[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / IPO / CalledValuePropagation.cpp
blob20cb3213628ec558ac606e5688e2f2767cb06ad0
1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/InstVisitor.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/Transforms/IPO.h"
25 using namespace llvm;
27 #define DEBUG_TYPE "called-value-propagation"
29 /// The maximum number of functions to track per lattice value. Once the number
30 /// of functions a call site can possibly target exceeds this threshold, it's
31 /// lattice value becomes overdefined. The number of possible lattice values is
32 /// bounded by Ch(F, M), where F is the number of functions in the module and M
33 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
34 /// likely can't do anything useful for call sites with a large number of
35 /// possible targets, anyway.
36 static cl::opt<unsigned> MaxFunctionsPerValue(
37 "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
38 cl::desc("The maximum number of functions to track per lattice value"));
40 namespace {
41 /// To enable interprocedural analysis, we assign LLVM values to the following
42 /// groups. The register group represents SSA registers, the return group
43 /// represents the return values of functions, and the memory group represents
44 /// in-memory values. An LLVM Value can technically be in more than one group.
45 /// It's necessary to distinguish these groups so we can, for example, track a
46 /// global variable separately from the value stored at its location.
47 enum class IPOGrouping { Register, Return, Memory };
49 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
50 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
52 /// The lattice value type used by our custom lattice function. It holds the
53 /// lattice state, and a set of functions.
54 class CVPLatticeVal {
55 public:
56 /// The states of the lattice values. Only the FunctionSet state is
57 /// interesting. It indicates the set of functions to which an LLVM value may
58 /// refer.
59 enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
61 /// Comparator for sorting the functions set. We want to keep the order
62 /// deterministic for testing, etc.
63 struct Compare {
64 bool operator()(const Function *LHS, const Function *RHS) const {
65 return LHS->getName() < RHS->getName();
69 CVPLatticeVal() : LatticeState(Undefined) {}
70 CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
71 CVPLatticeVal(std::vector<Function *> &&Functions)
72 : LatticeState(FunctionSet), Functions(std::move(Functions)) {
73 assert(std::is_sorted(this->Functions.begin(), this->Functions.end(),
74 Compare()));
77 /// Get a reference to the functions held by this lattice value. The number
78 /// of functions will be zero for states other than FunctionSet.
79 const std::vector<Function *> &getFunctions() const {
80 return Functions;
83 /// Returns true if the lattice value is in the FunctionSet state.
84 bool isFunctionSet() const { return LatticeState == FunctionSet; }
86 bool operator==(const CVPLatticeVal &RHS) const {
87 return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
90 bool operator!=(const CVPLatticeVal &RHS) const {
91 return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
94 private:
95 /// Holds the state this lattice value is in.
96 CVPLatticeStateTy LatticeState;
98 /// Holds functions indicating the possible targets of call sites. This set
99 /// is empty for lattice values in the undefined, overdefined, and untracked
100 /// states. The maximum size of the set is controlled by
101 /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
102 /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
103 /// small and efficiently copyable.
104 // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
105 std::vector<Function *> Functions;
108 /// The custom lattice function used by the generic sparse propagation solver.
109 /// It handles merging lattice values and computing new lattice values for
110 /// constants, arguments, values returned from trackable functions, and values
111 /// located in trackable global variables. It also computes the lattice values
112 /// that change as a result of executing instructions.
113 class CVPLatticeFunc
114 : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
115 public:
116 CVPLatticeFunc()
117 : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
118 CVPLatticeVal(CVPLatticeVal::Overdefined),
119 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
121 /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
122 CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
123 switch (Key.getInt()) {
124 case IPOGrouping::Register:
125 if (isa<Instruction>(Key.getPointer())) {
126 return getUndefVal();
127 } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
128 if (canTrackArgumentsInterprocedurally(A->getParent()))
129 return getUndefVal();
130 } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
131 return computeConstant(C);
133 return getOverdefinedVal();
134 case IPOGrouping::Memory:
135 case IPOGrouping::Return:
136 if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
137 if (canTrackGlobalVariableInterprocedurally(GV))
138 return computeConstant(GV->getInitializer());
139 } else if (auto *F = cast<Function>(Key.getPointer()))
140 if (canTrackReturnsInterprocedurally(F))
141 return getUndefVal();
143 return getOverdefinedVal();
146 /// Merge the two given lattice values. The interesting cases are merging two
147 /// FunctionSet values and a FunctionSet value with an Undefined value. For
148 /// these cases, we simply union the function sets. If the size of the union
149 /// is greater than the maximum functions we track, the merged value is
150 /// overdefined.
