[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Target / WebAssembly / WebAssemblyISelLowering.cpp
blobf06afdbcea9ebd429451dbda6d72856287af0730
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
37 #define DEBUG_TYPE "wasm-lower"
39 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
40 const TargetMachine &TM, const WebAssemblySubtarget &STI)
41 : TargetLowering(TM), Subtarget(&STI) {
42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
44 // Booleans always contain 0 or 1.
45 setBooleanContents(ZeroOrOneBooleanContent);
46 // Except in SIMD vectors
47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
48 // We don't know the microarchitecture here, so just reduce register pressure.
49 setSchedulingPreference(Sched::RegPressure);
50 // Tell ISel that we have a stack pointer.
51 setStackPointerRegisterToSaveRestore(
52 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
53 // Set up the register classes.
54 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
55 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
56 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
57 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
58 if (Subtarget->hasSIMD128()) {
59 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
60 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
61 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
62 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
64 if (Subtarget->hasUnimplementedSIMD128()) {
65 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
66 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
68 // Compute derived properties from the register classes.
69 computeRegisterProperties(Subtarget->getRegisterInfo());
71 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
72 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
73 setOperationAction(ISD::JumpTable, MVTPtr, Custom);
74 setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
75 setOperationAction(ISD::BRIND, MVT::Other, Custom);
77 // Take the default expansion for va_arg, va_copy, and va_end. There is no
78 // default action for va_start, so we do that custom.
79 setOperationAction(ISD::VASTART, MVT::Other, Custom);
80 setOperationAction(ISD::VAARG, MVT::Other, Expand);
81 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
82 setOperationAction(ISD::VAEND, MVT::Other, Expand);
84 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
85 // Don't expand the floating-point types to constant pools.
86 setOperationAction(ISD::ConstantFP, T, Legal);
87 // Expand floating-point comparisons.
88 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
89 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
90 setCondCodeAction(CC, T, Expand);
91 // Expand floating-point library function operators.
92 for (auto Op :
93 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
94 setOperationAction(Op, T, Expand);
95 // Note supported floating-point library function operators that otherwise
96 // default to expand.
97 for (auto Op :
98 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
99 setOperationAction(Op, T, Legal);
100 // Support minimum and maximum, which otherwise default to expand.
101 setOperationAction(ISD::FMINIMUM, T, Legal);
102 setOperationAction(ISD::FMAXIMUM, T, Legal);
103 // WebAssembly currently has no builtin f16 support.
104 setOperationAction(ISD::FP16_TO_FP, T, Expand);
105 setOperationAction(ISD::FP_TO_FP16, T, Expand);
106 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
107 setTruncStoreAction(T, MVT::f16, Expand);
110 // Expand unavailable integer operations.
111 for (auto Op :
112 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
113 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
114 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
115 for (auto T : {MVT::i32, MVT::i64})
116 setOperationAction(Op, T, Expand);
117 if (Subtarget->hasSIMD128())
118 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
119 setOperationAction(Op, T, Expand);
120 if (Subtarget->hasUnimplementedSIMD128())
121 setOperationAction(Op, MVT::v2i64, Expand);
124 // SIMD-specific configuration
125 if (Subtarget->hasSIMD128()) {
126 // Support saturating add for i8x16 and i16x8
127 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
128 for (auto T : {MVT::v16i8, MVT::v8i16})
129 setOperationAction(Op, T, Legal);
131 // Custom lower BUILD_VECTORs to minimize number of replace_lanes
132 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
133 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
134 if (Subtarget->hasUnimplementedSIMD128())
135 for (auto T : {MVT::v2i64, MVT::v2f64})
136 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
138 // We have custom shuffle lowering to expose the shuffle mask
139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
140 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
141 if (Subtarget->hasUnimplementedSIMD128())
142 for (auto T: {MVT::v2i64, MVT::v2f64})
143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
145 // Custom lowering since wasm shifts must have a scalar shift amount
146 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
148 setOperationAction(Op, T, Custom);
149 if (Subtarget->hasUnimplementedSIMD128())
150 setOperationAction(Op, MVT::v2i64, Custom);
153 // Custom lower lane accesses to expand out variable indices
154 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
155 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
156 setOperationAction(Op, T, Custom);
157 if (Subtarget->hasUnimplementedSIMD128())
158 for (auto T : {MVT::v2i64, MVT::v2f64})
159 setOperationAction(Op, T, Custom);
162 // There is no i64x2.mul instruction
163 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
165 // There are no vector select instructions
166 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
168 setOperationAction(Op, T, Expand);
169 if (Subtarget->hasUnimplementedSIMD128())
170 for (auto T : {MVT::v2i64, MVT::v2f64})
171 setOperationAction(Op, T, Expand);
174 // Expand integer operations supported for scalars but not SIMD
175 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
176 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
177 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
178 setOperationAction(Op, T, Expand);
179 if (Subtarget->hasUnimplementedSIMD128())
180 setOperationAction(Op, MVT::v2i64, Expand);
183 // Expand float operations supported for scalars but not SIMD
184 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
185 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
186 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) {
187 setOperationAction(Op, MVT::v4f32, Expand);
188 if (Subtarget->hasUnimplementedSIMD128())
189 setOperationAction(Op, MVT::v2f64, Expand);
192 // Expand additional SIMD ops that V8 hasn't implemented yet
193 if (!Subtarget->hasUnimplementedSIMD128()) {
194 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
195 setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
199 // As a special case, these operators use the type to mean the type to
200 // sign-extend from.
201 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
202 if (!Subtarget->hasSignExt()) {
203 // Sign extends are legal only when extending a vector extract
204 auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
205 for (auto T : {MVT::i8, MVT::i16, MVT::i32})
206 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
208 for (auto T : MVT::integer_fixedlen_vector_valuetypes())
209 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
211 // Dynamic stack allocation: use the default expansion.
212 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
213 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
214 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
216 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
217 setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
219 // Expand these forms; we pattern-match the forms that we can handle in isel.
