[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / Hexagon / BitTracker.h
blobefb21805b8013bbbebff1754bb643cc6f6ee161f
1 //===- BitTracker.h ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
10 #define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
12 #include "llvm/ADT/DenseSet.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/CodeGen/MachineInstr.h"
16 #include "llvm/CodeGen/MachineOperand.h"
17 #include <cassert>
18 #include <cstdint>
19 #include <map>
20 #include <queue>
21 #include <set>
22 #include <utility>
24 namespace llvm {
26 class BitVector;
27 class ConstantInt;
28 class MachineRegisterInfo;
29 class MachineBasicBlock;
30 class MachineFunction;
31 class raw_ostream;
32 class TargetRegisterClass;
33 class TargetRegisterInfo;
35 struct BitTracker {
36 struct BitRef;
37 struct RegisterRef;
38 struct BitValue;
39 struct BitMask;
40 struct RegisterCell;
41 struct MachineEvaluator;
43 using BranchTargetList = SetVector<const MachineBasicBlock *>;
44 using CellMapType = std::map<unsigned, RegisterCell>;
46 BitTracker(const MachineEvaluator &E, MachineFunction &F);
47 ~BitTracker();
49 void run();
50 void trace(bool On = false) { Trace = On; }
51 bool has(unsigned Reg) const;
52 const RegisterCell &lookup(unsigned Reg) const;
53 RegisterCell get(RegisterRef RR) const;
54 void put(RegisterRef RR, const RegisterCell &RC);
55 void subst(RegisterRef OldRR, RegisterRef NewRR);
56 bool reached(const MachineBasicBlock *B) const;
57 void visit(const MachineInstr &MI);
59 void print_cells(raw_ostream &OS) const;
61 private:
62 void visitPHI(const MachineInstr &PI);
63 void visitNonBranch(const MachineInstr &MI);
64 void visitBranchesFrom(const MachineInstr &BI);
65 void visitUsesOf(unsigned Reg);
67 using CFGEdge = std::pair<int, int>;
68 using EdgeSetType = std::set<CFGEdge>;
69 using InstrSetType = std::set<const MachineInstr *>;
70 using EdgeQueueType = std::queue<CFGEdge>;
72 // Priority queue of instructions using modified registers, ordered by
73 // their relative position in a basic block.
74 struct UseQueueType {
75 UseQueueType() : Uses(Dist) {}
77 unsigned size() const {
78 return Uses.size();
80 bool empty() const {
81 return size() == 0;
83 MachineInstr *front() const {
84 return Uses.top();
86 void push(MachineInstr *MI) {
87 if (Set.insert(MI).second)
88 Uses.push(MI);
90 void pop() {
91 Set.erase(front());
92 Uses.pop();
94 void reset() {
95 Dist.clear();
97 private:
98 struct Cmp {
99 Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {}
100 bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
101 DenseMap<const MachineInstr*,unsigned> &Dist;
103 std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
104 DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries.
105 DenseMap<const MachineInstr*,unsigned> Dist;
108 void reset();
109 void runEdgeQueue(BitVector &BlockScanned);
110 void runUseQueue();
112 const MachineEvaluator &ME;
113 MachineFunction &MF;
114 MachineRegisterInfo &MRI;
115 CellMapType &Map;
117 EdgeSetType EdgeExec; // Executable flow graph edges.
118 InstrSetType InstrExec; // Executable instructions.
119 UseQueueType UseQ; // Work queue of register uses.
120 EdgeQueueType FlowQ; // Work queue of CFG edges.
121 DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
122 bool Trace; // Enable tracing for debugging.
125 // Abstraction of a reference to bit at position Pos from a register Reg.
126 struct BitTracker::BitRef {
127 BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
129 bool operator== (const BitRef &BR) const {
130 // If Reg is 0, disregard Pos.
131 return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
134 unsigned Reg;
135 uint16_t Pos;
138 // Abstraction of a register reference in MachineOperand. It contains the
139 // register number and the subregister index.
