[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / Mips / MipsConstantIslandPass.cpp
blobf5064052173816a18a23e1610ff71f20fdaf78a5
1 //===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass is used to make Pc relative loads of constants.
10 // For now, only Mips16 will use this.
12 // Loading constants inline is expensive on Mips16 and it's in general better
13 // to place the constant nearby in code space and then it can be loaded with a
14 // simple 16 bit load instruction.
16 // The constants can be not just numbers but addresses of functions and labels.
17 // This can be particularly helpful in static relocation mode for embedded
18 // non-linux targets.
20 //===----------------------------------------------------------------------===//
22 #include "Mips.h"
23 #include "Mips16InstrInfo.h"
24 #include "MipsMachineFunction.h"
25 #include "MipsSubtarget.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineConstantPool.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <iterator>
56 #include <vector>
58 using namespace llvm;
60 #define DEBUG_TYPE "mips-constant-islands"
62 STATISTIC(NumCPEs, "Number of constpool entries");
63 STATISTIC(NumSplit, "Number of uncond branches inserted");
64 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
65 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
67 // FIXME: This option should be removed once it has received sufficient testing.
68 static cl::opt<bool>
69 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
70 cl::desc("Align constant islands in code"));
72 // Rather than do make check tests with huge amounts of code, we force
73 // the test to use this amount.
74 static cl::opt<int> ConstantIslandsSmallOffset(
75 "mips-constant-islands-small-offset",
76 cl::init(0),
77 cl::desc("Make small offsets be this amount for testing purposes"),
78 cl::Hidden);
80 // For testing purposes we tell it to not use relaxed load forms so that it
81 // will split blocks.
82 static cl::opt<bool> NoLoadRelaxation(
83 "mips-constant-islands-no-load-relaxation",
84 cl::init(false),
85 cl::desc("Don't relax loads to long loads - for testing purposes"),
86 cl::Hidden);
88 static unsigned int branchTargetOperand(MachineInstr *MI) {
89 switch (MI->getOpcode()) {
90 case Mips::Bimm16:
91 case Mips::BimmX16:
92 case Mips::Bteqz16:
93 case Mips::BteqzX16:
94 case Mips::Btnez16:
95 case Mips::BtnezX16:
96 case Mips::JalB16:
97 return 0;
98 case Mips::BeqzRxImm16:
99 case Mips::BeqzRxImmX16:
100 case Mips::BnezRxImm16:
101 case Mips::BnezRxImmX16:
102 return 1;
104 llvm_unreachable("Unknown branch type");
107 static unsigned int longformBranchOpcode(unsigned int Opcode) {
108 switch (Opcode) {
109 case Mips::Bimm16:
110 case Mips::BimmX16:
111 return Mips::BimmX16;
112 case Mips::Bteqz16:
113 case Mips::BteqzX16:
114 return Mips::BteqzX16;
115 case Mips::Btnez16:
116 case Mips::BtnezX16:
117 return Mips::BtnezX16;
118 case Mips::JalB16:
119 return Mips::JalB16;
120 case Mips::BeqzRxImm16:
121 case Mips::BeqzRxImmX16:
122 return Mips::BeqzRxImmX16;
123 case Mips::BnezRxImm16:
124 case Mips::BnezRxImmX16:
125 return Mips::BnezRxImmX16;
127 llvm_unreachable("Unknown branch type");
130 // FIXME: need to go through this whole constant islands port and check the math
131 // for branch ranges and clean this up and make some functions to calculate things
132 // that are done many times identically.
133 // Need to refactor some of the code to call this routine.
134 static unsigned int branchMaxOffsets(unsigned int Opcode) {
135 unsigned Bits, Scale;
136 switch (Opcode) {
137 case Mips::Bimm16:
138 Bits = 11;
139 Scale = 2;
140 break;
141 case Mips::BimmX16:
142 Bits = 16;
143 Scale = 2;
144 break;
145 case Mips::BeqzRxImm16:
146 Bits = 8;
147 Scale = 2;
148 break;
149 case Mips::BeqzRxImmX16:
150 Bits = 16;
151 Scale = 2;
152 break;
153 case Mips::BnezRxImm16:
154 Bits = 8;
155 Scale = 2;
156 break;
157 case Mips::BnezRxImmX16:
158 Bits = 16;
159 Scale = 2;
160 break;
161 case Mips::Bteqz16:
162 Bits = 8;
163 Scale = 2;
164 break;
165 case Mips::BteqzX16:
166 Bits = 16;
167 Scale = 2;
168 break;
169 case Mips::Btnez16:
170 Bits = 8;
171 Scale = 2;
172 break;
173 case Mips::BtnezX16:
174 Bits = 16;
175 Scale = 2;
176 break;
177 default:
178 llvm_unreachable("Unknown branch type");
180 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
181 return MaxOffs;
184 namespace {
186 using Iter = MachineBasicBlock::iterator;
187 using ReverseIter = MachineBasicBlock::reverse_iterator;
189 /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
190 /// requires constant pool entries to be scattered among the instructions
191 /// inside a function. To do this, it completely ignores the normal LLVM
192 /// constant pool; instead, it places constants wherever it feels like with
193 /// special instructions.
195 /// The terminology used in this pass includes:
196 /// Islands - Clumps of constants placed in the function.
197 /// Water - Potential places where an island could be formed.
198 /// CPE - A constant pool entry that has been placed somewhere, which
199 /// tracks a list of users.
201 class MipsConstantIslands : public MachineFunctionPass {
202 /// BasicBlockInfo - Information about the offset and size of a single
203 /// basic block.
204 struct BasicBlockInfo {
205 /// Offset - Distance from the beginning of the function to the beginning
206 /// of this basic block.
208 /// Offsets are computed assuming worst case padding before an aligned
209 /// block. This means that subtracting basic block offsets always gives a
210 /// conservative estimate of the real distance which may be smaller.
212 /// Because worst case padding is used, the computed offset of an aligned
213 /// block may not actually be aligned.
214 unsigned Offset = 0;
216 /// Size - Size of the basic block in bytes. If the block contains
217 /// inline assembly, this is a worst case estimate.
219 /// The size does not include any alignment padding whether from the
220 /// beginning of the block, or from an aligned jump table at the end.
221 unsigned Size = 0;
223 BasicBlockInfo() = default;
225 unsigned postOffset() const { return Offset + Size; }
228 std::vector<BasicBlockInfo> BBInfo;
230 /// WaterList - A sorted list of basic blocks where islands could be placed
231 /// (i.e. blocks that don't fall through to the following block, due
232 /// to a return, unreachable, or unconditional branch).
233 std::vector<MachineBasicBlock*> WaterList;
235 /// NewWaterList - The subset of WaterList that was created since the
236 /// previous iteration by inserting unconditional branches.
