[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineSimplifyDemanded.cpp
blobd30ab8001897f879b8a51d61b7b0a3c9a485fdaf
1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Support/KnownBits.h"
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
23 #define DEBUG_TYPE "instcombine"
25 namespace {
27 struct AMDGPUImageDMaskIntrinsic {
28 unsigned Intr;
31 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
32 #include "InstCombineTables.inc"
34 } // end anonymous namespace
36 /// Check to see if the specified operand of the specified instruction is a
37 /// constant integer. If so, check to see if there are any bits set in the
38 /// constant that are not demanded. If so, shrink the constant and return true.
39 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
40 const APInt &Demanded) {
41 assert(I && "No instruction?");
42 assert(OpNo < I->getNumOperands() && "Operand index too large");
44 // The operand must be a constant integer or splat integer.
45 Value *Op = I->getOperand(OpNo);
46 const APInt *C;
47 if (!match(Op, m_APInt(C)))
48 return false;
50 // If there are no bits set that aren't demanded, nothing to do.
51 if (C->isSubsetOf(Demanded))
52 return false;
54 // This instruction is producing bits that are not demanded. Shrink the RHS.
55 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
57 return true;
62 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
63 /// the instruction has any properties that allow us to simplify its operands.
64 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
65 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
66 KnownBits Known(BitWidth);
67 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
69 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
70 0, &Inst);
71 if (!V) return false;
72 if (V == &Inst) return true;
73 replaceInstUsesWith(Inst, V);
74 return true;
77 /// This form of SimplifyDemandedBits simplifies the specified instruction
78 /// operand if possible, updating it in place. It returns true if it made any
79 /// change and false otherwise.
80 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
81 const APInt &DemandedMask,
82 KnownBits &Known,
83 unsigned Depth) {
84 Use &U = I->getOperandUse(OpNo);
85 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
86 Depth, I);
87 if (!NewVal) return false;
88 U = NewVal;
89 return true;
93 /// This function attempts to replace V with a simpler value based on the
94 /// demanded bits. When this function is called, it is known that only the bits
95 /// set in DemandedMask of the result of V are ever used downstream.
96 /// Consequently, depending on the mask and V, it may be possible to replace V
97 /// with a constant or one of its operands. In such cases, this function does
98 /// the replacement and returns true. In all other cases, it returns false after
99 /// analyzing the expression and setting KnownOne and known to be one in the
100 /// expression. Known.Zero contains all the bits that are known to be zero in
101 /// the expression. These are provided to potentially allow the caller (which
102 /// might recursively be SimplifyDemandedBits itself) to simplify the
103 /// expression.
104 /// Known.One and Known.Zero always follow the invariant that:
105 /// Known.One & Known.Zero == 0.
106 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
107 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
108 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
109 /// be the same.
111 /// This returns null if it did not change anything and it permits no
112 /// simplification. This returns V itself if it did some simplification of V's
113 /// operands based on the information about what bits are demanded. This returns
114 /// some other non-null value if it found out that V is equal to another value
115 /// in the context where the specified bits are demanded, but not for all users.
116 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
117 KnownBits &Known, unsigned Depth,
118 Instruction *CxtI) {
119 assert(V != nullptr && "Null pointer of Value???");
120 assert(Depth <= 6 && "Limit Search Depth");
121 uint32_t BitWidth = DemandedMask.getBitWidth();
122 Type *VTy = V->getType();
123 assert(
124 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
125 Known.getBitWidth() == BitWidth &&
126 "Value *V, DemandedMask and Known must have same BitWidth");
128 if (isa<Constant>(V)) {
129 computeKnownBits(V, Known, Depth, CxtI);
130 return nullptr;
133 Known.resetAll();
134 if (DemandedMask.isNullValue()) // Not demanding any bits from V.
135 return UndefValue::get(VTy);
137 if (Depth == 6) // Limit search depth.
138 return nullptr;
140 Instruction *I = dyn_cast<Instruction>(V);
141 if (!I) {
142 computeKnownBits(V, Known, Depth, CxtI);
143 return nullptr; // Only analyze instructions.
146 // If there are multiple uses of this value and we aren't at the root, then
147 // we can't do any simplifications of the operands, because DemandedMask
148 // only reflects the bits demanded by *one* of the users.
149 if (Depth != 0 && !I->hasOneUse())
150 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
152 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
154 // If this is the root being simplified, allow it to have multiple uses,
155 // just set the DemandedMask to all bits so that we can try to simplify the
156 // operands. This allows visitTruncInst (for example) to simplify the
157 // operand of a trunc without duplicating all the logic below.
158 if (Depth == 0 && !V->hasOneUse())
159 DemandedMask.setAllBits();
161 switch (I->getOpcode()) {
162 default:
163 computeKnownBits(I, Known, Depth, CxtI);
164 break;
165 case Instruction::And: {
166 // If either the LHS or the RHS are Zero, the result is zero.
167 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
168 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
169 Depth + 1))
170 return I;
171 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
172 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
174 // Output known-0 are known to be clear if zero in either the LHS | RHS.
175 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
176 // Output known-1 bits are only known if set in both the LHS & RHS.
177 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
179 // If the client is only demanding bits that we know, return the known
180 // constant.
181 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
182 return Constant::getIntegerValue(VTy, IKnownOne);
184 // If all of the demanded bits are known 1 on one side, return the other.
185 // These bits cannot contribute to the result of the 'and'.
186 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
187 return I->getOperand(0);
188 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
189 return I->getOperand(1);
191 // If the RHS is a constant, see if we can simplify it.
192 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
193 return I;
195 Known.Zero = std::move(IKnownZero);
196 Known.One = std::move(IKnownOne);
197 break;
199 case Instruction::Or: {
200 // If either the LHS or the RHS are One, the result is One.
201 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
202 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
203 Depth + 1))
204 return I;
205 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
206 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
208 // Output known-0 bits are only known if clear in both the LHS & RHS.
209 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
210 // Output known-1 are known. to be set if s.et in either the LHS | RHS.
211 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
213 // If the client is only demanding bits that we know, return the known
214 // constant.
215 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
216 return Constant::getIntegerValue(VTy, IKnownOne);
218 // If all of the demanded bits are known zero on one side, return the other.
219 // These bits cannot contribute to the result of the 'or'.
220 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
221 return I->getOperand(0);
222 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
223 return I->getOperand(1);
225 // If the RHS is a constant, see if we can simplify it.
226 if (ShrinkDemandedConstant(I, 1, DemandedMask))
227 return I;
229 Known.Zero = std::move(IKnownZero);
230 Known.One = std::move(IKnownOne);
231 break;
233 case Instruction::Xor: {
234 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
235 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
236 return I;
237 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
238 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
240 // Output known-0 bits are known if clear or set in both the LHS & RHS.
