[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / Hexagon / RDFLiveness.cpp
blob7d7b89462ff9d746eb8d1caeafb5d855da8ac72e
1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Computation of the liveness information from the data-flow graph.
11 // The main functionality of this code is to compute block live-in
12 // information. With the live-in information in place, the placement
13 // of kill flags can also be recalculated.
15 // The block live-in calculation is based on the ideas from the following
16 // publication:
18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20 // ACM Transactions on Architecture and Code Optimization, Association for
21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22 // and Embedded Architectures and Compilers", 8 (4),
23 // <10.1145/2086696.2086706>. <hal-00647369>
25 #include "RDFLiveness.h"
26 #include "RDFGraph.h"
27 #include "RDFRegisters.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineDominanceFrontier.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/MC/LaneBitmask.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <map>
48 #include <utility>
49 #include <vector>
51 using namespace llvm;
52 using namespace rdf;
54 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
55 cl::Hidden, cl::desc("Maximum recursion level"));
57 namespace llvm {
58 namespace rdf {
60 raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
61 OS << '{';
62 for (auto &I : P.Obj) {
63 OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
64 for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
65 OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
66 if (++J != E)
67 OS << ',';
69 OS << '}';
71 OS << " }";
72 return OS;
75 } // end namespace rdf
76 } // end namespace llvm
78 // The order in the returned sequence is the order of reaching defs in the
79 // upward traversal: the first def is the closest to the given reference RefA,
80 // the next one is further up, and so on.
81 // The list ends at a reaching phi def, or when the reference from RefA is
82 // covered by the defs in the list (see FullChain).
83 // This function provides two modes of operation:
84 // (1) Returning the sequence of reaching defs for a particular reference
85 // node. This sequence will terminate at the first phi node [1].
86 // (2) Returning a partial sequence of reaching defs, where the final goal
87 // is to traverse past phi nodes to the actual defs arising from the code
88 // itself.
89 // In mode (2), the register reference for which the search was started
90 // may be different from the reference node RefA, for which this call was
91 // made, hence the argument RefRR, which holds the original register.
92 // Also, some definitions may have already been encountered in a previous
93 // call that will influence register covering. The register references
94 // already defined are passed in through DefRRs.
95 // In mode (1), the "continuation" considerations do not apply, and the
96 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
98 // [1] It is possible for multiple phi nodes to be included in the returned
99 // sequence:
100 // SubA = phi ...
101 // SubB = phi ...
102 // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
103 // However, these phi nodes are independent from one another in terms of
104 // the data-flow.
106 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
107 NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
108 const RegisterAggr &DefRRs) {
109 NodeList RDefs; // Return value.
110 SetVector<NodeId> DefQ;
111 SetVector<NodeId> Owners;
113 // Dead defs will be treated as if they were live, since they are actually
114 // on the data-flow path. They cannot be ignored because even though they
115 // do not generate meaningful values, they still modify registers.
117 // If the reference is undefined, there is nothing to do.
118 if (RefA.Addr->getFlags() & NodeAttrs::Undef)
119 return RDefs;
121 // The initial queue should not have reaching defs for shadows. The
122 // whole point of a shadow is that it will have a reaching def that
123 // is not aliased to the reaching defs of the related shadows.
124 NodeId Start = RefA.Id;
125 auto SNA = DFG.addr<RefNode*>(Start);
126 if (NodeId RD = SNA.Addr->getReachingDef())
127 DefQ.insert(RD);
128 if (TopShadows) {
129 for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
130 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
131 DefQ.insert(RD);
134 // Collect all the reaching defs, going up until a phi node is encountered,
135 // or there are no more reaching defs. From this set, the actual set of
136 // reaching defs will be selected.
137 // The traversal upwards must go on until a covering def is encountered.
138 // It is possible that a collection of non-covering (individually) defs
139 // will be sufficient, but keep going until a covering one is found.
140 for (unsigned i = 0; i < DefQ.size(); ++i) {
141 auto TA = DFG.addr<DefNode*>(DefQ[i]);
142 if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
143 continue;
144 // Stop at the covering/overwriting def of the initial register reference.
145 RegisterRef RR = TA.Addr->getRegRef(DFG);
146 if (!DFG.IsPreservingDef(TA))
147 if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
148 continue;
149 // Get the next level of reaching defs. This will include multiple
150 // reaching defs for shadows.
151 for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
152 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
153 DefQ.insert(RD);
156 // Remove all non-phi defs that are not aliased to RefRR, and collect
157 // the owners of the remaining defs.
