[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / Hexagon / RDFGraph.cpp
blob0cb35dc9881964e68d72f806daee025b49d13e76
1 //===- RDFGraph.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target-independent, SSA-based data flow graph for register data flow (RDF).
11 #include "RDFGraph.h"
12 #include "RDFRegisters.h"
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/CodeGen/MachineBasicBlock.h"
17 #include "llvm/CodeGen/MachineDominanceFrontier.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <cstring>
38 #include <iterator>
39 #include <set>
40 #include <utility>
41 #include <vector>
43 using namespace llvm;
44 using namespace rdf;
46 // Printing functions. Have them here first, so that the rest of the code
47 // can use them.
48 namespace llvm {
49 namespace rdf {
51 raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
52 if (!P.Mask.all())
53 OS << ':' << PrintLaneMask(P.Mask);
54 return OS;
57 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
58 auto &TRI = P.G.getTRI();
59 if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
60 OS << TRI.getName(P.Obj.Reg);
61 else
62 OS << '#' << P.Obj.Reg;
63 OS << PrintLaneMaskOpt(P.Obj.Mask);
64 return OS;
67 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
68 auto NA = P.G.addr<NodeBase*>(P.Obj);
69 uint16_t Attrs = NA.Addr->getAttrs();
70 uint16_t Kind = NodeAttrs::kind(Attrs);
71 uint16_t Flags = NodeAttrs::flags(Attrs);
72 switch (NodeAttrs::type(Attrs)) {
73 case NodeAttrs::Code:
74 switch (Kind) {
75 case NodeAttrs::Func: OS << 'f'; break;
76 case NodeAttrs::Block: OS << 'b'; break;
77 case NodeAttrs::Stmt: OS << 's'; break;
78 case NodeAttrs::Phi: OS << 'p'; break;
79 default: OS << "c?"; break;
81 break;
82 case NodeAttrs::Ref:
83 if (Flags & NodeAttrs::Undef)
84 OS << '/';
85 if (Flags & NodeAttrs::Dead)
86 OS << '\\';
87 if (Flags & NodeAttrs::Preserving)
88 OS << '+';
89 if (Flags & NodeAttrs::Clobbering)
90 OS << '~';
91 switch (Kind) {
92 case NodeAttrs::Use: OS << 'u'; break;
93 case NodeAttrs::Def: OS << 'd'; break;
94 case NodeAttrs::Block: OS << 'b'; break;
95 default: OS << "r?"; break;
97 break;
98 default:
99 OS << '?';
100 break;
102 OS << P.Obj;
103 if (Flags & NodeAttrs::Shadow)
104 OS << '"';
105 return OS;
108 static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
109 const DataFlowGraph &G) {
110 OS << Print<NodeId>(RA.Id, G) << '<'
111 << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
112 if (RA.Addr->getFlags() & NodeAttrs::Fixed)
113 OS << '!';
116 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
117 printRefHeader(OS, P.Obj, P.G);
118 OS << '(';
119 if (NodeId N = P.Obj.Addr->getReachingDef())
120 OS << Print<NodeId>(N, P.G);
121 OS << ',';
122 if (NodeId N = P.Obj.Addr->getReachedDef())
123 OS << Print<NodeId>(N, P.G);
124 OS << ',';
125 if (NodeId N = P.Obj.Addr->getReachedUse())
126 OS << Print<NodeId>(N, P.G);
127 OS << "):";
128 if (NodeId N = P.Obj.Addr->getSibling())
129 OS << Print<NodeId>(N, P.G);
130 return OS;
133 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
134 printRefHeader(OS, P.Obj, P.G);
135 OS << '(';
136 if (NodeId N = P.Obj.Addr->getReachingDef())
137 OS << Print<NodeId>(N, P.G);
138 OS << "):";
139 if (NodeId N = P.Obj.Addr->getSibling())
140 OS << Print<NodeId>(N, P.G);
141 return OS;
144 raw_ostream &operator<< (raw_ostream &OS,
145 const Print<NodeAddr<PhiUseNode*>> &P) {
146 printRefHeader(OS, P.Obj, P.G);
147 OS << '(';
148 if (NodeId N = P.Obj.Addr->getReachingDef())
149 OS << Print<NodeId>(N, P.G);
150 OS << ',';
151 if (NodeId N = P.Obj.Addr->getPredecessor())
152 OS << Print<NodeId>(N, P.G);
153 OS << "):";
154 if (NodeId N = P.Obj.Addr->getSibling())
155 OS << Print<NodeId>(N, P.G);
156 return OS;
159 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
160 switch (P.Obj.Addr->getKind()) {
161 case NodeAttrs::Def:
162 OS << PrintNode<DefNode*>(P.Obj, P.G);
163 break;
164 case NodeAttrs::Use:
165 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
166 OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
167 else
168 OS << PrintNode<UseNode*>(P.Obj, P.G);
169 break;
171 return OS;
174 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
175 unsigned N = P.Obj.size();
176 for (auto I : P.Obj) {
177 OS << Print<NodeId>(I.Id, P.G);
178 if (--N)
179 OS << ' ';
181 return OS;
184 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
185 unsigned N = P.Obj.size();
186 for (auto I : P.Obj) {
187 OS << Print<NodeId>(I, P.G);
188 if (--N)
189 OS << ' ';
191 return OS;
194 namespace {
196 template <typename T>
197 struct PrintListV {
198 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
200 using Type = T;
201 const NodeList &List;
202 const DataFlowGraph &G;
205 template <typename T>
206 raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
207 unsigned N = P.List.size();
208 for (NodeAddr<T> A : P.List) {
209 OS << PrintNode<T>(A, P.G);
210 if (--N)
211 OS << ", ";
213 return OS;
216 } // end anonymous namespace
218 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
219 OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
220 << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
221 return OS;
224 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
225 const MachineInstr &MI = *P.Obj.Addr->getCode();
226 unsigned Opc = MI.getOpcode();
227 OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
228 // Print the target for calls and branches (for readability).