241 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
242 (RHSKnown.One & LHSKnown.One);
243 // Output known-1 are known to be set if set in only one of the LHS, RHS.
244 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
245 (RHSKnown.One & LHSKnown.Zero);
247 // If the client is only demanding bits that we know, return the known
248 // constant.
249 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
250 return Constant::getIntegerValue(VTy, IKnownOne);
252 // If all of the demanded bits are known zero on one side, return the other.
253 // These bits cannot contribute to the result of the 'xor'.
254 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
255 return I->getOperand(0);
256 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
257 return I->getOperand(1);
259 // If all of the demanded bits are known to be zero on one side or the
260 // other, turn this into an *inclusive* or.
261 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
262 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
263 Instruction *Or =
264 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
265 I->getName());
266 return InsertNewInstWith(Or, *I);
269 // If all of the demanded bits on one side are known, and all of the set
270 // bits on that side are also known to be set on the other side, turn this
271 // into an AND, as we know the bits will be cleared.
272 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
273 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
274 RHSKnown.One.isSubsetOf(LHSKnown.One)) {
275 Constant *AndC = Constant::getIntegerValue(VTy,
276 ~RHSKnown.One & DemandedMask);
277 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
278 return InsertNewInstWith(And, *I);
281 // If the RHS is a constant, see if we can simplify it.
282 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
283 if (ShrinkDemandedConstant(I, 1, DemandedMask))
284 return I;
286 // If our LHS is an 'and' and if it has one use, and if any of the bits we
287 // are flipping are known to be set, then the xor is just resetting those
288 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
289 // simplifying both of them.
290 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
291 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
292 isa<ConstantInt>(I->getOperand(1)) &&
293 isa<ConstantInt>(LHSInst->getOperand(1)) &&
294 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
295 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
296 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
297 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
299 Constant *AndC =
300 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
301 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
302 InsertNewInstWith(NewAnd, *I);
304 Constant *XorC =
305 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
306 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
307 return InsertNewInstWith(NewXor, *I);
310 // Output known-0 bits are known if clear or set in both the LHS & RHS.
311 Known.Zero = std::move(IKnownZero);
312 // Output known-1 are known to be set if set in only one of the LHS, RHS.
313 Known.One = std::move(IKnownOne);
314 break;
316 case Instruction::Select: {
317 Value *LHS, *RHS;
318 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
319 if (SPF == SPF_UMAX) {
320 // UMax(A, C) == A if ...
321 // The lowest non-zero bit of DemandMask is higher than the highest
322 // non-zero bit of C.
323 const APInt *C;
324 unsigned CTZ = DemandedMask.countTrailingZeros();
325 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
326 return LHS;
327 } else if (SPF == SPF_UMIN) {
328 // UMin(A, C) == A if ...
329 // The lowest non-zero bit of DemandMask is higher than the highest
330 // non-one bit of C.
331 // This comes from using DeMorgans on the above umax example.
332 const APInt *C;
333 unsigned CTZ = DemandedMask.countTrailingZeros();
334 if (match(RHS, m_APInt(C)) &&
335 CTZ >= C->getBitWidth() - C->countLeadingOnes())
336 return LHS;
339 // If this is a select as part of any other min/max pattern, don't simplify
340 // any further in case we break the structure.
341 if (SPF != SPF_UNKNOWN)
342 return nullptr;
344 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
345 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
346 return I;
347 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
348 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
350 // If the operands are constants, see if we can simplify them.
351 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
352 ShrinkDemandedConstant(I, 2, DemandedMask))
353 return I;
355 // Only known if known in both the LHS and RHS.
356 Known.One = RHSKnown.One & LHSKnown.One;
357 Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
358 break;
360 case Instruction::ZExt:
361 case Instruction::Trunc: {
362 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
364 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
365 KnownBits InputKnown(SrcBitWidth);
366 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
367 return I;
368 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
369 Known = InputKnown.zextOrTrunc(BitWidth,
370 true /* ExtendedBitsAreKnownZero */);
371 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
372 break;
374 case Instruction::BitCast:
375 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
376 return nullptr; // vector->int or fp->int?
378 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
379 if (VectorType *SrcVTy =
380 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
381 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
382 // Don't touch a bitcast between vectors of different element counts.
383 return nullptr;
384 } else
385 // Don't touch a scalar-to-vector bitcast.
386 return nullptr;
387 } else if (I->getOperand(0)->getType()->isVectorTy())
388 // Don't touch a vector-to-scalar bitcast.
389 return nullptr;
391 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
392 return I;
393 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
394 break;
395 case Instruction::SExt: {
396 // Compute the bits in the result that are not present in the input.
397 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
399 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
401 // If any of the sign extended bits are demanded, we know that the sign
402 // bit is demanded.
403 if (DemandedMask.getActiveBits() > SrcBitWidth)
404 InputDemandedBits.setBit(SrcBitWidth-1);
406 KnownBits InputKnown(SrcBitWidth);
407 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
408 return I;
410 // If the input sign bit is known zero, or if the NewBits are not demanded
411 // convert this into a zero extension.
412 if (InputKnown.isNonNegative() ||
413 DemandedMask.getActiveBits() <= SrcBitWidth) {
414 // Convert to ZExt cast.
415 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
416 return InsertNewInstWith(NewCast, *I);
419 // If the sign bit of the input is known set or clear, then we know the
420 // top bits of the result.
421 Known = InputKnown.sext(BitWidth);
422 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
423 break;
425 case Instruction::Add:
426 case Instruction::Sub: {
427 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
428 /// about the high bits of the operands.
429 unsigned NLZ = DemandedMask.countLeadingZeros();
430 // Right fill the mask of bits for this ADD/SUB to demand the most
431 // significant bit and all those below it.
432 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
433 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
434 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
435 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
436 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
437 if (NLZ > 0) {
438 // Disable the nsw and nuw flags here: We can no longer guarantee that
439 // we won't wrap after simplification. Removing the nsw/nuw flags is
440 // legal here because the top bit is not demanded.
441 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
442 BinOP.setHasNoSignedWrap(false);
443 BinOP.setHasNoUnsignedWrap(false);
445 return I;
448 // If we are known to be adding/subtracting zeros to every bit below
449 // the highest demanded bit, we just return the other side.
450 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
451 return I->getOperand(0);
452 // We can't do this with the LHS for subtraction, unless we are only
453 // demanding the LSB.
454 if ((I->getOpcode() == Instruction::Add ||
455 DemandedFromOps.isOneValue()) &&
456 DemandedFromOps.isSubsetOf(LHSKnown.Zero))
457 return I->getOperand(1);
459 // Otherwise just compute the known bits of the result.
460 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
461 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
462 NSW, LHSKnown, RHSKnown);
463 break;
465 case Instruction::Shl: {
466 const APInt *SA;
467 if (match(I->getOperand(1), m_APInt(SA))) {
468 const APInt *ShrAmt;
469 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
470 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
471 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
472 DemandedMask, Known))
473 return R;
475 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
476 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
478 // If the shift is NUW/NSW, then it does demand the high bits.
