[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / RISCV / AsmParser / RISCVAsmParser.cpp
blob300ba8dc675c90f930ce42e3ee82baade0b6cf1b
1 //===-- RISCVAsmParser.cpp - Parse RISCV assembly to MCInst instructions --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/RISCVAsmBackend.h"
10 #include "MCTargetDesc/RISCVMCExpr.h"
11 #include "MCTargetDesc/RISCVMCTargetDesc.h"
12 #include "MCTargetDesc/RISCVTargetStreamer.h"
13 #include "TargetInfo/RISCVTargetInfo.h"
14 #include "Utils/RISCVBaseInfo.h"
15 #include "Utils/RISCVMatInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/CodeGen/Register.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCInst.h"
24 #include "llvm/MC/MCInstBuilder.h"
25 #include "llvm/MC/MCObjectFileInfo.h"
26 #include "llvm/MC/MCParser/MCAsmLexer.h"
27 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
28 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
29 #include "llvm/MC/MCRegisterInfo.h"
30 #include "llvm/MC/MCStreamer.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/TargetRegistry.h"
36 #include <limits>
38 using namespace llvm;
40 // Include the auto-generated portion of the compress emitter.
41 #define GEN_COMPRESS_INSTR
42 #include "RISCVGenCompressInstEmitter.inc"
44 namespace {
45 struct RISCVOperand;
47 class RISCVAsmParser : public MCTargetAsmParser {
48 SmallVector<FeatureBitset, 4> FeatureBitStack;
50 SMLoc getLoc() const { return getParser().getTok().getLoc(); }
51 bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
52 bool isRV32E() const { return getSTI().hasFeature(RISCV::FeatureRV32E); }
54 RISCVTargetStreamer &getTargetStreamer() {
55 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
56 return static_cast<RISCVTargetStreamer &>(TS);
59 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
60 unsigned Kind) override;
62 bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
63 int64_t Lower, int64_t Upper, Twine Msg);
65 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
66 OperandVector &Operands, MCStreamer &Out,
67 uint64_t &ErrorInfo,
68 bool MatchingInlineAsm) override;
70 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
72 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
73 SMLoc NameLoc, OperandVector &Operands) override;
75 bool ParseDirective(AsmToken DirectiveID) override;
77 // Helper to actually emit an instruction to the MCStreamer. Also, when
78 // possible, compression of the instruction is performed.
79 void emitToStreamer(MCStreamer &S, const MCInst &Inst);
81 // Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
82 // synthesize the desired immedate value into the destination register.
83 void emitLoadImm(Register DestReg, int64_t Value, MCStreamer &Out);
85 // Helper to emit a combination of AUIPC and SecondOpcode. Used to implement
86 // helpers such as emitLoadLocalAddress and emitLoadAddress.
87 void emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
88 const MCExpr *Symbol, RISCVMCExpr::VariantKind VKHi,
89 unsigned SecondOpcode, SMLoc IDLoc, MCStreamer &Out);
91 // Helper to emit pseudo instruction "lla" used in PC-rel addressing.
92 void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
94 // Helper to emit pseudo instruction "la" used in GOT/PC-rel addressing.
95 void emitLoadAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
97 // Helper to emit pseudo instruction "la.tls.ie" used in initial-exec TLS
98 // addressing.
99 void emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
101 // Helper to emit pseudo instruction "la.tls.gd" used in global-dynamic TLS
102 // addressing.
103 void emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
105 // Helper to emit pseudo load/store instruction with a symbol.
106 void emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
107 MCStreamer &Out, bool HasTmpReg);
109 // Checks that a PseudoAddTPRel is using x4/tp in its second input operand.
110 // Enforcing this using a restricted register class for the second input
111 // operand of PseudoAddTPRel results in a poor diagnostic due to the fact
112 // 'add' is an overloaded mnemonic.
113 bool checkPseudoAddTPRel(MCInst &Inst, OperandVector &Operands);
115 /// Helper for processing MC instructions that have been successfully matched
116 /// by MatchAndEmitInstruction. Modifications to the emitted instructions,
117 /// like the expansion of pseudo instructions (e.g., "li"), can be performed
118 /// in this method.
119 bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
120 MCStreamer &Out);
122 // Auto-generated instruction matching functions
123 #define GET_ASSEMBLER_HEADER
124 #include "RISCVGenAsmMatcher.inc"
126 OperandMatchResultTy parseCSRSystemRegister(OperandVector &Operands);
127 OperandMatchResultTy parseImmediate(OperandVector &Operands);
128 OperandMatchResultTy parseRegister(OperandVector &Operands,
129 bool AllowParens = false);
130 OperandMatchResultTy parseMemOpBaseReg(OperandVector &Operands);
131 OperandMatchResultTy parseAtomicMemOp(OperandVector &Operands);
132 OperandMatchResultTy parseOperandWithModifier(OperandVector &Operands);
133 OperandMatchResultTy parseBareSymbol(OperandVector &Operands);
134 OperandMatchResultTy parseCallSymbol(OperandVector &Operands);
135 OperandMatchResultTy parseJALOffset(OperandVector &Operands);
137 bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
139 bool parseDirectiveOption();
141 void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
142 if (!(getSTI().getFeatureBits()[Feature])) {
143 MCSubtargetInfo &STI = copySTI();
144 setAvailableFeatures(
145 ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
149 void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
150 if (getSTI().getFeatureBits()[Feature]) {
151 MCSubtargetInfo &STI = copySTI();
152 setAvailableFeatures(
153 ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
157 void pushFeatureBits() {
158 FeatureBitStack.push_back(getSTI().getFeatureBits());
161 bool popFeatureBits() {
162 if (FeatureBitStack.empty())
163 return true;
165 FeatureBitset FeatureBits = FeatureBitStack.pop_back_val();
166 copySTI().setFeatureBits(FeatureBits);
167 setAvailableFeatures(ComputeAvailableFeatures(FeatureBits));
169 return false;
171 public:
172 enum RISCVMatchResultTy {
173 Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
174 #define GET_OPERAND_DIAGNOSTIC_TYPES
175 #include "RISCVGenAsmMatcher.inc"
176 #undef GET_OPERAND_DIAGNOSTIC_TYPES
179 static bool classifySymbolRef(const MCExpr *Expr,
180 RISCVMCExpr::VariantKind &Kind,
181 int64_t &Addend);
183 RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
184 const MCInstrInfo &MII, const MCTargetOptions &Options)
185 : MCTargetAsmParser(Options, STI, MII) {
186 Parser.addAliasForDirective(".half", ".2byte");
187 Parser.addAliasForDirective(".hword", ".2byte");
188 Parser.addAliasForDirective(".word", ".4byte");
189 Parser.addAliasForDirective(".dword", ".8byte");
190 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
194 /// RISCVOperand - Instances of this class represent a parsed machine
195 /// instruction
196 struct RISCVOperand : public MCParsedAsmOperand {
198 enum class KindTy {
199 Token,
200 Register,
201 Immediate,
202 SystemRegister
203 } Kind;
205 bool IsRV64;
207 struct RegOp {
208 Register RegNum;
211 struct ImmOp {
212 const MCExpr *Val;
215 struct SysRegOp {
216 const char *Data;
217 unsigned Length;
218 unsigned Encoding;
219 // FIXME: Add the Encoding parsed fields as needed for checks,
220 // e.g.: read/write or user/supervisor/machine privileges.
