[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / Hexagon / HexagonInstrInfo.cpp
blob767538f92ed60bc3794a3d960a9d6fb022467b41
1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "HexagonInstrInfo.h"
14 #include "Hexagon.h"
15 #include "HexagonFrameLowering.h"
16 #include "HexagonHazardRecognizer.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/DFAPacketizer.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/MC/MCInstrItineraries.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <cassert>
55 #include <cctype>
56 #include <cstdint>
57 #include <cstring>
58 #include <iterator>
59 #include <string>
60 #include <utility>
62 using namespace llvm;
64 #define DEBUG_TYPE "hexagon-instrinfo"
66 #define GET_INSTRINFO_CTOR_DTOR
67 #define GET_INSTRMAP_INFO
68 #include "HexagonDepTimingClasses.h"
69 #include "HexagonGenDFAPacketizer.inc"
70 #include "HexagonGenInstrInfo.inc"
72 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
73 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
74 "packetization boundary."));
76 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
77 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
79 static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
80 cl::Hidden, cl::ZeroOrMore, cl::init(false),
81 cl::desc("Disable schedule adjustment for new value stores."));
83 static cl::opt<bool> EnableTimingClassLatency(
84 "enable-timing-class-latency", cl::Hidden, cl::init(false),
85 cl::desc("Enable timing class latency"));
87 static cl::opt<bool> EnableALUForwarding(
88 "enable-alu-forwarding", cl::Hidden, cl::init(true),
89 cl::desc("Enable vec alu forwarding"));
91 static cl::opt<bool> EnableACCForwarding(
92 "enable-acc-forwarding", cl::Hidden, cl::init(true),
93 cl::desc("Enable vec acc forwarding"));
95 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
96 cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
98 static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec",
99 cl::init(true), cl::Hidden, cl::ZeroOrMore,
100 cl::desc("Use the DFA based hazard recognizer."));
102 /// Constants for Hexagon instructions.
103 const int Hexagon_MEMW_OFFSET_MAX = 4095;
104 const int Hexagon_MEMW_OFFSET_MIN = -4096;
105 const int Hexagon_MEMD_OFFSET_MAX = 8191;
106 const int Hexagon_MEMD_OFFSET_MIN = -8192;
107 const int Hexagon_MEMH_OFFSET_MAX = 2047;
108 const int Hexagon_MEMH_OFFSET_MIN = -2048;
109 const int Hexagon_MEMB_OFFSET_MAX = 1023;
110 const int Hexagon_MEMB_OFFSET_MIN = -1024;
111 const int Hexagon_ADDI_OFFSET_MAX = 32767;
112 const int Hexagon_ADDI_OFFSET_MIN = -32768;
114 // Pin the vtable to this file.
115 void HexagonInstrInfo::anchor() {}
117 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
118 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
119 Subtarget(ST) {}
121 static bool isIntRegForSubInst(unsigned Reg) {
122 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
123 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
126 static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
127 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
128 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
131 /// Calculate number of instructions excluding the debug instructions.
132 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
133 MachineBasicBlock::const_instr_iterator MIE) {
134 unsigned Count = 0;
135 for (; MIB != MIE; ++MIB) {
136 if (!MIB->isDebugInstr())
137 ++Count;
139 return Count;
142 /// Find the hardware loop instruction used to set-up the specified loop.
143 /// On Hexagon, we have two instructions used to set-up the hardware loop
144 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
145 /// to indicate the end of a loop.
146 MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB,
147 unsigned EndLoopOp, MachineBasicBlock *TargetBB,
148 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
149 unsigned LOOPi;
150 unsigned LOOPr;
151 if (EndLoopOp == Hexagon::ENDLOOP0) {
152 LOOPi = Hexagon::J2_loop0i;
153 LOOPr = Hexagon::J2_loop0r;
154 } else { // EndLoopOp == Hexagon::EndLOOP1
155 LOOPi = Hexagon::J2_loop1i;
156 LOOPr = Hexagon::J2_loop1r;
159 // The loop set-up instruction will be in a predecessor block
160 for (MachineBasicBlock *PB : BB->predecessors()) {
161 // If this has been visited, already skip it.
162 if (!Visited.insert(PB).second)
163 continue;
164 if (PB == BB)
165 continue;
166 for (auto I = PB->instr_rbegin(), E = PB->instr_rend(); I != E; ++I) {
167 unsigned Opc = I->getOpcode();
168 if (Opc == LOOPi || Opc == LOOPr)
169 return &*I;
170 // We've reached a different loop, which means the loop01 has been
171 // removed.
172 if (Opc == EndLoopOp && I->getOperand(0).getMBB() != TargetBB)
173 return nullptr;
175 // Check the predecessors for the LOOP instruction.
176 if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
177 return Loop;
179 return nullptr;
182 /// Gather register def/uses from MI.
183 /// This treats possible (predicated) defs as actually happening ones
184 /// (conservatively).
185 static inline void parseOperands(const MachineInstr &MI,
186 SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
187 Defs.clear();
188 Uses.clear();
190 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
191 const MachineOperand &MO = MI.getOperand(i);
193 if (!MO.isReg())
194 continue;
196 Register Reg = MO.getReg();
197 if (!Reg)
198 continue;
200 if (MO.isUse())
201 Uses.push_back(MO.getReg());
203 if (MO.isDef())
204 Defs.push_back(MO.getReg());
208 // Position dependent, so check twice for swap.
209 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
210 switch (Ga) {
211 case HexagonII::HSIG_None:
212 default:
213 return false;
214 case HexagonII::HSIG_L1:
215 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
216 case HexagonII::HSIG_L2:
217 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
218 Gb == HexagonII::HSIG_A);
219 case HexagonII::HSIG_S1:
220 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
221 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
222 case HexagonII::HSIG_S2:
223 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
224 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
225 Gb == HexagonII::HSIG_A);
226 case HexagonII::HSIG_A:
227 return (Gb == HexagonII::HSIG_A);
228 case HexagonII::HSIG_Compound:
229 return (Gb == HexagonII::HSIG_Compound);
231 return false;
234 /// isLoadFromStackSlot - If the specified machine instruction is a direct
235 /// load from a stack slot, return the virtual or physical register number of
236 /// the destination along with the FrameIndex of the loaded stack slot. If
237 /// not, return 0. This predicate must return 0 if the instruction has
238 /// any side effects other than loading from the stack slot.
239 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
240 int &FrameIndex) const {
241 switch (MI.getOpcode()) {
242 default:
243 break;
244 case Hexagon::L2_loadri_io:
245 case Hexagon::L2_loadrd_io:
246 case Hexagon::V6_vL32b_ai:
247 case Hexagon::V6_vL32b_nt_ai:
248 case Hexagon::V6_vL32Ub_ai:
249 case Hexagon::LDriw_pred:
250 case Hexagon::LDriw_ctr:
251 case Hexagon::PS_vloadrq_ai:
252 case Hexagon::PS_vloadrw_ai:
253 case Hexagon::PS_vloadrw_nt_ai: {
254 const MachineOperand OpFI = MI.getOperand(1);
255 if (!OpFI.isFI())
256 return 0;
257 const MachineOperand OpOff = MI.getOperand(2);
258 if (!OpOff.isImm() || OpOff.getImm() != 0)
259 return 0;
260 FrameIndex = OpFI.getIndex();
261 return MI.getOperand(0).getReg();
264 case Hexagon::L2_ploadrit_io:
265 case Hexagon::L2_ploadrif_io:
266 case Hexagon::L2_ploadrdt_io:
267 case Hexagon::L2_ploadrdf_io: {
268 const MachineOperand OpFI = MI.getOperand(2);
269 if (!OpFI.isFI())
270 return 0;
271 const MachineOperand OpOff = MI.getOperand(3);
272 if (!OpOff.isImm() || OpOff.getImm() != 0)
273 return 0;
274 FrameIndex = OpFI.getIndex();
275 return MI.getOperand(0).getReg();
279 return 0;
282 /// isStoreToStackSlot - If the specified machine instruction is a direct
283 /// store to a stack slot, return the virtual or physical register number of
284 /// the source reg along with the FrameIndex of the loaded stack slot. If
285 /// not, return 0. This predicate must return 0 if the instruction has
286 /// any side effects other than storing to the stack slot.
287 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
288 int &FrameIndex) const {
289 switch (MI.getOpcode()) {
290 default:
291 break;
292 case Hexagon::S2_storerb_io:
293 case Hexagon::S2_storerh_io:
294 case Hexagon::S2_storeri_io:
295 case Hexagon::S2_storerd_io:
296 case Hexagon::V6_vS32b_ai:
297 case Hexagon::V6_vS32Ub_ai:
298 case Hexagon::STriw_pred:
299 case Hexagon::STriw_ctr:
300 case Hexagon::PS_vstorerq_ai:
301 case Hexagon::PS_vstorerw_ai: {
302 const MachineOperand &OpFI = MI.getOperand(0);
303 if (!OpFI.isFI())
304 return 0;
305 const MachineOperand &OpOff = MI.getOperand(1);
306 if (!OpOff.isImm() || OpOff.getImm() != 0)
307 return 0;
308 FrameIndex = OpFI.getIndex();
309 return MI.getOperand(2).getReg();
312 case Hexagon::S2_pstorerbt_io:
313 case Hexagon::S2_pstorerbf_io:
314 case Hexagon::S2_pstorerht_io:
315 case Hexagon::S2_pstorerhf_io:
316 case Hexagon::S2_pstorerit_io:
317 case Hexagon::S2_pstorerif_io:
318 case Hexagon::S2_pstorerdt_io:
319 case Hexagon::S2_pstorerdf_io: {
320 const MachineOperand &OpFI = MI.getOperand(1);
321 if (!OpFI.isFI())
322 return 0;
323 const MachineOperand &OpOff = MI.getOperand(2);
324 if (!OpOff.isImm() || OpOff.getImm() != 0)
325 return 0;
326 FrameIndex = OpFI.getIndex();
327 return MI.getOperand(3).getReg();
331 return 0;
334 /// This function checks if the instruction or bundle of instructions
335 /// has load from stack slot and returns frameindex and machine memory
336 /// operand of that instruction if true.
337 bool HexagonInstrInfo::hasLoadFromStackSlot(
338 const MachineInstr &MI,
339 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
340 if (MI.isBundle()) {
341 const MachineBasicBlock *MBB = MI.getParent();
342 MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
343 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
344 if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses))
345 return true;
346 return false;
349 return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses);
352 /// This function checks if the instruction or bundle of instructions
353 /// has store to stack slot and returns frameindex and machine memory
354 /// operand of that instruction if true.
355 bool HexagonInstrInfo::hasStoreToStackSlot(
356 const MachineInstr &MI,
357 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
358 if (MI.isBundle()) {
359 const MachineBasicBlock *MBB = MI.getParent();
360 MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
361 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
362 if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses))
363 return true;
364 return false;
367 return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses);
370 /// This function can analyze one/two way branching only and should (mostly) be
371 /// called by target independent side.
372 /// First entry is always the opcode of the branching instruction, except when
373 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
374 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
375 /// e.g. Jump_c p will have
376 /// Cond[0] = Jump_c
377 /// Cond[1] = p
378 /// HW-loop ENDLOOP:
379 /// Cond[0] = ENDLOOP
380 /// Cond[1] = MBB
381 /// New value jump:
382 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
383 /// Cond[1] = R
384 /// Cond[2] = Imm
385 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
386 MachineBasicBlock *&TBB,
387 MachineBasicBlock *&FBB,
388 SmallVectorImpl<MachineOperand> &Cond,
389 bool AllowModify) const {
390 TBB = nullptr;
391 FBB = nullptr;
392 Cond.clear();
394 // If the block has no terminators, it just falls into the block after it.
395 MachineBasicBlock::instr_iterator I = MBB.instr_end();
396 if (I == MBB.instr_begin())
397 return false;
399 // A basic block may looks like this:
401 // [ insn
402 // EH_LABEL
403 // insn
404 // insn
405 // insn
406 // EH_LABEL
407 // insn ]
409 // It has two succs but does not have a terminator
410 // Don't know how to handle it.
411 do {
412 --I;
413 if (I->isEHLabel())
414 // Don't analyze EH branches.
415 return true;
416 } while (I != MBB.instr_begin());
418 I = MBB.instr_end();
419 --I;
421 while (I->isDebugInstr()) {
422 if (I == MBB.instr_begin())
423 return false;
424 --I;
427 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
428 I->getOperand(0).isMBB();
429 // Delete the J2_jump if it's equivalent to a fall-through.
430 if (AllowModify && JumpToBlock &&
431 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
432 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
433 I->eraseFromParent();
434 I = MBB.instr_end();
435 if (I == MBB.instr_begin())
436 return false;
437 --I;
439 if (!isUnpredicatedTerminator(*I))
440 return false;
442 // Get the last instruction in the block.
443 MachineInstr *LastInst = &*I;
444 MachineInstr *SecondLastInst = nullptr;
445 // Find one more terminator if present.
446 while (true) {
447 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
448 if (!SecondLastInst)
449 SecondLastInst = &*I;
450 else
451 // This is a third branch.
452 return true;
454 if (I == MBB.instr_begin())
455 break;
456 --I;
459 int LastOpcode = LastInst->getOpcode();
460 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
461 // If the branch target is not a basic block, it could be a tail call.
462 // (It is, if the target is a function.)
463 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
464 return true;
465 if (SecLastOpcode == Hexagon::J2_jump &&
466 !SecondLastInst->getOperand(0).isMBB())
467 return true;
469 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
470 bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
472 if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
473 return true;
475 // If there is only one terminator instruction, process it.
476 if (LastInst && !SecondLastInst) {
477 if (LastOpcode == Hexagon::J2_jump) {
478 TBB = LastInst->getOperand(0).getMBB();
479 return false;
481 if (isEndLoopN(LastOpcode)) {
482 TBB = LastInst->getOperand(0).getMBB();
483 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
484 Cond.push_back(LastInst->getOperand(0));
485 return false;
487 if (LastOpcodeHasJMP_c) {
488 TBB = LastInst->getOperand(1).getMBB();
489 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
490 Cond.push_back(LastInst->getOperand(0));
491 return false;
493 // Only supporting rr/ri versions of new-value jumps.
494 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
495 TBB = LastInst->getOperand(2).getMBB();
496 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
497 Cond.push_back(LastInst->getOperand(0));
498 Cond.push_back(LastInst->getOperand(1));
499 return false;
501 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
502 << " with one jump\n";);
503 // Otherwise, don't know what this is.
504 return true;
507 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
508 bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
509 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
510 if (!SecondLastInst->getOperand(1).isMBB())
511 return true;
512 TBB = SecondLastInst->getOperand(1).getMBB();
513 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
514 Cond.push_back(SecondLastInst->getOperand(0));
515 FBB = LastInst->getOperand(0).getMBB();
516 return false;
519 // Only supporting rr/ri versions of new-value jumps.
520 if (SecLastOpcodeHasNVJump &&
521 (SecondLastInst->getNumExplicitOperands() == 3) &&
522 (LastOpcode == Hexagon::J2_jump)) {
523 TBB = SecondLastInst->getOperand(2).getMBB();
524 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
525 Cond.push_back(SecondLastInst->getOperand(0));
526 Cond.push_back(SecondLastInst->getOperand(1));
527 FBB = LastInst->getOperand(0).getMBB();
528 return false;
531 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
532 // executed, so remove it.
533 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
534 TBB = SecondLastInst->getOperand(0).getMBB();
535 I = LastInst->getIterator();
536 if (AllowModify)
537 I->eraseFromParent();
538 return false;
541 // If the block ends with an ENDLOOP, and J2_jump, handle it.
542 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
543 TBB = SecondLastInst->getOperand(0).getMBB();
544 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
545 Cond.push_back(SecondLastInst->getOperand(0));
546 FBB = LastInst->getOperand(0).getMBB();
547 return false;
549 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
550 << " with two jumps";);
551 // Otherwise, can't handle this.
552 return true;
555 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB,
556 int *BytesRemoved) const {
557 assert(!BytesRemoved && "code size not handled");
559 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
560 MachineBasicBlock::iterator I = MBB.end();
561 unsigned Count = 0;
562 while (I != MBB.begin()) {
563 --I;
564 if (I->isDebugInstr())
565 continue;
566 // Only removing branches from end of MBB.
567 if (!I->isBranch())
568 return Count;
569 if (Count && (I->getOpcode() == Hexagon::J2_jump))
570 llvm_unreachable("Malformed basic block: unconditional branch not last");
571 MBB.erase(&MBB.back());
572 I = MBB.end();
573 ++Count;
575 return Count;
578 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB,
579 MachineBasicBlock *TBB,
580 MachineBasicBlock *FBB,
581 ArrayRef<MachineOperand> Cond,
582 const DebugLoc &DL,
583 int *BytesAdded) const {
584 unsigned BOpc = Hexagon::J2_jump;
585 unsigned BccOpc = Hexagon::J2_jumpt;
586 assert(validateBranchCond(Cond) && "Invalid branching condition");
587 assert(TBB && "insertBranch must not be told to insert a fallthrough");
588 assert(!BytesAdded && "code size not handled");
590 // Check if reverseBranchCondition has asked to reverse this branch
591 // If we want to reverse the branch an odd number of times, we want
592 // J2_jumpf.
593 if (!Cond.empty() && Cond[0].isImm())
594 BccOpc = Cond[0].getImm();
596 if (!FBB) {
597 if (Cond.empty()) {
598 // Due to a bug in TailMerging/CFG Optimization, we need to add a
599 // special case handling of a predicated jump followed by an
600 // unconditional jump. If not, Tail Merging and CFG Optimization go
601 // into an infinite loop.
602 MachineBasicBlock *NewTBB, *NewFBB;
603 SmallVector<MachineOperand, 4> Cond;
604 auto Term = MBB.getFirstTerminator();
605 if (Term != MBB.end() && isPredicated(*Term) &&
606 !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
607 MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
608 reverseBranchCondition(Cond);
609 removeBranch(MBB);
610 return insertBranch(MBB, TBB, nullptr, Cond, DL);
612 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
613 } else if (isEndLoopN(Cond[0].getImm())) {
614 int EndLoopOp = Cond[0].getImm();
615 assert(Cond[1].isMBB());
616 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
617 // Check for it, and change the BB target if needed.
