[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineLoadStoreAlloca.cpp
blob3a0e05832fcb6da2f9f60857c53e128ad8c64605
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 using namespace llvm;
28 using namespace PatternMatch;
30 #define DEBUG_TYPE "instcombine"
32 STATISTIC(NumDeadStore, "Number of dead stores eliminated");
33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
36 /// some part of a constant global variable. This intentionally only accepts
37 /// constant expressions because we can't rewrite arbitrary instructions.
38 static bool pointsToConstantGlobal(Value *V) {
39 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
40 return GV->isConstant();
42 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
43 if (CE->getOpcode() == Instruction::BitCast ||
44 CE->getOpcode() == Instruction::AddrSpaceCast ||
45 CE->getOpcode() == Instruction::GetElementPtr)
46 return pointsToConstantGlobal(CE->getOperand(0));
48 return false;
51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
52 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
53 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
55 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
56 /// the alloca, and if the source pointer is a pointer to a constant global, we
57 /// can optimize this.
58 static bool
59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
60 SmallVectorImpl<Instruction *> &ToDelete) {
61 // We track lifetime intrinsics as we encounter them. If we decide to go
62 // ahead and replace the value with the global, this lets the caller quickly
63 // eliminate the markers.
65 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
66 ValuesToInspect.emplace_back(V, false);
67 while (!ValuesToInspect.empty()) {
68 auto ValuePair = ValuesToInspect.pop_back_val();
69 const bool IsOffset = ValuePair.second;
70 for (auto &U : ValuePair.first->uses()) {
71 auto *I = cast<Instruction>(U.getUser());
73 if (auto *LI = dyn_cast<LoadInst>(I)) {
74 // Ignore non-volatile loads, they are always ok.
75 if (!LI->isSimple()) return false;
76 continue;
79 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
80 // If uses of the bitcast are ok, we are ok.
81 ValuesToInspect.emplace_back(I, IsOffset);
82 continue;
84 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
85 // If the GEP has all zero indices, it doesn't offset the pointer. If it
86 // doesn't, it does.
87 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
88 continue;
91 if (auto *Call = dyn_cast<CallBase>(I)) {
92 // If this is the function being called then we treat it like a load and
93 // ignore it.
94 if (Call->isCallee(&U))
95 continue;
97 unsigned DataOpNo = Call->getDataOperandNo(&U);
98 bool IsArgOperand = Call->isArgOperand(&U);
100 // Inalloca arguments are clobbered by the call.
101 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
102 return false;
104 // If this is a readonly/readnone call site, then we know it is just a
105 // load (but one that potentially returns the value itself), so we can
106 // ignore it if we know that the value isn't captured.
107 if (Call->onlyReadsMemory() &&
108 (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
109 continue;
111 // If this is being passed as a byval argument, the caller is making a
112 // copy, so it is only a read of the alloca.
113 if (IsArgOperand && Call->isByValArgument(DataOpNo))
114 continue;
117 // Lifetime intrinsics can be handled by the caller.
118 if (I->isLifetimeStartOrEnd()) {
119 assert(I->use_empty() && "Lifetime markers have no result to use!");
120 ToDelete.push_back(I);
121 continue;
124 // If this is isn't our memcpy/memmove, reject it as something we can't
125 // handle.
126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127 if (!MI)
128 return false;
130 // If the transfer is using the alloca as a source of the transfer, then
131 // ignore it since it is a load (unless the transfer is volatile).
132 if (U.getOperandNo() == 1) {
133 if (MI->isVolatile()) return false;
134 continue;
137 // If we already have seen a copy, reject the second one.
138 if (TheCopy) return false;
140 // If the pointer has been offset from the start of the alloca, we can't
141 // safely handle this.
142 if (IsOffset) return false;
144 // If the memintrinsic isn't using the alloca as the dest, reject it.
145 if (U.getOperandNo() != 0) return false;
147 // If the source of the memcpy/move is not a constant global, reject it.
148 if (!pointsToConstantGlobal(MI->getSource()))
149 return false;
151 // Otherwise, the transform is safe. Remember the copy instruction.
152 TheCopy = MI;
155 return true;
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global. If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163 SmallVectorImpl<Instruction *> &ToDelete) {
164 MemTransferInst *TheCopy = nullptr;
165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166 return TheCopy;
167 return nullptr;
170 /// Returns true if V is dereferenceable for size of alloca.
171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
172 const DataLayout &DL) {
173 if (AI->isArrayAllocation())
174 return false;
175 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
176 if (!AllocaSize)
177 return false;
178 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
179 APInt(64, AllocaSize), DL);
182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
183 // Check for array size of 1 (scalar allocation).
184 if (!AI.isArrayAllocation()) {
185 // i32 1 is the canonical array size for scalar allocations.
186 if (AI.getArraySize()->getType()->isIntegerTy(32))
187 return nullptr;
189 // Canonicalize it.
190 Value *V = IC.Builder.getInt32(1);
191 AI.setOperand(0, V);
192 return &AI;
195 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
196 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
197 if (C->getValue().getActiveBits() <= 64) {
198 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
199 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
200 New->setAlignment(MaybeAlign(AI.getAlignment()));
202 // Scan to the end of the allocation instructions, to skip over a block of
203 // allocas if possible...also skip interleaved debug info
205 BasicBlock::iterator It(New);
206 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
207 ++It;
209 // Now that I is pointing to the first non-allocation-inst in the block,
210 // insert our getelementptr instruction...
212 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
213 Value *NullIdx = Constant::getNullValue(IdxTy);
214 Value *Idx[2] = {NullIdx, NullIdx};
215 Instruction *GEP = GetElementPtrInst::CreateInBounds(
216 NewTy, New, Idx, New->getName() + ".sub");
217 IC.InsertNewInstBefore(GEP, *It);
219 // Now make everything use the getelementptr instead of the original
220 // allocation.
221 return IC.replaceInstUsesWith(AI, GEP);
225 if (isa<UndefValue>(AI.getArraySize()))
226 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
228 // Ensure that the alloca array size argument has type intptr_t, so that
229 // any casting is exposed early.
230 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
231 if (AI.getArraySize()->getType() != IntPtrTy) {
232 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
233 AI.setOperand(0, V);
234 return &AI;
237 return nullptr;
240 namespace {
241 // If I and V are pointers in different address space, it is not allowed to
242 // use replaceAllUsesWith since I and V have different types. A
243 // non-target-specific transformation should not use addrspacecast on V since
244 // the two address space may be disjoint depending on target.
