[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineAddSub.cpp
blob8bc34825f8a7b1fccc7b55a77a63d1875930c5b3
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include <cassert>
33 #include <utility>
35 using namespace llvm;
36 using namespace PatternMatch;
38 #define DEBUG_TYPE "instcombine"
40 namespace {
42 /// Class representing coefficient of floating-point addend.
43 /// This class needs to be highly efficient, which is especially true for
44 /// the constructor. As of I write this comment, the cost of the default
45 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
46 /// perform write-merging).
47 ///
48 class FAddendCoef {
49 public:
50 // The constructor has to initialize a APFloat, which is unnecessary for
51 // most addends which have coefficient either 1 or -1. So, the constructor
52 // is expensive. In order to avoid the cost of the constructor, we should
53 // reuse some instances whenever possible. The pre-created instances
54 // FAddCombine::Add[0-5] embodies this idea.
55 FAddendCoef() = default;
56 ~FAddendCoef();
58 // If possible, don't define operator+/operator- etc because these
59 // operators inevitably call FAddendCoef's constructor which is not cheap.
60 void operator=(const FAddendCoef &A);
61 void operator+=(const FAddendCoef &A);
62 void operator*=(const FAddendCoef &S);
64 void set(short C) {
65 assert(!insaneIntVal(C) && "Insane coefficient");
66 IsFp = false; IntVal = C;
69 void set(const APFloat& C);
71 void negate();
73 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
74 Value *getValue(Type *) const;
76 bool isOne() const { return isInt() && IntVal == 1; }
77 bool isTwo() const { return isInt() && IntVal == 2; }
78 bool isMinusOne() const { return isInt() && IntVal == -1; }
79 bool isMinusTwo() const { return isInt() && IntVal == -2; }
81 private:
82 bool insaneIntVal(int V) { return V > 4 || V < -4; }
84 APFloat *getFpValPtr()
85 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
87 const APFloat *getFpValPtr() const
88 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
90 const APFloat &getFpVal() const {
91 assert(IsFp && BufHasFpVal && "Incorret state");
92 return *getFpValPtr();
95 APFloat &getFpVal() {
96 assert(IsFp && BufHasFpVal && "Incorret state");
97 return *getFpValPtr();
100 bool isInt() const { return !IsFp; }
102 // If the coefficient is represented by an integer, promote it to a
103 // floating point.
104 void convertToFpType(const fltSemantics &Sem);
106 // Construct an APFloat from a signed integer.
107 // TODO: We should get rid of this function when APFloat can be constructed
108 // from an *SIGNED* integer.
109 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111 bool IsFp = false;
113 // True iff FpValBuf contains an instance of APFloat.
114 bool BufHasFpVal = false;
116 // The integer coefficient of an individual addend is either 1 or -1,
117 // and we try to simplify at most 4 addends from neighboring at most
118 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
119 // is overkill of this end.
120 short IntVal = 0;
122 AlignedCharArrayUnion<APFloat> FpValBuf;
125 /// FAddend is used to represent floating-point addend. An addend is
126 /// represented as <C, V>, where the V is a symbolic value, and C is a
127 /// constant coefficient. A constant addend is represented as <C, 0>.
128 class FAddend {
129 public:
130 FAddend() = default;
132 void operator+=(const FAddend &T) {
133 assert((Val == T.Val) && "Symbolic-values disagree");
134 Coeff += T.Coeff;
137 Value *getSymVal() const { return Val; }
138 const FAddendCoef &getCoef() const { return Coeff; }
140 bool isConstant() const { return Val == nullptr; }
141 bool isZero() const { return Coeff.isZero(); }
143 void set(short Coefficient, Value *V) {
144 Coeff.set(Coefficient);
145 Val = V;
147 void set(const APFloat &Coefficient, Value *V) {
148 Coeff.set(Coefficient);
149 Val = V;
151 void set(const ConstantFP *Coefficient, Value *V) {
152 Coeff.set(Coefficient->getValueAPF());
153 Val = V;
156 void negate() { Coeff.negate(); }
158 /// Drill down the U-D chain one step to find the definition of V, and
159 /// try to break the definition into one or two addends.
160 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162 /// Similar to FAddend::drillDownOneStep() except that the value being
163 /// splitted is the addend itself.
164 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166 private:
167 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169 // This addend has the value of "Coeff * Val".
170 Value *Val = nullptr;
171 FAddendCoef Coeff;
174 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
175 /// with its neighboring at most two instructions.
177 class FAddCombine {
178 public:
179 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181 Value *simplify(Instruction *FAdd);
183 private:
184 using AddendVect = SmallVector<const FAddend *, 4>;
186 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188 /// Convert given addend to a Value
189 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191 /// Return the number of instructions needed to emit the N-ary addition.
192 unsigned calcInstrNumber(const AddendVect& Vect);
194 Value *createFSub(Value *Opnd0, Value *Opnd1);
195 Value *createFAdd(Value *Opnd0, Value *Opnd1);
196 Value *createFMul(Value *Opnd0, Value *Opnd1);
197 Value *createFNeg(Value *V);
198 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
199 void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201 // Debugging stuff are clustered here.
202 #ifndef NDEBUG
203 unsigned CreateInstrNum;
204 void initCreateInstNum() { CreateInstrNum = 0; }
205 void incCreateInstNum() { CreateInstrNum++; }
206 #else
207 void initCreateInstNum() {}
208 void incCreateInstNum() {}
209 #endif
211 InstCombiner::BuilderTy &Builder;
212 Instruction *Instr = nullptr;
215 } // end anonymous namespace
217 //===----------------------------------------------------------------------===//
219 // Implementation of
220 // {FAddendCoef, FAddend, FAddition, FAddCombine}.
222 //===----------------------------------------------------------------------===//
223 FAddendCoef::~FAddendCoef() {
224 if (BufHasFpVal)
225 getFpValPtr()->~APFloat();
228 void FAddendCoef::set(const APFloat& C) {
229 APFloat *P = getFpValPtr();
231 if (isInt()) {
232 // As the buffer is meanless byte stream, we cannot call
233 // APFloat::operator=().
234 new(P) APFloat(C);
235 } else
236 *P = C;
238 IsFp = BufHasFpVal = true;
241 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
242 if (!isInt())
243 return;
245 APFloat *P = getFpValPtr();
246 if (IntVal > 0)
247 new(P) APFloat(Sem, IntVal);
248 else {
249 new(P) APFloat(Sem, 0 - IntVal);
250 P->changeSign();
252 IsFp = BufHasFpVal = true;
255 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
256 if (Val >= 0)
257 return APFloat(Sem, Val);
259 APFloat T(Sem, 0 - Val);
260 T.changeSign();
262 return T;
265 void FAddendCoef::operator=(const FAddendCoef &That) {
266 if (That.isInt())
267 set(That.IntVal);
268 else
269 set(That.getFpVal());
272 void FAddendCoef::operator+=(const FAddendCoef &That) {
273 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
274 if (isInt() == That.isInt()) {
275 if (isInt())
276 IntVal += That.IntVal;
277 else
278 getFpVal().add(That.getFpVal(), RndMode);
279 return;
282 if (isInt()) {
283 const APFloat &T = That.getFpVal();
284 convertToFpType(T.getSemantics());
285 getFpVal().add(T, RndMode);
286 return;
289 APFloat &T = getFpVal();
290 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
293 void FAddendCoef::operator*=(const FAddendCoef &That) {
294 if (That.isOne())
295 return;
297 if (That.isMinusOne()) {
298 negate();
299 return;
302 if (isInt() && That.isInt()) {
303 int Res = IntVal * (int)That.IntVal;
304 assert(!insaneIntVal(Res) && "Insane int value");
305 IntVal = Res;
306 return;
309 const fltSemantics &Semantic =
310 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312 if (isInt())
313 convertToFpType(Semantic);
314 APFloat &F0 = getFpVal();
316 if (That.isInt())
317 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
318 APFloat::rmNearestTiesToEven);
319 else
320 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
323 void FAddendCoef::negate() {
324 if (isInt())
325 IntVal = 0 - IntVal;
326 else
327 getFpVal().changeSign();
330 Value *FAddendCoef::getValue(Type *Ty) const {
331 return isInt() ?