158 SetVector<NodeId> Defs;
159 for (NodeId N : DefQ) {
160 auto TA = DFG.addr<DefNode*>(N);
161 bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
162 if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
163 continue;
164 Defs.insert(TA.Id);
165 Owners.insert(TA.Addr->getOwner(DFG).Id);
168 // Return the MachineBasicBlock containing a given instruction.
169 auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
170 if (IA.Addr->getKind() == NodeAttrs::Stmt)
171 return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
172 assert(IA.Addr->getKind() == NodeAttrs::Phi);
173 NodeAddr<PhiNode*> PA = IA;
174 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
175 return BA.Addr->getCode();
177 // Less(A,B) iff instruction A is further down in the dominator tree than B.
178 auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
179 if (A == B)
180 return false;
181 auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
182 MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
183 if (BA != BB)
184 return MDT.dominates(BB, BA);
185 // They are in the same block.
186 bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
187 bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
188 if (StmtA) {
189 if (!StmtB) // OB is a phi and phis dominate statements.
190 return true;
191 MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
192 MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
193 // The order must be linear, so tie-break such equalities.
194 if (CA == CB)
195 return A < B;
196 return MDT.dominates(CB, CA);
197 } else {
198 // OA is a phi.
199 if (StmtB)
200 return false;
201 // Both are phis. There is no ordering between phis (in terms of
202 // the data-flow), so tie-break this via node id comparison.
203 return A < B;
207 std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
208 llvm::sort(Tmp, Less);
210 // The vector is a list of instructions, so that defs coming from
211 // the same instruction don't need to be artificially ordered.
212 // Then, when computing the initial segment, and iterating over an
213 // instruction, pick the defs that contribute to the covering (i.e. is
214 // not covered by previously added defs). Check the defs individually,
215 // i.e. first check each def if is covered or not (without adding them
216 // to the tracking set), and then add all the selected ones.
218 // The reason for this is this example:
219 // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
220 // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be
221 // covered if we added A first, and A would be covered
222 // if we added B first.
224 RegisterAggr RRs(DefRRs);
226 auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
227 return TA.Addr->getKind() == NodeAttrs::Def &&
228 Defs.count(TA.Id);
230 for (NodeId T : Tmp) {
231 if (!FullChain && RRs.hasCoverOf(RefRR))
232 break;
233 auto TA = DFG.addr<InstrNode*>(T);
234 bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
235 NodeList Ds;
236 for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
237 RegisterRef QR = DA.Addr->getRegRef(DFG);
238 // Add phi defs even if they are covered by subsequent defs. This is
239 // for cases where the reached use is not covered by any of the defs
240 // encountered so far: the phi def is needed to expose the liveness
241 // of that use to the entry of the block.
242 // Example:
243 // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2.
244 // d2<R3>(d1,,u3), ...
245 // ..., u3<D1>(d2) This use needs to be live on entry.
246 if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
247 Ds.push_back(DA);
249 RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
250 for (NodeAddr<DefNode*> DA : Ds) {
251 // When collecting a full chain of definitions, do not consider phi
252 // defs to actually define a register.
253 uint16_t Flags = DA.Addr->getFlags();
254 if (!FullChain || !(Flags & NodeAttrs::PhiRef))
255 if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
256 RRs.insert(DA.Addr->getRegRef(DFG));
260 auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
261 return DA.Addr->getFlags() & NodeAttrs::Dead;
263 RDefs.resize(std::distance(RDefs.begin(), llvm::remove_if(RDefs, DeadP)));
265 return RDefs;
268 std::pair<NodeSet,bool>
269 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
270 NodeSet &Visited, const NodeSet &Defs) {
271 return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
274 std::pair<NodeSet,bool>
275 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
276 NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
277 if (Nest > MaxNest)
278 return { NodeSet(), false };
279 // Collect all defined registers. Do not consider phis to be defining
280 // anything, only collect "real" definitions.
281 RegisterAggr DefRRs(PRI);
282 for (NodeId D : Defs) {
283 const auto DA = DFG.addr<const DefNode*>(D);
284 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
285 DefRRs.insert(DA.Addr->getRegRef(DFG));
288 NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
289 if (RDs.empty())
290 return { Defs, true };
292 // Make a copy of the preexisting definitions and add the newly found ones.