223 SMLoc StartLoc, EndLoc;
224 union {
225 StringRef Tok;
226 RegOp Reg;
227 ImmOp Imm;
228 struct SysRegOp SysReg;
231 RISCVOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
233 public:
234 RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
235 Kind = o.Kind;
236 IsRV64 = o.IsRV64;
237 StartLoc = o.StartLoc;
238 EndLoc = o.EndLoc;
239 switch (Kind) {
240 case KindTy::Register:
241 Reg = o.Reg;
242 break;
243 case KindTy::Immediate:
244 Imm = o.Imm;
245 break;
246 case KindTy::Token:
247 Tok = o.Tok;
248 break;
249 case KindTy::SystemRegister:
250 SysReg = o.SysReg;
251 break;
255 bool isToken() const override { return Kind == KindTy::Token; }
256 bool isReg() const override { return Kind == KindTy::Register; }
257 bool isImm() const override { return Kind == KindTy::Immediate; }
258 bool isMem() const override { return false; }
259 bool isSystemRegister() const { return Kind == KindTy::SystemRegister; }
261 static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm,
262 RISCVMCExpr::VariantKind &VK) {
263 if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
264 VK = RE->getKind();
265 return RE->evaluateAsConstant(Imm);
268 if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
269 VK = RISCVMCExpr::VK_RISCV_None;
270 Imm = CE->getValue();
271 return true;
274 return false;
277 // True if operand is a symbol with no modifiers, or a constant with no
278 // modifiers and isShiftedInt<N-1, 1>(Op).
279 template <int N> bool isBareSimmNLsb0() const {
280 int64_t Imm;
281 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
282 if (!isImm())
283 return false;
284 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
285 bool IsValid;
286 if (!IsConstantImm)
287 IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
288 else
289 IsValid = isShiftedInt<N - 1, 1>(Imm);
290 return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
293 // Predicate methods for AsmOperands defined in RISCVInstrInfo.td
295 bool isBareSymbol() const {
296 int64_t Imm;
297 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
298 // Must be of 'immediate' type but not a constant.
299 if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
300 return false;
301 return RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm) &&
302 VK == RISCVMCExpr::VK_RISCV_None;
305 bool isCallSymbol() const {
306 int64_t Imm;
307 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
308 // Must be of 'immediate' type but not a constant.
309 if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
310 return false;
311 return RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm) &&
312 (VK == RISCVMCExpr::VK_RISCV_CALL ||
313 VK == RISCVMCExpr::VK_RISCV_CALL_PLT);
316 bool isTPRelAddSymbol() const {
317 int64_t Imm;
318 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
319 // Must be of 'immediate' type but not a constant.
320 if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
321 return false;
322 return RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm) &&
323 VK == RISCVMCExpr::VK_RISCV_TPREL_ADD;
326 bool isCSRSystemRegister() const { return isSystemRegister(); }
328 /// Return true if the operand is a valid for the fence instruction e.g.
329 /// ('iorw').
330 bool isFenceArg() const {
331 if (!isImm())
332 return false;
333 const MCExpr *Val = getImm();
334 auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
335 if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
336 return false;
338 StringRef Str = SVal->getSymbol().getName();
339 // Letters must be unique, taken from 'iorw', and in ascending order. This
340 // holds as long as each individual character is one of 'iorw' and is
341 // greater than the previous character.
342 char Prev = '\0';
343 for (char c : Str) {
344 if (c != 'i' && c != 'o' && c != 'r' && c != 'w')
345 return false;
346 if (c <= Prev)
347 return false;
348 Prev = c;
350 return true;
353 /// Return true if the operand is a valid floating point rounding mode.
354 bool isFRMArg() const {
355 if (!isImm())
356 return false;
357 const MCExpr *Val = getImm();
358 auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
359 if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
360 return false;
362 StringRef Str = SVal->getSymbol().getName();
364 return RISCVFPRndMode::stringToRoundingMode(Str) != RISCVFPRndMode::Invalid;
367 bool isImmXLenLI() const {
368 int64_t Imm;
369 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
370 if (!isImm())
371 return false;
372 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
373 if (VK == RISCVMCExpr::VK_RISCV_LO || VK == RISCVMCExpr::VK_RISCV_PCREL_LO)
374 return true;
375 // Given only Imm, ensuring that the actually specified constant is either
376 // a signed or unsigned 64-bit number is unfortunately impossible.
377 return IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None &&
378 (isRV64() || (isInt<32>(Imm) || isUInt<32>(Imm)));
381 bool isUImmLog2XLen() const {
382 int64_t Imm;
383 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
384 if (!isImm())
385 return false;
386 if (!evaluateConstantImm(getImm(), Imm, VK) ||
387 VK != RISCVMCExpr::VK_RISCV_None)
388 return false;
389 return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
392 bool isUImmLog2XLenNonZero() const {
393 int64_t Imm;
394 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
395 if (!isImm())
396 return false;
397 if (!evaluateConstantImm(getImm(), Imm, VK) ||
398 VK != RISCVMCExpr::VK_RISCV_None)
399 return false;
400 if (Imm == 0)
401 return false;
402 return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
405 bool isUImm5() const {
406 int64_t Imm;
407 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
408 if (!isImm())
409 return false;
410 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
411 return IsConstantImm && isUInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
414 bool isUImm5NonZero() const {
415 int64_t Imm;
416 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
417 if (!isImm())
418 return false;
419 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
420 return IsConstantImm && isUInt<5>(Imm) && (Imm != 0) &&
421 VK == RISCVMCExpr::VK_RISCV_None;
424 bool isSImm6() const {
425 if (!isImm())
426 return false;
427 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
428 int64_t Imm;
429 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
430 return IsConstantImm && isInt<6>(Imm) &&
431 VK == RISCVMCExpr::VK_RISCV_None;
434 bool isSImm6NonZero() const {
435 if (!isImm())
436 return false;
437 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
438 int64_t Imm;
439 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
440 return IsConstantImm && isInt<6>(Imm) && (Imm != 0) &&
441 VK == RISCVMCExpr::VK_RISCV_None;
444 bool isCLUIImm() const {
445 if (!isImm())
446 return false;
447 int64_t Imm;
448 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
449 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
450 return IsConstantImm && (Imm != 0) &&
451 (isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
452 VK == RISCVMCExpr::VK_RISCV_None;
455 bool isUImm7Lsb00() const {
456 if (!isImm())
457 return false;
458 int64_t Imm;
459 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
460 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
461 return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
462 VK == RISCVMCExpr::VK_RISCV_None;
465 bool isUImm8Lsb00() const {
466 if (!isImm())
467 return false;
468 int64_t Imm;
469 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
470 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
471 return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
472 VK == RISCVMCExpr::VK_RISCV_None;
475 bool isUImm8Lsb000() const {
476 if (!isImm())
477 return false;
478 int64_t Imm;
479 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
480 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
481 return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
482 VK == RISCVMCExpr::VK_RISCV_None;
485 bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
487 bool isUImm9Lsb000() const {
488 if (!isImm())
489 return false;
490 int64_t Imm;
491 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
492 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
493 return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
494 VK == RISCVMCExpr::VK_RISCV_None;
497 bool isUImm10Lsb00NonZero() const {
498 if (!isImm())
499 return false;
500 int64_t Imm;
501 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
502 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
503 return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
504 VK == RISCVMCExpr::VK_RISCV_None;
507 bool isSImm12() const {
508 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
509 int64_t Imm;
510 bool IsValid;
511 if (!isImm())
512 return false;
513 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
514 if (!IsConstantImm)
515 IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
516 else
517 IsValid = isInt<12>(Imm);
518 return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) ||
519 VK == RISCVMCExpr::VK_RISCV_LO ||
520 VK == RISCVMCExpr::VK_RISCV_PCREL_LO ||
521 VK == RISCVMCExpr::VK_RISCV_TPREL_LO);