618 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
619 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
620 VisitedBBs);
621 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
622 Loop->getOperand(0).setMBB(TBB);
623 // Add the ENDLOOP after the finding the LOOP0.
624 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
625 } else if (isNewValueJump(Cond[0].getImm())) {
626 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
627 // New value jump
628 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
629 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
630 unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
631 LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
632 << printMBBReference(MBB););
633 if (Cond[2].isReg()) {
634 unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
635 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
636 addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
637 } else if(Cond[2].isImm()) {
638 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
639 addImm(Cond[2].getImm()).addMBB(TBB);
640 } else
641 llvm_unreachable("Invalid condition for branching");
642 } else {
643 assert((Cond.size() == 2) && "Malformed cond vector");
644 const MachineOperand &RO = Cond[1];
645 unsigned Flags = getUndefRegState(RO.isUndef());
646 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
648 return 1;
650 assert((!Cond.empty()) &&
651 "Cond. cannot be empty when multiple branchings are required");
652 assert((!isNewValueJump(Cond[0].getImm())) &&
653 "NV-jump cannot be inserted with another branch");
654 // Special case for hardware loops. The condition is a basic block.
655 if (isEndLoopN(Cond[0].getImm())) {
656 int EndLoopOp = Cond[0].getImm();
657 assert(Cond[1].isMBB());
658 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
659 // Check for it, and change the BB target if needed.
660 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
661 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
662 VisitedBBs);
663 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
664 Loop->getOperand(0).setMBB(TBB);
665 // Add the ENDLOOP after the finding the LOOP0.
666 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
667 } else {
668 const MachineOperand &RO = Cond[1];
669 unsigned Flags = getUndefRegState(RO.isUndef());
670 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
672 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
674 return 2;
677 namespace {
678 class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
679 MachineInstr *Loop, *EndLoop;
680 MachineFunction *MF;
681 const HexagonInstrInfo *TII;
682 int64_t TripCount;
683 Register LoopCount;
684 DebugLoc DL;
686 public:
687 HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop)
688 : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()),
689 TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()),
690 DL(Loop->getDebugLoc()) {
691 // Inspect the Loop instruction up-front, as it may be deleted when we call
692 // createTripCountGreaterCondition.
693 TripCount = Loop->getOpcode() == Hexagon::J2_loop0r
694 ? -1
695 : Loop->getOperand(1).getImm();
696 if (TripCount == -1)
697 LoopCount = Loop->getOperand(1).getReg();
700 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
701 // Only ignore the terminator.
702 return MI == EndLoop;
705 Optional<bool>
706 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
707 SmallVectorImpl<MachineOperand> &Cond) override {
708 if (TripCount == -1) {
709 // Check if we're done with the loop.
710 unsigned Done = TII->createVR(MF, MVT::i1);
711 MachineInstr *NewCmp = BuildMI(&MBB, DL,
712 TII->get(Hexagon::C2_cmpgtui), Done)
713 .addReg(LoopCount)
714 .addImm(TC);
715 Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
716 Cond.push_back(NewCmp->getOperand(0));
717 return {};
720 return TripCount > TC;
723 void setPreheader(MachineBasicBlock *NewPreheader) override {
724 NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(),
725 Loop);
728 void adjustTripCount(int TripCountAdjust) override {
729 // If the loop trip count is a compile-time value, then just change the
730 // value.
731 if (Loop->getOpcode() == Hexagon::J2_loop0i ||
732 Loop->getOpcode() == Hexagon::J2_loop1i) {
733 int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust;
734 assert(TripCount > 0 && "Can't create an empty or negative loop!");
735 Loop->getOperand(1).setImm(TripCount);
736 return;
739 // The loop trip count is a run-time value. We generate code to subtract
740 // one from the trip count, and update the loop instruction.
741 Register LoopCount = Loop->getOperand(1).getReg();
742 Register NewLoopCount = TII->createVR(MF, MVT::i32);
743 BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(),
744 TII->get(Hexagon::A2_addi), NewLoopCount)
745 .addReg(LoopCount)
746 .addImm(TripCountAdjust);
747 Loop->getOperand(1).setReg(NewLoopCount);
750 void disposed() override { Loop->eraseFromParent(); }
752 } // namespace
754 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
755 HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
756 // We really "analyze" only hardware loops right now.
757 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
759 if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) {
760 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
761 MachineInstr *LoopInst = findLoopInstr(
762 LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs);
763 if (LoopInst)
764 return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I);
766 return nullptr;
769 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
770 unsigned NumCycles, unsigned ExtraPredCycles,
771 BranchProbability Probability) const {
772 return nonDbgBBSize(&MBB) <= 3;
775 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
776 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
777 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
778 const {
779 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
782 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
783 unsigned NumInstrs, BranchProbability Probability) const {
784 return NumInstrs <= 4;
787 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
788 MachineBasicBlock::iterator I,
789 const DebugLoc &DL, unsigned DestReg,
790 unsigned SrcReg, bool KillSrc) const {
791 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
792 unsigned KillFlag = getKillRegState(KillSrc);
794 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
795 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
796 .addReg(SrcReg, KillFlag);
797 return;
799 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
800 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
801 .addReg(SrcReg, KillFlag);
802 return;
804 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
805 // Map Pd = Ps to Pd = or(Ps, Ps).
806 BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
807 .addReg(SrcReg).addReg(SrcReg, KillFlag);
808 return;
810 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
811 Hexagon::IntRegsRegClass.contains(SrcReg)) {
812 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
813 .addReg(SrcReg, KillFlag);
814 return;
816 if (Hexagon::IntRegsRegClass.contains(DestReg) &&
817 Hexagon::CtrRegsRegClass.contains(SrcReg)) {
818 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
819 .addReg(SrcReg, KillFlag);
820 return;
822 if (Hexagon::ModRegsRegClass.contains(DestReg) &&
823 Hexagon::IntRegsRegClass.contains(SrcReg)) {
824 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
825 .addReg(SrcReg, KillFlag);
826 return;
828 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
829 Hexagon::IntRegsRegClass.contains(DestReg)) {
830 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
831 .addReg(SrcReg, KillFlag);
832 return;
834 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
835 Hexagon::PredRegsRegClass.contains(DestReg)) {
836 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
837 .addReg(SrcReg, KillFlag);
838 return;
840 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
841 Hexagon::IntRegsRegClass.contains(DestReg)) {
842 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
843 .addReg(SrcReg, KillFlag);
844 return;
846 if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
847 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
848 addReg(SrcReg, KillFlag);
849 return;
851 if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
852 Register LoSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
853 Register HiSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
854 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
855 .addReg(HiSrc, KillFlag)
856 .addReg(LoSrc, KillFlag);
857 return;
859 if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
860 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
861 .addReg(SrcReg)
862 .addReg(SrcReg, KillFlag);
863 return;
865 if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
866 Hexagon::HvxVRRegClass.contains(DestReg)) {
867 llvm_unreachable("Unimplemented pred to vec");
868 return;
870 if (Hexagon::HvxQRRegClass.contains(DestReg) &&
871 Hexagon::HvxVRRegClass.contains(SrcReg)) {
872 llvm_unreachable("Unimplemented vec to pred");
873 return;
876 #ifndef NDEBUG
877 // Show the invalid registers to ease debugging.
878 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
879 << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
880 #endif
881 llvm_unreachable("Unimplemented");
884 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
885 MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
886 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
887 DebugLoc DL = MBB.findDebugLoc(I);
888 MachineFunction &MF = *MBB.getParent();
889 MachineFrameInfo &MFI = MF.getFrameInfo();
890 unsigned SlotAlign = MFI.getObjectAlignment(FI);
891 unsigned RegAlign = TRI->getSpillAlignment(*RC);
892 unsigned KillFlag = getKillRegState(isKill);
893 bool HasAlloca = MFI.hasVarSizedObjects();
894 const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();
896 MachineMemOperand *MMO = MF.getMachineMemOperand(
897 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
898 MFI.getObjectSize(FI), SlotAlign);
900 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
901 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
902 .addFrameIndex(FI).addImm(0)
903 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
904 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
905 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
906 .addFrameIndex(FI).addImm(0)
907 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
908 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
909 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
910 .addFrameIndex(FI).addImm(0)
911 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
912 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
913 BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
914 .addFrameIndex(FI).addImm(0)
915 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
916 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
917 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
918 .addFrameIndex(FI).addImm(0)
919 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
920 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
921 // If there are variable-sized objects, spills will not be aligned.
922 if (HasAlloca)
923 SlotAlign = HFI.getStackAlignment();
924 unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vS32Ub_ai
925 : Hexagon::V6_vS32b_ai;
926 MachineMemOperand *MMOA = MF.getMachineMemOperand(
927 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
928 MFI.getObjectSize(FI), SlotAlign);
929 BuildMI(MBB, I, DL, get(Opc))
930 .addFrameIndex(FI).addImm(0)
931 .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
932 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
933 // If there are variable-sized objects, spills will not be aligned.
934 if (HasAlloca)
935 SlotAlign = HFI.getStackAlignment();
936 unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vstorerwu_ai
937 : Hexagon::PS_vstorerw_ai;
938 MachineMemOperand *MMOA = MF.getMachineMemOperand(
939 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
940 MFI.getObjectSize(FI), SlotAlign);
941 BuildMI(MBB, I, DL, get(Opc))
942 .addFrameIndex(FI).addImm(0)
943 .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
944 } else {
945 llvm_unreachable("Unimplemented");
949 void HexagonInstrInfo::loadRegFromStackSlot(
950 MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg,
951 int FI, const TargetRegisterClass *RC,
952 const TargetRegisterInfo *TRI) const {
953 DebugLoc DL = MBB.findDebugLoc(I);
954 MachineFunction &MF = *MBB.getParent();
955 MachineFrameInfo &MFI = MF.getFrameInfo();
956 unsigned SlotAlign = MFI.getObjectAlignment(FI);
957 unsigned RegAlign = TRI->getSpillAlignment(*RC);
958 bool HasAlloca = MFI.hasVarSizedObjects();
959 const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();
961 MachineMemOperand *MMO = MF.getMachineMemOperand(
962 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
963 MFI.getObjectSize(FI), SlotAlign);
965 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
966 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
967 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
968 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
969 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
970 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
971 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
972 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
973 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
974 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
975 BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
976 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
977 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
978 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
979 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
980 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
981 // If there are variable-sized objects, spills will not be aligned.
982 if (HasAlloca)
983 SlotAlign = HFI.getStackAlignment();
984 unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vL32Ub_ai
985 : Hexagon::V6_vL32b_ai;
986 MachineMemOperand *MMOA = MF.getMachineMemOperand(
987 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
988 MFI.getObjectSize(FI), SlotAlign);
989 BuildMI(MBB, I, DL, get(Opc), DestReg)
990 .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
991 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
992 // If there are variable-sized objects, spills will not be aligned.
993 if (HasAlloca)
994 SlotAlign = HFI.getStackAlignment();
995 unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vloadrwu_ai
996 : Hexagon::PS_vloadrw_ai;
997 MachineMemOperand *MMOA = MF.getMachineMemOperand(
998 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
999 MFI.getObjectSize(FI), SlotAlign);
1000 BuildMI(MBB, I, DL, get(Opc), DestReg)
1001 .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
1002 } else {
1003 llvm_unreachable("Can't store this register to stack slot");
1007 static void getLiveRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
1008 const MachineBasicBlock &B = *MI.getParent();
1009 Regs.addLiveOuts(B);
1010 auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
1011 for (auto I = B.rbegin(); I != E; ++I)
1012 Regs.stepBackward(*I);
1015 /// expandPostRAPseudo - This function is called for all pseudo instructions
1016 /// that remain after register allocation. Many pseudo instructions are
1017 /// created to help register allocation. This is the place to convert them
1018 /// into real instructions. The target can edit MI in place, or it can insert
1019 /// new instructions and erase MI. The function should return true if
1020 /// anything was changed.
1021 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1022 MachineBasicBlock &MBB = *MI.getParent();
1023 MachineFunction &MF = *MBB.getParent();
1024 MachineRegisterInfo &MRI = MF.getRegInfo();
1025 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1026 DebugLoc DL = MI.getDebugLoc();
1027 unsigned Opc = MI.getOpcode();
1029 auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
1030 Register Mx = MI.getOperand(MxOp).getReg();
1031 unsigned CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
1032 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
1033 .add(MI.getOperand((HasImm ? 5 : 4)));
1034 auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
1035 .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
1036 if (HasImm)
1037 MIB.add(MI.getOperand(4));
1038 MIB.addReg(CSx, RegState::Implicit);
1039 MBB.erase(MI);
1040 return true;
1043 switch (Opc) {
1044 case TargetOpcode::COPY: {
1045 MachineOperand &MD = MI.getOperand(0);
1046 MachineOperand &MS = MI.getOperand(1);
1047 MachineBasicBlock::iterator MBBI = MI.getIterator();
1048 if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1049 copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1050 std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1052 MBB.erase(MBBI);
1053 return true;
1055 case Hexagon::PS_aligna:
1056 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1057 .addReg(HRI.getFrameRegister())
1058 .addImm(-MI.getOperand(1).getImm());
1059 MBB.erase(MI);
1060 return true;
1061 case Hexagon::V6_vassignp: {
1062 Register SrcReg = MI.getOperand(1).getReg();
1063 Register DstReg = MI.getOperand(0).getReg();
1064 unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1065 BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1066 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi), Kill)
1067 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo), Kill);
1068 MBB.erase(MI);
1069 return true;
1071 case Hexagon::V6_lo: {
1072 Register SrcReg = MI.getOperand(1).getReg();
1073 Register DstReg = MI.getOperand(0).getReg();
1074 Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1075 copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1076 MBB.erase(MI);
1077 MRI.clearKillFlags(SrcSubLo);
1078 return true;
1080 case Hexagon::V6_hi: {
1081 Register SrcReg = MI.getOperand(1).getReg();
1082 Register DstReg = MI.getOperand(0).getReg();
1083 Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1084 copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1085 MBB.erase(MI);
1086 MRI.clearKillFlags(SrcSubHi);
1087 return true;
1089 case Hexagon::PS_vstorerw_ai:
1090 case Hexagon::PS_vstorerwu_ai: {
1091 bool Aligned = Opc == Hexagon::PS_vstorerw_ai;
1092 Register SrcReg = MI.getOperand(2).getReg();
1093 Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1094 Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1095 unsigned NewOpc = Aligned ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai;
1096 unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1098 MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc))
1099 .add(MI.getOperand(0))
1100 .addImm(MI.getOperand(1).getImm())
1101 .addReg(SrcSubLo)
1102 .cloneMemRefs(MI);
1103 MI1New->getOperand(0).setIsKill(false);
1104 BuildMI(MBB, MI, DL, get(NewOpc))
1105 .add(MI.getOperand(0))
1106 // The Vectors are indexed in multiples of vector size.
1107 .addImm(MI.getOperand(1).getImm() + Offset)
1108 .addReg(SrcSubHi)
1109 .cloneMemRefs(MI);
1110 MBB.erase(MI);
1111 return true;
1113 case Hexagon::PS_vloadrw_ai:
1114 case Hexagon::PS_vloadrwu_ai: {
1115 bool Aligned = Opc == Hexagon::PS_vloadrw_ai;
1116 Register DstReg = MI.getOperand(0).getReg();
1117 unsigned NewOpc = Aligned ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai;
1118 unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1120 MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc),
1121 HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1122 .add(MI.getOperand(1))
1123 .addImm(MI.getOperand(2).getImm())
1124 .cloneMemRefs(MI);
1125 MI1New->getOperand(1).setIsKill(false);
1126 BuildMI(MBB, MI, DL, get(NewOpc), HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1127 .add(MI.getOperand(1))
1128 // The Vectors are indexed in multiples of vector size.