237 SmallSet<MachineBasicBlock*, 4> NewWaterList;
239 using water_iterator = std::vector<MachineBasicBlock *>::iterator;
241 /// CPUser - One user of a constant pool, keeping the machine instruction
242 /// pointer, the constant pool being referenced, and the max displacement
243 /// allowed from the instruction to the CP. The HighWaterMark records the
244 /// highest basic block where a new CPEntry can be placed. To ensure this
245 /// pass terminates, the CP entries are initially placed at the end of the
246 /// function and then move monotonically to lower addresses. The
247 /// exception to this rule is when the current CP entry for a particular
248 /// CPUser is out of range, but there is another CP entry for the same
249 /// constant value in range. We want to use the existing in-range CP
250 /// entry, but if it later moves out of range, the search for new water
251 /// should resume where it left off. The HighWaterMark is used to record
252 /// that point.
253 struct CPUser {
254 MachineInstr *MI;
255 MachineInstr *CPEMI;
256 MachineBasicBlock *HighWaterMark;
258 private:
259 unsigned MaxDisp;
260 unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
261 // with different displacements
262 unsigned LongFormOpcode;
264 public:
265 bool NegOk;
267 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
268 bool neg,
269 unsigned longformmaxdisp, unsigned longformopcode)
270 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
271 LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
272 NegOk(neg){
273 HighWaterMark = CPEMI->getParent();
276 /// getMaxDisp - Returns the maximum displacement supported by MI.
277 unsigned getMaxDisp() const {
278 unsigned xMaxDisp = ConstantIslandsSmallOffset?
279 ConstantIslandsSmallOffset: MaxDisp;
280 return xMaxDisp;
283 void setMaxDisp(unsigned val) {
284 MaxDisp = val;
287 unsigned getLongFormMaxDisp() const {
288 return LongFormMaxDisp;
291 unsigned getLongFormOpcode() const {
292 return LongFormOpcode;
296 /// CPUsers - Keep track of all of the machine instructions that use various
297 /// constant pools and their max displacement.
298 std::vector<CPUser> CPUsers;
300 /// CPEntry - One per constant pool entry, keeping the machine instruction
301 /// pointer, the constpool index, and the number of CPUser's which
302 /// reference this entry.
303 struct CPEntry {
304 MachineInstr *CPEMI;
305 unsigned CPI;
306 unsigned RefCount;
308 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
309 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
312 /// CPEntries - Keep track of all of the constant pool entry machine
313 /// instructions. For each original constpool index (i.e. those that
314 /// existed upon entry to this pass), it keeps a vector of entries.
315 /// Original elements are cloned as we go along; the clones are
316 /// put in the vector of the original element, but have distinct CPIs.
317 std::vector<std::vector<CPEntry>> CPEntries;
319 /// ImmBranch - One per immediate branch, keeping the machine instruction
320 /// pointer, conditional or unconditional, the max displacement,
321 /// and (if isCond is true) the corresponding unconditional branch
322 /// opcode.
323 struct ImmBranch {
324 MachineInstr *MI;
325 unsigned MaxDisp : 31;
326 bool isCond : 1;
327 int UncondBr;
329 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
330 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
333 /// ImmBranches - Keep track of all the immediate branch instructions.
335 std::vector<ImmBranch> ImmBranches;
337 /// HasFarJump - True if any far jump instruction has been emitted during
338 /// the branch fix up pass.
339 bool HasFarJump;
341 const MipsSubtarget *STI = nullptr;
342 const Mips16InstrInfo *TII;
343 MipsFunctionInfo *MFI;
344 MachineFunction *MF = nullptr;
345 MachineConstantPool *MCP = nullptr;
347 unsigned PICLabelUId;
348 bool PrescannedForConstants = false;
350 void initPICLabelUId(unsigned UId) {
351 PICLabelUId = UId;
354 unsigned createPICLabelUId() {
355 return PICLabelUId++;
358 public:
359 static char ID;
361 MipsConstantIslands() : MachineFunctionPass(ID) {}
363 StringRef getPassName() const override { return "Mips Constant Islands"; }
365 bool runOnMachineFunction(MachineFunction &F) override;
367 MachineFunctionProperties getRequiredProperties() const override {
368 return MachineFunctionProperties().set(
369 MachineFunctionProperties::Property::NoVRegs);
372 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
373 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
374 Align getCPEAlign(const MachineInstr &CPEMI);
375 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
376 unsigned getOffsetOf(MachineInstr *MI) const;
377 unsigned getUserOffset(CPUser&) const;
378 void dumpBBs();
380 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
381 unsigned Disp, bool NegativeOK);
382 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
383 const CPUser &U);
385 void computeBlockSize(MachineBasicBlock *MBB);
386 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
387 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
388 void adjustBBOffsetsAfter(MachineBasicBlock *BB);
389 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
390 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
391 int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
392 bool findAvailableWater(CPUser&U, unsigned UserOffset,
393 water_iterator &WaterIter);
394 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
395 MachineBasicBlock *&NewMBB);
396 bool handleConstantPoolUser(unsigned CPUserIndex);
397 void removeDeadCPEMI(MachineInstr *CPEMI);
398 bool removeUnusedCPEntries();
399 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
400 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
401 bool DoDump = false);
402 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
403 CPUser &U, unsigned &Growth);
404 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
405 bool fixupImmediateBr(ImmBranch &Br);
406 bool fixupConditionalBr(ImmBranch &Br);
407 bool fixupUnconditionalBr(ImmBranch &Br);
409 void prescanForConstants();
412 } // end anonymous namespace
414 char MipsConstantIslands::ID = 0;
416 bool MipsConstantIslands::isOffsetInRange
417 (unsigned UserOffset, unsigned TrialOffset,
418 const CPUser &U) {
419 return isOffsetInRange(UserOffset, TrialOffset,
420 U.getMaxDisp(), U.NegOk);
423 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
424 /// print block size and offset information - debugging
425 LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() {
426 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
427 const BasicBlockInfo &BBI = BBInfo[J];
428 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
429 << format(" size=%#x\n", BBInfo[J].Size);
432 #endif
434 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
435 // The intention is for this to be a mips16 only pass for now
436 // FIXME:
437 MF = &mf;
438 MCP = mf.getConstantPool();
439 STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
440 LLVM_DEBUG(dbgs() << "constant island machine function "
441 << "\n");
442 if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
443 return false;
445 TII = (const Mips16InstrInfo *)STI->getInstrInfo();
446 MFI = MF->getInfo<MipsFunctionInfo>();
447 LLVM_DEBUG(dbgs() << "constant island processing "
448 << "\n");
450 // will need to make predermination if there is any constants we need to
451 // put in constant islands. TBD.
453 if (!PrescannedForConstants) prescanForConstants();
455 HasFarJump = false;
456 // This pass invalidates liveness information when it splits basic blocks.
457 MF->getRegInfo().invalidateLiveness();
459 // Renumber all of the machine basic blocks in the function, guaranteeing that
460 // the numbers agree with the position of the block in the function.