524 bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
526 bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
528 bool isSImm10Lsb0000NonZero() const {
529 if (!isImm())
530 return false;
531 int64_t Imm;
532 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
533 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
534 return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
535 VK == RISCVMCExpr::VK_RISCV_None;
538 bool isUImm20LUI() const {
539 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
540 int64_t Imm;
541 bool IsValid;
542 if (!isImm())
543 return false;
544 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
545 if (!IsConstantImm) {
546 IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
547 return IsValid && (VK == RISCVMCExpr::VK_RISCV_HI ||
548 VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
549 } else {
550 return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
551 VK == RISCVMCExpr::VK_RISCV_HI ||
552 VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
556 bool isUImm20AUIPC() const {
557 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
558 int64_t Imm;
559 bool IsValid;
560 if (!isImm())
561 return false;
562 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
563 if (!IsConstantImm) {
564 IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
565 return IsValid && (VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
566 VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
567 VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
568 VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
569 } else {
570 return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
571 VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
572 VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
573 VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
574 VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI);
578 bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); }
580 bool isImmZero() const {
581 if (!isImm())
582 return false;
583 int64_t Imm;
584 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
585 bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
586 return IsConstantImm && (Imm == 0) && VK == RISCVMCExpr::VK_RISCV_None;
589 /// getStartLoc - Gets location of the first token of this operand
590 SMLoc getStartLoc() const override { return StartLoc; }
591 /// getEndLoc - Gets location of the last token of this operand
592 SMLoc getEndLoc() const override { return EndLoc; }
593 /// True if this operand is for an RV64 instruction
594 bool isRV64() const { return IsRV64; }
596 unsigned getReg() const override {
597 assert(Kind == KindTy::Register && "Invalid type access!");
598 return Reg.RegNum.id();
601 StringRef getSysReg() const {
602 assert(Kind == KindTy::SystemRegister && "Invalid access!");
603 return StringRef(SysReg.Data, SysReg.Length);
606 const MCExpr *getImm() const {
607 assert(Kind == KindTy::Immediate && "Invalid type access!");
608 return Imm.Val;
611 StringRef getToken() const {
612 assert(Kind == KindTy::Token && "Invalid type access!");
613 return Tok;
616 void print(raw_ostream &OS) const override {
617 switch (Kind) {
618 case KindTy::Immediate:
619 OS << *getImm();
620 break;
621 case KindTy::Register:
622 OS << "<register x";
623 OS << getReg() << ">";
624 break;
625 case KindTy::Token:
626 OS << "'" << getToken() << "'";
627 break;
628 case KindTy::SystemRegister:
629 OS << "<sysreg: " << getSysReg() << '>';
630 break;
634 static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S,
635 bool IsRV64) {
636 auto Op = std::make_unique<RISCVOperand>(KindTy::Token);
637 Op->Tok = Str;
638 Op->StartLoc = S;
639 Op->EndLoc = S;
640 Op->IsRV64 = IsRV64;
641 return Op;
644 static std::unique_ptr<RISCVOperand> createReg(unsigned RegNo, SMLoc S,
645 SMLoc E, bool IsRV64) {
646 auto Op = std::make_unique<RISCVOperand>(KindTy::Register);
647 Op->Reg.RegNum = RegNo;
648 Op->StartLoc = S;
649 Op->EndLoc = E;
650 Op->IsRV64 = IsRV64;
651 return Op;
654 static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
655 SMLoc E, bool IsRV64) {
656 auto Op = std::make_unique<RISCVOperand>(KindTy::Immediate);
657 Op->Imm.Val = Val;
658 Op->StartLoc = S;
659 Op->EndLoc = E;
660 Op->IsRV64 = IsRV64;
661 return Op;
664 static std::unique_ptr<RISCVOperand>
665 createSysReg(StringRef Str, SMLoc S, unsigned Encoding, bool IsRV64) {
666 auto Op = std::make_unique<RISCVOperand>(KindTy::SystemRegister);
667 Op->SysReg.Data = Str.data();
668 Op->SysReg.Length = Str.size();
669 Op->SysReg.Encoding = Encoding;
670 Op->StartLoc = S;
671 Op->IsRV64 = IsRV64;
672 return Op;
675 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
676 assert(Expr && "Expr shouldn't be null!");
677 int64_t Imm = 0;
678 RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
679 bool IsConstant = evaluateConstantImm(Expr, Imm, VK);
681 if (IsConstant)
682 Inst.addOperand(MCOperand::createImm(Imm));
683 else
684 Inst.addOperand(MCOperand::createExpr(Expr));
687 // Used by the TableGen Code
688 void addRegOperands(MCInst &Inst, unsigned N) const {
689 assert(N == 1 && "Invalid number of operands!");
690 Inst.addOperand(MCOperand::createReg(getReg()));
693 void addImmOperands(MCInst &Inst, unsigned N) const {
694 assert(N == 1 && "Invalid number of operands!");
695 addExpr(Inst, getImm());
698 void addFenceArgOperands(MCInst &Inst, unsigned N) const {
699 assert(N == 1 && "Invalid number of operands!");
700 // isFenceArg has validated the operand, meaning this cast is safe
701 auto SE = cast<MCSymbolRefExpr>(getImm());
703 unsigned Imm = 0;
704 for (char c : SE->getSymbol().getName()) {
705 switch (c) {
706 default:
707 llvm_unreachable("FenceArg must contain only [iorw]");
708 case 'i': Imm |= RISCVFenceField::I; break;
709 case 'o': Imm |= RISCVFenceField::O; break;
710 case 'r': Imm |= RISCVFenceField::R; break;
711 case 'w': Imm |= RISCVFenceField::W; break;
714 Inst.addOperand(MCOperand::createImm(Imm));
717 void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
718 assert(N == 1 && "Invalid number of operands!");
719 Inst.addOperand(MCOperand::createImm(SysReg.Encoding));
722 // Returns the rounding mode represented by this RISCVOperand. Should only
723 // be called after checking isFRMArg.
724 RISCVFPRndMode::RoundingMode getRoundingMode() const {
725 // isFRMArg has validated the operand, meaning this cast is safe.
726 auto SE = cast<MCSymbolRefExpr>(getImm());
727 RISCVFPRndMode::RoundingMode FRM =
728 RISCVFPRndMode::stringToRoundingMode(SE->getSymbol().getName());
729 assert(FRM != RISCVFPRndMode::Invalid && "Invalid rounding mode");
730 return FRM;
733 void addFRMArgOperands(MCInst &Inst, unsigned N) const {
734 assert(N == 1 && "Invalid number of operands!");
735 Inst.addOperand(MCOperand::createImm(getRoundingMode()));
738 } // end anonymous namespace.
740 #define GET_REGISTER_MATCHER
741 #define GET_MATCHER_IMPLEMENTATION
742 #include "RISCVGenAsmMatcher.inc"
744 static Register convertFPR64ToFPR32(Register Reg) {
745 assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
746 return Reg - RISCV::F0_D + RISCV::F0_F;
749 unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
750 unsigned Kind) {
751 RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
752 if (!Op.isReg())
753 return Match_InvalidOperand;
755 Register Reg = Op.getReg();
756 bool IsRegFPR64 =
757 RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg);
758 bool IsRegFPR64C =
759 RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(Reg);
761 // As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
762 // register from FPR64 to FPR32 or FPR64C to FPR32C if necessary.
763 if ((IsRegFPR64 && Kind == MCK_FPR32) ||
764 (IsRegFPR64C && Kind == MCK_FPR32C)) {
765 Op.Reg.RegNum = convertFPR64ToFPR32(Reg);
766 return Match_Success;
768 return Match_InvalidOperand;
771 bool RISCVAsmParser::generateImmOutOfRangeError(
772 OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
773 Twine Msg = "immediate must be an integer in the range") {
774 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
775 return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
778 bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
779 OperandVector &Operands,
780 MCStreamer &Out,
781 uint64_t &ErrorInfo,
782 bool MatchingInlineAsm) {
783 MCInst Inst;
785 auto Result =
786 MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
787 switch (Result) {
788 default:
789 break;
790 case Match_Success:
791 return processInstruction(Inst, IDLoc, Operands, Out);
792 case Match_MissingFeature:
793 return Error(IDLoc, "instruction use requires an option to be enabled");
794 case Match_MnemonicFail:
795 return Error(IDLoc, "unrecognized instruction mnemonic");
796 case Match_InvalidOperand: {
797 SMLoc ErrorLoc = IDLoc;
798 if (ErrorInfo != ~0U) {
799 if (ErrorInfo >= Operands.size())
800 return Error(ErrorLoc, "too few operands for instruction");
802 ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
803 if (ErrorLoc == SMLoc())
804 ErrorLoc = IDLoc;
806 return Error(ErrorLoc, "invalid operand for instruction");
810 // Handle the case when the error message is of specific type
811 // other than the generic Match_InvalidOperand, and the
812 // corresponding operand is missing.