151 CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
152 if (X == getOverdefinedVal() || Y == getOverdefinedVal())
153 return getOverdefinedVal();
154 if (X == getUndefVal() && Y == getUndefVal())
155 return getUndefVal();
156 std::vector<Function *> Union;
157 std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
158 Y.getFunctions().begin(), Y.getFunctions().end(),
159 std::back_inserter(Union), CVPLatticeVal::Compare{});
160 if (Union.size() > MaxFunctionsPerValue)
161 return getOverdefinedVal();
162 return CVPLatticeVal(std::move(Union));
165 /// Compute the lattice values that change as a result of executing the given
166 /// instruction. The changed values are stored in \p ChangedValues. We handle
167 /// just a few kinds of instructions since we're only propagating values that
168 /// can be called.
169 void ComputeInstructionState(
170 Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
171 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
172 switch (I.getOpcode()) {
173 case Instruction::Call:
174 return visitCallSite(cast<CallInst>(&I), ChangedValues, SS);
175 case Instruction::Invoke:
176 return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS);
177 case Instruction::Load:
178 return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
179 case Instruction::Ret:
180 return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
181 case Instruction::Select:
182 return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
183 case Instruction::Store:
184 return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
185 default:
186 return visitInst(I, ChangedValues, SS);
190 /// Print the given CVPLatticeVal to the specified stream.
191 void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
192 if (LV == getUndefVal())
193 OS << "Undefined ";
194 else if (LV == getOverdefinedVal())
195 OS << "Overdefined";
196 else if (LV == getUntrackedVal())
197 OS << "Untracked ";
198 else
199 OS << "FunctionSet";
202 /// Print the given CVPLatticeKey to the specified stream.
203 void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
204 if (Key.getInt() == IPOGrouping::Register)
205 OS << "<reg> ";
206 else if (Key.getInt() == IPOGrouping::Memory)
207 OS << "<mem> ";
208 else if (Key.getInt() == IPOGrouping::Return)
209 OS << "<ret> ";
210 if (isa<Function>(Key.getPointer()))
211 OS << Key.getPointer()->getName();
212 else
213 OS << *Key.getPointer();
216 /// We collect a set of indirect calls when visiting call sites. This method
217 /// returns a reference to that set.
218 SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; }
220 private:
221 /// Holds the indirect calls we encounter during the analysis. We will attach
222 /// metadata to these calls after the analysis indicating the functions the
223 /// calls can possibly target.
224 SmallPtrSet<Instruction *, 32> IndirectCalls;
226 /// Compute a new lattice value for the given constant. The constant, after
227 /// stripping any pointer casts, should be a Function. We ignore null
228 /// pointers as an optimization, since calling these values is undefined
229 /// behavior.
230 CVPLatticeVal computeConstant(Constant *C) {
231 if (isa<ConstantPointerNull>(C))
232 return CVPLatticeVal(CVPLatticeVal::FunctionSet);
233 if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
234 return CVPLatticeVal({F});
235 return getOverdefinedVal();
238 /// Handle return instructions. The function's return state is the merge of
239 /// the returned value state and the function's return state.
240 void visitReturn(ReturnInst &I,
241 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
242 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
243 Function *F = I.getParent()->getParent();
244 if (F->getReturnType()->isVoidTy())
245 return;
246 auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
247 auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
248 ChangedValues[RetF] =
249 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
252 /// Handle call sites. The state of a called function's formal arguments is
253 /// the merge of the argument state with the call sites corresponding actual
254 /// argument state. The call site state is the merge of the call site state
255 /// with the returned value state of the called function.
256 void visitCallSite(CallSite CS,
257 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
258 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
259 Function *F = CS.getCalledFunction();
260 Instruction *I = CS.getInstruction();
261 auto RegI = CVPLatticeKey(I, IPOGrouping::Register);
263 // If this is an indirect call, save it so we can quickly revisit it when
264 // attaching metadata.
265 if (!F)
266 IndirectCalls.insert(I);
268 // If we can't track the function's return values, there's nothing to do.
269 if (!F || !canTrackReturnsInterprocedurally(F)) {
270 // Void return, No need to create and update CVPLattice state as no one
271 // can use it.
