[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / IPO / SampleProfile.cpp
blob6184681db8a2f0fbf14ccc9807a5d72866f213b9
1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
14 // This pass generates branch weight annotations on the IR:
16 // - prof: Represents branch weights. This annotation is added to branches
17 // to indicate the weights of each edge coming out of the branch.
18 // The weight of each edge is the weight of the target block for
19 // that edge. The weight of a block B is computed as the maximum
20 // number of samples found in B.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringMap.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PostDominators.h"
40 #include "llvm/Analysis/ProfileSummaryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DiagnosticInfo.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Pass.h"
61 #include "llvm/ProfileData/InstrProf.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/ProfileData/SampleProfReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/GenericDomTree.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Instrumentation.h"
73 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
74 #include "llvm/Transforms/Utils/Cloning.h"
75 #include "llvm/Transforms/Utils/MisExpect.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <functional>
80 #include <limits>
81 #include <map>
82 #include <memory>
83 #include <queue>
84 #include <string>
85 #include <system_error>
86 #include <utility>
87 #include <vector>
89 using namespace llvm;
90 using namespace sampleprof;
91 using ProfileCount = Function::ProfileCount;
92 #define DEBUG_TYPE "sample-profile"
94 // Command line option to specify the file to read samples from. This is
95 // mainly used for debugging.
96 static cl::opt<std::string> SampleProfileFile(
97 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
98 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
100 // The named file contains a set of transformations that may have been applied
101 // to the symbol names between the program from which the sample data was
102 // collected and the current program's symbols.
103 static cl::opt<std::string> SampleProfileRemappingFile(
104 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
105 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
107 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
108 "sample-profile-max-propagate-iterations", cl::init(100),
109 cl::desc("Maximum number of iterations to go through when propagating "
110 "sample block/edge weights through the CFG."));
112 static cl::opt<unsigned> SampleProfileRecordCoverage(
113 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
114 cl::desc("Emit a warning if less than N% of records in the input profile "
115 "are matched to the IR."));
117 static cl::opt<unsigned> SampleProfileSampleCoverage(
118 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
119 cl::desc("Emit a warning if less than N% of samples in the input profile "
120 "are matched to the IR."));
122 static cl::opt<bool> NoWarnSampleUnused(
123 "no-warn-sample-unused", cl::init(false), cl::Hidden,
124 cl::desc("Use this option to turn off/on warnings about function with "
125 "samples but without debug information to use those samples. "));
127 static cl::opt<bool> ProfileSampleAccurate(
128 "profile-sample-accurate", cl::Hidden, cl::init(false),
129 cl::desc("If the sample profile is accurate, we will mark all un-sampled "
130 "callsite and function as having 0 samples. Otherwise, treat "
131 "un-sampled callsites and functions conservatively as unknown. "));
133 static cl::opt<bool> ProfileAccurateForSymsInList(
134 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
135 cl::init(true),
136 cl::desc("For symbols in profile symbol list, regard their profiles to "
137 "be accurate. It may be overriden by profile-sample-accurate. "));
139 namespace {
141 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
142 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
143 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
144 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
145 using BlockEdgeMap =
146 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
148 class SampleProfileLoader;
150 class SampleCoverageTracker {
151 public:
152 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
154 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
155 uint32_t Discriminator, uint64_t Samples);
156 unsigned computeCoverage(unsigned Used, unsigned Total) const;
157 unsigned countUsedRecords(const FunctionSamples *FS,
158 ProfileSummaryInfo *PSI) const;
159 unsigned countBodyRecords(const FunctionSamples *FS,
160 ProfileSummaryInfo *PSI) const;
161 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
162 uint64_t countBodySamples(const FunctionSamples *FS,
163 ProfileSummaryInfo *PSI) const;
165 void clear() {
166 SampleCoverage.clear();
167 TotalUsedSamples = 0;
170 private:
171 using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
172 using FunctionSamplesCoverageMap =
173 DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
175 /// Coverage map for sampling records.
177 /// This map keeps a record of sampling records that have been matched to
178 /// an IR instruction. This is used to detect some form of staleness in
179 /// profiles (see flag -sample-profile-check-coverage).
181 /// Each entry in the map corresponds to a FunctionSamples instance. This is
182 /// another map that counts how many times the sample record at the
183 /// given location has been used.
184 FunctionSamplesCoverageMap SampleCoverage;
186 /// Number of samples used from the profile.
188 /// When a sampling record is used for the first time, the samples from
189 /// that record are added to this accumulator. Coverage is later computed
190 /// based on the total number of samples available in this function and
191 /// its callsites.
193 /// Note that this accumulator tracks samples used from a single function
194 /// and all the inlined callsites. Strictly, we should have a map of counters
195 /// keyed by FunctionSamples pointers, but these stats are cleared after
196 /// every function, so we just need to keep a single counter.
197 uint64_t TotalUsedSamples = 0;
199 SampleProfileLoader &SPLoader;
202 class GUIDToFuncNameMapper {
203 public:
204 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
205 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
206 : CurrentReader(Reader), CurrentModule(M),
207 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
208 if (CurrentReader.getFormat() != SPF_Compact_Binary)
209 return;
211 for (const auto &F : CurrentModule) {
212 StringRef OrigName = F.getName();
213 CurrentGUIDToFuncNameMap.insert(
214 {Function::getGUID(OrigName), OrigName});
216 // Local to global var promotion used by optimization like thinlto
217 // will rename the var and add suffix like ".llvm.xxx" to the
218 // original local name. In sample profile, the suffixes of function
219 // names are all stripped. Since it is possible that the mapper is
220 // built in post-thin-link phase and var promotion has been done,
221 // we need to add the substring of function name without the suffix
222 // into the GUIDToFuncNameMap.
223 StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
224 if (CanonName != OrigName)
225 CurrentGUIDToFuncNameMap.insert(
226 {Function::getGUID(CanonName), CanonName});
229 // Update GUIDToFuncNameMap for each function including inlinees.
230 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
233 ~GUIDToFuncNameMapper() {
234 if (CurrentReader.getFormat() != SPF_Compact_Binary)
235 return;
237 CurrentGUIDToFuncNameMap.clear();
239 // Reset GUIDToFuncNameMap for of each function as they're no
240 // longer valid at this point.
241 SetGUIDToFuncNameMapForAll(nullptr);
244 private:
245 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
246 std::queue<FunctionSamples *> FSToUpdate;
247 for (auto &IFS : CurrentReader.getProfiles()) {
248 FSToUpdate.push(&IFS.second);
251 while (!FSToUpdate.empty()) {
252 FunctionSamples *FS = FSToUpdate.front();
253 FSToUpdate.pop();
254 FS->GUIDToFuncNameMap = Map;
255 for (const auto &ICS : FS->getCallsiteSamples()) {
256 const FunctionSamplesMap &FSMap = ICS.second;
257 for (auto &IFS : FSMap) {
258 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
259 FSToUpdate.push(&FS);
265 SampleProfileReader &CurrentReader;
266 Module &CurrentModule;
267 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
270 /// Sample profile pass.
272 /// This pass reads profile data from the file specified by
273 /// -sample-profile-file and annotates every affected function with the
274 /// profile information found in that file.