813 if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
814 SMLoc ErrorLoc = IDLoc;
815 if (ErrorInfo != ~0U && ErrorInfo >= Operands.size())
816 return Error(ErrorLoc, "too few operands for instruction");
819 switch(Result) {
820 default:
821 break;
822 case Match_InvalidImmXLenLI:
823 if (isRV64()) {
824 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
825 return Error(ErrorLoc, "operand must be a constant 64-bit integer");
827 return generateImmOutOfRangeError(Operands, ErrorInfo,
828 std::numeric_limits<int32_t>::min(),
829 std::numeric_limits<uint32_t>::max());
830 case Match_InvalidImmZero: {
831 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
832 return Error(ErrorLoc, "immediate must be zero");
834 case Match_InvalidUImmLog2XLen:
835 if (isRV64())
836 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
837 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
838 case Match_InvalidUImmLog2XLenNonZero:
839 if (isRV64())
840 return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
841 return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
842 case Match_InvalidUImm5:
843 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
844 case Match_InvalidSImm6:
845 return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
846 (1 << 5) - 1);
847 case Match_InvalidSImm6NonZero:
848 return generateImmOutOfRangeError(
849 Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1,
850 "immediate must be non-zero in the range");
851 case Match_InvalidCLUIImm:
852 return generateImmOutOfRangeError(
853 Operands, ErrorInfo, 1, (1 << 5) - 1,
854 "immediate must be in [0xfffe0, 0xfffff] or");
855 case Match_InvalidUImm7Lsb00:
856 return generateImmOutOfRangeError(
857 Operands, ErrorInfo, 0, (1 << 7) - 4,
858 "immediate must be a multiple of 4 bytes in the range");
859 case Match_InvalidUImm8Lsb00:
860 return generateImmOutOfRangeError(
861 Operands, ErrorInfo, 0, (1 << 8) - 4,
862 "immediate must be a multiple of 4 bytes in the range");
863 case Match_InvalidUImm8Lsb000:
864 return generateImmOutOfRangeError(
865 Operands, ErrorInfo, 0, (1 << 8) - 8,
866 "immediate must be a multiple of 8 bytes in the range");
867 case Match_InvalidSImm9Lsb0:
868 return generateImmOutOfRangeError(
869 Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
870 "immediate must be a multiple of 2 bytes in the range");
871 case Match_InvalidUImm9Lsb000:
872 return generateImmOutOfRangeError(
873 Operands, ErrorInfo, 0, (1 << 9) - 8,
874 "immediate must be a multiple of 8 bytes in the range");
875 case Match_InvalidUImm10Lsb00NonZero:
876 return generateImmOutOfRangeError(
877 Operands, ErrorInfo, 4, (1 << 10) - 4,
878 "immediate must be a multiple of 4 bytes in the range");
879 case Match_InvalidSImm10Lsb0000NonZero:
880 return generateImmOutOfRangeError(
881 Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
882 "immediate must be a multiple of 16 bytes and non-zero in the range");
883 case Match_InvalidSImm12:
884 return generateImmOutOfRangeError(
885 Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
886 "operand must be a symbol with %lo/%pcrel_lo/%tprel_lo modifier or an "
887 "integer in the range");
888 case Match_InvalidSImm12Lsb0:
889 return generateImmOutOfRangeError(
890 Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
891 "immediate must be a multiple of 2 bytes in the range");
892 case Match_InvalidSImm13Lsb0:
893 return generateImmOutOfRangeError(
894 Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
895 "immediate must be a multiple of 2 bytes in the range");
896 case Match_InvalidUImm20LUI:
897 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1,
898 "operand must be a symbol with "
899 "%hi/%tprel_hi modifier or an integer in "
900 "the range");
901 case Match_InvalidUImm20AUIPC:
902 return generateImmOutOfRangeError(
903 Operands, ErrorInfo, 0, (1 << 20) - 1,
904 "operand must be a symbol with a "
905 "%pcrel_hi/%got_pcrel_hi/%tls_ie_pcrel_hi/%tls_gd_pcrel_hi modifier or "
906 "an integer in the range");
907 case Match_InvalidSImm21Lsb0JAL:
908 return generateImmOutOfRangeError(
909 Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
910 "immediate must be a multiple of 2 bytes in the range");
911 case Match_InvalidCSRSystemRegister: {
912 return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1,
913 "operand must be a valid system register "
914 "name or an integer in the range");
916 case Match_InvalidFenceArg: {
917 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
918 return Error(
919 ErrorLoc,
920 "operand must be formed of letters selected in-order from 'iorw'");
922 case Match_InvalidFRMArg: {
923 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
924 return Error(
925 ErrorLoc,
926 "operand must be a valid floating point rounding mode mnemonic");
928 case Match_InvalidBareSymbol: {
929 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
930 return Error(ErrorLoc, "operand must be a bare symbol name");
932 case Match_InvalidCallSymbol: {
933 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
934 return Error(ErrorLoc, "operand must be a bare symbol name");
936 case Match_InvalidTPRelAddSymbol: {
937 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
938 return Error(ErrorLoc, "operand must be a symbol with %tprel_add modifier");
942 llvm_unreachable("Unknown match type detected!");
945 // Attempts to match Name as a register (either using the default name or
946 // alternative ABI names), setting RegNo to the matching register. Upon
947 // failure, returns true and sets RegNo to 0. If IsRV32E then registers
948 // x16-x31 will be rejected.
949 static bool matchRegisterNameHelper(bool IsRV32E, Register &RegNo,
950 StringRef Name) {
951 RegNo = MatchRegisterName(Name);
952 // The 32- and 64-bit FPRs have the same asm name. Check that the initial
953 // match always matches the 64-bit variant, and not the 32-bit one.
954 assert(!(RegNo >= RISCV::F0_F && RegNo <= RISCV::F31_F));
955 // The default FPR register class is based on the tablegen enum ordering.
956 static_assert(RISCV::F0_D < RISCV::F0_F, "FPR matching must be updated");
957 if (RegNo == RISCV::NoRegister)
958 RegNo = MatchRegisterAltName(Name);
959 if (IsRV32E && RegNo >= RISCV::X16 && RegNo <= RISCV::X31)
960 RegNo = RISCV::NoRegister;
961 return RegNo == RISCV::NoRegister;
964 bool RISCVAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
965 SMLoc &EndLoc) {
966 const AsmToken &Tok = getParser().getTok();
967 StartLoc = Tok.getLoc();
968 EndLoc = Tok.getEndLoc();
969 RegNo = 0;
970 StringRef Name = getLexer().getTok().getIdentifier();
972 if (matchRegisterNameHelper(isRV32E(), (Register&)RegNo, Name))
973 return Error(StartLoc, "invalid register name");
975 getParser().Lex(); // Eat identifier token.
976 return false;
979 OperandMatchResultTy RISCVAsmParser::parseRegister(OperandVector &Operands,
980 bool AllowParens) {
981 SMLoc FirstS = getLoc();
982 bool HadParens = false;
983 AsmToken LParen;
985 // If this is an LParen and a parenthesised register name is allowed, parse it
986 // atomically.