479 ShlOperator *IOp = cast<ShlOperator>(I);
480 if (IOp->hasNoSignedWrap())
481 DemandedMaskIn.setHighBits(ShiftAmt+1);
482 else if (IOp->hasNoUnsignedWrap())
483 DemandedMaskIn.setHighBits(ShiftAmt);
485 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
486 return I;
487 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
488 Known.Zero <<= ShiftAmt;
489 Known.One <<= ShiftAmt;
490 // low bits known zero.
491 if (ShiftAmt)
492 Known.Zero.setLowBits(ShiftAmt);
494 break;
496 case Instruction::LShr: {
497 const APInt *SA;
498 if (match(I->getOperand(1), m_APInt(SA))) {
499 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
501 // Unsigned shift right.
502 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
504 // If the shift is exact, then it does demand the low bits (and knows that
505 // they are zero).
506 if (cast<LShrOperator>(I)->isExact())
507 DemandedMaskIn.setLowBits(ShiftAmt);
509 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
510 return I;
511 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
512 Known.Zero.lshrInPlace(ShiftAmt);
513 Known.One.lshrInPlace(ShiftAmt);
514 if (ShiftAmt)
515 Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
517 break;
519 case Instruction::AShr: {
520 // If this is an arithmetic shift right and only the low-bit is set, we can
521 // always convert this into a logical shr, even if the shift amount is
522 // variable. The low bit of the shift cannot be an input sign bit unless
523 // the shift amount is >= the size of the datatype, which is undefined.
524 if (DemandedMask.isOneValue()) {
525 // Perform the logical shift right.
526 Instruction *NewVal = BinaryOperator::CreateLShr(
527 I->getOperand(0), I->getOperand(1), I->getName());
528 return InsertNewInstWith(NewVal, *I);
531 // If the sign bit is the only bit demanded by this ashr, then there is no
532 // need to do it, the shift doesn't change the high bit.
533 if (DemandedMask.isSignMask())
534 return I->getOperand(0);
536 const APInt *SA;
537 if (match(I->getOperand(1), m_APInt(SA))) {
538 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
540 // Signed shift right.
541 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
542 // If any of the high bits are demanded, we should set the sign bit as
543 // demanded.
544 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
545 DemandedMaskIn.setSignBit();
547 // If the shift is exact, then it does demand the low bits (and knows that
548 // they are zero).
549 if (cast<AShrOperator>(I)->isExact())
550 DemandedMaskIn.setLowBits(ShiftAmt);
552 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
553 return I;
555 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
557 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
558 // Compute the new bits that are at the top now plus sign bits.
559 APInt HighBits(APInt::getHighBitsSet(
560 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
561 Known.Zero.lshrInPlace(ShiftAmt);
562 Known.One.lshrInPlace(ShiftAmt);
564 // If the input sign bit is known to be zero, or if none of the top bits
565 // are demanded, turn this into an unsigned shift right.
566 assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
567 if (Known.Zero[BitWidth-ShiftAmt-1] ||
568 !DemandedMask.intersects(HighBits)) {
569 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
570 I->getOperand(1));
571 LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
572 return InsertNewInstWith(LShr, *I);
573 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
574 Known.One |= HighBits;
577 break;
579 case Instruction::UDiv: {
580 // UDiv doesn't demand low bits that are zero in the divisor.
581 const APInt *SA;
582 if (match(I->getOperand(1), m_APInt(SA))) {
583 // If the shift is exact, then it does demand the low bits.
584 if (cast<UDivOperator>(I)->isExact())
585 break;
587 // FIXME: Take the demanded mask of the result into account.
588 unsigned RHSTrailingZeros = SA->countTrailingZeros();
589 APInt DemandedMaskIn =
590 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
591 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
592 return I;
594 // Propagate zero bits from the input.
595 Known.Zero.setHighBits(std::min(
596 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
598 break;
600 case Instruction::SRem:
601 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
602 // X % -1 demands all the bits because we don't want to introduce
603 // INT_MIN % -1 (== undef) by accident.
604 if (Rem->isMinusOne())
605 break;
606 APInt RA = Rem->getValue().abs();
607 if (RA.isPowerOf2()) {
608 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
609 return I->getOperand(0);
611 APInt LowBits = RA - 1;
612 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
613 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
614 return I;
616 // The low bits of LHS are unchanged by the srem.
617 Known.Zero = LHSKnown.Zero & LowBits;
618 Known.One = LHSKnown.One & LowBits;
620 // If LHS is non-negative or has all low bits zero, then the upper bits
621 // are all zero.
622 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
623 Known.Zero |= ~LowBits;
625 // If LHS is negative and not all low bits are zero, then the upper bits
626 // are all one.
627 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
628 Known.One |= ~LowBits;
630 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
631 break;
635 // The sign bit is the LHS's sign bit, except when the result of the
636 // remainder is zero.
637 if (DemandedMask.isSignBitSet()) {
638 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
639 // If it's known zero, our sign bit is also zero.
640 if (LHSKnown.isNonNegative())
641 Known.makeNonNegative();
643 break;
644 case Instruction::URem: {
645 KnownBits Known2(BitWidth);
646 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
647 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
648 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
649 return I;
651 unsigned Leaders = Known2.countMinLeadingZeros();
652 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
653 break;
655 case Instruction::Call:
656 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
657 switch (II->getIntrinsicID()) {
658 default: break;
659 case Intrinsic::bswap: {
660 // If the only bits demanded come from one byte of the bswap result,
661 // just shift the input byte into position to eliminate the bswap.
662 unsigned NLZ = DemandedMask.countLeadingZeros();
663 unsigned NTZ = DemandedMask.countTrailingZeros();
665 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
666 // we need all the bits down to bit 8. Likewise, round NLZ. If we
667 // have 14 leading zeros, round to 8.
668 NLZ &= ~7;
669 NTZ &= ~7;
670 // If we need exactly one byte, we can do this transformation.
671 if (BitWidth-NLZ-NTZ == 8) {
672 unsigned ResultBit = NTZ;
673 unsigned InputBit = BitWidth-NTZ-8;
675 // Replace this with either a left or right shift to get the byte into
676 // the right place.
677 Instruction *NewVal;
678 if (InputBit > ResultBit)
679 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
680 ConstantInt::get(I->getType(), InputBit-ResultBit));
681 else
682 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
683 ConstantInt::get(I->getType(), ResultBit-InputBit));
684 NewVal->takeName(I);
685 return InsertNewInstWith(NewVal, *I);
688 // TODO: Could compute known zero/one bits based on the input.
689 break;
691 case Intrinsic::fshr:
692 case Intrinsic::fshl: {
693 const APInt *SA;
694 if (!match(I->getOperand(2), m_APInt(SA)))
695 break;
697 // Normalize to funnel shift left. APInt shifts of BitWidth are well-
698 // defined, so no need to special-case zero shifts here.