220 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
221 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
222 setOperationAction(Op, T, Expand);
224 // We have custom switch handling.
225 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
227 // WebAssembly doesn't have:
228 // - Floating-point extending loads.
229 // - Floating-point truncating stores.
230 // - i1 extending loads.
231 // - truncating SIMD stores and most extending loads
232 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
233 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
234 for (auto T : MVT::integer_valuetypes())
235 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
236 setLoadExtAction(Ext, T, MVT::i1, Promote);
237 if (Subtarget->hasSIMD128()) {
238 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
239 MVT::v2f64}) {
240 for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
241 if (MVT(T) != MemT) {
242 setTruncStoreAction(T, MemT, Expand);
243 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
244 setLoadExtAction(Ext, T, MemT, Expand);
248 // But some vector extending loads are legal
249 if (Subtarget->hasUnimplementedSIMD128()) {
250 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
251 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
252 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
253 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
258 // Don't do anything clever with build_pairs
259 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
261 // Trap lowers to wasm unreachable
262 setOperationAction(ISD::TRAP, MVT::Other, Legal);
264 // Exception handling intrinsics
265 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
266 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
268 setMaxAtomicSizeInBitsSupported(64);
270 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
271 // consistent with the f64 and f128 names.
272 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
273 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
275 // Define the emscripten name for return address helper.
276 // TODO: when implementing other WASM backends, make this generic or only do
277 // this on emscripten depending on what they end up doing.
278 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
280 // Always convert switches to br_tables unless there is only one case, which
281 // is equivalent to a simple branch. This reduces code size for wasm, and we
282 // defer possible jump table optimizations to the VM.
283 setMinimumJumpTableEntries(2);
286 TargetLowering::AtomicExpansionKind
287 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
288 // We have wasm instructions for these
289 switch (AI->getOperation()) {
290 case AtomicRMWInst::Add:
291 case AtomicRMWInst::Sub:
292 case AtomicRMWInst::And:
293 case AtomicRMWInst::Or:
294 case AtomicRMWInst::Xor:
295 case AtomicRMWInst::Xchg:
296 return AtomicExpansionKind::None;
297 default:
298 break;
300 return AtomicExpansionKind::CmpXChg;
303 FastISel *WebAssemblyTargetLowering::createFastISel(
304 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
305 return WebAssembly::createFastISel(FuncInfo, LibInfo);
308 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
309 EVT VT) const {
310 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
311 if (BitWidth > 1 && BitWidth < 8)
312 BitWidth = 8;
314 if (BitWidth > 64) {
315 // The shift will be lowered to a libcall, and compiler-rt libcalls expect
316 // the count to be an i32.
317 BitWidth = 32;
318 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
319 "32-bit shift counts ought to be enough for anyone");
322 MVT Result = MVT::getIntegerVT(BitWidth);
323 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
324 "Unable to represent scalar shift amount type");
325 return Result;
328 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
329 // undefined result on invalid/overflow, to the WebAssembly opcode, which
330 // traps on invalid/overflow.
331 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
332 MachineBasicBlock *BB,
333 const TargetInstrInfo &TII,
334 bool IsUnsigned, bool Int64,
335 bool Float64, unsigned LoweredOpcode) {
336 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
338 Register OutReg = MI.getOperand(0).getReg();
339 Register InReg = MI.getOperand(1).getReg();
341 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
342 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
343 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
344 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
345 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
346 unsigned Eqz = WebAssembly::EQZ_I32;
347 unsigned And = WebAssembly::AND_I32;
348 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
349 int64_t Substitute = IsUnsigned ? 0 : Limit;
350 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
351 auto &Context = BB->getParent()->getFunction().getContext();
352 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
354 const BasicBlock *LLVMBB = BB->getBasicBlock();
355 MachineFunction *F = BB->getParent();
356 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
357 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
358 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
360 MachineFunction::iterator It = ++BB->getIterator();
361 F->insert(It, FalseMBB);
362 F->insert(It, TrueMBB);
363 F->insert(It, DoneMBB);
365 // Transfer the remainder of BB and its successor edges to DoneMBB.
366 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
367 DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
369 BB->addSuccessor(TrueMBB);
370 BB->addSuccessor(FalseMBB);
371 TrueMBB->addSuccessor(DoneMBB);
372 FalseMBB->addSuccessor(DoneMBB);
374 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
375 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
376 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
377 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
378 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
379 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
380 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
382 MI.eraseFromParent();
383 // For signed numbers, we can do a single comparison to determine whether
384 // fabs(x) is within range.
385 if (IsUnsigned) {
386 Tmp0 = InReg;
387 } else {
388 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
390 BuildMI(BB, DL, TII.get(FConst), Tmp1)
391 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
392 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
394 // For unsigned numbers, we have to do a separate comparison with zero.
395 if (IsUnsigned) {
396 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
397 Register SecondCmpReg =
398 MRI.createVirtualRegister(&WebAssembly::I32RegClass);
399 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
400 BuildMI(BB, DL, TII.get(FConst), Tmp1)
401 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
402 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
403 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
404 CmpReg = AndReg;
407 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
409 // Create the CFG diamond to select between doing the conversion or using
410 // the substitute value.