987 if (AllowParens && getLexer().is(AsmToken::LParen)) {
988 AsmToken Buf[2];
989 size_t ReadCount = getLexer().peekTokens(Buf);
990 if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
991 HadParens = true;
992 LParen = getParser().getTok();
993 getParser().Lex(); // Eat '('
997 switch (getLexer().getKind()) {
998 default:
999 if (HadParens)
1000 getLexer().UnLex(LParen);
1001 return MatchOperand_NoMatch;
1002 case AsmToken::Identifier:
1003 StringRef Name = getLexer().getTok().getIdentifier();
1004 Register RegNo;
1005 matchRegisterNameHelper(isRV32E(), RegNo, Name);
1007 if (RegNo == RISCV::NoRegister) {
1008 if (HadParens)
1009 getLexer().UnLex(LParen);
1010 return MatchOperand_NoMatch;
1012 if (HadParens)
1013 Operands.push_back(RISCVOperand::createToken("(", FirstS, isRV64()));
1014 SMLoc S = getLoc();
1015 SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1016 getLexer().Lex();
1017 Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
1020 if (HadParens) {
1021 getParser().Lex(); // Eat ')'
1022 Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
1025 return MatchOperand_Success;
1028 OperandMatchResultTy
1029 RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) {
1030 SMLoc S = getLoc();
1031 const MCExpr *Res;
1033 switch (getLexer().getKind()) {
1034 default:
1035 return MatchOperand_NoMatch;
1036 case AsmToken::LParen:
1037 case AsmToken::Minus:
1038 case AsmToken::Plus:
1039 case AsmToken::Exclaim:
1040 case AsmToken::Tilde:
1041 case AsmToken::Integer:
1042 case AsmToken::String: {
1043 if (getParser().parseExpression(Res))
1044 return MatchOperand_ParseFail;
1046 auto *CE = dyn_cast<MCConstantExpr>(Res);
1047 if (CE) {
1048 int64_t Imm = CE->getValue();
1049 if (isUInt<12>(Imm)) {
1050 auto SysReg = RISCVSysReg::lookupSysRegByEncoding(Imm);
1051 // Accept an immediate representing a named or un-named Sys Reg
1052 // if the range is valid, regardless of the required features.
1053 Operands.push_back(RISCVOperand::createSysReg(
1054 SysReg ? SysReg->Name : "", S, Imm, isRV64()));
1055 return MatchOperand_Success;
1059 Twine Msg = "immediate must be an integer in the range";
1060 Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1061 return MatchOperand_ParseFail;
1063 case AsmToken::Identifier: {
1064 StringRef Identifier;
1065 if (getParser().parseIdentifier(Identifier))
1066 return MatchOperand_ParseFail;
1068 auto SysReg = RISCVSysReg::lookupSysRegByName(Identifier);
1069 // Accept a named Sys Reg if the required features are present.
1070 if (SysReg) {
1071 if (!SysReg->haveRequiredFeatures(getSTI().getFeatureBits())) {
1072 Error(S, "system register use requires an option to be enabled");
1073 return MatchOperand_ParseFail;
1075 Operands.push_back(RISCVOperand::createSysReg(
1076 Identifier, S, SysReg->Encoding, isRV64()));
1077 return MatchOperand_Success;
1080 Twine Msg = "operand must be a valid system register name "
1081 "or an integer in the range";
1082 Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1083 return MatchOperand_ParseFail;
1085 case AsmToken::Percent: {
1086 // Discard operand with modifier.
1087 Twine Msg = "immediate must be an integer in the range";
1088 Error(S, Msg + " [" + Twine(0) + ", " + Twine((1 << 12) - 1) + "]");
1089 return MatchOperand_ParseFail;
1093 return MatchOperand_NoMatch;
1096 OperandMatchResultTy RISCVAsmParser::parseImmediate(OperandVector &Operands) {
1097 SMLoc S = getLoc();
1098 SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1099 const MCExpr *Res;
1101 switch (getLexer().getKind()) {
1102 default:
1103 return MatchOperand_NoMatch;
1104 case AsmToken::LParen:
1105 case AsmToken::Dot:
1106 case AsmToken::Minus:
1107 case AsmToken::Plus:
1108 case AsmToken::Exclaim:
1109 case AsmToken::Tilde:
1110 case AsmToken::Integer:
1111 case AsmToken::String:
1112 case AsmToken::Identifier:
1113 if (getParser().parseExpression(Res))
1114 return MatchOperand_ParseFail;
1115 break;
1116 case AsmToken::Percent:
1117 return parseOperandWithModifier(Operands);
1120 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1121 return MatchOperand_Success;
1124 OperandMatchResultTy
1125 RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
1126 SMLoc S = getLoc();
1127 SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1129 if (getLexer().getKind() != AsmToken::Percent) {
1130 Error(getLoc(), "expected '%' for operand modifier");
1131 return MatchOperand_ParseFail;
1134 getParser().Lex(); // Eat '%'
1136 if (getLexer().getKind() != AsmToken::Identifier) {
1137 Error(getLoc(), "expected valid identifier for operand modifier");
1138 return MatchOperand_ParseFail;
1140 StringRef Identifier = getParser().getTok().getIdentifier();
1141 RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
1142 if (VK == RISCVMCExpr::VK_RISCV_Invalid) {
1143 Error(getLoc(), "unrecognized operand modifier");
1144 return MatchOperand_ParseFail;
1147 getParser().Lex(); // Eat the identifier
1148 if (getLexer().getKind() != AsmToken::LParen) {
1149 Error(getLoc(), "expected '('");
1150 return MatchOperand_ParseFail;
1152 getParser().Lex(); // Eat '('
1154 const MCExpr *SubExpr;
1155 if (getParser().parseParenExpression(SubExpr, E)) {
1156 return MatchOperand_ParseFail;
1159 const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
1160 Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
1161 return MatchOperand_Success;
1164 OperandMatchResultTy RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
1165 SMLoc S = getLoc();
1166 SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1167 const MCExpr *Res;
1169 if (getLexer().getKind() != AsmToken::Identifier)
1170 return MatchOperand_NoMatch;
1172 StringRef Identifier;
1173 AsmToken Tok = getLexer().getTok();
1175 if (getParser().parseIdentifier(Identifier))
1176 return MatchOperand_ParseFail;
1178 if (Identifier.consume_back("@plt")) {
1179 Error(getLoc(), "'@plt' operand not valid for instruction");
1180 return MatchOperand_ParseFail;
1183 MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
1185 if (Sym->isVariable()) {
1186 const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
1187 if (!isa<MCSymbolRefExpr>(V)) {
1188 getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
1189 return MatchOperand_NoMatch;
1191 Res = V;
1192 } else
1193 Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1195 MCBinaryExpr::Opcode Opcode;
1196 switch (getLexer().getKind()) {
1197 default:
1198 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1199 return MatchOperand_Success;
1200 case AsmToken::Plus:
1201 Opcode = MCBinaryExpr::Add;
1202 break;
1203 case AsmToken::Minus:
1204 Opcode = MCBinaryExpr::Sub;
1205 break;
1208 const MCExpr *Expr;
1209 if (getParser().parseExpression(Expr))
1210 return MatchOperand_ParseFail;
1211 Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
1212 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1213 return MatchOperand_Success;
1216 OperandMatchResultTy RISCVAsmParser::parseCallSymbol(OperandVector &Operands) {
1217 SMLoc S = getLoc();
1218 SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
1219 const MCExpr *Res;
1221 if (getLexer().getKind() != AsmToken::Identifier)
1222 return MatchOperand_NoMatch;
1224 // Avoid parsing the register in `call rd, foo` as a call symbol.
1225 if (getLexer().peekTok().getKind() != AsmToken::EndOfStatement)
1226 return MatchOperand_NoMatch;
1228 StringRef Identifier;
1229 if (getParser().parseIdentifier(Identifier))
1230 return MatchOperand_ParseFail;
1232 RISCVMCExpr::VariantKind Kind = RISCVMCExpr::VK_RISCV_CALL;
1233 if (Identifier.consume_back("@plt"))
1234 Kind = RISCVMCExpr::VK_RISCV_CALL_PLT;
1236 MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
1237 Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
1238 Res = RISCVMCExpr::create(Res, Kind, getContext());
1239 Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
1240 return MatchOperand_Success;
1243 OperandMatchResultTy RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
1244 // Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
1245 // both being acceptable forms. When parsing `jal ra, foo` this function
1246 // will be called for the `ra` register operand in an attempt to match the
1247 // single-operand alias. parseJALOffset must fail for this case. It would
1248 // seem logical to try parse the operand using parseImmediate and return
1249 // NoMatch if the next token is a comma (meaning we must be parsing a jal in
1250 // the second form rather than the first). We can't do this as there's no
1251 // way of rewinding the lexer state. Instead, return NoMatch if this operand
1252 // is an identifier and is followed by a comma.