275 class SampleProfileLoader {
276 public:
277 SampleProfileLoader(
278 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
279 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
280 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
281 : GetAC(std::move(GetAssumptionCache)),
282 GetTTI(std::move(GetTargetTransformInfo)), CoverageTracker(*this),
283 Filename(Name), RemappingFilename(RemapName),
284 IsThinLTOPreLink(IsThinLTOPreLink) {}
286 bool doInitialization(Module &M);
287 bool runOnModule(Module &M, ModuleAnalysisManager *AM,
288 ProfileSummaryInfo *_PSI);
290 void dump() { Reader->dump(); }
292 protected:
293 friend class SampleCoverageTracker;
295 bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
296 unsigned getFunctionLoc(Function &F);
297 bool emitAnnotations(Function &F);
298 ErrorOr<uint64_t> getInstWeight(const Instruction &I);
299 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
300 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
301 std::vector<const FunctionSamples *>
302 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
303 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
304 const FunctionSamples *findFunctionSamples(const Instruction &I) const;
305 bool inlineCallInstruction(Instruction *I);
306 bool inlineHotFunctions(Function &F,
307 DenseSet<GlobalValue::GUID> &InlinedGUIDs);
308 void printEdgeWeight(raw_ostream &OS, Edge E);
309 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
310 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
311 bool computeBlockWeights(Function &F);
312 void findEquivalenceClasses(Function &F);
313 template <bool IsPostDom>
314 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
315 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
317 void propagateWeights(Function &F);
318 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
319 void buildEdges(Function &F);
320 bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
321 void computeDominanceAndLoopInfo(Function &F);
322 void clearFunctionData();
323 bool callsiteIsHot(const FunctionSamples *CallsiteFS,
324 ProfileSummaryInfo *PSI);
326 /// Map basic blocks to their computed weights.
328 /// The weight of a basic block is defined to be the maximum
329 /// of all the instruction weights in that block.
330 BlockWeightMap BlockWeights;
332 /// Map edges to their computed weights.
334 /// Edge weights are computed by propagating basic block weights in
335 /// SampleProfile::propagateWeights.
336 EdgeWeightMap EdgeWeights;
338 /// Set of visited blocks during propagation.
339 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
341 /// Set of visited edges during propagation.
342 SmallSet<Edge, 32> VisitedEdges;
344 /// Equivalence classes for block weights.
346 /// Two blocks BB1 and BB2 are in the same equivalence class if they
347 /// dominate and post-dominate each other, and they are in the same loop
348 /// nest. When this happens, the two blocks are guaranteed to execute
349 /// the same number of times.
350 EquivalenceClassMap EquivalenceClass;
352 /// Map from function name to Function *. Used to find the function from
353 /// the function name. If the function name contains suffix, additional
354 /// entry is added to map from the stripped name to the function if there
355 /// is one-to-one mapping.
356 StringMap<Function *> SymbolMap;
358 /// Dominance, post-dominance and loop information.
359 std::unique_ptr<DominatorTree> DT;
360 std::unique_ptr<PostDominatorTree> PDT;
361 std::unique_ptr<LoopInfo> LI;
363 std::function<AssumptionCache &(Function &)> GetAC;
364 std::function<TargetTransformInfo &(Function &)> GetTTI;
366 /// Predecessors for each basic block in the CFG.
367 BlockEdgeMap Predecessors;
369 /// Successors for each basic block in the CFG.
370 BlockEdgeMap Successors;
372 SampleCoverageTracker CoverageTracker;
374 /// Profile reader object.
375 std::unique_ptr<SampleProfileReader> Reader;
377 /// Samples collected for the body of this function.
378 FunctionSamples *Samples = nullptr;
380 /// Name of the profile file to load.
381 std::string Filename;
383 /// Name of the profile remapping file to load.
384 std::string RemappingFilename;
386 /// Flag indicating whether the profile input loaded successfully.
387 bool ProfileIsValid = false;
389 /// Flag indicating if the pass is invoked in ThinLTO compile phase.
391 /// In this phase, in annotation, we should not promote indirect calls.
392 /// Instead, we will mark GUIDs that needs to be annotated to the function.
393 bool IsThinLTOPreLink;
395 /// Profile Summary Info computed from sample profile.
396 ProfileSummaryInfo *PSI = nullptr;
398 /// Profle Symbol list tells whether a function name appears in the binary
399 /// used to generate the current profile.
400 std::unique_ptr<ProfileSymbolList> PSL;
402 /// Total number of samples collected in this profile.
404 /// This is the sum of all the samples collected in all the functions executed
405 /// at runtime.
406 uint64_t TotalCollectedSamples = 0;
408 /// Optimization Remark Emitter used to emit diagnostic remarks.
409 OptimizationRemarkEmitter *ORE = nullptr;
411 // Information recorded when we declined to inline a call site
412 // because we have determined it is too cold is accumulated for
413 // each callee function. Initially this is just the entry count.
414 struct NotInlinedProfileInfo {
415 uint64_t entryCount;
417 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
419 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
420 // all the function symbols defined or declared in current module.
421 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
423 // All the Names used in FunctionSamples including outline function
424 // names, inline instance names and call target names.
425 StringSet<> NamesInProfile;
427 // For symbol in profile symbol list, whether to regard their profiles
428 // to be accurate. It is mainly decided by existance of profile symbol
429 // list and -profile-accurate-for-symsinlist flag, but it can be
430 // overriden by -profile-sample-accurate or profile-sample-accurate
431 // attribute.
432 bool ProfAccForSymsInList;
435 class SampleProfileLoaderLegacyPass : public ModulePass {
436 public:
437 // Class identification, replacement for typeinfo
438 static char ID;
440 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
441 bool IsThinLTOPreLink = false)
442 : ModulePass(ID),
443 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
444 [&](Function &F) -> AssumptionCache & {
445 return ACT->getAssumptionCache(F);
447 [&](Function &F) -> TargetTransformInfo & {
448 return TTIWP->getTTI(F);
449 }) {
450 initializeSampleProfileLoaderLegacyPassPass(
451 *PassRegistry::getPassRegistry());
454 void dump() { SampleLoader.dump(); }
456 bool doInitialization(Module &M) override {
457 return SampleLoader.doInitialization(M);
460 StringRef getPassName() const override { return "Sample profile pass"; }
461 bool runOnModule(Module &M) override;
463 void getAnalysisUsage(AnalysisUsage &AU) const override {
464 AU.addRequired<AssumptionCacheTracker>();
465 AU.addRequired<TargetTransformInfoWrapperPass>();
466 AU.addRequired<ProfileSummaryInfoWrapperPass>();
469 private:
470 SampleProfileLoader SampleLoader;
471 AssumptionCacheTracker *ACT = nullptr;
472 TargetTransformInfoWrapperPass *TTIWP = nullptr;
475 } // end anonymous namespace
477 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
479 /// Functions that were inlined in the original binary will be represented
480 /// in the inline stack in the sample profile. If the profile shows that
481 /// the original inline decision was "good" (i.e., the callsite is executed
482 /// frequently), then we will recreate the inline decision and apply the
483 /// profile from the inlined callsite.
485 /// To decide whether an inlined callsite is hot, we compare the callsite
486 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
487 /// regarded as hot if the count is above the cutoff value.
489 /// When ProfileAccurateForSymsInList is enabled and profile symbol list
490 /// is present, functions in the profile symbol list but without profile will
491 /// be regarded as cold and much less inlining will happen in CGSCC inlining
492 /// pass, so we tend to lower the hot criteria here to allow more early
493 /// inlining to happen for warm callsites and it is helpful for performance.