332 ConstantFP::get(Ty, float(IntVal)) :
333 ConstantFP::get(Ty->getContext(), getFpVal());
336 // The definition of <Val> Addends
337 // =========================================
338 // A + B <1, A>, <1,B>
339 // A - B <1, A>, <1,B>
340 // 0 - B <-1, B>
341 // C * A, <C, A>
342 // A + C <1, A> <C, NULL>
343 // 0 +/- 0 <0, NULL> (corner case)
345 // Legend: A and B are not constant, C is constant
346 unsigned FAddend::drillValueDownOneStep
347 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
348 Instruction *I = nullptr;
349 if (!Val || !(I = dyn_cast<Instruction>(Val)))
350 return 0;
352 unsigned Opcode = I->getOpcode();
354 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
355 ConstantFP *C0, *C1;
356 Value *Opnd0 = I->getOperand(0);
357 Value *Opnd1 = I->getOperand(1);
358 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
359 Opnd0 = nullptr;
361 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
362 Opnd1 = nullptr;
364 if (Opnd0) {
365 if (!C0)
366 Addend0.set(1, Opnd0);
367 else
368 Addend0.set(C0, nullptr);
371 if (Opnd1) {
372 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
373 if (!C1)
374 Addend.set(1, Opnd1);
375 else
376 Addend.set(C1, nullptr);
377 if (Opcode == Instruction::FSub)
378 Addend.negate();
381 if (Opnd0 || Opnd1)
382 return Opnd0 && Opnd1 ? 2 : 1;
384 // Both operands are zero. Weird!
385 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
386 return 1;
389 if (I->getOpcode() == Instruction::FMul) {
390 Value *V0 = I->getOperand(0);
391 Value *V1 = I->getOperand(1);
392 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
393 Addend0.set(C, V1);
394 return 1;
397 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
398 Addend0.set(C, V0);
399 return 1;
403 return 0;
406 // Try to break *this* addend into two addends. e.g. Suppose this addend is
407 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
408 // i.e. <2.3, X> and <2.3, Y>.
409 unsigned FAddend::drillAddendDownOneStep
410 (FAddend &Addend0, FAddend &Addend1) const {
411 if (isConstant())
412 return 0;
414 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
415 if (!BreakNum || Coeff.isOne())
416 return BreakNum;
418 Addend0.Scale(Coeff);
420 if (BreakNum == 2)
421 Addend1.Scale(Coeff);
423 return BreakNum;
426 Value *FAddCombine::simplify(Instruction *I) {
427 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
428 "Expected 'reassoc'+'nsz' instruction");
430 // Currently we are not able to handle vector type.
431 if (I->getType()->isVectorTy())
432 return nullptr;
434 assert((I->getOpcode() == Instruction::FAdd ||
435 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437 // Save the instruction before calling other member-functions.
438 Instr = I;
440 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
445 unsigned Opnd0_ExpNum = 0;
446 unsigned Opnd1_ExpNum = 0;
448 if (!Opnd0.isConstant())
449 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
452 if (OpndNum == 2 && !Opnd1.isConstant())
453 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
456 if (Opnd0_ExpNum && Opnd1_ExpNum) {
457 AddendVect AllOpnds;
458 AllOpnds.push_back(&Opnd0_0);
459 AllOpnds.push_back(&Opnd1_0);
460 if (Opnd0_ExpNum == 2)
461 AllOpnds.push_back(&Opnd0_1);
462 if (Opnd1_ExpNum == 2)
463 AllOpnds.push_back(&Opnd1_1);
465 // Compute instruction quota. We should save at least one instruction.
466 unsigned InstQuota = 0;
468 Value *V0 = I->getOperand(0);
469 Value *V1 = I->getOperand(1);
470 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
471 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
474 return R;
477 if (OpndNum != 2) {
478 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
479 // splitted into two addends, say "V = X - Y", the instruction would have
480 // been optimized into "I = Y - X" in the previous steps.
482 const FAddendCoef &CE = Opnd0.getCoef();
483 return CE.isOne() ? Opnd0.getSymVal() : nullptr;
486 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
487 if (Opnd1_ExpNum) {
488 AddendVect AllOpnds;
489 AllOpnds.push_back(&Opnd0);
490 AllOpnds.push_back(&Opnd1_0);
491 if (Opnd1_ExpNum == 2)
492 AllOpnds.push_back(&Opnd1_1);
494 if (Value *R = simplifyFAdd(AllOpnds, 1))
495 return R;
498 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
499 if (Opnd0_ExpNum) {
500 AddendVect AllOpnds;
501 AllOpnds.push_back(&Opnd1);
502 AllOpnds.push_back(&Opnd0_0);
503 if (Opnd0_ExpNum == 2)
504 AllOpnds.push_back(&Opnd0_1);
506 if (Value *R = simplifyFAdd(AllOpnds, 1))
507 return R;
510 return nullptr;
513 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
514 unsigned AddendNum = Addends.size();
515 assert(AddendNum <= 4 && "Too many addends");
517 // For saving intermediate results;
518 unsigned NextTmpIdx = 0;
519 FAddend TmpResult[3];
521 // Points to the constant addend of the resulting simplified expression.
522 // If the resulting expr has constant-addend, this constant-addend is
523 // desirable to reside at the top of the resulting expression tree. Placing
524 // constant close to supper-expr(s) will potentially reveal some optimization
525 // opportunities in super-expr(s).
526 const FAddend *ConstAdd = nullptr;
528 // Simplified addends are placed <SimpVect>.
529 AddendVect SimpVect;
531 // The outer loop works on one symbolic-value at a time. Suppose the input
532 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
533 // The symbolic-values will be processed in this order: x, y, z.
534 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
536 const FAddend *ThisAddend = Addends[SymIdx];
537 if (!ThisAddend) {
538 // This addend was processed before.
539 continue;
542 Value *Val = ThisAddend->getSymVal();
543 unsigned StartIdx = SimpVect.size();
544 SimpVect.push_back(ThisAddend);
546 // The inner loop collects addends sharing same symbolic-value, and these
547 // addends will be later on folded into a single addend. Following above
548 // example, if the symbolic value "y" is being processed, the inner loop
549 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
550 // be later on folded into "<b1+b2, y>".
551 for (unsigned SameSymIdx = SymIdx + 1;
552 SameSymIdx < AddendNum; SameSymIdx++) {
553 const FAddend *T = Addends[SameSymIdx];
554 if (T && T->getSymVal() == Val) {
555 // Set null such that next iteration of the outer loop will not process
556 // this addend again.
557 Addends[SameSymIdx] = nullptr;
558 SimpVect.push_back(T);
562 // If multiple addends share same symbolic value, fold them together.
563 if (StartIdx + 1 != SimpVect.size()) {
564 FAddend &R = TmpResult[NextTmpIdx ++];
565 R = *SimpVect[StartIdx];
566 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
567 R += *SimpVect[Idx];
569 // Pop all addends being folded and push the resulting folded addend.
570 SimpVect.resize(StartIdx);
571 if (Val) {
572 if (!R.isZero()) {
573 SimpVect.push_back(&R);
575 } else {
576 // Don't push constant addend at this time. It will be the last element
577 // of <SimpVect>.
578 ConstAdd = &R;
583 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
584 "out-of-bound access");
586 if (ConstAdd)
587 SimpVect.push_back(ConstAdd);
589 Value *Result;
590 if (!SimpVect.empty())
591 Result = createNaryFAdd(SimpVect, InstrQuota);
592 else {
593 // The addition is folded to 0.0.