699 uint64_t ShiftAmt = SA->urem(BitWidth);
700 if (II->getIntrinsicID() == Intrinsic::fshr)
701 ShiftAmt = BitWidth - ShiftAmt;
703 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
704 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
705 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
706 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
707 return I;
709 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
710 RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
711 Known.One = LHSKnown.One.shl(ShiftAmt) |
712 RHSKnown.One.lshr(BitWidth - ShiftAmt);
713 break;
715 case Intrinsic::x86_mmx_pmovmskb:
716 case Intrinsic::x86_sse_movmsk_ps:
717 case Intrinsic::x86_sse2_movmsk_pd:
718 case Intrinsic::x86_sse2_pmovmskb_128:
719 case Intrinsic::x86_avx_movmsk_ps_256:
720 case Intrinsic::x86_avx_movmsk_pd_256:
721 case Intrinsic::x86_avx2_pmovmskb: {
722 // MOVMSK copies the vector elements' sign bits to the low bits
723 // and zeros the high bits.
724 unsigned ArgWidth;
725 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
726 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
727 } else {
728 auto Arg = II->getArgOperand(0);
729 auto ArgType = cast<VectorType>(Arg->getType());
730 ArgWidth = ArgType->getNumElements();
733 // If we don't need any of low bits then return zero,
734 // we know that DemandedMask is non-zero already.
735 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
736 if (DemandedElts.isNullValue())
737 return ConstantInt::getNullValue(VTy);
739 // We know that the upper bits are set to zero.
740 Known.Zero.setBitsFrom(ArgWidth);
741 return nullptr;
743 case Intrinsic::x86_sse42_crc32_64_64:
744 Known.Zero.setBitsFrom(32);
745 return nullptr;
748 computeKnownBits(V, Known, Depth, CxtI);
749 break;
752 // If the client is only demanding bits that we know, return the known
753 // constant.
754 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
755 return Constant::getIntegerValue(VTy, Known.One);
756 return nullptr;
759 /// Helper routine of SimplifyDemandedUseBits. It computes Known
760 /// bits. It also tries to handle simplifications that can be done based on
761 /// DemandedMask, but without modifying the Instruction.
762 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
763 const APInt &DemandedMask,
764 KnownBits &Known,
765 unsigned Depth,
766 Instruction *CxtI) {
767 unsigned BitWidth = DemandedMask.getBitWidth();
768 Type *ITy = I->getType();
770 KnownBits LHSKnown(BitWidth);
771 KnownBits RHSKnown(BitWidth);
773 // Despite the fact that we can't simplify this instruction in all User's
774 // context, we can at least compute the known bits, and we can
775 // do simplifications that apply to *just* the one user if we know that
776 // this instruction has a simpler value in that context.
777 switch (I->getOpcode()) {
778 case Instruction::And: {
779 // If either the LHS or the RHS are Zero, the result is zero.
780 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
781 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
782 CxtI);
784 // Output known-0 are known to be clear if zero in either the LHS | RHS.
785 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
786 // Output known-1 bits are only known if set in both the LHS & RHS.
787 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
789 // If the client is only demanding bits that we know, return the known
790 // constant.
791 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
792 return Constant::getIntegerValue(ITy, IKnownOne);
794 // If all of the demanded bits are known 1 on one side, return the other.
795 // These bits cannot contribute to the result of the 'and' in this
796 // context.
797 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
798 return I->getOperand(0);
799 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
800 return I->getOperand(1);
802 Known.Zero = std::move(IKnownZero);
803 Known.One = std::move(IKnownOne);
804 break;
806 case Instruction::Or: {
807 // We can simplify (X|Y) -> X or Y in the user's context if we know that
808 // only bits from X or Y are demanded.
810 // If either the LHS or the RHS are One, the result is One.
811 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
812 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
813 CxtI);
815 // Output known-0 bits are only known if clear in both the LHS & RHS.
816 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
817 // Output known-1 are known to be set if set in either the LHS | RHS.
818 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
820 // If the client is only demanding bits that we know, return the known
821 // constant.
822 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
823 return Constant::getIntegerValue(ITy, IKnownOne);
825 // If all of the demanded bits are known zero on one side, return the
826 // other. These bits cannot contribute to the result of the 'or' in this
827 // context.
828 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
829 return I->getOperand(0);
830 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
831 return I->getOperand(1);
833 Known.Zero = std::move(IKnownZero);
834 Known.One = std::move(IKnownOne);
835 break;
837 case Instruction::Xor: {
838 // We can simplify (X^Y) -> X or Y in the user's context if we know that
839 // only bits from X or Y are demanded.
841 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
842 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
843 CxtI);
845 // Output known-0 bits are known if clear or set in both the LHS & RHS.
846 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
847 (RHSKnown.One & LHSKnown.One);
848 // Output known-1 are known to be set if set in only one of the LHS, RHS.
849 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
850 (RHSKnown.One & LHSKnown.Zero);
852 // If the client is only demanding bits that we know, return the known
853 // constant.
854 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
855 return Constant::getIntegerValue(ITy, IKnownOne);
857 // If all of the demanded bits are known zero on one side, return the
858 // other.
859 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
860 return I->getOperand(0);
861 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
862 return I->getOperand(1);
864 // Output known-0 bits are known if clear or set in both the LHS & RHS.
865 Known.Zero = std::move(IKnownZero);
866 // Output known-1 are known to be set if set in only one of the LHS, RHS.
867 Known.One = std::move(IKnownOne);
868 break;
870 default:
871 // Compute the Known bits to simplify things downstream.
872 computeKnownBits(I, Known, Depth, CxtI);
874 // If this user is only demanding bits that we know, return the known
875 // constant.
876 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
877 return Constant::getIntegerValue(ITy, Known.One);
879 break;
882 return nullptr;
886 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
887 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
888 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
889 /// of "C2-C1".
891 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
892 /// ..., bn}, without considering the specific value X is holding.
893 /// This transformation is legal iff one of following conditions is hold:
894 /// 1) All the bit in S are 0, in this case E1 == E2.
895 /// 2) We don't care those bits in S, per the input DemandedMask.
896 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
897 /// rest bits.
899 /// Currently we only test condition 2).
901 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
902 /// not successful.
903 Value *
904 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
905 Instruction *Shl, const APInt &ShlOp1,
906 const APInt &DemandedMask,
907 KnownBits &Known) {
908 if (!ShlOp1 || !ShrOp1)
909 return nullptr; // No-op.
911 Value *VarX = Shr->getOperand(0);
912 Type *Ty = VarX->getType();
913 unsigned BitWidth = Ty->getScalarSizeInBits();
914 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
915 return nullptr; // Undef.