461 MF->RenumberBlocks();
463 bool MadeChange = false;
465 // Perform the initial placement of the constant pool entries. To start with,
466 // we put them all at the end of the function.
467 std::vector<MachineInstr*> CPEMIs;
468 if (!MCP->isEmpty())
469 doInitialPlacement(CPEMIs);
471 /// The next UID to take is the first unused one.
472 initPICLabelUId(CPEMIs.size());
474 // Do the initial scan of the function, building up information about the
475 // sizes of each block, the location of all the water, and finding all of the
476 // constant pool users.
477 initializeFunctionInfo(CPEMIs);
478 CPEMIs.clear();
479 LLVM_DEBUG(dumpBBs());
481 /// Remove dead constant pool entries.
482 MadeChange |= removeUnusedCPEntries();
484 // Iteratively place constant pool entries and fix up branches until there
485 // is no change.
486 unsigned NoCPIters = 0, NoBRIters = 0;
487 (void)NoBRIters;
488 while (true) {
489 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
490 bool CPChange = false;
491 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
492 CPChange |= handleConstantPoolUser(i);
493 if (CPChange && ++NoCPIters > 30)
494 report_fatal_error("Constant Island pass failed to converge!");
495 LLVM_DEBUG(dumpBBs());
497 // Clear NewWaterList now. If we split a block for branches, it should
498 // appear as "new water" for the next iteration of constant pool placement.
499 NewWaterList.clear();
501 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
502 bool BRChange = false;
503 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
504 BRChange |= fixupImmediateBr(ImmBranches[i]);
505 if (BRChange && ++NoBRIters > 30)
506 report_fatal_error("Branch Fix Up pass failed to converge!");
507 LLVM_DEBUG(dumpBBs());
508 if (!CPChange && !BRChange)
509 break;
510 MadeChange = true;
513 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
515 BBInfo.clear();
516 WaterList.clear();
517 CPUsers.clear();
518 CPEntries.clear();
519 ImmBranches.clear();
520 return MadeChange;
523 /// doInitialPlacement - Perform the initial placement of the constant pool
524 /// entries. To start with, we put them all at the end of the function.
525 void
526 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
527 // Create the basic block to hold the CPE's.
528 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
529 MF->push_back(BB);
531 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
532 const Align MaxAlign(MCP->getConstantPoolAlignment());
534 // Mark the basic block as required by the const-pool.
535 // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
536 BB->setAlignment(AlignConstantIslands ? MaxAlign : Align(4));
538 // The function needs to be as aligned as the basic blocks. The linker may
539 // move functions around based on their alignment.
540 MF->ensureAlignment(BB->getAlignment());
542 // Order the entries in BB by descending alignment. That ensures correct
543 // alignment of all entries as long as BB is sufficiently aligned. Keep
544 // track of the insertion point for each alignment. We are going to bucket
545 // sort the entries as they are created.
546 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1,
547 BB->end());
549 // Add all of the constants from the constant pool to the end block, use an
550 // identity mapping of CPI's to CPE's.
551 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
553 const DataLayout &TD = MF->getDataLayout();
554 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
555 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
556 assert(Size >= 4 && "Too small constant pool entry");
557 unsigned Align = CPs[i].getAlignment();
558 assert(isPowerOf2_32(Align) && "Invalid alignment");
559 // Verify that all constant pool entries are a multiple of their alignment.
560 // If not, we would have to pad them out so that instructions stay aligned.
561 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
563 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
564 unsigned LogAlign = Log2_32(Align);
565 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
567 MachineInstr *CPEMI =
568 BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
569 .addImm(i).addConstantPoolIndex(i).addImm(Size);
571 CPEMIs.push_back(CPEMI);
573 // Ensure that future entries with higher alignment get inserted before
574 // CPEMI. This is bucket sort with iterators.
575 for (unsigned a = LogAlign + 1; a <= Log2(MaxAlign); ++a)
576 if (InsPoint[a] == InsAt)
577 InsPoint[a] = CPEMI;
578 // Add a new CPEntry, but no corresponding CPUser yet.
579 CPEntries.emplace_back(1, CPEntry(CPEMI, i));
580 ++NumCPEs;
581 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
582 << Size << ", align = " << Align << '\n');
584 LLVM_DEBUG(BB->dump());
587 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
588 /// into the block immediately after it.
589 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
590 // Get the next machine basic block in the function.
591 MachineFunction::iterator MBBI = MBB->getIterator();
592 // Can't fall off end of function.
593 if (std::next(MBBI) == MBB->getParent()->end())
594 return false;
596 MachineBasicBlock *NextBB = &*std::next(MBBI);
597 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
598 E = MBB->succ_end(); I != E; ++I)
599 if (*I == NextBB)
600 return true;
602 return false;
605 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
606 /// look up the corresponding CPEntry.
607 MipsConstantIslands::CPEntry
608 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
609 const MachineInstr *CPEMI) {
610 std::vector<CPEntry> &CPEs = CPEntries[CPI];
611 // Number of entries per constpool index should be small, just do a
612 // linear search.
613 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
614 if (CPEs[i].CPEMI == CPEMI)
615 return &CPEs[i];
617 return nullptr;
620 /// getCPEAlign - Returns the required alignment of the constant pool entry
621 /// represented by CPEMI. Alignment is measured in log2(bytes) units.
622 Align MipsConstantIslands::getCPEAlign(const MachineInstr &CPEMI) {
623 assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);
625 // Everything is 4-byte aligned unless AlignConstantIslands is set.
626 if (!AlignConstantIslands)
627 return Align(4);
629 unsigned CPI = CPEMI.getOperand(1).getIndex();
630 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
631 return Align(MCP->getConstants()[CPI].getAlignment());
634 /// initializeFunctionInfo - Do the initial scan of the function, building up
635 /// information about the sizes of each block, the location of all the water,
636 /// and finding all of the constant pool users.
637 void MipsConstantIslands::
638 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
639 BBInfo.clear();
640 BBInfo.resize(MF->getNumBlockIDs());
642 // First thing, compute the size of all basic blocks, and see if the function
643 // has any inline assembly in it. If so, we have to be conservative about
644 // alignment assumptions, as we don't know for sure the size of any
645 // instructions in the inline assembly.
646 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
647 computeBlockSize(&*I);
649 // Compute block offsets.
650 adjustBBOffsetsAfter(&MF->front());
652 // Now go back through the instructions and build up our data structures.
653 for (MachineBasicBlock &MBB : *MF) {
654 // If this block doesn't fall through into the next MBB, then this is
655 // 'water' that a constant pool island could be placed.