293 NodeSet TmpDefs = Defs;
294 for (NodeAddr<NodeBase*> R : RDs)
295 TmpDefs.insert(R.Id);
297 NodeSet Result = Defs;
299 for (NodeAddr<DefNode*> DA : RDs) {
300 Result.insert(DA.Id);
301 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
302 continue;
303 NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
304 if (Visited.count(PA.Id))
305 continue;
306 Visited.insert(PA.Id);
307 // Go over all phi uses and get the reaching defs for each use.
308 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
309 const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
310 Nest+1, MaxNest);
311 if (!T.second)
312 return { T.first, false };
313 Result.insert(T.first.begin(), T.first.end());
317 return { Result, true };
320 /// Find the nearest ref node aliased to RefRR, going upwards in the data
321 /// flow, starting from the instruction immediately preceding Inst.
322 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
323 NodeAddr<InstrNode*> IA) {
324 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
325 NodeList Ins = BA.Addr->members(DFG);
326 NodeId FindId = IA.Id;
327 auto E = Ins.rend();
328 auto B = std::find_if(Ins.rbegin(), E,
329 [FindId] (const NodeAddr<InstrNode*> T) {
330 return T.Id == FindId;
332 // Do not scan IA (which is what B would point to).
333 if (B != E)
334 ++B;
336 do {
337 // Process the range of instructions from B to E.
338 for (NodeAddr<InstrNode*> I : make_range(B, E)) {
339 NodeList Refs = I.Addr->members(DFG);
340 NodeAddr<RefNode*> Clob, Use;
341 // Scan all the refs in I aliased to RefRR, and return the one that
342 // is the closest to the output of I, i.e. def > clobber > use.
343 for (NodeAddr<RefNode*> R : Refs) {
344 if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
345 continue;
346 if (DFG.IsDef(R)) {
347 // If it's a non-clobbering def, just return it.
348 if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
349 return R;
350 Clob = R;
351 } else {
352 Use = R;
355 if (Clob.Id != 0)
356 return Clob;
357 if (Use.Id != 0)
358 return Use;
361 // Go up to the immediate dominator, if any.
362 MachineBasicBlock *BB = BA.Addr->getCode();
363 BA = NodeAddr<BlockNode*>();
364 if (MachineDomTreeNode *N = MDT.getNode(BB)) {
365 if ((N = N->getIDom()))
366 BA = DFG.findBlock(N->getBlock());
368 if (!BA.Id)
369 break;
371 Ins = BA.Addr->members(DFG);
372 B = Ins.rbegin();
373 E = Ins.rend();
374 } while (true);
376 return NodeAddr<RefNode*>();
379 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
380 NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
381 NodeSet Uses;
383 // If the original register is already covered by all the intervening
384 // defs, no more uses can be reached.
385 if (DefRRs.hasCoverOf(RefRR))
386 return Uses;
388 // Add all directly reached uses.
389 // If the def is dead, it does not provide a value for any use.
390 bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
391 NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
392 while (U != 0) {
393 auto UA = DFG.addr<UseNode*>(U);
394 if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
395 RegisterRef UR = UA.Addr->getRegRef(DFG);
396 if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
397 Uses.insert(U);
399 U = UA.Addr->getSibling();
402 // Traverse all reached defs. This time dead defs cannot be ignored.
403 for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
404 auto DA = DFG.addr<DefNode*>(D);
405 NextD = DA.Addr->getSibling();
406 RegisterRef DR = DA.Addr->getRegRef(DFG);
407 // If this def is already covered, it cannot reach anything new.
408 // Similarly, skip it if it is not aliased to the interesting register.
409 if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
410 continue;
411 NodeSet T;
412 if (DFG.IsPreservingDef(DA)) {
413 // If it is a preserving def, do not update the set of intervening defs.
414 T = getAllReachedUses(RefRR, DA, DefRRs);
415 } else {
416 RegisterAggr NewDefRRs = DefRRs;
417 NewDefRRs.insert(DR);
418 T = getAllReachedUses(RefRR, DA, NewDefRRs);
420 Uses.insert(T.begin(), T.end());
422 return Uses;
425 void Liveness::computePhiInfo() {
426 RealUseMap.clear();
428 NodeList Phis;
429 NodeAddr<FuncNode*> FA = DFG.getFunc();
430 NodeList Blocks = FA.Addr->members(DFG);
431 for (NodeAddr<BlockNode*> BA : Blocks) {
432 auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
433 Phis.insert(Phis.end(), Ps.begin(), Ps.end());
436 // phi use -> (map: reaching phi -> set of registers defined in between)
437 std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
438 std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
439 std::map<NodeId,RegisterAggr> PhiDRs; // Phi -> registers defined by it.
441 // Go over all phis.