1253 if (getLexer().is(AsmToken::Identifier) &&
1254 getLexer().peekTok().is(AsmToken::Comma))
1255 return MatchOperand_NoMatch;
1257 return parseImmediate(Operands);
1260 OperandMatchResultTy
1261 RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
1262 if (getLexer().isNot(AsmToken::LParen)) {
1263 Error(getLoc(), "expected '('");
1264 return MatchOperand_ParseFail;
1267 getParser().Lex(); // Eat '('
1268 Operands.push_back(RISCVOperand::createToken("(", getLoc(), isRV64()));
1270 if (parseRegister(Operands) != MatchOperand_Success) {
1271 Error(getLoc(), "expected register");
1272 return MatchOperand_ParseFail;
1275 if (getLexer().isNot(AsmToken::RParen)) {
1276 Error(getLoc(), "expected ')'");
1277 return MatchOperand_ParseFail;
1280 getParser().Lex(); // Eat ')'
1281 Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
1283 return MatchOperand_Success;
1286 OperandMatchResultTy RISCVAsmParser::parseAtomicMemOp(OperandVector &Operands) {
1287 // Atomic operations such as lr.w, sc.w, and amo*.w accept a "memory operand"
1288 // as one of their register operands, such as `(a0)`. This just denotes that
1289 // the register (in this case `a0`) contains a memory address.
1291 // Normally, we would be able to parse these by putting the parens into the
1292 // instruction string. However, GNU as also accepts a zero-offset memory
1293 // operand (such as `0(a0)`), and ignores the 0. Normally this would be parsed
1294 // with parseImmediate followed by parseMemOpBaseReg, but these instructions
1295 // do not accept an immediate operand, and we do not want to add a "dummy"
1296 // operand that is silently dropped.
1298 // Instead, we use this custom parser. This will: allow (and discard) an
1299 // offset if it is zero; require (and discard) parentheses; and add only the
1300 // parsed register operand to `Operands`.
1302 // These operands are printed with RISCVInstPrinter::printAtomicMemOp, which
1303 // will only print the register surrounded by parentheses (which GNU as also
1304 // uses as its canonical representation for these operands).
1305 std::unique_ptr<RISCVOperand> OptionalImmOp;
1307 if (getLexer().isNot(AsmToken::LParen)) {
1308 // Parse an Integer token. We do not accept arbritrary constant expressions
1309 // in the offset field (because they may include parens, which complicates
1310 // parsing a lot).
1311 int64_t ImmVal;
1312 SMLoc ImmStart = getLoc();
1313 if (getParser().parseIntToken(ImmVal,
1314 "expected '(' or optional integer offset"))
1315 return MatchOperand_ParseFail;
1317 // Create a RISCVOperand for checking later (so the error messages are
1318 // nicer), but we don't add it to Operands.
1319 SMLoc ImmEnd = getLoc();
1320 OptionalImmOp =
1321 RISCVOperand::createImm(MCConstantExpr::create(ImmVal, getContext()),
1322 ImmStart, ImmEnd, isRV64());
1325 if (getLexer().isNot(AsmToken::LParen)) {
1326 Error(getLoc(), OptionalImmOp ? "expected '(' after optional integer offset"
1327 : "expected '(' or optional integer offset");
1328 return MatchOperand_ParseFail;
1330 getParser().Lex(); // Eat '('
1332 if (parseRegister(Operands) != MatchOperand_Success) {
1333 Error(getLoc(), "expected register");
1334 return MatchOperand_ParseFail;
1337 if (getLexer().isNot(AsmToken::RParen)) {
1338 Error(getLoc(), "expected ')'");
1339 return MatchOperand_ParseFail;
1341 getParser().Lex(); // Eat ')'
1343 // Deferred Handling of non-zero offsets. This makes the error messages nicer.
1344 if (OptionalImmOp && !OptionalImmOp->isImmZero()) {
1345 Error(OptionalImmOp->getStartLoc(), "optional integer offset must be 0",
1346 SMRange(OptionalImmOp->getStartLoc(), OptionalImmOp->getEndLoc()));
1347 return MatchOperand_ParseFail;
1350 return MatchOperand_Success;
1353 /// Looks at a token type and creates the relevant operand from this
1354 /// information, adding to Operands. If operand was parsed, returns false, else
1355 /// true.
1356 bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
1357 // Check if the current operand has a custom associated parser, if so, try to
1358 // custom parse the operand, or fallback to the general approach.
1359 OperandMatchResultTy Result =
1360 MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
1361 if (Result == MatchOperand_Success)
1362 return false;
1363 if (Result == MatchOperand_ParseFail)
1364 return true;
1366 // Attempt to parse token as a register.
1367 if (parseRegister(Operands, true) == MatchOperand_Success)
1368 return false;
1370 // Attempt to parse token as an immediate
1371 if (parseImmediate(Operands) == MatchOperand_Success) {
1372 // Parse memory base register if present
1373 if (getLexer().is(AsmToken::LParen))
1374 return parseMemOpBaseReg(Operands) != MatchOperand_Success;
1375 return false;
1378 // Finally we have exhausted all options and must declare defeat.
1379 Error(getLoc(), "unknown operand");
1380 return true;
1383 bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1384 StringRef Name, SMLoc NameLoc,
1385 OperandVector &Operands) {
1386 // Ensure that if the instruction occurs when relaxation is enabled,
1387 // relocations are forced for the file. Ideally this would be done when there
1388 // is enough information to reliably determine if the instruction itself may
1389 // cause relaxations. Unfortunately instruction processing stage occurs in the
1390 // same pass as relocation emission, so it's too late to set a 'sticky bit'
1391 // for the entire file.
1392 if (getSTI().getFeatureBits()[RISCV::FeatureRelax]) {
1393 auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr();
1394 if (Assembler != nullptr) {
1395 RISCVAsmBackend &MAB =
1396 static_cast<RISCVAsmBackend &>(Assembler->getBackend());
1397 MAB.setForceRelocs();
1401 // First operand is token for instruction
1402 Operands.push_back(RISCVOperand::createToken(Name, NameLoc, isRV64()));
1404 // If there are no more operands, then finish
1405 if (getLexer().is(AsmToken::EndOfStatement))
1406 return false;
1408 // Parse first operand
1409 if (parseOperand(Operands, Name))
1410 return true;
1412 // Parse until end of statement, consuming commas between operands
1413 unsigned OperandIdx = 1;
1414 while (getLexer().is(AsmToken::Comma)) {
1415 // Consume comma token
1416 getLexer().Lex();
1418 // Parse next operand
1419 if (parseOperand(Operands, Name))
1420 return true;
1422 ++OperandIdx;
1425 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1426 SMLoc Loc = getLexer().getLoc();
1427 getParser().eatToEndOfStatement();
1428 return Error(Loc, "unexpected token");
1431 getParser().Lex(); // Consume the EndOfStatement.
1432 return false;
1435 bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
1436 RISCVMCExpr::VariantKind &Kind,
1437 int64_t &Addend) {
1438 Kind = RISCVMCExpr::VK_RISCV_None;
1439 Addend = 0;
1441 if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
1442 Kind = RE->getKind();
1443 Expr = RE->getSubExpr();
1446 // It's a simple symbol reference or constant with no addend.
1447 if (isa<MCConstantExpr>(Expr) || isa<MCSymbolRefExpr>(Expr))
1448 return true;
1450 const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr);
1451 if (!BE)
1452 return false;
1454 if (!isa<MCSymbolRefExpr>(BE->getLHS()))
1455 return false;
1457 if (BE->getOpcode() != MCBinaryExpr::Add &&
1458 BE->getOpcode() != MCBinaryExpr::Sub)
1459 return false;
1461 // We are able to support the subtraction of two symbol references
1462 if (BE->getOpcode() == MCBinaryExpr::Sub &&
1463 isa<MCSymbolRefExpr>(BE->getRHS()))
1464 return true;
1466 // See if the addend is a constant, otherwise there's more going
1467 // on here than we can deal with.