246 // This class chases down uses of the old pointer until reaching the load
247 // instructions, then replaces the old pointer in the load instructions with
248 // the new pointer. If during the chasing it sees bitcast or GEP, it will
249 // create new bitcast or GEP with the new pointer and use them in the load
250 // instruction.
251 class PointerReplacer {
252 public:
253 PointerReplacer(InstCombiner &IC) : IC(IC) {}
254 void replacePointer(Instruction &I, Value *V);
256 private:
257 void findLoadAndReplace(Instruction &I);
258 void replace(Instruction *I);
259 Value *getReplacement(Value *I);
261 SmallVector<Instruction *, 4> Path;
262 MapVector<Value *, Value *> WorkMap;
263 InstCombiner &IC;
265 } // end anonymous namespace
267 void PointerReplacer::findLoadAndReplace(Instruction &I) {
268 for (auto U : I.users()) {
269 auto *Inst = dyn_cast<Instruction>(&*U);
270 if (!Inst)
271 return;
272 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
273 if (isa<LoadInst>(Inst)) {
274 for (auto P : Path)
275 replace(P);
276 replace(Inst);
277 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
278 Path.push_back(Inst);
279 findLoadAndReplace(*Inst);
280 Path.pop_back();
281 } else {
282 return;
287 Value *PointerReplacer::getReplacement(Value *V) {
288 auto Loc = WorkMap.find(V);
289 if (Loc != WorkMap.end())
290 return Loc->second;
291 return nullptr;
294 void PointerReplacer::replace(Instruction *I) {
295 if (getReplacement(I))
296 return;
298 if (auto *LT = dyn_cast<LoadInst>(I)) {
299 auto *V = getReplacement(LT->getPointerOperand());
300 assert(V && "Operand not replaced");
301 auto *NewI = new LoadInst(I->getType(), V);
302 NewI->takeName(LT);
303 IC.InsertNewInstWith(NewI, *LT);
304 IC.replaceInstUsesWith(*LT, NewI);
305 WorkMap[LT] = NewI;
306 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
307 auto *V = getReplacement(GEP->getPointerOperand());
308 assert(V && "Operand not replaced");
309 SmallVector<Value *, 8> Indices;
310 Indices.append(GEP->idx_begin(), GEP->idx_end());
311 auto *NewI = GetElementPtrInst::Create(
312 V->getType()->getPointerElementType(), V, Indices);
313 IC.InsertNewInstWith(NewI, *GEP);
314 NewI->takeName(GEP);
315 WorkMap[GEP] = NewI;
316 } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
317 auto *V = getReplacement(BC->getOperand(0));
318 assert(V && "Operand not replaced");
319 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
320 V->getType()->getPointerAddressSpace());
321 auto *NewI = new BitCastInst(V, NewT);
322 IC.InsertNewInstWith(NewI, *BC);
323 NewI->takeName(BC);
324 WorkMap[BC] = NewI;
325 } else {
326 llvm_unreachable("should never reach here");
330 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
331 #ifndef NDEBUG
332 auto *PT = cast<PointerType>(I.getType());
333 auto *NT = cast<PointerType>(V->getType());
334 assert(PT != NT && PT->getElementType() == NT->getElementType() &&
335 "Invalid usage");
336 #endif
337 WorkMap[&I] = V;
338 findLoadAndReplace(I);
341 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
342 if (auto *I = simplifyAllocaArraySize(*this, AI))
343 return I;
345 if (AI.getAllocatedType()->isSized()) {
346 // If the alignment is 0 (unspecified), assign it the preferred alignment.
347 if (AI.getAlignment() == 0)
348 AI.setAlignment(
349 MaybeAlign(DL.getPrefTypeAlignment(AI.getAllocatedType())));
351 // Move all alloca's of zero byte objects to the entry block and merge them
352 // together. Note that we only do this for alloca's, because malloc should
353 // allocate and return a unique pointer, even for a zero byte allocation.
354 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
355 // For a zero sized alloca there is no point in doing an array allocation.
356 // This is helpful if the array size is a complicated expression not used
357 // elsewhere.
358 if (AI.isArrayAllocation()) {
359 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
360 return &AI;
363 // Get the first instruction in the entry block.
364 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
365 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
366 if (FirstInst != &AI) {
367 // If the entry block doesn't start with a zero-size alloca then move
368 // this one to the start of the entry block. There is no problem with
369 // dominance as the array size was forced to a constant earlier already.
370 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
371 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
372 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
373 AI.moveBefore(FirstInst);
374 return &AI;
377 // If the alignment of the entry block alloca is 0 (unspecified),
378 // assign it the preferred alignment.
379 if (EntryAI->getAlignment() == 0)
380 EntryAI->setAlignment(
381 MaybeAlign(DL.getPrefTypeAlignment(EntryAI->getAllocatedType())));
382 // Replace this zero-sized alloca with the one at the start of the entry
383 // block after ensuring that the address will be aligned enough for both
384 // types.
385 const MaybeAlign MaxAlign(
386 std::max(EntryAI->getAlignment(), AI.getAlignment()));
387 EntryAI->setAlignment(MaxAlign);
388 if (AI.getType() != EntryAI->getType())
389 return new BitCastInst(EntryAI, AI.getType());
390 return replaceInstUsesWith(AI, EntryAI);
395 if (AI.getAlignment()) {
396 // Check to see if this allocation is only modified by a memcpy/memmove from
397 // a constant global whose alignment is equal to or exceeds that of the
398 // allocation. If this is the case, we can change all users to use
399 // the constant global instead. This is commonly produced by the CFE by
400 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
401 // is only subsequently read.
402 SmallVector<Instruction *, 4> ToDelete;
403 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
404 unsigned SourceAlign = getOrEnforceKnownAlignment(
405 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
406 if (AI.getAlignment() <= SourceAlign &&
407 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
408 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
409 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
410 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
411 eraseInstFromFunction(*ToDelete[i]);
412 Constant *TheSrc = cast<Constant>(Copy->getSource());
413 auto *SrcTy = TheSrc->getType();
414 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
415 SrcTy->getPointerAddressSpace());
416 Constant *Cast =
417 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
418 if (AI.getType()->getPointerAddressSpace() ==
419 SrcTy->getPointerAddressSpace()) {
420 Instruction *NewI = replaceInstUsesWith(AI, Cast);
421 eraseInstFromFunction(*Copy);
422 ++NumGlobalCopies;
423 return NewI;
424 } else {
425 PointerReplacer PtrReplacer(*this);
426 PtrReplacer.replacePointer(AI, Cast);
427 ++NumGlobalCopies;
433 // At last, use the generic allocation site handler to aggressively remove
434 // unused allocas.