229 if (MI.isCall() || MI.isBranch()) {
230 MachineInstr::const_mop_iterator T =
231 llvm::find_if(MI.operands(),
232 [] (const MachineOperand &Op) -> bool {
233 return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
235 if (T != MI.operands_end()) {
236 OS << ' ';
237 if (T->isMBB())
238 OS << printMBBReference(*T->getMBB());
239 else if (T->isGlobal())
240 OS << T->getGlobal()->getName();
241 else if (T->isSymbol())
242 OS << T->getSymbolName();
245 OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
246 return OS;
249 raw_ostream &operator<< (raw_ostream &OS,
250 const Print<NodeAddr<InstrNode*>> &P) {
251 switch (P.Obj.Addr->getKind()) {
252 case NodeAttrs::Phi:
253 OS << PrintNode<PhiNode*>(P.Obj, P.G);
254 break;
255 case NodeAttrs::Stmt:
256 OS << PrintNode<StmtNode*>(P.Obj, P.G);
257 break;
258 default:
259 OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
260 break;
262 return OS;
265 raw_ostream &operator<< (raw_ostream &OS,
266 const Print<NodeAddr<BlockNode*>> &P) {
267 MachineBasicBlock *BB = P.Obj.Addr->getCode();
268 unsigned NP = BB->pred_size();
269 std::vector<int> Ns;
270 auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
271 unsigned N = Ns.size();
272 for (int I : Ns) {
273 OS << "%bb." << I;
274 if (--N)
275 OS << ", ";
279 OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
280 << " --- preds(" << NP << "): ";
281 for (MachineBasicBlock *B : BB->predecessors())
282 Ns.push_back(B->getNumber());
283 PrintBBs(Ns);
285 unsigned NS = BB->succ_size();
286 OS << " succs(" << NS << "): ";
287 Ns.clear();
288 for (MachineBasicBlock *B : BB->successors())
289 Ns.push_back(B->getNumber());
290 PrintBBs(Ns);
291 OS << '\n';
293 for (auto I : P.Obj.Addr->members(P.G))
294 OS << PrintNode<InstrNode*>(I, P.G) << '\n';
295 return OS;
298 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
299 OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
300 << P.Obj.Addr->getCode()->getName() << '\n';
301 for (auto I : P.Obj.Addr->members(P.G))
302 OS << PrintNode<BlockNode*>(I, P.G) << '\n';
303 OS << "]\n";
304 return OS;
307 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
308 OS << '{';
309 for (auto I : P.Obj)
310 OS << ' ' << Print<RegisterRef>(I, P.G);
311 OS << " }";
312 return OS;
315 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
316 P.Obj.print(OS);
317 return OS;
320 raw_ostream &operator<< (raw_ostream &OS,
321 const Print<DataFlowGraph::DefStack> &P) {
322 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
323 OS << Print<NodeId>(I->Id, P.G)
324 << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
325 I.down();
326 if (I != E)
327 OS << ' ';
329 return OS;
332 } // end namespace rdf
333 } // end namespace llvm
335 // Node allocation functions.
337 // Node allocator is like a slab memory allocator: it allocates blocks of
338 // memory in sizes that are multiples of the size of a node. Each block has
339 // the same size. Nodes are allocated from the currently active block, and
340 // when it becomes full, a new one is created.
341 // There is a mapping scheme between node id and its location in a block,
342 // and within that block is described in the header file.
344 void NodeAllocator::startNewBlock() {
345 void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
346 char *P = static_cast<char*>(T);
347 Blocks.push_back(P);
348 // Check if the block index is still within the allowed range, i.e. less
349 // than 2^N, where N is the number of bits in NodeId for the block index.
350 // BitsPerIndex is the number of bits per node index.
351 assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
352 "Out of bits for block index");
353 ActiveEnd = P;
356 bool NodeAllocator::needNewBlock() {
357 if (Blocks.empty())
358 return true;
360 char *ActiveBegin = Blocks.back();
361 uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
362 return Index >= NodesPerBlock;
365 NodeAddr<NodeBase*> NodeAllocator::New() {
366 if (needNewBlock())
367 startNewBlock();
369 uint32_t ActiveB = Blocks.size()-1;
370 uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
371 NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
372 makeId(ActiveB, Index) };
373 ActiveEnd += NodeMemSize;
374 return NA;
377 NodeId NodeAllocator::id(const NodeBase *P) const {
378 uintptr_t A = reinterpret_cast<uintptr_t>(P);
379 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
380 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
381 if (A < B || A >= B + NodesPerBlock*NodeMemSize)
382 continue;
383 uint32_t Idx = (A-B)/NodeMemSize;
384 return makeId(i, Idx);
386 llvm_unreachable("Invalid node address");
389 void NodeAllocator::clear() {
390 MemPool.Reset();
391 Blocks.clear();
392 ActiveEnd = nullptr;
395 // Insert node NA after "this" in the circular chain.
396 void NodeBase::append(NodeAddr<NodeBase*> NA) {
397 NodeId Nx = Next;
398 // If NA is already "next", do nothing.
399 if (Next != NA.Id) {
400 Next = NA.Id;
401 NA.Addr->Next = Nx;
405 // Fundamental node manipulator functions.
407 // Obtain the register reference from a reference node.
408 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
409 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
410 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
411 return G.unpack(Ref.PR);
412 assert(Ref.Op != nullptr);
413 return G.makeRegRef(*Ref.Op);
416 // Set the register reference in the reference node directly (for references
417 // in phi nodes).
418 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
419 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
420 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
421 Ref.PR = G.pack(RR);
424 // Set the register reference in the reference node based on a machine
425 // operand (for references in statement nodes).
426 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
427 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
428 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
429 (void)G;
430 Ref.Op = Op;
433 // Get the owner of a given reference node.
434 NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
435 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
437 while (NA.Addr != this) {
438 if (NA.Addr->getType() == NodeAttrs::Code)
439 return NA;
440 NA = G.addr<NodeBase*>(NA.Addr->getNext());
442 llvm_unreachable("No owner in circular list");
445 // Connect the def node to the reaching def node.
446 void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
447 Ref.RD = DA.Id;
448 Ref.Sib = DA.Addr->getReachedDef();
449 DA.Addr->setReachedDef(Self);
452 // Connect the use node to the reaching def node.
453 void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
454 Ref.RD = DA.Id;
455 Ref.Sib = DA.Addr->getReachedUse();
456 DA.Addr->setReachedUse(Self);
459 // Get the first member of the code node.
460 NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
461 if (Code.FirstM == 0)
462 return NodeAddr<NodeBase*>();
463 return G.addr<NodeBase*>(Code.FirstM);
466 // Get the last member of the code node.
467 NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
468 if (Code.LastM == 0)
469 return NodeAddr<NodeBase*>();
470 return G.addr<NodeBase*>(Code.LastM);
473 // Add node NA at the end of the member list of the given code node.
474 void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
475 NodeAddr<NodeBase*> ML = getLastMember(G);
476 if (ML.Id != 0) {
477 ML.Addr->append(NA);
478 } else {
479 Code.FirstM = NA.Id;
480 NodeId Self = G.id(this);
481 NA.Addr->setNext(Self);
483 Code.LastM = NA.Id;
486 // Add node NA after member node MA in the given code node.
487 void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
488 const DataFlowGraph &G) {
489 MA.Addr->append(NA);
490 if (Code.LastM == MA.Id)
491 Code.LastM = NA.Id;
494 // Remove member node NA from the given code node.
495 void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
496 NodeAddr<NodeBase*> MA = getFirstMember(G);
497 assert(MA.Id != 0);
499 // Special handling if the member to remove is the first member.
500 if (MA.Id == NA.Id) {
501 if (Code.LastM == MA.Id) {
502 // If it is the only member, set both first and last to 0.
503 Code.FirstM = Code.LastM = 0;
504 } else {
505 // Otherwise, advance the first member.
506 Code.FirstM = MA.Addr->getNext();
508 return;
511 while (MA.Addr != this) {
512 NodeId MX = MA.Addr->getNext();
513 if (MX == NA.Id) {
514 MA.Addr->setNext(NA.Addr->getNext());
515 // If the member to remove happens to be the last one, update the
516 // LastM indicator.
