[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / Instrumentation / HWAddressSanitizer.cpp
blobf87132ee475857d9f34d9b013c1ea5ee3458b64a
1 //===- HWAddressSanitizer.cpp - detector of uninitialized reads -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of HWAddressSanitizer, an address sanity checker
11 /// based on tagged addressing.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
15 #include "llvm/ADT/MapVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Instrumentation.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/ModuleUtils.h"
49 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
50 #include <sstream>
52 using namespace llvm;
54 #define DEBUG_TYPE "hwasan"
56 static const char *const kHwasanModuleCtorName = "hwasan.module_ctor";
57 static const char *const kHwasanNoteName = "hwasan.note";
58 static const char *const kHwasanInitName = "__hwasan_init";
59 static const char *const kHwasanPersonalityThunkName =
60 "__hwasan_personality_thunk";
62 static const char *const kHwasanShadowMemoryDynamicAddress =
63 "__hwasan_shadow_memory_dynamic_address";
65 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
66 static const size_t kNumberOfAccessSizes = 5;
68 static const size_t kDefaultShadowScale = 4;
69 static const uint64_t kDynamicShadowSentinel =
70 std::numeric_limits<uint64_t>::max();
71 static const unsigned kPointerTagShift = 56;
73 static const unsigned kShadowBaseAlignment = 32;
75 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
76 "hwasan-memory-access-callback-prefix",
77 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
78 cl::init("__hwasan_"));
80 static cl::opt<bool>
81 ClInstrumentWithCalls("hwasan-instrument-with-calls",
82 cl::desc("instrument reads and writes with callbacks"),
83 cl::Hidden, cl::init(false));
85 static cl::opt<bool> ClInstrumentReads("hwasan-instrument-reads",
86 cl::desc("instrument read instructions"),
87 cl::Hidden, cl::init(true));
89 static cl::opt<bool> ClInstrumentWrites(
90 "hwasan-instrument-writes", cl::desc("instrument write instructions"),
91 cl::Hidden, cl::init(true));
93 static cl::opt<bool> ClInstrumentAtomics(
94 "hwasan-instrument-atomics",
95 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
96 cl::init(true));
98 static cl::opt<bool> ClRecover(
99 "hwasan-recover",
100 cl::desc("Enable recovery mode (continue-after-error)."),
101 cl::Hidden, cl::init(false));
103 static cl::opt<bool> ClInstrumentStack("hwasan-instrument-stack",
104 cl::desc("instrument stack (allocas)"),
105 cl::Hidden, cl::init(true));
107 static cl::opt<bool> ClUARRetagToZero(
108 "hwasan-uar-retag-to-zero",
109 cl::desc("Clear alloca tags before returning from the function to allow "
110 "non-instrumented and instrumented function calls mix. When set "
111 "to false, allocas are retagged before returning from the "
112 "function to detect use after return."),
113 cl::Hidden, cl::init(true));
115 static cl::opt<bool> ClGenerateTagsWithCalls(
116 "hwasan-generate-tags-with-calls",
117 cl::desc("generate new tags with runtime library calls"), cl::Hidden,
118 cl::init(false));
120 static cl::opt<bool> ClGlobals("hwasan-globals", cl::desc("Instrument globals"),
121 cl::Hidden, cl::init(false));
123 static cl::opt<int> ClMatchAllTag(
124 "hwasan-match-all-tag",
125 cl::desc("don't report bad accesses via pointers with this tag"),
126 cl::Hidden, cl::init(-1));
128 static cl::opt<bool> ClEnableKhwasan(
129 "hwasan-kernel",
130 cl::desc("Enable KernelHWAddressSanitizer instrumentation"),
131 cl::Hidden, cl::init(false));
133 // These flags allow to change the shadow mapping and control how shadow memory
134 // is accessed. The shadow mapping looks like:
135 // Shadow = (Mem >> scale) + offset
137 static cl::opt<uint64_t>
138 ClMappingOffset("hwasan-mapping-offset",
139 cl::desc("HWASan shadow mapping offset [EXPERIMENTAL]"),
140 cl::Hidden, cl::init(0));
142 static cl::opt<bool>
143 ClWithIfunc("hwasan-with-ifunc",
144 cl::desc("Access dynamic shadow through an ifunc global on "
145 "platforms that support this"),
146 cl::Hidden, cl::init(false));
148 static cl::opt<bool> ClWithTls(
149 "hwasan-with-tls",
150 cl::desc("Access dynamic shadow through an thread-local pointer on "
151 "platforms that support this"),
152 cl::Hidden, cl::init(true));
154 static cl::opt<bool>
155 ClRecordStackHistory("hwasan-record-stack-history",
156 cl::desc("Record stack frames with tagged allocations "
157 "in a thread-local ring buffer"),
158 cl::Hidden, cl::init(true));
159 static cl::opt<bool>
160 ClInstrumentMemIntrinsics("hwasan-instrument-mem-intrinsics",
161 cl::desc("instrument memory intrinsics"),
162 cl::Hidden, cl::init(true));
164 static cl::opt<bool>
165 ClInstrumentLandingPads("hwasan-instrument-landing-pads",
166 cl::desc("instrument landing pads"), cl::Hidden,
167 cl::init(false), cl::ZeroOrMore);
169 static cl::opt<bool> ClUseShortGranules(
170 "hwasan-use-short-granules",
171 cl::desc("use short granules in allocas and outlined checks"), cl::Hidden,
172 cl::init(false), cl::ZeroOrMore);
174 static cl::opt<bool> ClInstrumentPersonalityFunctions(
175 "hwasan-instrument-personality-functions",
176 cl::desc("instrument personality functions"), cl::Hidden, cl::init(false),
177 cl::ZeroOrMore);
179 static cl::opt<bool> ClInlineAllChecks("hwasan-inline-all-checks",
180 cl::desc("inline all checks"),
181 cl::Hidden, cl::init(false));
183 namespace {
185 /// An instrumentation pass implementing detection of addressability bugs
186 /// using tagged pointers.