917 unsigned ShlAmt = ShlOp1.getZExtValue();
918 unsigned ShrAmt = ShrOp1.getZExtValue();
920 Known.One.clearAllBits();
921 Known.Zero.setLowBits(ShlAmt - 1);
922 Known.Zero &= DemandedMask;
924 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
925 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
927 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
928 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
929 (BitMask1.ashr(ShrAmt) << ShlAmt);
931 if (ShrAmt <= ShlAmt) {
932 BitMask2 <<= (ShlAmt - ShrAmt);
933 } else {
934 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
935 BitMask2.ashr(ShrAmt - ShlAmt);
938 // Check if condition-2 (see the comment to this function) is satified.
939 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
940 if (ShrAmt == ShlAmt)
941 return VarX;
943 if (!Shr->hasOneUse())
944 return nullptr;
946 BinaryOperator *New;
947 if (ShrAmt < ShlAmt) {
948 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
949 New = BinaryOperator::CreateShl(VarX, Amt);
950 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
951 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
952 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
953 } else {
954 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
955 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
956 BinaryOperator::CreateAShr(VarX, Amt);
957 if (cast<BinaryOperator>(Shr)->isExact())
958 New->setIsExact(true);
961 return InsertNewInstWith(New, *Shl);
964 return nullptr;
967 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
969 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have
970 /// struct returns.
971 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
972 APInt DemandedElts,
973 int DMaskIdx) {
975 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported.
976 if (DMaskIdx < 0 &&
977 II->getType()->getScalarSizeInBits() != 32 &&
978 DemandedElts.getActiveBits() == 3)
979 return nullptr;
981 unsigned VWidth = II->getType()->getVectorNumElements();
982 if (VWidth == 1)
983 return nullptr;
985 ConstantInt *NewDMask = nullptr;
987 if (DMaskIdx < 0) {
988 // Pretend that a prefix of elements is demanded to simplify the code
989 // below.
990 DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
991 } else {
992 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx));
993 unsigned DMaskVal = DMask->getZExtValue() & 0xf;
995 // Mask off values that are undefined because the dmask doesn't cover them
996 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
998 unsigned NewDMaskVal = 0;
999 unsigned OrigLoadIdx = 0;
1000 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
1001 const unsigned Bit = 1 << SrcIdx;
1002 if (!!(DMaskVal & Bit)) {
1003 if (!!DemandedElts[OrigLoadIdx])
1004 NewDMaskVal |= Bit;
1005 OrigLoadIdx++;
1009 if (DMaskVal != NewDMaskVal)
1010 NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
1013 unsigned NewNumElts = DemandedElts.countPopulation();
1014 if (!NewNumElts)
1015 return UndefValue::get(II->getType());
1017 if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1018 if (NewDMask)
1019 II->setArgOperand(DMaskIdx, NewDMask);
1020 return nullptr;
1023 // Determine the overload types of the original intrinsic.
1024 auto IID = II->getIntrinsicID();
1025 SmallVector<Intrinsic::IITDescriptor, 16> Table;
1026 getIntrinsicInfoTableEntries(IID, Table);
1027 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1029 // Validate function argument and return types, extracting overloaded types
1030 // along the way.
1031 FunctionType *FTy = II->getCalledFunction()->getFunctionType();
1032 SmallVector<Type *, 6> OverloadTys;
1033 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys);
1035 Module *M = II->getParent()->getParent()->getParent();
1036 Type *EltTy = II->getType()->getVectorElementType();
1037 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
1039 OverloadTys[0] = NewTy;
1040 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
1042 SmallVector<Value *, 16> Args;
1043 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1044 Args.push_back(II->getArgOperand(I));
1046 if (NewDMask)
1047 Args[DMaskIdx] = NewDMask;
1049 IRBuilderBase::InsertPointGuard Guard(Builder);
1050 Builder.SetInsertPoint(II);
1052 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1053 NewCall->takeName(II);
1054 NewCall->copyMetadata(*II);
1056 if (NewNumElts == 1) {
1057 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
1058 DemandedElts.countTrailingZeros());
1061 SmallVector<uint32_t, 8> EltMask;
1062 unsigned NewLoadIdx = 0;
1063 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1064 if (!!DemandedElts[OrigLoadIdx])
1065 EltMask.push_back(NewLoadIdx++);
1066 else
1067 EltMask.push_back(NewNumElts);
1070 Value *Shuffle =
1071 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
1073 return Shuffle;
1076 /// The specified value produces a vector with any number of elements.
1077 /// This method analyzes which elements of the operand are undef and returns
1078 /// that information in UndefElts.
1080 /// DemandedElts contains the set of elements that are actually used by the
1081 /// caller, and by default (AllowMultipleUsers equals false) the value is
1082 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1083 /// to true, DemandedElts refers to the union of sets of elements that are
1084 /// used by all callers.
1086 /// If the information about demanded elements can be used to simplify the
1087 /// operation, the operation is simplified, then the resultant value is
1088 /// returned. This returns null if no change was made.
1089 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1090 APInt &UndefElts,
1091 unsigned Depth,
1092 bool AllowMultipleUsers) {
1093 unsigned VWidth = V->getType()->getVectorNumElements();
1094 APInt EltMask(APInt::getAllOnesValue(VWidth));
1095 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1097 if (isa<UndefValue>(V)) {
1098 // If the entire vector is undefined, just return this info.
1099 UndefElts = EltMask;
1100 return nullptr;
1103 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1104 UndefElts = EltMask;
1105 return UndefValue::get(V->getType());
1108 UndefElts = 0;
1110 if (auto *C = dyn_cast<Constant>(V)) {
1111 // Check if this is identity. If so, return 0 since we are not simplifying
1112 // anything.
1113 if (DemandedElts.isAllOnesValue())
1114 return nullptr;
1116 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1117 Constant *Undef = UndefValue::get(EltTy);
1118 SmallVector<Constant*, 16> Elts;
1119 for (unsigned i = 0; i != VWidth; ++i) {
1120 if (!DemandedElts[i]) { // If not demanded, set to undef.
1121 Elts.push_back(Undef);
1122 UndefElts.setBit(i);
1123 continue;
1126 Constant *Elt = C->getAggregateElement(i);
1127 if (!Elt) return nullptr;
1129 if (isa<UndefValue>(Elt)) { // Already undef.
1130 Elts.push_back(Undef);
1131 UndefElts.setBit(i);
1132 } else { // Otherwise, defined.
1133 Elts.push_back(Elt);
1137 // If we changed the constant, return it.
1138 Constant *NewCV = ConstantVector::get(Elts);
1139 return NewCV != C ? NewCV : nullptr;
1142 // Limit search depth.
1143 if (Depth == 10)
1144 return nullptr;
1146 if (!AllowMultipleUsers) {
1147 // If multiple users are using the root value, proceed with
1148 // simplification conservatively assuming that all elements
1149 // are needed.
