[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / IPO / HotColdSplitting.cpp
blobcfdcc8db7f50e72f2433acec6dd7cfabf51fe7c3
1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/BlockFrequencyInfo.h"
33 #include "llvm/Analysis/BranchProbabilityInfo.h"
34 #include "llvm/Analysis/CFG.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/Analysis/PostDominators.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/TargetTransformInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Use.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/IPO.h"
62 #include "llvm/Transforms/IPO/HotColdSplitting.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/CodeExtractor.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
69 #include <algorithm>
70 #include <cassert>
72 #define DEBUG_TYPE "hotcoldsplit"
74 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
75 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
77 using namespace llvm;
79 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
80 cl::init(true), cl::Hidden);
82 static cl::opt<int>
83 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
84 cl::desc("Base penalty for splitting cold code (as a "
85 "multiple of TCC_Basic)"));
87 namespace {
88 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
89 // this function unless you modify the MBB version as well.
91 /// A no successor, non-return block probably ends in unreachable and is cold.
92 /// Also consider a block that ends in an indirect branch to be a return block,
93 /// since many targets use plain indirect branches to return.
94 bool blockEndsInUnreachable(const BasicBlock &BB) {
95 if (!succ_empty(&BB))
96 return false;
97 if (BB.empty())
98 return true;
99 const Instruction *I = BB.getTerminator();
100 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
103 bool unlikelyExecuted(BasicBlock &BB) {
104 // Exception handling blocks are unlikely executed.
105 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
106 return true;
108 // The block is cold if it calls/invokes a cold function. However, do not
109 // mark sanitizer traps as cold.
110 for (Instruction &I : BB)
111 if (auto CS = CallSite(&I))
112 if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize"))
113 return true;
115 // The block is cold if it has an unreachable terminator, unless it's
116 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
117 if (blockEndsInUnreachable(BB)) {
118 if (auto *CI =
119 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
120 if (CI->hasFnAttr(Attribute::NoReturn))
121 return false;
122 return true;
125 return false;
128 /// Check whether it's safe to outline \p BB.
129 static bool mayExtractBlock(const BasicBlock &BB) {
130 // EH pads are unsafe to outline because doing so breaks EH type tables. It
131 // follows that invoke instructions cannot be extracted, because CodeExtractor
132 // requires unwind destinations to be within the extraction region.
134 // Resumes that are not reachable from a cleanup landing pad are considered to
135 // be unreachable. It’s not safe to split them out either.
136 auto Term = BB.getTerminator();
137 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
138 !isa<ResumeInst>(Term);
141 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
142 /// If \p UpdateEntryCount is true (set when this is a new split function and
143 /// module has profile data), set entry count to 0 to ensure treated as cold.
144 /// Return true if the function is changed.
145 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
146 assert(!F.hasOptNone() && "Can't mark this cold");
147 bool Changed = false;
148 if (!F.hasFnAttribute(Attribute::Cold)) {
149 F.addFnAttr(Attribute::Cold);
150 Changed = true;
152 if (!F.hasFnAttribute(Attribute::MinSize)) {
153 F.addFnAttr(Attribute::MinSize);
154 Changed = true;
156 if (UpdateEntryCount) {
157 // Set the entry count to 0 to ensure it is placed in the unlikely text
158 // section when function sections are enabled.
159 F.setEntryCount(0);
160 Changed = true;
163 return Changed;
166 class HotColdSplittingLegacyPass : public ModulePass {
167 public:
168 static char ID;
169 HotColdSplittingLegacyPass() : ModulePass(ID) {
170 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
173 void getAnalysisUsage(AnalysisUsage &AU) const override {
174 AU.addRequired<BlockFrequencyInfoWrapperPass>();
175 AU.addRequired<ProfileSummaryInfoWrapperPass>();
176 AU.addRequired<TargetTransformInfoWrapperPass>();
177 AU.addUsedIfAvailable<AssumptionCacheTracker>();
180 bool runOnModule(Module &M) override;
183 } // end anonymous namespace
185 /// Check whether \p F is inherently cold.