517 if (Code.LastM == NA.Id)
518 Code.LastM = MA.Id;
519 return;
521 MA = G.addr<NodeBase*>(MX);
523 llvm_unreachable("No such member");
526 // Return the list of all members of the code node.
527 NodeList CodeNode::members(const DataFlowGraph &G) const {
528 static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
529 return members_if(True, G);
532 // Return the owner of the given instr node.
533 NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
534 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
536 while (NA.Addr != this) {
537 assert(NA.Addr->getType() == NodeAttrs::Code);
538 if (NA.Addr->getKind() == NodeAttrs::Block)
539 return NA;
540 NA = G.addr<NodeBase*>(NA.Addr->getNext());
542 llvm_unreachable("No owner in circular list");
545 // Add the phi node PA to the given block node.
546 void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
547 NodeAddr<NodeBase*> M = getFirstMember(G);
548 if (M.Id == 0) {
549 addMember(PA, G);
550 return;
553 assert(M.Addr->getType() == NodeAttrs::Code);
554 if (M.Addr->getKind() == NodeAttrs::Stmt) {
555 // If the first member of the block is a statement, insert the phi as
556 // the first member.
557 Code.FirstM = PA.Id;
558 PA.Addr->setNext(M.Id);
559 } else {
560 // If the first member is a phi, find the last phi, and append PA to it.
561 assert(M.Addr->getKind() == NodeAttrs::Phi);
562 NodeAddr<NodeBase*> MN = M;
563 do {
564 M = MN;
565 MN = G.addr<NodeBase*>(M.Addr->getNext());
566 assert(MN.Addr->getType() == NodeAttrs::Code);
567 } while (MN.Addr->getKind() == NodeAttrs::Phi);
569 // M is the last phi.
570 addMemberAfter(M, PA, G);
574 // Find the block node corresponding to the machine basic block BB in the
575 // given func node.
576 NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
577 const DataFlowGraph &G) const {
578 auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
579 return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
581 NodeList Ms = members_if(EqBB, G);
582 if (!Ms.empty())
583 return Ms[0];
584 return NodeAddr<BlockNode*>();
587 // Get the block node for the entry block in the given function.
588 NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
589 MachineBasicBlock *EntryB = &getCode()->front();
590 return findBlock(EntryB, G);
593 // Target operand information.
596 // For a given instruction, check if there are any bits of RR that can remain
597 // unchanged across this def.
598 bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
599 const {
600 return TII.isPredicated(In);
603 // Check if the definition of RR produces an unspecified value.
604 bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
605 const {
606 const MachineOperand &Op = In.getOperand(OpNum);
607 if (Op.isRegMask())
608 return true;
609 assert(Op.isReg());
610 if (In.isCall())
611 if (Op.isDef() && Op.isDead())
612 return true;
613 return false;
616 // Check if the given instruction specifically requires
617 bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
618 const {
619 if (In.isCall() || In.isReturn() || In.isInlineAsm())
620 return true;
621 // Check for a tail call.
622 if (In.isBranch())
623 for (const MachineOperand &O : In.operands())
624 if (O.isGlobal() || O.isSymbol())
625 return true;
627 const MCInstrDesc &D = In.getDesc();
628 if (!D.getImplicitDefs() && !D.getImplicitUses())
629 return false;
630 const MachineOperand &Op = In.getOperand(OpNum);
631 // If there is a sub-register, treat the operand as non-fixed. Currently,
632 // fixed registers are those that are listed in the descriptor as implicit
633 // uses or defs, and those lists do not allow sub-registers.
634 if (Op.getSubReg() != 0)
635 return false;
636 Register Reg = Op.getReg();
637 const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
638 : D.getImplicitUses();
639 if (!ImpR)
640 return false;
641 while (*ImpR)
642 if (*ImpR++ == Reg)
643 return true;
644 return false;
648 // The data flow graph construction.
651 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
652 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
653 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
654 : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
655 LiveIns(PRI) {
658 // The implementation of the definition stack.
659 // Each register reference has its own definition stack. In particular,
660 // for a register references "Reg" and "Reg:subreg" will each have their
661 // own definition stacks.
663 // Construct a stack iterator.
664 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
665 bool Top) : DS(S) {
666 if (!Top) {
667 // Initialize to bottom.
668 Pos = 0;
669 return;
671 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
672 Pos = DS.Stack.size();
673 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
674 Pos--;
677 // Return the size of the stack, including block delimiters.
678 unsigned DataFlowGraph::DefStack::size() const {
679 unsigned S = 0;
680 for (auto I = top(), E = bottom(); I != E; I.down())
681 S++;
682 return S;
685 // Remove the top entry from the stack. Remove all intervening delimiters
686 // so that after this, the stack is either empty, or the top of the stack
687 // is a non-delimiter.
688 void DataFlowGraph::DefStack::pop() {
689 assert(!empty());
690 unsigned P = nextDown(Stack.size());
691 Stack.resize(P);
694 // Push a delimiter for block node N on the stack.
695 void DataFlowGraph::DefStack::start_block(NodeId N) {
696 assert(N != 0);
697 Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
700 // Remove all nodes from the top of the stack, until the delimited for
701 // block node N is encountered. Remove the delimiter as well. In effect,
702 // this will remove from the stack all definitions from block N.
703 void DataFlowGraph::DefStack::clear_block(NodeId N) {
704 assert(N != 0);
705 unsigned P = Stack.size();
706 while (P > 0) {
707 bool Found = isDelimiter(Stack[P-1], N);
708 P--;
709 if (Found)
710 break;
712 // This will also remove the delimiter, if found.
713 Stack.resize(P);
716 // Move the stack iterator up by one.
717 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
718 // Get the next valid position after P (skipping all delimiters).
719 // The input position P does not have to point to a non-delimiter.
720 unsigned SS = Stack.size();
721 bool IsDelim;
722 assert(P < SS);
723 do {
724 P++;
725 IsDelim = isDelimiter(Stack[P-1]);
726 } while (P < SS && IsDelim);
727 assert(!IsDelim);
728 return P;
731 // Move the stack iterator down by one.
732 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
733 // Get the preceding valid position before P (skipping all delimiters).
734 // The input position P does not have to point to a non-delimiter.
735 assert(P > 0 && P <= Stack.size());
736 bool IsDelim = isDelimiter(Stack[P-1]);
737 do {
738 if (--P == 0)
739 break;
740 IsDelim = isDelimiter(Stack[P-1]);
741 } while (P > 0 && IsDelim);
742 assert(!IsDelim);
743 return P;
746 // Register information.
748 RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
749 RegisterSet LR;
750 const Function &F = MF.getFunction();
751 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
752 : nullptr;
753 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
754 if (RegisterId R = TLI.getExceptionPointerRegister(PF))
755 LR.insert(RegisterRef(R));
756 if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
757 LR.insert(RegisterRef(R));
758 return LR;
761 // Node management functions.
763 // Get the pointer to the node with the id N.
764 NodeBase *DataFlowGraph::ptr(NodeId N) const {
765 if (N == 0)
766 return nullptr;
767 return Memory.ptr(N);
770 // Get the id of the node at the address P.