1150 if (!V->hasOneUse()) {
1151 // Quit if we find multiple users of a non-root value though.
1152 // They'll be handled when it's their turn to be visited by
1153 // the main instcombine process.
1154 if (Depth != 0)
1155 // TODO: Just compute the UndefElts information recursively.
1156 return nullptr;
1158 // Conservatively assume that all elements are needed.
1159 DemandedElts = EltMask;
1163 Instruction *I = dyn_cast<Instruction>(V);
1164 if (!I) return nullptr; // Only analyze instructions.
1166 bool MadeChange = false;
1167 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1168 APInt Demanded, APInt &Undef) {
1169 auto *II = dyn_cast<IntrinsicInst>(Inst);
1170 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1171 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1172 if (II)
1173 II->setArgOperand(OpNum, V);
1174 else
1175 Inst->setOperand(OpNum, V);
1176 MadeChange = true;
1180 APInt UndefElts2(VWidth, 0);
1181 APInt UndefElts3(VWidth, 0);
1182 switch (I->getOpcode()) {
1183 default: break;
1185 case Instruction::GetElementPtr: {
1186 // The LangRef requires that struct geps have all constant indices. As
1187 // such, we can't convert any operand to partial undef.
1188 auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1189 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1190 I != E; I++)
1191 if (I.isStruct())
1192 return true;;
1193 return false;
1195 if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1196 break;
1198 // Conservatively track the demanded elements back through any vector
1199 // operands we may have. We know there must be at least one, or we
1200 // wouldn't have a vector result to get here. Note that we intentionally
1201 // merge the undef bits here since gepping with either an undef base or
1202 // index results in undef.
1203 for (unsigned i = 0; i < I->getNumOperands(); i++) {
1204 if (isa<UndefValue>(I->getOperand(i))) {
1205 // If the entire vector is undefined, just return this info.
1206 UndefElts = EltMask;
1207 return nullptr;
1209 if (I->getOperand(i)->getType()->isVectorTy()) {
1210 APInt UndefEltsOp(VWidth, 0);
1211 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1212 UndefElts |= UndefEltsOp;
1216 break;
1218 case Instruction::InsertElement: {
1219 // If this is a variable index, we don't know which element it overwrites.
1220 // demand exactly the same input as we produce.
1221 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1222 if (!Idx) {
1223 // Note that we can't propagate undef elt info, because we don't know
1224 // which elt is getting updated.
1225 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1226 break;
1229 // The element inserted overwrites whatever was there, so the input demanded
1230 // set is simpler than the output set.
1231 unsigned IdxNo = Idx->getZExtValue();
1232 APInt PreInsertDemandedElts = DemandedElts;
1233 if (IdxNo < VWidth)
1234 PreInsertDemandedElts.clearBit(IdxNo);
1236 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1238 // If this is inserting an element that isn't demanded, remove this
1239 // insertelement.
1240 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1241 Worklist.Add(I);
1242 return I->getOperand(0);
1245 // The inserted element is defined.
1246 UndefElts.clearBit(IdxNo);
1247 break;
1249 case Instruction::ShuffleVector: {
1250 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1251 unsigned LHSVWidth =
1252 Shuffle->getOperand(0)->getType()->getVectorNumElements();
1253 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1254 for (unsigned i = 0; i < VWidth; i++) {
1255 if (DemandedElts[i]) {
1256 unsigned MaskVal = Shuffle->getMaskValue(i);
1257 if (MaskVal != -1u) {
1258 assert(MaskVal < LHSVWidth * 2 &&
1259 "shufflevector mask index out of range!");
1260 if (MaskVal < LHSVWidth)
1261 LeftDemanded.setBit(MaskVal);
1262 else
1263 RightDemanded.setBit(MaskVal - LHSVWidth);
1268 APInt LHSUndefElts(LHSVWidth, 0);
1269 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1271 APInt RHSUndefElts(LHSVWidth, 0);
1272 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1274 bool NewUndefElts = false;
1275 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1276 unsigned RHSIdx = -1u, RHSValIdx = -1u;
1277 bool LHSUniform = true;
1278 bool RHSUniform = true;
1279 for (unsigned i = 0; i < VWidth; i++) {
1280 unsigned MaskVal = Shuffle->getMaskValue(i);
1281 if (MaskVal == -1u) {
1282 UndefElts.setBit(i);
1283 } else if (!DemandedElts[i]) {
1284 NewUndefElts = true;
1285 UndefElts.setBit(i);
1286 } else if (MaskVal < LHSVWidth) {
1287 if (LHSUndefElts[MaskVal]) {
1288 NewUndefElts = true;
1289 UndefElts.setBit(i);
1290 } else {
1291 LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1292 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1293 LHSUniform = LHSUniform && (MaskVal == i);
1295 } else {
1296 if (RHSUndefElts[MaskVal - LHSVWidth]) {
1297 NewUndefElts = true;
1298 UndefElts.setBit(i);
1299 } else {
1300 RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1301 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1302 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1307 // Try to transform shuffle with constant vector and single element from
1308 // this constant vector to single insertelement instruction.
1309 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1310 // insertelement V, C[ci], ci-n
1311 if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1312 Value *Op = nullptr;
1313 Constant *Value = nullptr;
1314 unsigned Idx = -1u;
1316 // Find constant vector with the single element in shuffle (LHS or RHS).
1317 if (LHSIdx < LHSVWidth && RHSUniform) {
1318 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1319 Op = Shuffle->getOperand(1);
1320 Value = CV->getOperand(LHSValIdx);
1321 Idx = LHSIdx;
1324 if (RHSIdx < LHSVWidth && LHSUniform) {
1325 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1326 Op = Shuffle->getOperand(0);
1327 Value = CV->getOperand(RHSValIdx);
1328 Idx = RHSIdx;
1331 // Found constant vector with single element - convert to insertelement.
1332 if (Op && Value) {
1333 Instruction *New = InsertElementInst::Create(
1334 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1335 Shuffle->getName());
1336 InsertNewInstWith(New, *Shuffle);
1337 return New;
1340 if (NewUndefElts) {
1341 // Add additional discovered undefs.
1342 SmallVector<Constant*, 16> Elts;
1343 for (unsigned i = 0; i < VWidth; ++i) {
1344 if (UndefElts[i])
1345 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1346 else
1347 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1348 Shuffle->getMaskValue(i)));
1350 I->setOperand(2, ConstantVector::get(Elts));
1351 MadeChange = true;
1353 break;
1355 case Instruction::Select: {
1356 // If this is a vector select, try to transform the select condition based
1357 // on the current demanded elements.
1358 SelectInst *Sel = cast<SelectInst>(I);
1359 if (Sel->getCondition()->getType()->isVectorTy()) {
1360 // TODO: We are not doing anything with UndefElts based on this call.