186 bool HotColdSplitting::isFunctionCold(const Function &F) const {
187 if (F.hasFnAttribute(Attribute::Cold))
188 return true;
190 if (F.getCallingConv() == CallingConv::Cold)
191 return true;
193 if (PSI->isFunctionEntryCold(&F))
194 return true;
196 return false;
199 // Returns false if the function should not be considered for hot-cold split
200 // optimization.
201 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
202 if (F.hasFnAttribute(Attribute::AlwaysInline))
203 return false;
205 if (F.hasFnAttribute(Attribute::NoInline))
206 return false;
208 if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
209 F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
210 F.hasFnAttribute(Attribute::SanitizeThread) ||
211 F.hasFnAttribute(Attribute::SanitizeMemory))
212 return false;
214 return true;
217 /// Get the benefit score of outlining \p Region.
218 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
219 TargetTransformInfo &TTI) {
220 // Sum up the code size costs of non-terminator instructions. Tight coupling
221 // with \ref getOutliningPenalty is needed to model the costs of terminators.
222 int Benefit = 0;
223 for (BasicBlock *BB : Region)
224 for (Instruction &I : BB->instructionsWithoutDebug())
225 if (&I != BB->getTerminator())
226 Benefit +=
227 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
229 return Benefit;
232 /// Get the penalty score for outlining \p Region.
233 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
234 unsigned NumInputs, unsigned NumOutputs) {
235 int Penalty = SplittingThreshold;
236 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
238 // If the splitting threshold is set at or below zero, skip the usual
239 // profitability check.
240 if (SplittingThreshold <= 0)
241 return Penalty;
243 // The typical code size cost for materializing an argument for the outlined
244 // call.
245 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
246 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
247 Penalty += CostForArgMaterialization * NumInputs;
249 // The typical code size cost for an output alloca, its associated store, and
250 // its associated reload.
251 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
252 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
253 Penalty += CostForRegionOutput * NumOutputs;
255 // Find the number of distinct exit blocks for the region. Use a conservative
256 // check to determine whether control returns from the region.
257 bool NoBlocksReturn = true;
258 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
259 for (BasicBlock *BB : Region) {
260 // If a block has no successors, only assume it does not return if it's
261 // unreachable.
262 if (succ_empty(BB)) {
263 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
264 continue;
267 for (BasicBlock *SuccBB : successors(BB)) {
268 if (find(Region, SuccBB) == Region.end()) {
269 NoBlocksReturn = false;
270 SuccsOutsideRegion.insert(SuccBB);
275 // Apply a `noreturn` bonus.
276 if (NoBlocksReturn) {
277 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
278 << " non-returning terminators\n");
279 Penalty -= Region.size();
282 // Apply a penalty for having more than one successor outside of the region.
283 // This penalty accounts for the switch needed in the caller.
284 if (!SuccsOutsideRegion.empty()) {
285 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
286 << " non-region successors\n");
287 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
290 return Penalty;
293 Function *HotColdSplitting::extractColdRegion(
294 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
295 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
296 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
297 assert(!Region.empty());
299 // TODO: Pass BFI and BPI to update profile information.
300 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
301 /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
302 /* AllowAlloca */ false,
303 /* Suffix */ "cold." + std::to_string(Count));
305 // Perform a simple cost/benefit analysis to decide whether or not to permit
306 // splitting.
307 SetVector<Value *> Inputs, Outputs, Sinks;
308 CE.findInputsOutputs(Inputs, Outputs, Sinks);
309 int OutliningBenefit = getOutliningBenefit(Region, TTI);
310 int OutliningPenalty =
311 getOutliningPenalty(Region, Inputs.size(), Outputs.size());
312 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
313 << ", penalty = " << OutliningPenalty << "\n");
314 if (OutliningBenefit <= OutliningPenalty)
315 return nullptr;
317 Function *OrigF = Region[0]->getParent();
318 if (Function *OutF = CE.extractCodeRegion(CEAC)) {
319 User *U = *OutF->user_begin();
320 CallInst *CI = cast<CallInst>(U);
321 CallSite CS(CI);
322 NumColdRegionsOutlined++;
323 if (TTI.useColdCCForColdCall(*OutF)) {
324 OutF->setCallingConv(CallingConv::Cold);
325 CS.setCallingConv(CallingConv::Cold);
327 CI->setIsNoInline();
329 markFunctionCold(*OutF, BFI != nullptr);
331 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
332 ORE.emit([&]() {
333 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
334 &*Region[0]->begin())
335 << ore::NV("Original", OrigF) << " split cold code into "
336 << ore::NV("Split", OutF);
338 return OutF;
341 ORE.emit([&]() {
342 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
343 &*Region[0]->begin())
344 << "Failed to extract region at block "
345 << ore::NV("Block", Region.front());
347 return nullptr;
350 /// A pair of (basic block, score).
