[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / IPO / PartialInlining.cpp
blobe193074884af6af23585cc24721b958d70b4f28d
1 //===- PartialInlining.cpp - Inline parts of functions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs partial inlining, typically by inlining an if statement
10 // that surrounds the body of the function.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/IPO/PartialInlining.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/InlineCost.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BlockFrequency.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Transforms/IPO.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include "llvm/Transforms/Utils/CodeExtractor.h"
54 #include "llvm/Transforms/Utils/ValueMapper.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <functional>
59 #include <iterator>
60 #include <memory>
61 #include <tuple>
62 #include <vector>
64 using namespace llvm;
66 #define DEBUG_TYPE "partial-inlining"
68 STATISTIC(NumPartialInlined,
69 "Number of callsites functions partially inlined into.");
70 STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with "
71 "cold outlined regions were partially "
72 "inlined into its caller(s).");
73 STATISTIC(NumColdRegionsFound,
74 "Number of cold single entry/exit regions found.");
75 STATISTIC(NumColdRegionsOutlined,
76 "Number of cold single entry/exit regions outlined.");
78 // Command line option to disable partial-inlining. The default is false:
79 static cl::opt<bool>
80 DisablePartialInlining("disable-partial-inlining", cl::init(false),
81 cl::Hidden, cl::desc("Disable partial inlining"));
82 // Command line option to disable multi-region partial-inlining. The default is
83 // false:
84 static cl::opt<bool> DisableMultiRegionPartialInline(
85 "disable-mr-partial-inlining", cl::init(false), cl::Hidden,
86 cl::desc("Disable multi-region partial inlining"));
88 // Command line option to force outlining in regions with live exit variables.
89 // The default is false:
90 static cl::opt<bool>
91 ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden,
92 cl::desc("Force outline regions with live exits"));
94 // Command line option to enable marking outline functions with Cold Calling
95 // Convention. The default is false:
96 static cl::opt<bool>
97 MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden,
98 cl::desc("Mark outline function calls with ColdCC"));
100 #ifndef NDEBUG
101 // Command line option to debug partial-inlining. The default is none:
102 static cl::opt<bool> TracePartialInlining("trace-partial-inlining",
103 cl::init(false), cl::Hidden,
104 cl::desc("Trace partial inlining."));
105 #endif
107 // This is an option used by testing:
108 static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis",
109 cl::init(false), cl::ZeroOrMore,
110 cl::ReallyHidden,
111 cl::desc("Skip Cost Analysis"));
112 // Used to determine if a cold region is worth outlining based on
113 // its inlining cost compared to the original function. Default is set at 10%.
114 // ie. if the cold region reduces the inlining cost of the original function by
115 // at least 10%.
116 static cl::opt<float> MinRegionSizeRatio(
117 "min-region-size-ratio", cl::init(0.1), cl::Hidden,
118 cl::desc("Minimum ratio comparing relative sizes of each "
119 "outline candidate and original function"));
120 // Used to tune the minimum number of execution counts needed in the predecessor
121 // block to the cold edge. ie. confidence interval.
122 static cl::opt<unsigned>
123 MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden,
124 cl::desc("Minimum block executions to consider "
125 "its BranchProbabilityInfo valid"));
126 // Used to determine when an edge is considered cold. Default is set to 10%. ie.
127 // if the branch probability is 10% or less, then it is deemed as 'cold'.
128 static cl::opt<float> ColdBranchRatio(
129 "cold-branch-ratio", cl::init(0.1), cl::Hidden,
130 cl::desc("Minimum BranchProbability to consider a region cold."));
132 static cl::opt<unsigned> MaxNumInlineBlocks(
133 "max-num-inline-blocks", cl::init(5), cl::Hidden,
134 cl::desc("Max number of blocks to be partially inlined"));
136 // Command line option to set the maximum number of partial inlining allowed
137 // for the module. The default value of -1 means no limit.
138 static cl::opt<int> MaxNumPartialInlining(
139 "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore,
140 cl::desc("Max number of partial inlining. The default is unlimited"));
142 // Used only when PGO or user annotated branch data is absent. It is
143 // the least value that is used to weigh the outline region. If BFI
144 // produces larger value, the BFI value will be used.
145 static cl::opt<int>
146 OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75),
147 cl::Hidden, cl::ZeroOrMore,
148 cl::desc("Relative frequency of outline region to "
149 "the entry block"));
151 static cl::opt<unsigned> ExtraOutliningPenalty(
152 "partial-inlining-extra-penalty", cl::init(0), cl::Hidden,
153 cl::desc("A debug option to add additional penalty to the computed one."));
155 namespace {
157 struct FunctionOutliningInfo {
158 FunctionOutliningInfo() = default;
160 // Returns the number of blocks to be inlined including all blocks
161 // in Entries and one return block.
162 unsigned GetNumInlinedBlocks() const { return Entries.size() + 1; }
164 // A set of blocks including the function entry that guard
165 // the region to be outlined.
166 SmallVector<BasicBlock *, 4> Entries;
168 // The return block that is not included in the outlined region.
169 BasicBlock *ReturnBlock = nullptr;
171 // The dominating block of the region to be outlined.
172 BasicBlock *NonReturnBlock = nullptr;
174 // The set of blocks in Entries that that are predecessors to ReturnBlock
175 SmallVector<BasicBlock *, 4> ReturnBlockPreds;
178 struct FunctionOutliningMultiRegionInfo {
179 FunctionOutliningMultiRegionInfo()
180 : ORI() {}
182 // Container for outline regions
183 struct OutlineRegionInfo {
184 OutlineRegionInfo(ArrayRef<BasicBlock *> Region,
185 BasicBlock *EntryBlock, BasicBlock *ExitBlock,
186 BasicBlock *ReturnBlock)
187 : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock),
188 ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {}
189 SmallVector<BasicBlock *, 8> Region;
190 BasicBlock *EntryBlock;
191 BasicBlock *ExitBlock;
192 BasicBlock *ReturnBlock;
195 SmallVector<OutlineRegionInfo, 4> ORI;
198 struct PartialInlinerImpl {
200 PartialInlinerImpl(
201 std::function<AssumptionCache &(Function &)> *GetAC,
202 function_ref<AssumptionCache *(Function &)> LookupAC,
203 std::function<TargetTransformInfo &(Function &)> *GTTI,
204 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GBFI,
205 ProfileSummaryInfo *ProfSI)
206 : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC),
207 GetTTI(GTTI), GetBFI(GBFI), PSI(ProfSI) {}
209 bool run(Module &M);
210 // Main part of the transformation that calls helper functions to find
211 // outlining candidates, clone & outline the function, and attempt to
212 // partially inline the resulting function. Returns true if
213 // inlining was successful, false otherwise. Also returns the outline
214 // function (only if we partially inlined early returns) as there is a
215 // possibility to further "peel" early return statements that were left in the
216 // outline function due to code size.