1129 .addImm(MI.getOperand(2).getImm() + Offset)
1130 .cloneMemRefs(MI);
1131 MBB.erase(MI);
1132 return true;
1134 case Hexagon::PS_true: {
1135 Register Reg = MI.getOperand(0).getReg();
1136 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1137 .addReg(Reg, RegState::Undef)
1138 .addReg(Reg, RegState::Undef);
1139 MBB.erase(MI);
1140 return true;
1142 case Hexagon::PS_false: {
1143 Register Reg = MI.getOperand(0).getReg();
1144 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1145 .addReg(Reg, RegState::Undef)
1146 .addReg(Reg, RegState::Undef);
1147 MBB.erase(MI);
1148 return true;
1150 case Hexagon::PS_qtrue: {
1151 BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1152 .addReg(Hexagon::V0, RegState::Undef)
1153 .addReg(Hexagon::V0, RegState::Undef);
1154 MBB.erase(MI);
1155 return true;
1157 case Hexagon::PS_qfalse: {
1158 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1159 .addReg(Hexagon::V0, RegState::Undef)
1160 .addReg(Hexagon::V0, RegState::Undef);
1161 MBB.erase(MI);
1162 return true;
1164 case Hexagon::PS_vdd0: {
1165 Register Vd = MI.getOperand(0).getReg();
1166 BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1167 .addReg(Vd, RegState::Undef)
1168 .addReg(Vd, RegState::Undef);
1169 MBB.erase(MI);
1170 return true;
1172 case Hexagon::PS_vmulw: {
1173 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1174 Register DstReg = MI.getOperand(0).getReg();
1175 Register Src1Reg = MI.getOperand(1).getReg();
1176 Register Src2Reg = MI.getOperand(2).getReg();
1177 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1178 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1179 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1180 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1181 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1182 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1183 .addReg(Src1SubHi)
1184 .addReg(Src2SubHi);
1185 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1186 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1187 .addReg(Src1SubLo)
1188 .addReg(Src2SubLo);
1189 MBB.erase(MI);
1190 MRI.clearKillFlags(Src1SubHi);
1191 MRI.clearKillFlags(Src1SubLo);
1192 MRI.clearKillFlags(Src2SubHi);
1193 MRI.clearKillFlags(Src2SubLo);
1194 return true;
1196 case Hexagon::PS_vmulw_acc: {
1197 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1198 Register DstReg = MI.getOperand(0).getReg();
1199 Register Src1Reg = MI.getOperand(1).getReg();
1200 Register Src2Reg = MI.getOperand(2).getReg();
1201 Register Src3Reg = MI.getOperand(3).getReg();
1202 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1203 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1204 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1205 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1206 Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1207 Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1208 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1209 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1210 .addReg(Src1SubHi)
1211 .addReg(Src2SubHi)
1212 .addReg(Src3SubHi);
1213 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1214 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1215 .addReg(Src1SubLo)
1216 .addReg(Src2SubLo)
1217 .addReg(Src3SubLo);
1218 MBB.erase(MI);
1219 MRI.clearKillFlags(Src1SubHi);
1220 MRI.clearKillFlags(Src1SubLo);
1221 MRI.clearKillFlags(Src2SubHi);
1222 MRI.clearKillFlags(Src2SubLo);
1223 MRI.clearKillFlags(Src3SubHi);
1224 MRI.clearKillFlags(Src3SubLo);
1225 return true;
1227 case Hexagon::PS_pselect: {
1228 const MachineOperand &Op0 = MI.getOperand(0);
1229 const MachineOperand &Op1 = MI.getOperand(1);
1230 const MachineOperand &Op2 = MI.getOperand(2);
1231 const MachineOperand &Op3 = MI.getOperand(3);
1232 Register Rd = Op0.getReg();
1233 Register Pu = Op1.getReg();
1234 Register Rs = Op2.getReg();
1235 Register Rt = Op3.getReg();
1236 DebugLoc DL = MI.getDebugLoc();
1237 unsigned K1 = getKillRegState(Op1.isKill());
1238 unsigned K2 = getKillRegState(Op2.isKill());
1239 unsigned K3 = getKillRegState(Op3.isKill());
1240 if (Rd != Rs)
1241 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1242 .addReg(Pu, (Rd == Rt) ? K1 : 0)
1243 .addReg(Rs, K2);
1244 if (Rd != Rt)
1245 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1246 .addReg(Pu, K1)
1247 .addReg(Rt, K3);
1248 MBB.erase(MI);
1249 return true;
1251 case Hexagon::PS_vselect: {
1252 const MachineOperand &Op0 = MI.getOperand(0);
1253 const MachineOperand &Op1 = MI.getOperand(1);
1254 const MachineOperand &Op2 = MI.getOperand(2);
1255 const MachineOperand &Op3 = MI.getOperand(3);
1256 LivePhysRegs LiveAtMI(HRI);
1257 getLiveRegsAt(LiveAtMI, MI);
1258 bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1259 Register PReg = Op1.getReg();
1260 assert(Op1.getSubReg() == 0);
1261 unsigned PState = getRegState(Op1);
1263 if (Op0.getReg() != Op2.getReg()) {
1264 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1265 : PState;
1266 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1267 .add(Op0)
1268 .addReg(PReg, S)
1269 .add(Op2);
1270 if (IsDestLive)
1271 T.addReg(Op0.getReg(), RegState::Implicit);
1272 IsDestLive = true;
1274 if (Op0.getReg() != Op3.getReg()) {
1275 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1276 .add(Op0)
1277 .addReg(PReg, PState)
1278 .add(Op3);
1279 if (IsDestLive)
1280 T.addReg(Op0.getReg(), RegState::Implicit);
1282 MBB.erase(MI);
1283 return true;
1285 case Hexagon::PS_wselect: {
1286 MachineOperand &Op0 = MI.getOperand(0);
1287 MachineOperand &Op1 = MI.getOperand(1);
1288 MachineOperand &Op2 = MI.getOperand(2);
1289 MachineOperand &Op3 = MI.getOperand(3);
1290 LivePhysRegs LiveAtMI(HRI);
1291 getLiveRegsAt(LiveAtMI, MI);
1292 bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1293 Register PReg = Op1.getReg();
1294 assert(Op1.getSubReg() == 0);
1295 unsigned PState = getRegState(Op1);
1297 if (Op0.getReg() != Op2.getReg()) {
1298 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1299 : PState;
1300 Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1301 Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1302 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1303 .add(Op0)
1304 .addReg(PReg, S)
1305 .addReg(SrcHi)
1306 .addReg(SrcLo);
1307 if (IsDestLive)
1308 T.addReg(Op0.getReg(), RegState::Implicit);
1309 IsDestLive = true;
1311 if (Op0.getReg() != Op3.getReg()) {
1312 Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1313 Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1314 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1315 .add(Op0)
1316 .addReg(PReg, PState)
1317 .addReg(SrcHi)
1318 .addReg(SrcLo);
1319 if (IsDestLive)
1320 T.addReg(Op0.getReg(), RegState::Implicit);
1322 MBB.erase(MI);
1323 return true;
1326 case Hexagon::PS_crash: {
1327 // Generate a misaligned load that is guaranteed to cause a crash.
1328 class CrashPseudoSourceValue : public PseudoSourceValue {
1329 public:
1330 CrashPseudoSourceValue(const TargetInstrInfo &TII)
1331 : PseudoSourceValue(TargetCustom, TII) {}
1333 bool isConstant(const MachineFrameInfo *) const override {
1334 return false;
1336 bool isAliased(const MachineFrameInfo *) const override {
1337 return false;
1339 bool mayAlias(const MachineFrameInfo *) const override {
1340 return false;
1342 void printCustom(raw_ostream &OS) const override {
1343 OS << "MisalignedCrash";
1347 static const CrashPseudoSourceValue CrashPSV(*this);
1348 MachineMemOperand *MMO = MF.getMachineMemOperand(
1349 MachinePointerInfo(&CrashPSV),
1350 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8, 1);
1351 BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13)
1352 .addImm(0xBADC0FEE) // Misaligned load.
1353 .addMemOperand(MMO);
1354 MBB.erase(MI);
1355 return true;
1358 case Hexagon::PS_tailcall_i:
1359 MI.setDesc(get(Hexagon::J2_jump));
1360 return true;
1361 case Hexagon::PS_tailcall_r:
1362 case Hexagon::PS_jmpret:
1363 MI.setDesc(get(Hexagon::J2_jumpr));
1364 return true;
1365 case Hexagon::PS_jmprett:
1366 MI.setDesc(get(Hexagon::J2_jumprt));
1367 return true;
1368 case Hexagon::PS_jmpretf:
1369 MI.setDesc(get(Hexagon::J2_jumprf));
1370 return true;
1371 case Hexagon::PS_jmprettnewpt:
1372 MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1373 return true;
1374 case Hexagon::PS_jmpretfnewpt:
1375 MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1376 return true;
1377 case Hexagon::PS_jmprettnew:
1378 MI.setDesc(get(Hexagon::J2_jumprtnew));
1379 return true;
1380 case Hexagon::PS_jmpretfnew:
1381 MI.setDesc(get(Hexagon::J2_jumprfnew));
1382 return true;
1384 case Hexagon::PS_loadrub_pci:
1385 return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4);
1386 case Hexagon::PS_loadrb_pci:
1387 return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4);
1388 case Hexagon::PS_loadruh_pci:
1389 return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4);
1390 case Hexagon::PS_loadrh_pci:
1391 return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4);
1392 case Hexagon::PS_loadri_pci:
1393 return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4);
1394 case Hexagon::PS_loadrd_pci:
1395 return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4);
1396 case Hexagon::PS_loadrub_pcr:
1397 return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1398 case Hexagon::PS_loadrb_pcr:
1399 return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3);
1400 case Hexagon::PS_loadruh_pcr:
1401 return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1402 case Hexagon::PS_loadrh_pcr:
1403 return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3);
1404 case Hexagon::PS_loadri_pcr:
1405 return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3);
1406 case Hexagon::PS_loadrd_pcr:
1407 return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3);
1408 case Hexagon::PS_storerb_pci:
1409 return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3);
1410 case Hexagon::PS_storerh_pci:
1411 return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3);
1412 case Hexagon::PS_storerf_pci:
1413 return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3);
1414 case Hexagon::PS_storeri_pci:
1415 return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3);
1416 case Hexagon::PS_storerd_pci:
1417 return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3);
1418 case Hexagon::PS_storerb_pcr:
1419 return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1420 case Hexagon::PS_storerh_pcr:
1421 return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1422 case Hexagon::PS_storerf_pcr:
1423 return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1424 case Hexagon::PS_storeri_pcr:
1425 return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1426 case Hexagon::PS_storerd_pcr:
1427 return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1430 return false;
1433 MachineBasicBlock::instr_iterator
1434 HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const {
1435 MachineBasicBlock &MBB = *MI.getParent();
1436 const DebugLoc &DL = MI.getDebugLoc();
1437 unsigned Opc = MI.getOpcode();
1438 MachineBasicBlock::iterator First;
1440 switch (Opc) {
1441 case Hexagon::V6_vgathermh_pseudo:
1442 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1443 .add(MI.getOperand(1))
1444 .add(MI.getOperand(2))
1445 .add(MI.getOperand(3));
1446 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1447 .add(MI.getOperand(0))
1448 .addImm(0)
1449 .addReg(Hexagon::VTMP);
1450 MBB.erase(MI);
1451 return First.getInstrIterator();
1453 case Hexagon::V6_vgathermw_pseudo:
1454 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1455 .add(MI.getOperand(1))
1456 .add(MI.getOperand(2))
1457 .add(MI.getOperand(3));
1458 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1459 .add(MI.getOperand(0))
1460 .addImm(0)
1461 .addReg(Hexagon::VTMP);
1462 MBB.erase(MI);
1463 return First.getInstrIterator();
1465 case Hexagon::V6_vgathermhw_pseudo:
1466 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1467 .add(MI.getOperand(1))
1468 .add(MI.getOperand(2))
1469 .add(MI.getOperand(3));
1470 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1471 .add(MI.getOperand(0))
1472 .addImm(0)
1473 .addReg(Hexagon::VTMP);
1474 MBB.erase(MI);
1475 return First.getInstrIterator();
1477 case Hexagon::V6_vgathermhq_pseudo:
1478 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1479 .add(MI.getOperand(1))
1480 .add(MI.getOperand(2))
1481 .add(MI.getOperand(3))
1482 .add(MI.getOperand(4));
1483 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1484 .add(MI.getOperand(0))
1485 .addImm(0)
1486 .addReg(Hexagon::VTMP);
1487 MBB.erase(MI);
1488 return First.getInstrIterator();
1490 case Hexagon::V6_vgathermwq_pseudo:
1491 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1492 .add(MI.getOperand(1))
1493 .add(MI.getOperand(2))
1494 .add(MI.getOperand(3))
1495 .add(MI.getOperand(4));
1496 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1497 .add(MI.getOperand(0))
1498 .addImm(0)
1499 .addReg(Hexagon::VTMP);
1500 MBB.erase(MI);
1501 return First.getInstrIterator();
1503 case Hexagon::V6_vgathermhwq_pseudo:
1504 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1505 .add(MI.getOperand(1))
1506 .add(MI.getOperand(2))
1507 .add(MI.getOperand(3))
1508 .add(MI.getOperand(4));
1509 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1510 .add(MI.getOperand(0))
1511 .addImm(0)
1512 .addReg(Hexagon::VTMP);
1513 MBB.erase(MI);
1514 return First.getInstrIterator();
1517 return MI.getIterator();
1520 // We indicate that we want to reverse the branch by
1521 // inserting the reversed branching opcode.
1522 bool HexagonInstrInfo::reverseBranchCondition(
1523 SmallVectorImpl<MachineOperand> &Cond) const {
1524 if (Cond.empty())
1525 return true;
1526 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1527 unsigned opcode = Cond[0].getImm();
1528 //unsigned temp;
1529 assert(get(opcode).isBranch() && "Should be a branching condition.");
1530 if (isEndLoopN(opcode))
1531 return true;
1532 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1533 Cond[0].setImm(NewOpcode);
1534 return false;
1537 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1538 MachineBasicBlock::iterator MI) const {
1539 DebugLoc DL;
1540 BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1543 bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const {
1544 return getAddrMode(MI) == HexagonII::PostInc;
1547 // Returns true if an instruction is predicated irrespective of the predicate
1548 // sense. For example, all of the following will return true.
1549 // if (p0) R1 = add(R2, R3)
1550 // if (!p0) R1 = add(R2, R3)
1551 // if (p0.new) R1 = add(R2, R3)
1552 // if (!p0.new) R1 = add(R2, R3)
1553 // Note: New-value stores are not included here as in the current
1554 // implementation, we don't need to check their predicate sense.
1555 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
1556 const uint64_t F = MI.getDesc().TSFlags;
1557 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
1560 bool HexagonInstrInfo::PredicateInstruction(
1561 MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
1562 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1563 isEndLoopN(Cond[0].getImm())) {
1564 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1565 return false;
1567 int Opc = MI.getOpcode();
1568 assert (isPredicable(MI) && "Expected predicable instruction");
1569 bool invertJump = predOpcodeHasNot(Cond);
1571 // We have to predicate MI "in place", i.e. after this function returns,
1572 // MI will need to be transformed into a predicated form. To avoid com-
1573 // plicated manipulations with the operands (handling tied operands,
1574 // etc.), build a new temporary instruction, then overwrite MI with it.
1576 MachineBasicBlock &B = *MI.getParent();
1577 DebugLoc DL = MI.getDebugLoc();
1578 unsigned PredOpc = getCondOpcode(Opc, invertJump);
1579 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1580 unsigned NOp = 0, NumOps = MI.getNumOperands();
1581 while (NOp < NumOps) {
1582 MachineOperand &Op = MI.getOperand(NOp);
1583 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1584 break;
1585 T.add(Op);
1586 NOp++;
1589 unsigned PredReg, PredRegPos, PredRegFlags;
1590 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1591 (void)GotPredReg;
1592 assert(GotPredReg);
1593 T.addReg(PredReg, PredRegFlags);
1594 while (NOp < NumOps)
1595 T.add(MI.getOperand(NOp++));
1597 MI.setDesc(get(PredOpc));
1598 while (unsigned n = MI.getNumOperands())
1599 MI.RemoveOperand(n-1);
1600 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1601 MI.addOperand(T->getOperand(i));
1603 MachineBasicBlock::instr_iterator TI = T->getIterator();
1604 B.erase(TI);
1606 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1607 MRI.clearKillFlags(PredReg);
1608 return true;
1611 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1612 ArrayRef<MachineOperand> Pred2) const {
1613 // TODO: Fix this
1614 return false;
1617 bool HexagonInstrInfo::DefinesPredicate(MachineInstr &MI,
1618 std::vector<MachineOperand> &Pred) const {
1619 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1621 for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) {
1622 MachineOperand MO = MI.getOperand(oper);
1623 if (MO.isReg()) {
1624 if (!MO.isDef())
1625 continue;
1626 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1627 if (RC == &Hexagon::PredRegsRegClass) {
1628 Pred.push_back(MO);
1629 return true;
1631 continue;
1632 } else if (MO.isRegMask()) {
1633 for (unsigned PR : Hexagon::PredRegsRegClass) {
1634 if (!MI.modifiesRegister(PR, &HRI))
1635 continue;
1636 Pred.push_back(MO);
1637 return true;
1641 return false;
1644 bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const {
1645 if (!MI.getDesc().isPredicable())
1646 return false;
1648 if (MI.isCall() || isTailCall(MI)) {
1649 if (!Subtarget.usePredicatedCalls())
1650 return false;
1653 // HVX loads are not predicable on v60, but are on v62.
1654 if (!Subtarget.hasV62Ops()) {
1655 switch (MI.getOpcode()) {
1656 case Hexagon::V6_vL32b_ai:
1657 case Hexagon::V6_vL32b_pi:
1658 case Hexagon::V6_vL32b_ppu:
1659 case Hexagon::V6_vL32b_cur_ai:
1660 case Hexagon::V6_vL32b_cur_pi:
1661 case Hexagon::V6_vL32b_cur_ppu:
1662 case Hexagon::V6_vL32b_nt_ai:
1663 case Hexagon::V6_vL32b_nt_pi:
1664 case Hexagon::V6_vL32b_nt_ppu:
1665 case Hexagon::V6_vL32b_tmp_ai:
1666 case Hexagon::V6_vL32b_tmp_pi:
1667 case Hexagon::V6_vL32b_tmp_ppu:
1668 case Hexagon::V6_vL32b_nt_cur_ai:
1669 case Hexagon::V6_vL32b_nt_cur_pi:
1670 case Hexagon::V6_vL32b_nt_cur_ppu:
1671 case Hexagon::V6_vL32b_nt_tmp_ai:
1672 case Hexagon::V6_vL32b_nt_tmp_pi:
1673 case Hexagon::V6_vL32b_nt_tmp_ppu:
1674 return false;
1677 return true;
1680 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1681 const MachineBasicBlock *MBB,
1682 const MachineFunction &MF) const {
1683 // Debug info is never a scheduling boundary. It's necessary to be explicit
1684 // due to the special treatment of IT instructions below, otherwise a
1685 // dbg_value followed by an IT will result in the IT instruction being
1686 // considered a scheduling hazard, which is wrong. It should be the actual
1687 // instruction preceding the dbg_value instruction(s), just like it is
1688 // when debug info is not present.
1689 if (MI.isDebugInstr())
1690 return false;
1692 // Throwing call is a boundary.
1693 if (MI.isCall()) {
1694 // Don't mess around with no return calls.
1695 if (doesNotReturn(MI))
1696 return true;
1697 // If any of the block's successors is a landing pad, this could be a
1698 // throwing call.
1699 for (auto I : MBB->successors())
1700 if (I->isEHPad())
1701 return true;
1704 // Terminators and labels can't be scheduled around.
1705 if (MI.getDesc().isTerminator() || MI.isPosition())
1706 return true;
1708 if (MI.isInlineAsm() && !ScheduleInlineAsm)
1709 return true;
1711 return false;
1714 /// Measure the specified inline asm to determine an approximation of its
1715 /// length.
1716 /// Comments (which run till the next SeparatorString or newline) do not
1717 /// count as an instruction.
1718 /// Any other non-whitespace text is considered an instruction, with
1719 /// multiple instructions separated by SeparatorString or newlines.
1720 /// Variable-length instructions are not handled here; this function
1721 /// may be overloaded in the target code to do that.
1722 /// Hexagon counts the number of ##'s and adjust for that many
1723 /// constant exenders.