442 for (NodeAddr<PhiNode*> PhiA : Phis) {
443 // Go over all defs and collect the reached uses that are non-phi uses
444 // (i.e. the "real uses").
445 RefMap &RealUses = RealUseMap[PhiA.Id];
446 NodeList PhiRefs = PhiA.Addr->members(DFG);
448 // Have a work queue of defs whose reached uses need to be found.
449 // For each def, add to the queue all reached (non-phi) defs.
450 SetVector<NodeId> DefQ;
451 NodeSet PhiDefs;
452 RegisterAggr DRs(PRI);
453 for (NodeAddr<RefNode*> R : PhiRefs) {
454 if (!DFG.IsRef<NodeAttrs::Def>(R))
455 continue;
456 DRs.insert(R.Addr->getRegRef(DFG));
457 DefQ.insert(R.Id);
458 PhiDefs.insert(R.Id);
460 PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
462 // Collect the super-set of all possible reached uses. This set will
463 // contain all uses reached from this phi, either directly from the
464 // phi defs, or (recursively) via non-phi defs reached by the phi defs.
465 // This set of uses will later be trimmed to only contain these uses that
466 // are actually reached by the phi defs.
467 for (unsigned i = 0; i < DefQ.size(); ++i) {
468 NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
469 // Visit all reached uses. Phi defs should not really have the "dead"
470 // flag set, but check it anyway for consistency.
471 bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
472 NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
473 while (UN != 0) {
474 NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
475 uint16_t F = A.Addr->getFlags();
476 if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
477 RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
478 RealUses[R.Reg].insert({A.Id,R.Mask});
480 UN = A.Addr->getSibling();
482 // Visit all reached defs, and add them to the queue. These defs may
483 // override some of the uses collected here, but that will be handled
484 // later.
485 NodeId DN = DA.Addr->getReachedDef();
486 while (DN != 0) {
487 NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
488 for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
489 uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
490 // Must traverse the reached-def chain. Consider:
491 // def(D0) -> def(R0) -> def(R0) -> use(D0)
492 // The reachable use of D0 passes through a def of R0.
493 if (!(Flags & NodeAttrs::PhiRef))
494 DefQ.insert(T.Id);
496 DN = A.Addr->getSibling();
499 // Filter out these uses that appear to be reachable, but really
500 // are not. For example:
502 // R1:0 = d1
503 // = R1:0 u2 Reached by d1.
504 // R0 = d3
505 // = R1:0 u4 Still reached by d1: indirectly through
506 // the def d3.
507 // R1 = d5
508 // = R1:0 u6 Not reached by d1 (covered collectively
509 // by d3 and d5), but following reached
510 // defs and uses from d1 will lead here.
511 for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
512 // For each reached register UI->first, there is a set UI->second, of
513 // uses of it. For each such use, check if it is reached by this phi,
514 // i.e. check if the set of its reaching uses intersects the set of
515 // this phi's defs.
516 NodeRefSet Uses = UI->second;
517 UI->second.clear();
518 for (std::pair<NodeId,LaneBitmask> I : Uses) {
519 auto UA = DFG.addr<UseNode*>(I.first);
520 // Undef flag is checked above.
521 assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
522 RegisterRef R(UI->first, I.second);
523 // Calculate the exposed part of the reached use.
524 RegisterAggr Covered(PRI);
525 for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
526 if (PhiDefs.count(DA.Id))
527 break;
528 Covered.insert(DA.Addr->getRegRef(DFG));
530 if (RegisterRef RC = Covered.clearIn(R)) {
531 // We are updating the map for register UI->first, so we need
532 // to map RC to be expressed in terms of that register.
533 RegisterRef S = PRI.mapTo(RC, UI->first);
534 UI->second.insert({I.first, S.Mask});
537 UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
540 // If this phi reaches some "real" uses, add it to the queue for upward
541 // propagation.
542 if (!RealUses.empty())
543 PhiUQ.push_back(PhiA.Id);
545 // Go over all phi uses and check if the reaching def is another phi.
546 // Collect the phis that are among the reaching defs of these uses.
547 // While traversing the list of reaching defs for each phi use, accumulate
548 // the set of registers defined between this phi (PhiA) and the owner phi
549 // of the reaching def.