411 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
412 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
413 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
414 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
415 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
416 .addReg(FalseReg)
417 .addMBB(FalseMBB)
418 .addReg(TrueReg)
419 .addMBB(TrueMBB);
421 return DoneMBB;
424 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
425 MachineInstr &MI, MachineBasicBlock *BB) const {
426 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
427 DebugLoc DL = MI.getDebugLoc();
429 switch (MI.getOpcode()) {
430 default:
431 llvm_unreachable("Unexpected instr type to insert");
432 case WebAssembly::FP_TO_SINT_I32_F32:
433 return LowerFPToInt(MI, DL, BB, TII, false, false, false,
434 WebAssembly::I32_TRUNC_S_F32);
435 case WebAssembly::FP_TO_UINT_I32_F32:
436 return LowerFPToInt(MI, DL, BB, TII, true, false, false,
437 WebAssembly::I32_TRUNC_U_F32);
438 case WebAssembly::FP_TO_SINT_I64_F32:
439 return LowerFPToInt(MI, DL, BB, TII, false, true, false,
440 WebAssembly::I64_TRUNC_S_F32);
441 case WebAssembly::FP_TO_UINT_I64_F32:
442 return LowerFPToInt(MI, DL, BB, TII, true, true, false,
443 WebAssembly::I64_TRUNC_U_F32);
444 case WebAssembly::FP_TO_SINT_I32_F64:
445 return LowerFPToInt(MI, DL, BB, TII, false, false, true,
446 WebAssembly::I32_TRUNC_S_F64);
447 case WebAssembly::FP_TO_UINT_I32_F64:
448 return LowerFPToInt(MI, DL, BB, TII, true, false, true,
449 WebAssembly::I32_TRUNC_U_F64);
450 case WebAssembly::FP_TO_SINT_I64_F64:
451 return LowerFPToInt(MI, DL, BB, TII, false, true, true,
452 WebAssembly::I64_TRUNC_S_F64);
453 case WebAssembly::FP_TO_UINT_I64_F64:
454 return LowerFPToInt(MI, DL, BB, TII, true, true, true,
455 WebAssembly::I64_TRUNC_U_F64);
456 llvm_unreachable("Unexpected instruction to emit with custom inserter");
460 const char *
461 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
462 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
463 case WebAssemblyISD::FIRST_NUMBER:
464 break;
465 #define HANDLE_NODETYPE(NODE) \
466 case WebAssemblyISD::NODE: \
467 return "WebAssemblyISD::" #NODE;
468 #include "WebAssemblyISD.def"
469 #undef HANDLE_NODETYPE
471 return nullptr;
474 std::pair<unsigned, const TargetRegisterClass *>
475 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
476 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
477 // First, see if this is a constraint that directly corresponds to a
478 // WebAssembly register class.
479 if (Constraint.size() == 1) {
480 switch (Constraint[0]) {
481 case 'r':
482 assert(VT != MVT::iPTR && "Pointer MVT not expected here");
483 if (Subtarget->hasSIMD128() && VT.isVector()) {
484 if (VT.getSizeInBits() == 128)
485 return std::make_pair(0U, &WebAssembly::V128RegClass);
487 if (VT.isInteger() && !VT.isVector()) {
488 if (VT.getSizeInBits() <= 32)
489 return std::make_pair(0U, &WebAssembly::I32RegClass);
490 if (VT.getSizeInBits() <= 64)
491 return std::make_pair(0U, &WebAssembly::I64RegClass);
493 break;
494 default:
495 break;
499 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
502 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
503 // Assume ctz is a relatively cheap operation.
504 return true;
507 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
508 // Assume clz is a relatively cheap operation.
509 return true;
512 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
513 const AddrMode &AM,
514 Type *Ty, unsigned AS,
515 Instruction *I) const {
516 // WebAssembly offsets are added as unsigned without wrapping. The
517 // isLegalAddressingMode gives us no way to determine if wrapping could be
518 // happening, so we approximate this by accepting only non-negative offsets.
519 if (AM.BaseOffs < 0)
520 return false;
522 // WebAssembly has no scale register operands.
523 if (AM.Scale != 0)
524 return false;
526 // Everything else is legal.
527 return true;
530 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
531 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
532 MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
533 // WebAssembly supports unaligned accesses, though it should be declared
534 // with the p2align attribute on loads and stores which do so, and there
535 // may be a performance impact. We tell LLVM they're "fast" because
536 // for the kinds of things that LLVM uses this for (merging adjacent stores
537 // of constants, etc.), WebAssembly implementations will either want the
538 // unaligned access or they'll split anyway.
539 if (Fast)
540 *Fast = true;
541 return true;
544 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
545 AttributeList Attr) const {
546 // The current thinking is that wasm engines will perform this optimization,
547 // so we can save on code size.
548 return true;
551 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
552 if (!Subtarget->hasUnimplementedSIMD128())
553 return false;
554 MVT ExtT = ExtVal.getSimpleValueType();
555 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0);
556 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
557 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
558 (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
561 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
562 LLVMContext &C,
563 EVT VT) const {
564 if (VT.isVector())
565 return VT.changeVectorElementTypeToInteger();
567 return TargetLowering::getSetCCResultType(DL, C, VT);
570 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
571 const CallInst &I,
572 MachineFunction &MF,
573 unsigned Intrinsic) const {
574 switch (Intrinsic) {
575 case Intrinsic::wasm_atomic_notify:
576 Info.opc = ISD::INTRINSIC_W_CHAIN;
577 Info.memVT = MVT::i32;
578 Info.ptrVal = I.getArgOperand(0);
579 Info.offset = 0;
580 Info.align = Align(4);
581 // atomic.notify instruction does not really load the memory specified with
582 // this argument, but MachineMemOperand should either be load or store, so
583 // we set this to a load.
584 // FIXME Volatile isn't really correct, but currently all LLVM atomic
585 // instructions are treated as volatiles in the backend, so we should be
586 // consistent. The same applies for wasm_atomic_wait intrinsics too.
587 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
588 return true;
589 case Intrinsic::wasm_atomic_wait_i32:
590 Info.opc = ISD::INTRINSIC_W_CHAIN;
591 Info.memVT = MVT::i32;
592 Info.ptrVal = I.getArgOperand(0);
593 Info.offset = 0;
594 Info.align = Align(4);
595 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
596 return true;
597 case Intrinsic::wasm_atomic_wait_i64:
598 Info.opc = ISD::INTRINSIC_W_CHAIN;
599 Info.memVT = MVT::i64;
600 Info.ptrVal = I.getArgOperand(0);
601 Info.offset = 0;
602 Info.align = Align(8);
603 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
604 return true;
605 default:
606 return false;
610 //===----------------------------------------------------------------------===//
611 // WebAssembly Lowering private implementation.