1724 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1725 const MCAsmInfo &MAI,
1726 const TargetSubtargetInfo *STI) const {
1727 StringRef AStr(Str);
1728 // Count the number of instructions in the asm.
1729 bool atInsnStart = true;
1730 unsigned Length = 0;
1731 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
1732 for (; *Str; ++Str) {
1733 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1734 strlen(MAI.getSeparatorString())) == 0)
1735 atInsnStart = true;
1736 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1737 Length += MaxInstLength;
1738 atInsnStart = false;
1740 if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1741 MAI.getCommentString().size()) == 0)
1742 atInsnStart = false;
1745 // Add to size number of constant extenders seen * 4.
1746 StringRef Occ("##");
1747 Length += AStr.count(Occ)*4;
1748 return Length;
1751 ScheduleHazardRecognizer*
1752 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1753 const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1754 if (UseDFAHazardRec)
1755 return new HexagonHazardRecognizer(II, this, Subtarget);
1756 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1759 /// For a comparison instruction, return the source registers in
1760 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1761 /// compares against in CmpValue. Return true if the comparison instruction
1762 /// can be analyzed.
1763 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1764 unsigned &SrcReg2, int &Mask,
1765 int &Value) const {
1766 unsigned Opc = MI.getOpcode();
1768 // Set mask and the first source register.
1769 switch (Opc) {
1770 case Hexagon::C2_cmpeq:
1771 case Hexagon::C2_cmpeqp:
1772 case Hexagon::C2_cmpgt:
1773 case Hexagon::C2_cmpgtp:
1774 case Hexagon::C2_cmpgtu:
1775 case Hexagon::C2_cmpgtup:
1776 case Hexagon::C4_cmpneq:
1777 case Hexagon::C4_cmplte:
1778 case Hexagon::C4_cmplteu:
1779 case Hexagon::C2_cmpeqi:
1780 case Hexagon::C2_cmpgti:
1781 case Hexagon::C2_cmpgtui:
1782 case Hexagon::C4_cmpneqi:
1783 case Hexagon::C4_cmplteui:
1784 case Hexagon::C4_cmpltei:
1785 SrcReg = MI.getOperand(1).getReg();
1786 Mask = ~0;
1787 break;
1788 case Hexagon::A4_cmpbeq:
1789 case Hexagon::A4_cmpbgt:
1790 case Hexagon::A4_cmpbgtu:
1791 case Hexagon::A4_cmpbeqi:
1792 case Hexagon::A4_cmpbgti:
1793 case Hexagon::A4_cmpbgtui:
1794 SrcReg = MI.getOperand(1).getReg();
1795 Mask = 0xFF;
1796 break;
1797 case Hexagon::A4_cmpheq:
1798 case Hexagon::A4_cmphgt:
1799 case Hexagon::A4_cmphgtu:
1800 case Hexagon::A4_cmpheqi:
1801 case Hexagon::A4_cmphgti:
1802 case Hexagon::A4_cmphgtui:
1803 SrcReg = MI.getOperand(1).getReg();
1804 Mask = 0xFFFF;
1805 break;
1808 // Set the value/second source register.
1809 switch (Opc) {
1810 case Hexagon::C2_cmpeq:
1811 case Hexagon::C2_cmpeqp:
1812 case Hexagon::C2_cmpgt:
1813 case Hexagon::C2_cmpgtp:
1814 case Hexagon::C2_cmpgtu:
1815 case Hexagon::C2_cmpgtup:
1816 case Hexagon::A4_cmpbeq:
1817 case Hexagon::A4_cmpbgt:
1818 case Hexagon::A4_cmpbgtu:
1819 case Hexagon::A4_cmpheq:
1820 case Hexagon::A4_cmphgt:
1821 case Hexagon::A4_cmphgtu:
1822 case Hexagon::C4_cmpneq:
1823 case Hexagon::C4_cmplte:
1824 case Hexagon::C4_cmplteu:
1825 SrcReg2 = MI.getOperand(2).getReg();
1826 return true;
1828 case Hexagon::C2_cmpeqi:
1829 case Hexagon::C2_cmpgtui:
1830 case Hexagon::C2_cmpgti:
1831 case Hexagon::C4_cmpneqi:
1832 case Hexagon::C4_cmplteui:
1833 case Hexagon::C4_cmpltei:
1834 case Hexagon::A4_cmpbeqi:
1835 case Hexagon::A4_cmpbgti:
1836 case Hexagon::A4_cmpbgtui:
1837 case Hexagon::A4_cmpheqi:
1838 case Hexagon::A4_cmphgti:
1839 case Hexagon::A4_cmphgtui: {
1840 SrcReg2 = 0;
1841 const MachineOperand &Op2 = MI.getOperand(2);
1842 if (!Op2.isImm())
1843 return false;
1844 Value = MI.getOperand(2).getImm();
1845 return true;
1849 return false;
1852 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1853 const MachineInstr &MI,
1854 unsigned *PredCost) const {
1855 return getInstrTimingClassLatency(ItinData, MI);
1858 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1859 const TargetSubtargetInfo &STI) const {
1860 const InstrItineraryData *II = STI.getInstrItineraryData();
1861 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1864 // Inspired by this pair:
1865 // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1866 // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
1867 // Currently AA considers the addresses in these instructions to be aliasing.
1868 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1869 const MachineInstr &MIa, const MachineInstr &MIb) const {
1870 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1871 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1872 return false;
1874 // Instructions that are pure loads, not loads and stores like memops are not
1875 // dependent.
1876 if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
1877 return true;
1879 // Get the base register in MIa.
1880 unsigned BasePosA, OffsetPosA;
1881 if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
1882 return false;
1883 const MachineOperand &BaseA = MIa.getOperand(BasePosA);
1884 Register BaseRegA = BaseA.getReg();
1885 unsigned BaseSubA = BaseA.getSubReg();
1887 // Get the base register in MIb.
1888 unsigned BasePosB, OffsetPosB;
1889 if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
1890 return false;
1891 const MachineOperand &BaseB = MIb.getOperand(BasePosB);
1892 Register BaseRegB = BaseB.getReg();
1893 unsigned BaseSubB = BaseB.getSubReg();
1895 if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
1896 return false;
1898 // Get the access sizes.
1899 unsigned SizeA = getMemAccessSize(MIa);
1900 unsigned SizeB = getMemAccessSize(MIb);
1902 // Get the offsets. Handle immediates only for now.
1903 const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
1904 const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
1905 if (!MIa.getOperand(OffsetPosA).isImm() ||
1906 !MIb.getOperand(OffsetPosB).isImm())
1907 return false;
1908 int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
1909 int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
1911 // This is a mem access with the same base register and known offsets from it.
1912 // Reason about it.
1913 if (OffsetA > OffsetB) {
1914 uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1915 return SizeB <= OffDiff;
1917 if (OffsetA < OffsetB) {
1918 uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1919 return SizeA <= OffDiff;
1922 return false;
1925 /// If the instruction is an increment of a constant value, return the amount.
1926 bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI,
1927 int &Value) const {
1928 if (isPostIncrement(MI)) {
1929 unsigned BasePos = 0, OffsetPos = 0;
1930 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
1931 return false;
1932 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
1933 if (OffsetOp.isImm()) {
1934 Value = OffsetOp.getImm();
1935 return true;
1937 } else if (MI.getOpcode() == Hexagon::A2_addi) {
1938 const MachineOperand &AddOp = MI.getOperand(2);
1939 if (AddOp.isImm()) {
1940 Value = AddOp.getImm();
1941 return true;
1945 return false;
1948 std::pair<unsigned, unsigned>
1949 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1950 return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
1951 TF & HexagonII::MO_Bitmasks);
1954 ArrayRef<std::pair<unsigned, const char*>>
1955 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1956 using namespace HexagonII;
1958 static const std::pair<unsigned, const char*> Flags[] = {
1959 {MO_PCREL, "hexagon-pcrel"},
1960 {MO_GOT, "hexagon-got"},
1961 {MO_LO16, "hexagon-lo16"},
1962 {MO_HI16, "hexagon-hi16"},
1963 {MO_GPREL, "hexagon-gprel"},
1964 {MO_GDGOT, "hexagon-gdgot"},
1965 {MO_GDPLT, "hexagon-gdplt"},
1966 {MO_IE, "hexagon-ie"},
1967 {MO_IEGOT, "hexagon-iegot"},
1968 {MO_TPREL, "hexagon-tprel"}
1970 return makeArrayRef(Flags);
1973 ArrayRef<std::pair<unsigned, const char*>>
1974 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1975 using namespace HexagonII;
1977 static const std::pair<unsigned, const char*> Flags[] = {
1978 {HMOTF_ConstExtended, "hexagon-ext"}
1980 return makeArrayRef(Flags);
1983 unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const {
1984 MachineRegisterInfo &MRI = MF->getRegInfo();
1985 const TargetRegisterClass *TRC;
1986 if (VT == MVT::i1) {
1987 TRC = &Hexagon::PredRegsRegClass;
1988 } else if (VT == MVT::i32 || VT == MVT::f32) {
1989 TRC = &Hexagon::IntRegsRegClass;
1990 } else if (VT == MVT::i64 || VT == MVT::f64) {
1991 TRC = &Hexagon::DoubleRegsRegClass;
1992 } else {
1993 llvm_unreachable("Cannot handle this register class");
1996 Register NewReg = MRI.createVirtualRegister(TRC);
1997 return NewReg;
2000 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const {
2001 return (getAddrMode(MI) == HexagonII::AbsoluteSet);
2004 bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const {
2005 const uint64_t F = MI.getDesc().TSFlags;
2006 return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
2009 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const {
2010 return getAddrMode(MI) == HexagonII::BaseImmOffset;
2013 bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const {
2014 return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
2015 !MI.getDesc().mayStore() &&
2016 MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
2017 MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
2018 !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
2021 // Return true if the instruction is a compund branch instruction.
2022 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const {
2023 return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
2026 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2027 // isFPImm and later getFPImm as well.
2028 bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const {
2029 const uint64_t F = MI.getDesc().TSFlags;
2030 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
2031 if (isExtended) // Instruction must be extended.
2032 return true;
2034 unsigned isExtendable =
2035 (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
2036 if (!isExtendable)
2037 return false;
2039 if (MI.isCall())
2040 return false;
2042 short ExtOpNum = getCExtOpNum(MI);
2043 const MachineOperand &MO = MI.getOperand(ExtOpNum);
2044 // Use MO operand flags to determine if MO
2045 // has the HMOTF_ConstExtended flag set.
2046 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2047 return true;
2048 // If this is a Machine BB address we are talking about, and it is
2049 // not marked as extended, say so.
2050 if (MO.isMBB())
2051 return false;
2053 // We could be using an instruction with an extendable immediate and shoehorn
2054 // a global address into it. If it is a global address it will be constant
2055 // extended. We do this for COMBINE.
2056 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2057 MO.isJTI() || MO.isCPI() || MO.isFPImm())
2058 return true;
2060 // If the extendable operand is not 'Immediate' type, the instruction should
2061 // have 'isExtended' flag set.
2062 assert(MO.isImm() && "Extendable operand must be Immediate type");
2064 int MinValue = getMinValue(MI);
2065 int MaxValue = getMaxValue(MI);
2066 int ImmValue = MO.getImm();
2068 return (ImmValue < MinValue || ImmValue > MaxValue);
2071 bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const {
2072 switch (MI.getOpcode()) {
2073 case Hexagon::L4_return:
2074 case Hexagon::L4_return_t:
2075 case Hexagon::L4_return_f:
2076 case Hexagon::L4_return_tnew_pnt:
2077 case Hexagon::L4_return_fnew_pnt:
2078 case Hexagon::L4_return_tnew_pt:
2079 case Hexagon::L4_return_fnew_pt:
2080 return true;
2082 return false;
2085 // Return true when ConsMI uses a register defined by ProdMI.
2086 bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI,
2087 const MachineInstr &ConsMI) const {
2088 if (!ProdMI.getDesc().getNumDefs())
2089 return false;
2090 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2092 SmallVector<unsigned, 4> DefsA;
2093 SmallVector<unsigned, 4> DefsB;
2094 SmallVector<unsigned, 8> UsesA;
2095 SmallVector<unsigned, 8> UsesB;
2097 parseOperands(ProdMI, DefsA, UsesA);
2098 parseOperands(ConsMI, DefsB, UsesB);
2100 for (auto &RegA : DefsA)
2101 for (auto &RegB : UsesB) {
2102 // True data dependency.
2103 if (RegA == RegB)
2104 return true;
2106 if (Register::isPhysicalRegister(RegA))
2107 for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
2108 if (RegB == *SubRegs)
2109 return true;
2111 if (Register::isPhysicalRegister(RegB))
2112 for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
2113 if (RegA == *SubRegs)
2114 return true;
2117 return false;
2120 // Returns true if the instruction is alread a .cur.
2121 bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const {
2122 switch (MI.getOpcode()) {
2123 case Hexagon::V6_vL32b_cur_pi:
2124 case Hexagon::V6_vL32b_cur_ai:
2125 return true;
2127 return false;
2130 // Returns true, if any one of the operands is a dot new
2131 // insn, whether it is predicated dot new or register dot new.
2132 bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const {
2133 if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI)))
2134 return true;
2136 return false;
2139 /// Symmetrical. See if these two instructions are fit for duplex pair.
2140 bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa,
2141 const MachineInstr &MIb) const {
2142 HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
2143 HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
2144 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2147 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const {
2148 if (MI.mayLoad() || MI.mayStore() || MI.isCompare())
2149 return true;
2151 // Multiply
2152 unsigned SchedClass = MI.getDesc().getSchedClass();
2153 return is_TC4x(SchedClass) || is_TC3x(SchedClass);
2156 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2157 return (Opcode == Hexagon::ENDLOOP0 ||
2158 Opcode == Hexagon::ENDLOOP1);
2161 bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2162 switch(OpType) {
2163 case MachineOperand::MO_MachineBasicBlock:
2164 case MachineOperand::MO_GlobalAddress:
2165 case MachineOperand::MO_ExternalSymbol:
2166 case MachineOperand::MO_JumpTableIndex:
2167 case MachineOperand::MO_ConstantPoolIndex:
2168 case MachineOperand::MO_BlockAddress:
2169 return true;
2170 default:
2171 return false;
2175 bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const {
2176 const MCInstrDesc &MID = MI.getDesc();
2177 const uint64_t F = MID.TSFlags;
2178 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
2179 return true;
2181 // TODO: This is largely obsolete now. Will need to be removed
2182 // in consecutive patches.
2183 switch (MI.getOpcode()) {
2184 // PS_fi and PS_fia remain special cases.
2185 case Hexagon::PS_fi:
2186 case Hexagon::PS_fia:
2187 return true;
2188 default:
2189 return false;
2191 return false;
2194 // This returns true in two cases:
2195 // - The OP code itself indicates that this is an extended instruction.
2196 // - One of MOs has been marked with HMOTF_ConstExtended flag.
2197 bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const {
2198 // First check if this is permanently extended op code.
2199 const uint64_t F = MI.getDesc().TSFlags;
2200 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
2201 return true;
2202 // Use MO operand flags to determine if one of MI's operands
2203 // has HMOTF_ConstExtended flag set.
2204 for (const MachineOperand &MO : MI.operands())
2205 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2206 return true;
2207 return false;
2210 bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const {
2211 unsigned Opcode = MI.getOpcode();
2212 const uint64_t F = get(Opcode).TSFlags;
2213 return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2216 // No V60 HVX VMEM with A_INDIRECT.
2217 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I,
2218 const MachineInstr &J) const {
2219 if (!isHVXVec(I))
2220 return false;
2221 if (!I.mayLoad() && !I.mayStore())
2222 return false;
2223 return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2226 bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const {
2227 switch (MI.getOpcode()) {
2228 case Hexagon::J2_callr:
2229 case Hexagon::J2_callrf:
2230 case Hexagon::J2_callrt:
2231 case Hexagon::PS_call_nr:
2232 return true;
2234 return false;
2237 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const {
2238 switch (MI.getOpcode()) {
2239 case Hexagon::L4_return:
2240 case Hexagon::L4_return_t:
2241 case Hexagon::L4_return_f:
2242 case Hexagon::L4_return_fnew_pnt:
2243 case Hexagon::L4_return_fnew_pt:
2244 case Hexagon::L4_return_tnew_pnt:
2245 case Hexagon::L4_return_tnew_pt:
2246 return true;
2248 return false;
2251 bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const {
2252 switch (MI.getOpcode()) {
2253 case Hexagon::J2_jumpr:
2254 case Hexagon::J2_jumprt:
2255 case Hexagon::J2_jumprf:
2256 case Hexagon::J2_jumprtnewpt:
2257 case Hexagon::J2_jumprfnewpt:
2258 case Hexagon::J2_jumprtnew:
2259 case Hexagon::J2_jumprfnew:
2260 return true;
2262 return false;
2265 // Return true if a given MI can accommodate given offset.
2266 // Use abs estimate as oppose to the exact number.
2267 // TODO: This will need to be changed to use MC level
2268 // definition of instruction extendable field size.
2269 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI,
2270 unsigned offset) const {
2271 // This selection of jump instructions matches to that what
2272 // analyzeBranch can parse, plus NVJ.
2273 if (isNewValueJump(MI)) // r9:2
2274 return isInt<11>(offset);
2276 switch (MI.getOpcode()) {
2277 // Still missing Jump to address condition on register value.
2278 default:
2279 return false;
2280 case Hexagon::J2_jump: // bits<24> dst; // r22:2
2281 case Hexagon::J2_call:
2282 case Hexagon::PS_call_nr:
2283 return isInt<24>(offset);
2284 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2285 case Hexagon::J2_jumpf:
2286 case Hexagon::J2_jumptnew:
2287 case Hexagon::J2_jumptnewpt:
2288 case Hexagon::J2_jumpfnew:
2289 case Hexagon::J2_jumpfnewpt:
2290 case Hexagon::J2_callt:
2291 case Hexagon::J2_callf:
2292 return isInt<17>(offset);
2293 case Hexagon::J2_loop0i:
2294 case Hexagon::J2_loop0iext:
2295 case Hexagon::J2_loop0r:
2296 case Hexagon::J2_loop0rext:
2297 case Hexagon::J2_loop1i:
2298 case Hexagon::J2_loop1iext:
2299 case Hexagon::J2_loop1r:
2300 case Hexagon::J2_loop1rext:
2301 return isInt<9>(offset);
2302 // TODO: Add all the compound branches here. Can we do this in Relation model?
