ||
11860 Mnemonic
.startswith("vminnmav") || Mnemonic
.startswith("vminv") ||
11861 Mnemonic
.startswith("vminav") || Mnemonic
.startswith("vmaxnmv") ||
11862 Mnemonic
.startswith("vmaxnmav") || Mnemonic
.startswith("vmaxv") ||
11863 Mnemonic
.startswith("vmaxav") || Mnemonic
.startswith("vmladav") ||
11864 Mnemonic
.startswith("vrmlaldavh") || Mnemonic
.startswith("vrmlalvh") ||
11865 Mnemonic
.startswith("vmlsdav") || Mnemonic
.startswith("vmlav") ||
11866 Mnemonic
.startswith("vmlaldav") || Mnemonic
.startswith("vmlalv") ||
11867 Mnemonic
.startswith("vmaxnm") || Mnemonic
.startswith("vminnm") ||
11868 Mnemonic
.startswith("vmax") || Mnemonic
.startswith("vmin") ||
11869 Mnemonic
.startswith("vshlc") || Mnemonic
.startswith("vmovlt") ||
11870 Mnemonic
.startswith("vmovlb") || Mnemonic
.startswith("vshll") ||
11871 Mnemonic
.startswith("vrshrn") || Mnemonic
.startswith("vshrn") ||
11872 Mnemonic
.startswith("vqrshrun") || Mnemonic
.startswith("vqshrun") ||
11873 Mnemonic
.startswith("vqrshrn") || Mnemonic
.startswith("vqshrn") ||
11874 Mnemonic
.startswith("vbic") || Mnemonic
.startswith("vrev64") ||
11875 Mnemonic
.startswith("vrev32") || Mnemonic
.startswith("vrev16") ||
11876 Mnemonic
.startswith("vmvn") || Mnemonic
.startswith("veor") ||
11877 Mnemonic
.startswith("vorn") || Mnemonic
.startswith("vorr") ||
11878 Mnemonic
.startswith("vand") || Mnemonic
.startswith("vmul") ||
11879 Mnemonic
.startswith("vqrdmulh") || Mnemonic
.startswith("vqdmulh") ||
11880 Mnemonic
.startswith("vsub") || Mnemonic
.startswith("vadd") ||
11881 Mnemonic
.startswith("vqsub") || Mnemonic
.startswith("vqadd") ||
11882 Mnemonic
.startswith("vabd") || Mnemonic
.startswith("vrhadd") ||
11883 Mnemonic
.startswith("vhsub") || Mnemonic
.startswith("vhadd") ||
11884 Mnemonic
.startswith("vdup") || Mnemonic
.startswith("vcls") ||
11885 Mnemonic
.startswith("vclz") || Mnemonic
.startswith("vneg") ||
11886 Mnemonic
.startswith("vabs") || Mnemonic
.startswith("vqneg") ||
11887 Mnemonic
.startswith("vqabs") ||
11888 (Mnemonic
.startswith("vrint") && Mnemonic
!= "vrintr") ||
11889 Mnemonic
.startswith("vcmla") || Mnemonic
.startswith("vfma") ||
11890 Mnemonic
.startswith("vfms") || Mnemonic
.startswith("vcadd") ||
11891 Mnemonic
.startswith("vadd") || Mnemonic
.startswith("vsub") ||
11892 Mnemonic
.startswith("vshl") || Mnemonic
.startswith("vqshl") ||
11893 Mnemonic
.startswith("vqrshl") || Mnemonic
.startswith("vrshl") ||
11894 Mnemonic
.startswith("vsri") || Mnemonic
.startswith("vsli") ||
11895 Mnemonic
.startswith("vrshr") || Mnemonic
.startswith("vshr") ||
11896 Mnemonic
.startswith("vpsel") || Mnemonic
.startswith("vcmp") ||
11897 Mnemonic
.startswith("vqdmladh") || Mnemonic
.startswith("vqrdmladh") ||
11898 Mnemonic
.startswith("vqdmlsdh") || Mnemonic
.startswith("vqrdmlsdh") ||
11899 Mnemonic
.startswith("vcmul") || Mnemonic
.startswith("vrmulh") ||
11900 Mnemonic
.startswith("vqmovn") || Mnemonic
.startswith("vqmovun") ||
11901 Mnemonic
.startswith("vmovnt") || Mnemonic
.startswith("vmovnb") ||
11902 Mnemonic
.startswith("vmaxa") || Mnemonic
.startswith("vmaxnma") ||
11903 Mnemonic
.startswith("vhcadd") || Mnemonic
.startswith("vadc") ||
11904 Mnemonic
.startswith("vsbc") || Mnemonic
.startswith("vrshr") ||
11905 Mnemonic
.startswith("vshr") || Mnemonic
.startswith("vstrb") ||
11906 Mnemonic
.startswith("vldrb") ||
11907 (Mnemonic
.startswith("vstrh") && Mnemonic
!= "vstrhi") ||
11908 (Mnemonic
.startswith("vldrh") && Mnemonic
!= "vldrhi") ||
11909 Mnemonic
.startswith("vstrw") || Mnemonic
.startswith("vldrw") ||
11910 Mnemonic
.startswith("vldrd") || Mnemonic
.startswith("vstrd") ||
11911 Mnemonic
.startswith("vqdmull") || Mnemonic
.startswith("vbrsr") ||
11912 Mnemonic
.startswith("vfmas") || Mnemonic
.startswith("vmlas") ||
11913 Mnemonic
.startswith("vmla") || Mnemonic
.startswith("vqdmlash") ||
11914 Mnemonic
.startswith("vqdmlah") || Mnemonic
.startswith("vqrdmlash") ||
11915 Mnemonic
.startswith("vqrdmlah") || Mnemonic
.startswith("viwdup") ||
11916 Mnemonic
.startswith("vdwdup") || Mnemonic
.startswith("vidup") ||
11917 Mnemonic
.startswith("vddup") || Mnemonic
.startswith("vctp") ||
11918 Mnemonic
.startswith("vpnot") || Mnemonic
.startswith("vbic") ||
11919 Mnemonic
.startswith("vrmlsldavh") || Mnemonic
.startswith("vmlsldav") ||
11920 Mnemonic
.startswith("vcvt") ||
11921 (Mnemonic
.startswith("vmov") &&
11922 !(ExtraToken
== ".f16" || ExtraToken
== ".32" ||
11923 ExtraToken
== ".16" || ExtraToken
== ".8"));