612 //===----------------------------------------------------------------------===//
614 //===----------------------------------------------------------------------===//
615 // Lowering Code
616 //===----------------------------------------------------------------------===//
618 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
619 MachineFunction &MF = DAG.getMachineFunction();
620 DAG.getContext()->diagnose(
621 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
624 // Test whether the given calling convention is supported.
625 static bool callingConvSupported(CallingConv::ID CallConv) {
626 // We currently support the language-independent target-independent
627 // conventions. We don't yet have a way to annotate calls with properties like
628 // "cold", and we don't have any call-clobbered registers, so these are mostly
629 // all handled the same.
630 return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
631 CallConv == CallingConv::Cold ||
632 CallConv == CallingConv::PreserveMost ||
633 CallConv == CallingConv::PreserveAll ||
634 CallConv == CallingConv::CXX_FAST_TLS ||
635 CallConv == CallingConv::WASM_EmscriptenInvoke;
638 SDValue
639 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
640 SmallVectorImpl<SDValue> &InVals) const {
641 SelectionDAG &DAG = CLI.DAG;
642 SDLoc DL = CLI.DL;
643 SDValue Chain = CLI.Chain;
644 SDValue Callee = CLI.Callee;
645 MachineFunction &MF = DAG.getMachineFunction();
646 auto Layout = MF.getDataLayout();
648 CallingConv::ID CallConv = CLI.CallConv;
649 if (!callingConvSupported(CallConv))
650 fail(DL, DAG,
651 "WebAssembly doesn't support language-specific or target-specific "
652 "calling conventions yet");
653 if (CLI.IsPatchPoint)
654 fail(DL, DAG, "WebAssembly doesn't support patch point yet");
656 if (CLI.IsTailCall) {
657 bool MustTail = CLI.CS && CLI.CS.isMustTailCall();
658 if (Subtarget->hasTailCall() && !CLI.IsVarArg) {
659 // Do not tail call unless caller and callee return types match
660 const Function &F = MF.getFunction();
661 const TargetMachine &TM = getTargetMachine();
662 Type *RetTy = F.getReturnType();
663 SmallVector<MVT, 4> CallerRetTys;
664 SmallVector<MVT, 4> CalleeRetTys;
665 computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
666 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
667 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
668 std::equal(CallerRetTys.begin(), CallerRetTys.end(),
669 CalleeRetTys.begin());
670 if (!TypesMatch) {
671 // musttail in this case would be an LLVM IR validation failure
672 assert(!MustTail);
673 CLI.IsTailCall = false;
675 } else {
676 CLI.IsTailCall = false;
677 if (MustTail) {
678 if (CLI.IsVarArg) {
679 // The return would pop the argument buffer
680 fail(DL, DAG, "WebAssembly does not support varargs tail calls");
681 } else {
682 fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled");
688 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
689 if (Ins.size() > 1)
690 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
692 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
693 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
695 // The generic code may have added an sret argument. If we're lowering an
696 // invoke function, the ABI requires that the function pointer be the first
697 // argument, so we may have to swap the arguments.
698 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
699 Outs[0].Flags.isSRet()) {
700 std::swap(Outs[0], Outs[1]);
701 std::swap(OutVals[0], OutVals[1]);
704 unsigned NumFixedArgs = 0;
705 for (unsigned I = 0; I < Outs.size(); ++I) {
706 const ISD::OutputArg &Out = Outs[I];
707 SDValue &OutVal = OutVals[I];
708 if (Out.Flags.isNest())
709 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
710 if (Out.Flags.isInAlloca())
711 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
712 if (Out.Flags.isInConsecutiveRegs())
713 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
714 if (Out.Flags.isInConsecutiveRegsLast())
715 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
716 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
717 auto &MFI = MF.getFrameInfo();
718 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
719 Out.Flags.getByValAlign(),
720 /*isSS=*/false);
721 SDValue SizeNode =
722 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
723 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
724 Chain = DAG.getMemcpy(
725 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
726 /*isVolatile*/ false, /*AlwaysInline=*/false,
727 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
728 OutVal = FINode;
730 // Count the number of fixed args *after* legalization.
731 NumFixedArgs += Out.IsFixed;
734 bool IsVarArg = CLI.IsVarArg;
735 auto PtrVT = getPointerTy(Layout);
737 // Analyze operands of the call, assigning locations to each operand.
738 SmallVector<CCValAssign, 16> ArgLocs;
739 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
741 if (IsVarArg) {
742 // Outgoing non-fixed arguments are placed in a buffer. First
743 // compute their offsets and the total amount of buffer space needed.
744 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
745 const ISD::OutputArg &Out = Outs[I];
746 SDValue &Arg = OutVals[I];
747 EVT VT = Arg.getValueType();
748 assert(VT != MVT::iPTR && "Legalized args should be concrete");
749 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
750 unsigned Align = std::max(Out.Flags.getOrigAlign(),
751 Layout.getABITypeAlignment(Ty));
752 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
753 Align);
754 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
755 Offset, VT.getSimpleVT(),
756 CCValAssign::Full));
760 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
762 SDValue FINode;
763 if (IsVarArg && NumBytes) {
764 // For non-fixed arguments, next emit stores to store the argument values
765 // to the stack buffer at the offsets computed above.
766 int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
767 Layout.getStackAlignment(),
768 /*isSS=*/false);
769 unsigned ValNo = 0;
770 SmallVector<SDValue, 8> Chains;
771 for (SDValue Arg :
772 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
773 assert(ArgLocs[ValNo].getValNo() == ValNo &&
774 "ArgLocs should remain in order and only hold varargs args");
775 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
776 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
777 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
778 DAG.getConstant(Offset, DL, PtrVT));
779 Chains.push_back(
780 DAG.getStore(Chain, DL, Arg, Add,
781 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
783 if (!Chains.empty())
784 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
785 } else if (IsVarArg) {
786 FINode = DAG.getIntPtrConstant(0, DL);
789 if (Callee->getOpcode() == ISD::GlobalAddress) {
790 // If the callee is a GlobalAddress node (quite common, every direct call
791 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
792 // doesn't at MO_GOT which is not needed for direct calls.