435 return visitAllocSite(AI);
438 // Are we allowed to form a atomic load or store of this type?
439 static bool isSupportedAtomicType(Type *Ty) {
440 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
443 /// Helper to combine a load to a new type.
445 /// This just does the work of combining a load to a new type. It handles
446 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
447 /// loaded *value* type. This will convert it to a pointer, cast the operand to
448 /// that pointer type, load it, etc.
450 /// Note that this will create all of the instructions with whatever insert
451 /// point the \c InstCombiner currently is using.
452 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
453 const Twine &Suffix = "") {
454 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
455 "can't fold an atomic load to requested type");
457 Value *Ptr = LI.getPointerOperand();
458 unsigned AS = LI.getPointerAddressSpace();
459 Value *NewPtr = nullptr;
460 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
461 NewPtr->getType()->getPointerElementType() == NewTy &&
462 NewPtr->getType()->getPointerAddressSpace() == AS))
463 NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
465 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad(
466 NewTy, NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
467 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
468 copyMetadataForLoad(*NewLoad, LI);
469 return NewLoad;
472 /// Combine a store to a new type.
474 /// Returns the newly created store instruction.
475 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
476 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
477 "can't fold an atomic store of requested type");
479 Value *Ptr = SI.getPointerOperand();
480 unsigned AS = SI.getPointerAddressSpace();
481 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
482 SI.getAllMetadata(MD);
484 StoreInst *NewStore = IC.Builder.CreateAlignedStore(
485 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
486 SI.getAlignment(), SI.isVolatile());
487 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
488 for (const auto &MDPair : MD) {
489 unsigned ID = MDPair.first;
490 MDNode *N = MDPair.second;
491 // Note, essentially every kind of metadata should be preserved here! This
492 // routine is supposed to clone a store instruction changing *only its
493 // type*. The only metadata it makes sense to drop is metadata which is
494 // invalidated when the pointer type changes. This should essentially
495 // never be the case in LLVM, but we explicitly switch over only known
496 // metadata to be conservatively correct. If you are adding metadata to
497 // LLVM which pertains to stores, you almost certainly want to add it
498 // here.
499 switch (ID) {
500 case LLVMContext::MD_dbg:
501 case LLVMContext::MD_tbaa:
502 case LLVMContext::MD_prof:
503 case LLVMContext::MD_fpmath:
504 case LLVMContext::MD_tbaa_struct:
505 case LLVMContext::MD_alias_scope:
506 case LLVMContext::MD_noalias:
507 case LLVMContext::MD_nontemporal:
508 case LLVMContext::MD_mem_parallel_loop_access:
509 case LLVMContext::MD_access_group:
510 // All of these directly apply.
511 NewStore->setMetadata(ID, N);
512 break;
513 case LLVMContext::MD_invariant_load:
514 case LLVMContext::MD_nonnull:
515 case LLVMContext::MD_range:
516 case LLVMContext::MD_align:
517 case LLVMContext::MD_dereferenceable:
518 case LLVMContext::MD_dereferenceable_or_null:
519 // These don't apply for stores.
520 break;
524 return NewStore;
527 /// Returns true if instruction represent minmax pattern like:
528 /// select ((cmp load V1, load V2), V1, V2).
529 static bool isMinMaxWithLoads(Value *V) {
530 assert(V->getType()->isPointerTy() && "Expected pointer type.");
531 // Ignore possible ty* to ixx* bitcast.
532 V = peekThroughBitcast(V);
533 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
534 // pattern.
535 CmpInst::Predicate Pred;
536 Instruction *L1;
537 Instruction *L2;
538 Value *LHS;
539 Value *RHS;
540 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
541 m_Value(LHS), m_Value(RHS))))
542 return false;
543 return (match(L1, m_Load(m_Specific(LHS))) &&
544 match(L2, m_Load(m_Specific(RHS)))) ||
545 (match(L1, m_Load(m_Specific(RHS))) &&
546 match(L2, m_Load(m_Specific(LHS))));
549 /// Combine loads to match the type of their uses' value after looking
550 /// through intervening bitcasts.
552 /// The core idea here is that if the result of a load is used in an operation,
553 /// we should load the type most conducive to that operation. For example, when
554 /// loading an integer and converting that immediately to a pointer, we should
555 /// instead directly load a pointer.
557 /// However, this routine must never change the width of a load or the number of
558 /// loads as that would introduce a semantic change. This combine is expected to
559 /// be a semantic no-op which just allows loads to more closely model the types
560 /// of their consuming operations.
562 /// Currently, we also refuse to change the precise type used for an atomic load
563 /// or a volatile load. This is debatable, and might be reasonable to change
564 /// later. However, it is risky in case some backend or other part of LLVM is
565 /// relying on the exact type loaded to select appropriate atomic operations.
566 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
567 // FIXME: We could probably with some care handle both volatile and ordered
568 // atomic loads here but it isn't clear that this is important.
569 if (!LI.isUnordered())
570 return nullptr;
572 if (LI.use_empty())
573 return nullptr;
575 // swifterror values can't be bitcasted.
576 if (LI.getPointerOperand()->isSwiftError())
577 return nullptr;
579 Type *Ty = LI.getType();
580 const DataLayout &DL = IC.getDataLayout();
582 // Try to canonicalize loads which are only ever stored to operate over
583 // integers instead of any other type. We only do this when the loaded type
584 // is sized and has a size exactly the same as its store size and the store
585 // size is a legal integer type.
586 // Do not perform canonicalization if minmax pattern is found (to avoid
587 // infinite loop).
588 if (!Ty->isIntegerTy() && Ty->isSized() &&
589 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
590 DL.typeSizeEqualsStoreSize(Ty) &&
591 !DL.isNonIntegralPointerType(Ty) &&
592 !isMinMaxWithLoads(
593 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) {
594 if (all_of(LI.users(), [&LI](User *U) {
595 auto *SI = dyn_cast<StoreInst>(U);
596 return SI && SI->getPointerOperand() != &LI &&
597 !SI->getPointerOperand()->isSwiftError();
598 })) {
599 LoadInst *NewLoad = combineLoadToNewType(
600 IC, LI,
601 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
602 // Replace all the stores with stores of the newly loaded value.