656 if (!BBHasFallthrough(&MBB))
657 WaterList.push_back(&MBB);
658 for (MachineInstr &MI : MBB) {
659 if (MI.isDebugInstr())
660 continue;
662 int Opc = MI.getOpcode();
663 if (MI.isBranch()) {
664 bool isCond = false;
665 unsigned Bits = 0;
666 unsigned Scale = 1;
667 int UOpc = Opc;
668 switch (Opc) {
669 default:
670 continue; // Ignore other branches for now
671 case Mips::Bimm16:
672 Bits = 11;
673 Scale = 2;
674 isCond = false;
675 break;
676 case Mips::BimmX16:
677 Bits = 16;
678 Scale = 2;
679 isCond = false;
680 break;
681 case Mips::BeqzRxImm16:
682 UOpc=Mips::Bimm16;
683 Bits = 8;
684 Scale = 2;
685 isCond = true;
686 break;
687 case Mips::BeqzRxImmX16:
688 UOpc=Mips::Bimm16;
689 Bits = 16;
690 Scale = 2;
691 isCond = true;
692 break;
693 case Mips::BnezRxImm16:
694 UOpc=Mips::Bimm16;
695 Bits = 8;
696 Scale = 2;
697 isCond = true;
698 break;
699 case Mips::BnezRxImmX16:
700 UOpc=Mips::Bimm16;
701 Bits = 16;
702 Scale = 2;
703 isCond = true;
704 break;
705 case Mips::Bteqz16:
706 UOpc=Mips::Bimm16;
707 Bits = 8;
708 Scale = 2;
709 isCond = true;
710 break;
711 case Mips::BteqzX16:
712 UOpc=Mips::Bimm16;
713 Bits = 16;
714 Scale = 2;
715 isCond = true;
716 break;
717 case Mips::Btnez16:
718 UOpc=Mips::Bimm16;
719 Bits = 8;
720 Scale = 2;
721 isCond = true;
722 break;
723 case Mips::BtnezX16:
724 UOpc=Mips::Bimm16;
725 Bits = 16;
726 Scale = 2;
727 isCond = true;
728 break;
730 // Record this immediate branch.
731 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
732 ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
735 if (Opc == Mips::CONSTPOOL_ENTRY)
736 continue;
738 // Scan the instructions for constant pool operands.
739 for (unsigned op = 0, e = MI.getNumOperands(); op != e; ++op)
740 if (MI.getOperand(op).isCPI()) {
741 // We found one. The addressing mode tells us the max displacement
742 // from the PC that this instruction permits.
744 // Basic size info comes from the TSFlags field.
745 unsigned Bits = 0;
746 unsigned Scale = 1;
747 bool NegOk = false;
748 unsigned LongFormBits = 0;
749 unsigned LongFormScale = 0;
750 unsigned LongFormOpcode = 0;
751 switch (Opc) {
752 default:
753 llvm_unreachable("Unknown addressing mode for CP reference!");
754 case Mips::LwRxPcTcp16:
755 Bits = 8;
756 Scale = 4;
757 LongFormOpcode = Mips::LwRxPcTcpX16;
758 LongFormBits = 14;
759 LongFormScale = 1;
760 break;
761 case Mips::LwRxPcTcpX16:
762 Bits = 14;
763 Scale = 1;
764 NegOk = true;
765 break;
767 // Remember that this is a user of a CP entry.
768 unsigned CPI = MI.getOperand(op).getIndex();
769 MachineInstr *CPEMI = CPEMIs[CPI];
770 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
771 unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
772 CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
773 LongFormOpcode));
775 // Increment corresponding CPEntry reference count.
776 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
777 assert(CPE && "Cannot find a corresponding CPEntry!");
778 CPE->RefCount++;
780 // Instructions can only use one CP entry, don't bother scanning the
781 // rest of the operands.
782 break;
788 /// computeBlockSize - Compute the size and some alignment information for MBB.
789 /// This function updates BBInfo directly.
790 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
791 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
792 BBI.Size = 0;
794 for (const MachineInstr &MI : *MBB)
795 BBI.Size += TII->getInstSizeInBytes(MI);
798 /// getOffsetOf - Return the current offset of the specified machine instruction
799 /// from the start of the function. This offset changes as stuff is moved
800 /// around inside the function.
801 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
802 MachineBasicBlock *MBB = MI->getParent();
804 // The offset is composed of two things: the sum of the sizes of all MBB's
805 // before this instruction's block, and the offset from the start of the block
806 // it is in.
807 unsigned Offset = BBInfo[MBB->getNumber()].Offset;
809 // Sum instructions before MI in MBB.
810 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
811 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
812 Offset += TII->getInstSizeInBytes(*I);
814 return Offset;
817 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
818 /// ID.
819 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
820 const MachineBasicBlock *RHS) {
821 return LHS->getNumber() < RHS->getNumber();
824 /// updateForInsertedWaterBlock - When a block is newly inserted into the
825 /// machine function, it upsets all of the block numbers. Renumber the blocks
826 /// and update the arrays that parallel this numbering.
827 void MipsConstantIslands::updateForInsertedWaterBlock
828 (MachineBasicBlock *NewBB) {
829 // Renumber the MBB's to keep them consecutive.
830 NewBB->getParent()->RenumberBlocks(NewBB);
832 // Insert an entry into BBInfo to align it properly with the (newly
833 // renumbered) block numbers.
834 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
836 // Next, update WaterList. Specifically, we need to add NewMBB as having
837 // available water after it.
838 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
839 WaterList.insert(IP, NewBB);
842 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
843 return getOffsetOf(U.MI);
846 /// Split the basic block containing MI into two blocks, which are joined by
847 /// an unconditional branch. Update data structures and renumber blocks to
848 /// account for this change and returns the newly created block.
849 MachineBasicBlock *
850 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
851 MachineBasicBlock *OrigBB = MI.getParent();
853 // Create a new MBB for the code after the OrigBB.
854 MachineBasicBlock *NewBB =
855 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
856 MachineFunction::iterator MBBI = ++OrigBB->getIterator();
857 MF->insert(MBBI, NewBB);
859 // Splice the instructions starting with MI over to NewBB.
860 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
862 // Add an unconditional branch from OrigBB to NewBB.
863 // Note the new unconditional branch is not being recorded.
864 // There doesn't seem to be meaningful DebugInfo available; this doesn't
865 // correspond to anything in the source.
866 BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
867 ++NumSplit;
869 // Update the CFG. All succs of OrigBB are now succs of NewBB.
870 NewBB->transferSuccessors(OrigBB);
872 // OrigBB branches to NewBB.
873 OrigBB->addSuccessor(NewBB);
875 // Update internal data structures to account for the newly inserted MBB.
876 // This is almost the same as updateForInsertedWaterBlock, except that
877 // the Water goes after OrigBB, not NewBB.
878 MF->RenumberBlocks(NewBB);
880 // Insert an entry into BBInfo to align it properly with the (newly
881 // renumbered) block numbers.
882 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
884 // Next, update WaterList. Specifically, we need to add OrigMBB as having
885 // available water after it (but not if it's already there, which happens
886 // when splitting before a conditional branch that is followed by an
887 // unconditional branch - in that case we want to insert NewBB).