793 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
794 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
795 getPointerTy(DAG.getDataLayout()),
796 GA->getOffset());
797 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
798 getPointerTy(DAG.getDataLayout()), Callee);
801 // Compute the operands for the CALLn node.
802 SmallVector<SDValue, 16> Ops;
803 Ops.push_back(Chain);
804 Ops.push_back(Callee);
806 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
807 // isn't reliable.
808 Ops.append(OutVals.begin(),
809 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
810 // Add a pointer to the vararg buffer.
811 if (IsVarArg)
812 Ops.push_back(FINode);
814 SmallVector<EVT, 8> InTys;
815 for (const auto &In : Ins) {
816 assert(!In.Flags.isByVal() && "byval is not valid for return values");
817 assert(!In.Flags.isNest() && "nest is not valid for return values");
818 if (In.Flags.isInAlloca())
819 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
820 if (In.Flags.isInConsecutiveRegs())
821 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
822 if (In.Flags.isInConsecutiveRegsLast())
823 fail(DL, DAG,
824 "WebAssembly hasn't implemented cons regs last return values");
825 // Ignore In.getOrigAlign() because all our arguments are passed in
826 // registers.
827 InTys.push_back(In.VT);
830 if (CLI.IsTailCall) {
831 // ret_calls do not return values to the current frame
832 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
833 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
836 InTys.push_back(MVT::Other);
837 SDVTList InTyList = DAG.getVTList(InTys);
838 SDValue Res =
839 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
840 DL, InTyList, Ops);
841 if (Ins.empty()) {
842 Chain = Res;
843 } else {
844 InVals.push_back(Res);
845 Chain = Res.getValue(1);
848 return Chain;
851 bool WebAssemblyTargetLowering::CanLowerReturn(
852 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
853 const SmallVectorImpl<ISD::OutputArg> &Outs,
854 LLVMContext & /*Context*/) const {
855 // WebAssembly can only handle returning tuples with multivalue enabled
856 return Subtarget->hasMultivalue() || Outs.size() <= 1;
859 SDValue WebAssemblyTargetLowering::LowerReturn(
860 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
861 const SmallVectorImpl<ISD::OutputArg> &Outs,
862 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
863 SelectionDAG &DAG) const {
864 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
865 "MVP WebAssembly can only return up to one value");
866 if (!callingConvSupported(CallConv))
867 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
869 SmallVector<SDValue, 4> RetOps(1, Chain);
870 RetOps.append(OutVals.begin(), OutVals.end());
871 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
873 // Record the number and types of the return values.
874 for (const ISD::OutputArg &Out : Outs) {
875 assert(!Out.Flags.isByVal() && "byval is not valid for return values");
876 assert(!Out.Flags.isNest() && "nest is not valid for return values");
877 assert(Out.IsFixed && "non-fixed return value is not valid");
878 if (Out.Flags.isInAlloca())
879 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
880 if (Out.Flags.isInConsecutiveRegs())
881 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
882 if (Out.Flags.isInConsecutiveRegsLast())
883 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
886 return Chain;
889 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
890 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
891 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
892 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
893 if (!callingConvSupported(CallConv))
894 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
896 MachineFunction &MF = DAG.getMachineFunction();
897 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
899 // Set up the incoming ARGUMENTS value, which serves to represent the liveness
900 // of the incoming values before they're represented by virtual registers.
901 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
903 for (const ISD::InputArg &In : Ins) {
904 if (In.Flags.isInAlloca())
905 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
906 if (In.Flags.isNest())
907 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
908 if (In.Flags.isInConsecutiveRegs())
909 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
910 if (In.Flags.isInConsecutiveRegsLast())
911 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
912 // Ignore In.getOrigAlign() because all our arguments are passed in
913 // registers.
914 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
915 DAG.getTargetConstant(InVals.size(),
916 DL, MVT::i32))
917 : DAG.getUNDEF(In.VT));
919 // Record the number and types of arguments.
920 MFI->addParam(In.VT);
923 // Varargs are copied into a buffer allocated by the caller, and a pointer to
924 // the buffer is passed as an argument.
925 if (IsVarArg) {
926 MVT PtrVT = getPointerTy(MF.getDataLayout());
927 Register VarargVreg =
928 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
929 MFI->setVarargBufferVreg(VarargVreg);
930 Chain = DAG.getCopyToReg(
931 Chain, DL, VarargVreg,
932 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
933 DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
934 MFI->addParam(PtrVT);
937 // Record the number and types of arguments and results.
938 SmallVector<MVT, 4> Params;
939 SmallVector<MVT, 4> Results;
940 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
941 DAG.getTarget(), Params, Results);
942 for (MVT VT : Results)
943 MFI->addResult(VT);
944 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
945 // the param logic here with ComputeSignatureVTs
946 assert(MFI->getParams().size() == Params.size() &&
947 std::equal(MFI->getParams().begin(), MFI->getParams().end(),
948 Params.begin()));
950 return Chain;
953 void WebAssemblyTargetLowering::ReplaceNodeResults(
954 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
955 switch (N->getOpcode()) {
956 case ISD::SIGN_EXTEND_INREG:
957 // Do not add any results, signifying that N should not be custom lowered
958 // after all. This happens because simd128 turns on custom lowering for
959 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
960 // illegal type.
961 break;
962 default:
963 llvm_unreachable(
964 "ReplaceNodeResults not implemented for this op for WebAssembly!");
968 //===----------------------------------------------------------------------===//
969 // Custom lowering hooks.