217 std::pair<bool, Function *> unswitchFunction(Function *F);
219 // This class speculatively clones the function to be partial inlined.
220 // At the end of partial inlining, the remaining callsites to the cloned
221 // function that are not partially inlined will be fixed up to reference
222 // the original function, and the cloned function will be erased.
223 struct FunctionCloner {
224 // Two constructors, one for single region outlining, the other for
225 // multi-region outlining.
226 FunctionCloner(Function *F, FunctionOutliningInfo *OI,
227 OptimizationRemarkEmitter &ORE,
228 function_ref<AssumptionCache *(Function &)> LookupAC);
229 FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI,
230 OptimizationRemarkEmitter &ORE,
231 function_ref<AssumptionCache *(Function &)> LookupAC);
232 ~FunctionCloner();
234 // Prepare for function outlining: making sure there is only
235 // one incoming edge from the extracted/outlined region to
236 // the return block.
237 void NormalizeReturnBlock();
239 // Do function outlining for cold regions.
240 bool doMultiRegionFunctionOutlining();
241 // Do function outlining for region after early return block(s).
242 // NOTE: For vararg functions that do the vararg handling in the outlined
243 // function, we temporarily generate IR that does not properly
244 // forward varargs to the outlined function. Calling InlineFunction
245 // will update calls to the outlined functions to properly forward
246 // the varargs.
247 Function *doSingleRegionFunctionOutlining();
249 Function *OrigFunc = nullptr;
250 Function *ClonedFunc = nullptr;
252 typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair;
253 // Keep track of Outlined Functions and the basic block they're called from.
254 SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions;
256 // ClonedFunc is inlined in one of its callers after function
257 // outlining.
258 bool IsFunctionInlined = false;
259 // The cost of the region to be outlined.
260 int OutlinedRegionCost = 0;
261 // ClonedOI is specific to outlining non-early return blocks.
262 std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr;
263 // ClonedOMRI is specific to outlining cold regions.
264 std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr;
265 std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr;
266 OptimizationRemarkEmitter &ORE;
267 function_ref<AssumptionCache *(Function &)> LookupAC;
270 private:
271 int NumPartialInlining = 0;
272 std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
273 function_ref<AssumptionCache *(Function &)> LookupAssumptionCache;
274 std::function<TargetTransformInfo &(Function &)> *GetTTI;
275 Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI;
276 ProfileSummaryInfo *PSI;
278 // Return the frequency of the OutlininingBB relative to F's entry point.
279 // The result is no larger than 1 and is represented using BP.
280 // (Note that the outlined region's 'head' block can only have incoming
281 // edges from the guarding entry blocks).
282 BranchProbability getOutliningCallBBRelativeFreq(FunctionCloner &Cloner);
284 // Return true if the callee of CS should be partially inlined with
285 // profit.
286 bool shouldPartialInline(CallSite CS, FunctionCloner &Cloner,
287 BlockFrequency WeightedOutliningRcost,
288 OptimizationRemarkEmitter &ORE);
290 // Try to inline DuplicateFunction (cloned from F with call to
291 // the OutlinedFunction into its callers. Return true
292 // if there is any successful inlining.
293 bool tryPartialInline(FunctionCloner &Cloner);
295 // Compute the mapping from use site of DuplicationFunction to the enclosing
296 // BB's profile count.
297 void computeCallsiteToProfCountMap(Function *DuplicateFunction,
298 DenseMap<User *, uint64_t> &SiteCountMap);
300 bool IsLimitReached() {
301 return (MaxNumPartialInlining != -1 &&
302 NumPartialInlining >= MaxNumPartialInlining);
305 static CallSite getCallSite(User *U) {
306 CallSite CS;
307 if (CallInst *CI = dyn_cast<CallInst>(U))
308 CS = CallSite(CI);
309 else if (InvokeInst *II = dyn_cast<InvokeInst>(U))
310 CS = CallSite(II);
311 else
312 llvm_unreachable("All uses must be calls");
313 return CS;
316 static CallSite getOneCallSiteTo(Function *F) {
317 User *User = *F->user_begin();
318 return getCallSite(User);
321 std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) {
322 CallSite CS = getOneCallSiteTo(F);
323 DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
324 BasicBlock *Block = CS.getParent();
325 return std::make_tuple(DLoc, Block);
328 // Returns the costs associated with function outlining:
329 // - The first value is the non-weighted runtime cost for making the call
330 // to the outlined function, including the addtional setup cost in the
331 // outlined function itself;
332 // - The second value is the estimated size of the new call sequence in
333 // basic block Cloner.OutliningCallBB;
334 std::tuple<int, int> computeOutliningCosts(FunctionCloner &Cloner);
336 // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to
337 // approximate both the size and runtime cost (Note that in the current
338 // inline cost analysis, there is no clear distinction there either).
339 static int computeBBInlineCost(BasicBlock *BB);
341 std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F);
342 std::unique_ptr<FunctionOutliningMultiRegionInfo>
343 computeOutliningColdRegionsInfo(Function *F, OptimizationRemarkEmitter &ORE);
346 struct PartialInlinerLegacyPass : public ModulePass {
347 static char ID; // Pass identification, replacement for typeid
349 PartialInlinerLegacyPass() : ModulePass(ID) {
350 initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
353 void getAnalysisUsage(AnalysisUsage &AU) const override {
354 AU.addRequired<AssumptionCacheTracker>();
355 AU.addRequired<ProfileSummaryInfoWrapperPass>();
356 AU.addRequired<TargetTransformInfoWrapperPass>();
359 bool runOnModule(Module &M) override {
360 if (skipModule(M))
361 return false;
363 AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
364 TargetTransformInfoWrapperPass *TTIWP =
365 &getAnalysis<TargetTransformInfoWrapperPass>();
366 ProfileSummaryInfo *PSI =
367 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
369 std::function<AssumptionCache &(Function &)> GetAssumptionCache =
370 [&ACT](Function &F) -> AssumptionCache & {
371 return ACT->getAssumptionCache(F);
374 auto LookupAssumptionCache = [ACT](Function &F) -> AssumptionCache * {
375 return ACT->lookupAssumptionCache(F);
378 std::function<TargetTransformInfo &(Function &)> GetTTI =
379 [&TTIWP](Function &F) -> TargetTransformInfo & {
380 return TTIWP->getTTI(F);
383 return PartialInlinerImpl(&GetAssumptionCache, LookupAssumptionCache,
384 &GetTTI, NoneType::None, PSI)
385 .run(M);
389 } // end anonymous namespace
391 std::unique_ptr<FunctionOutliningMultiRegionInfo>
392 PartialInlinerImpl::computeOutliningColdRegionsInfo(Function *F,
393 OptimizationRemarkEmitter &ORE) {
394 BasicBlock *EntryBlock = &F->front();
396 DominatorTree DT(*F);
397 LoopInfo LI(DT);
398 BranchProbabilityInfo BPI(*F, LI);
399 std::unique_ptr<BlockFrequencyInfo> ScopedBFI;
400 BlockFrequencyInfo *BFI;
401 if (!GetBFI) {
402 ScopedBFI.reset(new BlockFrequencyInfo(*F, BPI, LI));
403 BFI = ScopedBFI.get();
404 } else
405 BFI = &(*GetBFI)(*F);
407 // Return if we don't have profiling information.