1468 auto AddendExpr = dyn_cast<MCConstantExpr>(BE->getRHS());
1469 if (!AddendExpr)
1470 return false;
1472 Addend = AddendExpr->getValue();
1473 if (BE->getOpcode() == MCBinaryExpr::Sub)
1474 Addend = -Addend;
1476 // It's some symbol reference + a constant addend
1477 return Kind != RISCVMCExpr::VK_RISCV_Invalid;
1480 bool RISCVAsmParser::ParseDirective(AsmToken DirectiveID) {
1481 // This returns false if this function recognizes the directive
1482 // regardless of whether it is successfully handles or reports an
1483 // error. Otherwise it returns true to give the generic parser a
1484 // chance at recognizing it.
1485 StringRef IDVal = DirectiveID.getString();
1487 if (IDVal == ".option")
1488 return parseDirectiveOption();
1490 return true;
1493 bool RISCVAsmParser::parseDirectiveOption() {
1494 MCAsmParser &Parser = getParser();
1495 // Get the option token.
1496 AsmToken Tok = Parser.getTok();
1497 // At the moment only identifiers are supported.
1498 if (Tok.isNot(AsmToken::Identifier))
1499 return Error(Parser.getTok().getLoc(),
1500 "unexpected token, expected identifier");
1502 StringRef Option = Tok.getIdentifier();
1504 if (Option == "push") {
1505 getTargetStreamer().emitDirectiveOptionPush();
1507 Parser.Lex();
1508 if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1509 return Error(Parser.getTok().getLoc(),
1510 "unexpected token, expected end of statement");
1512 pushFeatureBits();
1513 return false;
1516 if (Option == "pop") {
1517 SMLoc StartLoc = Parser.getTok().getLoc();
1518 getTargetStreamer().emitDirectiveOptionPop();
1520 Parser.Lex();
1521 if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1522 return Error(Parser.getTok().getLoc(),
1523 "unexpected token, expected end of statement");
1525 if (popFeatureBits())
1526 return Error(StartLoc, ".option pop with no .option push");
1528 return false;
1531 if (Option == "rvc") {
1532 getTargetStreamer().emitDirectiveOptionRVC();
1534 Parser.Lex();
1535 if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1536 return Error(Parser.getTok().getLoc(),
1537 "unexpected token, expected end of statement");
1539 setFeatureBits(RISCV::FeatureStdExtC, "c");
1540 return false;
1543 if (Option == "norvc") {
1544 getTargetStreamer().emitDirectiveOptionNoRVC();
1546 Parser.Lex();
1547 if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1548 return Error(Parser.getTok().getLoc(),
1549 "unexpected token, expected end of statement");
1551 clearFeatureBits(RISCV::FeatureStdExtC, "c");
1552 return false;
1555 if (Option == "relax") {
1556 getTargetStreamer().emitDirectiveOptionRelax();
1558 Parser.Lex();
1559 if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1560 return Error(Parser.getTok().getLoc(),
1561 "unexpected token, expected end of statement");
1563 setFeatureBits(RISCV::FeatureRelax, "relax");
1564 return false;
1567 if (Option == "norelax") {
1568 getTargetStreamer().emitDirectiveOptionNoRelax();
1570 Parser.Lex();
1571 if (Parser.getTok().isNot(AsmToken::EndOfStatement))
1572 return Error(Parser.getTok().getLoc(),
1573 "unexpected token, expected end of statement");
1575 clearFeatureBits(RISCV::FeatureRelax, "relax");
1576 return false;
1579 // Unknown option.
1580 Warning(Parser.getTok().getLoc(),
1581 "unknown option, expected 'push', 'pop', 'rvc', 'norvc', 'relax' or "
1582 "'norelax'");
1583 Parser.eatToEndOfStatement();
1584 return false;
1587 void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
1588 MCInst CInst;
1589 bool Res = compressInst(CInst, Inst, getSTI(), S.getContext());
1590 CInst.setLoc(Inst.getLoc());
1591 S.EmitInstruction((Res ? CInst : Inst), getSTI());
1594 void RISCVAsmParser::emitLoadImm(Register DestReg, int64_t Value,
1595 MCStreamer &Out) {
1596 RISCVMatInt::InstSeq Seq;
1597 RISCVMatInt::generateInstSeq(Value, isRV64(), Seq);
1599 Register SrcReg = RISCV::X0;
1600 for (RISCVMatInt::Inst &Inst : Seq) {
1601 if (Inst.Opc == RISCV::LUI) {
1602 emitToStreamer(
1603 Out, MCInstBuilder(RISCV::LUI).addReg(DestReg).addImm(Inst.Imm));
1604 } else {
1605 emitToStreamer(
1606 Out, MCInstBuilder(Inst.Opc).addReg(DestReg).addReg(SrcReg).addImm(
1607 Inst.Imm));
1610 // Only the first instruction has X0 as its source.
1611 SrcReg = DestReg;
1615 void RISCVAsmParser::emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
1616 const MCExpr *Symbol,
1617 RISCVMCExpr::VariantKind VKHi,
1618 unsigned SecondOpcode, SMLoc IDLoc,
1619 MCStreamer &Out) {
1620 // A pair of instructions for PC-relative addressing; expands to
1621 // TmpLabel: AUIPC TmpReg, VKHi(symbol)
1622 // OP DestReg, TmpReg, %pcrel_lo(TmpLabel)
1623 MCContext &Ctx = getContext();
1625 MCSymbol *TmpLabel = Ctx.createTempSymbol(
1626 "pcrel_hi", /* AlwaysAddSuffix */ true, /* CanBeUnnamed */ false);
1627 Out.EmitLabel(TmpLabel);
1629 const RISCVMCExpr *SymbolHi = RISCVMCExpr::create(Symbol, VKHi, Ctx);
1630 emitToStreamer(
1631 Out, MCInstBuilder(RISCV::AUIPC).addOperand(TmpReg).addExpr(SymbolHi));
1633 const MCExpr *RefToLinkTmpLabel =
1634 RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx),
1635 RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx);
1637 emitToStreamer(Out, MCInstBuilder(SecondOpcode)
1638 .addOperand(DestReg)
1639 .addOperand(TmpReg)
1640 .addExpr(RefToLinkTmpLabel));
1643 void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
1644 MCStreamer &Out) {
1645 // The load local address pseudo-instruction "lla" is used in PC-relative
1646 // addressing of local symbols:
1647 // lla rdest, symbol
1648 // expands to
1649 // TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
1650 // ADDI rdest, rdest, %pcrel_lo(TmpLabel)
1651 MCOperand DestReg = Inst.getOperand(0);
1652 const MCExpr *Symbol = Inst.getOperand(1).getExpr();
1653 emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
1654 RISCV::ADDI, IDLoc, Out);
1657 void RISCVAsmParser::emitLoadAddress(MCInst &Inst, SMLoc IDLoc,
1658 MCStreamer &Out) {
1659 // The load address pseudo-instruction "la" is used in PC-relative and
1660 // GOT-indirect addressing of global symbols:
1661 // la rdest, symbol
1662 // expands to either (for non-PIC)
1663 // TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
1664 // ADDI rdest, rdest, %pcrel_lo(TmpLabel)
1665 // or (for PIC)
1666 // TmpLabel: AUIPC rdest, %got_pcrel_hi(symbol)
1667 // Lx rdest, %pcrel_lo(TmpLabel)(rdest)
1668 MCOperand DestReg = Inst.getOperand(0);
1669 const MCExpr *Symbol = Inst.getOperand(1).getExpr();
1670 unsigned SecondOpcode;
1671 RISCVMCExpr::VariantKind VKHi;
1672 // FIXME: Should check .option (no)pic when implemented
1673 if (getContext().getObjectFileInfo()->isPositionIndependent()) {
1674 SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
1675 VKHi = RISCVMCExpr::VK_RISCV_GOT_HI;
1676 } else {
1677 SecondOpcode = RISCV::ADDI;
1678 VKHi = RISCVMCExpr::VK_RISCV_PCREL_HI;
1680 emitAuipcInstPair(DestReg, DestReg, Symbol, VKHi, SecondOpcode, IDLoc, Out);
1683 void RISCVAsmParser::emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc,
1684 MCStreamer &Out) {
1685 // The load TLS IE address pseudo-instruction "la.tls.ie" is used in
1686 // initial-exec TLS model addressing of global symbols:
1687 // la.tls.ie rdest, symbol
1688 // expands to
1689 // TmpLabel: AUIPC rdest, %tls_ie_pcrel_hi(symbol)
1690 // Lx rdest, %pcrel_lo(TmpLabel)(rdest)
1691 MCOperand DestReg = Inst.getOperand(0);
1692 const MCExpr *Symbol = Inst.getOperand(1).getExpr();
1693 unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
1694 emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GOT_HI,
1695 SecondOpcode, IDLoc, Out);
1698 void RISCVAsmParser::emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc,
1699 MCStreamer &Out) {
1700 // The load TLS GD address pseudo-instruction "la.tls.gd" is used in
1701 // global-dynamic TLS model addressing of global symbols:
1702 // la.tls.gd rdest, symbol
1703 // expands to
1704 // TmpLabel: AUIPC rdest, %tls_gd_pcrel_hi(symbol)
1705 // ADDI rdest, rdest, %pcrel_lo(TmpLabel)
1706 MCOperand DestReg = Inst.getOperand(0);
1707 const MCExpr *Symbol = Inst.getOperand(1).getExpr();
1708 emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GD_HI,
1709 RISCV::ADDI, IDLoc, Out);
1712 void RISCVAsmParser::emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode,
1713 SMLoc IDLoc, MCStreamer &Out,
1714 bool HasTmpReg) {
1715 // The load/store pseudo-instruction does a pc-relative load with
1716 // a symbol.