140 struct BitTracker::RegisterRef {
141 RegisterRef(unsigned R = 0, unsigned S = 0)
142 : Reg(R), Sub(S) {}
143 RegisterRef(const MachineOperand &MO)
144 : Reg(MO.getReg()), Sub(MO.getSubReg()) {}
146 unsigned Reg, Sub;
149 // Value that a single bit can take. This is outside of the context of
150 // any register, it is more of an abstraction of the two-element set of
151 // possible bit values. One extension here is the "Ref" type, which
152 // indicates that this bit takes the same value as the bit described by
153 // RefInfo.
154 struct BitTracker::BitValue {
155 enum ValueType {
156 Top, // Bit not yet defined.
157 Zero, // Bit = 0.
158 One, // Bit = 1.
159 Ref // Bit value same as the one described in RefI.
160 // Conceptually, there is no explicit "bottom" value: the lattice's
161 // bottom will be expressed as a "ref to itself", which, in the context
162 // of registers, could be read as "this value of this bit is defined by
163 // this bit".
164 // The ordering is:
165 // x <= Top,
166 // Self <= x, where "Self" is "ref to itself".
167 // This makes the value lattice different for each virtual register
168 // (even for each bit in the same virtual register), since the "bottom"
169 // for one register will be a simple "ref" for another register.
170 // Since we do not store the "Self" bit and register number, the meet
171 // operation will need to take it as a parameter.
173 // In practice there is a special case for values that are not associa-
174 // ted with any specific virtual register. An example would be a value
175 // corresponding to a bit of a physical register, or an intermediate
176 // value obtained in some computation (such as instruction evaluation).
177 // Such cases are identical to the usual Ref type, but the register
178 // number is 0. In such case the Pos field of the reference is ignored.
180 // What is worthy of notice is that in value V (that is a "ref"), as long
181 // as the RefI.Reg is not 0, it may actually be the same register as the
182 // one in which V will be contained. If the RefI.Pos refers to the posi-
183 // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
184 // otherwise V is taken to be identical to the referenced bit of the
185 // same register.
186 // If RefI.Reg is 0, however, such a reference to the same register is
187 // not possible. Any value V that is a "ref", and whose RefI.Reg is 0
188 // is treated as "bottom".
190 ValueType Type;
191 BitRef RefI;
193 BitValue(ValueType T = Top) : Type(T) {}
194 BitValue(bool B) : Type(B ? One : Zero) {}
195 BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
197 bool operator== (const BitValue &V) const {
198 if (Type != V.Type)
199 return false;
200 if (Type == Ref && !(RefI == V.RefI))
201 return false;
202 return true;
204 bool operator!= (const BitValue &V) const {
205 return !operator==(V);
208 bool is(unsigned T) const {
209 assert(T == 0 || T == 1);
210 return T == 0 ? Type == Zero
211 : (T == 1 ? Type == One : false);
214 // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
215 // (1) x.x = x
216 // (2) x.y = y.x
217 // (3) x.(y.z) = (x.y).z
218 // (4) x.T = x (i.e. T = "top")
219 // (5) x.B = B (i.e. B = "bottom")
221 // This "meet" function will update the value of the "*this" object with
222 // the newly calculated one, and return "true" if the value of *this has
223 // changed, and "false" otherwise.
224 // To prove that it satisfies the conditions (1)-(5), it is sufficient
225 // to show that a relation
226 // x <= y <=> x.y = x
227 // defines a partial order (i.e. that "meet" is same as "infimum").
228 bool meet(const BitValue &V, const BitRef &Self) {
229 // First, check the cases where there is nothing to be done.
230 if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This)
231 return false;
232 if (V.Type == Top) // This.meet(Top) = This
233 return false;
234 if (*this == V) // This.meet(This) = This
235 return false;
237 // At this point, we know that the value of "this" will change.
238 // If it is Top, it will become the same as V, otherwise it will
239 // become "bottom" (i.e. Self).