408 if (!PSI->hasInstrumentationProfile())
409 return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
411 std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo =
412 std::make_unique<FunctionOutliningMultiRegionInfo>();
414 auto IsSingleEntry = [](SmallVectorImpl<BasicBlock *> &BlockList) {
415 BasicBlock *Dom = BlockList.front();
416 return BlockList.size() > 1 && Dom->hasNPredecessors(1);
419 auto IsSingleExit =
420 [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * {
421 BasicBlock *ExitBlock = nullptr;
422 for (auto *Block : BlockList) {
423 for (auto SI = succ_begin(Block); SI != succ_end(Block); ++SI) {
424 if (!is_contained(BlockList, *SI)) {
425 if (ExitBlock) {
426 ORE.emit([&]() {
427 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion",
428 &SI->front())
429 << "Region dominated by "
430 << ore::NV("Block", BlockList.front()->getName())
431 << " has more than one region exit edge.";
433 return nullptr;
434 } else
435 ExitBlock = Block;
439 return ExitBlock;
442 auto BBProfileCount = [BFI](BasicBlock *BB) {
443 return BFI->getBlockProfileCount(BB)
444 ? BFI->getBlockProfileCount(BB).getValue()
445 : 0;
448 // Use the same computeBBInlineCost function to compute the cost savings of
449 // the outlining the candidate region.
450 int OverallFunctionCost = 0;
451 for (auto &BB : *F)
452 OverallFunctionCost += computeBBInlineCost(&BB);
454 #ifndef NDEBUG
455 if (TracePartialInlining)
456 dbgs() << "OverallFunctionCost = " << OverallFunctionCost << "\n";
457 #endif
458 int MinOutlineRegionCost =
459 static_cast<int>(OverallFunctionCost * MinRegionSizeRatio);
460 BranchProbability MinBranchProbability(
461 static_cast<int>(ColdBranchRatio * MinBlockCounterExecution),
462 MinBlockCounterExecution);
463 bool ColdCandidateFound = false;
464 BasicBlock *CurrEntry = EntryBlock;
465 std::vector<BasicBlock *> DFS;
466 DenseMap<BasicBlock *, bool> VisitedMap;
467 DFS.push_back(CurrEntry);
468 VisitedMap[CurrEntry] = true;
469 // Use Depth First Search on the basic blocks to find CFG edges that are
470 // considered cold.
471 // Cold regions considered must also have its inline cost compared to the
472 // overall inline cost of the original function. The region is outlined only
473 // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or
474 // more.
475 while (!DFS.empty()) {
476 auto *thisBB = DFS.back();
477 DFS.pop_back();
478 // Only consider regions with predecessor blocks that are considered
479 // not-cold (default: part of the top 99.99% of all block counters)
480 // AND greater than our minimum block execution count (default: 100).
481 if (PSI->isColdBlock(thisBB, BFI) ||
482 BBProfileCount(thisBB) < MinBlockCounterExecution)
483 continue;
484 for (auto SI = succ_begin(thisBB); SI != succ_end(thisBB); ++SI) {
485 if (VisitedMap[*SI])
486 continue;
487 VisitedMap[*SI] = true;
488 DFS.push_back(*SI);
489 // If branch isn't cold, we skip to the next one.
490 BranchProbability SuccProb = BPI.getEdgeProbability(thisBB, *SI);
491 if (SuccProb > MinBranchProbability)
492 continue;
493 #ifndef NDEBUG
494 if (TracePartialInlining) {
495 dbgs() << "Found cold edge: " << thisBB->getName() << "->"
496 << (*SI)->getName() << "\nBranch Probability = " << SuccProb
497 << "\n";
499 #endif
500 SmallVector<BasicBlock *, 8> DominateVector;
501 DT.getDescendants(*SI, DominateVector);
502 // We can only outline single entry regions (for now).
503 if (!IsSingleEntry(DominateVector))
504 continue;
505 BasicBlock *ExitBlock = nullptr;
506 // We can only outline single exit regions (for now).
507 if (!(ExitBlock = IsSingleExit(DominateVector)))
508 continue;
509 int OutlineRegionCost = 0;
510 for (auto *BB : DominateVector)
511 OutlineRegionCost += computeBBInlineCost(BB);
513 #ifndef NDEBUG
514 if (TracePartialInlining)
515 dbgs() << "OutlineRegionCost = " << OutlineRegionCost << "\n";
516 #endif
518 if (OutlineRegionCost < MinOutlineRegionCost) {
519 ORE.emit([&]() {
520 return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly",
521 &SI->front())
522 << ore::NV("Callee", F) << " inline cost-savings smaller than "
523 << ore::NV("Cost", MinOutlineRegionCost);
525 continue;
527 // For now, ignore blocks that belong to a SISE region that is a
528 // candidate for outlining. In the future, we may want to look
529 // at inner regions because the outer region may have live-exit
530 // variables.