771 NodeId DataFlowGraph::id(const NodeBase *P) const {
772 if (P == nullptr)
773 return 0;
774 return Memory.id(P);
777 // Allocate a new node and set the attributes to Attrs.
778 NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
779 NodeAddr<NodeBase*> P = Memory.New();
780 P.Addr->init();
781 P.Addr->setAttrs(Attrs);
782 return P;
785 // Make a copy of the given node B, except for the data-flow links, which
786 // are set to 0.
787 NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
788 NodeAddr<NodeBase*> NA = newNode(0);
789 memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
790 // Ref nodes need to have the data-flow links reset.
791 if (NA.Addr->getType() == NodeAttrs::Ref) {
792 NodeAddr<RefNode*> RA = NA;
793 RA.Addr->setReachingDef(0);
794 RA.Addr->setSibling(0);
795 if (NA.Addr->getKind() == NodeAttrs::Def) {
796 NodeAddr<DefNode*> DA = NA;
797 DA.Addr->setReachedDef(0);
798 DA.Addr->setReachedUse(0);
801 return NA;
804 // Allocation routines for specific node types/kinds.
806 NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
807 MachineOperand &Op, uint16_t Flags) {
808 NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
809 UA.Addr->setRegRef(&Op, *this);
810 return UA;
813 NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
814 RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
815 NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
816 assert(Flags & NodeAttrs::PhiRef);
817 PUA.Addr->setRegRef(RR, *this);
818 PUA.Addr->setPredecessor(PredB.Id);
819 return PUA;
822 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
823 MachineOperand &Op, uint16_t Flags) {
824 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
825 DA.Addr->setRegRef(&Op, *this);
826 return DA;
829 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
830 RegisterRef RR, uint16_t Flags) {
831 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
832 assert(Flags & NodeAttrs::PhiRef);
833 DA.Addr->setRegRef(RR, *this);
834 return DA;
837 NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
838 NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
839 Owner.Addr->addPhi(PA, *this);
840 return PA;
843 NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
844 MachineInstr *MI) {
845 NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
846 SA.Addr->setCode(MI);
847 Owner.Addr->addMember(SA, *this);
848 return SA;
851 NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
852 MachineBasicBlock *BB) {
853 NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
854 BA.Addr->setCode(BB);
855 Owner.Addr->addMember(BA, *this);
856 return BA;
859 NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
860 NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
861 FA.Addr->setCode(MF);
862 return FA;
865 // Build the data flow graph.
866 void DataFlowGraph::build(unsigned Options) {
867 reset();
868 Func = newFunc(&MF);
870 if (MF.empty())
871 return;
873 for (MachineBasicBlock &B : MF) {
874 NodeAddr<BlockNode*> BA = newBlock(Func, &B);
875 BlockNodes.insert(std::make_pair(&B, BA));
876 for (MachineInstr &I : B) {
877 if (I.isDebugInstr())
878 continue;
879 buildStmt(BA, I);
883 NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
884 NodeList Blocks = Func.Addr->members(*this);
886 // Collect information about block references.
887 RegisterSet AllRefs;
888 for (NodeAddr<BlockNode*> BA : Blocks)
889 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
890 for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
891 AllRefs.insert(RA.Addr->getRegRef(*this));
893 // Collect function live-ins and entry block live-ins.
894 MachineRegisterInfo &MRI = MF.getRegInfo();
895 MachineBasicBlock &EntryB = *EA.Addr->getCode();
896 assert(EntryB.pred_empty() && "Function entry block has predecessors");
897 for (std::pair<unsigned,unsigned> P : MRI.liveins())
898 LiveIns.insert(RegisterRef(P.first));
899 if (MRI.tracksLiveness()) {
900 for (auto I : EntryB.liveins())
901 LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
904 // Add function-entry phi nodes for the live-in registers.
905 //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
906 for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
907 RegisterRef RR = *I;
908 NodeAddr<PhiNode*> PA = newPhi(EA);
909 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
910 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
911 PA.Addr->addMember(DA, *this);
914 // Add phis for landing pads.
915 // Landing pads, unlike usual backs blocks, are not entered through
916 // branches in the program, or fall-throughs from other blocks. They
917 // are entered from the exception handling runtime and target's ABI
918 // may define certain registers as defined on entry to such a block.
919 RegisterSet EHRegs = getLandingPadLiveIns();
920 if (!EHRegs.empty()) {
921 for (NodeAddr<BlockNode*> BA : Blocks) {
922 const MachineBasicBlock &B = *BA.Addr->getCode();
923 if (!B.isEHPad())
924 continue;
926 // Prepare a list of NodeIds of the block's predecessors.
927 NodeList Preds;
928 for (MachineBasicBlock *PB : B.predecessors())
929 Preds.push_back(findBlock(PB));
931 // Build phi nodes for each live-in.
932 for (RegisterRef RR : EHRegs) {
933 NodeAddr<PhiNode*> PA = newPhi(BA);
934 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
935 // Add def:
936 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
937 PA.Addr->addMember(DA, *this);
938 // Add uses (no reaching defs for phi uses):
939 for (NodeAddr<BlockNode*> PBA : Preds) {
940 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
941 PA.Addr->addMember(PUA, *this);
947 // Build a map "PhiM" which will contain, for each block, the set
948 // of references that will require phi definitions in that block.
949 BlockRefsMap PhiM;
950 for (NodeAddr<BlockNode*> BA : Blocks)
951 recordDefsForDF(PhiM, BA);
952 for (NodeAddr<BlockNode*> BA : Blocks)
953 buildPhis(PhiM, AllRefs, BA);
955 // Link all the refs. This will recursively traverse the dominator tree.
956 DefStackMap DM;
957 linkBlockRefs(DM, EA);
959 // Finally, remove all unused phi nodes.
960 if (!(Options & BuildOptions::KeepDeadPhis))
961 removeUnusedPhis();
964 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
965 assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
966 Register::isPhysicalRegister(Reg));
967 assert(Reg != 0);
968 if (Sub != 0)
969 Reg = TRI.getSubReg(Reg, Sub);
970 return RegisterRef(Reg);
973 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
974 assert(Op.isReg() || Op.isRegMask());
975 if (Op.isReg())
976 return makeRegRef(Op.getReg(), Op.getSubReg());
977 return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
980 RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
981 if (AR.Reg == BR.Reg) {
982 LaneBitmask M = AR.Mask & BR.Mask;
983 return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
985 #ifndef NDEBUG
986 // RegisterRef NAR = PRI.normalize(AR);
987 // RegisterRef NBR = PRI.normalize(BR);
988 // assert(NAR.Reg != NBR.Reg);
989 #endif
990 // This isn't strictly correct, because the overlap may happen in the
991 // part masked out.
992 if (PRI.alias(AR, BR))
993 return AR;
994 return RegisterRef();
997 // For each stack in the map DefM, push the delimiter for block B on it.
998 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
999 // Push block delimiters.
1000 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1001 I->second.start_block(B);
1004 // Remove all definitions coming from block B from each stack in DefM.
1005 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
1006 // Pop all defs from this block from the definition stack. Defs that were
1007 // added to the map during the traversal of instructions will not have a
1008 // delimiter, but for those, the whole stack will be emptied.