603 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
604 auto *SI = cast<StoreInst>(*UI++);
605 IC.Builder.SetInsertPoint(SI);
606 combineStoreToNewValue(IC, *SI, NewLoad);
607 IC.eraseInstFromFunction(*SI);
609 assert(LI.use_empty() && "Failed to remove all users of the load!");
610 // Return the old load so the combiner can delete it safely.
611 return &LI;
615 // Fold away bit casts of the loaded value by loading the desired type.
616 // We can do this for BitCastInsts as well as casts from and to pointer types,
617 // as long as those are noops (i.e., the source or dest type have the same
618 // bitwidth as the target's pointers).
619 if (LI.hasOneUse())
620 if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
621 if (CI->isNoopCast(DL))
622 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
623 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
624 CI->replaceAllUsesWith(NewLoad);
625 IC.eraseInstFromFunction(*CI);
626 return &LI;
629 // FIXME: We should also canonicalize loads of vectors when their elements are
630 // cast to other types.
631 return nullptr;
634 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
635 // FIXME: We could probably with some care handle both volatile and atomic
636 // stores here but it isn't clear that this is important.
637 if (!LI.isSimple())
638 return nullptr;
640 Type *T = LI.getType();
641 if (!T->isAggregateType())
642 return nullptr;
644 StringRef Name = LI.getName();
645 assert(LI.getAlignment() && "Alignment must be set at this point");
647 if (auto *ST = dyn_cast<StructType>(T)) {
648 // If the struct only have one element, we unpack.
649 auto NumElements = ST->getNumElements();
650 if (NumElements == 1) {
651 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
652 ".unpack");
653 AAMDNodes AAMD;
654 LI.getAAMetadata(AAMD);
655 NewLoad->setAAMetadata(AAMD);
656 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
657 UndefValue::get(T), NewLoad, 0, Name));
660 // We don't want to break loads with padding here as we'd loose
661 // the knowledge that padding exists for the rest of the pipeline.
662 const DataLayout &DL = IC.getDataLayout();
663 auto *SL = DL.getStructLayout(ST);
664 if (SL->hasPadding())
665 return nullptr;
667 auto Align = LI.getAlignment();
668 if (!Align)
669 Align = DL.getABITypeAlignment(ST);
671 auto *Addr = LI.getPointerOperand();
672 auto *IdxType = Type::getInt32Ty(T->getContext());
673 auto *Zero = ConstantInt::get(IdxType, 0);
675 Value *V = UndefValue::get(T);
676 for (unsigned i = 0; i < NumElements; i++) {
677 Value *Indices[2] = {
678 Zero,
679 ConstantInt::get(IdxType, i),
681 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
682 Name + ".elt");
683 auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
684 auto *L = IC.Builder.CreateAlignedLoad(ST->getElementType(i), Ptr,
685 EltAlign, Name + ".unpack");
686 // Propagate AA metadata. It'll still be valid on the narrowed load.
687 AAMDNodes AAMD;
688 LI.getAAMetadata(AAMD);
689 L->setAAMetadata(AAMD);
690 V = IC.Builder.CreateInsertValue(V, L, i);
693 V->setName(Name);
694 return IC.replaceInstUsesWith(LI, V);
697 if (auto *AT = dyn_cast<ArrayType>(T)) {
698 auto *ET = AT->getElementType();
699 auto NumElements = AT->getNumElements();
700 if (NumElements == 1) {
701 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
702 AAMDNodes AAMD;
703 LI.getAAMetadata(AAMD);
704 NewLoad->setAAMetadata(AAMD);
705 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
706 UndefValue::get(T), NewLoad, 0, Name));
709 // Bail out if the array is too large. Ideally we would like to optimize
710 // arrays of arbitrary size but this has a terrible impact on compile time.
711 // The threshold here is chosen arbitrarily, maybe needs a little bit of
712 // tuning.
713 if (NumElements > IC.MaxArraySizeForCombine)
714 return nullptr;
716 const DataLayout &DL = IC.getDataLayout();
717 auto EltSize = DL.getTypeAllocSize(ET);
718 auto Align = LI.getAlignment();
719 if (!Align)
720 Align = DL.getABITypeAlignment(T);
722 auto *Addr = LI.getPointerOperand();
723 auto *IdxType = Type::getInt64Ty(T->getContext());
724 auto *Zero = ConstantInt::get(IdxType, 0);
726 Value *V = UndefValue::get(T);
727 uint64_t Offset = 0;
728 for (uint64_t i = 0; i < NumElements; i++) {
729 Value *Indices[2] = {
730 Zero,
731 ConstantInt::get(IdxType, i),
733 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
734 Name + ".elt");
735 auto *L = IC.Builder.CreateAlignedLoad(
736 AT->getElementType(), Ptr, MinAlign(Align, Offset), Name + ".unpack");
737 AAMDNodes AAMD;
738 LI.getAAMetadata(AAMD);
739 L->setAAMetadata(AAMD);
740 V = IC.Builder.CreateInsertValue(V, L, i);
741 Offset += EltSize;
744 V->setName(Name);
745 return IC.replaceInstUsesWith(LI, V);
748 return nullptr;
751 // If we can determine that all possible objects pointed to by the provided
752 // pointer value are, not only dereferenceable, but also definitively less than
753 // or equal to the provided maximum size, then return true. Otherwise, return
754 // false (constant global values and allocas fall into this category).
756 // FIXME: This should probably live in ValueTracking (or similar).
757 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
758 const DataLayout &DL) {
759 SmallPtrSet<Value *, 4> Visited;
760 SmallVector<Value *, 4> Worklist(1, V);
762 do {
763 Value *P = Worklist.pop_back_val();
764 P = P->stripPointerCasts();
766 if (!Visited.insert(P).second)
767 continue;
769 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
770 Worklist.push_back(SI->getTrueValue());
771 Worklist.push_back(SI->getFalseValue());
772 continue;
775 if (PHINode *PN = dyn_cast<PHINode>(P)) {
776 for (Value *IncValue : PN->incoming_values())
777 Worklist.push_back(IncValue);
778 continue;
781 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
782 if (GA->isInterposable())
783 return false;
784 Worklist.push_back(GA->getAliasee());
785 continue;
788 // If we know how big this object is, and it is less than MaxSize, continue
789 // searching. Otherwise, return false.