531 for (auto *BB : DominateVector)
532 VisitedMap[BB] = true;
533 // ReturnBlock here means the block after the outline call
534 BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor();
535 // assert(ReturnBlock && "ReturnBlock is NULL somehow!");
536 FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo(
537 DominateVector, DominateVector.front(), ExitBlock, ReturnBlock);
538 OutliningInfo->ORI.push_back(RegInfo);
539 #ifndef NDEBUG
540 if (TracePartialInlining) {
541 dbgs() << "Found Cold Candidate starting at block: "
542 << DominateVector.front()->getName() << "\n";
544 #endif
545 ColdCandidateFound = true;
546 NumColdRegionsFound++;
549 if (ColdCandidateFound)
550 return OutliningInfo;
551 else
552 return std::unique_ptr<FunctionOutliningMultiRegionInfo>();
555 std::unique_ptr<FunctionOutliningInfo>
556 PartialInlinerImpl::computeOutliningInfo(Function *F) {
557 BasicBlock *EntryBlock = &F->front();
558 BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator());
559 if (!BR || BR->isUnconditional())
560 return std::unique_ptr<FunctionOutliningInfo>();
562 // Returns true if Succ is BB's successor
563 auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) {
564 return is_contained(successors(BB), Succ);
567 auto IsReturnBlock = [](BasicBlock *BB) {
568 Instruction *TI = BB->getTerminator();
569 return isa<ReturnInst>(TI);
572 auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
573 if (IsReturnBlock(Succ1))
574 return std::make_tuple(Succ1, Succ2);
575 if (IsReturnBlock(Succ2))
576 return std::make_tuple(Succ2, Succ1);
578 return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
581 // Detect a triangular shape:
582 auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) {
583 if (IsSuccessor(Succ1, Succ2))
584 return std::make_tuple(Succ1, Succ2);
585 if (IsSuccessor(Succ2, Succ1))
586 return std::make_tuple(Succ2, Succ1);
588 return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr);
591 std::unique_ptr<FunctionOutliningInfo> OutliningInfo =
592 std::make_unique<FunctionOutliningInfo>();
594 BasicBlock *CurrEntry = EntryBlock;
595 bool CandidateFound = false;
596 do {
597 // The number of blocks to be inlined has already reached
598 // the limit. When MaxNumInlineBlocks is set to 0 or 1, this
599 // disables partial inlining for the function.
600 if (OutliningInfo->GetNumInlinedBlocks() >= MaxNumInlineBlocks)
601 break;
603 if (succ_size(CurrEntry) != 2)
604 break;
606 BasicBlock *Succ1 = *succ_begin(CurrEntry);
607 BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1);
609 BasicBlock *ReturnBlock, *NonReturnBlock;
610 std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
612 if (ReturnBlock) {
613 OutliningInfo->Entries.push_back(CurrEntry);
614 OutliningInfo->ReturnBlock = ReturnBlock;
615 OutliningInfo->NonReturnBlock = NonReturnBlock;
616 CandidateFound = true;
617 break;
620 BasicBlock *CommSucc;
621 BasicBlock *OtherSucc;
622 std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2);
624 if (!CommSucc)
625 break;
627 OutliningInfo->Entries.push_back(CurrEntry);
628 CurrEntry = OtherSucc;
629 } while (true);
631 if (!CandidateFound)
632 return std::unique_ptr<FunctionOutliningInfo>();
634 // Do sanity check of the entries: threre should not
635 // be any successors (not in the entry set) other than
636 // {ReturnBlock, NonReturnBlock}
637 assert(OutliningInfo->Entries[0] == &F->front() &&
638 "Function Entry must be the first in Entries vector");
639 DenseSet<BasicBlock *> Entries;
640 for (BasicBlock *E : OutliningInfo->Entries)
641 Entries.insert(E);
643 // Returns true of BB has Predecessor which is not
644 // in Entries set.
645 auto HasNonEntryPred = [Entries](BasicBlock *BB) {
646 for (auto Pred : predecessors(BB)) {
647 if (!Entries.count(Pred))
648 return true;
650 return false;
652 auto CheckAndNormalizeCandidate =
653 [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) {
654 for (BasicBlock *E : OutliningInfo->Entries) {
655 for (auto Succ : successors(E)) {
656 if (Entries.count(Succ))
657 continue;
658 if (Succ == OutliningInfo->ReturnBlock)
659 OutliningInfo->ReturnBlockPreds.push_back(E);
660 else if (Succ != OutliningInfo->NonReturnBlock)
661 return false;
663 // There should not be any outside incoming edges either:
664 if (HasNonEntryPred(E))
665 return false;
667 return true;
670 if (!CheckAndNormalizeCandidate(OutliningInfo.get()))
671 return std::unique_ptr<FunctionOutliningInfo>();
673 // Now further growing the candidate's inlining region by
674 // peeling off dominating blocks from the outlining region:
675 while (OutliningInfo->GetNumInlinedBlocks() < MaxNumInlineBlocks) {
676 BasicBlock *Cand = OutliningInfo->NonReturnBlock;
677 if (succ_size(Cand) != 2)
678 break;
680 if (HasNonEntryPred(Cand))
681 break;
683 BasicBlock *Succ1 = *succ_begin(Cand);
684 BasicBlock *Succ2 = *(succ_begin(Cand) + 1);
686 BasicBlock *ReturnBlock, *NonReturnBlock;
687 std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2);
688 if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock)
689 break;
691 if (NonReturnBlock->getSinglePredecessor() != Cand)
692 break;
694 // Now grow and update OutlininigInfo:
695 OutliningInfo->Entries.push_back(Cand);
696 OutliningInfo->NonReturnBlock = NonReturnBlock;
697 OutliningInfo->ReturnBlockPreds.push_back(Cand);
698 Entries.insert(Cand);
701 return OutliningInfo;
704 // Check if there is PGO data or user annoated branch data:
705 static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) {
706 if (F->hasProfileData())
707 return true;
708 // Now check if any of the entry block has MD_prof data:
709 for (auto *E : OI->Entries) {
710 BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator());
711 if (!BR || BR->isUnconditional())
712 continue;
713 uint64_t T, F;
714 if (BR->extractProfMetadata(T, F))
715 return true;
717 return false;
720 BranchProbability
721 PartialInlinerImpl::getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) {
722 BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second;
723 auto EntryFreq =
724 Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock());
725 auto OutliningCallFreq =
726 Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB);
727 // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE
728 // we outlined any regions, so we may encounter situations where the
729 // OutliningCallFreq is *slightly* bigger than the EntryFreq.
730 if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) {
731 OutliningCallFreq = EntryFreq;
733 auto OutlineRegionRelFreq = BranchProbability::getBranchProbability(
734 OutliningCallFreq.getFrequency(), EntryFreq.getFrequency());
736 if (hasProfileData(Cloner.OrigFunc, Cloner.ClonedOI.get()))
737 return OutlineRegionRelFreq;
739 // When profile data is not available, we need to be conservative in
740 // estimating the overall savings. Static branch prediction can usually
741 // guess the branch direction right (taken/non-taken), but the guessed
742 // branch probability is usually not biased enough. In case when the
743 // outlined region is predicted to be likely, its probability needs
744 // to be made higher (more biased) to not under-estimate the cost of
745 // function outlining. On the other hand, if the outlined region
746 // is predicted to be less likely, the predicted probablity is usually
747 // higher than the actual. For instance, the actual probability of the
748 // less likely target is only 5%, but the guessed probablity can be
749 // 40%. In the latter case, there is no need for further adjustement.
750 // FIXME: add an option for this.