1009 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1010 I->second.clear_block(B);
1012 // Finally, remove empty stacks from the map.
1013 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
1014 NextI = std::next(I);
1015 // This preserves the validity of iterators other than I.
1016 if (I->second.empty())
1017 DefM.erase(I);
1021 // Push all definitions from the instruction node IA to an appropriate
1022 // stack in DefM.
1023 void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1024 pushClobbers(IA, DefM);
1025 pushDefs(IA, DefM);
1028 // Push all definitions from the instruction node IA to an appropriate
1029 // stack in DefM.
1030 void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1031 NodeSet Visited;
1032 std::set<RegisterId> Defined;
1034 // The important objectives of this function are:
1035 // - to be able to handle instructions both while the graph is being
1036 // constructed, and after the graph has been constructed, and
1037 // - maintain proper ordering of definitions on the stack for each
1038 // register reference:
1039 // - if there are two or more related defs in IA (i.e. coming from
1040 // the same machine operand), then only push one def on the stack,
1041 // - if there are multiple unrelated defs of non-overlapping
1042 // subregisters of S, then the stack for S will have both (in an
1043 // unspecified order), but the order does not matter from the data-
1044 // -flow perspective.
1046 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1047 if (Visited.count(DA.Id))
1048 continue;
1049 if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1050 continue;
1052 NodeList Rel = getRelatedRefs(IA, DA);
1053 NodeAddr<DefNode*> PDA = Rel.front();
1054 RegisterRef RR = PDA.Addr->getRegRef(*this);
1056 // Push the definition on the stack for the register and all aliases.
1057 // The def stack traversal in linkNodeUp will check the exact aliasing.
1058 DefM[RR.Reg].push(DA);
1059 Defined.insert(RR.Reg);
1060 for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1061 // Check that we don't push the same def twice.
1062 assert(A != RR.Reg);
1063 if (!Defined.count(A))
1064 DefM[A].push(DA);
1066 // Mark all the related defs as visited.
1067 for (NodeAddr<NodeBase*> T : Rel)
1068 Visited.insert(T.Id);
1072 // Push all definitions from the instruction node IA to an appropriate
1073 // stack in DefM.
1074 void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1075 NodeSet Visited;
1076 #ifndef NDEBUG
1077 std::set<RegisterId> Defined;
1078 #endif
1080 // The important objectives of this function are:
1081 // - to be able to handle instructions both while the graph is being
1082 // constructed, and after the graph has been constructed, and
1083 // - maintain proper ordering of definitions on the stack for each
1084 // register reference:
1085 // - if there are two or more related defs in IA (i.e. coming from
1086 // the same machine operand), then only push one def on the stack,
1087 // - if there are multiple unrelated defs of non-overlapping
1088 // subregisters of S, then the stack for S will have both (in an
1089 // unspecified order), but the order does not matter from the data-
1090 // -flow perspective.
1092 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1093 if (Visited.count(DA.Id))
1094 continue;
1095 if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1096 continue;
1098 NodeList Rel = getRelatedRefs(IA, DA);
1099 NodeAddr<DefNode*> PDA = Rel.front();
1100 RegisterRef RR = PDA.Addr->getRegRef(*this);
1101 #ifndef NDEBUG
1102 // Assert if the register is defined in two or more unrelated defs.
1103 // This could happen if there are two or more def operands defining it.
1104 if (!Defined.insert(RR.Reg).second) {
1105 MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
1106 dbgs() << "Multiple definitions of register: "
1107 << Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in "
1108 << printMBBReference(*MI->getParent()) << '\n';
1109 llvm_unreachable(nullptr);
1111 #endif
1112 // Push the definition on the stack for the register and all aliases.
1113 // The def stack traversal in linkNodeUp will check the exact aliasing.
1114 DefM[RR.Reg].push(DA);
1115 for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1116 // Check that we don't push the same def twice.
1117 assert(A != RR.Reg);
1118 DefM[A].push(DA);
1120 // Mark all the related defs as visited.
1121 for (NodeAddr<NodeBase*> T : Rel)
1122 Visited.insert(T.Id);
1126 // Return the list of all reference nodes related to RA, including RA itself.
1127 // See "getNextRelated" for the meaning of a "related reference".
1128 NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
1129 NodeAddr<RefNode*> RA) const {
1130 assert(IA.Id != 0 && RA.Id != 0);
1132 NodeList Refs;
1133 NodeId Start = RA.Id;
1134 do {
1135 Refs.push_back(RA);
1136 RA = getNextRelated(IA, RA);
1137 } while (RA.Id != 0 && RA.Id != Start);
1138 return Refs;
1141 // Clear all information in the graph.
1142 void DataFlowGraph::reset() {
1143 Memory.clear();
1144 BlockNodes.clear();
1145 Func = NodeAddr<FuncNode*>();
1148 // Return the next reference node in the instruction node IA that is related
1149 // to RA. Conceptually, two reference nodes are related if they refer to the
1150 // same instance of a register access, but differ in flags or other minor
1151 // characteristics. Specific examples of related nodes are shadow reference
1152 // nodes.
1153 // Return the equivalent of nullptr if there are no more related references.
1154 NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
1155 NodeAddr<RefNode*> RA) const {
1156 assert(IA.Id != 0 && RA.Id != 0);
1158 auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
1159 if (TA.Addr->getKind() != RA.Addr->getKind())
1160 return false;
1161 if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
1162 return false;
1163 return true;
1165 auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1166 return Related(TA) &&
1167 &RA.Addr->getOp() == &TA.Addr->getOp();
1169 auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1170 if (!Related(TA))
1171 return false;
1172 if (TA.Addr->getKind() != NodeAttrs::Use)
1173 return true;
1174 // For phi uses, compare predecessor blocks.
1175 const NodeAddr<const PhiUseNode*> TUA = TA;
1176 const NodeAddr<const PhiUseNode*> RUA = RA;
1177 return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1180 RegisterRef RR = RA.Addr->getRegRef(*this);
1181 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1182 return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1183 return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1186 // Find the next node related to RA in IA that satisfies condition P.
1187 // If such a node was found, return a pair where the second element is the
1188 // located node. If such a node does not exist, return a pair where the
1189 // first element is the element after which such a node should be inserted,
1190 // and the second element is a null-address.
1191 template <typename Predicate>
1192 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
1193 DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
1194 Predicate P) const {
1195 assert(IA.Id != 0 && RA.Id != 0);
1197 NodeAddr<RefNode*> NA;
1198 NodeId Start = RA.Id;
1199 while (true) {
1200 NA = getNextRelated(IA, RA);
1201 if (NA.Id == 0 || NA.Id == Start)
1202 break;
1203 if (P(NA))
1204 break;
1205 RA = NA;
1208 if (NA.Id != 0 && NA.Id != Start)
1209 return std::make_pair(RA, NA);
1210 return std::make_pair(RA, NodeAddr<RefNode*>());
1213 // Get the next shadow node in IA corresponding to RA, and optionally create
1214 // such a node if it does not exist.