594 Result = ConstantFP::get(Instr->getType(), 0.0);
597 return Result;
600 Value *FAddCombine::createNaryFAdd
601 (const AddendVect &Opnds, unsigned InstrQuota) {
602 assert(!Opnds.empty() && "Expect at least one addend");
604 // Step 1: Check if the # of instructions needed exceeds the quota.
606 unsigned InstrNeeded = calcInstrNumber(Opnds);
607 if (InstrNeeded > InstrQuota)
608 return nullptr;
610 initCreateInstNum();
612 // step 2: Emit the N-ary addition.
613 // Note that at most three instructions are involved in Fadd-InstCombine: the
614 // addition in question, and at most two neighboring instructions.
615 // The resulting optimized addition should have at least one less instruction
616 // than the original addition expression tree. This implies that the resulting
617 // N-ary addition has at most two instructions, and we don't need to worry
618 // about tree-height when constructing the N-ary addition.
620 Value *LastVal = nullptr;
621 bool LastValNeedNeg = false;
623 // Iterate the addends, creating fadd/fsub using adjacent two addends.
624 for (const FAddend *Opnd : Opnds) {
625 bool NeedNeg;
626 Value *V = createAddendVal(*Opnd, NeedNeg);
627 if (!LastVal) {
628 LastVal = V;
629 LastValNeedNeg = NeedNeg;
630 continue;
633 if (LastValNeedNeg == NeedNeg) {
634 LastVal = createFAdd(LastVal, V);
635 continue;
638 if (LastValNeedNeg)
639 LastVal = createFSub(V, LastVal);
640 else
641 LastVal = createFSub(LastVal, V);
643 LastValNeedNeg = false;
646 if (LastValNeedNeg) {
647 LastVal = createFNeg(LastVal);
650 #ifndef NDEBUG
651 assert(CreateInstrNum == InstrNeeded &&
652 "Inconsistent in instruction numbers");
653 #endif
655 return LastVal;
658 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
659 Value *V = Builder.CreateFSub(Opnd0, Opnd1);
660 if (Instruction *I = dyn_cast<Instruction>(V))
661 createInstPostProc(I);
662 return V;
665 Value *FAddCombine::createFNeg(Value *V) {
666 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
667 Value *NewV = createFSub(Zero, V);
668 if (Instruction *I = dyn_cast<Instruction>(NewV))
669 createInstPostProc(I, true); // fneg's don't receive instruction numbers.
670 return NewV;
673 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
674 Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
675 if (Instruction *I = dyn_cast<Instruction>(V))
676 createInstPostProc(I);
677 return V;
680 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
681 Value *V = Builder.CreateFMul(Opnd0, Opnd1);
682 if (Instruction *I = dyn_cast<Instruction>(V))
683 createInstPostProc(I);
684 return V;
687 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
688 NewInstr->setDebugLoc(Instr->getDebugLoc());
690 // Keep track of the number of instruction created.
691 if (!NoNumber)
692 incCreateInstNum();
694 // Propagate fast-math flags
695 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
698 // Return the number of instruction needed to emit the N-ary addition.
699 // NOTE: Keep this function in sync with createAddendVal().
700 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
701 unsigned OpndNum = Opnds.size();
702 unsigned InstrNeeded = OpndNum - 1;
704 // The number of addends in the form of "(-1)*x".
705 unsigned NegOpndNum = 0;
707 // Adjust the number of instructions needed to emit the N-ary add.
708 for (const FAddend *Opnd : Opnds) {
709 if (Opnd->isConstant())
710 continue;
712 // The constant check above is really for a few special constant
713 // coefficients.
714 if (isa<UndefValue>(Opnd->getSymVal()))
715 continue;
717 const FAddendCoef &CE = Opnd->getCoef();
718 if (CE.isMinusOne() || CE.isMinusTwo())
719 NegOpndNum++;
721 // Let the addend be "c * x". If "c == +/-1", the value of the addend
722 // is immediately available; otherwise, it needs exactly one instruction
723 // to evaluate the value.
724 if (!CE.isMinusOne() && !CE.isOne())
725 InstrNeeded++;
727 if (NegOpndNum == OpndNum)
728 InstrNeeded++;
729 return InstrNeeded;
732 // Input Addend Value NeedNeg(output)
733 // ================================================================
734 // Constant C C false
735 // <+/-1, V> V coefficient is -1
736 // <2/-2, V> "fadd V, V" coefficient is -2
737 // <C, V> "fmul V, C" false
739 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
740 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
741 const FAddendCoef &Coeff = Opnd.getCoef();
743 if (Opnd.isConstant()) {
744 NeedNeg = false;
745 return Coeff.getValue(Instr->getType());
748 Value *OpndVal = Opnd.getSymVal();
750 if (Coeff.isMinusOne() || Coeff.isOne()) {
751 NeedNeg = Coeff.isMinusOne();
752 return OpndVal;
755 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
756 NeedNeg = Coeff.isMinusTwo();
757 return createFAdd(OpndVal, OpndVal);
760 NeedNeg = false;
761 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
764 // Checks if any operand is negative and we can convert add to sub.
765 // This function checks for following negative patterns
766 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
767 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
768 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
769 static Value *checkForNegativeOperand(BinaryOperator &I,
770 InstCombiner::BuilderTy &Builder) {
771 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
773 // This function creates 2 instructions to replace ADD, we need at least one
774 // of LHS or RHS to have one use to ensure benefit in transform.
775 if (!LHS->hasOneUse() && !RHS->hasOneUse())
776 return nullptr;
778 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
779 const APInt *C1 = nullptr, *C2 = nullptr;
781 // if ONE is on other side, swap
782 if (match(RHS, m_Add(m_Value(X), m_One())))
783 std::swap(LHS, RHS);
785 if (match(LHS, m_Add(m_Value(X), m_One()))) {
786 // if XOR on other side, swap
787 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
788 std::swap(X, RHS);
790 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
791 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
792 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
793 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
794 Value *NewAnd = Builder.CreateAnd(Z, *C1);
795 return Builder.CreateSub(RHS, NewAnd, "sub");
796 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
797 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
798 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
799 Value *NewOr = Builder.CreateOr(Z, ~(*C1));
800 return Builder.CreateSub(RHS, NewOr, "sub");
805 // Restore LHS and RHS
806 LHS = I.getOperand(0);
807 RHS = I.getOperand(1);
809 // if XOR is on other side, swap
810 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
811 std::swap(LHS, RHS);
813 // C2 is ODD
814 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
815 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
816 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
817 if (C1->countTrailingZeros() == 0)
818 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
819 Value *NewOr = Builder.CreateOr(Z, ~(*C2));
820 return Builder.CreateSub(RHS, NewOr, "sub");
822 return nullptr;
825 /// Wrapping flags may allow combining constants separated by an extend.
826 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
827 InstCombiner::BuilderTy &Builder) {
828 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
829 Type *Ty = Add.getType();
830 Constant *Op1C;
831 if (!match(Op1, m_Constant(Op1C)))
832 return nullptr;
834 // Try this match first because it results in an add in the narrow type.
835 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
836 Value *X;
837 const APInt *C1, *C2;
838 if (match(Op1, m_APInt(C1)) &&
839 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
840 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
841 Constant *NewC =
842 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
843 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
846 // More general combining of constants in the wide type.