888 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
889 MachineBasicBlock* WaterBB = *IP;
890 if (WaterBB == OrigBB)
891 WaterList.insert(std::next(IP), NewBB);
892 else
893 WaterList.insert(IP, OrigBB);
894 NewWaterList.insert(OrigBB);
896 // Figure out how large the OrigBB is. As the first half of the original
897 // block, it cannot contain a tablejump. The size includes
898 // the new jump we added. (It should be possible to do this without
899 // recounting everything, but it's very confusing, and this is rarely
900 // executed.)
901 computeBlockSize(OrigBB);
903 // Figure out how large the NewMBB is. As the second half of the original
904 // block, it may contain a tablejump.
905 computeBlockSize(NewBB);
907 // All BBOffsets following these blocks must be modified.
908 adjustBBOffsetsAfter(OrigBB);
910 return NewBB;
913 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
914 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
915 /// constant pool entry).
916 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
917 unsigned TrialOffset, unsigned MaxDisp,
918 bool NegativeOK) {
919 if (UserOffset <= TrialOffset) {
920 // User before the Trial.
921 if (TrialOffset - UserOffset <= MaxDisp)
922 return true;
923 } else if (NegativeOK) {
924 if (UserOffset - TrialOffset <= MaxDisp)
925 return true;
927 return false;
930 /// isWaterInRange - Returns true if a CPE placed after the specified
931 /// Water (a basic block) will be in range for the specific MI.
933 /// Compute how much the function will grow by inserting a CPE after Water.
934 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
935 MachineBasicBlock* Water, CPUser &U,
936 unsigned &Growth) {
937 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset();
938 unsigned NextBlockOffset;
939 Align NextBlockAlignment;
940 MachineFunction::const_iterator NextBlock = ++Water->getIterator();
941 if (NextBlock == MF->end()) {
942 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
943 NextBlockAlignment = Align::None();
944 } else {
945 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
946 NextBlockAlignment = NextBlock->getAlignment();
948 unsigned Size = U.CPEMI->getOperand(2).getImm();
949 unsigned CPEEnd = CPEOffset + Size;
951 // The CPE may be able to hide in the alignment padding before the next
952 // block. It may also cause more padding to be required if it is more aligned
953 // that the next block.
954 if (CPEEnd > NextBlockOffset) {
955 Growth = CPEEnd - NextBlockOffset;
956 // Compute the padding that would go at the end of the CPE to align the next
957 // block.
958 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
960 // If the CPE is to be inserted before the instruction, that will raise
961 // the offset of the instruction. Also account for unknown alignment padding
962 // in blocks between CPE and the user.
963 if (CPEOffset < UserOffset)
964 UserOffset += Growth;
965 } else
966 // CPE fits in existing padding.
967 Growth = 0;
969 return isOffsetInRange(UserOffset, CPEOffset, U);
972 /// isCPEntryInRange - Returns true if the distance between specific MI and
973 /// specific ConstPool entry instruction can fit in MI's displacement field.
974 bool MipsConstantIslands::isCPEntryInRange
975 (MachineInstr *MI, unsigned UserOffset,
976 MachineInstr *CPEMI, unsigned MaxDisp,
977 bool NegOk, bool DoDump) {
978 unsigned CPEOffset = getOffsetOf(CPEMI);
980 if (DoDump) {
981 LLVM_DEBUG({
982 unsigned Block = MI->getParent()->getNumber();
983 const BasicBlockInfo &BBI = BBInfo[Block];
984 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
985 << " max delta=" << MaxDisp
986 << format(" insn address=%#x", UserOffset) << " in "
987 << printMBBReference(*MI->getParent()) << ": "
988 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
989 << format("CPE address=%#x offset=%+d: ", CPEOffset,
990 int(CPEOffset - UserOffset));
994 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
997 #ifndef NDEBUG
998 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
999 /// unconditionally branches to its only successor.
1000 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1001 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1002 return false;
1003 MachineBasicBlock *Succ = *MBB->succ_begin();
1004 MachineBasicBlock *Pred = *MBB->pred_begin();
1005 MachineInstr *PredMI = &Pred->back();
1006 if (PredMI->getOpcode() == Mips::Bimm16)
1007 return PredMI->getOperand(0).getMBB() == Succ;
1008 return false;
1010 #endif
1012 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1013 unsigned BBNum = BB->getNumber();
1014 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1015 // Get the offset and known bits at the end of the layout predecessor.
1016 // Include the alignment of the current block.
1017 unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1018 BBInfo[i].Offset = Offset;
1022 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1023 /// and instruction CPEMI, and decrement its refcount. If the refcount
1024 /// becomes 0 remove the entry and instruction. Returns true if we removed
1025 /// the entry, false if we didn't.
1026 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1027 MachineInstr *CPEMI) {
1028 // Find the old entry. Eliminate it if it is no longer used.
1029 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1030 assert(CPE && "Unexpected!");
1031 if (--CPE->RefCount == 0) {
1032 removeDeadCPEMI(CPEMI);
1033 CPE->CPEMI = nullptr;
1034 --NumCPEs;
1035 return true;
1037 return false;
1040 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1041 /// if not, see if an in-range clone of the CPE is in range, and if so,
1042 /// change the data structures so the user references the clone. Returns:
1043 /// 0 = no existing entry found
1044 /// 1 = entry found, and there were no code insertions or deletions
1045 /// 2 = entry found, and there were code insertions or deletions
1046 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1048 MachineInstr *UserMI = U.MI;
1049 MachineInstr *CPEMI = U.CPEMI;
1051 // Check to see if the CPE is already in-range.
1052 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1053 true)) {
1054 LLVM_DEBUG(dbgs() << "In range\n");
1055 return 1;
1058 // No. Look for previously created clones of the CPE that are in range.
1059 unsigned CPI = CPEMI->getOperand(1).getIndex();
1060 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1061 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1062 // We already tried this one
1063 if (CPEs[i].CPEMI == CPEMI)
1064 continue;
1065 // Removing CPEs can leave empty entries, skip
1066 if (CPEs[i].CPEMI == nullptr)
1067 continue;
1068 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1069 U.NegOk)) {
1070 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1071 << CPEs[i].CPI << "\n");
1072 // Point the CPUser node to the replacement
1073 U.CPEMI = CPEs[i].CPEMI;
1074 // Change the CPI in the instruction operand to refer to the clone.
1075 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1076 if (UserMI->getOperand(j).isCPI()) {
1077 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1078 break;
1080 // Adjust the refcount of the clone...
1081 CPEs[i].RefCount++;
1082 // ...and the original. If we didn't remove the old entry, none of the
1083 // addresses changed, so we don't need another pass.
1084 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1087 return 0;
1090 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1091 /// This version checks if the longer form of the instruction can be used to
1092 /// to satisfy things.