1215 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1216 NodeAddr<RefNode*> RA, bool Create) {
1217 assert(IA.Id != 0 && RA.Id != 0);
1219 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1220 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1221 return TA.Addr->getFlags() == Flags;
1223 auto Loc = locateNextRef(IA, RA, IsShadow);
1224 if (Loc.second.Id != 0 || !Create)
1225 return Loc.second;
1227 // Create a copy of RA and mark is as shadow.
1228 NodeAddr<RefNode*> NA = cloneNode(RA);
1229 NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1230 IA.Addr->addMemberAfter(Loc.first, NA, *this);
1231 return NA;
1234 // Get the next shadow node in IA corresponding to RA. Return null-address
1235 // if such a node does not exist.
1236 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1237 NodeAddr<RefNode*> RA) const {
1238 assert(IA.Id != 0 && RA.Id != 0);
1239 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1240 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1241 return TA.Addr->getFlags() == Flags;
1243 return locateNextRef(IA, RA, IsShadow).second;
1246 // Create a new statement node in the block node BA that corresponds to
1247 // the machine instruction MI.
1248 void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
1249 NodeAddr<StmtNode*> SA = newStmt(BA, &In);
1251 auto isCall = [] (const MachineInstr &In) -> bool {
1252 if (In.isCall())
1253 return true;
1254 // Is tail call?
1255 if (In.isBranch()) {
1256 for (const MachineOperand &Op : In.operands())
1257 if (Op.isGlobal() || Op.isSymbol())
1258 return true;
1259 // Assume indirect branches are calls. This is for the purpose of
1260 // keeping implicit operands, and so it won't hurt on intra-function
1261 // indirect branches.
1262 if (In.isIndirectBranch())
1263 return true;
1265 return false;
1268 auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
1269 // This instruction defines DR. Check if there is a use operand that
1270 // would make DR live on entry to the instruction.
1271 for (const MachineOperand &Op : In.operands()) {
1272 if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
1273 continue;
1274 RegisterRef UR = makeRegRef(Op);
1275 if (PRI.alias(DR, UR))
1276 return false;
1278 return true;
1281 bool IsCall = isCall(In);
1282 unsigned NumOps = In.getNumOperands();
1284 // Avoid duplicate implicit defs. This will not detect cases of implicit
1285 // defs that define registers that overlap, but it is not clear how to
1286 // interpret that in the absence of explicit defs. Overlapping explicit
1287 // defs are likely illegal already.
1288 BitVector DoneDefs(TRI.getNumRegs());
1289 // Process explicit defs first.
1290 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1291 MachineOperand &Op = In.getOperand(OpN);
1292 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1293 continue;
1294 Register R = Op.getReg();
1295 if (!R || !Register::isPhysicalRegister(R))
1296 continue;
1297 uint16_t Flags = NodeAttrs::None;
1298 if (TOI.isPreserving(In, OpN)) {
1299 Flags |= NodeAttrs::Preserving;
1300 // If the def is preserving, check if it is also undefined.
1301 if (isDefUndef(In, makeRegRef(Op)))
1302 Flags |= NodeAttrs::Undef;
1304 if (TOI.isClobbering(In, OpN))
1305 Flags |= NodeAttrs::Clobbering;
1306 if (TOI.isFixedReg(In, OpN))
1307 Flags |= NodeAttrs::Fixed;
1308 if (IsCall && Op.isDead())
1309 Flags |= NodeAttrs::Dead;
1310 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1311 SA.Addr->addMember(DA, *this);
1312 assert(!DoneDefs.test(R));
1313 DoneDefs.set(R);
1316 // Process reg-masks (as clobbers).
1317 BitVector DoneClobbers(TRI.getNumRegs());
1318 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1319 MachineOperand &Op = In.getOperand(OpN);
1320 if (!Op.isRegMask())
1321 continue;
1322 uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
1323 NodeAttrs::Dead;
1324 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1325 SA.Addr->addMember(DA, *this);
1326 // Record all clobbered registers in DoneDefs.
1327 const uint32_t *RM = Op.getRegMask();
1328 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
1329 if (!(RM[i/32] & (1u << (i%32))))
1330 DoneClobbers.set(i);
1333 // Process implicit defs, skipping those that have already been added
1334 // as explicit.
1335 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1336 MachineOperand &Op = In.getOperand(OpN);
1337 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1338 continue;
1339 Register R = Op.getReg();
1340 if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R))
1341 continue;
1342 RegisterRef RR = makeRegRef(Op);
1343 uint16_t Flags = NodeAttrs::None;
1344 if (TOI.isPreserving(In, OpN)) {
1345 Flags |= NodeAttrs::Preserving;
1346 // If the def is preserving, check if it is also undefined.
1347 if (isDefUndef(In, RR))
1348 Flags |= NodeAttrs::Undef;
1350 if (TOI.isClobbering(In, OpN))
1351 Flags |= NodeAttrs::Clobbering;
1352 if (TOI.isFixedReg(In, OpN))
1353 Flags |= NodeAttrs::Fixed;
1354 if (IsCall && Op.isDead()) {
1355 if (DoneClobbers.test(R))
1356 continue;
1357 Flags |= NodeAttrs::Dead;
1359 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1360 SA.Addr->addMember(DA, *this);
1361 DoneDefs.set(R);
1364 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1365 MachineOperand &Op = In.getOperand(OpN);
1366 if (!Op.isReg() || !Op.isUse())
1367 continue;
1368 Register R = Op.getReg();
1369 if (!R || !Register::isPhysicalRegister(R))
1370 continue;
1371 uint16_t Flags = NodeAttrs::None;
1372 if (Op.isUndef())
1373 Flags |= NodeAttrs::Undef;
1374 if (TOI.isFixedReg(In, OpN))
1375 Flags |= NodeAttrs::Fixed;
1376 NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
1377 SA.Addr->addMember(UA, *this);
1381 // Scan all defs in the block node BA and record in PhiM the locations of
1382 // phi nodes corresponding to these defs.
1383 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
1384 NodeAddr<BlockNode*> BA) {
1385 // Check all defs from block BA and record them in each block in BA's
1386 // iterated dominance frontier. This information will later be used to
1387 // create phi nodes.
1388 MachineBasicBlock *BB = BA.Addr->getCode();
1389 assert(BB);
1390 auto DFLoc = MDF.find(BB);
1391 if (DFLoc == MDF.end() || DFLoc->second.empty())
1392 return;
1394 // Traverse all instructions in the block and collect the set of all
1395 // defined references. For each reference there will be a phi created
1396 // in the block's iterated dominance frontier.
1397 // This is done to make sure that each defined reference gets only one
1398 // phi node, even if it is defined multiple times.
1399 RegisterSet Defs;
1400 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
1401 for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
1402 Defs.insert(RA.Addr->getRegRef(*this));
1404 // Calculate the iterated dominance frontier of BB.
1405 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1406 SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
1407 for (unsigned i = 0; i < IDF.size(); ++i) {
1408 auto F = MDF.find(IDF[i]);
1409 if (F != MDF.end())
1410 IDF.insert(F->second.begin(), F->second.end());
1413 // Finally, add the set of defs to each block in the iterated dominance
1414 // frontier.