2303 case Hexagon::J4_cmpeqi_tp0_jump_nt:
2304 case Hexagon::J4_cmpeqi_tp1_jump_nt:
2305 case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2306 case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2307 return isInt<11>(offset);
2311 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
2312 const MachineInstr &ESMI) const {
2313 bool isLate = isLateResultInstr(LRMI);
2314 bool isEarly = isEarlySourceInstr(ESMI);
2316 LLVM_DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- "));
2317 LLVM_DEBUG(LRMI.dump());
2318 LLVM_DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- "));
2319 LLVM_DEBUG(ESMI.dump());
2321 if (isLate && isEarly) {
2322 LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2323 return true;
2326 return false;
2329 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const {
2330 switch (MI.getOpcode()) {
2331 case TargetOpcode::EXTRACT_SUBREG:
2332 case TargetOpcode::INSERT_SUBREG:
2333 case TargetOpcode::SUBREG_TO_REG:
2334 case TargetOpcode::REG_SEQUENCE:
2335 case TargetOpcode::IMPLICIT_DEF:
2336 case TargetOpcode::COPY:
2337 case TargetOpcode::INLINEASM:
2338 case TargetOpcode::PHI:
2339 return false;
2340 default:
2341 break;
2344 unsigned SchedClass = MI.getDesc().getSchedClass();
2345 return !is_TC1(SchedClass);
2348 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const {
2349 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2350 // resource, but all operands can be received late like an ALU instruction.
2351 return getType(MI) == HexagonII::TypeCVI_VX_LATE;
2354 bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const {
2355 unsigned Opcode = MI.getOpcode();
2356 return Opcode == Hexagon::J2_loop0i ||
2357 Opcode == Hexagon::J2_loop0r ||
2358 Opcode == Hexagon::J2_loop0iext ||
2359 Opcode == Hexagon::J2_loop0rext ||
2360 Opcode == Hexagon::J2_loop1i ||
2361 Opcode == Hexagon::J2_loop1r ||
2362 Opcode == Hexagon::J2_loop1iext ||
2363 Opcode == Hexagon::J2_loop1rext;
2366 bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const {
2367 switch (MI.getOpcode()) {
2368 default: return false;
2369 case Hexagon::L4_iadd_memopw_io:
2370 case Hexagon::L4_isub_memopw_io:
2371 case Hexagon::L4_add_memopw_io:
2372 case Hexagon::L4_sub_memopw_io:
2373 case Hexagon::L4_and_memopw_io:
2374 case Hexagon::L4_or_memopw_io:
2375 case Hexagon::L4_iadd_memoph_io:
2376 case Hexagon::L4_isub_memoph_io:
2377 case Hexagon::L4_add_memoph_io:
2378 case Hexagon::L4_sub_memoph_io:
2379 case Hexagon::L4_and_memoph_io:
2380 case Hexagon::L4_or_memoph_io:
2381 case Hexagon::L4_iadd_memopb_io:
2382 case Hexagon::L4_isub_memopb_io:
2383 case Hexagon::L4_add_memopb_io:
2384 case Hexagon::L4_sub_memopb_io:
2385 case Hexagon::L4_and_memopb_io:
2386 case Hexagon::L4_or_memopb_io:
2387 case Hexagon::L4_ior_memopb_io:
2388 case Hexagon::L4_ior_memoph_io:
2389 case Hexagon::L4_ior_memopw_io:
2390 case Hexagon::L4_iand_memopb_io:
2391 case Hexagon::L4_iand_memoph_io:
2392 case Hexagon::L4_iand_memopw_io:
2393 return true;
2395 return false;
2398 bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const {
2399 const uint64_t F = MI.getDesc().TSFlags;
2400 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2403 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2404 const uint64_t F = get(Opcode).TSFlags;
2405 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2408 bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const {
2409 return isNewValueJump(MI) || isNewValueStore(MI);
2412 bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const {
2413 return isNewValue(MI) && MI.isBranch();
2416 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2417 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2420 bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const {
2421 const uint64_t F = MI.getDesc().TSFlags;
2422 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2425 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2426 const uint64_t F = get(Opcode).TSFlags;
2427 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2430 // Returns true if a particular operand is extendable for an instruction.
2431 bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI,
2432 unsigned OperandNum) const {
2433 const uint64_t F = MI.getDesc().TSFlags;
2434 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2435 == OperandNum;
2438 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
2439 const uint64_t F = MI.getDesc().TSFlags;
2440 assert(isPredicated(MI));
2441 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2444 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2445 const uint64_t F = get(Opcode).TSFlags;
2446 assert(isPredicated(Opcode));
2447 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2450 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
2451 const uint64_t F = MI.getDesc().TSFlags;
2452 return !((F >> HexagonII::PredicatedFalsePos) &
2453 HexagonII::PredicatedFalseMask);
2456 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2457 const uint64_t F = get(Opcode).TSFlags;
2458 // Make sure that the instruction is predicated.
2459 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2460 return !((F >> HexagonII::PredicatedFalsePos) &
2461 HexagonII::PredicatedFalseMask);
2464 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2465 const uint64_t F = get(Opcode).TSFlags;
2466 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2469 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2470 const uint64_t F = get(Opcode).TSFlags;
2471 return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2474 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2475 const uint64_t F = get(Opcode).TSFlags;
2476 assert(get(Opcode).isBranch() &&
2477 (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2478 return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2481 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const {
2482 return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2483 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2484 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2485 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2488 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
2489 switch (MI.getOpcode()) {
2490 // Byte
2491 case Hexagon::L2_loadrb_io:
2492 case Hexagon::L4_loadrb_ur:
2493 case Hexagon::L4_loadrb_ap:
2494 case Hexagon::L2_loadrb_pr:
2495 case Hexagon::L2_loadrb_pbr:
2496 case Hexagon::L2_loadrb_pi:
2497 case Hexagon::L2_loadrb_pci:
2498 case Hexagon::L2_loadrb_pcr:
2499 case Hexagon::L2_loadbsw2_io:
2500 case Hexagon::L4_loadbsw2_ur:
2501 case Hexagon::L4_loadbsw2_ap:
2502 case Hexagon::L2_loadbsw2_pr:
2503 case Hexagon::L2_loadbsw2_pbr:
2504 case Hexagon::L2_loadbsw2_pi:
2505 case Hexagon::L2_loadbsw2_pci:
2506 case Hexagon::L2_loadbsw2_pcr:
2507 case Hexagon::L2_loadbsw4_io:
2508 case Hexagon::L4_loadbsw4_ur:
2509 case Hexagon::L4_loadbsw4_ap:
2510 case Hexagon::L2_loadbsw4_pr:
2511 case Hexagon::L2_loadbsw4_pbr:
2512 case Hexagon::L2_loadbsw4_pi:
2513 case Hexagon::L2_loadbsw4_pci:
2514 case Hexagon::L2_loadbsw4_pcr:
2515 case Hexagon::L4_loadrb_rr:
2516 case Hexagon::L2_ploadrbt_io:
2517 case Hexagon::L2_ploadrbt_pi:
2518 case Hexagon::L2_ploadrbf_io:
2519 case Hexagon::L2_ploadrbf_pi:
2520 case Hexagon::L2_ploadrbtnew_io:
2521 case Hexagon::L2_ploadrbfnew_io:
2522 case Hexagon::L4_ploadrbt_rr:
2523 case Hexagon::L4_ploadrbf_rr:
2524 case Hexagon::L4_ploadrbtnew_rr:
2525 case Hexagon::L4_ploadrbfnew_rr:
2526 case Hexagon::L2_ploadrbtnew_pi:
2527 case Hexagon::L2_ploadrbfnew_pi:
2528 case Hexagon::L4_ploadrbt_abs:
2529 case Hexagon::L4_ploadrbf_abs:
2530 case Hexagon::L4_ploadrbtnew_abs:
2531 case Hexagon::L4_ploadrbfnew_abs:
2532 case Hexagon::L2_loadrbgp:
2533 // Half
2534 case Hexagon::L2_loadrh_io:
2535 case Hexagon::L4_loadrh_ur:
2536 case Hexagon::L4_loadrh_ap:
2537 case Hexagon::L2_loadrh_pr:
2538 case Hexagon::L2_loadrh_pbr:
2539 case Hexagon::L2_loadrh_pi:
2540 case Hexagon::L2_loadrh_pci:
2541 case Hexagon::L2_loadrh_pcr:
2542 case Hexagon::L4_loadrh_rr:
2543 case Hexagon::L2_ploadrht_io:
2544 case Hexagon::L2_ploadrht_pi:
2545 case Hexagon::L2_ploadrhf_io:
2546 case Hexagon::L2_ploadrhf_pi:
2547 case Hexagon::L2_ploadrhtnew_io:
2548 case Hexagon::L2_ploadrhfnew_io:
2549 case Hexagon::L4_ploadrht_rr:
2550 case Hexagon::L4_ploadrhf_rr:
2551 case Hexagon::L4_ploadrhtnew_rr:
2552 case Hexagon::L4_ploadrhfnew_rr:
2553 case Hexagon::L2_ploadrhtnew_pi:
2554 case Hexagon::L2_ploadrhfnew_pi:
2555 case Hexagon::L4_ploadrht_abs:
2556 case Hexagon::L4_ploadrhf_abs:
2557 case Hexagon::L4_ploadrhtnew_abs:
2558 case Hexagon::L4_ploadrhfnew_abs:
2559 case Hexagon::L2_loadrhgp:
2560 return true;
2561 default:
2562 return false;
2566 bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const {
2567 const uint64_t F = MI.getDesc().TSFlags;
2568 return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2571 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const {
2572 switch (MI.getOpcode()) {
2573 case Hexagon::STriw_pred:
2574 case Hexagon::LDriw_pred:
2575 return true;
2576 default:
2577 return false;
2581 bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const {
2582 if (!MI.isBranch())
2583 return false;
2585 for (auto &Op : MI.operands())
2586 if (Op.isGlobal() || Op.isSymbol())
2587 return true;
2588 return false;
2591 // Returns true when SU has a timing class TC1.
2592 bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const {
2593 unsigned SchedClass = MI.getDesc().getSchedClass();
2594 return is_TC1(SchedClass);
2597 bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const {
2598 unsigned SchedClass = MI.getDesc().getSchedClass();
2599 return is_TC2(SchedClass);
2602 bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const {
2603 unsigned SchedClass = MI.getDesc().getSchedClass();
2604 return is_TC2early(SchedClass);
2607 bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const {
2608 unsigned SchedClass = MI.getDesc().getSchedClass();
2609 return is_TC4x(SchedClass);
2612 // Schedule this ASAP.
2613 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1,
2614 const MachineInstr &MI2) const {
2615 if (mayBeCurLoad(MI1)) {
2616 // if (result of SU is used in Next) return true;
2617 Register DstReg = MI1.getOperand(0).getReg();
2618 int N = MI2.getNumOperands();
2619 for (int I = 0; I < N; I++)
2620 if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2621 return true;
2623 if (mayBeNewStore(MI2))
2624 if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2625 if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2626 MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2627 return true;
2628 return false;
2631 bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const {
2632 const uint64_t V = getType(MI);
2633 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2636 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2637 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const {
2638 int Size = VT.getSizeInBits() / 8;
2639 if (Offset % Size != 0)
2640 return false;
2641 int Count = Offset / Size;
2643 switch (VT.getSimpleVT().SimpleTy) {
2644 // For scalars the auto-inc is s4
2645 case MVT::i8:
2646 case MVT::i16:
2647 case MVT::i32:
2648 case MVT::i64:
2649 case MVT::f32:
2650 case MVT::f64:
2651 case MVT::v2i16:
2652 case MVT::v2i32:
2653 case MVT::v4i8:
2654 case MVT::v4i16:
2655 case MVT::v8i8:
2656 return isInt<4>(Count);
2657 // For HVX vectors the auto-inc is s3
2658 case MVT::v64i8:
2659 case MVT::v32i16:
2660 case MVT::v16i32:
2661 case MVT::v8i64:
2662 case MVT::v128i8:
2663 case MVT::v64i16:
2664 case MVT::v32i32:
2665 case MVT::v16i64:
2666 return isInt<3>(Count);
2667 default:
2668 break;
2671 llvm_unreachable("Not an valid type!");
2674 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2675 const TargetRegisterInfo *TRI, bool Extend) const {
2676 // This function is to check whether the "Offset" is in the correct range of
2677 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2678 // inserted to calculate the final address. Due to this reason, the function
2679 // assumes that the "Offset" has correct alignment.
2680 // We used to assert if the offset was not properly aligned, however,
2681 // there are cases where a misaligned pointer recast can cause this
2682 // problem, and we need to allow for it. The front end warns of such
2683 // misaligns with respect to load size.
2684 switch (Opcode) {
2685 case Hexagon::PS_vstorerq_ai:
2686 case Hexagon::PS_vstorerw_ai:
2687 case Hexagon::PS_vstorerw_nt_ai:
2688 case Hexagon::PS_vloadrq_ai:
2689 case Hexagon::PS_vloadrw_ai:
2690 case Hexagon::PS_vloadrw_nt_ai:
2691 case Hexagon::V6_vL32b_ai:
2692 case Hexagon::V6_vS32b_ai:
2693 case Hexagon::V6_vL32b_nt_ai:
2694 case Hexagon::V6_vS32b_nt_ai:
2695 case Hexagon::V6_vL32Ub_ai:
2696 case Hexagon::V6_vS32Ub_ai: {
2697 unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2698 assert(isPowerOf2_32(VectorSize));
2699 if (Offset & (VectorSize-1))
2700 return false;
2701 return isInt<4>(Offset >> Log2_32(VectorSize));
2704 case Hexagon::J2_loop0i:
2705 case Hexagon::J2_loop1i:
2706 return isUInt<10>(Offset);
2708 case Hexagon::S4_storeirb_io:
2709 case Hexagon::S4_storeirbt_io:
2710 case Hexagon::S4_storeirbf_io:
2711 return isUInt<6>(Offset);
2713 case Hexagon::S4_storeirh_io:
2714 case Hexagon::S4_storeirht_io:
2715 case Hexagon::S4_storeirhf_io:
2716 return isShiftedUInt<6,1>(Offset);
2718 case Hexagon::S4_storeiri_io:
2719 case Hexagon::S4_storeirit_io:
2720 case Hexagon::S4_storeirif_io:
2721 return isShiftedUInt<6,2>(Offset);
2724 if (Extend)
2725 return true;
2727 switch (Opcode) {
2728 case Hexagon::L2_loadri_io:
2729 case Hexagon::S2_storeri_io:
2730 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2731 (Offset <= Hexagon_MEMW_OFFSET_MAX);
2733 case Hexagon::L2_loadrd_io:
2734 case Hexagon::S2_storerd_io:
2735 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2736 (Offset <= Hexagon_MEMD_OFFSET_MAX);
2738 case Hexagon::L2_loadrh_io:
2739 case Hexagon::L2_loadruh_io:
2740 case Hexagon::S2_storerh_io:
2741 case Hexagon::S2_storerf_io:
2742 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2743 (Offset <= Hexagon_MEMH_OFFSET_MAX);
2745 case Hexagon::L2_loadrb_io:
2746 case Hexagon::L2_loadrub_io:
2747 case Hexagon::S2_storerb_io:
2748 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2749 (Offset <= Hexagon_MEMB_OFFSET_MAX);
2751 case Hexagon::A2_addi:
2752 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2753 (Offset <= Hexagon_ADDI_OFFSET_MAX);
2755 case Hexagon::L4_iadd_memopw_io:
2756 case Hexagon::L4_isub_memopw_io:
2757 case Hexagon::L4_add_memopw_io:
2758 case Hexagon::L4_sub_memopw_io:
2759 case Hexagon::L4_and_memopw_io:
2760 case Hexagon::L4_or_memopw_io:
2761 return (0 <= Offset && Offset <= 255);
2763 case Hexagon::L4_iadd_memoph_io:
2764 case Hexagon::L4_isub_memoph_io:
2765 case Hexagon::L4_add_memoph_io:
2766 case Hexagon::L4_sub_memoph_io:
2767 case Hexagon::L4_and_memoph_io:
2768 case Hexagon::L4_or_memoph_io:
2769 return (0 <= Offset && Offset <= 127);
2771 case Hexagon::L4_iadd_memopb_io:
2772 case Hexagon::L4_isub_memopb_io:
2773 case Hexagon::L4_add_memopb_io:
2774 case Hexagon::L4_sub_memopb_io:
2775 case Hexagon::L4_and_memopb_io:
2776 case Hexagon::L4_or_memopb_io:
2777 return (0 <= Offset && Offset <= 63);
2779 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2780 // any size. Later pass knows how to handle it.