1093 /// if not, see if an in-range clone of the CPE is in range, and if so,
1094 /// change the data structures so the user references the clone. Returns:
1095 /// 0 = no existing entry found
1096 /// 1 = entry found, and there were no code insertions or deletions
1097 /// 2 = entry found, and there were code insertions or deletions
1098 int MipsConstantIslands::findLongFormInRangeCPEntry
1099 (CPUser& U, unsigned UserOffset)
1101 MachineInstr *UserMI = U.MI;
1102 MachineInstr *CPEMI = U.CPEMI;
1104 // Check to see if the CPE is already in-range.
1105 if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1106 U.getLongFormMaxDisp(), U.NegOk,
1107 true)) {
1108 LLVM_DEBUG(dbgs() << "In range\n");
1109 UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1110 U.setMaxDisp(U.getLongFormMaxDisp());
1111 return 2; // instruction is longer length now
1114 // No. Look for previously created clones of the CPE that are in range.
1115 unsigned CPI = CPEMI->getOperand(1).getIndex();
1116 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1117 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1118 // We already tried this one
1119 if (CPEs[i].CPEMI == CPEMI)
1120 continue;
1121 // Removing CPEs can leave empty entries, skip
1122 if (CPEs[i].CPEMI == nullptr)
1123 continue;
1124 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1125 U.getLongFormMaxDisp(), U.NegOk)) {
1126 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1127 << CPEs[i].CPI << "\n");
1128 // Point the CPUser node to the replacement
1129 U.CPEMI = CPEs[i].CPEMI;
1130 // Change the CPI in the instruction operand to refer to the clone.
1131 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1132 if (UserMI->getOperand(j).isCPI()) {
1133 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1134 break;
1136 // Adjust the refcount of the clone...
1137 CPEs[i].RefCount++;
1138 // ...and the original. If we didn't remove the old entry, none of the
1139 // addresses changed, so we don't need another pass.
1140 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1143 return 0;
1146 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1147 /// the specific unconditional branch instruction.
1148 static inline unsigned getUnconditionalBrDisp(int Opc) {
1149 switch (Opc) {
1150 case Mips::Bimm16:
1151 return ((1<<10)-1)*2;
1152 case Mips::BimmX16:
1153 return ((1<<16)-1)*2;
1154 default:
1155 break;
1157 return ((1<<16)-1)*2;
1160 /// findAvailableWater - Look for an existing entry in the WaterList in which
1161 /// we can place the CPE referenced from U so it's within range of U's MI.
1162 /// Returns true if found, false if not. If it returns true, WaterIter
1163 /// is set to the WaterList entry.
1164 /// To ensure that this pass
1165 /// terminates, the CPE location for a particular CPUser is only allowed to
1166 /// move to a lower address, so search backward from the end of the list and
1167 /// prefer the first water that is in range.
1168 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1169 water_iterator &WaterIter) {
1170 if (WaterList.empty())
1171 return false;
1173 unsigned BestGrowth = ~0u;
1174 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1175 --IP) {
1176 MachineBasicBlock* WaterBB = *IP;
1177 // Check if water is in range and is either at a lower address than the
1178 // current "high water mark" or a new water block that was created since
1179 // the previous iteration by inserting an unconditional branch. In the
1180 // latter case, we want to allow resetting the high water mark back to
1181 // this new water since we haven't seen it before. Inserting branches
1182 // should be relatively uncommon and when it does happen, we want to be
1183 // sure to take advantage of it for all the CPEs near that block, so that
1184 // we don't insert more branches than necessary.
1185 unsigned Growth;
1186 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1187 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1188 NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1189 // This is the least amount of required padding seen so far.
1190 BestGrowth = Growth;
1191 WaterIter = IP;
1192 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1193 << " Growth=" << Growth << '\n');
1195 // Keep looking unless it is perfect.
1196 if (BestGrowth == 0)
1197 return true;
1199 if (IP == B)
1200 break;
1202 return BestGrowth != ~0u;
1205 /// createNewWater - No existing WaterList entry will work for
1206 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1207 /// block is used if in range, and the conditional branch munged so control
1208 /// flow is correct. Otherwise the block is split to create a hole with an
1209 /// unconditional branch around it. In either case NewMBB is set to a
1210 /// block following which the new island can be inserted (the WaterList
1211 /// is not adjusted).
1212 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1213 unsigned UserOffset,
1214 MachineBasicBlock *&NewMBB) {
1215 CPUser &U = CPUsers[CPUserIndex];
1216 MachineInstr *UserMI = U.MI;
1217 MachineInstr *CPEMI = U.CPEMI;
1218 MachineBasicBlock *UserMBB = UserMI->getParent();
1219 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1221 // If the block does not end in an unconditional branch already, and if the
1222 // end of the block is within range, make new water there.
1223 if (BBHasFallthrough(UserMBB)) {
1224 // Size of branch to insert.
1225 unsigned Delta = 2;
1226 // Compute the offset where the CPE will begin.
1227 unsigned CPEOffset = UserBBI.postOffset() + Delta;
1229 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1230 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1231 << format(", expected CPE offset %#x\n", CPEOffset));
1232 NewMBB = &*++UserMBB->getIterator();
1233 // Add an unconditional branch from UserMBB to fallthrough block. Record
1234 // it for branch lengthening; this new branch will not get out of range,
1235 // but if the preceding conditional branch is out of range, the targets
1236 // will be exchanged, and the altered branch may be out of range, so the
1237 // machinery has to know about it.
1238 int UncondBr = Mips::Bimm16;
1239 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1240 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1241 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1242 MaxDisp, false, UncondBr));
1243 BBInfo[UserMBB->getNumber()].Size += Delta;
1244 adjustBBOffsetsAfter(UserMBB);
1245 return;
1249 // What a big block. Find a place within the block to split it.
1251 // Try to split the block so it's fully aligned. Compute the latest split
1252 // point where we can add a 4-byte branch instruction, and then align to
1253 // Align which is the largest possible alignment in the function.
1254 const Align Align = MF->getAlignment();
1255 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1256 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1257 BaseInsertOffset));
1259 // The 4 in the following is for the unconditional branch we'll be inserting
1260 // Alignment of the island is handled
1261 // inside isOffsetInRange.
1262 BaseInsertOffset -= 4;
1264 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1265 << " la=" << Log2(Align) << '\n');
1267 // This could point off the end of the block if we've already got constant
1268 // pool entries following this block; only the last one is in the water list.
1269 // Back past any possible branches (allow for a conditional and a maximally
1270 // long unconditional).
1271 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1272 BaseInsertOffset = UserBBI.postOffset() - 8;
1273 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1275 unsigned EndInsertOffset = BaseInsertOffset + 4 +
1276 CPEMI->getOperand(2).getImm();
1277 MachineBasicBlock::iterator MI = UserMI;
1278 ++MI;
1279 unsigned CPUIndex = CPUserIndex+1;
1280 unsigned NumCPUsers = CPUsers.size();
1281 //MachineInstr *LastIT = 0;
1282 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1283 Offset < BaseInsertOffset;
1284 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1285 assert(MI != UserMBB->end() && "Fell off end of block");
1286 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1287 CPUser &U = CPUsers[CPUIndex];
1288 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1289 // Shift intertion point by one unit of alignment so it is within reach.