494 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
495 ProfileSummaryInfo *PSI) {
496 if (!CallsiteFS)
497 return false; // The callsite was not inlined in the original binary.
499 assert(PSI && "PSI is expected to be non null");
500 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
501 if (ProfAccForSymsInList)
502 return !PSI->isColdCount(CallsiteTotalSamples);
503 else
504 return PSI->isHotCount(CallsiteTotalSamples);
507 /// Mark as used the sample record for the given function samples at
508 /// (LineOffset, Discriminator).
510 /// \returns true if this is the first time we mark the given record.
511 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
512 uint32_t LineOffset,
513 uint32_t Discriminator,
514 uint64_t Samples) {
515 LineLocation Loc(LineOffset, Discriminator);
516 unsigned &Count = SampleCoverage[FS][Loc];
517 bool FirstTime = (++Count == 1);
518 if (FirstTime)
519 TotalUsedSamples += Samples;
520 return FirstTime;
523 /// Return the number of sample records that were applied from this profile.
525 /// This count does not include records from cold inlined callsites.
526 unsigned
527 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
528 ProfileSummaryInfo *PSI) const {
529 auto I = SampleCoverage.find(FS);
531 // The size of the coverage map for FS represents the number of records
532 // that were marked used at least once.
533 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
535 // If there are inlined callsites in this function, count the samples found
536 // in the respective bodies. However, do not bother counting callees with 0
537 // total samples, these are callees that were never invoked at runtime.
538 for (const auto &I : FS->getCallsiteSamples())
539 for (const auto &J : I.second) {
540 const FunctionSamples *CalleeSamples = &J.second;
541 if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
542 Count += countUsedRecords(CalleeSamples, PSI);
545 return Count;
548 /// Return the number of sample records in the body of this profile.
550 /// This count does not include records from cold inlined callsites.
551 unsigned
552 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
553 ProfileSummaryInfo *PSI) const {
554 unsigned Count = FS->getBodySamples().size();
556 // Only count records in hot callsites.
557 for (const auto &I : FS->getCallsiteSamples())
558 for (const auto &J : I.second) {
559 const FunctionSamples *CalleeSamples = &J.second;
560 if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
561 Count += countBodyRecords(CalleeSamples, PSI);
564 return Count;
567 /// Return the number of samples collected in the body of this profile.
569 /// This count does not include samples from cold inlined callsites.
570 uint64_t
571 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
572 ProfileSummaryInfo *PSI) const {
573 uint64_t Total = 0;
574 for (const auto &I : FS->getBodySamples())
575 Total += I.second.getSamples();
577 // Only count samples in hot callsites.
578 for (const auto &I : FS->getCallsiteSamples())
579 for (const auto &J : I.second) {
580 const FunctionSamples *CalleeSamples = &J.second;
581 if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
582 Total += countBodySamples(CalleeSamples, PSI);
585 return Total;
588 /// Return the fraction of sample records used in this profile.
590 /// The returned value is an unsigned integer in the range 0-100 indicating
591 /// the percentage of sample records that were used while applying this
592 /// profile to the associated function.
593 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
594 unsigned Total) const {
595 assert(Used <= Total &&
596 "number of used records cannot exceed the total number of records");
597 return Total > 0 ? Used * 100 / Total : 100;
600 /// Clear all the per-function data used to load samples and propagate weights.
601 void SampleProfileLoader::clearFunctionData() {
602 BlockWeights.clear();
603 EdgeWeights.clear();
604 VisitedBlocks.clear();
605 VisitedEdges.clear();
606 EquivalenceClass.clear();
607 DT = nullptr;
608 PDT = nullptr;
609 LI = nullptr;
610 Predecessors.clear();
611 Successors.clear();
612 CoverageTracker.clear();
615 #ifndef NDEBUG
616 /// Print the weight of edge \p E on stream \p OS.
618 /// \param OS Stream to emit the output to.
619 /// \param E Edge to print.
620 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
621 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
622 << "]: " << EdgeWeights[E] << "\n";
625 /// Print the equivalence class of block \p BB on stream \p OS.
627 /// \param OS Stream to emit the output to.
628 /// \param BB Block to print.
629 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
630 const BasicBlock *BB) {
631 const BasicBlock *Equiv = EquivalenceClass[BB];
632 OS << "equivalence[" << BB->getName()
633 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
636 /// Print the weight of block \p BB on stream \p OS.
638 /// \param OS Stream to emit the output to.
639 /// \param BB Block to print.
640 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
641 const BasicBlock *BB) const {
642 const auto &I = BlockWeights.find(BB);
643 uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
644 OS << "weight[" << BB->getName() << "]: " << W << "\n";
646 #endif
648 /// Get the weight for an instruction.
650 /// The "weight" of an instruction \p Inst is the number of samples
651 /// collected on that instruction at runtime. To retrieve it, we
652 /// need to compute the line number of \p Inst relative to the start of its
653 /// function. We use HeaderLineno to compute the offset. We then
654 /// look up the samples collected for \p Inst using BodySamples.
656 /// \param Inst Instruction to query.
658 /// \returns the weight of \p Inst.
659 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
660 const DebugLoc &DLoc = Inst.getDebugLoc();
661 if (!DLoc)
662 return std::error_code();
664 const FunctionSamples *FS = findFunctionSamples(Inst);
665 if (!FS)
666 return std::error_code();
668 // Ignore all intrinsics, phinodes and branch instructions.
669 // Branch and phinodes instruction usually contains debug info from sources outside of
670 // the residing basic block, thus we ignore them during annotation.
671 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
672 return std::error_code();
674 // If a direct call/invoke instruction is inlined in profile
675 // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
676 // it means that the inlined callsite has no sample, thus the call
677 // instruction should have 0 count.
678 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
679 !ImmutableCallSite(&Inst).isIndirectCall() &&
680 findCalleeFunctionSamples(Inst))
681 return 0;
683 const DILocation *DIL = DLoc;
684 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
685 uint32_t Discriminator = DIL->getBaseDiscriminator();
686 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
687 if (R) {
688 bool FirstMark =
689 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
690 if (FirstMark) {
691 ORE->emit([&]() {
692 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
693 Remark << "Applied " << ore::NV("NumSamples", *R);
694 Remark << " samples from profile (offset: ";
695 Remark << ore::NV("LineOffset", LineOffset);
696 if (Discriminator) {
697 Remark << ".";
698 Remark << ore::NV("Discriminator", Discriminator);
700 Remark << ")";
701 return Remark;
704 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "."
705 << DIL->getBaseDiscriminator() << ":" << Inst
706 << " (line offset: " << LineOffset << "."
707 << DIL->getBaseDiscriminator() << " - weight: " << R.get()
708 << ")\n");
710 return R;
713 /// Compute the weight of a basic block.
715 /// The weight of basic block \p BB is the maximum weight of all the
716 /// instructions in BB.
718 /// \param BB The basic block to query.
720 /// \returns the weight for \p BB.
721 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
722 uint64_t Max = 0;
723 bool HasWeight = false;
724 for (auto &I : BB->getInstList()) {
725 const ErrorOr<uint64_t> &R = getInstWeight(I);
726 if (R) {
727 Max = std::max(Max, R.get());
728 HasWeight = true;
731 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
734 /// Compute and store the weights of every basic block.
736 /// This populates the BlockWeights map by computing
737 /// the weights of every basic block in the CFG.