751 if (OutlineRegionRelFreq < BranchProbability(45, 100))
752 return OutlineRegionRelFreq;
754 OutlineRegionRelFreq = std::max(
755 OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100));
757 return OutlineRegionRelFreq;
760 bool PartialInlinerImpl::shouldPartialInline(
761 CallSite CS, FunctionCloner &Cloner,
762 BlockFrequency WeightedOutliningRcost,
763 OptimizationRemarkEmitter &ORE) {
764 using namespace ore;
766 Instruction *Call = CS.getInstruction();
767 Function *Callee = CS.getCalledFunction();
768 assert(Callee == Cloner.ClonedFunc);
770 if (SkipCostAnalysis)
771 return isInlineViable(*Callee);
773 Function *Caller = CS.getCaller();
774 auto &CalleeTTI = (*GetTTI)(*Callee);
775 bool RemarksEnabled =
776 Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
777 DEBUG_TYPE);
778 assert(Call && "invalid callsite for partial inline");
779 InlineCost IC = getInlineCost(cast<CallBase>(*Call), getInlineParams(),
780 CalleeTTI, *GetAssumptionCache, GetBFI, PSI,
781 RemarksEnabled ? &ORE : nullptr);
783 if (IC.isAlways()) {
784 ORE.emit([&]() {
785 return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call)
786 << NV("Callee", Cloner.OrigFunc)
787 << " should always be fully inlined, not partially";
789 return false;
792 if (IC.isNever()) {
793 ORE.emit([&]() {
794 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
795 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
796 << NV("Caller", Caller)
797 << " because it should never be inlined (cost=never)";
799 return false;
802 if (!IC) {
803 ORE.emit([&]() {
804 return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call)
805 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
806 << NV("Caller", Caller) << " because too costly to inline (cost="
807 << NV("Cost", IC.getCost()) << ", threshold="
808 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
810 return false;
812 const DataLayout &DL = Caller->getParent()->getDataLayout();
814 // The savings of eliminating the call:
815 int NonWeightedSavings = getCallsiteCost(cast<CallBase>(*Call), DL);
816 BlockFrequency NormWeightedSavings(NonWeightedSavings);
818 // Weighted saving is smaller than weighted cost, return false
819 if (NormWeightedSavings < WeightedOutliningRcost) {
820 ORE.emit([&]() {
821 return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh",
822 Call)
823 << NV("Callee", Cloner.OrigFunc) << " not partially inlined into "
824 << NV("Caller", Caller) << " runtime overhead (overhead="
825 << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency())
826 << ", savings="
827 << NV("Savings", (unsigned)NormWeightedSavings.getFrequency())
828 << ")"
829 << " of making the outlined call is too high";
832 return false;
835 ORE.emit([&]() {
836 return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call)
837 << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into "
838 << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost())
839 << " (threshold="
840 << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")";
842 return true;
845 // TODO: Ideally we should share Inliner's InlineCost Analysis code.
846 // For now use a simplified version. The returned 'InlineCost' will be used
847 // to esimate the size cost as well as runtime cost of the BB.
848 int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB) {
849 int InlineCost = 0;
850 const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
851 for (Instruction &I : BB->instructionsWithoutDebug()) {
852 // Skip free instructions.
853 switch (I.getOpcode()) {
854 case Instruction::BitCast:
855 case Instruction::PtrToInt:
856 case Instruction::IntToPtr:
857 case Instruction::Alloca:
858 case Instruction::PHI:
859 continue;
860 case Instruction::GetElementPtr:
861 if (cast<GetElementPtrInst>(&I)->hasAllZeroIndices())
862 continue;
863 break;
864 default:
865 break;
868 if (I.isLifetimeStartOrEnd())
869 continue;
871 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
872 InlineCost += getCallsiteCost(*CI, DL);
873 continue;
876 if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
877 InlineCost += getCallsiteCost(*II, DL);
878 continue;
881 if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) {
882 InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost;
883 continue;
885 InlineCost += InlineConstants::InstrCost;
887 return InlineCost;
890 std::tuple<int, int>
891 PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) {
892 int OutliningFuncCallCost = 0, OutlinedFunctionCost = 0;
893 for (auto FuncBBPair : Cloner.OutlinedFunctions) {
894 Function *OutlinedFunc = FuncBBPair.first;
895 BasicBlock* OutliningCallBB = FuncBBPair.second;
896 // Now compute the cost of the call sequence to the outlined function
897 // 'OutlinedFunction' in BB 'OutliningCallBB':
898 OutliningFuncCallCost += computeBBInlineCost(OutliningCallBB);
900 // Now compute the cost of the extracted/outlined function itself:
901 for (BasicBlock &BB : *OutlinedFunc)
902 OutlinedFunctionCost += computeBBInlineCost(&BB);
904 assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost &&
905 "Outlined function cost should be no less than the outlined region");
907 // The code extractor introduces a new root and exit stub blocks with
908 // additional unconditional branches. Those branches will be eliminated
909 // later with bb layout. The cost should be adjusted accordingly:
910 OutlinedFunctionCost -=
911 2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size();
913 int OutliningRuntimeOverhead =
914 OutliningFuncCallCost +
915 (OutlinedFunctionCost - Cloner.OutlinedRegionCost) +
916 ExtraOutliningPenalty;
918 return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead);
921 // Create the callsite to profile count map which is
922 // used to update the original function's entry count,
923 // after the function is partially inlined into the callsite.
924 void PartialInlinerImpl::computeCallsiteToProfCountMap(
925 Function *DuplicateFunction,
926 DenseMap<User *, uint64_t> &CallSiteToProfCountMap) {
927 std::vector<User *> Users(DuplicateFunction->user_begin(),
928 DuplicateFunction->user_end());
929 Function *CurrentCaller = nullptr;
930 std::unique_ptr<BlockFrequencyInfo> TempBFI;
931 BlockFrequencyInfo *CurrentCallerBFI = nullptr;
933 auto ComputeCurrBFI = [&,this](Function *Caller) {
934 // For the old pass manager:
935 if (!GetBFI) {
936 DominatorTree DT(*Caller);
937 LoopInfo LI(DT);
938 BranchProbabilityInfo BPI(*Caller, LI);
939 TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI));
940 CurrentCallerBFI = TempBFI.get();
941 } else {
942 // New pass manager:
943 CurrentCallerBFI = &(*GetBFI)(*Caller);
947 for (User *User : Users) {
948 CallSite CS = getCallSite(User);
949 Function *Caller = CS.getCaller();
950 if (CurrentCaller != Caller) {
951 CurrentCaller = Caller;
952 ComputeCurrBFI(Caller);
953 } else {
954 assert(CurrentCallerBFI && "CallerBFI is not set");
956 BasicBlock *CallBB = CS.getInstruction()->getParent();
957 auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB);
958 if (Count)
959 CallSiteToProfCountMap[User] = *Count;
960 else
961 CallSiteToProfCountMap[User] = 0;
965 PartialInlinerImpl::FunctionCloner::FunctionCloner(
966 Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE,
967 function_ref<AssumptionCache *(Function &)> LookupAC)
968 : OrigFunc(F), ORE(ORE), LookupAC(LookupAC) {
969 ClonedOI = std::make_unique<FunctionOutliningInfo>();
971 // Clone the function, so that we can hack away on it.