847 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
848 Constant *NarrowC;
849 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
850 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
851 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
852 Value *WideX = Builder.CreateSExt(X, Ty);
853 return BinaryOperator::CreateAdd(WideX, NewC);
855 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
856 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
857 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
858 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
859 Value *WideX = Builder.CreateZExt(X, Ty);
860 return BinaryOperator::CreateAdd(WideX, NewC);
863 return nullptr;
866 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
867 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
868 Constant *Op1C;
869 if (!match(Op1, m_Constant(Op1C)))
870 return nullptr;
872 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
873 return NV;
875 Value *X;
876 Constant *Op00C;
878 // add (sub C1, X), C2 --> sub (add C1, C2), X
879 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
880 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
882 Value *Y;
884 // add (sub X, Y), -1 --> add (not Y), X
885 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
886 match(Op1, m_AllOnes()))
887 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
889 // zext(bool) + C -> bool ? C + 1 : C
890 if (match(Op0, m_ZExt(m_Value(X))) &&
891 X->getType()->getScalarSizeInBits() == 1)
892 return SelectInst::Create(X, AddOne(Op1C), Op1);
894 // ~X + C --> (C-1) - X
895 if (match(Op0, m_Not(m_Value(X))))
896 return BinaryOperator::CreateSub(SubOne(Op1C), X);
898 const APInt *C;
899 if (!match(Op1, m_APInt(C)))
900 return nullptr;
902 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
903 const APInt *C2;
904 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
905 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
907 if (C->isSignMask()) {
908 // If wrapping is not allowed, then the addition must set the sign bit:
909 // X + (signmask) --> X | signmask
910 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
911 return BinaryOperator::CreateOr(Op0, Op1);
913 // If wrapping is allowed, then the addition flips the sign bit of LHS:
914 // X + (signmask) --> X ^ signmask
915 return BinaryOperator::CreateXor(Op0, Op1);
918 // Is this add the last step in a convoluted sext?
919 // add(zext(xor i16 X, -32768), -32768) --> sext X
920 Type *Ty = Add.getType();
921 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
922 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
923 return CastInst::Create(Instruction::SExt, X, Ty);
925 if (C->isOneValue() && Op0->hasOneUse()) {
926 // add (sext i1 X), 1 --> zext (not X)
927 // TODO: The smallest IR representation is (select X, 0, 1), and that would
928 // not require the one-use check. But we need to remove a transform in
929 // visitSelect and make sure that IR value tracking for select is equal or
930 // better than for these ops.
931 if (match(Op0, m_SExt(m_Value(X))) &&
932 X->getType()->getScalarSizeInBits() == 1)
933 return new ZExtInst(Builder.CreateNot(X), Ty);
935 // Shifts and add used to flip and mask off the low bit:
936 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
937 const APInt *C3;
938 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
939 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
940 Value *NotX = Builder.CreateNot(X);
941 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
945 return nullptr;
948 // Matches multiplication expression Op * C where C is a constant. Returns the
949 // constant value in C and the other operand in Op. Returns true if such a
950 // match is found.
951 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
952 const APInt *AI;
953 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
954 C = *AI;
955 return true;
957 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
958 C = APInt(AI->getBitWidth(), 1);
959 C <<= *AI;
960 return true;
962 return false;
965 // Matches remainder expression Op % C where C is a constant. Returns the
966 // constant value in C and the other operand in Op. Returns the signedness of
967 // the remainder operation in IsSigned. Returns true if such a match is
968 // found.
969 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
970 const APInt *AI;
971 IsSigned = false;
972 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
973 IsSigned = true;
974 C = *AI;
975 return true;
977 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
978 C = *AI;
979 return true;
981 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
982 C = *AI + 1;
983 return true;
985 return false;
988 // Matches division expression Op / C with the given signedness as indicated
989 // by IsSigned, where C is a constant. Returns the constant value in C and the
990 // other operand in Op. Returns true if such a match is found.
991 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
992 const APInt *AI;
993 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
994 C = *AI;
995 return true;
997 if (!IsSigned) {
998 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
999 C = *AI;
1000 return true;
1002 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1003 C = APInt(AI->getBitWidth(), 1);
1004 C <<= *AI;
1005 return true;
1008 return false;
1011 // Returns whether C0 * C1 with the given signedness overflows.
1012 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1013 bool overflow;
1014 if (IsSigned)
1015 (void)C0.smul_ov(C1, overflow);
1016 else
1017 (void)C0.umul_ov(C1, overflow);
1018 return overflow;
1021 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1022 // does not overflow.
1023 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
1024 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1025 Value *X, *MulOpV;
1026 APInt C0, MulOpC;
1027 bool IsSigned;
1028 // Match I = X % C0 + MulOpV * C0
1029 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1030 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1031 C0 == MulOpC) {
1032 Value *RemOpV;
1033 APInt C1;
1034 bool Rem2IsSigned;
1035 // Match MulOpC = RemOpV % C1
1036 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1037 IsSigned == Rem2IsSigned) {
1038 Value *DivOpV;
1039 APInt DivOpC;
1040 // Match RemOpV = X / C0
1041 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1042 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1043 Value *NewDivisor =
1044 ConstantInt::get(X->getType()->getContext(), C0 * C1);
1045 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1046 : Builder.CreateURem(X, NewDivisor, "urem");
1051 return nullptr;
1054 /// Fold
1055 /// (1 << NBits) - 1
1056 /// Into:
1057 /// ~(-(1 << NBits))
1058 /// Because a 'not' is better for bit-tracking analysis and other transforms
1059 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1060 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1061 InstCombiner::BuilderTy &Builder) {
1062 Value *NBits;
1063 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1064 return nullptr;
1066 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1067 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1068 // Be wary of constant folding.
1069 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1070 // Always NSW. But NUW propagates from `add`.
1071 BOp->setHasNoSignedWrap();
1072 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1075 return BinaryOperator::CreateNot(NotMask, I.getName());
1078 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1079 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1080 Type *Ty = I.getType();
1081 auto getUAddSat = [&]() {
1082 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1085 // add (umin X, ~Y), Y --> uaddsat X, Y
1086 Value *X, *Y;
1087 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1088 m_Deferred(Y))))
1089 return CallInst::Create(getUAddSat(), { X, Y });
1091 // add (umin X, ~C), C --> uaddsat X, C
1092 const APInt *C, *NotC;
1093 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1094 *C == ~*NotC)
1095 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1097 return nullptr;
1100 Instruction *
1101 InstCombiner::canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1102 BinaryOperator &I) {
1103 assert((I.getOpcode() == Instruction::Add ||
1104 I.getOpcode() == Instruction::Or ||
1105 I.getOpcode() == Instruction::Sub) &&
1106 "Expecting add/or/sub instruction");
1108 // We have a subtraction/addition between a (potentially truncated) *logical*
1109 // right-shift of X and a "select".
1110 Value *X, *Select;
1111 Instruction *LowBitsToSkip, *Extract;
1112 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1113 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1114 m_Instruction(Extract))),
1115 m_Value(Select))))
1116 return nullptr;
1118 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1119 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1120 return nullptr;
1122 Type *XTy = X->getType();
1123 bool HadTrunc = I.getType() != XTy;
1125 // If there was a truncation of extracted value, then we'll need to produce
1126 // one extra instruction, so we need to ensure one instruction will go away.
1127 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1128 return nullptr;
1130 // Extraction should extract high NBits bits, with shift amount calculated as:
1131 // low bits to skip = shift bitwidth - high bits to extract
1132 // The shift amount itself may be extended, and we need to look past zero-ext
1133 // when matching NBits, that will matter for matching later.
1134 Constant *C;
1135 Value *NBits;
1136 if (!match(
1137 LowBitsToSkip,
1138 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1139 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1140 APInt(C->getType()->getScalarSizeInBits(),
1141 X->getType()->getScalarSizeInBits()))))
1142 return nullptr;
1144 // Sign-extending value can be zero-extended if we `sub`tract it,
1145 // or sign-extended otherwise.
1146 auto SkipExtInMagic = [&I](Value *&V) {
1147 if (I.getOpcode() == Instruction::Sub)
1148 match(V, m_ZExtOrSelf(m_Value(V)));
1149 else
1150 match(V, m_SExtOrSelf(m_Value(V)));
1153 // Now, finally validate the sign-extending magic.
1154 // `select` itself may be appropriately extended, look past that.