739 /// \param F The function to query.
740 bool SampleProfileLoader::computeBlockWeights(Function &F) {
741 bool Changed = false;
742 LLVM_DEBUG(dbgs() << "Block weights\n");
743 for (const auto &BB : F) {
744 ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
745 if (Weight) {
746 BlockWeights[&BB] = Weight.get();
747 VisitedBlocks.insert(&BB);
748 Changed = true;
750 LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
753 return Changed;
756 /// Get the FunctionSamples for a call instruction.
758 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
759 /// instance in which that call instruction is calling to. It contains
760 /// all samples that resides in the inlined instance. We first find the
761 /// inlined instance in which the call instruction is from, then we
762 /// traverse its children to find the callsite with the matching
763 /// location.
765 /// \param Inst Call/Invoke instruction to query.
767 /// \returns The FunctionSamples pointer to the inlined instance.
768 const FunctionSamples *
769 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
770 const DILocation *DIL = Inst.getDebugLoc();
771 if (!DIL) {
772 return nullptr;
775 StringRef CalleeName;
776 if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
777 if (Function *Callee = CI->getCalledFunction())
778 CalleeName = Callee->getName();
780 const FunctionSamples *FS = findFunctionSamples(Inst);
781 if (FS == nullptr)
782 return nullptr;
784 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
785 DIL->getBaseDiscriminator()),
786 CalleeName);
789 /// Returns a vector of FunctionSamples that are the indirect call targets
790 /// of \p Inst. The vector is sorted by the total number of samples. Stores
791 /// the total call count of the indirect call in \p Sum.
792 std::vector<const FunctionSamples *>
793 SampleProfileLoader::findIndirectCallFunctionSamples(
794 const Instruction &Inst, uint64_t &Sum) const {
795 const DILocation *DIL = Inst.getDebugLoc();
796 std::vector<const FunctionSamples *> R;
798 if (!DIL) {
799 return R;
802 const FunctionSamples *FS = findFunctionSamples(Inst);
803 if (FS == nullptr)
804 return R;
806 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
807 uint32_t Discriminator = DIL->getBaseDiscriminator();
809 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
810 Sum = 0;
811 if (T)
812 for (const auto &T_C : T.get())
813 Sum += T_C.second;
814 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
815 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
816 if (M->empty())
817 return R;
818 for (const auto &NameFS : *M) {
819 Sum += NameFS.second.getEntrySamples();
820 R.push_back(&NameFS.second);
822 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
823 if (L->getEntrySamples() != R->getEntrySamples())
824 return L->getEntrySamples() > R->getEntrySamples();
825 return FunctionSamples::getGUID(L->getName()) <
826 FunctionSamples::getGUID(R->getName());
829 return R;
832 /// Get the FunctionSamples for an instruction.
834 /// The FunctionSamples of an instruction \p Inst is the inlined instance
835 /// in which that instruction is coming from. We traverse the inline stack
836 /// of that instruction, and match it with the tree nodes in the profile.
838 /// \param Inst Instruction to query.
840 /// \returns the FunctionSamples pointer to the inlined instance.
841 const FunctionSamples *
842 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
843 const DILocation *DIL = Inst.getDebugLoc();
844 if (!DIL)
845 return Samples;
847 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
848 if (it.second)
849 it.first->second = Samples->findFunctionSamples(DIL);
850 return it.first->second;
853 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
854 assert(isa<CallInst>(I) || isa<InvokeInst>(I));
855 CallSite CS(I);
856 Function *CalledFunction = CS.getCalledFunction();
857 assert(CalledFunction);
858 DebugLoc DLoc = I->getDebugLoc();
859 BasicBlock *BB = I->getParent();
860 InlineParams Params = getInlineParams();
861 Params.ComputeFullInlineCost = true;
862 // Checks if there is anything in the reachable portion of the callee at
863 // this callsite that makes this inlining potentially illegal. Need to
864 // set ComputeFullInlineCost, otherwise getInlineCost may return early
865 // when cost exceeds threshold without checking all IRs in the callee.
866 // The acutal cost does not matter because we only checks isNever() to
867 // see if it is legal to inline the callsite.
868 InlineCost Cost =
869 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
870 None, nullptr, nullptr);
871 if (Cost.isNever()) {
872 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
873 << "incompatible inlining");
874 return false;
876 InlineFunctionInfo IFI(nullptr, &GetAC);
877 if (InlineFunction(CS, IFI)) {
878 // The call to InlineFunction erases I, so we can't pass it here.
879 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
880 << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
881 << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
882 return true;
884 return false;
887 /// Iteratively inline hot callsites of a function.
889 /// Iteratively traverse all callsites of the function \p F, and find if
890 /// the corresponding inlined instance exists and is hot in profile. If
891 /// it is hot enough, inline the callsites and adds new callsites of the
892 /// callee into the caller. If the call is an indirect call, first promote
893 /// it to direct call. Each indirect call is limited with a single target.
895 /// \param F function to perform iterative inlining.
896 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
897 /// inlined in the profiled binary.
899 /// \returns True if there is any inline happened.
900 bool SampleProfileLoader::inlineHotFunctions(
901 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
902 DenseSet<Instruction *> PromotedInsns;
904 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
905 // Profile symbol list is ignored when profile-sample-accurate is on.
906 assert((!ProfAccForSymsInList ||
907 (!ProfileSampleAccurate &&
908 !F.hasFnAttribute("profile-sample-accurate"))) &&
909 "ProfAccForSymsInList should be false when profile-sample-accurate "
910 "is enabled");
912 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
913 bool Changed = false;
914 while (true) {
915 bool LocalChanged = false;
916 SmallVector<Instruction *, 10> CIS;
917 for (auto &BB : F) {
918 bool Hot = false;
919 SmallVector<Instruction *, 10> Candidates;
920 for (auto &I : BB.getInstList()) {
921 const FunctionSamples *FS = nullptr;
922 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
923 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
924 Candidates.push_back(&I);
925 if (FS->getEntrySamples() > 0)
926 localNotInlinedCallSites.try_emplace(&I, FS);
927 if (callsiteIsHot(FS, PSI))
928 Hot = true;
931 if (Hot) {
932 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
935 for (auto I : CIS) {
936 Function *CalledFunction = CallSite(I).getCalledFunction();
937 // Do not inline recursive calls.
938 if (CalledFunction == &F)
939 continue;
940 if (CallSite(I).isIndirectCall()) {
941 if (PromotedInsns.count(I))
942 continue;
943 uint64_t Sum;
944 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
945 if (IsThinLTOPreLink) {
946 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
947 PSI->getOrCompHotCountThreshold());
948 continue;
950 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
951 // If it is a recursive call, we do not inline it as it could bloat
952 // the code exponentially. There is way to better handle this, e.g.
953 // clone the caller first, and inline the cloned caller if it is
954 // recursive. As llvm does not inline recursive calls, we will
955 // simply ignore it instead of handling it explicitly.
956 if (CalleeFunctionName == F.getName())
957 continue;
959 if (!callsiteIsHot(FS, PSI))
960 continue;
962 const char *Reason = "Callee function not available";
963 auto R = SymbolMap.find(CalleeFunctionName);
964 if (R != SymbolMap.end() && R->getValue() &&
965 !R->getValue()->isDeclaration() &&
966 R->getValue()->getSubprogram() &&
967 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
968 uint64_t C = FS->getEntrySamples();
969 Instruction *DI =
970 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
971 Sum -= C;
972 PromotedInsns.insert(I);
973 // If profile mismatches, we should not attempt to inline DI.