972 ValueToValueMapTy VMap;
973 ClonedFunc = CloneFunction(F, VMap);
975 ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]);
976 ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]);
977 for (BasicBlock *BB : OI->Entries) {
978 ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB]));
980 for (BasicBlock *E : OI->ReturnBlockPreds) {
981 BasicBlock *NewE = cast<BasicBlock>(VMap[E]);
982 ClonedOI->ReturnBlockPreds.push_back(NewE);
984 // Go ahead and update all uses to the duplicate, so that we can just
985 // use the inliner functionality when we're done hacking.
986 F->replaceAllUsesWith(ClonedFunc);
989 PartialInlinerImpl::FunctionCloner::FunctionCloner(
990 Function *F, FunctionOutliningMultiRegionInfo *OI,
991 OptimizationRemarkEmitter &ORE,
992 function_ref<AssumptionCache *(Function &)> LookupAC)
993 : OrigFunc(F), ORE(ORE), LookupAC(LookupAC) {
994 ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>();
996 // Clone the function, so that we can hack away on it.
997 ValueToValueMapTy VMap;
998 ClonedFunc = CloneFunction(F, VMap);
1000 // Go through all Outline Candidate Regions and update all BasicBlock
1001 // information.
1002 for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1003 OI->ORI) {
1004 SmallVector<BasicBlock *, 8> Region;
1005 for (BasicBlock *BB : RegionInfo.Region) {
1006 Region.push_back(cast<BasicBlock>(VMap[BB]));
1008 BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]);
1009 BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]);
1010 BasicBlock *NewReturnBlock = nullptr;
1011 if (RegionInfo.ReturnBlock)
1012 NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]);
1013 FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo(
1014 Region, NewEntryBlock, NewExitBlock, NewReturnBlock);
1015 ClonedOMRI->ORI.push_back(MappedRegionInfo);
1017 // Go ahead and update all uses to the duplicate, so that we can just
1018 // use the inliner functionality when we're done hacking.
1019 F->replaceAllUsesWith(ClonedFunc);
1022 void PartialInlinerImpl::FunctionCloner::NormalizeReturnBlock() {
1023 auto getFirstPHI = [](BasicBlock *BB) {
1024 BasicBlock::iterator I = BB->begin();
1025 PHINode *FirstPhi = nullptr;
1026 while (I != BB->end()) {
1027 PHINode *Phi = dyn_cast<PHINode>(I);
1028 if (!Phi)
1029 break;
1030 if (!FirstPhi) {
1031 FirstPhi = Phi;
1032 break;
1035 return FirstPhi;
1038 // Shouldn't need to normalize PHIs if we're not outlining non-early return
1039 // blocks.
1040 if (!ClonedOI)
1041 return;
1043 // Special hackery is needed with PHI nodes that have inputs from more than
1044 // one extracted block. For simplicity, just split the PHIs into a two-level
1045 // sequence of PHIs, some of which will go in the extracted region, and some
1046 // of which will go outside.
1047 BasicBlock *PreReturn = ClonedOI->ReturnBlock;
1048 // only split block when necessary:
1049 PHINode *FirstPhi = getFirstPHI(PreReturn);
1050 unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size();
1052 if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1)
1053 return;
1055 auto IsTrivialPhi = [](PHINode *PN) -> Value * {
1056 Value *CommonValue = PN->getIncomingValue(0);
1057 if (all_of(PN->incoming_values(),
1058 [&](Value *V) { return V == CommonValue; }))
1059 return CommonValue;
1060 return nullptr;
1063 ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock(
1064 ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator());
1065 BasicBlock::iterator I = PreReturn->begin();
1066 Instruction *Ins = &ClonedOI->ReturnBlock->front();
1067 SmallVector<Instruction *, 4> DeadPhis;
1068 while (I != PreReturn->end()) {
1069 PHINode *OldPhi = dyn_cast<PHINode>(I);
1070 if (!OldPhi)
1071 break;
1073 PHINode *RetPhi =
1074 PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins);
1075 OldPhi->replaceAllUsesWith(RetPhi);
1076 Ins = ClonedOI->ReturnBlock->getFirstNonPHI();
1078 RetPhi->addIncoming(&*I, PreReturn);
1079 for (BasicBlock *E : ClonedOI->ReturnBlockPreds) {
1080 RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E);
1081 OldPhi->removeIncomingValue(E);
1084 // After incoming values splitting, the old phi may become trivial.
1085 // Keeping the trivial phi can introduce definition inside the outline
1086 // region which is live-out, causing necessary overhead (load, store
1087 // arg passing etc).
1088 if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) {
1089 OldPhi->replaceAllUsesWith(OldPhiVal);
1090 DeadPhis.push_back(OldPhi);
1092 ++I;
1094 for (auto *DP : DeadPhis)
1095 DP->eraseFromParent();
1097 for (auto E : ClonedOI->ReturnBlockPreds) {
1098 E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock);
1102 bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() {
1104 auto ComputeRegionCost = [](SmallVectorImpl<BasicBlock *> &Region) {
1105 int Cost = 0;
1106 for (BasicBlock* BB : Region)
1107 Cost += computeBBInlineCost(BB);
1108 return Cost;
1111 assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline");
1113 if (ClonedOMRI->ORI.empty())
1114 return false;
1116 // The CodeExtractor needs a dominator tree.
1117 DominatorTree DT;
1118 DT.recalculate(*ClonedFunc);
1120 // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1121 LoopInfo LI(DT);
1122 BranchProbabilityInfo BPI(*ClonedFunc, LI);
1123 ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1125 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
1126 CodeExtractorAnalysisCache CEAC(*ClonedFunc);
1128 SetVector<Value *> Inputs, Outputs, Sinks;
1129 for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo :
1130 ClonedOMRI->ORI) {
1131 int CurrentOutlinedRegionCost = ComputeRegionCost(RegionInfo.Region);
1133 CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false,
1134 ClonedFuncBFI.get(), &BPI,
1135 LookupAC(*RegionInfo.EntryBlock->getParent()),
1136 /* AllowVarargs */ false);
1138 CE.findInputsOutputs(Inputs, Outputs, Sinks);
1140 #ifndef NDEBUG
1141 if (TracePartialInlining) {
1142 dbgs() << "inputs: " << Inputs.size() << "\n";
1143 dbgs() << "outputs: " << Outputs.size() << "\n";
1144 for (Value *value : Inputs)
1145 dbgs() << "value used in func: " << *value << "\n";
1146 for (Value *output : Outputs)
1147 dbgs() << "instr used in func: " << *output << "\n";
1149 #endif
1150 // Do not extract regions that have live exit variables.