1155 SkipExtInMagic(Select);
1157 ICmpInst::Predicate Pred;
1158 const APInt *Thr;
1159 Value *SignExtendingValue, *Zero;
1160 bool ShouldSignext;
1161 // It must be a select between two values we will later establish to be a
1162 // sign-extending value and a zero constant. The condition guarding the
1163 // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1164 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1165 m_Value(SignExtendingValue), m_Value(Zero))) ||
1166 !isSignBitCheck(Pred, *Thr, ShouldSignext))
1167 return nullptr;
1169 // icmp-select pair is commutative.
1170 if (!ShouldSignext)
1171 std::swap(SignExtendingValue, Zero);
1173 // If we should not perform sign-extension then we must add/or/subtract zero.
1174 if (!match(Zero, m_Zero()))
1175 return nullptr;
1176 // Otherwise, it should be some constant, left-shifted by the same NBits we
1177 // had in `lshr`. Said left-shift can also be appropriately extended.
1178 // Again, we must look past zero-ext when looking for NBits.
1179 SkipExtInMagic(SignExtendingValue);
1180 Constant *SignExtendingValueBaseConstant;
1181 if (!match(SignExtendingValue,
1182 m_Shl(m_Constant(SignExtendingValueBaseConstant),
1183 m_ZExtOrSelf(m_Specific(NBits)))))
1184 return nullptr;
1185 // If we `sub`, then the constant should be one, else it should be all-ones.
1186 if (I.getOpcode() == Instruction::Sub
1187 ? !match(SignExtendingValueBaseConstant, m_One())
1188 : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1189 return nullptr;
1191 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1192 Extract->getName() + ".sext");
1193 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1194 if (!HadTrunc)
1195 return NewAShr;
1197 Builder.Insert(NewAShr);
1198 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1201 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1202 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1203 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1204 SQ.getWithInstruction(&I)))
1205 return replaceInstUsesWith(I, V);
1207 if (SimplifyAssociativeOrCommutative(I))
1208 return &I;
1210 if (Instruction *X = foldVectorBinop(I))
1211 return X;
1213 // (A*B)+(A*C) -> A*(B+C) etc
1214 if (Value *V = SimplifyUsingDistributiveLaws(I))
1215 return replaceInstUsesWith(I, V);
1217 if (Instruction *X = foldAddWithConstant(I))
1218 return X;
1220 if (Instruction *X = foldNoWrapAdd(I, Builder))
1221 return X;
1223 // FIXME: This should be moved into the above helper function to allow these
1224 // transforms for general constant or constant splat vectors.
1225 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1226 Type *Ty = I.getType();
1227 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1228 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1229 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1230 unsigned TySizeBits = Ty->getScalarSizeInBits();
1231 const APInt &RHSVal = CI->getValue();
1232 unsigned ExtendAmt = 0;
1233 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1234 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1235 if (XorRHS->getValue() == -RHSVal) {
1236 if (RHSVal.isPowerOf2())
1237 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1238 else if (XorRHS->getValue().isPowerOf2())
1239 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1242 if (ExtendAmt) {
1243 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1244 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1245 ExtendAmt = 0;
1248 if (ExtendAmt) {
1249 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1250 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1251 return BinaryOperator::CreateAShr(NewShl, ShAmt);
1254 // If this is a xor that was canonicalized from a sub, turn it back into
1255 // a sub and fuse this add with it.
1256 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1257 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1258 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1259 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1260 XorLHS);
1262 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1263 // transform them into (X + (signmask ^ C))
1264 if (XorRHS->getValue().isSignMask())
1265 return BinaryOperator::CreateAdd(XorLHS,
1266 ConstantExpr::getXor(XorRHS, CI));
1270 if (Ty->isIntOrIntVectorTy(1))
1271 return BinaryOperator::CreateXor(LHS, RHS);
1273 // X + X --> X << 1
1274 if (LHS == RHS) {
1275 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1276 Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1277 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1278 return Shl;
1281 Value *A, *B;
1282 if (match(LHS, m_Neg(m_Value(A)))) {
1283 // -A + -B --> -(A + B)
1284 if (match(RHS, m_Neg(m_Value(B))))
1285 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1287 // -A + B --> B - A
1288 return BinaryOperator::CreateSub(RHS, A);
1291 // Canonicalize sext to zext for better value tracking potential.
1292 // add A, sext(B) --> sub A, zext(B)
1293 if (match(&I, m_c_Add(m_Value(A), m_OneUse(m_SExt(m_Value(B))))) &&
1294 B->getType()->isIntOrIntVectorTy(1))
1295 return BinaryOperator::CreateSub(A, Builder.CreateZExt(B, Ty));
1297 // A + -B --> A - B
1298 if (match(RHS, m_Neg(m_Value(B))))
1299 return BinaryOperator::CreateSub(LHS, B);
1301 if (Value *V = checkForNegativeOperand(I, Builder))
1302 return replaceInstUsesWith(I, V);
1304 // (A + 1) + ~B --> A - B
1305 // ~B + (A + 1) --> A - B
1306 // (~B + A) + 1 --> A - B
1307 // (A + ~B) + 1 --> A - B
1308 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1309 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1310 return BinaryOperator::CreateSub(A, B);
1312 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1313 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1315 // A+B --> A|B iff A and B have no bits set in common.
1316 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1317 return BinaryOperator::CreateOr(LHS, RHS);
1319 // FIXME: We already did a check for ConstantInt RHS above this.
1320 // FIXME: Is this pattern covered by another fold? No regression tests fail on
1321 // removal.
1322 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1323 // (X & FF00) + xx00 -> (X+xx00) & FF00
1324 Value *X;
1325 ConstantInt *C2;
1326 if (LHS->hasOneUse() &&
1327 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1328 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1329 // See if all bits from the first bit set in the Add RHS up are included
1330 // in the mask. First, get the rightmost bit.
1331 const APInt &AddRHSV = CRHS->getValue();
1333 // Form a mask of all bits from the lowest bit added through the top.
1334 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1336 // See if the and mask includes all of these bits.
1337 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1339 if (AddRHSHighBits == AddRHSHighBitsAnd) {
1340 // Okay, the xform is safe. Insert the new add pronto.
1341 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1342 return BinaryOperator::CreateAnd(NewAdd, C2);
1347 // add (select X 0 (sub n A)) A --> select X A n
1349 SelectInst *SI = dyn_cast<SelectInst>(LHS);
1350 Value *A = RHS;
1351 if (!SI) {
1352 SI = dyn_cast<SelectInst>(RHS);
1353 A = LHS;
1355 if (SI && SI->hasOneUse()) {
1356 Value *TV = SI->getTrueValue();
1357 Value *FV = SI->getFalseValue();
1358 Value *N;
1360 // Can we fold the add into the argument of the select?
1361 // We check both true and false select arguments for a matching subtract.
1362 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1363 // Fold the add into the true select value.
1364 return SelectInst::Create(SI->getCondition(), N, A);
1366 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1367 // Fold the add into the false select value.
1368 return SelectInst::Create(SI->getCondition(), A, N);
1372 if (Instruction *Ext = narrowMathIfNoOverflow(I))
1373 return Ext;
1375 // (add (xor A, B) (and A, B)) --> (or A, B)
1376 // (add (and A, B) (xor A, B)) --> (or A, B)
1377 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1378 m_c_And(m_Deferred(A), m_Deferred(B)))))
1379 return BinaryOperator::CreateOr(A, B);
1381 // (add (or A, B) (and A, B)) --> (add A, B)
1382 // (add (and A, B) (or A, B)) --> (add A, B)
1383 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1384 m_c_And(m_Deferred(A), m_Deferred(B))))) {
1385 I.setOperand(0, A);
1386 I.setOperand(1, B);
1387 return &I;
1390 // TODO(jingyue): Consider willNotOverflowSignedAdd and
1391 // willNotOverflowUnsignedAdd to reduce the number of invocations of
1392 // computeKnownBits.