974 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
975 inlineCallInstruction(DI)) {
976 localNotInlinedCallSites.erase(I);
977 LocalChanged = true;
979 } else {
980 LLVM_DEBUG(dbgs()
981 << "\nFailed to promote indirect call to "
982 << CalleeFunctionName << " because " << Reason << "\n");
985 } else if (CalledFunction && CalledFunction->getSubprogram() &&
986 !CalledFunction->isDeclaration()) {
987 if (inlineCallInstruction(I)) {
988 localNotInlinedCallSites.erase(I);
989 LocalChanged = true;
991 } else if (IsThinLTOPreLink) {
992 findCalleeFunctionSamples(*I)->findInlinedFunctions(
993 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
996 if (LocalChanged) {
997 Changed = true;
998 } else {
999 break;
1003 // Accumulate not inlined callsite information into notInlinedSamples
1004 for (const auto &Pair : localNotInlinedCallSites) {
1005 Instruction *I = Pair.getFirst();
1006 Function *Callee = CallSite(I).getCalledFunction();
1007 if (!Callee || Callee->isDeclaration())
1008 continue;
1009 const FunctionSamples *FS = Pair.getSecond();
1010 auto pair =
1011 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1012 pair.first->second.entryCount += FS->getEntrySamples();
1014 return Changed;
1017 /// Find equivalence classes for the given block.
1019 /// This finds all the blocks that are guaranteed to execute the same
1020 /// number of times as \p BB1. To do this, it traverses all the
1021 /// descendants of \p BB1 in the dominator or post-dominator tree.
1023 /// A block BB2 will be in the same equivalence class as \p BB1 if
1024 /// the following holds:
1026 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1027 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
1028 /// dominate BB1 in the post-dominator tree.
1030 /// 2- Both BB2 and \p BB1 must be in the same loop.
1032 /// For every block BB2 that meets those two requirements, we set BB2's
1033 /// equivalence class to \p BB1.
1035 /// \param BB1 Block to check.
1036 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
1037 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
1038 /// with blocks from \p BB1's dominator tree, then
1039 /// this is the post-dominator tree, and vice versa.
1040 template <bool IsPostDom>
1041 void SampleProfileLoader::findEquivalencesFor(
1042 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1043 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1044 const BasicBlock *EC = EquivalenceClass[BB1];
1045 uint64_t Weight = BlockWeights[EC];
1046 for (const auto *BB2 : Descendants) {
1047 bool IsDomParent = DomTree->dominates(BB2, BB1);
1048 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1049 if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1050 EquivalenceClass[BB2] = EC;
1051 // If BB2 is visited, then the entire EC should be marked as visited.
1052 if (VisitedBlocks.count(BB2)) {
1053 VisitedBlocks.insert(EC);
1056 // If BB2 is heavier than BB1, make BB2 have the same weight
1057 // as BB1.
1059 // Note that we don't worry about the opposite situation here
1060 // (when BB2 is lighter than BB1). We will deal with this
1061 // during the propagation phase. Right now, we just want to
1062 // make sure that BB1 has the largest weight of all the
1063 // members of its equivalence set.
1064 Weight = std::max(Weight, BlockWeights[BB2]);
1067 if (EC == &EC->getParent()->getEntryBlock()) {
1068 BlockWeights[EC] = Samples->getHeadSamples() + 1;
1069 } else {
1070 BlockWeights[EC] = Weight;
1074 /// Find equivalence classes.
1076 /// Since samples may be missing from blocks, we can fill in the gaps by setting
1077 /// the weights of all the blocks in the same equivalence class to the same
1078 /// weight. To compute the concept of equivalence, we use dominance and loop
1079 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
1080 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1082 /// \param F The function to query.
1083 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1084 SmallVector<BasicBlock *, 8> DominatedBBs;
1085 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1086 // Find equivalence sets based on dominance and post-dominance information.
1087 for (auto &BB : F) {
1088 BasicBlock *BB1 = &BB;
1090 // Compute BB1's equivalence class once.
1091 if (EquivalenceClass.count(BB1)) {
1092 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1093 continue;
1096 // By default, blocks are in their own equivalence class.
1097 EquivalenceClass[BB1] = BB1;
1099 // Traverse all the blocks dominated by BB1. We are looking for
1100 // every basic block BB2 such that:
1102 // 1- BB1 dominates BB2.
1103 // 2- BB2 post-dominates BB1.
1104 // 3- BB1 and BB2 are in the same loop nest.
1106 // If all those conditions hold, it means that BB2 is executed
1107 // as many times as BB1, so they are placed in the same equivalence
1108 // class by making BB2's equivalence class be BB1.
1109 DominatedBBs.clear();
1110 DT->getDescendants(BB1, DominatedBBs);
1111 findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1113 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1116 // Assign weights to equivalence classes.
1118 // All the basic blocks in the same equivalence class will execute
1119 // the same number of times. Since we know that the head block in
1120 // each equivalence class has the largest weight, assign that weight
1121 // to all the blocks in that equivalence class.
1122 LLVM_DEBUG(
1123 dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1124 for (auto &BI : F) {
1125 const BasicBlock *BB = &BI;
1126 const BasicBlock *EquivBB = EquivalenceClass[BB];
1127 if (BB != EquivBB)
1128 BlockWeights[BB] = BlockWeights[EquivBB];
1129 LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1133 /// Visit the given edge to decide if it has a valid weight.
1135 /// If \p E has not been visited before, we copy to \p UnknownEdge
1136 /// and increment the count of unknown edges.
1138 /// \param E Edge to visit.
1139 /// \param NumUnknownEdges Current number of unknown edges.
1140 /// \param UnknownEdge Set if E has not been visited before.
1142 /// \returns E's weight, if known. Otherwise, return 0.
1143 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1144 Edge *UnknownEdge) {
1145 if (!VisitedEdges.count(E)) {
1146 (*NumUnknownEdges)++;
1147 *UnknownEdge = E;
1148 return 0;
1151 return EdgeWeights[E];
1154 /// Propagate weights through incoming/outgoing edges.
1156 /// If the weight of a basic block is known, and there is only one edge
1157 /// with an unknown weight, we can calculate the weight of that edge.
1159 /// Similarly, if all the edges have a known count, we can calculate the
1160 /// count of the basic block, if needed.
1162 /// \param F Function to process.
1163 /// \param UpdateBlockCount Whether we should update basic block counts that
1164 /// has already been annotated.
1166 /// \returns True if new weights were assigned to edges or blocks.
1167 bool SampleProfileLoader::propagateThroughEdges(Function &F,
1168 bool UpdateBlockCount) {
1169 bool Changed = false;
1170 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1171 for (const auto &BI : F) {
1172 const BasicBlock *BB = &BI;
1173 const BasicBlock *EC = EquivalenceClass[BB];
1175 // Visit all the predecessor and successor edges to determine
1176 // which ones have a weight assigned already. Note that it doesn't
1177 // matter that we only keep track of a single unknown edge. The
1178 // only case we are interested in handling is when only a single
1179 // edge is unknown (see setEdgeOrBlockWeight).
1180 for (unsigned i = 0; i < 2; i++) {
1181 uint64_t TotalWeight = 0;
1182 unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1183 Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1185 if (i == 0) {
1186 // First, visit all predecessor edges.