272 if (I->getType()->isVoidTy())
273 return;
274 ChangedValues[RegI] = getOverdefinedVal();
275 return;
278 // Inform the solver that the called function is executable, and perform
279 // the merges for the arguments and return value.
280 SS.MarkBlockExecutable(&F->front());
281 auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
282 for (Argument &A : F->args()) {
283 auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
284 auto RegActual =
285 CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register);
286 ChangedValues[RegFormal] =
287 MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
290 // Void return, No need to create and update CVPLattice state as no one can
291 // use it.
292 if (I->getType()->isVoidTy())
293 return;
295 ChangedValues[RegI] =
296 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
299 /// Handle select instructions. The select instruction state is the merge the
300 /// true and false value states.
301 void visitSelect(SelectInst &I,
302 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
303 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
304 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
305 auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
306 auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
307 ChangedValues[RegI] =
308 MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
311 /// Handle load instructions. If the pointer operand of the load is a global
312 /// variable, we attempt to track the value. The loaded value state is the
313 /// merge of the loaded value state with the global variable state.
314 void visitLoad(LoadInst &I,
315 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
316 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
317 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
318 if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
319 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
320 ChangedValues[RegI] =
321 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
322 } else {
323 ChangedValues[RegI] = getOverdefinedVal();
327 /// Handle store instructions. If the pointer operand of the store is a
328 /// global variable, we attempt to track the value. The global variable state
329 /// is the merge of the stored value state with the global variable state.
330 void visitStore(StoreInst &I,
331 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
332 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
333 auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
334 if (!GV)
335 return;
336 auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
337 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
338 ChangedValues[MemGV] =
339 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
342 /// Handle all other instructions. All other instructions are marked
343 /// overdefined.
344 void visitInst(Instruction &I,
345 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
346 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
347 // Simply bail if this instruction has no user.
348 if (I.use_empty())
349 return;
350 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
351 ChangedValues[RegI] = getOverdefinedVal();
354 } // namespace
356 namespace llvm {
357 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
358 /// must translate between LatticeKeys and LLVM Values when adding Values to
359 /// its work list and inspecting the state of control-flow related values.
360 template <> struct LatticeKeyInfo<CVPLatticeKey> {
361 static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
362 return Key.getPointer();
364 static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
365 return CVPLatticeKey(V, IPOGrouping::Register);
368 } // namespace llvm
370 static bool runCVP(Module &M) {
371 // Our custom lattice function and generic sparse propagation solver.
372 CVPLatticeFunc Lattice;
373 SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
375 // For each function in the module, if we can't track its arguments, let the
376 // generic solver assume it is executable.
377 for (Function &F : M)
378 if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
379 Solver.MarkBlockExecutable(&F.front());
381 // Solver our custom lattice. In doing so, we will also build a set of
382 // indirect call sites.
383 Solver.Solve();
385 // Attach metadata to the indirect call sites that were collected indicating
386 // the set of functions they can possibly target.
387 bool Changed = false;
388 MDBuilder MDB(M.getContext());
389 for (Instruction *C : Lattice.getIndirectCalls()) {
390 CallSite CS(C);
391 auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register);
392 CVPLatticeVal LV = Solver.getExistingValueState(RegI);
393 if (!LV.isFunctionSet() || LV.getFunctions().empty())
394 continue;
395 MDNode *Callees = MDB.createCallees(LV.getFunctions());
396 C->setMetadata(LLVMContext::MD_callees, Callees);
397 Changed = true;
400 return Changed;
403 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
404 ModuleAnalysisManager &) {
405 runCVP(M);
406 return PreservedAnalyses::all();
409 namespace {
410 class CalledValuePropagationLegacyPass : public ModulePass {
411 public:
412 static char ID;
414 void getAnalysisUsage(AnalysisUsage &AU) const override {
415 AU.setPreservesAll();
418 CalledValuePropagationLegacyPass() : ModulePass(ID) {
419 initializeCalledValuePropagationLegacyPassPass(
420 *PassRegistry::getPassRegistry());
423 bool runOnModule(Module &M) override {
424 if (skipModule(M))
425 return false;
426 return runCVP(M);
429 } // namespace
431 char CalledValuePropagationLegacyPass::ID = 0;
432 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
433 "Called Value Propagation", false, false)
435 ModulePass *llvm::createCalledValuePropagationPass() {
436 return new CalledValuePropagationLegacyPass();