1361 // It is overwritten below based on the other select operands. If an
1362 // element of the select condition is known undef, then we are free to
1363 // choose the output value from either arm of the select. If we know that
1364 // one of those values is undef, then the output can be undef.
1365 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1368 // Next, see if we can transform the arms of the select.
1369 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1370 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1371 for (unsigned i = 0; i < VWidth; i++) {
1372 // isNullValue() always returns false when called on a ConstantExpr.
1373 // Skip constant expressions to avoid propagating incorrect information.
1374 Constant *CElt = CV->getAggregateElement(i);
1375 if (isa<ConstantExpr>(CElt))
1376 continue;
1377 // TODO: If a select condition element is undef, we can demand from
1378 // either side. If one side is known undef, choosing that side would
1379 // propagate undef.
1380 if (CElt->isNullValue())
1381 DemandedLHS.clearBit(i);
1382 else
1383 DemandedRHS.clearBit(i);
1387 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1388 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1390 // Output elements are undefined if the element from each arm is undefined.
1391 // TODO: This can be improved. See comment in select condition handling.
1392 UndefElts = UndefElts2 & UndefElts3;
1393 break;
1395 case Instruction::BitCast: {
1396 // Vector->vector casts only.
1397 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1398 if (!VTy) break;
1399 unsigned InVWidth = VTy->getNumElements();
1400 APInt InputDemandedElts(InVWidth, 0);
1401 UndefElts2 = APInt(InVWidth, 0);
1402 unsigned Ratio;
1404 if (VWidth == InVWidth) {
1405 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1406 // elements as are demanded of us.
1407 Ratio = 1;
1408 InputDemandedElts = DemandedElts;
1409 } else if ((VWidth % InVWidth) == 0) {
1410 // If the number of elements in the output is a multiple of the number of
1411 // elements in the input then an input element is live if any of the
1412 // corresponding output elements are live.
1413 Ratio = VWidth / InVWidth;
1414 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1415 if (DemandedElts[OutIdx])
1416 InputDemandedElts.setBit(OutIdx / Ratio);
1417 } else if ((InVWidth % VWidth) == 0) {
1418 // If the number of elements in the input is a multiple of the number of
1419 // elements in the output then an input element is live if the
1420 // corresponding output element is live.
1421 Ratio = InVWidth / VWidth;
1422 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1423 if (DemandedElts[InIdx / Ratio])
1424 InputDemandedElts.setBit(InIdx);
1425 } else {
1426 // Unsupported so far.
1427 break;
1430 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1432 if (VWidth == InVWidth) {
1433 UndefElts = UndefElts2;
1434 } else if ((VWidth % InVWidth) == 0) {
1435 // If the number of elements in the output is a multiple of the number of
1436 // elements in the input then an output element is undef if the
1437 // corresponding input element is undef.
1438 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1439 if (UndefElts2[OutIdx / Ratio])
1440 UndefElts.setBit(OutIdx);
1441 } else if ((InVWidth % VWidth) == 0) {
1442 // If the number of elements in the input is a multiple of the number of
1443 // elements in the output then an output element is undef if all of the
1444 // corresponding input elements are undef.
1445 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1446 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1447 if (SubUndef.countPopulation() == Ratio)
1448 UndefElts.setBit(OutIdx);
1450 } else {
1451 llvm_unreachable("Unimp");
1453 break;
1455 case Instruction::FPTrunc:
1456 case Instruction::FPExt:
1457 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1458 break;
1460 case Instruction::Call: {
1461 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1462 if (!II) break;
1463 switch (II->getIntrinsicID()) {
1464 case Intrinsic::masked_gather: // fallthrough
1465 case Intrinsic::masked_load: {
1466 // Subtlety: If we load from a pointer, the pointer must be valid
1467 // regardless of whether the element is demanded. Doing otherwise risks
1468 // segfaults which didn't exist in the original program.
1469 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
1470 DemandedPassThrough(DemandedElts);
1471 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1472 for (unsigned i = 0; i < VWidth; i++) {
1473 Constant *CElt = CV->getAggregateElement(i);
1474 if (CElt->isNullValue())
1475 DemandedPtrs.clearBit(i);
1476 else if (CElt->isAllOnesValue())
1477 DemandedPassThrough.clearBit(i);
1479 if (II->getIntrinsicID() == Intrinsic::masked_gather)
1480 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1481 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1483 // Output elements are undefined if the element from both sources are.
1484 // TODO: can strengthen via mask as well.
1485 UndefElts = UndefElts2 & UndefElts3;
1486 break;
1488 case Intrinsic::x86_xop_vfrcz_ss:
1489 case Intrinsic::x86_xop_vfrcz_sd:
1490 // The instructions for these intrinsics are speced to zero upper bits not
1491 // pass them through like other scalar intrinsics. So we shouldn't just
1492 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1493 // Instead we should return a zero vector.
1494 if (!DemandedElts[0]) {
1495 Worklist.Add(II);
1496 return ConstantAggregateZero::get(II->getType());
1499 // Only the lower element is used.
1500 DemandedElts = 1;
1501 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1503 // Only the lower element is undefined. The high elements are zero.
1504 UndefElts = UndefElts[0];
1505 break;
1507 // Unary scalar-as-vector operations that work column-wise.
1508 case Intrinsic::x86_sse_rcp_ss:
1509 case Intrinsic::x86_sse_rsqrt_ss:
1510 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1512 // If lowest element of a scalar op isn't used then use Arg0.
1513 if (!DemandedElts[0]) {
1514 Worklist.Add(II);
1515 return II->getArgOperand(0);
1517 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1518 // checks).
1519 break;
1521 // Binary scalar-as-vector operations that work column-wise. The high
1522 // elements come from operand 0. The low element is a function of both
1523 // operands.
1524 case Intrinsic::x86_sse_min_ss:
1525 case Intrinsic::x86_sse_max_ss:
1526 case Intrinsic::x86_sse_cmp_ss:
1527 case Intrinsic::x86_sse2_min_sd:
1528 case Intrinsic::x86_sse2_max_sd:
1529 case Intrinsic::x86_sse2_cmp_sd: {
1530 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1532 // If lowest element of a scalar op isn't used then use Arg0.
1533 if (!DemandedElts[0]) {
1534 Worklist.Add(II);
1535 return II->getArgOperand(0);
1538 // Only lower element is used for operand 1.
1539 DemandedElts = 1;
1540 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1542 // Lower element is undefined if both lower elements are undefined.
1543 // Consider things like undef&0. The result is known zero, not undef.
1544 if (!UndefElts2[0])
1545 UndefElts.clearBit(0);
1547 break;
1550 // Binary scalar-as-vector operations that work column-wise. The high
1551 // elements come from operand 0 and the low element comes from operand 1.
1552 case Intrinsic::x86_sse41_round_ss:
1553 case Intrinsic::x86_sse41_round_sd: {
1554 // Don't use the low element of operand 0.