1151 if (Outputs.size() > 0 && !ForceLiveExit)
1152 continue;
1154 Function *OutlinedFunc = CE.extractCodeRegion(CEAC);
1156 if (OutlinedFunc) {
1157 CallSite OCS = PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc);
1158 BasicBlock *OutliningCallBB = OCS.getInstruction()->getParent();
1159 assert(OutliningCallBB->getParent() == ClonedFunc);
1160 OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB));
1161 NumColdRegionsOutlined++;
1162 OutlinedRegionCost += CurrentOutlinedRegionCost;
1164 if (MarkOutlinedColdCC) {
1165 OutlinedFunc->setCallingConv(CallingConv::Cold);
1166 OCS.setCallingConv(CallingConv::Cold);
1168 } else
1169 ORE.emit([&]() {
1170 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1171 &RegionInfo.Region.front()->front())
1172 << "Failed to extract region at block "
1173 << ore::NV("Block", RegionInfo.Region.front());
1177 return !OutlinedFunctions.empty();
1180 Function *
1181 PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() {
1182 // Returns true if the block is to be partial inlined into the caller
1183 // (i.e. not to be extracted to the out of line function)
1184 auto ToBeInlined = [&, this](BasicBlock *BB) {
1185 return BB == ClonedOI->ReturnBlock ||
1186 (std::find(ClonedOI->Entries.begin(), ClonedOI->Entries.end(), BB) !=
1187 ClonedOI->Entries.end());
1190 assert(ClonedOI && "Expecting OutlineInfo for single region outline");
1191 // The CodeExtractor needs a dominator tree.
1192 DominatorTree DT;
1193 DT.recalculate(*ClonedFunc);
1195 // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo.
1196 LoopInfo LI(DT);
1197 BranchProbabilityInfo BPI(*ClonedFunc, LI);
1198 ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI));
1200 // Gather up the blocks that we're going to extract.
1201 std::vector<BasicBlock *> ToExtract;
1202 ToExtract.push_back(ClonedOI->NonReturnBlock);
1203 OutlinedRegionCost +=
1204 PartialInlinerImpl::computeBBInlineCost(ClonedOI->NonReturnBlock);
1205 for (BasicBlock &BB : *ClonedFunc)
1206 if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) {
1207 ToExtract.push_back(&BB);
1208 // FIXME: the code extractor may hoist/sink more code
1209 // into the outlined function which may make the outlining
1210 // overhead (the difference of the outlined function cost
1211 // and OutliningRegionCost) look larger.
1212 OutlinedRegionCost += computeBBInlineCost(&BB);
1215 // Extract the body of the if.
1216 CodeExtractorAnalysisCache CEAC(*ClonedFunc);
1217 Function *OutlinedFunc =
1218 CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false,
1219 ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc),
1220 /* AllowVarargs */ true)
1221 .extractCodeRegion(CEAC);
1223 if (OutlinedFunc) {
1224 BasicBlock *OutliningCallBB =
1225 PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc)
1226 .getInstruction()
1227 ->getParent();
1228 assert(OutliningCallBB->getParent() == ClonedFunc);
1229 OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB));
1230 } else
1231 ORE.emit([&]() {
1232 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
1233 &ToExtract.front()->front())
1234 << "Failed to extract region at block "
1235 << ore::NV("Block", ToExtract.front());
1238 return OutlinedFunc;
1241 PartialInlinerImpl::FunctionCloner::~FunctionCloner() {
1242 // Ditch the duplicate, since we're done with it, and rewrite all remaining
1243 // users (function pointers, etc.) back to the original function.
1244 ClonedFunc->replaceAllUsesWith(OrigFunc);
1245 ClonedFunc->eraseFromParent();
1246 if (!IsFunctionInlined) {
1247 // Remove each function that was speculatively created if there is no
1248 // reference.
1249 for (auto FuncBBPair : OutlinedFunctions) {
1250 Function *Func = FuncBBPair.first;
1251 Func->eraseFromParent();
1256 std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function *F) {
1258 if (F->hasAddressTaken())
1259 return {false, nullptr};
1261 // Let inliner handle it
1262 if (F->hasFnAttribute(Attribute::AlwaysInline))
1263 return {false, nullptr};
1265 if (F->hasFnAttribute(Attribute::NoInline))
1266 return {false, nullptr};
1268 if (PSI->isFunctionEntryCold(F))
1269 return {false, nullptr};
1271 if (F->users().empty())
1272 return {false, nullptr};
1274 OptimizationRemarkEmitter ORE(F);
1276 // Only try to outline cold regions if we have a profile summary, which
1277 // implies we have profiling information.
1278 if (PSI->hasProfileSummary() && F->hasProfileData() &&
1279 !DisableMultiRegionPartialInline) {
1280 std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI =
1281 computeOutliningColdRegionsInfo(F, ORE);
1282 if (OMRI) {
1283 FunctionCloner Cloner(F, OMRI.get(), ORE, LookupAssumptionCache);
1285 #ifndef NDEBUG
1286 if (TracePartialInlining) {
1287 dbgs() << "HotCountThreshold = " << PSI->getHotCountThreshold() << "\n";
1288 dbgs() << "ColdCountThreshold = " << PSI->getColdCountThreshold()
1289 << "\n";
1291 #endif
1292 bool DidOutline = Cloner.doMultiRegionFunctionOutlining();
1294 if (DidOutline) {
1295 #ifndef NDEBUG
1296 if (TracePartialInlining) {
1297 dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n";
1298 Cloner.ClonedFunc->print(dbgs());
1299 dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n";
1301 #endif
1303 if (tryPartialInline(Cloner))
1304 return {true, nullptr};
1309 // Fall-thru to regular partial inlining if we:
1310 // i) can't find any cold regions to outline, or
1311 // ii) can't inline the outlined function anywhere.