351 using BlockTy = std::pair<BasicBlock *, unsigned>;
353 namespace {
354 /// A maximal outlining region. This contains all blocks post-dominated by a
355 /// sink block, the sink block itself, and all blocks dominated by the sink.
356 /// If sink-predecessors and sink-successors cannot be extracted in one region,
357 /// the static constructor returns a list of suitable extraction regions.
358 class OutliningRegion {
359 /// A list of (block, score) pairs. A block's score is non-zero iff it's a
360 /// viable sub-region entry point. Blocks with higher scores are better entry
361 /// points (i.e. they are more distant ancestors of the sink block).
362 SmallVector<BlockTy, 0> Blocks = {};
364 /// The suggested entry point into the region. If the region has multiple
365 /// entry points, all blocks within the region may not be reachable from this
366 /// entry point.
367 BasicBlock *SuggestedEntryPoint = nullptr;
369 /// Whether the entire function is cold.
370 bool EntireFunctionCold = false;
372 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
373 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
374 return mayExtractBlock(BB) ? Score : 0;
377 /// These scores should be lower than the score for predecessor blocks,
378 /// because regions starting at predecessor blocks are typically larger.
379 static constexpr unsigned ScoreForSuccBlock = 1;
380 static constexpr unsigned ScoreForSinkBlock = 1;
382 OutliningRegion(const OutliningRegion &) = delete;
383 OutliningRegion &operator=(const OutliningRegion &) = delete;
385 public:
386 OutliningRegion() = default;
387 OutliningRegion(OutliningRegion &&) = default;
388 OutliningRegion &operator=(OutliningRegion &&) = default;
390 static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
391 const DominatorTree &DT,
392 const PostDominatorTree &PDT) {
393 std::vector<OutliningRegion> Regions;
394 SmallPtrSet<BasicBlock *, 4> RegionBlocks;
396 Regions.emplace_back();
397 OutliningRegion *ColdRegion = &Regions.back();
399 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
400 RegionBlocks.insert(BB);
401 ColdRegion->Blocks.emplace_back(BB, Score);
404 // The ancestor farthest-away from SinkBB, and also post-dominated by it.
405 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
406 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
407 unsigned BestScore = SinkScore;
409 // Visit SinkBB's ancestors using inverse DFS.
410 auto PredIt = ++idf_begin(&SinkBB);
411 auto PredEnd = idf_end(&SinkBB);
412 while (PredIt != PredEnd) {
413 BasicBlock &PredBB = **PredIt;
414 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
416 // If the predecessor is cold and has no predecessors, the entire
417 // function must be cold.
418 if (SinkPostDom && pred_empty(&PredBB)) {
419 ColdRegion->EntireFunctionCold = true;
420 return Regions;
423 // If SinkBB does not post-dominate a predecessor, do not mark the
424 // predecessor (or any of its predecessors) cold.
425 if (!SinkPostDom || !mayExtractBlock(PredBB)) {
426 PredIt.skipChildren();
427 continue;
430 // Keep track of the post-dominated ancestor farthest away from the sink.
431 // The path length is always >= 2, ensuring that predecessor blocks are
432 // considered as entry points before the sink block.
433 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
434 if (PredScore > BestScore) {
435 ColdRegion->SuggestedEntryPoint = &PredBB;
436 BestScore = PredScore;
439 addBlockToRegion(&PredBB, PredScore);
440 ++PredIt;
443 // If the sink can be added to the cold region, do so. It's considered as
444 // an entry point before any sink-successor blocks.
446 // Otherwise, split cold sink-successor blocks using a separate region.
447 // This satisfies the requirement that all extraction blocks other than the
448 // first have predecessors within the extraction region.