1555 APInt DemandedElts2 = DemandedElts;
1556 DemandedElts2.clearBit(0);
1557 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
1559 // If lowest element of a scalar op isn't used then use Arg0.
1560 if (!DemandedElts[0]) {
1561 Worklist.Add(II);
1562 return II->getArgOperand(0);
1565 // Only lower element is used for operand 1.
1566 DemandedElts = 1;
1567 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1569 // Take the high undef elements from operand 0 and take the lower element
1570 // from operand 1.
1571 UndefElts.clearBit(0);
1572 UndefElts |= UndefElts2[0];
1573 break;
1576 // Three input scalar-as-vector operations that work column-wise. The high
1577 // elements come from operand 0 and the low element is a function of all
1578 // three inputs.
1579 case Intrinsic::x86_avx512_mask_add_ss_round:
1580 case Intrinsic::x86_avx512_mask_div_ss_round:
1581 case Intrinsic::x86_avx512_mask_mul_ss_round:
1582 case Intrinsic::x86_avx512_mask_sub_ss_round:
1583 case Intrinsic::x86_avx512_mask_max_ss_round:
1584 case Intrinsic::x86_avx512_mask_min_ss_round:
1585 case Intrinsic::x86_avx512_mask_add_sd_round:
1586 case Intrinsic::x86_avx512_mask_div_sd_round:
1587 case Intrinsic::x86_avx512_mask_mul_sd_round:
1588 case Intrinsic::x86_avx512_mask_sub_sd_round:
1589 case Intrinsic::x86_avx512_mask_max_sd_round:
1590 case Intrinsic::x86_avx512_mask_min_sd_round:
1591 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1593 // If lowest element of a scalar op isn't used then use Arg0.
1594 if (!DemandedElts[0]) {
1595 Worklist.Add(II);
1596 return II->getArgOperand(0);
1599 // Only lower element is used for operand 1 and 2.
1600 DemandedElts = 1;
1601 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1602 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
1604 // Lower element is undefined if all three lower elements are undefined.
1605 // Consider things like undef&0. The result is known zero, not undef.
1606 if (!UndefElts2[0] || !UndefElts3[0])
1607 UndefElts.clearBit(0);
1609 break;
1611 case Intrinsic::x86_sse2_packssdw_128:
1612 case Intrinsic::x86_sse2_packsswb_128:
1613 case Intrinsic::x86_sse2_packuswb_128:
1614 case Intrinsic::x86_sse41_packusdw:
1615 case Intrinsic::x86_avx2_packssdw:
1616 case Intrinsic::x86_avx2_packsswb:
1617 case Intrinsic::x86_avx2_packusdw:
1618 case Intrinsic::x86_avx2_packuswb:
1619 case Intrinsic::x86_avx512_packssdw_512:
1620 case Intrinsic::x86_avx512_packsswb_512:
1621 case Intrinsic::x86_avx512_packusdw_512:
1622 case Intrinsic::x86_avx512_packuswb_512: {
1623 auto *Ty0 = II->getArgOperand(0)->getType();
1624 unsigned InnerVWidth = Ty0->getVectorNumElements();
1625 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1627 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1628 unsigned VWidthPerLane = VWidth / NumLanes;
1629 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1631 // Per lane, pack the elements of the first input and then the second.
1632 // e.g.
1633 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1634 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1635 for (int OpNum = 0; OpNum != 2; ++OpNum) {
1636 APInt OpDemandedElts(InnerVWidth, 0);
1637 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1638 unsigned LaneIdx = Lane * VWidthPerLane;
1639 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1640 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1641 if (DemandedElts[Idx])
1642 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1646 // Demand elements from the operand.
1647 APInt OpUndefElts(InnerVWidth, 0);
1648 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
1650 // Pack the operand's UNDEF elements, one lane at a time.
1651 OpUndefElts = OpUndefElts.zext(VWidth);
1652 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1653 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1654 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1655 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1656 UndefElts |= LaneElts;
1659 break;
1662 // PSHUFB
1663 case Intrinsic::x86_ssse3_pshuf_b_128:
1664 case Intrinsic::x86_avx2_pshuf_b:
1665 case Intrinsic::x86_avx512_pshuf_b_512:
1666 // PERMILVAR
1667 case Intrinsic::x86_avx_vpermilvar_ps:
1668 case Intrinsic::x86_avx_vpermilvar_ps_256:
1669 case Intrinsic::x86_avx512_vpermilvar_ps_512:
1670 case Intrinsic::x86_avx_vpermilvar_pd:
1671 case Intrinsic::x86_avx_vpermilvar_pd_256:
1672 case Intrinsic::x86_avx512_vpermilvar_pd_512:
1673 // PERMV
1674 case Intrinsic::x86_avx2_permd:
1675 case Intrinsic::x86_avx2_permps: {
1676 simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
1677 break;
1680 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1681 // in an undefined state.
1682 case Intrinsic::x86_sse4a_extrq:
1683 case Intrinsic::x86_sse4a_extrqi:
1684 case Intrinsic::x86_sse4a_insertq:
1685 case Intrinsic::x86_sse4a_insertqi:
1686 UndefElts.setHighBits(VWidth / 2);
1687 break;
1688 case Intrinsic::amdgcn_buffer_load:
1689 case Intrinsic::amdgcn_buffer_load_format:
1690 case Intrinsic::amdgcn_raw_buffer_load:
1691 case Intrinsic::amdgcn_raw_buffer_load_format:
1692 case Intrinsic::amdgcn_raw_tbuffer_load:
1693 case Intrinsic::amdgcn_struct_buffer_load:
1694 case Intrinsic::amdgcn_struct_buffer_load_format:
1695 case Intrinsic::amdgcn_struct_tbuffer_load:
1696 case Intrinsic::amdgcn_tbuffer_load:
1697 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
1698 default: {
1699 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
1700 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
1702 break;
1704 } // switch on IntrinsicID
1705 break;
1706 } // case Call
1707 } // switch on Opcode
1709 // TODO: We bail completely on integer div/rem and shifts because they have
1710 // UB/poison potential, but that should be refined.
1711 BinaryOperator *BO;
1712 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1713 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1714 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1716 // Any change to an instruction with potential poison must clear those flags
1717 // because we can not guarantee those constraints now. Other analysis may
1718 // determine that it is safe to re-apply the flags.
1719 if (MadeChange)
1720 BO->dropPoisonGeneratingFlags();
1722 // Output elements are undefined if both are undefined. Consider things
1723 // like undef & 0. The result is known zero, not undef.
1724 UndefElts &= UndefElts2;
1727 // If we've proven all of the lanes undef, return an undef value.
1728 // TODO: Intersect w/demanded lanes
1729 if (UndefElts.isAllOnesValue())
1730 return UndefValue::get(I->getType());;
1732 return MadeChange ? I : nullptr;