1415 for (auto DB : IDF) {
1416 NodeAddr<BlockNode*> DBA = findBlock(DB);
1417 PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
1421 // Given the locations of phi nodes in the map PhiM, create the phi nodes
1422 // that are located in the block node BA.
1423 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
1424 NodeAddr<BlockNode*> BA) {
1425 // Check if this blocks has any DF defs, i.e. if there are any defs
1426 // that this block is in the iterated dominance frontier of.
1427 auto HasDF = PhiM.find(BA.Id);
1428 if (HasDF == PhiM.end() || HasDF->second.empty())
1429 return;
1431 // First, remove all R in Refs in such that there exists T in Refs
1432 // such that T covers R. In other words, only leave those refs that
1433 // are not covered by another ref (i.e. maximal with respect to covering).
1435 auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
1436 for (RegisterRef I : RRs)
1437 if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
1438 RR = I;
1439 return RR;
1442 RegisterSet MaxDF;
1443 for (RegisterRef I : HasDF->second)
1444 MaxDF.insert(MaxCoverIn(I, HasDF->second));
1446 std::vector<RegisterRef> MaxRefs;
1447 for (RegisterRef I : MaxDF)
1448 MaxRefs.push_back(MaxCoverIn(I, AllRefs));
1450 // Now, for each R in MaxRefs, get the alias closure of R. If the closure
1451 // only has R in it, create a phi a def for R. Otherwise, create a phi,
1452 // and add a def for each S in the closure.
1454 // Sort the refs so that the phis will be created in a deterministic order.
1455 llvm::sort(MaxRefs);
1456 // Remove duplicates.
1457 auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
1458 MaxRefs.erase(NewEnd, MaxRefs.end());
1460 auto Aliased = [this,&MaxRefs](RegisterRef RR,
1461 std::vector<unsigned> &Closure) -> bool {
1462 for (unsigned I : Closure)
1463 if (PRI.alias(RR, MaxRefs[I]))
1464 return true;
1465 return false;
1468 // Prepare a list of NodeIds of the block's predecessors.
1469 NodeList Preds;
1470 const MachineBasicBlock *MBB = BA.Addr->getCode();
1471 for (MachineBasicBlock *PB : MBB->predecessors())
1472 Preds.push_back(findBlock(PB));
1474 while (!MaxRefs.empty()) {
1475 // Put the first element in the closure, and then add all subsequent
1476 // elements from MaxRefs to it, if they alias at least one element
1477 // already in the closure.
1478 // ClosureIdx: vector of indices in MaxRefs of members of the closure.
1479 std::vector<unsigned> ClosureIdx = { 0 };
1480 for (unsigned i = 1; i != MaxRefs.size(); ++i)
1481 if (Aliased(MaxRefs[i], ClosureIdx))
1482 ClosureIdx.push_back(i);
1484 // Build a phi for the closure.
1485 unsigned CS = ClosureIdx.size();
1486 NodeAddr<PhiNode*> PA = newPhi(BA);
1488 // Add defs.
1489 for (unsigned X = 0; X != CS; ++X) {
1490 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1491 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1492 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1493 PA.Addr->addMember(DA, *this);
1495 // Add phi uses.
1496 for (NodeAddr<BlockNode*> PBA : Preds) {
1497 for (unsigned X = 0; X != CS; ++X) {
1498 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1499 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
1500 PA.Addr->addMember(PUA, *this);
1504 // Erase from MaxRefs all elements in the closure.
1505 auto Begin = MaxRefs.begin();
1506 for (unsigned i = ClosureIdx.size(); i != 0; --i)
1507 MaxRefs.erase(Begin + ClosureIdx[i-1]);
1511 // Remove any unneeded phi nodes that were created during the build process.
1512 void DataFlowGraph::removeUnusedPhis() {
1513 // This will remove unused phis, i.e. phis where each def does not reach
1514 // any uses or other defs. This will not detect or remove circular phi
1515 // chains that are otherwise dead. Unused/dead phis are created during
1516 // the build process and this function is intended to remove these cases
1517 // that are easily determinable to be unnecessary.
1519 SetVector<NodeId> PhiQ;
1520 for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
1521 for (auto P : BA.Addr->members_if(IsPhi, *this))
1522 PhiQ.insert(P.Id);
1525 static auto HasUsedDef = [](NodeList &Ms) -> bool {
1526 for (NodeAddr<NodeBase*> M : Ms) {
1527 if (M.Addr->getKind() != NodeAttrs::Def)
1528 continue;
1529 NodeAddr<DefNode*> DA = M;
1530 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1531 return true;
1533 return false;
1536 // Any phi, if it is removed, may affect other phis (make them dead).
1537 // For each removed phi, collect the potentially affected phis and add
1538 // them back to the queue.
1539 while (!PhiQ.empty()) {
1540 auto PA = addr<PhiNode*>(PhiQ[0]);
1541 PhiQ.remove(PA.Id);
1542 NodeList Refs = PA.Addr->members(*this);
1543 if (HasUsedDef(Refs))
1544 continue;
1545 for (NodeAddr<RefNode*> RA : Refs) {
1546 if (NodeId RD = RA.Addr->getReachingDef()) {
1547 auto RDA = addr<DefNode*>(RD);
1548 NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
1549 if (IsPhi(OA))
1550 PhiQ.insert(OA.Id);
1552 if (RA.Addr->isDef())
1553 unlinkDef(RA, true);
1554 else
1555 unlinkUse(RA, true);
1557 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
1558 BA.Addr->removeMember(PA, *this);
1562 // For a given reference node TA in an instruction node IA, connect the
1563 // reaching def of TA to the appropriate def node. Create any shadow nodes
1564 // as appropriate.
1565 template <typename T>
1566 void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
1567 DefStack &DS) {
1568 if (DS.empty())
1569 return;
1570 RegisterRef RR = TA.Addr->getRegRef(*this);
1571 NodeAddr<T> TAP;
1573 // References from the def stack that have been examined so far.
1574 RegisterAggr Defs(PRI);
1576 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1577 RegisterRef QR = I->Addr->getRegRef(*this);
1579 // Skip all defs that are aliased to any of the defs that we have already
1580 // seen. If this completes a cover of RR, stop the stack traversal.
1581 bool Alias = Defs.hasAliasOf(QR);
1582 bool Cover = Defs.insert(QR).hasCoverOf(RR);
1583 if (Alias) {
1584 if (Cover)
1585 break;
1586 continue;
1589 // The reaching def.
1590 NodeAddr<DefNode*> RDA = *I;
1592 // Pick the reached node.
1593 if (TAP.Id == 0) {
1594 TAP = TA;
1595 } else {
1596 // Mark the existing ref as "shadow" and create a new shadow.
1597 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1598 TAP = getNextShadow(IA, TAP, true);
1601 // Create the link.
1602 TAP.Addr->linkToDef(TAP.Id, RDA);
1604 if (Cover)
1605 break;
1609 // Create data-flow links for all reference nodes in the statement node SA.
1610 template <typename Predicate>
1611 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
1612 Predicate P) {
1613 #ifndef NDEBUG
1614 RegisterSet Defs;
1615 #endif
1617 // Link all nodes (upwards in the data-flow) with their reaching defs.