449 if (mayExtractBlock(SinkBB)) {
450 addBlockToRegion(&SinkBB, SinkScore);
451 } else {
452 Regions.emplace_back();
453 ColdRegion = &Regions.back();
454 BestScore = 0;
457 // Find all successors of SinkBB dominated by SinkBB using DFS.
458 auto SuccIt = ++df_begin(&SinkBB);
459 auto SuccEnd = df_end(&SinkBB);
460 while (SuccIt != SuccEnd) {
461 BasicBlock &SuccBB = **SuccIt;
462 bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
464 // Don't allow the backwards & forwards DFSes to mark the same block.
465 bool DuplicateBlock = RegionBlocks.count(&SuccBB);
467 // If SinkBB does not dominate a successor, do not mark the successor (or
468 // any of its successors) cold.
469 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
470 SuccIt.skipChildren();
471 continue;
474 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
475 if (SuccScore > BestScore) {
476 ColdRegion->SuggestedEntryPoint = &SuccBB;
477 BestScore = SuccScore;
480 addBlockToRegion(&SuccBB, SuccScore);
481 ++SuccIt;
484 return Regions;
487 /// Whether this region has nothing to extract.
488 bool empty() const { return !SuggestedEntryPoint; }
490 /// The blocks in this region.
491 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
493 /// Whether the entire function containing this region is cold.
494 bool isEntireFunctionCold() const { return EntireFunctionCold; }
496 /// Remove a sub-region from this region and return it as a block sequence.
497 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
498 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
500 // Remove blocks dominated by the suggested entry point from this region.
501 // During the removal, identify the next best entry point into the region.
502 // Ensure that the first extracted block is the suggested entry point.
503 BlockSequence SubRegion = {SuggestedEntryPoint};
504 BasicBlock *NextEntryPoint = nullptr;
505 unsigned NextScore = 0;
506 auto RegionEndIt = Blocks.end();
507 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
508 BasicBlock *BB = Block.first;
509 unsigned Score = Block.second;
510 bool InSubRegion =
511 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
512 if (!InSubRegion && Score > NextScore) {
513 NextEntryPoint = BB;
514 NextScore = Score;
516 if (InSubRegion && BB != SuggestedEntryPoint)
517 SubRegion.push_back(BB);
518 return InSubRegion;
520 Blocks.erase(RegionStartIt, RegionEndIt);
522 // Update the suggested entry point.
523 SuggestedEntryPoint = NextEntryPoint;
525 return SubRegion;
528 } // namespace
530 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
531 bool Changed = false;
533 // The set of cold blocks.
534 SmallPtrSet<BasicBlock *, 4> ColdBlocks;
536 // The worklist of non-intersecting regions left to outline.
537 SmallVector<OutliningRegion, 2> OutliningWorklist;
539 // Set up an RPO traversal. Experimentally, this performs better (outlines
540 // more) than a PO traversal, because we prevent region overlap by keeping
541 // the first region to contain a block.
542 ReversePostOrderTraversal<Function *> RPOT(&F);
544 // Calculate domtrees lazily. This reduces compile-time significantly.
545 std::unique_ptr<DominatorTree> DT;
546 std::unique_ptr<PostDominatorTree> PDT;
548 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
549 // reduces compile-time significantly. TODO: When we *do* use BFI, we should
550 // be able to salvage its domtrees instead of recomputing them.
551 BlockFrequencyInfo *BFI = nullptr;
552 if (HasProfileSummary)
553 BFI = GetBFI(F);
555 TargetTransformInfo &TTI = GetTTI(F);
556 OptimizationRemarkEmitter &ORE = (*GetORE)(F);
557 AssumptionCache *AC = LookupAC(F);
559 // Find all cold regions.
560 for (BasicBlock *BB : RPOT) {
561 // This block is already part of some outlining region.