1393 bool Changed = false;
1394 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1395 Changed = true;
1396 I.setHasNoSignedWrap(true);
1398 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1399 Changed = true;
1400 I.setHasNoUnsignedWrap(true);
1403 if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1404 return V;
1406 if (Instruction *V =
1407 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1408 return V;
1410 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1411 return SatAdd;
1413 return Changed ? &I : nullptr;
1416 /// Eliminate an op from a linear interpolation (lerp) pattern.
1417 static Instruction *factorizeLerp(BinaryOperator &I,
1418 InstCombiner::BuilderTy &Builder) {
1419 Value *X, *Y, *Z;
1420 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1421 m_OneUse(m_FSub(m_FPOne(),
1422 m_Value(Z))))),
1423 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1424 return nullptr;
1426 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1427 Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1428 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1429 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1432 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1433 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1434 InstCombiner::BuilderTy &Builder) {
1435 assert((I.getOpcode() == Instruction::FAdd ||
1436 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1437 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1438 "FP factorization requires FMF");
1440 if (Instruction *Lerp = factorizeLerp(I, Builder))
1441 return Lerp;
1443 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1444 Value *X, *Y, *Z;
1445 bool IsFMul;
1446 if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1447 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1448 (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1449 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1450 IsFMul = true;
1451 else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1452 match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1453 IsFMul = false;
1454 else
1455 return nullptr;
1457 // (X * Z) + (Y * Z) --> (X + Y) * Z
1458 // (X * Z) - (Y * Z) --> (X - Y) * Z
1459 // (X / Z) + (Y / Z) --> (X + Y) / Z
1460 // (X / Z) - (Y / Z) --> (X - Y) / Z
1461 bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1462 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1463 : Builder.CreateFSubFMF(X, Y, &I);
1465 // Bail out if we just created a denormal constant.
1466 // TODO: This is copied from a previous implementation. Is it necessary?
1467 const APFloat *C;
1468 if (match(XY, m_APFloat(C)) && !C->isNormal())
1469 return nullptr;
1471 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1472 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1475 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1476 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1477 I.getFastMathFlags(),
1478 SQ.getWithInstruction(&I)))
1479 return replaceInstUsesWith(I, V);
1481 if (SimplifyAssociativeOrCommutative(I))
1482 return &I;
1484 if (Instruction *X = foldVectorBinop(I))
1485 return X;
1487 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1488 return FoldedFAdd;
1490 // (-X) + Y --> Y - X
1491 Value *X, *Y;
1492 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1493 return BinaryOperator::CreateFSubFMF(Y, X, &I);
1495 // Similar to above, but look through fmul/fdiv for the negated term.
1496 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1497 Value *Z;
1498 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1499 m_Value(Z)))) {
1500 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1501 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1503 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1504 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1505 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1506 m_Value(Z))) ||
1507 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1508 m_Value(Z)))) {
1509 Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1510 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1513 // Check for (fadd double (sitofp x), y), see if we can merge this into an
1514 // integer add followed by a promotion.
1515 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1516 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1517 Value *LHSIntVal = LHSConv->getOperand(0);
1518 Type *FPType = LHSConv->getType();
1520 // TODO: This check is overly conservative. In many cases known bits
1521 // analysis can tell us that the result of the addition has less significant
1522 // bits than the integer type can hold.
1523 auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1524 Type *FScalarTy = FTy->getScalarType();
1525 Type *IScalarTy = ITy->getScalarType();
1527 // Do we have enough bits in the significand to represent the result of
1528 // the integer addition?
1529 unsigned MaxRepresentableBits =
1530 APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1531 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1534 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1535 // ... if the constant fits in the integer value. This is useful for things
1536 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1537 // requires a constant pool load, and generally allows the add to be better
1538 // instcombined.
1539 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1540 if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1541 Constant *CI =
1542 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1543 if (LHSConv->hasOneUse() &&
1544 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1545 willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1546 // Insert the new integer add.
1547 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1548 return new SIToFPInst(NewAdd, I.getType());
1552 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1553 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1554 Value *RHSIntVal = RHSConv->getOperand(0);
1555 // It's enough to check LHS types only because we require int types to
1556 // be the same for this transform.
1557 if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1558 // Only do this if x/y have the same type, if at least one of them has a
1559 // single use (so we don't increase the number of int->fp conversions),
1560 // and if the integer add will not overflow.
1561 if (LHSIntVal->getType() == RHSIntVal->getType() &&
1562 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1563 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1564 // Insert the new integer add.
1565 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1566 return new SIToFPInst(NewAdd, I.getType());
1572 // Handle specials cases for FAdd with selects feeding the operation
1573 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1574 return replaceInstUsesWith(I, V);
1576 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1577 if (Instruction *F = factorizeFAddFSub(I, Builder))
1578 return F;
1579 if (Value *V = FAddCombine(Builder).simplify(&I))
1580 return replaceInstUsesWith(I, V);
1583 return nullptr;
1586 /// Optimize pointer differences into the same array into a size. Consider:
1587 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
1588 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1589 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1590 Type *Ty) {
1591 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1592 // this.
1593 bool Swapped = false;
1594 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1596 // For now we require one side to be the base pointer "A" or a constant
1597 // GEP derived from it.
1598 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1599 // (gep X, ...) - X
1600 if (LHSGEP->getOperand(0) == RHS) {
1601 GEP1 = LHSGEP;
1602 Swapped = false;
1603 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1604 // (gep X, ...) - (gep X, ...)
1605 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1606 RHSGEP->getOperand(0)->stripPointerCasts()) {
1607 GEP2 = RHSGEP;
1608 GEP1 = LHSGEP;
1609 Swapped = false;
1614 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1615 // X - (gep X, ...)
1616 if (RHSGEP->getOperand(0) == LHS) {
1617 GEP1 = RHSGEP;
1618 Swapped = true;
1619 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1620 // (gep X, ...) - (gep X, ...)
1621 if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1622 LHSGEP->getOperand(0)->stripPointerCasts()) {
1623 GEP2 = LHSGEP;
1624 GEP1 = RHSGEP;
1625 Swapped = true;
1630 if (!GEP1)
1631 // No GEP found.
1632 return nullptr;
1634 if (GEP2) {
1635 // (gep X, ...) - (gep X, ...)
1637 // Avoid duplicating the arithmetic if there are more than one non-constant
1638 // indices between the two GEPs and either GEP has a non-constant index and
1639 // multiple users. If zero non-constant index, the result is a constant and
1640 // there is no duplication. If one non-constant index, the result is an add
1641 // or sub with a constant, which is no larger than the original code, and
1642 // there's no duplicated arithmetic, even if either GEP has multiple
1643 // users. If more than one non-constant indices combined, as long as the GEP
1644 // with at least one non-constant index doesn't have multiple users, there
1645 // is no duplication.
1646 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1647 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1648 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1649 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1650 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1651 return nullptr;
1655 // Emit the offset of the GEP and an intptr_t.
1656 Value *Result = EmitGEPOffset(GEP1);
1658 // If we had a constant expression GEP on the other side offsetting the
1659 // pointer, subtract it from the offset we have.
1660 if (GEP2) {
1661 Value *Offset = EmitGEPOffset(GEP2);
1662 Result = Builder.CreateSub(Result, Offset);
1665 // If we have p - gep(p, ...) then we have to negate the result.
1666 if (Swapped)
1667 Result = Builder.CreateNeg(Result, "diff.neg");
1669 return Builder.CreateIntCast(Result, Ty, true);
1672 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1673 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1674 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1675 SQ.getWithInstruction(&I)))
1676 return replaceInstUsesWith(I, V);
1678 if (Instruction *X = foldVectorBinop(I))
1679 return X;
1681 // (A*B)-(A*C) -> A*(B-C) etc
1682 if (Value *V = SimplifyUsingDistributiveLaws(I))
1683 return replaceInstUsesWith(I, V);
1685 // If this is a 'B = x-(-A)', change to B = x+A.