1618 for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
1619 uint16_t Kind = RA.Addr->getKind();
1620 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1621 RegisterRef RR = RA.Addr->getRegRef(*this);
1622 #ifndef NDEBUG
1623 // Do not expect multiple defs of the same reference.
1624 assert(Kind != NodeAttrs::Def || !Defs.count(RR));
1625 Defs.insert(RR);
1626 #endif
1628 auto F = DefM.find(RR.Reg);
1629 if (F == DefM.end())
1630 continue;
1631 DefStack &DS = F->second;
1632 if (Kind == NodeAttrs::Use)
1633 linkRefUp<UseNode*>(SA, RA, DS);
1634 else if (Kind == NodeAttrs::Def)
1635 linkRefUp<DefNode*>(SA, RA, DS);
1636 else
1637 llvm_unreachable("Unexpected node in instruction");
1641 // Create data-flow links for all instructions in the block node BA. This
1642 // will include updating any phi nodes in BA.
1643 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
1644 // Push block delimiters.
1645 markBlock(BA.Id, DefM);
1647 auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1648 return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1650 auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1651 return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1654 assert(BA.Addr && "block node address is needed to create a data-flow link");
1655 // For each non-phi instruction in the block, link all the defs and uses
1656 // to their reaching defs. For any member of the block (including phis),
1657 // push the defs on the corresponding stacks.
1658 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
1659 // Ignore phi nodes here. They will be linked part by part from the
1660 // predecessors.
1661 if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1662 linkStmtRefs(DefM, IA, IsUse);
1663 linkStmtRefs(DefM, IA, IsClobber);
1666 // Push the definitions on the stack.
1667 pushClobbers(IA, DefM);
1669 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1670 linkStmtRefs(DefM, IA, IsNoClobber);
1672 pushDefs(IA, DefM);
1675 // Recursively process all children in the dominator tree.
1676 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1677 for (auto I : *N) {
1678 MachineBasicBlock *SB = I->getBlock();
1679 NodeAddr<BlockNode*> SBA = findBlock(SB);
1680 linkBlockRefs(DefM, SBA);
1683 // Link the phi uses from the successor blocks.
1684 auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
1685 if (NA.Addr->getKind() != NodeAttrs::Use)
1686 return false;
1687 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1688 NodeAddr<PhiUseNode*> PUA = NA;
1689 return PUA.Addr->getPredecessor() == BA.Id;
1692 RegisterSet EHLiveIns = getLandingPadLiveIns();
1693 MachineBasicBlock *MBB = BA.Addr->getCode();
1695 for (MachineBasicBlock *SB : MBB->successors()) {
1696 bool IsEHPad = SB->isEHPad();
1697 NodeAddr<BlockNode*> SBA = findBlock(SB);
1698 for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
1699 // Do not link phi uses for landing pad live-ins.
1700 if (IsEHPad) {
1701 // Find what register this phi is for.
1702 NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
1703 assert(RA.Id != 0);
1704 if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
1705 continue;
1707 // Go over each phi use associated with MBB, and link it.
1708 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1709 NodeAddr<PhiUseNode*> PUA = U;
1710 RegisterRef RR = PUA.Addr->getRegRef(*this);
1711 linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
1716 // Pop all defs from this block from the definition stacks.
1717 releaseBlock(BA.Id, DefM);
1720 // Remove the use node UA from any data-flow and structural links.
1721 void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
1722 NodeId RD = UA.Addr->getReachingDef();
1723 NodeId Sib = UA.Addr->getSibling();
1725 if (RD == 0) {
1726 assert(Sib == 0);
1727 return;
1730 auto RDA = addr<DefNode*>(RD);
1731 auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
1732 if (TA.Id == UA.Id) {
1733 RDA.Addr->setReachedUse(Sib);
1734 return;
1737 while (TA.Id != 0) {
1738 NodeId S = TA.Addr->getSibling();
1739 if (S == UA.Id) {
1740 TA.Addr->setSibling(UA.Addr->getSibling());
1741 return;
1743 TA = addr<UseNode*>(S);
1747 // Remove the def node DA from any data-flow and structural links.
1748 void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
1750 // RD
1751 // | reached
1752 // | def
1753 // :
1754 // .
1755 // +----+
1756 // ... -- | DA | -- ... -- 0 : sibling chain of DA
1757 // +----+
1758 // | | reached
1759 // | : def
1760 // | .
1761 // | ... : Siblings (defs)
1762 // |
1763 // : reached
1764 // . use
1765 // ... : sibling chain of reached uses
1767 NodeId RD = DA.Addr->getReachingDef();
1769 // Visit all siblings of the reached def and reset their reaching defs.
1770 // Also, defs reached by DA are now "promoted" to being reached by RD,
1771 // so all of them will need to be spliced into the sibling chain where
1772 // DA belongs.
1773 auto getAllNodes = [this] (NodeId N) -> NodeList {
1774 NodeList Res;
1775 while (N) {
1776 auto RA = addr<RefNode*>(N);
1777 // Keep the nodes in the exact sibling order.
1778 Res.push_back(RA);
1779 N = RA.Addr->getSibling();
1781 return Res;
1783 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1784 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1786 if (RD == 0) {
1787 for (NodeAddr<RefNode*> I : ReachedDefs)
1788 I.Addr->setSibling(0);
1789 for (NodeAddr<RefNode*> I : ReachedUses)
1790 I.Addr->setSibling(0);
1792 for (NodeAddr<DefNode*> I : ReachedDefs)
1793 I.Addr->setReachingDef(RD);
1794 for (NodeAddr<UseNode*> I : ReachedUses)
1795 I.Addr->setReachingDef(RD);
1797 NodeId Sib = DA.Addr->getSibling();
1798 if (RD == 0) {
1799 assert(Sib == 0);
1800 return;
1803 // Update the reaching def node and remove DA from the sibling list.
1804 auto RDA = addr<DefNode*>(RD);
1805 auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
1806 if (TA.Id == DA.Id) {
1807 // If DA is the first reached def, just update the RD's reached def
1808 // to the DA's sibling.
1809 RDA.Addr->setReachedDef(Sib);
1810 } else {
1811 // Otherwise, traverse the sibling list of the reached defs and remove
1812 // DA from it.
1813 while (TA.Id != 0) {
1814 NodeId S = TA.Addr->getSibling();
1815 if (S == DA.Id) {
1816 TA.Addr->setSibling(Sib);
1817 break;
1819 TA = addr<DefNode*>(S);
1823 // Splice the DA's reached defs into the RDA's reached def chain.
1824 if (!ReachedDefs.empty()) {
1825 auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
1826 Last.Addr->setSibling(RDA.Addr->getReachedDef());
1827 RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1829 // Splice the DA's reached uses into the RDA's reached use chain.
1830 if (!ReachedUses.empty()) {
1831 auto Last = NodeAddr<UseNode*>(ReachedUses.back());
1832 Last.Addr->setSibling(RDA.Addr->getReachedUse());
1833 RDA.Addr->setReachedUse(ReachedUses.front().Id);