970 //===----------------------------------------------------------------------===//
972 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
973 SelectionDAG &DAG) const {
974 SDLoc DL(Op);
975 switch (Op.getOpcode()) {
976 default:
977 llvm_unreachable("unimplemented operation lowering");
978 return SDValue();
979 case ISD::FrameIndex:
980 return LowerFrameIndex(Op, DAG);
981 case ISD::GlobalAddress:
982 return LowerGlobalAddress(Op, DAG);
983 case ISD::ExternalSymbol:
984 return LowerExternalSymbol(Op, DAG);
985 case ISD::JumpTable:
986 return LowerJumpTable(Op, DAG);
987 case ISD::BR_JT:
988 return LowerBR_JT(Op, DAG);
989 case ISD::VASTART:
990 return LowerVASTART(Op, DAG);
991 case ISD::BlockAddress:
992 case ISD::BRIND:
993 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
994 return SDValue();
995 case ISD::RETURNADDR:
996 return LowerRETURNADDR(Op, DAG);
997 case ISD::FRAMEADDR:
998 return LowerFRAMEADDR(Op, DAG);
999 case ISD::CopyToReg:
1000 return LowerCopyToReg(Op, DAG);
1001 case ISD::EXTRACT_VECTOR_ELT:
1002 case ISD::INSERT_VECTOR_ELT:
1003 return LowerAccessVectorElement(Op, DAG);
1004 case ISD::INTRINSIC_VOID:
1005 case ISD::INTRINSIC_WO_CHAIN:
1006 case ISD::INTRINSIC_W_CHAIN:
1007 return LowerIntrinsic(Op, DAG);
1008 case ISD::SIGN_EXTEND_INREG:
1009 return LowerSIGN_EXTEND_INREG(Op, DAG);
1010 case ISD::BUILD_VECTOR:
1011 return LowerBUILD_VECTOR(Op, DAG);
1012 case ISD::VECTOR_SHUFFLE:
1013 return LowerVECTOR_SHUFFLE(Op, DAG);
1014 case ISD::SHL:
1015 case ISD::SRA:
1016 case ISD::SRL:
1017 return LowerShift(Op, DAG);
1021 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1022 SelectionDAG &DAG) const {
1023 SDValue Src = Op.getOperand(2);
1024 if (isa<FrameIndexSDNode>(Src.getNode())) {
1025 // CopyToReg nodes don't support FrameIndex operands. Other targets select
1026 // the FI to some LEA-like instruction, but since we don't have that, we
1027 // need to insert some kind of instruction that can take an FI operand and
1028 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1029 // local.copy between Op and its FI operand.
1030 SDValue Chain = Op.getOperand(0);
1031 SDLoc DL(Op);
1032 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1033 EVT VT = Src.getValueType();
1034 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1035 : WebAssembly::COPY_I64,
1036 DL, VT, Src),
1038 return Op.getNode()->getNumValues() == 1
1039 ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1040 : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1041 Op.getNumOperands() == 4 ? Op.getOperand(3)
1042 : SDValue());
1044 return SDValue();
1047 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1048 SelectionDAG &DAG) const {
1049 int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1050 return DAG.getTargetFrameIndex(FI, Op.getValueType());
1053 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1054 SelectionDAG &DAG) const {
1055 SDLoc DL(Op);
1057 if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1058 fail(DL, DAG,
1059 "Non-Emscripten WebAssembly hasn't implemented "
1060 "__builtin_return_address");
1061 return SDValue();
1064 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1065 return SDValue();
1067 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1068 MakeLibCallOptions CallOptions;
1069 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1070 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1071 .first;
1074 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1075 SelectionDAG &DAG) const {
1076 // Non-zero depths are not supported by WebAssembly currently. Use the
1077 // legalizer's default expansion, which is to return 0 (what this function is
1078 // documented to do).
1079 if (Op.getConstantOperandVal(0) > 0)
1080 return SDValue();
1082 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1083 EVT VT = Op.getValueType();
1084 Register FP =
1085 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1086 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1089 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1090 SelectionDAG &DAG) const {
1091 SDLoc DL(Op);
1092 const auto *GA = cast<GlobalAddressSDNode>(Op);
1093 EVT VT = Op.getValueType();
1094 assert(GA->getTargetFlags() == 0 &&
1095 "Unexpected target flags on generic GlobalAddressSDNode");
1096 if (GA->getAddressSpace() != 0)
1097 fail(DL, DAG, "WebAssembly only expects the 0 address space");
1099 unsigned OperandFlags = 0;
1100 if (isPositionIndependent()) {
1101 const GlobalValue *GV = GA->getGlobal();
1102 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1103 MachineFunction &MF = DAG.getMachineFunction();
1104 MVT PtrVT = getPointerTy(MF.getDataLayout());
1105 const char *BaseName;
1106 if (GV->getValueType()->isFunctionTy()) {
1107 BaseName = MF.createExternalSymbolName("__table_base");
1108 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1110 else {
1111 BaseName = MF.createExternalSymbolName("__memory_base");
1112 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1114 SDValue BaseAddr =
1115 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1116 DAG.getTargetExternalSymbol(BaseName, PtrVT));
1118 SDValue SymAddr = DAG.getNode(
1119 WebAssemblyISD::WrapperPIC, DL, VT,
1120 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1121 OperandFlags));
1123 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1124 } else {
1125 OperandFlags = WebAssemblyII::MO_GOT;
1129 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1130 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1131 GA->getOffset(), OperandFlags));
1134 SDValue
1135 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1136 SelectionDAG &DAG) const {
1137 SDLoc DL(Op);
1138 const auto *ES = cast<ExternalSymbolSDNode>(Op);
1139 EVT VT = Op.getValueType();
1140 assert(ES->getTargetFlags() == 0 &&
1141 "Unexpected target flags on generic ExternalSymbolSDNode");
1142 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1143 DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1146 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1147 SelectionDAG &DAG) const {
1148 // There's no need for a Wrapper node because we always incorporate a jump
1149 // table operand into a BR_TABLE instruction, rather than ever
1150 // materializing it in a register.
1151 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1152 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1153 JT->getTargetFlags());
1156 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1157 SelectionDAG &DAG) const {
1158 SDLoc DL(Op);
1159 SDValue Chain = Op.getOperand(0);
1160 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1161 SDValue Index = Op.getOperand(2);
1162 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1164 SmallVector<SDValue, 8> Ops;
1165 Ops.push_back(Chain);
1166 Ops.push_back(Index);
1168 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1169 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1171 // Add an operand for each case.