550 NodeSet SeenUses;
552 for (auto I : PhiRefs) {
553 if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
554 continue;
555 NodeAddr<PhiUseNode*> PUA = I;
556 if (PUA.Addr->getReachingDef() == 0)
557 continue;
559 RegisterRef UR = PUA.Addr->getRegRef(DFG);
560 NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
561 RegisterAggr DefRRs(PRI);
563 for (NodeAddr<DefNode*> D : Ds) {
564 if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
565 NodeId RP = D.Addr->getOwner(DFG).Id;
566 std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
567 auto F = M.find(RP);
568 if (F == M.end())
569 M.insert(std::make_pair(RP, DefRRs));
570 else
571 F->second.insert(DefRRs);
573 DefRRs.insert(D.Addr->getRegRef(DFG));
576 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
577 SeenUses.insert(T.Id);
581 if (Trace) {
582 dbgs() << "Phi-up-to-phi map with intervening defs:\n";
583 for (auto I : PhiUp) {
584 dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
585 for (auto R : I.second)
586 dbgs() << ' ' << Print<NodeId>(R.first, DFG)
587 << Print<RegisterAggr>(R.second, DFG);
588 dbgs() << " }\n";
592 // Propagate the reached registers up in the phi chain.
594 // The following type of situation needs careful handling:
596 // phi d1<R1:0> (1)
597 // |
598 // ... d2<R1>
599 // |
600 // phi u3<R1:0> (2)
601 // |
602 // ... u4<R1>
604 // The phi node (2) defines a register pair R1:0, and reaches a "real"
605 // use u4 of just R1. The same phi node is also known to reach (upwards)
606 // the phi node (1). However, the use u4 is not reached by phi (1),
607 // because of the intervening definition d2 of R1. The data flow between
608 // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
610 // When propagating uses up the phi chains, get the all reaching defs
611 // for a given phi use, and traverse the list until the propagated ref
612 // is covered, or until reaching the final phi. Only assume that the
613 // reference reaches the phi in the latter case.
615 for (unsigned i = 0; i < PhiUQ.size(); ++i) {
616 auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
617 NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
618 RefMap &RUM = RealUseMap[PA.Id];
620 for (NodeAddr<UseNode*> UA : PUs) {
621 std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
622 RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
623 for (const std::pair<NodeId,RegisterAggr> &P : PUM) {
624 bool Changed = false;
625 const RegisterAggr &MidDefs = P.second;
627 // Collect the set PropUp of uses that are reached by the current
628 // phi PA, and are not covered by any intervening def between the
629 // currently visited use UA and the upward phi P.
631 if (MidDefs.hasCoverOf(UR))
632 continue;
634 // General algorithm:
635 // for each (R,U) : U is use node of R, U is reached by PA
636 // if MidDefs does not cover (R,U)
637 // then add (R-MidDefs,U) to RealUseMap[P]
639 for (const std::pair<RegisterId,NodeRefSet> &T : RUM) {
640 RegisterRef R(T.first);
641 // The current phi (PA) could be a phi for a regmask. It could
642 // reach a whole variety of uses that are not related to the
643 // specific upward phi (P.first).
644 const RegisterAggr &DRs = PhiDRs.at(P.first);
645 if (!DRs.hasAliasOf(R))
646 continue;
647 R = PRI.mapTo(DRs.intersectWith(R), T.first);
648 for (std::pair<NodeId,LaneBitmask> V : T.second) {
649 LaneBitmask M = R.Mask & V.second;
650 if (M.none())
651 continue;
652 if (RegisterRef SS = MidDefs.clearIn(RegisterRef(R.Reg, M))) {
653 NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
654 Changed |= RS.insert({V.first,SS.Mask}).second;
659 if (Changed)
660 PhiUQ.push_back(P.first);
665 if (Trace) {
666 dbgs() << "Real use map:\n";
667 for (auto I : RealUseMap) {
668 dbgs() << "phi " << Print<NodeId>(I.first, DFG);
669 NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
670 NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
671 if (!Ds.empty()) {
672 RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
673 dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
674 } else {
675 dbgs() << "<noreg>";
677 dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
682 void Liveness::computeLiveIns() {
683 // Populate the node-to-block map. This speeds up the calculations
684 // significantly.
685 NBMap.clear();
686 for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
687 MachineBasicBlock *BB = BA.Addr->getCode();
688 for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
689 for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
690 NBMap.insert(std::make_pair(RA.Id, BB));
691 NBMap.insert(std::make_pair(IA.Id, BB));
695 MachineFunction &MF = DFG.getMF();
697 // Compute IDF first, then the inverse.