1312 std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F);
1313 if (!OI)
1314 return {false, nullptr};
1316 FunctionCloner Cloner(F, OI.get(), ORE, LookupAssumptionCache);
1317 Cloner.NormalizeReturnBlock();
1319 Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining();
1321 if (!OutlinedFunction)
1322 return {false, nullptr};
1324 bool AnyInline = tryPartialInline(Cloner);
1326 if (AnyInline)
1327 return {true, OutlinedFunction};
1329 return {false, nullptr};
1332 bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) {
1333 if (Cloner.OutlinedFunctions.empty())
1334 return false;
1336 int SizeCost = 0;
1337 BlockFrequency WeightedRcost;
1338 int NonWeightedRcost;
1339 std::tie(SizeCost, NonWeightedRcost) = computeOutliningCosts(Cloner);
1341 // Only calculate RelativeToEntryFreq when we are doing single region
1342 // outlining.
1343 BranchProbability RelativeToEntryFreq;
1344 if (Cloner.ClonedOI) {
1345 RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner);
1346 } else
1347 // RelativeToEntryFreq doesn't make sense when we have more than one
1348 // outlined call because each call will have a different relative frequency
1349 // to the entry block. We can consider using the average, but the
1350 // usefulness of that information is questionable. For now, assume we never
1351 // execute the calls to outlined functions.
1352 RelativeToEntryFreq = BranchProbability(0, 1);
1354 WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq;
1356 // The call sequence(s) to the outlined function(s) are larger than the sum of
1357 // the original outlined region size(s), it does not increase the chances of
1358 // inlining the function with outlining (The inliner uses the size increase to
1359 // model the cost of inlining a callee).
1360 if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) {
1361 OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1362 DebugLoc DLoc;
1363 BasicBlock *Block;
1364 std::tie(DLoc, Block) = getOneDebugLoc(Cloner.ClonedFunc);
1365 OrigFuncORE.emit([&]() {
1366 return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall",
1367 DLoc, Block)
1368 << ore::NV("Function", Cloner.OrigFunc)
1369 << " not partially inlined into callers (Original Size = "
1370 << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost)
1371 << ", Size of call sequence to outlined function = "
1372 << ore::NV("NewSize", SizeCost) << ")";
1374 return false;
1377 assert(Cloner.OrigFunc->users().empty() &&
1378 "F's users should all be replaced!");
1380 std::vector<User *> Users(Cloner.ClonedFunc->user_begin(),
1381 Cloner.ClonedFunc->user_end());
1383 DenseMap<User *, uint64_t> CallSiteToProfCountMap;
1384 auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount();
1385 if (CalleeEntryCount)
1386 computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap);
1388 uint64_t CalleeEntryCountV =
1389 (CalleeEntryCount ? CalleeEntryCount.getCount() : 0);
1391 bool AnyInline = false;
1392 for (User *User : Users) {
1393 CallSite CS = getCallSite(User);
1395 if (IsLimitReached())
1396 continue;
1398 OptimizationRemarkEmitter CallerORE(CS.getCaller());
1399 if (!shouldPartialInline(CS, Cloner, WeightedRcost, CallerORE))
1400 continue;
1402 // Construct remark before doing the inlining, as after successful inlining
1403 // the callsite is removed.
1404 OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CS.getInstruction());
1405 OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into "
1406 << ore::NV("Caller", CS.getCaller());
1408 InlineFunctionInfo IFI(nullptr, GetAssumptionCache, PSI);
1409 // We can only forward varargs when we outlined a single region, else we
1410 // bail on vararg functions.
1411 if (!InlineFunction(CS, IFI, nullptr, true,
1412 (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first
1413 : nullptr)))
1414 continue;
1416 CallerORE.emit(OR);
1418 // Now update the entry count:
1419 if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) {
1420 uint64_t CallSiteCount = CallSiteToProfCountMap[User];
1421 CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount);
1424 AnyInline = true;
1425 NumPartialInlining++;
1426 // Update the stats
1427 if (Cloner.ClonedOI)
1428 NumPartialInlined++;
1429 else
1430 NumColdOutlinePartialInlined++;
1434 if (AnyInline) {
1435 Cloner.IsFunctionInlined = true;
1436 if (CalleeEntryCount)
1437 Cloner.OrigFunc->setEntryCount(
1438 CalleeEntryCount.setCount(CalleeEntryCountV));
1439 OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc);
1440 OrigFuncORE.emit([&]() {
1441 return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc)
1442 << "Partially inlined into at least one caller";
1447 return AnyInline;
1450 bool PartialInlinerImpl::run(Module &M) {
1451 if (DisablePartialInlining)
1452 return false;
1454 std::vector<Function *> Worklist;
1455 Worklist.reserve(M.size());
1456 for (Function &F : M)
1457 if (!F.use_empty() && !F.isDeclaration())
1458 Worklist.push_back(&F);
1460 bool Changed = false;
1461 while (!Worklist.empty()) {
1462 Function *CurrFunc = Worklist.back();
1463 Worklist.pop_back();
1465 if (CurrFunc->use_empty())
1466 continue;
1468 bool Recursive = false;
1469 for (User *U : CurrFunc->users())
1470 if (Instruction *I = dyn_cast<Instruction>(U))
1471 if (I->getParent()->getParent() == CurrFunc) {
1472 Recursive = true;
1473 break;
1475 if (Recursive)
1476 continue;
1478 std::pair<bool, Function * > Result = unswitchFunction(CurrFunc);
1479 if (Result.second)
1480 Worklist.push_back(Result.second);
1481 Changed |= Result.first;
1484 return Changed;
1487 char PartialInlinerLegacyPass::ID = 0;
1489 INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner",
1490 "Partial Inliner", false, false)
1491 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1492 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1493 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1494 INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner",
1495 "Partial Inliner", false, false)
1497 ModulePass *llvm::createPartialInliningPass() {
1498 return new PartialInlinerLegacyPass();
1501 PreservedAnalyses PartialInlinerPass::run(Module &M,
1502 ModuleAnalysisManager &AM) {
1503 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1505 std::function<AssumptionCache &(Function &)> GetAssumptionCache =
1506 [&FAM](Function &F) -> AssumptionCache & {
1507 return FAM.getResult<AssumptionAnalysis>(F);
1510 auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * {
1511 return FAM.getCachedResult<AssumptionAnalysis>(F);
1514 std::function<BlockFrequencyInfo &(Function &)> GetBFI =
1515 [&FAM](Function &F) -> BlockFrequencyInfo & {
1516 return FAM.getResult<BlockFrequencyAnalysis>(F);
1519 std::function<TargetTransformInfo &(Function &)> GetTTI =
1520 [&FAM](Function &F) -> TargetTransformInfo & {
1521 return FAM.getResult<TargetIRAnalysis>(F);
1524 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1526 if (PartialInlinerImpl(&GetAssumptionCache, LookupAssumptionCache, &GetTTI,
1527 {GetBFI}, PSI)
1528 .run(M))
1529 return PreservedAnalyses::none();
1530 return PreservedAnalyses::all();