240 if (Type == Top) {
241 Type = V.Type;
242 RefI = V.RefI; // This may be irrelevant, but copy anyway.
243 return true;
245 // Become "bottom".
246 Type = Ref;
247 RefI = Self;
248 return true;
251 // Create a reference to the bit value V.
252 static BitValue ref(const BitValue &V);
253 // Create a "self".
254 static BitValue self(const BitRef &Self = BitRef());
256 bool num() const {
257 return Type == Zero || Type == One;
260 operator bool() const {
261 assert(Type == Zero || Type == One);
262 return Type == One;
265 friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
268 // This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
269 inline BitTracker::BitValue
270 BitTracker::BitValue::ref(const BitValue &V) {
271 if (V.Type != Ref)
272 return BitValue(V.Type);
273 if (V.RefI.Reg != 0)
274 return BitValue(V.RefI.Reg, V.RefI.Pos);
275 return self();
278 inline BitTracker::BitValue
279 BitTracker::BitValue::self(const BitRef &Self) {
280 return BitValue(Self.Reg, Self.Pos);
283 // A sequence of bits starting from index B up to and including index E.
284 // If E < B, the mask represents two sections: [0..E] and [B..W) where
285 // W is the width of the register.
286 struct BitTracker::BitMask {
287 BitMask() = default;
288 BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
290 uint16_t first() const { return B; }
291 uint16_t last() const { return E; }
293 private:
294 uint16_t B = 0;
295 uint16_t E = 0;
298 // Representation of a register: a list of BitValues.
299 struct BitTracker::RegisterCell {
300 RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
302 uint16_t width() const {
303 return Bits.size();
306 const BitValue &operator[](uint16_t BitN) const {
307 assert(BitN < Bits.size());
308 return Bits[BitN];
310 BitValue &operator[](uint16_t BitN) {
311 assert(BitN < Bits.size());
312 return Bits[BitN];
315 bool meet(const RegisterCell &RC, unsigned SelfR);
316 RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
317 RegisterCell extract(const BitMask &M) const; // Returns a new cell.
318 RegisterCell &rol(uint16_t Sh); // Rotate left.
319 RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
320 RegisterCell &cat(const RegisterCell &RC); // Concatenate.
321 uint16_t cl(bool B) const;
322 uint16_t ct(bool B) const;
324 bool operator== (const RegisterCell &RC) const;
325 bool operator!= (const RegisterCell &RC) const {
326 return !operator==(RC);
329 // Replace the ref-to-reg-0 bit values with the given register.
330 RegisterCell &regify(unsigned R);
332 // Generate a "ref" cell for the corresponding register. In the resulting
333 // cell each bit will be described as being the same as the corresponding
334 // bit in register Reg (i.e. the cell is "defined" by register Reg).
335 static RegisterCell self(unsigned Reg, uint16_t Width);
336 // Generate a "top" cell of given size.
337 static RegisterCell top(uint16_t Width);
338 // Generate a cell that is a "ref" to another cell.
339 static RegisterCell ref(const RegisterCell &C);
341 private:
342 // The DefaultBitN is here only to avoid frequent reallocation of the
343 // memory in the vector.
344 static const unsigned DefaultBitN = 32;
345 using BitValueList = SmallVector<BitValue, DefaultBitN>;
346 BitValueList Bits;
348 friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
351 inline bool BitTracker::has(unsigned Reg) const {
352 return Map.find(Reg) != Map.end();
355 inline const BitTracker::RegisterCell&
356 BitTracker::lookup(unsigned Reg) const {
357 CellMapType::const_iterator F = Map.find(Reg);
358 assert(F != Map.end());
359 return F->second;
362 inline BitTracker::RegisterCell
363 BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
364 RegisterCell RC(Width);
365 for (uint16_t i = 0; i < Width; ++i)
366 RC.Bits[i] = BitValue::self(BitRef(Reg, i));
367 return RC;
370 inline BitTracker::RegisterCell
371 BitTracker::RegisterCell::top(uint16_t Width) {
372 RegisterCell RC(Width);
373 for (uint16_t i = 0; i < Width; ++i)
374 RC.Bits[i] = BitValue(BitValue::Top);
375 return RC;
378 inline BitTracker::RegisterCell
379 BitTracker::RegisterCell::ref(const RegisterCell &C) {
380 uint16_t W = C.width();
381 RegisterCell RC(W);
382 for (unsigned i = 0; i < W; ++i)
383 RC[i] = BitValue::ref(C[i]);
384 return RC;
387 // A class to evaluate target's instructions and update the cell maps.