1172 for (auto MBB : MBBs)
1173 Ops.push_back(DAG.getBasicBlock(MBB));
1175 // TODO: For now, we just pick something arbitrary for a default case for now.
1176 // We really want to sniff out the guard and put in the real default case (and
1177 // delete the guard).
1178 Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1180 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1183 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1184 SelectionDAG &DAG) const {
1185 SDLoc DL(Op);
1186 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1188 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1189 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1191 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1192 MFI->getVarargBufferVreg(), PtrVT);
1193 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1194 MachinePointerInfo(SV), 0);
1197 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1198 SelectionDAG &DAG) const {
1199 MachineFunction &MF = DAG.getMachineFunction();
1200 unsigned IntNo;
1201 switch (Op.getOpcode()) {
1202 case ISD::INTRINSIC_VOID:
1203 case ISD::INTRINSIC_W_CHAIN:
1204 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1205 break;
1206 case ISD::INTRINSIC_WO_CHAIN:
1207 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1208 break;
1209 default:
1210 llvm_unreachable("Invalid intrinsic");
1212 SDLoc DL(Op);
1214 switch (IntNo) {
1215 default:
1216 return SDValue(); // Don't custom lower most intrinsics.
1218 case Intrinsic::wasm_lsda: {
1219 EVT VT = Op.getValueType();
1220 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1221 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1222 auto &Context = MF.getMMI().getContext();
1223 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1224 Twine(MF.getFunctionNumber()));
1225 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1226 DAG.getMCSymbol(S, PtrVT));
1229 case Intrinsic::wasm_throw: {
1230 // We only support C++ exceptions for now
1231 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1232 if (Tag != CPP_EXCEPTION)
1233 llvm_unreachable("Invalid tag!");
1234 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1235 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1236 const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1237 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1238 DAG.getTargetExternalSymbol(SymName, PtrVT));
1239 return DAG.getNode(WebAssemblyISD::THROW, DL,
1240 MVT::Other, // outchain type
1242 Op.getOperand(0), // inchain
1243 SymNode, // exception symbol
1244 Op.getOperand(3) // thrown value
1250 SDValue
1251 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1252 SelectionDAG &DAG) const {
1253 SDLoc DL(Op);
1254 // If sign extension operations are disabled, allow sext_inreg only if operand
1255 // is a vector extract. SIMD does not depend on sign extension operations, but
1256 // allowing sext_inreg in this context lets us have simple patterns to select
1257 // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1258 // simpler in this file, but would necessitate large and brittle patterns to
1259 // undo the expansion and select extract_lane_s instructions.
1260 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1261 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1262 const SDValue &Extract = Op.getOperand(0);
1263 MVT VecT = Extract.getOperand(0).getSimpleValueType();
1264 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode())
1265 ->getVT()
1266 .getSimpleVT();
1267 MVT ExtractedVecT =
1268 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1269 if (ExtractedVecT == VecT)
1270 return Op;
1271 // Bitcast vector to appropriate type to ensure ISel pattern coverage
1272 const SDValue &Index = Extract.getOperand(1);
1273 unsigned IndexVal =
1274 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue();
1275 unsigned Scale =
1276 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1277 assert(Scale > 1);
1278 SDValue NewIndex =
1279 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType());
1280 SDValue NewExtract = DAG.getNode(
1281 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1282 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1283 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(),
1284 NewExtract, Op.getOperand(1));
1286 // Otherwise expand
1287 return SDValue();
1290 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1291 SelectionDAG &DAG) const {
1292 SDLoc DL(Op);
1293 const EVT VecT = Op.getValueType();
1294 const EVT LaneT = Op.getOperand(0).getValueType();
1295 const size_t Lanes = Op.getNumOperands();
1296 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8;
1298 // BUILD_VECTORs are lowered to the instruction that initializes the highest
1299 // possible number of lanes at once followed by a sequence of replace_lane
1300 // instructions to individually initialize any remaining lanes.
1302 // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1303 // swizzled lanes should be given greater weight.
1305 // TODO: Investigate building vectors by shuffling together vectors built by
1306 // separately specialized means.