1187 NumTotalEdges = Predecessors[BB].size();
1188 for (auto *Pred : Predecessors[BB]) {
1189 Edge E = std::make_pair(Pred, BB);
1190 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1191 if (E.first == E.second)
1192 SelfReferentialEdge = E;
1194 if (NumTotalEdges == 1) {
1195 SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1197 } else {
1198 // On the second round, visit all successor edges.
1199 NumTotalEdges = Successors[BB].size();
1200 for (auto *Succ : Successors[BB]) {
1201 Edge E = std::make_pair(BB, Succ);
1202 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1204 if (NumTotalEdges == 1) {
1205 SingleEdge = std::make_pair(BB, Successors[BB][0]);
1209 // After visiting all the edges, there are three cases that we
1210 // can handle immediately:
1212 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1213 // In this case, we simply check that the sum of all the edges
1214 // is the same as BB's weight. If not, we change BB's weight
1215 // to match. Additionally, if BB had not been visited before,
1216 // we mark it visited.
1218 // - Only one edge is unknown and BB has already been visited.
1219 // In this case, we can compute the weight of the edge by
1220 // subtracting the total block weight from all the known
1221 // edge weights. If the edges weight more than BB, then the
1222 // edge of the last remaining edge is set to zero.
1224 // - There exists a self-referential edge and the weight of BB is
1225 // known. In this case, this edge can be based on BB's weight.
1226 // We add up all the other known edges and set the weight on
1227 // the self-referential edge as we did in the previous case.
1229 // In any other case, we must continue iterating. Eventually,
1230 // all edges will get a weight, or iteration will stop when
1231 // it reaches SampleProfileMaxPropagateIterations.
1232 if (NumUnknownEdges <= 1) {
1233 uint64_t &BBWeight = BlockWeights[EC];
1234 if (NumUnknownEdges == 0) {
1235 if (!VisitedBlocks.count(EC)) {
1236 // If we already know the weight of all edges, the weight of the
1237 // basic block can be computed. It should be no larger than the sum
1238 // of all edge weights.
1239 if (TotalWeight > BBWeight) {
1240 BBWeight = TotalWeight;
1241 Changed = true;
1242 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1243 << " known. Set weight for block: ";
1244 printBlockWeight(dbgs(), BB););
1246 } else if (NumTotalEdges == 1 &&
1247 EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1248 // If there is only one edge for the visited basic block, use the
1249 // block weight to adjust edge weight if edge weight is smaller.
1250 EdgeWeights[SingleEdge] = BlockWeights[EC];
1251 Changed = true;
1253 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1254 // If there is a single unknown edge and the block has been
1255 // visited, then we can compute E's weight.
1256 if (BBWeight >= TotalWeight)
1257 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1258 else
1259 EdgeWeights[UnknownEdge] = 0;
1260 const BasicBlock *OtherEC;
1261 if (i == 0)
1262 OtherEC = EquivalenceClass[UnknownEdge.first];
1263 else
1264 OtherEC = EquivalenceClass[UnknownEdge.second];
1265 // Edge weights should never exceed the BB weights it connects.
1266 if (VisitedBlocks.count(OtherEC) &&
1267 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1268 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1269 VisitedEdges.insert(UnknownEdge);
1270 Changed = true;
1271 LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1272 printEdgeWeight(dbgs(), UnknownEdge));
1274 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1275 // If a block Weights 0, all its in/out edges should weight 0.
1276 if (i == 0) {
1277 for (auto *Pred : Predecessors[BB]) {
1278 Edge E = std::make_pair(Pred, BB);
1279 EdgeWeights[E] = 0;
1280 VisitedEdges.insert(E);
1282 } else {
1283 for (auto *Succ : Successors[BB]) {
1284 Edge E = std::make_pair(BB, Succ);
1285 EdgeWeights[E] = 0;
1286 VisitedEdges.insert(E);
1289 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1290 uint64_t &BBWeight = BlockWeights[BB];
1291 // We have a self-referential edge and the weight of BB is known.
1292 if (BBWeight >= TotalWeight)
1293 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1294 else
1295 EdgeWeights[SelfReferentialEdge] = 0;
1296 VisitedEdges.insert(SelfReferentialEdge);
1297 Changed = true;
1298 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1299 printEdgeWeight(dbgs(), SelfReferentialEdge));
1301 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1302 BlockWeights[EC] = TotalWeight;
1303 VisitedBlocks.insert(EC);
1304 Changed = true;
1309 return Changed;
1312 /// Build in/out edge lists for each basic block in the CFG.
1314 /// We are interested in unique edges. If a block B1 has multiple
1315 /// edges to another block B2, we only add a single B1->B2 edge.
1316 void SampleProfileLoader::buildEdges(Function &F) {
1317 for (auto &BI : F) {
1318 BasicBlock *B1 = &BI;
1320 // Add predecessors for B1.
1321 SmallPtrSet<BasicBlock *, 16> Visited;
1322 if (!Predecessors[B1].empty())
1323 llvm_unreachable("Found a stale predecessors list in a basic block.");
1324 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1325 BasicBlock *B2 = *PI;
1326 if (Visited.insert(B2).second)
1327 Predecessors[B1].push_back(B2);
1330 // Add successors for B1.
1331 Visited.clear();
1332 if (!Successors[B1].empty())
1333 llvm_unreachable("Found a stale successors list in a basic block.");
1334 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1335 BasicBlock *B2 = *SI;
1336 if (Visited.insert(B2).second)
1337 Successors[B1].push_back(B2);
1342 /// Returns the sorted CallTargetMap \p M by count in descending order.
1343 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1344 const SampleRecord::CallTargetMap & M) {
1345 SmallVector<InstrProfValueData, 2> R;
1346 for (const auto &I : SampleRecord::SortCallTargets(M)) {
1347 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1349 return R;
1352 /// Propagate weights into edges
1354 /// The following rules are applied to every block BB in the CFG:
1356 /// - If BB has a single predecessor/successor, then the weight
1357 /// of that edge is the weight of the block.
1359 /// - If all incoming or outgoing edges are known except one, and the
1360 /// weight of the block is already known, the weight of the unknown
1361 /// edge will be the weight of the block minus the sum of all the known
1362 /// edges. If the sum of all the known edges is larger than BB's weight,
1363 /// we set the unknown edge weight to zero.
1365 /// - If there is a self-referential edge, and the weight of the block is
1366 /// known, the weight for that edge is set to the weight of the block
1367 /// minus the weight of the other incoming edges to that block (if
1368 /// known).
1369 void SampleProfileLoader::propagateWeights(Function &F) {
1370 bool Changed = true;
1371 unsigned I = 0;
1373 // If BB weight is larger than its corresponding loop's header BB weight,
1374 // use the BB weight to replace the loop header BB weight.
1375 for (auto &BI : F) {
1376 BasicBlock *BB = &BI;
1377 Loop *L = LI->getLoopFor(BB);
1378 if (!L) {
1379 continue;
1381 BasicBlock *Header = L->getHeader();
1382 if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1383 BlockWeights[Header] = BlockWeights[BB];
1387 // Before propagation starts, build, for each block, a list of
1388 // unique predecessors and successors. This is necessary to handle
1389 // identical edges in multiway branches. Since we visit all blocks and all
1390 // edges of the CFG, it is cleaner to build these lists once at the start
1391 // of the pass.