388 // This is used internally by the bit tracker. A target that wants to
389 // utilize this should implement the evaluation functions (noted below)
390 // in a subclass of this class.
391 struct BitTracker::MachineEvaluator {
392 MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
393 : TRI(T), MRI(M) {}
394 virtual ~MachineEvaluator() = default;
396 uint16_t getRegBitWidth(const RegisterRef &RR) const;
398 RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
399 void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
401 // A result of any operation should use refs to the source cells, not
402 // the cells directly. This function is a convenience wrapper to quickly
403 // generate a ref for a cell corresponding to a register reference.
404 RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
405 RegisterCell RC = getCell(RR, M);
406 return RegisterCell::ref(RC);
409 // Helper functions.
410 // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
411 bool isInt(const RegisterCell &A) const;
412 // Convert cell to an immediate value.
413 uint64_t toInt(const RegisterCell &A) const;
415 // Generate cell from an immediate value.
416 RegisterCell eIMM(int64_t V, uint16_t W) const;
417 RegisterCell eIMM(const ConstantInt *CI) const;
419 // Arithmetic.
420 RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
421 RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
422 RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
423 RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
425 // Shifts.
426 RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
427 RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
428 RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
430 // Logical.
431 RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
432 RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
433 RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
434 RegisterCell eNOT(const RegisterCell &A1) const;
436 // Set bit, clear bit.
437 RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
438 RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
440 // Count leading/trailing bits (zeros/ones).
441 RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
442 RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
444 // Sign/zero extension.
445 RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
446 RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
448 // Extract/insert
449 // XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1.
450 // INS R,S,b: take R and replace bits starting from b with S.
451 RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
452 RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
453 uint16_t AtN) const;
455 // User-provided functions for individual targets:
457 // Return a sub-register mask that indicates which bits in Reg belong
458 // to the subregister Sub. These bits are assumed to be contiguous in
459 // the super-register, and have the same ordering in the sub-register
460 // as in the super-register. It is valid to call this function with
461 // Sub == 0, in this case, the function should return a mask that spans
462 // the entire register Reg (which is what the default implementation
463 // does).
464 virtual BitMask mask(unsigned Reg, unsigned Sub) const;
465 // Indicate whether a given register class should be tracked.
466 virtual bool track(const TargetRegisterClass *RC) const { return true; }
467 // Evaluate a non-branching machine instruction, given the cell map with
468 // the input values. Place the results in the Outputs map. Return "true"
469 // if evaluation succeeded, "false" otherwise.
470 virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
471 CellMapType &Outputs) const;
472 // Evaluate a branch, given the cell map with the input values. Fill out
473 // a list of all possible branch targets and indicate (through a flag)
474 // whether the branch could fall-through. Return "true" if this information
475 // has been successfully computed, "false" otherwise.
476 virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
477 BranchTargetList &Targets, bool &FallsThru) const = 0;
478 // Given a register class RC, return a register class that should be assumed
479 // when a register from class RC is used with a subregister of index Idx.
480 virtual const TargetRegisterClass&
481 composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
482 if (Idx == 0)
483 return RC;
484 llvm_unreachable("Unimplemented composeWithSubRegIndex");
486 // Return the size in bits of the physical register Reg.
487 virtual uint16_t getPhysRegBitWidth(unsigned Reg) const;
489 const TargetRegisterInfo &TRI;
490 MachineRegisterInfo &MRI;
493 } // end namespace llvm
495 #endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H