698 decltype(IIDF) IDF;
699 for (MachineBasicBlock &B : MF) {
700 auto F1 = MDF.find(&B);
701 if (F1 == MDF.end())
702 continue;
703 SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
704 for (unsigned i = 0; i < IDFB.size(); ++i) {
705 auto F2 = MDF.find(IDFB[i]);
706 if (F2 != MDF.end())
707 IDFB.insert(F2->second.begin(), F2->second.end());
709 // Add B to the IDF(B). This will put B in the IIDF(B).
710 IDFB.insert(&B);
711 IDF[&B].insert(IDFB.begin(), IDFB.end());
714 for (auto I : IDF)
715 for (auto S : I.second)
716 IIDF[S].insert(I.first);
718 computePhiInfo();
720 NodeAddr<FuncNode*> FA = DFG.getFunc();
721 NodeList Blocks = FA.Addr->members(DFG);
723 // Build the phi live-on-entry map.
724 for (NodeAddr<BlockNode*> BA : Blocks) {
725 MachineBasicBlock *MB = BA.Addr->getCode();
726 RefMap &LON = PhiLON[MB];
727 for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
728 for (const RefMap::value_type &S : RealUseMap[P.Id])
729 LON[S.first].insert(S.second.begin(), S.second.end());
732 if (Trace) {
733 dbgs() << "Phi live-on-entry map:\n";
734 for (auto &I : PhiLON)
735 dbgs() << "block #" << I.first->getNumber() << " -> "
736 << Print<RefMap>(I.second, DFG) << '\n';
739 // Build the phi live-on-exit map. Each phi node has some set of reached
740 // "real" uses. Propagate this set backwards into the block predecessors
741 // through the reaching defs of the corresponding phi uses.
742 for (NodeAddr<BlockNode*> BA : Blocks) {
743 NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
744 for (NodeAddr<PhiNode*> PA : Phis) {
745 RefMap &RUs = RealUseMap[PA.Id];
746 if (RUs.empty())
747 continue;
749 NodeSet SeenUses;
750 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
751 if (!SeenUses.insert(U.Id).second)
752 continue;
753 NodeAddr<PhiUseNode*> PUA = U;
754 if (PUA.Addr->getReachingDef() == 0)
755 continue;
757 // Each phi has some set (possibly empty) of reached "real" uses,
758 // that is, uses that are part of the compiled program. Such a use
759 // may be located in some farther block, but following a chain of
760 // reaching defs will eventually lead to this phi.
761 // Any chain of reaching defs may fork at a phi node, but there
762 // will be a path upwards that will lead to this phi. Now, this
763 // chain will need to fork at this phi, since some of the reached
764 // uses may have definitions joining in from multiple predecessors.
765 // For each reached "real" use, identify the set of reaching defs
766 // coming from each predecessor P, and add them to PhiLOX[P].
768 auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
769 RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
771 for (const std::pair<RegisterId,NodeRefSet> &RS : RUs) {
772 // We need to visit each individual use.
773 for (std::pair<NodeId,LaneBitmask> P : RS.second) {
774 // Create a register ref corresponding to the use, and find
775 // all reaching defs starting from the phi use, and treating
776 // all related shadows as a single use cluster.
777 RegisterRef S(RS.first, P.second);
778 NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
779 for (NodeAddr<DefNode*> D : Ds) {
780 // Calculate the mask corresponding to the visited def.
781 RegisterAggr TA(PRI);
782 TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
783 LaneBitmask TM = TA.makeRegRef().Mask;
784 LOX[S.Reg].insert({D.Id, TM});
789 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
790 SeenUses.insert(T.Id);
791 } // for U : phi uses
792 } // for P : Phis
793 } // for B : Blocks
795 if (Trace) {
796 dbgs() << "Phi live-on-exit map:\n";
797 for (auto &I : PhiLOX)
798 dbgs() << "block #" << I.first->getNumber() << " -> "
799 << Print<RefMap>(I.second, DFG) << '\n';
802 RefMap LiveIn;
803 traverse(&MF.front(), LiveIn);
805 // Add function live-ins to the live-in set of the function entry block.
806 LiveMap[&MF.front()].insert(DFG.getLiveIns());
808 if (Trace) {
809 // Dump the liveness map
810 for (MachineBasicBlock &B : MF) {
811 std::vector<RegisterRef> LV;
812 for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
813 LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
814 llvm::sort(LV);
815 dbgs() << printMBBReference(B) << "\t rec = {";
816 for (auto I : LV)
817 dbgs() << ' ' << Print<RegisterRef>(I, DFG);
818 dbgs() << " }\n";
819 //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
821 LV.clear();
822 const RegisterAggr &LG = LiveMap[&B];
823 for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
824 LV.push_back(*I);
825 llvm::sort(LV);
826 dbgs() << "\tcomp = {";
827 for (auto I : LV)
828 dbgs() << ' ' << Print<RegisterRef>(I, DFG);
829 dbgs() << " }\n";
835 void Liveness::resetLiveIns() {
836 for (auto &B : DFG.getMF()) {
837 // Remove all live-ins.