2781 case Hexagon::STriw_pred:
2782 case Hexagon::LDriw_pred:
2783 case Hexagon::STriw_ctr:
2784 case Hexagon::LDriw_ctr:
2785 return true;
2787 case Hexagon::PS_fi:
2788 case Hexagon::PS_fia:
2789 case Hexagon::INLINEASM:
2790 return true;
2792 case Hexagon::L2_ploadrbt_io:
2793 case Hexagon::L2_ploadrbf_io:
2794 case Hexagon::L2_ploadrubt_io:
2795 case Hexagon::L2_ploadrubf_io:
2796 case Hexagon::S2_pstorerbt_io:
2797 case Hexagon::S2_pstorerbf_io:
2798 return isUInt<6>(Offset);
2800 case Hexagon::L2_ploadrht_io:
2801 case Hexagon::L2_ploadrhf_io:
2802 case Hexagon::L2_ploadruht_io:
2803 case Hexagon::L2_ploadruhf_io:
2804 case Hexagon::S2_pstorerht_io:
2805 case Hexagon::S2_pstorerhf_io:
2806 return isShiftedUInt<6,1>(Offset);
2808 case Hexagon::L2_ploadrit_io:
2809 case Hexagon::L2_ploadrif_io:
2810 case Hexagon::S2_pstorerit_io:
2811 case Hexagon::S2_pstorerif_io:
2812 return isShiftedUInt<6,2>(Offset);
2814 case Hexagon::L2_ploadrdt_io:
2815 case Hexagon::L2_ploadrdf_io:
2816 case Hexagon::S2_pstorerdt_io:
2817 case Hexagon::S2_pstorerdf_io:
2818 return isShiftedUInt<6,3>(Offset);
2819 } // switch
2821 llvm_unreachable("No offset range is defined for this opcode. "
2822 "Please define it in the above switch statement!");
2825 bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const {
2826 return isHVXVec(MI) && isAccumulator(MI);
2829 bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const {
2830 const uint64_t F = get(MI.getOpcode()).TSFlags;
2831 const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2832 return
2833 V == HexagonII::TypeCVI_VA ||
2834 V == HexagonII::TypeCVI_VA_DV;
2837 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI,
2838 const MachineInstr &ConsMI) const {
2839 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2840 return true;
2842 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2843 return true;
2845 if (mayBeNewStore(ConsMI))
2846 return true;
2848 return false;
2851 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
2852 switch (MI.getOpcode()) {
2853 // Byte
2854 case Hexagon::L2_loadrub_io:
2855 case Hexagon::L4_loadrub_ur:
2856 case Hexagon::L4_loadrub_ap:
2857 case Hexagon::L2_loadrub_pr:
2858 case Hexagon::L2_loadrub_pbr:
2859 case Hexagon::L2_loadrub_pi:
2860 case Hexagon::L2_loadrub_pci:
2861 case Hexagon::L2_loadrub_pcr:
2862 case Hexagon::L2_loadbzw2_io:
2863 case Hexagon::L4_loadbzw2_ur:
2864 case Hexagon::L4_loadbzw2_ap:
2865 case Hexagon::L2_loadbzw2_pr:
2866 case Hexagon::L2_loadbzw2_pbr:
2867 case Hexagon::L2_loadbzw2_pi:
2868 case Hexagon::L2_loadbzw2_pci:
2869 case Hexagon::L2_loadbzw2_pcr:
2870 case Hexagon::L2_loadbzw4_io:
2871 case Hexagon::L4_loadbzw4_ur:
2872 case Hexagon::L4_loadbzw4_ap:
2873 case Hexagon::L2_loadbzw4_pr:
2874 case Hexagon::L2_loadbzw4_pbr:
2875 case Hexagon::L2_loadbzw4_pi:
2876 case Hexagon::L2_loadbzw4_pci:
2877 case Hexagon::L2_loadbzw4_pcr:
2878 case Hexagon::L4_loadrub_rr:
2879 case Hexagon::L2_ploadrubt_io:
2880 case Hexagon::L2_ploadrubt_pi:
2881 case Hexagon::L2_ploadrubf_io:
2882 case Hexagon::L2_ploadrubf_pi:
2883 case Hexagon::L2_ploadrubtnew_io:
2884 case Hexagon::L2_ploadrubfnew_io:
2885 case Hexagon::L4_ploadrubt_rr:
2886 case Hexagon::L4_ploadrubf_rr:
2887 case Hexagon::L4_ploadrubtnew_rr:
2888 case Hexagon::L4_ploadrubfnew_rr:
2889 case Hexagon::L2_ploadrubtnew_pi:
2890 case Hexagon::L2_ploadrubfnew_pi:
2891 case Hexagon::L4_ploadrubt_abs:
2892 case Hexagon::L4_ploadrubf_abs:
2893 case Hexagon::L4_ploadrubtnew_abs:
2894 case Hexagon::L4_ploadrubfnew_abs:
2895 case Hexagon::L2_loadrubgp:
2896 // Half
2897 case Hexagon::L2_loadruh_io:
2898 case Hexagon::L4_loadruh_ur:
2899 case Hexagon::L4_loadruh_ap:
2900 case Hexagon::L2_loadruh_pr:
2901 case Hexagon::L2_loadruh_pbr:
2902 case Hexagon::L2_loadruh_pi:
2903 case Hexagon::L2_loadruh_pci:
2904 case Hexagon::L2_loadruh_pcr:
2905 case Hexagon::L4_loadruh_rr:
2906 case Hexagon::L2_ploadruht_io:
2907 case Hexagon::L2_ploadruht_pi:
2908 case Hexagon::L2_ploadruhf_io:
2909 case Hexagon::L2_ploadruhf_pi:
2910 case Hexagon::L2_ploadruhtnew_io:
2911 case Hexagon::L2_ploadruhfnew_io:
2912 case Hexagon::L4_ploadruht_rr:
2913 case Hexagon::L4_ploadruhf_rr:
2914 case Hexagon::L4_ploadruhtnew_rr:
2915 case Hexagon::L4_ploadruhfnew_rr:
2916 case Hexagon::L2_ploadruhtnew_pi:
2917 case Hexagon::L2_ploadruhfnew_pi:
2918 case Hexagon::L4_ploadruht_abs:
2919 case Hexagon::L4_ploadruhf_abs:
2920 case Hexagon::L4_ploadruhtnew_abs:
2921 case Hexagon::L4_ploadruhfnew_abs:
2922 case Hexagon::L2_loadruhgp:
2923 return true;
2924 default:
2925 return false;
2929 // Add latency to instruction.
2930 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1,
2931 const MachineInstr &MI2) const {
2932 if (isHVXVec(MI1) && isHVXVec(MI2))
2933 if (!isVecUsableNextPacket(MI1, MI2))
2934 return true;
2935 return false;
2938 /// Get the base register and byte offset of a load/store instr.
2939 bool HexagonInstrInfo::getMemOperandWithOffset(
2940 const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
2941 const TargetRegisterInfo *TRI) const {
2942 unsigned AccessSize = 0;
2943 BaseOp = getBaseAndOffset(LdSt, Offset, AccessSize);
2944 assert((!BaseOp || BaseOp->isReg()) &&
2945 "getMemOperandWithOffset only supports base "
2946 "operands of type register.");
2947 return BaseOp != nullptr;
2950 /// Can these instructions execute at the same time in a bundle.
2951 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First,
2952 const MachineInstr &Second) const {
2953 if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
2954 const MachineOperand &Op = Second.getOperand(0);
2955 if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
2956 return true;
2958 if (DisableNVSchedule)
2959 return false;
2960 if (mayBeNewStore(Second)) {
2961 // Make sure the definition of the first instruction is the value being
2962 // stored.
2963 const MachineOperand &Stored =
2964 Second.getOperand(Second.getNumOperands() - 1);
2965 if (!Stored.isReg())
2966 return false;
2967 for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
2968 const MachineOperand &Op = First.getOperand(i);
2969 if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
2970 return true;
2973 return false;
2976 bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const {
2977 unsigned Opc = CallMI.getOpcode();
2978 return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
2981 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2982 for (auto &I : *B)
2983 if (I.isEHLabel())
2984 return true;
2985 return false;
2988 // Returns true if an instruction can be converted into a non-extended
2989 // equivalent instruction.
2990 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const {
2991 short NonExtOpcode;
2992 // Check if the instruction has a register form that uses register in place
2993 // of the extended operand, if so return that as the non-extended form.
2994 if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
2995 return true;
2997 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
2998 // Check addressing mode and retrieve non-ext equivalent instruction.
3000 switch (getAddrMode(MI)) {
3001 case HexagonII::Absolute:
3002 // Load/store with absolute addressing mode can be converted into
3003 // base+offset mode.
3004 NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
3005 break;
3006 case HexagonII::BaseImmOffset:
3007 // Load/store with base+offset addressing mode can be converted into
3008 // base+register offset addressing mode. However left shift operand should
3009 // be set to 0.
3010 NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
3011 break;
3012 case HexagonII::BaseLongOffset:
3013 NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
3014 break;
3015 default:
3016 return false;
3018 if (NonExtOpcode < 0)
3019 return false;
3020 return true;
3022 return false;
3025 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const {
3026 return Hexagon::getRealHWInstr(MI.getOpcode(),
3027 Hexagon::InstrType_Pseudo) >= 0;
3030 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
3031 const {
3032 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
3033 while (I != E) {
3034 if (I->isBarrier())
3035 return true;
3036 ++I;
3038 return false;
3041 // Returns true, if a LD insn can be promoted to a cur load.
3042 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const {
3043 const uint64_t F = MI.getDesc().TSFlags;
3044 return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
3045 Subtarget.hasV60Ops();
3048 // Returns true, if a ST insn can be promoted to a new-value store.
3049 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const {
3050 if (MI.mayStore() && !Subtarget.useNewValueStores())
3051 return false;
3053 const uint64_t F = MI.getDesc().TSFlags;
3054 return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
3057 bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI,
3058 const MachineInstr &ConsMI) const {
3059 // There is no stall when ProdMI is not a V60 vector.
3060 if (!isHVXVec(ProdMI))
3061 return false;
3063 // There is no stall when ProdMI and ConsMI are not dependent.
3064 if (!isDependent(ProdMI, ConsMI))
3065 return false;
3067 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3068 // are scheduled in consecutive packets.
3069 if (isVecUsableNextPacket(ProdMI, ConsMI))
3070 return false;
3072 return true;
3075 bool HexagonInstrInfo::producesStall(const MachineInstr &MI,
3076 MachineBasicBlock::const_instr_iterator BII) const {
3077 // There is no stall when I is not a V60 vector.
3078 if (!isHVXVec(MI))
3079 return false;
3081 MachineBasicBlock::const_instr_iterator MII = BII;
3082 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3084 if (!MII->isBundle())
3085 return producesStall(*MII, MI);
3087 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3088 const MachineInstr &J = *MII;
3089 if (producesStall(J, MI))
3090 return true;
3092 return false;
3095 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI,
3096 unsigned PredReg) const {
3097 for (const MachineOperand &MO : MI.operands()) {
3098 // Predicate register must be explicitly defined.
3099 if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3100 return false;
3101 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3102 return false;
3105 // Instruction that produce late predicate cannot be used as sources of
3106 // dot-new.
3107 switch (MI.getOpcode()) {
3108 case Hexagon::A4_addp_c:
3109 case Hexagon::A4_subp_c:
3110 case Hexagon::A4_tlbmatch:
3111 case Hexagon::A5_ACS:
3112 case Hexagon::F2_sfinvsqrta:
3113 case Hexagon::F2_sfrecipa:
3114 case Hexagon::J2_endloop0:
3115 case Hexagon::J2_endloop01:
3116 case Hexagon::J2_ploop1si:
3117 case Hexagon::J2_ploop1sr:
3118 case Hexagon::J2_ploop2si:
3119 case Hexagon::J2_ploop2sr:
3120 case Hexagon::J2_ploop3si:
3121 case Hexagon::J2_ploop3sr:
3122 case Hexagon::S2_cabacdecbin:
3123 case Hexagon::S2_storew_locked:
3124 case Hexagon::S4_stored_locked:
3125 return false;
3127 return true;
3130 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3131 return Opcode == Hexagon::J2_jumpt ||
3132 Opcode == Hexagon::J2_jumptpt ||
3133 Opcode == Hexagon::J2_jumpf ||
3134 Opcode == Hexagon::J2_jumpfpt ||
3135 Opcode == Hexagon::J2_jumptnew ||
3136 Opcode == Hexagon::J2_jumpfnew ||
3137 Opcode == Hexagon::J2_jumptnewpt ||
3138 Opcode == Hexagon::J2_jumpfnewpt;
3141 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
3142 if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3143 return false;
3144 return !isPredicatedTrue(Cond[0].getImm());
3147 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const {
3148 const uint64_t F = MI.getDesc().TSFlags;
3149 return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
3152 // Returns the base register in a memory access (load/store). The offset is
3153 // returned in Offset and the access size is returned in AccessSize.
3154 // If the base operand has a subregister or the offset field does not contain
3155 // an immediate value, return nullptr.
3156 MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI,
3157 int64_t &Offset,
3158 unsigned &AccessSize) const {
3159 // Return if it is not a base+offset type instruction or a MemOp.
3160 if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
3161 getAddrMode(MI) != HexagonII::BaseLongOffset &&
3162 !isMemOp(MI) && !isPostIncrement(MI))
3163 return nullptr;
3165 AccessSize = getMemAccessSize(MI);
3167 unsigned BasePos = 0, OffsetPos = 0;
3168 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3169 return nullptr;
3171 // Post increment updates its EA after the mem access,
3172 // so we need to treat its offset as zero.
3173 if (isPostIncrement(MI)) {
3174 Offset = 0;
3175 } else {
3176 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3177 if (!OffsetOp.isImm())
3178 return nullptr;
3179 Offset = OffsetOp.getImm();
3182 const MachineOperand &BaseOp = MI.getOperand(BasePos);
3183 if (BaseOp.getSubReg() != 0)
3184 return nullptr;
3185 return &const_cast<MachineOperand&>(BaseOp);
3188 /// Return the position of the base and offset operands for this instruction.
3189 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
3190 unsigned &BasePos, unsigned &OffsetPos) const {
3191 if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI))
3192 return false;
3194 // Deal with memops first.
3195 if (isMemOp(MI)) {
3196 BasePos = 0;
3197 OffsetPos = 1;
3198 } else if (MI.mayStore()) {
3199 BasePos = 0;
3200 OffsetPos = 1;
3201 } else if (MI.mayLoad()) {
3202 BasePos = 1;
3203 OffsetPos = 2;
3204 } else
3205 return false;
3207 if (isPredicated(MI)) {
3208 BasePos++;
3209 OffsetPos++;
3211 if (isPostIncrement(MI)) {
3212 BasePos++;
3213 OffsetPos++;
3216 if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3217 return false;
3219 return true;
3222 // Inserts branching instructions in reverse order of their occurrence.
3223 // e.g. jump_t t1 (i1)
3224 // jump t2 (i2)
3225 // Jumpers = {i2, i1}
3226 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
3227 MachineBasicBlock& MBB) const {
3228 SmallVector<MachineInstr*, 2> Jumpers;
3229 // If the block has no terminators, it just falls into the block after it.
3230 MachineBasicBlock::instr_iterator I = MBB.instr_end();
3231 if (I == MBB.instr_begin())
3232 return Jumpers;
3234 // A basic block may looks like this:
3236 // [ insn
3237 // EH_LABEL
3238 // insn
3239 // insn
3240 // insn
3241 // EH_LABEL
3242 // insn ]
3244 // It has two succs but does not have a terminator
3245 // Don't know how to handle it.
3246 do {
3247 --I;
3248 if (I->isEHLabel())
3249 return Jumpers;
3250 } while (I != MBB.instr_begin());
3252 I = MBB.instr_end();
3253 --I;
3255 while (I->isDebugInstr()) {
3256 if (I == MBB.instr_begin())
3257 return Jumpers;
3258 --I;
3260 if (!isUnpredicatedTerminator(*I))
3261 return Jumpers;
3263 // Get the last instruction in the block.
3264 MachineInstr *LastInst = &*I;
3265 Jumpers.push_back(LastInst);
3266 MachineInstr *SecondLastInst = nullptr;
3267 // Find one more terminator if present.
3268 do {
3269 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3270 if (!SecondLastInst) {
3271 SecondLastInst = &*I;
3272 Jumpers.push_back(SecondLastInst);
3273 } else // This is a third branch.
3274 return Jumpers;
3276 if (I == MBB.instr_begin())
3277 break;
3278 --I;
3279 } while (true);
3280 return Jumpers;
3283 // Returns Operand Index for the constant extended instruction.
3284 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const {
3285 const uint64_t F = MI.getDesc().TSFlags;
3286 return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
3289 // See if instruction could potentially be a duplex candidate.
3290 // If so, return its group. Zero otherwise.
3291 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
3292 const MachineInstr &MI) const {
3293 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3295 switch (MI.getOpcode()) {
3296 default:
3297 return HexagonII::HCG_None;
3299 // Compound pairs.
3300 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3301 // "Rd16=#U6 ; jump #r9:2"
3302 // "Rd16=Rs16 ; jump #r9:2"
3304 case Hexagon::C2_cmpeq:
3305 case Hexagon::C2_cmpgt:
3306 case Hexagon::C2_cmpgtu:
3307 DstReg = MI.getOperand(0).getReg();
3308 Src1Reg = MI.getOperand(1).getReg();
3309 Src2Reg = MI.getOperand(2).getReg();
3310 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3311 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3312 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3313 return HexagonII::HCG_A;
3314 break;
3315 case Hexagon::C2_cmpeqi:
3316 case Hexagon::C2_cmpgti:
3317 case Hexagon::C2_cmpgtui:
3318 // P0 = cmp.eq(Rs,#u2)
3319 DstReg = MI.getOperand(0).getReg();
3320 SrcReg = MI.getOperand(1).getReg();
3321 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3322 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3323 isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3324 ((isUInt<5>(MI.getOperand(2).getImm())) ||
3325 (MI.getOperand(2).getImm() == -1)))
3326 return HexagonII::HCG_A;
3327 break;
3328 case Hexagon::A2_tfr:
3329 // Rd = Rs
3330 DstReg = MI.getOperand(0).getReg();
3331 SrcReg = MI.getOperand(1).getReg();
3332 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3333 return HexagonII::HCG_A;
3334 break;
3335 case Hexagon::A2_tfrsi:
3336 // Rd = #u6
3337 // Do not test for #u6 size since the const is getting extended
3338 // regardless and compound could be formed.
3339 DstReg = MI.getOperand(0).getReg();
3340 if (isIntRegForSubInst(DstReg))
3341 return HexagonII::HCG_A;
3342 break;
3343 case Hexagon::S2_tstbit_i:
3344 DstReg = MI.getOperand(0).getReg();
3345 Src1Reg = MI.getOperand(1).getReg();
3346 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3347 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3348 MI.getOperand(2).isImm() &&
3349 isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3350 return HexagonII::HCG_A;
3351 break;
3352 // The fact that .new form is used pretty much guarantees
3353 // that predicate register will match. Nevertheless,
3354 // there could be some false positives without additional
3355 // checking.