1290 BaseInsertOffset -= Align.value();
1291 EndInsertOffset -= Align.value();
1293 // This is overly conservative, as we don't account for CPEMIs being
1294 // reused within the block, but it doesn't matter much. Also assume CPEs
1295 // are added in order with alignment padding. We may eventually be able
1296 // to pack the aligned CPEs better.
1297 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1298 CPUIndex++;
1302 NewMBB = splitBlockBeforeInstr(*--MI);
1305 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1306 /// is out-of-range. If so, pick up the constant pool value and move it some
1307 /// place in-range. Return true if we changed any addresses (thus must run
1308 /// another pass of branch lengthening), false otherwise.
1309 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1310 CPUser &U = CPUsers[CPUserIndex];
1311 MachineInstr *UserMI = U.MI;
1312 MachineInstr *CPEMI = U.CPEMI;
1313 unsigned CPI = CPEMI->getOperand(1).getIndex();
1314 unsigned Size = CPEMI->getOperand(2).getImm();
1315 // Compute this only once, it's expensive.
1316 unsigned UserOffset = getUserOffset(U);
1318 // See if the current entry is within range, or there is a clone of it
1319 // in range.
1320 int result = findInRangeCPEntry(U, UserOffset);
1321 if (result==1) return false;
1322 else if (result==2) return true;
1324 // Look for water where we can place this CPE.
1325 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1326 MachineBasicBlock *NewMBB;
1327 water_iterator IP;
1328 if (findAvailableWater(U, UserOffset, IP)) {
1329 LLVM_DEBUG(dbgs() << "Found water in range\n");
1330 MachineBasicBlock *WaterBB = *IP;
1332 // If the original WaterList entry was "new water" on this iteration,
1333 // propagate that to the new island. This is just keeping NewWaterList
1334 // updated to match the WaterList, which will be updated below.
1335 if (NewWaterList.erase(WaterBB))
1336 NewWaterList.insert(NewIsland);
1338 // The new CPE goes before the following block (NewMBB).
1339 NewMBB = &*++WaterBB->getIterator();
1340 } else {
1341 // No water found.
1342 // we first see if a longer form of the instrucion could have reached
1343 // the constant. in that case we won't bother to split
1344 if (!NoLoadRelaxation) {
1345 result = findLongFormInRangeCPEntry(U, UserOffset);
1346 if (result != 0) return true;
1348 LLVM_DEBUG(dbgs() << "No water found\n");
1349 createNewWater(CPUserIndex, UserOffset, NewMBB);
1351 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1352 // called while handling branches so that the water will be seen on the
1353 // next iteration for constant pools, but in this context, we don't want
1354 // it. Check for this so it will be removed from the WaterList.
1355 // Also remove any entry from NewWaterList.
1356 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1357 IP = llvm::find(WaterList, WaterBB);
1358 if (IP != WaterList.end())
1359 NewWaterList.erase(WaterBB);
1361 // We are adding new water. Update NewWaterList.
1362 NewWaterList.insert(NewIsland);
1365 // Remove the original WaterList entry; we want subsequent insertions in
1366 // this vicinity to go after the one we're about to insert. This
1367 // considerably reduces the number of times we have to move the same CPE
1368 // more than once and is also important to ensure the algorithm terminates.
1369 if (IP != WaterList.end())
1370 WaterList.erase(IP);
1372 // Okay, we know we can put an island before NewMBB now, do it!
1373 MF->insert(NewMBB->getIterator(), NewIsland);
1375 // Update internal data structures to account for the newly inserted MBB.
1376 updateForInsertedWaterBlock(NewIsland);
1378 // Decrement the old entry, and remove it if refcount becomes 0.
1379 decrementCPEReferenceCount(CPI, CPEMI);
1381 // No existing clone of this CPE is within range.
1382 // We will be generating a new clone. Get a UID for it.
1383 unsigned ID = createPICLabelUId();
1385 // Now that we have an island to add the CPE to, clone the original CPE and
1386 // add it to the island.
1387 U.HighWaterMark = NewIsland;
1388 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1389 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1390 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1391 ++NumCPEs;
1393 // Mark the basic block as aligned as required by the const-pool entry.
1394 NewIsland->setAlignment(getCPEAlign(*U.CPEMI));
1396 // Increase the size of the island block to account for the new entry.
1397 BBInfo[NewIsland->getNumber()].Size += Size;
1398 adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1400 // Finally, change the CPI in the instruction operand to be ID.
1401 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1402 if (UserMI->getOperand(i).isCPI()) {
1403 UserMI->getOperand(i).setIndex(ID);
1404 break;
1407 LLVM_DEBUG(
1408 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1409 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1411 return true;
1414 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1415 /// sizes and offsets of impacted basic blocks.
1416 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1417 MachineBasicBlock *CPEBB = CPEMI->getParent();
1418 unsigned Size = CPEMI->getOperand(2).getImm();
1419 CPEMI->eraseFromParent();
1420 BBInfo[CPEBB->getNumber()].Size -= Size;
1421 // All succeeding offsets have the current size value added in, fix this.
1422 if (CPEBB->empty()) {
1423 BBInfo[CPEBB->getNumber()].Size = 0;
1425 // This block no longer needs to be aligned.
1426 CPEBB->setAlignment(Align(1));
1427 } else {
1428 // Entries are sorted by descending alignment, so realign from the front.
1429 CPEBB->setAlignment(getCPEAlign(*CPEBB->begin()));
1432 adjustBBOffsetsAfter(CPEBB);
1433 // An island has only one predecessor BB and one successor BB. Check if
1434 // this BB's predecessor jumps directly to this BB's successor. This
1435 // shouldn't happen currently.
1436 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1437 // FIXME: remove the empty blocks after all the work is done?
1440 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1441 /// are zero.
1442 bool MipsConstantIslands::removeUnusedCPEntries() {
1443 unsigned MadeChange = false;
1444 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1445 std::vector<CPEntry> &CPEs = CPEntries[i];
1446 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1447 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1448 removeDeadCPEMI(CPEs[j].CPEMI);
1449 CPEs[j].CPEMI = nullptr;
1450 MadeChange = true;
1454 return MadeChange;
1457 /// isBBInRange - Returns true if the distance between specific MI and
1458 /// specific BB can fit in MI's displacement field.
1459 bool MipsConstantIslands::isBBInRange
1460 (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1461 unsigned PCAdj = 4;
1462 unsigned BrOffset = getOffsetOf(MI) + PCAdj;
1463 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1465 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1466 << " from " << printMBBReference(*MI->getParent())
1467 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1468 << " to " << DestOffset << " offset "
1469 << int(DestOffset - BrOffset) << "\t" << *MI);
1471 if (BrOffset <= DestOffset) {
1472 // Branch before the Dest.