1686 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1687 if (Value *V = dyn_castNegVal(Op1)) {
1688 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1690 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1691 assert(BO->getOpcode() == Instruction::Sub &&
1692 "Expected a subtraction operator!");
1693 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1694 Res->setHasNoSignedWrap(true);
1695 } else {
1696 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1697 Res->setHasNoSignedWrap(true);
1700 return Res;
1703 if (I.getType()->isIntOrIntVectorTy(1))
1704 return BinaryOperator::CreateXor(Op0, Op1);
1706 // Replace (-1 - A) with (~A).
1707 if (match(Op0, m_AllOnes()))
1708 return BinaryOperator::CreateNot(Op1);
1710 // (~X) - (~Y) --> Y - X
1711 Value *X, *Y;
1712 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1713 return BinaryOperator::CreateSub(Y, X);
1715 // (X + -1) - Y --> ~Y + X
1716 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1717 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1719 // Y - (X + 1) --> ~X + Y
1720 if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
1721 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);
1723 // Y - ~X --> (X + 1) + Y
1724 if (match(Op1, m_OneUse(m_Not(m_Value(X))))) {
1725 return BinaryOperator::CreateAdd(
1726 Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X);
1729 if (Constant *C = dyn_cast<Constant>(Op0)) {
1730 bool IsNegate = match(C, m_ZeroInt());
1731 Value *X;
1732 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1733 // 0 - (zext bool) --> sext bool
1734 // C - (zext bool) --> bool ? C - 1 : C
1735 if (IsNegate)
1736 return CastInst::CreateSExtOrBitCast(X, I.getType());
1737 return SelectInst::Create(X, SubOne(C), C);
1739 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1740 // 0 - (sext bool) --> zext bool
1741 // C - (sext bool) --> bool ? C + 1 : C
1742 if (IsNegate)
1743 return CastInst::CreateZExtOrBitCast(X, I.getType());
1744 return SelectInst::Create(X, AddOne(C), C);
1747 // C - ~X == X + (1+C)
1748 if (match(Op1, m_Not(m_Value(X))))
1749 return BinaryOperator::CreateAdd(X, AddOne(C));
1751 // Try to fold constant sub into select arguments.
1752 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1753 if (Instruction *R = FoldOpIntoSelect(I, SI))
1754 return R;
1756 // Try to fold constant sub into PHI values.
1757 if (PHINode *PN = dyn_cast<PHINode>(Op1))
1758 if (Instruction *R = foldOpIntoPhi(I, PN))
1759 return R;
1761 Constant *C2;
1763 // C-(C2-X) --> X+(C-C2)
1764 if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))))
1765 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1767 // C-(X+C2) --> (C-C2)-X
1768 if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1769 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1772 const APInt *Op0C;
1773 if (match(Op0, m_APInt(Op0C))) {
1775 if (Op0C->isNullValue()) {
1776 Value *Op1Wide;
1777 match(Op1, m_TruncOrSelf(m_Value(Op1Wide)));
1778 bool HadTrunc = Op1Wide != Op1;
1779 bool NoTruncOrTruncIsOneUse = !HadTrunc || Op1->hasOneUse();
1780 unsigned BitWidth = Op1Wide->getType()->getScalarSizeInBits();
1782 Value *X;
1783 const APInt *ShAmt;
1784 // -(X >>u 31) -> (X >>s 31)
1785 if (NoTruncOrTruncIsOneUse &&
1786 match(Op1Wide, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1787 *ShAmt == BitWidth - 1) {
1788 Value *ShAmtOp = cast<Instruction>(Op1Wide)->getOperand(1);
1789 Instruction *NewShift = BinaryOperator::CreateAShr(X, ShAmtOp);
1790 NewShift->copyIRFlags(Op1Wide);
1791 if (!HadTrunc)
1792 return NewShift;
1793 Builder.Insert(NewShift);
1794 return TruncInst::CreateTruncOrBitCast(NewShift, Op1->getType());
1796 // -(X >>s 31) -> (X >>u 31)
1797 if (NoTruncOrTruncIsOneUse &&
1798 match(Op1Wide, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1799 *ShAmt == BitWidth - 1) {
1800 Value *ShAmtOp = cast<Instruction>(Op1Wide)->getOperand(1);
1801 Instruction *NewShift = BinaryOperator::CreateLShr(X, ShAmtOp);
1802 NewShift->copyIRFlags(Op1Wide);
1803 if (!HadTrunc)
1804 return NewShift;
1805 Builder.Insert(NewShift);
1806 return TruncInst::CreateTruncOrBitCast(NewShift, Op1->getType());
1809 if (!HadTrunc && Op1->hasOneUse()) {
1810 Value *LHS, *RHS;
1811 SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
1812 if (SPF == SPF_ABS || SPF == SPF_NABS) {
1813 // This is a negate of an ABS/NABS pattern. Just swap the operands
1814 // of the select.
1815 cast<SelectInst>(Op1)->swapValues();
1816 // Don't swap prof metadata, we didn't change the branch behavior.
1817 return replaceInstUsesWith(I, Op1);
1822 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1823 // zero.
1824 if (Op0C->isMask()) {
1825 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1826 if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1827 return BinaryOperator::CreateXor(Op1, Op0);
1832 Value *Y;
1833 // X-(X+Y) == -Y X-(Y+X) == -Y
1834 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1835 return BinaryOperator::CreateNeg(Y);
1837 // (X-Y)-X == -Y
1838 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1839 return BinaryOperator::CreateNeg(Y);
1842 // (sub (or A, B) (and A, B)) --> (xor A, B)
1844 Value *A, *B;
1845 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1846 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1847 return BinaryOperator::CreateXor(A, B);
1850 // (sub (and A, B) (or A, B)) --> neg (xor A, B)
1852 Value *A, *B;
1853 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1854 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1855 (Op0->hasOneUse() || Op1->hasOneUse()))
1856 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
1859 // (sub (or A, B), (xor A, B)) --> (and A, B)
1861 Value *A, *B;
1862 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1863 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1864 return BinaryOperator::CreateAnd(A, B);
1867 // (sub (xor A, B) (or A, B)) --> neg (and A, B)
1869 Value *A, *B;
1870 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1871 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1872 (Op0->hasOneUse() || Op1->hasOneUse()))
1873 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
1877 Value *Y;
1878 // ((X | Y) - X) --> (~X & Y)
1879 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1880 return BinaryOperator::CreateAnd(
1881 Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1884 if (Op1->hasOneUse()) {
1885 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1886 Constant *C = nullptr;
1888 // (X - (Y - Z)) --> (X + (Z - Y)).
1889 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1890 return BinaryOperator::CreateAdd(Op0,
1891 Builder.CreateSub(Z, Y, Op1->getName()));
1893 // (X - (X & Y)) --> (X & ~Y)
1894 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1895 return BinaryOperator::CreateAnd(Op0,
1896 Builder.CreateNot(Y, Y->getName() + ".not"));
1898 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow.
1899 // TODO: This could be extended to match arbitrary vector constants.
1900 const APInt *DivC;
1901 if (match(Op0, m_Zero()) && match(Op1, m_SDiv(m_Value(X), m_APInt(DivC))) &&
1902 !DivC->isMinSignedValue() && *DivC != 1) {
1903 Constant *NegDivC = ConstantInt::get(I.getType(), -(*DivC));
1904 Instruction *BO = BinaryOperator::CreateSDiv(X, NegDivC);
1905 BO->setIsExact(cast<BinaryOperator>(Op1)->isExact());
1906 return BO;
1909 // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
1910 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1911 if (Value *XNeg = dyn_castNegVal(X))
1912 return BinaryOperator::CreateShl(XNeg, Y);
1914 // Subtracting -1/0 is the same as adding 1/0:
1915 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1916 // 'nuw' is dropped in favor of the canonical form.