790 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
791 if (!AI->getAllocatedType()->isSized())
792 return false;
794 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
795 if (!CS)
796 return false;
798 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
799 // Make sure that, even if the multiplication below would wrap as an
800 // uint64_t, we still do the right thing.
801 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
802 return false;
803 continue;
806 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
807 if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
808 return false;
810 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
811 if (InitSize > MaxSize)
812 return false;
813 continue;
816 return false;
817 } while (!Worklist.empty());
819 return true;
822 // If we're indexing into an object of a known size, and the outer index is
823 // not a constant, but having any value but zero would lead to undefined
824 // behavior, replace it with zero.
826 // For example, if we have:
827 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
828 // ...
829 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
830 // ... = load i32* %arrayidx, align 4
831 // Then we know that we can replace %x in the GEP with i64 0.
833 // FIXME: We could fold any GEP index to zero that would cause UB if it were
834 // not zero. Currently, we only handle the first such index. Also, we could
835 // also search through non-zero constant indices if we kept track of the
836 // offsets those indices implied.
837 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
838 Instruction *MemI, unsigned &Idx) {
839 if (GEPI->getNumOperands() < 2)
840 return false;
842 // Find the first non-zero index of a GEP. If all indices are zero, return
843 // one past the last index.
844 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
845 unsigned I = 1;
846 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
847 Value *V = GEPI->getOperand(I);
848 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
849 if (CI->isZero())
850 continue;
852 break;
855 return I;
858 // Skip through initial 'zero' indices, and find the corresponding pointer
859 // type. See if the next index is not a constant.
860 Idx = FirstNZIdx(GEPI);
861 if (Idx == GEPI->getNumOperands())
862 return false;
863 if (isa<Constant>(GEPI->getOperand(Idx)))
864 return false;
866 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
867 Type *AllocTy =
868 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
869 if (!AllocTy || !AllocTy->isSized())
870 return false;
871 const DataLayout &DL = IC.getDataLayout();
872 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
874 // If there are more indices after the one we might replace with a zero, make
875 // sure they're all non-negative. If any of them are negative, the overall
876 // address being computed might be before the base address determined by the
877 // first non-zero index.
878 auto IsAllNonNegative = [&]() {
879 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
880 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
881 if (Known.isNonNegative())
882 continue;
883 return false;
886 return true;
889 // FIXME: If the GEP is not inbounds, and there are extra indices after the
890 // one we'll replace, those could cause the address computation to wrap
891 // (rendering the IsAllNonNegative() check below insufficient). We can do
892 // better, ignoring zero indices (and other indices we can prove small
893 // enough not to wrap).
894 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
895 return false;
897 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
898 // also known to be dereferenceable.
899 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
900 IsAllNonNegative();
903 // If we're indexing into an object with a variable index for the memory
904 // access, but the object has only one element, we can assume that the index
905 // will always be zero. If we replace the GEP, return it.
906 template <typename T>
907 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
908 T &MemI) {
909 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
910 unsigned Idx;
911 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
912 Instruction *NewGEPI = GEPI->clone();
913 NewGEPI->setOperand(Idx,
914 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
915 NewGEPI->insertBefore(GEPI);
916 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
917 return NewGEPI;
921 return nullptr;
924 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
925 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
926 return false;
928 auto *Ptr = SI.getPointerOperand();
929 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
930 Ptr = GEPI->getOperand(0);
931 return (isa<ConstantPointerNull>(Ptr) &&
932 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
935 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
936 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
937 const Value *GEPI0 = GEPI->getOperand(0);
938 if (isa<ConstantPointerNull>(GEPI0) &&
939 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
940 return true;
942 if (isa<UndefValue>(Op) ||
943 (isa<ConstantPointerNull>(Op) &&
944 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
945 return true;
946 return false;
949 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
950 Value *Op = LI.getOperand(0);
952 // Try to canonicalize the loaded type.
953 if (Instruction *Res = combineLoadToOperationType(*this, LI))
954 return Res;
956 // Attempt to improve the alignment.
957 unsigned KnownAlign = getOrEnforceKnownAlignment(
958 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
959 unsigned LoadAlign = LI.getAlignment();
960 unsigned EffectiveLoadAlign =
961 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
963 if (KnownAlign > EffectiveLoadAlign)
964 LI.setAlignment(MaybeAlign(KnownAlign));
965 else if (LoadAlign == 0)
966 LI.setAlignment(MaybeAlign(EffectiveLoadAlign));
968 // Replace GEP indices if possible.
969 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
970 Worklist.Add(NewGEPI);
971 return &LI;
974 if (Instruction *Res = unpackLoadToAggregate(*this, LI))
975 return Res;
977 // Do really simple store-to-load forwarding and load CSE, to catch cases
978 // where there are several consecutive memory accesses to the same location,
979 // separated by a few arithmetic operations.
980 BasicBlock::iterator BBI(LI);
981 bool IsLoadCSE = false;
982 if (Value *AvailableVal = FindAvailableLoadedValue(
983 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
984 if (IsLoadCSE)
985 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
987 return replaceInstUsesWith(
988 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
989 LI.getName() + ".cast"));
992 // None of the following transforms are legal for volatile/ordered atomic
993 // loads. Most of them do apply for unordered atomics.
994 if (!LI.isUnordered()) return nullptr;
996 // load(gep null, ...) -> unreachable
997 // load null/undef -> unreachable
998 // TODO: Consider a target hook for valid address spaces for this xforms.
999 if (canSimplifyNullLoadOrGEP(LI, Op)) {
1000 // Insert a new store to null instruction before the load to indicate
1001 // that this code is not reachable. We do this instead of inserting
1002 // an unreachable instruction directly because we cannot modify the
1003 // CFG.
1004 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
1005 Constant::getNullValue(Op->getType()), &LI);
1006 SI->setDebugLoc(LI.getDebugLoc());
1007 return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
1010 if (Op->hasOneUse()) {
1011 // Change select and PHI nodes to select values instead of addresses: this
1012 // helps alias analysis out a lot, allows many others simplifications, and
1013 // exposes redundancy in the code.
1015 // Note that we cannot do the transformation unless we know that the
1016 // introduced loads cannot trap! Something like this is valid as long as
1017 // the condition is always false: load (select bool %C, int* null, int* %G),
1018 // but it would not be valid if we transformed it to load from null
1019 // unconditionally.