838 std::vector<unsigned> T;
839 for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
840 T.push_back(I->PhysReg);
841 for (auto I : T)
842 B.removeLiveIn(I);
843 // Add the newly computed live-ins.
844 const RegisterAggr &LiveIns = LiveMap[&B];
845 for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
846 RegisterRef R = *I;
847 B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
852 void Liveness::resetKills() {
853 for (auto &B : DFG.getMF())
854 resetKills(&B);
857 void Liveness::resetKills(MachineBasicBlock *B) {
858 auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
859 for (auto I : B->liveins()) {
860 MCSubRegIndexIterator S(I.PhysReg, &TRI);
861 if (!S.isValid()) {
862 LV.set(I.PhysReg);
863 continue;
865 do {
866 LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
867 if ((M & I.LaneMask).any())
868 LV.set(S.getSubReg());
869 ++S;
870 } while (S.isValid());
874 BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
875 CopyLiveIns(B, LiveIn);
876 for (auto SI : B->successors())
877 CopyLiveIns(SI, Live);
879 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
880 MachineInstr *MI = &*I;
881 if (MI->isDebugInstr())
882 continue;
884 MI->clearKillInfo();
885 for (auto &Op : MI->operands()) {
886 // An implicit def of a super-register may not necessarily start a
887 // live range of it, since an implicit use could be used to keep parts
888 // of it live. Instead of analyzing the implicit operands, ignore
889 // implicit defs.
890 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
891 continue;
892 Register R = Op.getReg();
893 if (!Register::isPhysicalRegister(R))
894 continue;
895 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
896 Live.reset(*SR);
898 for (auto &Op : MI->operands()) {
899 if (!Op.isReg() || !Op.isUse() || Op.isUndef())
900 continue;
901 Register R = Op.getReg();
902 if (!Register::isPhysicalRegister(R))
903 continue;
904 bool IsLive = false;
905 for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
906 if (!Live[*AR])
907 continue;
908 IsLive = true;
909 break;
911 if (!IsLive)
912 Op.setIsKill(true);
913 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
914 Live.set(*SR);
919 // Helper function to obtain the basic block containing the reaching def
920 // of the given use.
921 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
922 auto F = NBMap.find(RN);
923 if (F != NBMap.end())
924 return F->second;
925 llvm_unreachable("Node id not in map");
928 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
929 // The LiveIn map, for each (physical) register, contains the set of live
930 // reaching defs of that register that are live on entry to the associated
931 // block.
933 // The summary of the traversal algorithm:
935 // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
936 // and (U \in IDF(B) or B dom U).
938 // for (C : children) {
939 // LU = {}
940 // traverse(C, LU)
941 // LiveUses += LU
942 // }
944 // LiveUses -= Defs(B);
945 // LiveUses += UpwardExposedUses(B);
946 // for (C : IIDF[B])
947 // for (U : LiveUses)
948 // if (Rdef(U) dom C)
949 // C.addLiveIn(U)
952 // Go up the dominator tree (depth-first).
953 MachineDomTreeNode *N = MDT.getNode(B);
954 for (auto I : *N) {
955 RefMap L;
956 MachineBasicBlock *SB = I->getBlock();
957 traverse(SB, L);
959 for (auto S : L)
960 LiveIn[S.first].insert(S.second.begin(), S.second.end());
963 if (Trace) {
964 dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
965 << " after recursion into: {";
966 for (auto I : *N)
967 dbgs() << ' ' << I->getBlock()->getNumber();
968 dbgs() << " }\n";
969 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
970 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
973 // Add reaching defs of phi uses that are live on exit from this block.
974 RefMap &PUs = PhiLOX[B];
975 for (auto &S : PUs)
976 LiveIn[S.first].insert(S.second.begin(), S.second.end());
978 if (Trace) {
979 dbgs() << "after LOX\n";
980 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
981 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
984 // The LiveIn map at this point has all defs that are live-on-exit from B,
985 // as if they were live-on-entry to B. First, we need to filter out all
986 // defs that are present in this block. Then we will add reaching defs of
987 // all upward-exposed uses.