3356 case Hexagon::J2_jumptnew:
3357 case Hexagon::J2_jumpfnew:
3358 case Hexagon::J2_jumptnewpt:
3359 case Hexagon::J2_jumpfnewpt:
3360 Src1Reg = MI.getOperand(0).getReg();
3361 if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3362 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3363 return HexagonII::HCG_B;
3364 break;
3365 // Transfer and jump:
3366 // Rd=#U6 ; jump #r9:2
3367 // Rd=Rs ; jump #r9:2
3368 // Do not test for jump range here.
3369 case Hexagon::J2_jump:
3370 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3371 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3372 return HexagonII::HCG_C;
3375 return HexagonII::HCG_None;
3378 // Returns -1 when there is no opcode found.
3379 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA,
3380 const MachineInstr &GB) const {
3381 assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
3382 assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
3383 if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3384 (GB.getOpcode() != Hexagon::J2_jumptnew))
3385 return -1u;
3386 Register DestReg = GA.getOperand(0).getReg();
3387 if (!GB.readsRegister(DestReg))
3388 return -1u;
3389 if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3390 return -1u;
3391 // The value compared against must be either u5 or -1.
3392 const MachineOperand &CmpOp = GA.getOperand(2);
3393 if (!CmpOp.isImm())
3394 return -1u;
3395 int V = CmpOp.getImm();
3396 if (V == -1)
3397 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3398 : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3399 if (!isUInt<5>(V))
3400 return -1u;
3401 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3402 : Hexagon::J4_cmpeqi_tp1_jump_nt;
3405 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3406 enum Hexagon::PredSense inPredSense;
3407 inPredSense = invertPredicate ? Hexagon::PredSense_false :
3408 Hexagon::PredSense_true;
3409 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3410 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3411 return CondOpcode;
3413 llvm_unreachable("Unexpected predicable instruction");
3416 // Return the cur value instruction for a given store.
3417 int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const {
3418 switch (MI.getOpcode()) {
3419 default: llvm_unreachable("Unknown .cur type");
3420 case Hexagon::V6_vL32b_pi:
3421 return Hexagon::V6_vL32b_cur_pi;
3422 case Hexagon::V6_vL32b_ai:
3423 return Hexagon::V6_vL32b_cur_ai;
3424 case Hexagon::V6_vL32b_nt_pi:
3425 return Hexagon::V6_vL32b_nt_cur_pi;
3426 case Hexagon::V6_vL32b_nt_ai:
3427 return Hexagon::V6_vL32b_nt_cur_ai;
3429 return 0;
3432 // Return the regular version of the .cur instruction.
3433 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const {
3434 switch (MI.getOpcode()) {
3435 default: llvm_unreachable("Unknown .cur type");
3436 case Hexagon::V6_vL32b_cur_pi:
3437 return Hexagon::V6_vL32b_pi;
3438 case Hexagon::V6_vL32b_cur_ai:
3439 return Hexagon::V6_vL32b_ai;
3440 case Hexagon::V6_vL32b_nt_cur_pi:
3441 return Hexagon::V6_vL32b_nt_pi;
3442 case Hexagon::V6_vL32b_nt_cur_ai:
3443 return Hexagon::V6_vL32b_nt_ai;
3445 return 0;
3448 // The diagram below shows the steps involved in the conversion of a predicated
3449 // store instruction to its .new predicated new-value form.
3451 // Note: It doesn't include conditional new-value stores as they can't be
3452 // converted to .new predicate.
3454 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3455 // ^ ^
3456 // / \ (not OK. it will cause new-value store to be
3457 // / X conditional on p0.new while R2 producer is
3458 // / \ on p0)
3459 // / \.
3460 // p.new store p.old NV store
3461 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3462 // ^ ^
3463 // \ /
3464 // \ /
3465 // \ /
3466 // p.old store
3467 // [if (p0)memw(R0+#0)=R2]
3469 // The following set of instructions further explains the scenario where
3470 // conditional new-value store becomes invalid when promoted to .new predicate
3471 // form.
3473 // { 1) if (p0) r0 = add(r1, r2)
3474 // 2) p0 = cmp.eq(r3, #0) }
3476 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3477 // the first two instructions because in instr 1, r0 is conditional on old value
3478 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3479 // is not valid for new-value stores.
3480 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3481 // from the "Conditional Store" list. Because a predicated new value store
3482 // would NOT be promoted to a double dot new store. See diagram below:
3483 // This function returns yes for those stores that are predicated but not
3484 // yet promoted to predicate dot new instructions.
3486 // +---------------------+
3487 // /-----| if (p0) memw(..)=r0 |---------\~
3488 // || +---------------------+ ||
3489 // promote || /\ /\ || promote
3490 // || /||\ /||\ ||
3491 // \||/ demote || \||/
3492 // \/ || || \/
3493 // +-------------------------+ || +-------------------------+
3494 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3495 // +-------------------------+ || +-------------------------+
3496 // || || ||
3497 // || demote \||/
3498 // promote || \/ NOT possible
3499 // || || /\~
3500 // \||/ || /||\~
3501 // \/ || ||
3502 // +-----------------------------+
3503 // | if (p0.new) memw(..)=r0.new |
3504 // +-----------------------------+
3505 // Double Dot New Store
3507 // Returns the most basic instruction for the .new predicated instructions and
3508 // new-value stores.
3509 // For example, all of the following instructions will be converted back to the
3510 // same instruction:
3511 // 1) if (p0.new) memw(R0+#0) = R1.new --->
3512 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3513 // 3) if (p0.new) memw(R0+#0) = R1 --->
3515 // To understand the translation of instruction 1 to its original form, consider
3516 // a packet with 3 instructions.
3517 // { p0 = cmp.eq(R0,R1)
3518 // if (p0.new) R2 = add(R3, R4)
3519 // R5 = add (R3, R1)
3520 // }
3521 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3523 // This instruction can be part of the previous packet only if both p0 and R2
3524 // are promoted to .new values. This promotion happens in steps, first
3525 // predicate register is promoted to .new and in the next iteration R2 is
3526 // promoted. Therefore, in case of dependence check failure (due to R5) during
3527 // next iteration, it should be converted back to its most basic form.
3529 // Return the new value instruction for a given store.
3530 int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const {
3531 int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3532 if (NVOpcode >= 0) // Valid new-value store instruction.
3533 return NVOpcode;
3535 switch (MI.getOpcode()) {
3536 default:
3537 report_fatal_error(std::string("Unknown .new type: ") +
3538 std::to_string(MI.getOpcode()));
3539 case Hexagon::S4_storerb_ur:
3540 return Hexagon::S4_storerbnew_ur;
3542 case Hexagon::S2_storerb_pci:
3543 return Hexagon::S2_storerb_pci;
3545 case Hexagon::S2_storeri_pci:
3546 return Hexagon::S2_storeri_pci;
3548 case Hexagon::S2_storerh_pci:
3549 return Hexagon::S2_storerh_pci;
3551 case Hexagon::S2_storerd_pci:
3552 return Hexagon::S2_storerd_pci;
3554 case Hexagon::S2_storerf_pci:
3555 return Hexagon::S2_storerf_pci;
3557 case Hexagon::V6_vS32b_ai:
3558 return Hexagon::V6_vS32b_new_ai;
3560 case Hexagon::V6_vS32b_pi:
3561 return Hexagon::V6_vS32b_new_pi;
3563 return 0;
3566 // Returns the opcode to use when converting MI, which is a conditional jump,
3567 // into a conditional instruction which uses the .new value of the predicate.
3568 // We also use branch probabilities to add a hint to the jump.
3569 // If MBPI is null, all edges will be treated as equally likely for the
3570 // purposes of establishing a predication hint.
3571 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI,
3572 const MachineBranchProbabilityInfo *MBPI) const {
3573 // We assume that block can have at most two successors.
3574 const MachineBasicBlock *Src = MI.getParent();
3575 const MachineOperand &BrTarget = MI.getOperand(1);
3576 bool Taken = false;
3577 const BranchProbability OneHalf(1, 2);
3579 auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3580 const MachineBasicBlock *Dst) {
3581 if (MBPI)
3582 return MBPI->getEdgeProbability(Src, Dst);
3583 return BranchProbability(1, Src->succ_size());
3586 if (BrTarget.isMBB()) {
3587 const MachineBasicBlock *Dst = BrTarget.getMBB();
3588 Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3589 } else {
3590 // The branch target is not a basic block (most likely a function).
3591 // Since BPI only gives probabilities for targets that are basic blocks,
3592 // try to identify another target of this branch (potentially a fall-
3593 // -through) and check the probability of that target.
3595 // The only handled branch combinations are:
3596 // - one conditional branch,
3597 // - one conditional branch followed by one unconditional branch.
3598 // Otherwise, assume not-taken.
3599 assert(MI.isConditionalBranch());
3600 const MachineBasicBlock &B = *MI.getParent();
3601 bool SawCond = false, Bad = false;
3602 for (const MachineInstr &I : B) {
3603 if (!I.isBranch())
3604 continue;
3605 if (I.isConditionalBranch()) {
3606 SawCond = true;
3607 if (&I != &MI) {
3608 Bad = true;
3609 break;
3612 if (I.isUnconditionalBranch() && !SawCond) {
3613 Bad = true;
3614 break;
3617 if (!Bad) {
3618 MachineBasicBlock::const_instr_iterator It(MI);
3619 MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3620 if (NextIt == B.instr_end()) {
3621 // If this branch is the last, look for the fall-through block.
3622 for (const MachineBasicBlock *SB : B.successors()) {
3623 if (!B.isLayoutSuccessor(SB))
3624 continue;
3625 Taken = getEdgeProbability(Src, SB) < OneHalf;
3626 break;
3628 } else {
3629 assert(NextIt->isUnconditionalBranch());
3630 // Find the first MBB operand and assume it's the target.
3631 const MachineBasicBlock *BT = nullptr;
3632 for (const MachineOperand &Op : NextIt->operands()) {
3633 if (!Op.isMBB())
3634 continue;
3635 BT = Op.getMBB();
3636 break;
3638 Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3640 } // if (!Bad)
3643 // The Taken flag should be set to something reasonable by this point.
3645 switch (MI.getOpcode()) {
3646 case Hexagon::J2_jumpt:
3647 return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3648 case Hexagon::J2_jumpf:
3649 return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3651 default:
3652 llvm_unreachable("Unexpected jump instruction.");
3656 // Return .new predicate version for an instruction.
3657 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI,
3658 const MachineBranchProbabilityInfo *MBPI) const {
3659 switch (MI.getOpcode()) {
3660 // Condtional Jumps
3661 case Hexagon::J2_jumpt:
3662 case Hexagon::J2_jumpf:
3663 return getDotNewPredJumpOp(MI, MBPI);
3666 int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3667 if (NewOpcode >= 0)
3668 return NewOpcode;
3669 return 0;
3672 int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const {
3673 int NewOp = MI.getOpcode();
3674 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3675 NewOp = Hexagon::getPredOldOpcode(NewOp);
3676 // All Hexagon architectures have prediction bits on dot-new branches,
3677 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3678 // to pick the right opcode when converting back to dot-old.
3679 if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) {
3680 switch (NewOp) {
3681 case Hexagon::J2_jumptpt:
3682 NewOp = Hexagon::J2_jumpt;
3683 break;
3684 case Hexagon::J2_jumpfpt:
3685 NewOp = Hexagon::J2_jumpf;
3686 break;
3687 case Hexagon::J2_jumprtpt:
3688 NewOp = Hexagon::J2_jumprt;
3689 break;
3690 case Hexagon::J2_jumprfpt:
3691 NewOp = Hexagon::J2_jumprf;
3692 break;
3695 assert(NewOp >= 0 &&
3696 "Couldn't change predicate new instruction to its old form.");
3699 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3700 NewOp = Hexagon::getNonNVStore(NewOp);
3701 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3704 if (Subtarget.hasV60Ops())
3705 return NewOp;
3707 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3708 switch (NewOp) {
3709 case Hexagon::J2_jumpfpt:
3710 return Hexagon::J2_jumpf;
3711 case Hexagon::J2_jumptpt:
3712 return Hexagon::J2_jumpt;
3713 case Hexagon::J2_jumprfpt:
3714 return Hexagon::J2_jumprf;
3715 case Hexagon::J2_jumprtpt:
3716 return Hexagon::J2_jumprt;
3718 return NewOp;
3721 // See if instruction could potentially be a duplex candidate.
3722 // If so, return its group. Zero otherwise.
3723 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3724 const MachineInstr &MI) const {
3725 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3726 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3728 switch (MI.getOpcode()) {
3729 default:
3730 return HexagonII::HSIG_None;
3732 // Group L1:
3734 // Rd = memw(Rs+#u4:2)
3735 // Rd = memub(Rs+#u4:0)
3736 case Hexagon::L2_loadri_io:
3737 DstReg = MI.getOperand(0).getReg();
3738 SrcReg = MI.getOperand(1).getReg();
3739 // Special case this one from Group L2.
3740 // Rd = memw(r29+#u5:2)
3741 if (isIntRegForSubInst(DstReg)) {
3742 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3743 HRI.getStackRegister() == SrcReg &&
3744 MI.getOperand(2).isImm() &&
3745 isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3746 return HexagonII::HSIG_L2;
3747 // Rd = memw(Rs+#u4:2)
3748 if (isIntRegForSubInst(SrcReg) &&
3749 (MI.getOperand(2).isImm() &&
3750 isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3751 return HexagonII::HSIG_L1;
3753 break;
3754 case Hexagon::L2_loadrub_io:
3755 // Rd = memub(Rs+#u4:0)
3756 DstReg = MI.getOperand(0).getReg();
3757 SrcReg = MI.getOperand(1).getReg();
3758 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3759 MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3760 return HexagonII::HSIG_L1;
3761 break;
3763 // Group L2:
3765 // Rd = memh/memuh(Rs+#u3:1)
3766 // Rd = memb(Rs+#u3:0)
3767 // Rd = memw(r29+#u5:2) - Handled above.
3768 // Rdd = memd(r29+#u5:3)
3769 // deallocframe
3770 // [if ([!]p0[.new])] dealloc_return
3771 // [if ([!]p0[.new])] jumpr r31
3772 case Hexagon::L2_loadrh_io:
3773 case Hexagon::L2_loadruh_io:
3774 // Rd = memh/memuh(Rs+#u3:1)
3775 DstReg = MI.getOperand(0).getReg();
3776 SrcReg = MI.getOperand(1).getReg();
3777 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3778 MI.getOperand(2).isImm() &&
3779 isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
3780 return HexagonII::HSIG_L2;
3781 break;
3782 case Hexagon::L2_loadrb_io:
3783 // Rd = memb(Rs+#u3:0)
3784 DstReg = MI.getOperand(0).getReg();
3785 SrcReg = MI.getOperand(1).getReg();
3786 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3787 MI.getOperand(2).isImm() &&
3788 isUInt<3>(MI.getOperand(2).getImm()))
3789 return HexagonII::HSIG_L2;
3790 break;
3791 case Hexagon::L2_loadrd_io:
3792 // Rdd = memd(r29+#u5:3)
3793 DstReg = MI.getOperand(0).getReg();
3794 SrcReg = MI.getOperand(1).getReg();
3795 if (isDblRegForSubInst(DstReg, HRI) &&
3796 Hexagon::IntRegsRegClass.contains(SrcReg) &&
3797 HRI.getStackRegister() == SrcReg &&
3798 MI.getOperand(2).isImm() &&
3799 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3800 return HexagonII::HSIG_L2;
3801 break;
3802 // dealloc_return is not documented in Hexagon Manual, but marked
3803 // with A_SUBINSN attribute in iset_v4classic.py.
3804 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3805 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3806 case Hexagon::L4_return:
3807 case Hexagon::L2_deallocframe:
3808 return HexagonII::HSIG_L2;
3809 case Hexagon::EH_RETURN_JMPR:
3810 case Hexagon::PS_jmpret:
3811 case Hexagon::SL2_jumpr31:
3812 // jumpr r31
3813 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3814 DstReg = MI.getOperand(0).getReg();
3815 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3816 return HexagonII::HSIG_L2;
3817 break;
3818 case Hexagon::PS_jmprett:
3819 case Hexagon::PS_jmpretf:
3820 case Hexagon::PS_jmprettnewpt:
3821 case Hexagon::PS_jmpretfnewpt:
3822 case Hexagon::PS_jmprettnew:
3823 case Hexagon::PS_jmpretfnew:
3824 case Hexagon::SL2_jumpr31_t:
3825 case Hexagon::SL2_jumpr31_f:
3826 case Hexagon::SL2_jumpr31_tnew:
3827 DstReg = MI.getOperand(1).getReg();
3828 SrcReg = MI.getOperand(0).getReg();
3829 // [if ([!]p0[.new])] jumpr r31
3830 if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3831 (Hexagon::P0 == SrcReg)) &&
3832 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3833 return HexagonII::HSIG_L2;
3834 break;
3835 case Hexagon::L4_return_t:
3836 case Hexagon::L4_return_f:
3837 case Hexagon::L4_return_tnew_pnt:
3838 case Hexagon::L4_return_fnew_pnt:
3839 case Hexagon::L4_return_tnew_pt:
3840 case Hexagon::L4_return_fnew_pt:
3841 // [if ([!]p0[.new])] dealloc_return
3842 SrcReg = MI.getOperand(0).getReg();
3843 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3844 return HexagonII::HSIG_L2;
3845 break;
3847 // Group S1:
3849 // memw(Rs+#u4:2) = Rt
3850 // memb(Rs+#u4:0) = Rt
3851 case Hexagon::S2_storeri_io:
3852 // Special case this one from Group S2.