1021 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1022 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
1023 const MaybeAlign Alignment(LI.getAlignment());
1024 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1025 Alignment, DL, SI) &&
1026 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1027 Alignment, DL, SI)) {
1028 LoadInst *V1 =
1029 Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1030 SI->getOperand(1)->getName() + ".val");
1031 LoadInst *V2 =
1032 Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1033 SI->getOperand(2)->getName() + ".val");
1034 assert(LI.isUnordered() && "implied by above");
1035 V1->setAlignment(Alignment);
1036 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1037 V2->setAlignment(Alignment);
1038 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1039 return SelectInst::Create(SI->getCondition(), V1, V2);
1042 // load (select (cond, null, P)) -> load P
1043 if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1044 !NullPointerIsDefined(SI->getFunction(),
1045 LI.getPointerAddressSpace())) {
1046 LI.setOperand(0, SI->getOperand(2));
1047 return &LI;
1050 // load (select (cond, P, null)) -> load P
1051 if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1052 !NullPointerIsDefined(SI->getFunction(),
1053 LI.getPointerAddressSpace())) {
1054 LI.setOperand(0, SI->getOperand(1));
1055 return &LI;
1059 return nullptr;
1062 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1064 /// \returns underlying value that was "cast", or nullptr otherwise.
1066 /// For example, if we have:
1068 /// %E0 = extractelement <2 x double> %U, i32 0
1069 /// %V0 = insertvalue [2 x double] undef, double %E0, 0
1070 /// %E1 = extractelement <2 x double> %U, i32 1
1071 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1
1073 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1074 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1075 /// Note that %U may contain non-undef values where %V1 has undef.
1076 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1077 Value *U = nullptr;
1078 while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1079 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1080 if (!E)
1081 return nullptr;
1082 auto *W = E->getVectorOperand();
1083 if (!U)
1084 U = W;
1085 else if (U != W)
1086 return nullptr;
1087 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1088 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1089 return nullptr;
1090 V = IV->getAggregateOperand();
1092 if (!isa<UndefValue>(V) ||!U)
1093 return nullptr;
1095 auto *UT = cast<VectorType>(U->getType());
1096 auto *VT = V->getType();
1097 // Check that types UT and VT are bitwise isomorphic.
1098 const auto &DL = IC.getDataLayout();
1099 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1100 return nullptr;
1102 if (auto *AT = dyn_cast<ArrayType>(VT)) {
1103 if (AT->getNumElements() != UT->getNumElements())
1104 return nullptr;
1105 } else {
1106 auto *ST = cast<StructType>(VT);
1107 if (ST->getNumElements() != UT->getNumElements())
1108 return nullptr;
1109 for (const auto *EltT : ST->elements()) {
1110 if (EltT != UT->getElementType())
1111 return nullptr;
1114 return U;
1117 /// Combine stores to match the type of value being stored.
1119 /// The core idea here is that the memory does not have any intrinsic type and
1120 /// where we can we should match the type of a store to the type of value being
1121 /// stored.
1123 /// However, this routine must never change the width of a store or the number of
1124 /// stores as that would introduce a semantic change. This combine is expected to
1125 /// be a semantic no-op which just allows stores to more closely model the types
1126 /// of their incoming values.
1128 /// Currently, we also refuse to change the precise type used for an atomic or
1129 /// volatile store. This is debatable, and might be reasonable to change later.
1130 /// However, it is risky in case some backend or other part of LLVM is relying
1131 /// on the exact type stored to select appropriate atomic operations.
1133 /// \returns true if the store was successfully combined away. This indicates
1134 /// the caller must erase the store instruction. We have to let the caller erase
1135 /// the store instruction as otherwise there is no way to signal whether it was
1136 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1137 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1138 // FIXME: We could probably with some care handle both volatile and ordered
1139 // atomic stores here but it isn't clear that this is important.
1140 if (!SI.isUnordered())
1141 return false;
1143 // swifterror values can't be bitcasted.
1144 if (SI.getPointerOperand()->isSwiftError())
1145 return false;
1147 Value *V = SI.getValueOperand();
1149 // Fold away bit casts of the stored value by storing the original type.
1150 if (auto *BC = dyn_cast<BitCastInst>(V)) {
1151 V = BC->getOperand(0);
1152 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1153 combineStoreToNewValue(IC, SI, V);
1154 return true;
1158 if (Value *U = likeBitCastFromVector(IC, V))
1159 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1160 combineStoreToNewValue(IC, SI, U);
1161 return true;
1164 // FIXME: We should also canonicalize stores of vectors when their elements
1165 // are cast to other types.
1166 return false;
1169 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1170 // FIXME: We could probably with some care handle both volatile and atomic
1171 // stores here but it isn't clear that this is important.
1172 if (!SI.isSimple())
1173 return false;
1175 Value *V = SI.getValueOperand();
1176 Type *T = V->getType();
1178 if (!T->isAggregateType())
1179 return false;
1181 if (auto *ST = dyn_cast<StructType>(T)) {
1182 // If the struct only have one element, we unpack.
1183 unsigned Count = ST->getNumElements();
1184 if (Count == 1) {
1185 V = IC.Builder.CreateExtractValue(V, 0);
1186 combineStoreToNewValue(IC, SI, V);
1187 return true;
1190 // We don't want to break loads with padding here as we'd loose
1191 // the knowledge that padding exists for the rest of the pipeline.
1192 const DataLayout &DL = IC.getDataLayout();
1193 auto *SL = DL.getStructLayout(ST);
1194 if (SL->hasPadding())
1195 return false;
1197 auto Align = SI.getAlignment();
1198 if (!Align)
1199 Align = DL.getABITypeAlignment(ST);
1201 SmallString<16> EltName = V->getName();
1202 EltName += ".elt";
1203 auto *Addr = SI.getPointerOperand();
1204 SmallString<16> AddrName = Addr->getName();
1205 AddrName += ".repack";
1207 auto *IdxType = Type::getInt32Ty(ST->getContext());
1208 auto *Zero = ConstantInt::get(IdxType, 0);
1209 for (unsigned i = 0; i < Count; i++) {
1210 Value *Indices[2] = {
1211 Zero,
1212 ConstantInt::get(IdxType, i),
1214 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1215 AddrName);
1216 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1217 auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1218 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1219 AAMDNodes AAMD;
1220 SI.getAAMetadata(AAMD);
1221 NS->setAAMetadata(AAMD);
1224 return true;
1227 if (auto *AT = dyn_cast<ArrayType>(T)) {
1228 // If the array only have one element, we unpack.