1473 if (DestOffset-BrOffset <= MaxDisp)
1474 return true;
1475 } else {
1476 if (BrOffset-DestOffset <= MaxDisp)
1477 return true;
1479 return false;
1482 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1483 /// away to fit in its displacement field.
1484 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1485 MachineInstr *MI = Br.MI;
1486 unsigned TargetOperand = branchTargetOperand(MI);
1487 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1489 // Check to see if the DestBB is already in-range.
1490 if (isBBInRange(MI, DestBB, Br.MaxDisp))
1491 return false;
1493 if (!Br.isCond)
1494 return fixupUnconditionalBr(Br);
1495 return fixupConditionalBr(Br);
1498 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1499 /// too far away to fit in its displacement field. If the LR register has been
1500 /// spilled in the epilogue, then we can use BL to implement a far jump.
1501 /// Otherwise, add an intermediate branch instruction to a branch.
1502 bool
1503 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1504 MachineInstr *MI = Br.MI;
1505 MachineBasicBlock *MBB = MI->getParent();
1506 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1507 // Use BL to implement far jump.
1508 unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1509 if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1510 Br.MaxDisp = BimmX16MaxDisp;
1511 MI->setDesc(TII->get(Mips::BimmX16));
1513 else {
1514 // need to give the math a more careful look here
1515 // this is really a segment address and not
1516 // a PC relative address. FIXME. But I think that
1517 // just reducing the bits by 1 as I've done is correct.
1518 // The basic block we are branching too much be longword aligned.
1519 // we know that RA is saved because we always save it right now.
1520 // this requirement will be relaxed later but we also have an alternate
1521 // way to implement this that I will implement that does not need jal.
1522 // We should have a way to back out this alignment restriction if we "can" later.
1523 // but it is not harmful.
1525 DestBB->setAlignment(Align(4));
1526 Br.MaxDisp = ((1<<24)-1) * 2;
1527 MI->setDesc(TII->get(Mips::JalB16));
1529 BBInfo[MBB->getNumber()].Size += 2;
1530 adjustBBOffsetsAfter(MBB);
1531 HasFarJump = true;
1532 ++NumUBrFixed;
1534 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1536 return true;
1539 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1540 /// far away to fit in its displacement field. It is converted to an inverse
1541 /// conditional branch + an unconditional branch to the destination.
1542 bool
1543 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1544 MachineInstr *MI = Br.MI;
1545 unsigned TargetOperand = branchTargetOperand(MI);
1546 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1547 unsigned Opcode = MI->getOpcode();
1548 unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1549 unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1551 // Check to see if the DestBB is already in-range.
1552 if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1553 Br.MaxDisp = LongFormMaxOff;
1554 MI->setDesc(TII->get(LongFormOpcode));
1555 return true;
1558 // Add an unconditional branch to the destination and invert the branch
1559 // condition to jump over it:
1560 // bteqz L1
1561 // =>
1562 // bnez L2
1563 // b L1
1564 // L2:
1566 // If the branch is at the end of its MBB and that has a fall-through block,
1567 // direct the updated conditional branch to the fall-through block. Otherwise,
1568 // split the MBB before the next instruction.
1569 MachineBasicBlock *MBB = MI->getParent();
1570 MachineInstr *BMI = &MBB->back();
1571 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1572 unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1574 ++NumCBrFixed;
1575 if (BMI != MI) {
1576 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1577 BMI->isUnconditionalBranch()) {
1578 // Last MI in the BB is an unconditional branch. Can we simply invert the
1579 // condition and swap destinations:
1580 // beqz L1
1581 // b L2
1582 // =>
1583 // bnez L2
1584 // b L1
1585 unsigned BMITargetOperand = branchTargetOperand(BMI);
1586 MachineBasicBlock *NewDest =
1587 BMI->getOperand(BMITargetOperand).getMBB();
1588 if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1589 LLVM_DEBUG(
1590 dbgs() << " Invert Bcc condition and swap its destination with "
1591 << *BMI);
1592 MI->setDesc(TII->get(OppositeBranchOpcode));
1593 BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1594 MI->getOperand(TargetOperand).setMBB(NewDest);
1595 return true;
1600 if (NeedSplit) {
1601 splitBlockBeforeInstr(*MI);
1602 // No need for the branch to the next block. We're adding an unconditional
1603 // branch to the destination.
1604 int delta = TII->getInstSizeInBytes(MBB->back());
1605 BBInfo[MBB->getNumber()].Size -= delta;
1606 MBB->back().eraseFromParent();
1607 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1609 MachineBasicBlock *NextBB = &*++MBB->getIterator();
1611 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1612 << " also invert condition and change dest. to "
1613 << printMBBReference(*NextBB) << "\n");
1615 // Insert a new conditional branch and a new unconditional branch.
1616 // Also update the ImmBranch as well as adding a new entry for the new branch.
1617 if (MI->getNumExplicitOperands() == 2) {
1618 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1619 .addReg(MI->getOperand(0).getReg())
1620 .addMBB(NextBB);
1621 } else {
1622 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1623 .addMBB(NextBB);
1625 Br.MI = &MBB->back();
1626 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1627 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1628 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1629 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1630 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1632 // Remove the old conditional branch. It may or may not still be in MBB.
1633 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1634 MI->eraseFromParent();
1635 adjustBBOffsetsAfter(MBB);
1636 return true;
1639 void MipsConstantIslands::prescanForConstants() {
1640 unsigned J = 0;
1641 (void)J;
1642 for (MachineFunction::iterator B =
1643 MF->begin(), E = MF->end(); B != E; ++B) {
1644 for (MachineBasicBlock::instr_iterator I =
1645 B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1646 switch(I->getDesc().getOpcode()) {
1647 case Mips::LwConstant32: {
1648 PrescannedForConstants = true;
1649 LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
1650 J = I->getNumOperands();
1651 LLVM_DEBUG(dbgs() << "num operands " << J << "\n");
1652 MachineOperand& Literal = I->getOperand(1);
1653 if (Literal.isImm()) {
1654 int64_t V = Literal.getImm();
1655 LLVM_DEBUG(dbgs() << "literal " << V << "\n");
1656 Type *Int32Ty =
1657 Type::getInt32Ty(MF->getFunction().getContext());
1658 const Constant *C = ConstantInt::get(Int32Ty, V);
1659 unsigned index = MCP->getConstantPoolIndex(C, 4);
1660 I->getOperand(2).ChangeToImmediate(index);
1661 LLVM_DEBUG(dbgs() << "constant island constant " << *I << "\n");
1662 I->setDesc(TII->get(Mips::LwRxPcTcp16));
1663 I->RemoveOperand(1);
1664 I->RemoveOperand(1);
1665 I->addOperand(MachineOperand::CreateCPI(index, 0));
1666 I->addOperand(MachineOperand::CreateImm(4));
1668 break;
1670 default:
1671 break;
1677 /// Returns a pass that converts branches to long branches.
1678 FunctionPass *llvm::createMipsConstantIslandPass() {
1679 return new MipsConstantIslands();