1392 buildEdges(F);
1394 // Propagate until we converge or we go past the iteration limit.
1395 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1396 Changed = propagateThroughEdges(F, false);
1399 // The first propagation propagates BB counts from annotated BBs to unknown
1400 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1401 // to propagate edge weights.
1402 VisitedEdges.clear();
1403 Changed = true;
1404 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1405 Changed = propagateThroughEdges(F, false);
1408 // The 3rd propagation pass allows adjust annotated BB weights that are
1409 // obviously wrong.
1410 Changed = true;
1411 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1412 Changed = propagateThroughEdges(F, true);
1415 // Generate MD_prof metadata for every branch instruction using the
1416 // edge weights computed during propagation.
1417 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1418 LLVMContext &Ctx = F.getContext();
1419 MDBuilder MDB(Ctx);
1420 for (auto &BI : F) {
1421 BasicBlock *BB = &BI;
1423 if (BlockWeights[BB]) {
1424 for (auto &I : BB->getInstList()) {
1425 if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1426 continue;
1427 CallSite CS(&I);
1428 if (!CS.getCalledFunction()) {
1429 const DebugLoc &DLoc = I.getDebugLoc();
1430 if (!DLoc)
1431 continue;
1432 const DILocation *DIL = DLoc;
1433 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1434 uint32_t Discriminator = DIL->getBaseDiscriminator();
1436 const FunctionSamples *FS = findFunctionSamples(I);
1437 if (!FS)
1438 continue;
1439 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1440 if (!T || T.get().empty())
1441 continue;
1442 SmallVector<InstrProfValueData, 2> SortedCallTargets =
1443 GetSortedValueDataFromCallTargets(T.get());
1444 uint64_t Sum;
1445 findIndirectCallFunctionSamples(I, Sum);
1446 annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1447 SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1448 SortedCallTargets.size());
1449 } else if (!isa<IntrinsicInst>(&I)) {
1450 I.setMetadata(LLVMContext::MD_prof,
1451 MDB.createBranchWeights(
1452 {static_cast<uint32_t>(BlockWeights[BB])}));
1456 Instruction *TI = BB->getTerminator();
1457 if (TI->getNumSuccessors() == 1)
1458 continue;
1459 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1460 continue;
1462 DebugLoc BranchLoc = TI->getDebugLoc();
1463 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1464 << ((BranchLoc) ? Twine(BranchLoc.getLine())
1465 : Twine("<UNKNOWN LOCATION>"))
1466 << ".\n");
1467 SmallVector<uint32_t, 4> Weights;
1468 uint32_t MaxWeight = 0;
1469 Instruction *MaxDestInst;
1470 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1471 BasicBlock *Succ = TI->getSuccessor(I);
1472 Edge E = std::make_pair(BB, Succ);
1473 uint64_t Weight = EdgeWeights[E];
1474 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1475 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1476 // if needed. Sample counts in profiles are 64-bit unsigned values,
1477 // but internally branch weights are expressed as 32-bit values.
1478 if (Weight > std::numeric_limits<uint32_t>::max()) {
1479 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1480 Weight = std::numeric_limits<uint32_t>::max();
1482 // Weight is added by one to avoid propagation errors introduced by
1483 // 0 weights.
1484 Weights.push_back(static_cast<uint32_t>(Weight + 1));
1485 if (Weight != 0) {
1486 if (Weight > MaxWeight) {
1487 MaxWeight = Weight;
1488 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1493 misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1495 uint64_t TempWeight;
1496 // Only set weights if there is at least one non-zero weight.
1497 // In any other case, let the analyzer set weights.
1498 // Do not set weights if the weights are present. In ThinLTO, the profile
1499 // annotation is done twice. If the first annotation already set the
1500 // weights, the second pass does not need to set it.
1501 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1502 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1503 TI->setMetadata(LLVMContext::MD_prof,
1504 MDB.createBranchWeights(Weights));
1505 ORE->emit([&]() {
1506 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1507 << "most popular destination for conditional branches at "
1508 << ore::NV("CondBranchesLoc", BranchLoc);
1510 } else {
1511 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1516 /// Get the line number for the function header.
1518 /// This looks up function \p F in the current compilation unit and
1519 /// retrieves the line number where the function is defined. This is
1520 /// line 0 for all the samples read from the profile file. Every line
1521 /// number is relative to this line.
1523 /// \param F Function object to query.
1525 /// \returns the line number where \p F is defined. If it returns 0,
1526 /// it means that there is no debug information available for \p F.
1527 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1528 if (DISubprogram *S = F.getSubprogram())
1529 return S->getLine();
1531 if (NoWarnSampleUnused)
1532 return 0;
1534 // If the start of \p F is missing, emit a diagnostic to inform the user
1535 // about the missed opportunity.
1536 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1537 "No debug information found in function " + F.getName() +
1538 ": Function profile not used",
1539 DS_Warning));
1540 return 0;
1543 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1544 DT.reset(new DominatorTree);
1545 DT->recalculate(F);
1547 PDT.reset(new PostDominatorTree(F));
1549 LI.reset(new LoopInfo);
1550 LI->analyze(*DT);
1553 /// Generate branch weight metadata for all branches in \p F.
1555 /// Branch weights are computed out of instruction samples using a
1556 /// propagation heuristic. Propagation proceeds in 3 phases:
1558 /// 1- Assignment of block weights. All the basic blocks in the function
1559 /// are initial assigned the same weight as their most frequently
1560 /// executed instruction.
1562 /// 2- Creation of equivalence classes. Since samples may be missing from
1563 /// blocks, we can fill in the gaps by setting the weights of all the
1564 /// blocks in the same equivalence class to the same weight. To compute
1565 /// the concept of equivalence, we use dominance and loop information.
1566 /// Two blocks B1 and B2 are in the same equivalence class if B1
1567 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1569 /// 3- Propagation of block weights into edges. This uses a simple
1570 /// propagation heuristic. The following rules are applied to every
1571 /// block BB in the CFG:
1573 /// - If BB has a single predecessor/successor, then the weight
1574 /// of that edge is the weight of the block.
1576 /// - If all the edges are known except one, and the weight of the
1577 /// block is already known, the weight of the unknown edge will
1578 /// be the weight of the block minus the sum of all the known
1579 /// edges. If the sum of all the known edges is larger than BB's weight,
1580 /// we set the unknown edge weight to zero.
1582 /// - If there is a self-referential edge, and the weight of the block is
1583 /// known, the weight for that edge is set to the weight of the block
1584 /// minus the weight of the other incoming edges to that block (if
1585 /// known).
1587 /// Since this propagation is not guaranteed to finalize for every CFG, we
1588 /// only allow it to proceed for a limited number of iterations (controlled
1589 /// by -sample-profile-max-propagate-iterations).
1591 /// FIXME: Try to replace this propagation heuristic with a scheme
1592 /// that is guaranteed to finalize. A work-list approach similar to
1593 /// the standard value propagation algorithm used by SSA-CCP might
1594 /// work here.
1596 /// Once all the branch weights are computed, we emit the MD_prof
1597 /// metadata on BB using the computed values for each of its branches.
1599 /// \param F The function to query.
1601 /// \returns true if \p F was modified. Returns false, otherwise.