1229 auto NumElements = AT->getNumElements();
1230 if (NumElements == 1) {
1231 V = IC.Builder.CreateExtractValue(V, 0);
1232 combineStoreToNewValue(IC, SI, V);
1233 return true;
1236 // Bail out if the array is too large. Ideally we would like to optimize
1237 // arrays of arbitrary size but this has a terrible impact on compile time.
1238 // The threshold here is chosen arbitrarily, maybe needs a little bit of
1239 // tuning.
1240 if (NumElements > IC.MaxArraySizeForCombine)
1241 return false;
1243 const DataLayout &DL = IC.getDataLayout();
1244 auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1245 auto Align = SI.getAlignment();
1246 if (!Align)
1247 Align = DL.getABITypeAlignment(T);
1249 SmallString<16> EltName = V->getName();
1250 EltName += ".elt";
1251 auto *Addr = SI.getPointerOperand();
1252 SmallString<16> AddrName = Addr->getName();
1253 AddrName += ".repack";
1255 auto *IdxType = Type::getInt64Ty(T->getContext());
1256 auto *Zero = ConstantInt::get(IdxType, 0);
1258 uint64_t Offset = 0;
1259 for (uint64_t i = 0; i < NumElements; i++) {
1260 Value *Indices[2] = {
1261 Zero,
1262 ConstantInt::get(IdxType, i),
1264 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1265 AddrName);
1266 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1267 auto EltAlign = MinAlign(Align, Offset);
1268 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1269 AAMDNodes AAMD;
1270 SI.getAAMetadata(AAMD);
1271 NS->setAAMetadata(AAMD);
1272 Offset += EltSize;
1275 return true;
1278 return false;
1281 /// equivalentAddressValues - Test if A and B will obviously have the same
1282 /// value. This includes recognizing that %t0 and %t1 will have the same
1283 /// value in code like this:
1284 /// %t0 = getelementptr \@a, 0, 3
1285 /// store i32 0, i32* %t0
1286 /// %t1 = getelementptr \@a, 0, 3
1287 /// %t2 = load i32* %t1
1289 static bool equivalentAddressValues(Value *A, Value *B) {
1290 // Test if the values are trivially equivalent.
1291 if (A == B) return true;
1293 // Test if the values come form identical arithmetic instructions.
1294 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1295 // its only used to compare two uses within the same basic block, which
1296 // means that they'll always either have the same value or one of them
1297 // will have an undefined value.
1298 if (isa<BinaryOperator>(A) ||
1299 isa<CastInst>(A) ||
1300 isa<PHINode>(A) ||
1301 isa<GetElementPtrInst>(A))
1302 if (Instruction *BI = dyn_cast<Instruction>(B))
1303 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1304 return true;
1306 // Otherwise they may not be equivalent.
1307 return false;
1310 /// Converts store (bitcast (load (bitcast (select ...)))) to
1311 /// store (load (select ...)), where select is minmax:
1312 /// select ((cmp load V1, load V2), V1, V2).
1313 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1314 StoreInst &SI) {
1315 // bitcast?
1316 if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1317 return false;
1318 // load? integer?
1319 Value *LoadAddr;
1320 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1321 return false;
1322 auto *LI = cast<LoadInst>(SI.getValueOperand());
1323 if (!LI->getType()->isIntegerTy())
1324 return false;
1325 if (!isMinMaxWithLoads(LoadAddr))
1326 return false;
1328 if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1329 auto *SI = dyn_cast<StoreInst>(U);
1330 return SI && SI->getPointerOperand() != LI &&
1331 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1332 !SI->getPointerOperand()->isSwiftError();
1334 return false;
1336 IC.Builder.SetInsertPoint(LI);
1337 LoadInst *NewLI = combineLoadToNewType(
1338 IC, *LI, LoadAddr->getType()->getPointerElementType());
1339 // Replace all the stores with stores of the newly loaded value.
1340 for (auto *UI : LI->users()) {
1341 auto *USI = cast<StoreInst>(UI);
1342 IC.Builder.SetInsertPoint(USI);
1343 combineStoreToNewValue(IC, *USI, NewLI);
1345 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1346 IC.eraseInstFromFunction(*LI);
1347 return true;
1350 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1351 Value *Val = SI.getOperand(0);
1352 Value *Ptr = SI.getOperand(1);
1354 // Try to canonicalize the stored type.
1355 if (combineStoreToValueType(*this, SI))
1356 return eraseInstFromFunction(SI);
1358 // Attempt to improve the alignment.
1359 const Align KnownAlign = Align(getOrEnforceKnownAlignment(
1360 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT));
1361 const MaybeAlign StoreAlign = MaybeAlign(SI.getAlignment());
1362 const Align EffectiveStoreAlign =
1363 StoreAlign ? *StoreAlign : Align(DL.getABITypeAlignment(Val->getType()));
1365 if (KnownAlign > EffectiveStoreAlign)
1366 SI.setAlignment(KnownAlign);
1367 else if (!StoreAlign)
1368 SI.setAlignment(EffectiveStoreAlign);
1370 // Try to canonicalize the stored type.
1371 if (unpackStoreToAggregate(*this, SI))
1372 return eraseInstFromFunction(SI);
1374 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1375 return eraseInstFromFunction(SI);
1377 // Replace GEP indices if possible.
1378 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1379 Worklist.Add(NewGEPI);
1380 return &SI;
1383 // Don't hack volatile/ordered stores.
1384 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1385 if (!SI.isUnordered()) return nullptr;
1387 // If the RHS is an alloca with a single use, zapify the store, making the
1388 // alloca dead.
1389 if (Ptr->hasOneUse()) {
1390 if (isa<AllocaInst>(Ptr))
1391 return eraseInstFromFunction(SI);
1392 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1393 if (isa<AllocaInst>(GEP->getOperand(0))) {
1394 if (GEP->getOperand(0)->hasOneUse())
1395 return eraseInstFromFunction(SI);
1400 // If we have a store to a location which is known constant, we can conclude
1401 // that the store must be storing the constant value (else the memory
1402 // wouldn't be constant), and this must be a noop.
1403 if (AA->pointsToConstantMemory(Ptr))
1404 return eraseInstFromFunction(SI);
1406 // Do really simple DSE, to catch cases where there are several consecutive
1407 // stores to the same location, separated by a few arithmetic operations. This
1408 // situation often occurs with bitfield accesses.