1917 if (match(Op1, m_SExt(m_Value(Y))) &&
1918 Y->getType()->getScalarSizeInBits() == 1) {
1919 Value *Zext = Builder.CreateZExt(Y, I.getType());
1920 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1921 Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1922 return Add;
1925 // X - A*-B -> X + A*B
1926 // X - -A*B -> X + A*B
1927 Value *A, *B;
1928 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1929 return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1931 // X - A*C -> X + A*-C
1932 // No need to handle commuted multiply because multiply handling will
1933 // ensure constant will be move to the right hand side.
1934 if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) {
1935 Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C));
1936 return BinaryOperator::CreateAdd(Op0, NewMul);
1941 // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
1942 // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
1943 // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
1944 // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
1945 // So long as O here is freely invertible, this will be neutral or a win.
1946 Value *LHS, *RHS, *A;
1947 Value *NotA = Op0, *MinMax = Op1;
1948 SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1949 if (!SelectPatternResult::isMinOrMax(SPF)) {
1950 NotA = Op1;
1951 MinMax = Op0;
1952 SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1954 if (SelectPatternResult::isMinOrMax(SPF) &&
1955 match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
1956 if (NotA == LHS)
1957 std::swap(LHS, RHS);
1958 // LHS is now O above and expected to have at least 2 uses (the min/max)
1959 // NotA is epected to have 2 uses from the min/max and 1 from the sub.
1960 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
1961 !NotA->hasNUsesOrMore(4)) {
1962 // Note: We don't generate the inverse max/min, just create the not of
1963 // it and let other folds do the rest.
1964 Value *Not = Builder.CreateNot(MinMax);
1965 if (NotA == Op0)
1966 return BinaryOperator::CreateSub(Not, A);
1967 else
1968 return BinaryOperator::CreateSub(A, Not);
1973 // Optimize pointer differences into the same array into a size. Consider:
1974 // &A[10] - &A[0]: we should compile this to "10".
1975 Value *LHSOp, *RHSOp;
1976 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1977 match(Op1, m_PtrToInt(m_Value(RHSOp))))
1978 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1979 return replaceInstUsesWith(I, Res);
1981 // trunc(p)-trunc(q) -> trunc(p-q)
1982 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1983 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1984 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1985 return replaceInstUsesWith(I, Res);
1987 // Canonicalize a shifty way to code absolute value to the common pattern.
1988 // There are 2 potential commuted variants.
1989 // We're relying on the fact that we only do this transform when the shift has
1990 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
1991 // instructions).
1992 Value *A;
1993 const APInt *ShAmt;
1994 Type *Ty = I.getType();
1995 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
1996 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
1997 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
1998 // B = ashr i32 A, 31 ; smear the sign bit
1999 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
2000 // --> (A < 0) ? -A : A
2001 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
2002 // Copy the nuw/nsw flags from the sub to the negate.
2003 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2004 I.hasNoSignedWrap());
2005 return SelectInst::Create(Cmp, Neg, A);
2008 if (Instruction *V =
2009 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2010 return V;
2012 if (Instruction *Ext = narrowMathIfNoOverflow(I))
2013 return Ext;
2015 bool Changed = false;
2016 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
2017 Changed = true;
2018 I.setHasNoSignedWrap(true);
2020 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
2021 Changed = true;
2022 I.setHasNoUnsignedWrap(true);
2025 return Changed ? &I : nullptr;
2028 /// This eliminates floating-point negation in either 'fneg(X)' or
2029 /// 'fsub(-0.0, X)' form by combining into a constant operand.
2030 static Instruction *foldFNegIntoConstant(Instruction &I) {
2031 Value *X;
2032 Constant *C;
2034 // Fold negation into constant operand. This is limited with one-use because
2035 // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
2036 // -(X * C) --> X * (-C)
2037 // FIXME: It's arguable whether these should be m_OneUse or not. The current
2038 // belief is that the FNeg allows for better reassociation opportunities.
2039 if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
2040 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
2041 // -(X / C) --> X / (-C)
2042 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
2043 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
2044 // -(C / X) --> (-C) / X
2045 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
2046 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
2048 return nullptr;
2051 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2052 InstCombiner::BuilderTy &Builder) {
2053 Value *FNeg;
2054 if (!match(&I, m_FNeg(m_Value(FNeg))))
2055 return nullptr;
2057 Value *X, *Y;
2058 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2059 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2061 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2062 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2064 return nullptr;
2067 Instruction *InstCombiner::visitFNeg(UnaryOperator &I) {
2068 Value *Op = I.getOperand(0);
2070 if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
2071 SQ.getWithInstruction(&I)))
2072 return replaceInstUsesWith(I, V);
2074 if (Instruction *X = foldFNegIntoConstant(I))
2075 return X;
2077 Value *X, *Y;
2079 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2080 if (I.hasNoSignedZeros() &&
2081 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2082 return BinaryOperator::CreateFSubFMF(Y, X, &I);
2084 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2085 return R;
2087 return nullptr;
2090 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
2091 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
2092 I.getFastMathFlags(),
2093 SQ.getWithInstruction(&I)))
2094 return replaceInstUsesWith(I, V);
2096 if (Instruction *X = foldVectorBinop(I))
2097 return X;
2099 // Subtraction from -0.0 is the canonical form of fneg.
2100 // fsub nsz 0, X ==> fsub nsz -0.0, X
2101 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2102 if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
2103 return BinaryOperator::CreateFNegFMF(Op1, &I);
2105 if (Instruction *X = foldFNegIntoConstant(I))
2106 return X;
2108 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2109 return R;
2111 Value *X, *Y;
2112 Constant *C;
2114 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2115 // Canonicalize to fadd to make analysis easier.
2116 // This can also help codegen because fadd is commutative.
2117 // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2118 // killed later. We still limit that particular transform with 'hasOneUse'
2119 // because an fneg is assumed better/cheaper than a generic fsub.
2120 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2121 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2122 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2123 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2127 if (isa<Constant>(Op0))
2128 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2129 if (Instruction *NV = FoldOpIntoSelect(I, SI))
2130 return NV;
2132 // X - C --> X + (-C)
2133 // But don't transform constant expressions because there's an inverse fold
2134 // for X + (-Y) --> X - Y.
2135 if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
2136 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
2138 // X - (-Y) --> X + Y
2139 if (match(Op1, m_FNeg(m_Value(Y))))
2140 return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2142 // Similar to above, but look through a cast of the negated value:
2143 // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2144 Type *Ty = I.getType();
2145 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2146 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2148 // X - (fpext(-Y)) --> X + fpext(Y)
2149 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2150 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2152 // Similar to above, but look through fmul/fdiv of the negated value:
2153 // Op0 - (-X * Y) --> Op0 + (X * Y)
2154 // Op0 - (Y * -X) --> Op0 + (X * Y)
2155 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2156 Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2157 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2159 // Op0 - (-X / Y) --> Op0 + (X / Y)
2160 // Op0 - (X / -Y) --> Op0 + (X / Y)
2161 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2162 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2163 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2164 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2167 // Handle special cases for FSub with selects feeding the operation
2168 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2169 return replaceInstUsesWith(I, V);
2171 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2172 // (Y - X) - Y --> -X
2173 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2174 return BinaryOperator::CreateFNegFMF(X, &I);
2176 // Y - (X + Y) --> -X
2177 // Y - (Y + X) --> -X
2178 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2179 return BinaryOperator::CreateFNegFMF(X, &I);
2181 // (X * C) - X --> X * (C - 1.0)
2182 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2183 Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
2184 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2186 // X - (X * C) --> X * (1.0 - C)
2187 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2188 Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
2189 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2192 if (Instruction *F = factorizeFAddFSub(I, Builder))
2193 return F;
2195 // TODO: This performs reassociative folds for FP ops. Some fraction of the
2196 // functionality has been subsumed by simple pattern matching here and in
2197 // InstSimplify. We should let a dedicated reassociation pass handle more
2198 // complex pattern matching and remove this from InstCombine.
2199 if (Value *V = FAddCombine(Builder).simplify(&I))
2200 return replaceInstUsesWith(I, V);
2203 return nullptr;