562 if (ColdBlocks.count(BB))
563 continue;
565 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
566 (EnableStaticAnalyis && unlikelyExecuted(*BB));
567 if (!Cold)
568 continue;
570 LLVM_DEBUG({
571 dbgs() << "Found a cold block:\n";
572 BB->dump();
575 if (!DT)
576 DT = std::make_unique<DominatorTree>(F);
577 if (!PDT)
578 PDT = std::make_unique<PostDominatorTree>(F);
580 auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
581 for (OutliningRegion &Region : Regions) {
582 if (Region.empty())
583 continue;
585 if (Region.isEntireFunctionCold()) {
586 LLVM_DEBUG(dbgs() << "Entire function is cold\n");
587 return markFunctionCold(F);
590 // If this outlining region intersects with another, drop the new region.
592 // TODO: It's theoretically possible to outline more by only keeping the
593 // largest region which contains a block, but the extra bookkeeping to do
594 // this is tricky/expensive.
595 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
596 return !ColdBlocks.insert(Block.first).second;
598 if (RegionsOverlap)
599 continue;
601 OutliningWorklist.emplace_back(std::move(Region));
602 ++NumColdRegionsFound;
606 if (OutliningWorklist.empty())
607 return Changed;
609 // Outline single-entry cold regions, splitting up larger regions as needed.
610 unsigned OutlinedFunctionID = 1;
611 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
612 CodeExtractorAnalysisCache CEAC(F);
613 do {
614 OutliningRegion Region = OutliningWorklist.pop_back_val();
615 assert(!Region.empty() && "Empty outlining region in worklist");
616 do {
617 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
618 LLVM_DEBUG({
619 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
620 for (BasicBlock *BB : SubRegion)
621 BB->dump();
624 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
625 ORE, AC, OutlinedFunctionID);
626 if (Outlined) {
627 ++OutlinedFunctionID;
628 Changed = true;
630 } while (!Region.empty());
631 } while (!OutliningWorklist.empty());
633 return Changed;
636 bool HotColdSplitting::run(Module &M) {
637 bool Changed = false;
638 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
639 for (auto It = M.begin(), End = M.end(); It != End; ++It) {
640 Function &F = *It;
642 // Do not touch declarations.
643 if (F.isDeclaration())
644 continue;
646 // Do not modify `optnone` functions.
647 if (F.hasOptNone())
648 continue;
650 // Detect inherently cold functions and mark them as such.
651 if (isFunctionCold(F)) {
652 Changed |= markFunctionCold(F);
653 continue;
656 if (!shouldOutlineFrom(F)) {
657 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
658 continue;
661 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
662 Changed |= outlineColdRegions(F, HasProfileSummary);
664 return Changed;
667 bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
668 if (skipModule(M))
669 return false;
670 ProfileSummaryInfo *PSI =
671 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
672 auto GTTI = [this](Function &F) -> TargetTransformInfo & {
673 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
675 auto GBFI = [this](Function &F) {
676 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
678 std::unique_ptr<OptimizationRemarkEmitter> ORE;
679 std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
680 [&ORE](Function &F) -> OptimizationRemarkEmitter & {
681 ORE.reset(new OptimizationRemarkEmitter(&F));
682 return *ORE.get();
684 auto LookupAC = [this](Function &F) -> AssumptionCache * {
685 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
686 return ACT->lookupAssumptionCache(F);
687 return nullptr;
690 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
693 PreservedAnalyses
694 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
695 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
697 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
698 return FAM.getCachedResult<AssumptionAnalysis>(F);
701 auto GBFI = [&FAM](Function &F) {
702 return &FAM.getResult<BlockFrequencyAnalysis>(F);
705 std::function<TargetTransformInfo &(Function &)> GTTI =
706 [&FAM](Function &F) -> TargetTransformInfo & {
707 return FAM.getResult<TargetIRAnalysis>(F);
710 std::unique_ptr<OptimizationRemarkEmitter> ORE;
711 std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
712 [&ORE](Function &F) -> OptimizationRemarkEmitter & {
713 ORE.reset(new OptimizationRemarkEmitter(&F));
714 return *ORE.get();
717 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
719 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
720 return PreservedAnalyses::none();
721 return PreservedAnalyses::all();
724 char HotColdSplittingLegacyPass::ID = 0;
725 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
726 "Hot Cold Splitting", false, false)
727 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
728 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
729 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
730 "Hot Cold Splitting", false, false)
732 ModulePass *llvm::createHotColdSplittingPass() {
733 return new HotColdSplittingLegacyPass();