1409 BasicBlock::iterator BBI(SI);
1410 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1411 --ScanInsts) {
1412 --BBI;
1413 // Don't count debug info directives, lest they affect codegen,
1414 // and we skip pointer-to-pointer bitcasts, which are NOPs.
1415 if (isa<DbgInfoIntrinsic>(BBI) ||
1416 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1417 ScanInsts++;
1418 continue;
1421 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1422 // Prev store isn't volatile, and stores to the same location?
1423 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1424 SI.getOperand(1))) {
1425 ++NumDeadStore;
1426 ++BBI;
1427 eraseInstFromFunction(*PrevSI);
1428 continue;
1430 break;
1433 // If this is a load, we have to stop. However, if the loaded value is from
1434 // the pointer we're loading and is producing the pointer we're storing,
1435 // then *this* store is dead (X = load P; store X -> P).
1436 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1437 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1438 assert(SI.isUnordered() && "can't eliminate ordering operation");
1439 return eraseInstFromFunction(SI);
1442 // Otherwise, this is a load from some other location. Stores before it
1443 // may not be dead.
1444 break;
1447 // Don't skip over loads, throws or things that can modify memory.
1448 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1449 break;
1452 // store X, null -> turns into 'unreachable' in SimplifyCFG
1453 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1454 if (canSimplifyNullStoreOrGEP(SI)) {
1455 if (!isa<UndefValue>(Val)) {
1456 SI.setOperand(0, UndefValue::get(Val->getType()));
1457 if (Instruction *U = dyn_cast<Instruction>(Val))
1458 Worklist.Add(U); // Dropped a use.
1460 return nullptr; // Do not modify these!
1463 // store undef, Ptr -> noop
1464 if (isa<UndefValue>(Val))
1465 return eraseInstFromFunction(SI);
1467 // If this store is the second-to-last instruction in the basic block
1468 // (excluding debug info and bitcasts of pointers) and if the block ends with
1469 // an unconditional branch, try to move the store to the successor block.
1470 BBI = SI.getIterator();
1471 do {
1472 ++BBI;
1473 } while (isa<DbgInfoIntrinsic>(BBI) ||
1474 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1476 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1477 if (BI->isUnconditional())
1478 mergeStoreIntoSuccessor(SI);
1480 return nullptr;
1483 /// Try to transform:
1484 /// if () { *P = v1; } else { *P = v2 }
1485 /// or:
1486 /// *P = v1; if () { *P = v2; }
1487 /// into a phi node with a store in the successor.
1488 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
1489 assert(SI.isUnordered() &&
1490 "This code has not been audited for volatile or ordered store case.");
1492 // Check if the successor block has exactly 2 incoming edges.
1493 BasicBlock *StoreBB = SI.getParent();
1494 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1495 if (!DestBB->hasNPredecessors(2))
1496 return false;
1498 // Capture the other block (the block that doesn't contain our store).
1499 pred_iterator PredIter = pred_begin(DestBB);
1500 if (*PredIter == StoreBB)
1501 ++PredIter;
1502 BasicBlock *OtherBB = *PredIter;
1504 // Bail out if all of the relevant blocks aren't distinct. This can happen,
1505 // for example, if SI is in an infinite loop.
1506 if (StoreBB == DestBB || OtherBB == DestBB)
1507 return false;
1509 // Verify that the other block ends in a branch and is not otherwise empty.
1510 BasicBlock::iterator BBI(OtherBB->getTerminator());
1511 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1512 if (!OtherBr || BBI == OtherBB->begin())
1513 return false;
1515 // If the other block ends in an unconditional branch, check for the 'if then
1516 // else' case. There is an instruction before the branch.
1517 StoreInst *OtherStore = nullptr;
1518 if (OtherBr->isUnconditional()) {
1519 --BBI;
1520 // Skip over debugging info.
1521 while (isa<DbgInfoIntrinsic>(BBI) ||
1522 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1523 if (BBI==OtherBB->begin())
1524 return false;
1525 --BBI;
1527 // If this isn't a store, isn't a store to the same location, or is not the
1528 // right kind of store, bail out.
1529 OtherStore = dyn_cast<StoreInst>(BBI);
1530 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1531 !SI.isSameOperationAs(OtherStore))
1532 return false;
1533 } else {
1534 // Otherwise, the other block ended with a conditional branch. If one of the
1535 // destinations is StoreBB, then we have the if/then case.
1536 if (OtherBr->getSuccessor(0) != StoreBB &&
1537 OtherBr->getSuccessor(1) != StoreBB)
1538 return false;
1540 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1541 // if/then triangle. See if there is a store to the same ptr as SI that
1542 // lives in OtherBB.
1543 for (;; --BBI) {
1544 // Check to see if we find the matching store.
1545 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1546 if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1547 !SI.isSameOperationAs(OtherStore))
1548 return false;
1549 break;
1551 // If we find something that may be using or overwriting the stored
1552 // value, or if we run out of instructions, we can't do the transform.
1553 if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1554 BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1555 return false;
1558 // In order to eliminate the store in OtherBr, we have to make sure nothing
1559 // reads or overwrites the stored value in StoreBB.
1560 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1561 // FIXME: This should really be AA driven.
1562 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1563 return false;
1567 // Insert a PHI node now if we need it.
1568 Value *MergedVal = OtherStore->getOperand(0);
1569 // The debug locations of the original instructions might differ. Merge them.
1570 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1571 OtherStore->getDebugLoc());
1572 if (MergedVal != SI.getOperand(0)) {
1573 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1574 PN->addIncoming(SI.getOperand(0), SI.getParent());
1575 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1576 MergedVal = InsertNewInstBefore(PN, DestBB->front());
1577 PN->setDebugLoc(MergedLoc);
1580 // Advance to a place where it is safe to insert the new store and insert it.
1581 BBI = DestBB->getFirstInsertionPt();
1582 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(),
1583 MaybeAlign(SI.getAlignment()),
1584 SI.getOrdering(), SI.getSyncScopeID());
1585 InsertNewInstBefore(NewSI, *BBI);
1586 NewSI->setDebugLoc(MergedLoc);
1588 // If the two stores had AA tags, merge them.
1589 AAMDNodes AATags;
1590 SI.getAAMetadata(AATags);
1591 if (AATags) {
1592 OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1593 NewSI->setAAMetadata(AATags);
1596 // Nuke the old stores.
1597 eraseInstFromFunction(SI);
1598 eraseInstFromFunction(*OtherStore);
1599 return true;