989 // To filter out the defs, first make a copy of LiveIn, and then re-populate
990 // LiveIn with the defs that should remain.
991 RefMap LiveInCopy = LiveIn;
992 LiveIn.clear();
994 for (const std::pair<RegisterId,NodeRefSet> &LE : LiveInCopy) {
995 RegisterRef LRef(LE.first);
996 NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
997 const NodeRefSet &OldDefs = LE.second;
998 for (NodeRef OR : OldDefs) {
999 // R is a def node that was live-on-exit
1000 auto DA = DFG.addr<DefNode*>(OR.first);
1001 NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1002 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1003 if (B != BA.Addr->getCode()) {
1004 // Defs from a different block need to be preserved. Defs from this
1005 // block will need to be processed further, except for phi defs, the
1006 // liveness of which is handled through the PhiLON/PhiLOX maps.
1007 NewDefs.insert(OR);
1008 continue;
1011 // Defs from this block need to stop the liveness from being
1012 // propagated upwards. This only applies to non-preserving defs,
1013 // and to the parts of the register actually covered by those defs.
1014 // (Note that phi defs should always be preserving.)
1015 RegisterAggr RRs(PRI);
1016 LRef.Mask = OR.second;
1018 if (!DFG.IsPreservingDef(DA)) {
1019 assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1020 // DA is a non-phi def that is live-on-exit from this block, and
1021 // that is also located in this block. LRef is a register ref
1022 // whose use this def reaches. If DA covers LRef, then no part
1023 // of LRef is exposed upwards.A
1024 if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1025 continue;
1028 // DA itself was not sufficient to cover LRef. In general, it is
1029 // the last in a chain of aliased defs before the exit from this block.
1030 // There could be other defs in this block that are a part of that
1031 // chain. Check that now: accumulate the registers from these defs,
1032 // and if they all together cover LRef, it is not live-on-entry.
1033 for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1034 // DefNode -> InstrNode -> BlockNode.
1035 NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1036 NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1037 // Reaching defs are ordered in the upward direction.
1038 if (BTA.Addr->getCode() != B) {
1039 // We have reached past the beginning of B, and the accumulated
1040 // registers are not covering LRef. The first def from the
1041 // upward chain will be live.
1042 // Subtract all accumulated defs (RRs) from LRef.
1043 RegisterRef T = RRs.clearIn(LRef);
1044 assert(T);
1045 NewDefs.insert({TA.Id,T.Mask});
1046 break;
1049 // TA is in B. Only add this def to the accumulated cover if it is
1050 // not preserving.
1051 if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1052 RRs.insert(TA.Addr->getRegRef(DFG));
1053 // If this is enough to cover LRef, then stop.
1054 if (RRs.hasCoverOf(LRef))
1055 break;
1060 emptify(LiveIn);
1062 if (Trace) {
1063 dbgs() << "after defs in block\n";
1064 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1065 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1068 // Scan the block for upward-exposed uses and add them to the tracking set.
1069 for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1070 NodeAddr<InstrNode*> IA = I;
1071 if (IA.Addr->getKind() != NodeAttrs::Stmt)
1072 continue;
1073 for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1074 if (UA.Addr->getFlags() & NodeAttrs::Undef)
1075 continue;
1076 RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG));
1077 for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1078 if (getBlockWithRef(D.Id) != B)
1079 LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1083 if (Trace) {
1084 dbgs() << "after uses in block\n";
1085 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1086 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1089 // Phi uses should not be propagated up the dominator tree, since they
1090 // are not dominated by their corresponding reaching defs.
1091 RegisterAggr &Local = LiveMap[B];
1092 RefMap &LON = PhiLON[B];
1093 for (auto &R : LON) {
1094 LaneBitmask M;
1095 for (auto P : R.second)
1096 M |= P.second;
1097 Local.insert(RegisterRef(R.first,M));
1100 if (Trace) {
1101 dbgs() << "after phi uses in block\n";
1102 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1103 dbgs() << " Local: " << Print<RegisterAggr>(Local, DFG) << '\n';
1106 for (auto C : IIDF[B]) {
1107 RegisterAggr &LiveC = LiveMap[C];
1108 for (const std::pair<RegisterId,NodeRefSet> &S : LiveIn)
1109 for (auto R : S.second)
1110 if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1111 LiveC.insert(RegisterRef(S.first, R.second));
1115 void Liveness::emptify(RefMap &M) {
1116 for (auto I = M.begin(), E = M.end(); I != E; )
1117 I = I->second.empty() ? M.erase(I) : std::next(I);