3853 // memw(r29+#u5:2) = Rt
3854 Src1Reg = MI.getOperand(0).getReg();
3855 Src2Reg = MI.getOperand(2).getReg();
3856 if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3857 isIntRegForSubInst(Src2Reg) &&
3858 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3859 isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
3860 return HexagonII::HSIG_S2;
3861 // memw(Rs+#u4:2) = Rt
3862 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3863 MI.getOperand(1).isImm() &&
3864 isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
3865 return HexagonII::HSIG_S1;
3866 break;
3867 case Hexagon::S2_storerb_io:
3868 // memb(Rs+#u4:0) = Rt
3869 Src1Reg = MI.getOperand(0).getReg();
3870 Src2Reg = MI.getOperand(2).getReg();
3871 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3872 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
3873 return HexagonII::HSIG_S1;
3874 break;
3876 // Group S2:
3878 // memh(Rs+#u3:1) = Rt
3879 // memw(r29+#u5:2) = Rt
3880 // memd(r29+#s6:3) = Rtt
3881 // memw(Rs+#u4:2) = #U1
3882 // memb(Rs+#u4) = #U1
3883 // allocframe(#u5:3)
3884 case Hexagon::S2_storerh_io:
3885 // memh(Rs+#u3:1) = Rt
3886 Src1Reg = MI.getOperand(0).getReg();
3887 Src2Reg = MI.getOperand(2).getReg();
3888 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3889 MI.getOperand(1).isImm() &&
3890 isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
3891 return HexagonII::HSIG_S1;
3892 break;
3893 case Hexagon::S2_storerd_io:
3894 // memd(r29+#s6:3) = Rtt
3895 Src1Reg = MI.getOperand(0).getReg();
3896 Src2Reg = MI.getOperand(2).getReg();
3897 if (isDblRegForSubInst(Src2Reg, HRI) &&
3898 Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3899 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3900 isShiftedInt<6,3>(MI.getOperand(1).getImm()))
3901 return HexagonII::HSIG_S2;
3902 break;
3903 case Hexagon::S4_storeiri_io:
3904 // memw(Rs+#u4:2) = #U1
3905 Src1Reg = MI.getOperand(0).getReg();
3906 if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
3907 isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
3908 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3909 return HexagonII::HSIG_S2;
3910 break;
3911 case Hexagon::S4_storeirb_io:
3912 // memb(Rs+#u4) = #U1
3913 Src1Reg = MI.getOperand(0).getReg();
3914 if (isIntRegForSubInst(Src1Reg) &&
3915 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
3916 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3917 return HexagonII::HSIG_S2;
3918 break;
3919 case Hexagon::S2_allocframe:
3920 if (MI.getOperand(2).isImm() &&
3921 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3922 return HexagonII::HSIG_S1;
3923 break;
3925 // Group A:
3927 // Rx = add(Rx,#s7)
3928 // Rd = Rs
3929 // Rd = #u6
3930 // Rd = #-1
3931 // if ([!]P0[.new]) Rd = #0
3932 // Rd = add(r29,#u6:2)
3933 // Rx = add(Rx,Rs)
3934 // P0 = cmp.eq(Rs,#u2)
3935 // Rdd = combine(#0,Rs)
3936 // Rdd = combine(Rs,#0)
3937 // Rdd = combine(#u2,#U2)
3938 // Rd = add(Rs,#1)
3939 // Rd = add(Rs,#-1)
3940 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3941 // Rd = and(Rs,#1)
3942 case Hexagon::A2_addi:
3943 DstReg = MI.getOperand(0).getReg();
3944 SrcReg = MI.getOperand(1).getReg();
3945 if (isIntRegForSubInst(DstReg)) {
3946 // Rd = add(r29,#u6:2)
3947 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3948 HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
3949 isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
3950 return HexagonII::HSIG_A;
3951 // Rx = add(Rx,#s7)
3952 if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
3953 isInt<7>(MI.getOperand(2).getImm()))
3954 return HexagonII::HSIG_A;
3955 // Rd = add(Rs,#1)
3956 // Rd = add(Rs,#-1)
3957 if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3958 ((MI.getOperand(2).getImm() == 1) ||
3959 (MI.getOperand(2).getImm() == -1)))
3960 return HexagonII::HSIG_A;
3962 break;
3963 case Hexagon::A2_add:
3964 // Rx = add(Rx,Rs)
3965 DstReg = MI.getOperand(0).getReg();
3966 Src1Reg = MI.getOperand(1).getReg();
3967 Src2Reg = MI.getOperand(2).getReg();
3968 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3969 isIntRegForSubInst(Src2Reg))
3970 return HexagonII::HSIG_A;
3971 break;
3972 case Hexagon::A2_andir:
3973 // Same as zxtb.
3974 // Rd16=and(Rs16,#255)
3975 // Rd16=and(Rs16,#1)
3976 DstReg = MI.getOperand(0).getReg();
3977 SrcReg = MI.getOperand(1).getReg();
3978 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3979 MI.getOperand(2).isImm() &&
3980 ((MI.getOperand(2).getImm() == 1) ||
3981 (MI.getOperand(2).getImm() == 255)))
3982 return HexagonII::HSIG_A;
3983 break;
3984 case Hexagon::A2_tfr:
3985 // Rd = Rs
3986 DstReg = MI.getOperand(0).getReg();
3987 SrcReg = MI.getOperand(1).getReg();
3988 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3989 return HexagonII::HSIG_A;
3990 break;
3991 case Hexagon::A2_tfrsi:
3992 // Rd = #u6
3993 // Do not test for #u6 size since the const is getting extended
3994 // regardless and compound could be formed.
3995 // Rd = #-1
3996 DstReg = MI.getOperand(0).getReg();
3997 if (isIntRegForSubInst(DstReg))
3998 return HexagonII::HSIG_A;
3999 break;
4000 case Hexagon::C2_cmoveit:
4001 case Hexagon::C2_cmovenewit:
4002 case Hexagon::C2_cmoveif:
4003 case Hexagon::C2_cmovenewif:
4004 // if ([!]P0[.new]) Rd = #0
4005 // Actual form:
4006 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
4007 DstReg = MI.getOperand(0).getReg();
4008 SrcReg = MI.getOperand(1).getReg();
4009 if (isIntRegForSubInst(DstReg) &&
4010 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
4011 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
4012 return HexagonII::HSIG_A;
4013 break;
4014 case Hexagon::C2_cmpeqi:
4015 // P0 = cmp.eq(Rs,#u2)
4016 DstReg = MI.getOperand(0).getReg();
4017 SrcReg = MI.getOperand(1).getReg();
4018 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
4019 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
4020 MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
4021 return HexagonII::HSIG_A;
4022 break;
4023 case Hexagon::A2_combineii:
4024 case Hexagon::A4_combineii:
4025 // Rdd = combine(#u2,#U2)
4026 DstReg = MI.getOperand(0).getReg();
4027 if (isDblRegForSubInst(DstReg, HRI) &&
4028 ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
4029 (MI.getOperand(1).isGlobal() &&
4030 isUInt<2>(MI.getOperand(1).getOffset()))) &&
4031 ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
4032 (MI.getOperand(2).isGlobal() &&
4033 isUInt<2>(MI.getOperand(2).getOffset()))))
4034 return HexagonII::HSIG_A;
4035 break;
4036 case Hexagon::A4_combineri:
4037 // Rdd = combine(Rs,#0)
4038 DstReg = MI.getOperand(0).getReg();
4039 SrcReg = MI.getOperand(1).getReg();
4040 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4041 ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
4042 (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
4043 return HexagonII::HSIG_A;
4044 break;
4045 case Hexagon::A4_combineir:
4046 // Rdd = combine(#0,Rs)
4047 DstReg = MI.getOperand(0).getReg();
4048 SrcReg = MI.getOperand(2).getReg();
4049 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4050 ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
4051 (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
4052 return HexagonII::HSIG_A;
4053 break;
4054 case Hexagon::A2_sxtb:
4055 case Hexagon::A2_sxth:
4056 case Hexagon::A2_zxtb:
4057 case Hexagon::A2_zxth:
4058 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4059 DstReg = MI.getOperand(0).getReg();
4060 SrcReg = MI.getOperand(1).getReg();
4061 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4062 return HexagonII::HSIG_A;
4063 break;
4066 return HexagonII::HSIG_None;
4069 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const {
4070 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4073 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4074 const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4075 // Default to one cycle for no itinerary. However, an "empty" itinerary may
4076 // still have a MinLatency property, which getStageLatency checks.
4077 if (!ItinData)
4078 return getInstrLatency(ItinData, MI);
4080 if (MI.isTransient())
4081 return 0;
4082 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4085 /// getOperandLatency - Compute and return the use operand latency of a given
4086 /// pair of def and use.
4087 /// In most cases, the static scheduling itinerary was enough to determine the
4088 /// operand latency. But it may not be possible for instructions with variable
4089 /// number of defs / uses.
4091 /// This is a raw interface to the itinerary that may be directly overriden by
4092 /// a target. Use computeOperandLatency to get the best estimate of latency.
4093 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4094 const MachineInstr &DefMI,
4095 unsigned DefIdx,
4096 const MachineInstr &UseMI,
4097 unsigned UseIdx) const {
4098 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4100 // Get DefIdx and UseIdx for super registers.
4101 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4103 if (DefMO.isReg() && Register::isPhysicalRegister(DefMO.getReg())) {
4104 if (DefMO.isImplicit()) {
4105 for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) {
4106 int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI);
4107 if (Idx != -1) {
4108 DefIdx = Idx;
4109 break;
4114 const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4115 if (UseMO.isImplicit()) {
4116 for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) {
4117 int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI);
4118 if (Idx != -1) {
4119 UseIdx = Idx;
4120 break;
4126 int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
4127 UseMI, UseIdx);
4128 if (!Latency)
4129 // We should never have 0 cycle latency between two instructions unless
4130 // they can be packetized together. However, this decision can't be made
4131 // here.
4132 Latency = 1;
4133 return Latency;
4136 // inverts the predication logic.
4137 // p -> NotP
4138 // NotP -> P
4139 bool HexagonInstrInfo::getInvertedPredSense(
4140 SmallVectorImpl<MachineOperand> &Cond) const {
4141 if (Cond.empty())
4142 return false;
4143 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4144 Cond[0].setImm(Opc);
4145 return true;
4148 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
4149 int InvPredOpcode;
4150 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4151 : Hexagon::getTruePredOpcode(Opc);
4152 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4153 return InvPredOpcode;
4155 llvm_unreachable("Unexpected predicated instruction");
4158 // Returns the max value that doesn't need to be extended.
4159 int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const {
4160 const uint64_t F = MI.getDesc().TSFlags;
4161 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4162 & HexagonII::ExtentSignedMask;
4163 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4164 & HexagonII::ExtentBitsMask;
4166 if (isSigned) // if value is signed
4167 return ~(-1U << (bits - 1));
4168 else
4169 return ~(-1U << bits);
4173 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const {
4174 switch (MI.getOpcode()) {
4175 case Hexagon::L2_loadrbgp:
4176 case Hexagon::L2_loadrdgp:
4177 case Hexagon::L2_loadrhgp:
4178 case Hexagon::L2_loadrigp:
4179 case Hexagon::L2_loadrubgp:
4180 case Hexagon::L2_loadruhgp:
4181 case Hexagon::S2_storerbgp:
4182 case Hexagon::S2_storerbnewgp:
4183 case Hexagon::S2_storerhgp:
4184 case Hexagon::S2_storerhnewgp:
4185 case Hexagon::S2_storerigp:
4186 case Hexagon::S2_storerinewgp:
4187 case Hexagon::S2_storerdgp:
4188 case Hexagon::S2_storerfgp:
4189 return true;
4191 const uint64_t F = MI.getDesc().TSFlags;
4192 unsigned addrMode =
4193 ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
4194 // Disallow any base+offset instruction. The assembler does not yet reorder
4195 // based up any zero offset instruction.
4196 return (addrMode == HexagonII::BaseRegOffset ||
4197 addrMode == HexagonII::BaseImmOffset ||
4198 addrMode == HexagonII::BaseLongOffset);
4201 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const {
4202 using namespace HexagonII;
4204 const uint64_t F = MI.getDesc().TSFlags;
4205 unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4206 unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4207 if (Size != 0)
4208 return Size;
4210 // Handle vector access sizes.
4211 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4212 switch (S) {
4213 case HexagonII::HVXVectorAccess:
4214 return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4215 default:
4216 llvm_unreachable("Unexpected instruction");
4220 // Returns the min value that doesn't need to be extended.
4221 int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const {
4222 const uint64_t F = MI.getDesc().TSFlags;
4223 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4224 & HexagonII::ExtentSignedMask;
4225 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4226 & HexagonII::ExtentBitsMask;
4228 if (isSigned) // if value is signed
4229 return -1U << (bits - 1);
4230 else
4231 return 0;
4234 // Returns opcode of the non-extended equivalent instruction.
4235 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const {
4236 // Check if the instruction has a register form that uses register in place
4237 // of the extended operand, if so return that as the non-extended form.
4238 short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4239 if (NonExtOpcode >= 0)
4240 return NonExtOpcode;
4242 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4243 // Check addressing mode and retrieve non-ext equivalent instruction.
4244 switch (getAddrMode(MI)) {
4245 case HexagonII::Absolute:
4246 return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4247 case HexagonII::BaseImmOffset:
4248 return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4249 case HexagonII::BaseLongOffset:
4250 return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4252 default:
4253 return -1;
4256 return -1;
4259 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
4260 unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4261 if (Cond.empty())
4262 return false;
4263 assert(Cond.size() == 2);
4264 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4265 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4266 return false;
4268 PredReg = Cond[1].getReg();
4269 PredRegPos = 1;
4270 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4271 PredRegFlags = 0;
4272 if (Cond[1].isImplicit())
4273 PredRegFlags = RegState::Implicit;
4274 if (Cond[1].isUndef())
4275 PredRegFlags |= RegState::Undef;
4276 return true;
4279 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const {
4280 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4283 short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const {
4284 return Hexagon::getRegForm(MI.getOpcode());
4287 // Return the number of bytes required to encode the instruction.
4288 // Hexagon instructions are fixed length, 4 bytes, unless they
4289 // use a constant extender, which requires another 4 bytes.
4290 // For debug instructions and prolog labels, return 0.
4291 unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const {
4292 if (MI.isDebugInstr() || MI.isPosition())
4293 return 0;
4295 unsigned Size = MI.getDesc().getSize();
4296 if (!Size)
4297 // Assume the default insn size in case it cannot be determined
4298 // for whatever reason.
4299 Size = HEXAGON_INSTR_SIZE;
4301 if (isConstExtended(MI) || isExtended(MI))
4302 Size += HEXAGON_INSTR_SIZE;
4304 // Try and compute number of instructions in asm.
4305 if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4306 const MachineBasicBlock &MBB = *MI.getParent();
4307 const MachineFunction *MF = MBB.getParent();
4308 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4310 // Count the number of register definitions to find the asm string.
4311 unsigned NumDefs = 0;
4312 for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4313 ++NumDefs)
4314 assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4316 assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4317 // Disassemble the AsmStr and approximate number of instructions.
4318 const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4319 Size = getInlineAsmLength(AsmStr, *MAI);
4322 return Size;
4325 uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const {
4326 const uint64_t F = MI.getDesc().TSFlags;
4327 return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
4330 unsigned HexagonInstrInfo::getUnits(const MachineInstr &MI) const {
4331 const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4332 const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4334 return IS.getUnits();
4337 // Calculate size of the basic block without debug instructions.
4338 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
4339 return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4342 unsigned HexagonInstrInfo::nonDbgBundleSize(
4343 MachineBasicBlock::const_iterator BundleHead) const {
4344 assert(BundleHead->isBundle() && "Not a bundle header");
4345 auto MII = BundleHead.getInstrIterator();
4346 // Skip the bundle header.
4347 return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4350 /// immediateExtend - Changes the instruction in place to one using an immediate
4351 /// extender.
4352 void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const {
4353 assert((isExtendable(MI)||isConstExtended(MI)) &&
4354 "Instruction must be extendable");
4355 // Find which operand is extendable.
4356 short ExtOpNum = getCExtOpNum(MI);
4357 MachineOperand &MO = MI.getOperand(ExtOpNum);
4358 // This needs to be something we understand.
4359 assert((MO.isMBB() || MO.isImm()) &&
4360 "Branch with unknown extendable field type");
4361 // Mark given operand as extended.
4362 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
4365 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4366 MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4367 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4368 << printMBBReference(*NewTarget);
4369 MI.dump(););
4370 assert(MI.isBranch());
4371 unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4372 int TargetPos = MI.getNumOperands() - 1;
4373 // In general branch target is the last operand,
4374 // but some implicit defs added at the end might change it.
4375 while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4376 --TargetPos;
4377 assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4378 MI.getOperand(TargetPos).setMBB(NewTarget);
4379 if (EnableBranchPrediction && isPredicatedNew(MI)) {
4380 NewOpcode = reversePrediction(NewOpcode);
4382 MI.setDesc(get(NewOpcode));
4383 return true;
4386 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
4387 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4388 MachineFunction::iterator A = MF.begin();
4389 MachineBasicBlock &B = *A;
4390 MachineBasicBlock::iterator I = B.begin();
4391 DebugLoc DL = I->getDebugLoc();
4392 MachineInstr *NewMI;
4394 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4395 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4396 NewMI = BuildMI(B, I, DL, get(insn));
4397 LLVM_DEBUG(dbgs() << "\n"
4398 << getName(NewMI->getOpcode())
4399 << " Class: " << NewMI->getDesc().getSchedClass());
4400 NewMI->eraseFromParent();
4402 /* --- The code above is used to generate complete set of Hexagon Insn --- */
4405 // inverts the predication logic.
4406 // p -> NotP
4407 // NotP -> P
4408 bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const {
4409 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4410 MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4411 return true;
4414 // Reverse the branch prediction.
4415 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4416 int PredRevOpcode = -1;
4417 if (isPredictedTaken(Opcode))
4418 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4419 else
4420 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4421 assert(PredRevOpcode > 0);
4422 return PredRevOpcode;
4425 // TODO: Add more rigorous validation.
4426 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
4427 const {
4428 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4431 void HexagonInstrInfo::
4432 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const {
4433 assert(MIB->isBundle());
4434 MachineOperand &Operand = MIB->getOperand(0);
4435 if (Operand.isImm())
4436 Operand.setImm(Operand.getImm() | memShufDisabledMask);
4437 else
4438 MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4441 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const {
4442 assert(MIB.isBundle());
4443 const MachineOperand &Operand = MIB.getOperand(0);
4444 return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4447 // Addressing mode relations.
4448 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const {
4449 return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4452 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const {
4453 return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4456 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const {
4457 return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4460 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const {
4461 return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4464 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const {
4465 return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4468 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const {
4469 return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4472 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const {
4473 return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4476 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const {
4477 return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;