1602 bool SampleProfileLoader::emitAnnotations(Function &F) {
1603 bool Changed = false;
1605 if (getFunctionLoc(F) == 0)
1606 return false;
1608 LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1609 << F.getName() << ": " << getFunctionLoc(F) << "\n");
1611 DenseSet<GlobalValue::GUID> InlinedGUIDs;
1612 Changed |= inlineHotFunctions(F, InlinedGUIDs);
1614 // Compute basic block weights.
1615 Changed |= computeBlockWeights(F);
1617 if (Changed) {
1618 // Add an entry count to the function using the samples gathered at the
1619 // function entry.
1620 // Sets the GUIDs that are inlined in the profiled binary. This is used
1621 // for ThinLink to make correct liveness analysis, and also make the IR
1622 // match the profiled binary before annotation.
1623 F.setEntryCount(
1624 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1625 &InlinedGUIDs);
1627 // Compute dominance and loop info needed for propagation.
1628 computeDominanceAndLoopInfo(F);
1630 // Find equivalence classes.
1631 findEquivalenceClasses(F);
1633 // Propagate weights to all edges.
1634 propagateWeights(F);
1637 // If coverage checking was requested, compute it now.
1638 if (SampleProfileRecordCoverage) {
1639 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1640 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1641 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1642 if (Coverage < SampleProfileRecordCoverage) {
1643 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1644 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1645 Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1646 Twine(Coverage) + "%) were applied",
1647 DS_Warning));
1651 if (SampleProfileSampleCoverage) {
1652 uint64_t Used = CoverageTracker.getTotalUsedSamples();
1653 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1654 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1655 if (Coverage < SampleProfileSampleCoverage) {
1656 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1657 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1658 Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1659 Twine(Coverage) + "%) were applied",
1660 DS_Warning));
1663 return Changed;
1666 char SampleProfileLoaderLegacyPass::ID = 0;
1668 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1669 "Sample Profile loader", false, false)
1670 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1671 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1672 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1673 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1674 "Sample Profile loader", false, false)
1676 bool SampleProfileLoader::doInitialization(Module &M) {
1677 auto &Ctx = M.getContext();
1679 std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
1680 auto ReaderOrErr =
1681 SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1682 if (std::error_code EC = ReaderOrErr.getError()) {
1683 std::string Msg = "Could not open profile: " + EC.message();
1684 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1685 return false;
1687 Reader = std::move(ReaderOrErr.get());
1688 Reader->collectFuncsFrom(M);
1689 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1690 PSL = Reader->getProfileSymbolList();
1692 // While profile-sample-accurate is on, ignore symbol list.
1693 ProfAccForSymsInList =
1694 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
1695 if (ProfAccForSymsInList) {
1696 NamesInProfile.clear();
1697 if (auto NameTable = Reader->getNameTable())
1698 NamesInProfile.insert(NameTable->begin(), NameTable->end());
1701 return true;
1704 ModulePass *llvm::createSampleProfileLoaderPass() {
1705 return new SampleProfileLoaderLegacyPass();
1708 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1709 return new SampleProfileLoaderLegacyPass(Name);
1712 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1713 ProfileSummaryInfo *_PSI) {
1714 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1715 if (!ProfileIsValid)
1716 return false;
1718 PSI = _PSI;
1719 if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1720 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1721 ProfileSummary::PSK_Sample);
1723 // Compute the total number of samples collected in this profile.
1724 for (const auto &I : Reader->getProfiles())
1725 TotalCollectedSamples += I.second.getTotalSamples();
1727 // Populate the symbol map.
1728 for (const auto &N_F : M.getValueSymbolTable()) {
1729 StringRef OrigName = N_F.getKey();
1730 Function *F = dyn_cast<Function>(N_F.getValue());
1731 if (F == nullptr)
1732 continue;
1733 SymbolMap[OrigName] = F;
1734 auto pos = OrigName.find('.');
1735 if (pos != StringRef::npos) {
1736 StringRef NewName = OrigName.substr(0, pos);
1737 auto r = SymbolMap.insert(std::make_pair(NewName, F));
1738 // Failiing to insert means there is already an entry in SymbolMap,
1739 // thus there are multiple functions that are mapped to the same
1740 // stripped name. In this case of name conflicting, set the value
1741 // to nullptr to avoid confusion.
1742 if (!r.second)
1743 r.first->second = nullptr;
1747 bool retval = false;
1748 for (auto &F : M)
1749 if (!F.isDeclaration()) {
1750 clearFunctionData();
1751 retval |= runOnFunction(F, AM);
1754 // Account for cold calls not inlined....
1755 for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1756 notInlinedCallInfo)
1757 updateProfileCallee(pair.first, pair.second.entryCount);
1759 return retval;
1762 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1763 ACT = &getAnalysis<AssumptionCacheTracker>();
1764 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1765 ProfileSummaryInfo *PSI =
1766 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1767 return SampleLoader.runOnModule(M, nullptr, PSI);
1770 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1772 DILocation2SampleMap.clear();
1773 // By default the entry count is initialized to -1, which will be treated
1774 // conservatively by getEntryCount as the same as unknown (None). This is
1775 // to avoid newly added code to be treated as cold. If we have samples
1776 // this will be overwritten in emitAnnotations.
1777 uint64_t initialEntryCount = -1;
1779 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1780 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1781 // initialize all the function entry counts to 0. It means all the
1782 // functions without profile will be regarded as cold.
1783 initialEntryCount = 0;
1784 // profile-sample-accurate is a user assertion which has a higher precedence
1785 // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1786 ProfAccForSymsInList = false;
1789 // PSL -- profile symbol list include all the symbols in sampled binary.
1790 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1791 // old functions without samples being cold, without having to worry
1792 // about new and hot functions being mistakenly treated as cold.
1793 if (ProfAccForSymsInList) {
1794 // Initialize the entry count to 0 for functions in the list.
1795 if (PSL->contains(F.getName()))
1796 initialEntryCount = 0;
1798 // Function in the symbol list but without sample will be regarded as
1799 // cold. To minimize the potential negative performance impact it could
1800 // have, we want to be a little conservative here saying if a function
1801 // shows up in the profile, no matter as outline function, inline instance
1802 // or call targets, treat the function as not being cold. This will handle
1803 // the cases such as most callsites of a function are inlined in sampled
1804 // binary but not inlined in current build (because of source code drift,
1805 // imprecise debug information, or the callsites are all cold individually
1806 // but not cold accumulatively...), so the outline function showing up as
1807 // cold in sampled binary will actually not be cold after current build.
1808 StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
1809 if (NamesInProfile.count(CanonName))
1810 initialEntryCount = -1;
1813 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1814 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1815 if (AM) {
1816 auto &FAM =
1817 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1818 .getManager();
1819 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1820 } else {
1821 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1822 ORE = OwnedORE.get();
1824 Samples = Reader->getSamplesFor(F);
1825 if (Samples && !Samples->empty())
1826 return emitAnnotations(F);
1827 return false;
1830 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1831 ModuleAnalysisManager &AM) {
1832 FunctionAnalysisManager &FAM =
1833 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1835 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1836 return FAM.getResult<AssumptionAnalysis>(F);
1838 auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1839 return FAM.getResult<TargetIRAnalysis>(F);
1842 SampleProfileLoader SampleLoader(
1843 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1844 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1845 : ProfileRemappingFileName,
1846 IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1848 SampleLoader.doInitialization(M);
1850 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1851 if (!SampleLoader.runOnModule(M, &AM, PSI))
1852 return PreservedAnalyses::all();
1854 return PreservedAnalyses::none();