1308 auto IsConstant = [](const SDValue &V) {
1309 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1312 // Returns the source vector and index vector pair if they exist. Checks for:
1313 // (extract_vector_elt
1314 // $src,
1315 // (sign_extend_inreg (extract_vector_elt $indices, $i))
1316 // )
1317 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1318 auto Bail = std::make_pair(SDValue(), SDValue());
1319 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1320 return Bail;
1321 const SDValue &SwizzleSrc = Lane->getOperand(0);
1322 const SDValue &IndexExt = Lane->getOperand(1);
1323 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1324 return Bail;
1325 const SDValue &Index = IndexExt->getOperand(0);
1326 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1327 return Bail;
1328 const SDValue &SwizzleIndices = Index->getOperand(0);
1329 if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1330 SwizzleIndices.getValueType() != MVT::v16i8 ||
1331 Index->getOperand(1)->getOpcode() != ISD::Constant ||
1332 Index->getConstantOperandVal(1) != I)
1333 return Bail;
1334 return std::make_pair(SwizzleSrc, SwizzleIndices);
1337 using ValueEntry = std::pair<SDValue, size_t>;
1338 SmallVector<ValueEntry, 16> SplatValueCounts;
1340 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1341 SmallVector<SwizzleEntry, 16> SwizzleCounts;
1343 auto AddCount = [](auto &Counts, const auto &Val) {
1344 auto CountIt = std::find_if(Counts.begin(), Counts.end(),
1345 [&Val](auto E) { return E.first == Val; });
1346 if (CountIt == Counts.end()) {
1347 Counts.emplace_back(Val, 1);
1348 } else {
1349 CountIt->second++;
1353 auto GetMostCommon = [](auto &Counts) {
1354 auto CommonIt =
1355 std::max_element(Counts.begin(), Counts.end(),
1356 [](auto A, auto B) { return A.second < B.second; });
1357 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1358 return *CommonIt;
1361 size_t NumConstantLanes = 0;
1363 // Count eligible lanes for each type of vector creation op
1364 for (size_t I = 0; I < Lanes; ++I) {
1365 const SDValue &Lane = Op->getOperand(I);
1366 if (Lane.isUndef())
1367 continue;
1369 AddCount(SplatValueCounts, Lane);
1371 if (IsConstant(Lane)) {
1372 NumConstantLanes++;
1373 } else if (CanSwizzle) {
1374 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1375 if (SwizzleSrcs.first)
1376 AddCount(SwizzleCounts, SwizzleSrcs);
1380 SDValue SplatValue;
1381 size_t NumSplatLanes;
1382 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1384 SDValue SwizzleSrc;
1385 SDValue SwizzleIndices;
1386 size_t NumSwizzleLanes = 0;
1387 if (SwizzleCounts.size())
1388 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1389 NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1391 // Predicate returning true if the lane is properly initialized by the
1392 // original instruction
1393 std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1394 SDValue Result;
1395 if (Subtarget->hasUnimplementedSIMD128()) {
1396 // Prefer swizzles over vector consts over splats
1397 if (NumSwizzleLanes >= NumSplatLanes &&
1398 NumSwizzleLanes >= NumConstantLanes) {
1399 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1400 SwizzleIndices);
1401 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1402 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1403 return Swizzled == GetSwizzleSrcs(I, Lane);
1405 } else if (NumConstantLanes >= NumSplatLanes) {
1406 SmallVector<SDValue, 16> ConstLanes;
1407 for (const SDValue &Lane : Op->op_values()) {
1408 if (IsConstant(Lane)) {
1409 ConstLanes.push_back(Lane);
1410 } else if (LaneT.isFloatingPoint()) {
1411 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1412 } else {
1413 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1416 Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1417 IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
1418 return IsConstant(Lane);
1422 if (!Result) {
1423 // Use a splat, but possibly a load_splat
1424 LoadSDNode *SplattedLoad;
1425 if (Subtarget->hasUnimplementedSIMD128() &&
1426 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1427 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1428 Result = DAG.getNode(WebAssemblyISD::LOAD_SPLAT, DL, VecT, SplatValue);
1429 } else {
1430 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1432 IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
1433 return Lane == SplatValue;
1437 // Add replace_lane instructions for any unhandled values
1438 for (size_t I = 0; I < Lanes; ++I) {
1439 const SDValue &Lane = Op->getOperand(I);
1440 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1441 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1442 DAG.getConstant(I, DL, MVT::i32));
1445 return Result;
1448 SDValue
1449 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1450 SelectionDAG &DAG) const {
1451 SDLoc DL(Op);
1452 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1453 MVT VecType = Op.getOperand(0).getSimpleValueType();
1454 assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1455 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1457 // Space for two vector args and sixteen mask indices
1458 SDValue Ops[18];
1459 size_t OpIdx = 0;
1460 Ops[OpIdx++] = Op.getOperand(0);
1461 Ops[OpIdx++] = Op.getOperand(1);
1463 // Expand mask indices to byte indices and materialize them as operands
1464 for (int M : Mask) {
1465 for (size_t J = 0; J < LaneBytes; ++J) {
1466 // Lower undefs (represented by -1 in mask) to zero
1467 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1468 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1472 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1475 SDValue
1476 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1477 SelectionDAG &DAG) const {
1478 // Allow constant lane indices, expand variable lane indices
1479 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1480 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1481 return Op;
1482 else
1483 // Perform default expansion
1484 return SDValue();
1487 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1488 EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1489 // 32-bit and 64-bit unrolled shifts will have proper semantics
1490 if (LaneT.bitsGE(MVT::i32))
1491 return DAG.UnrollVectorOp(Op.getNode());
1492 // Otherwise mask the shift value to get proper semantics from 32-bit shift
1493 SDLoc DL(Op);
1494 SDValue ShiftVal = Op.getOperand(1);
1495 uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1496 SDValue MaskedShiftVal = DAG.getNode(
1497 ISD::AND, // mask opcode
1498 DL, ShiftVal.getValueType(), // masked value type
1499 ShiftVal, // original shift value operand
1500 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1503 return DAG.UnrollVectorOp(
1504 DAG.getNode(Op.getOpcode(), // original shift opcode
1505 DL, Op.getValueType(), // original return type
1506 Op.getOperand(0), // original vector operand,
1507 MaskedShiftVal // new masked shift value operand
1509 .getNode());
1512 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1513 SelectionDAG &DAG) const {
1514 SDLoc DL(Op);
1516 // Only manually lower vector shifts
1517 assert(Op.getSimpleValueType().isVector());
1519 // Unroll non-splat vector shifts
1520 BuildVectorSDNode *ShiftVec;
1521 SDValue SplatVal;
1522 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1523 !(SplatVal = ShiftVec->getSplatValue()))
1524 return unrollVectorShift(Op, DAG);
1526 // All splats except i64x2 const splats are handled by patterns
1527 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1528 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1529 return Op;
1531 // i64x2 const splats are custom lowered to avoid unnecessary wraps
1532 unsigned Opcode;
1533 switch (Op.getOpcode()) {
1534 case ISD::SHL:
1535 Opcode = WebAssemblyISD::VEC_SHL;
1536 break;
1537 case ISD::SRA:
1538 Opcode = WebAssemblyISD::VEC_SHR_S;
1539 break;
1540 case ISD::SRL:
1541 Opcode = WebAssemblyISD::VEC_SHR_U;
1542 break;
1543 default:
1544 llvm_unreachable("unexpected opcode");
1546 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1547 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1548 DAG.getConstant(Shift, DL, MVT::i32));
1551 //===----------------------------------------------------------------------===//
1552 // WebAssembly Optimization Hooks
1553 //===----------------------------------------------------------------------===//