1718 // The expansion looks like this
1720 // TmpLabel: AUIPC tmp, %pcrel_hi(symbol)
1721 // [S|L]X rd, %pcrel_lo(TmpLabel)(tmp)
1722 MCOperand DestReg = Inst.getOperand(0);
1723 unsigned SymbolOpIdx = HasTmpReg ? 2 : 1;
1724 unsigned TmpRegOpIdx = HasTmpReg ? 1 : 0;
1725 MCOperand TmpReg = Inst.getOperand(TmpRegOpIdx);
1726 const MCExpr *Symbol = Inst.getOperand(SymbolOpIdx).getExpr();
1727 emitAuipcInstPair(DestReg, TmpReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
1728 Opcode, IDLoc, Out);
1731 bool RISCVAsmParser::checkPseudoAddTPRel(MCInst &Inst,
1732 OperandVector &Operands) {
1733 assert(Inst.getOpcode() == RISCV::PseudoAddTPRel && "Invalid instruction");
1734 assert(Inst.getOperand(2).isReg() && "Unexpected second operand kind");
1735 if (Inst.getOperand(2).getReg() != RISCV::X4) {
1736 SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
1737 return Error(ErrorLoc, "the second input operand must be tp/x4 when using "
1738 "%tprel_add modifier");
1741 return false;
1744 bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
1745 OperandVector &Operands,
1746 MCStreamer &Out) {
1747 Inst.setLoc(IDLoc);
1749 switch (Inst.getOpcode()) {
1750 default:
1751 break;
1752 case RISCV::PseudoLI: {
1753 Register Reg = Inst.getOperand(0).getReg();
1754 const MCOperand &Op1 = Inst.getOperand(1);
1755 if (Op1.isExpr()) {
1756 // We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar.
1757 // Just convert to an addi. This allows compatibility with gas.
1758 emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
1759 .addReg(Reg)
1760 .addReg(RISCV::X0)
1761 .addExpr(Op1.getExpr()));
1762 return false;
1764 int64_t Imm = Inst.getOperand(1).getImm();
1765 // On RV32 the immediate here can either be a signed or an unsigned
1766 // 32-bit number. Sign extension has to be performed to ensure that Imm
1767 // represents the expected signed 64-bit number.
1768 if (!isRV64())
1769 Imm = SignExtend64<32>(Imm);
1770 emitLoadImm(Reg, Imm, Out);
1771 return false;
1773 case RISCV::PseudoLLA:
1774 emitLoadLocalAddress(Inst, IDLoc, Out);
1775 return false;
1776 case RISCV::PseudoLA:
1777 emitLoadAddress(Inst, IDLoc, Out);
1778 return false;
1779 case RISCV::PseudoLA_TLS_IE:
1780 emitLoadTLSIEAddress(Inst, IDLoc, Out);
1781 return false;
1782 case RISCV::PseudoLA_TLS_GD:
1783 emitLoadTLSGDAddress(Inst, IDLoc, Out);
1784 return false;
1785 case RISCV::PseudoLB:
1786 emitLoadStoreSymbol(Inst, RISCV::LB, IDLoc, Out, /*HasTmpReg=*/false);
1787 return false;
1788 case RISCV::PseudoLBU:
1789 emitLoadStoreSymbol(Inst, RISCV::LBU, IDLoc, Out, /*HasTmpReg=*/false);
1790 return false;
1791 case RISCV::PseudoLH:
1792 emitLoadStoreSymbol(Inst, RISCV::LH, IDLoc, Out, /*HasTmpReg=*/false);
1793 return false;
1794 case RISCV::PseudoLHU:
1795 emitLoadStoreSymbol(Inst, RISCV::LHU, IDLoc, Out, /*HasTmpReg=*/false);
1796 return false;
1797 case RISCV::PseudoLW:
1798 emitLoadStoreSymbol(Inst, RISCV::LW, IDLoc, Out, /*HasTmpReg=*/false);
1799 return false;
1800 case RISCV::PseudoLWU:
1801 emitLoadStoreSymbol(Inst, RISCV::LWU, IDLoc, Out, /*HasTmpReg=*/false);
1802 return false;
1803 case RISCV::PseudoLD:
1804 emitLoadStoreSymbol(Inst, RISCV::LD, IDLoc, Out, /*HasTmpReg=*/false);
1805 return false;
1806 case RISCV::PseudoFLW:
1807 emitLoadStoreSymbol(Inst, RISCV::FLW, IDLoc, Out, /*HasTmpReg=*/true);
1808 return false;
1809 case RISCV::PseudoFLD:
1810 emitLoadStoreSymbol(Inst, RISCV::FLD, IDLoc, Out, /*HasTmpReg=*/true);
1811 return false;
1812 case RISCV::PseudoSB:
1813 emitLoadStoreSymbol(Inst, RISCV::SB, IDLoc, Out, /*HasTmpReg=*/true);
1814 return false;
1815 case RISCV::PseudoSH:
1816 emitLoadStoreSymbol(Inst, RISCV::SH, IDLoc, Out, /*HasTmpReg=*/true);
1817 return false;
1818 case RISCV::PseudoSW:
1819 emitLoadStoreSymbol(Inst, RISCV::SW, IDLoc, Out, /*HasTmpReg=*/true);
1820 return false;
1821 case RISCV::PseudoSD:
1822 emitLoadStoreSymbol(Inst, RISCV::SD, IDLoc, Out, /*HasTmpReg=*/true);
1823 return false;
1824 case RISCV::PseudoFSW:
1825 emitLoadStoreSymbol(Inst, RISCV::FSW, IDLoc, Out, /*HasTmpReg=*/true);
1826 return false;
1827 case RISCV::PseudoFSD:
1828 emitLoadStoreSymbol(Inst, RISCV::FSD, IDLoc, Out, /*HasTmpReg=*/true);
1829 return false;
1830 case RISCV::PseudoAddTPRel:
1831 if (checkPseudoAddTPRel(Inst, Operands))
1832 return true;
1833 break;
1836 emitToStreamer(Out, Inst);
1837 return false;
1840 extern "C" void LLVMInitializeRISCVAsmParser() {
1841 RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
1842 RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());