187 class HWAddressSanitizer {
188 public:
189 explicit HWAddressSanitizer(Module &M, bool CompileKernel = false,
190 bool Recover = false) : M(M) {
191 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
192 this->CompileKernel = ClEnableKhwasan.getNumOccurrences() > 0 ?
193 ClEnableKhwasan : CompileKernel;
195 initializeModule();
198 bool sanitizeFunction(Function &F);
199 void initializeModule();
201 void initializeCallbacks(Module &M);
203 Value *getDynamicShadowIfunc(IRBuilder<> &IRB);
204 Value *getDynamicShadowNonTls(IRBuilder<> &IRB);
206 void untagPointerOperand(Instruction *I, Value *Addr);
207 Value *shadowBase();
208 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
209 void instrumentMemAccessInline(Value *Ptr, bool IsWrite,
210 unsigned AccessSizeIndex,
211 Instruction *InsertBefore);
212 void instrumentMemIntrinsic(MemIntrinsic *MI);
213 bool instrumentMemAccess(Instruction *I);
214 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
215 uint64_t *TypeSize, unsigned *Alignment,
216 Value **MaybeMask);
218 bool isInterestingAlloca(const AllocaInst &AI);
219 bool tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag, size_t Size);
220 Value *tagPointer(IRBuilder<> &IRB, Type *Ty, Value *PtrLong, Value *Tag);
221 Value *untagPointer(IRBuilder<> &IRB, Value *PtrLong);
222 bool instrumentStack(
223 SmallVectorImpl<AllocaInst *> &Allocas,
224 DenseMap<AllocaInst *, std::vector<DbgDeclareInst *>> &AllocaDeclareMap,
225 SmallVectorImpl<Instruction *> &RetVec, Value *StackTag);
226 Value *readRegister(IRBuilder<> &IRB, StringRef Name);
227 bool instrumentLandingPads(SmallVectorImpl<Instruction *> &RetVec);
228 Value *getNextTagWithCall(IRBuilder<> &IRB);
229 Value *getStackBaseTag(IRBuilder<> &IRB);
230 Value *getAllocaTag(IRBuilder<> &IRB, Value *StackTag, AllocaInst *AI,
231 unsigned AllocaNo);
232 Value *getUARTag(IRBuilder<> &IRB, Value *StackTag);
234 Value *getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty);
235 void emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord);
237 void instrumentGlobal(GlobalVariable *GV, uint8_t Tag);
238 void instrumentGlobals();
240 void instrumentPersonalityFunctions();
242 private:
243 LLVMContext *C;
244 Module &M;
245 Triple TargetTriple;
246 FunctionCallee HWAsanMemmove, HWAsanMemcpy, HWAsanMemset;
247 FunctionCallee HWAsanHandleVfork;
249 /// This struct defines the shadow mapping using the rule:
250 /// shadow = (mem >> Scale) + Offset.
251 /// If InGlobal is true, then
252 /// extern char __hwasan_shadow[];
253 /// shadow = (mem >> Scale) + &__hwasan_shadow
254 /// If InTls is true, then
255 /// extern char *__hwasan_tls;
256 /// shadow = (mem>>Scale) + align_up(__hwasan_shadow, kShadowBaseAlignment)
257 struct ShadowMapping {
258 int Scale;
259 uint64_t Offset;
260 bool InGlobal;
261 bool InTls;
263 void init(Triple &TargetTriple);
264 unsigned getObjectAlignment() const { return 1U << Scale; }
266 ShadowMapping Mapping;
268 Type *VoidTy = Type::getVoidTy(M.getContext());
269 Type *IntptrTy;
270 Type *Int8PtrTy;
271 Type *Int8Ty;
272 Type *Int32Ty;
273 Type *Int64Ty = Type::getInt64Ty(M.getContext());
275 bool CompileKernel;
276 bool Recover;
277 bool UseShortGranules;
278 bool InstrumentLandingPads;
280 Function *HwasanCtorFunction;
282 FunctionCallee HwasanMemoryAccessCallback[2][kNumberOfAccessSizes];
283 FunctionCallee HwasanMemoryAccessCallbackSized[2];
285 FunctionCallee HwasanTagMemoryFunc;
286 FunctionCallee HwasanGenerateTagFunc;
287 FunctionCallee HwasanThreadEnterFunc;
289 Constant *ShadowGlobal;
291 Value *LocalDynamicShadow = nullptr;
292 Value *StackBaseTag = nullptr;
293 GlobalValue *ThreadPtrGlobal = nullptr;
296 class HWAddressSanitizerLegacyPass : public FunctionPass {
297 public:
298 // Pass identification, replacement for typeid.
299 static char ID;
301 explicit HWAddressSanitizerLegacyPass(bool CompileKernel = false,
302 bool Recover = false)
303 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover) {}
305 StringRef getPassName() const override { return "HWAddressSanitizer"; }
307 bool doInitialization(Module &M) override {
308 HWASan = std::make_unique<HWAddressSanitizer>(M, CompileKernel, Recover);
309 return true;
312 bool runOnFunction(Function &F) override {
313 return HWASan->sanitizeFunction(F);
316 bool doFinalization(Module &M) override {
317 HWASan.reset();
318 return false;
321 private:
322 std::unique_ptr<HWAddressSanitizer> HWASan;
323 bool CompileKernel;
324 bool Recover;
327 } // end anonymous namespace
329 char HWAddressSanitizerLegacyPass::ID = 0;
331 INITIALIZE_PASS_BEGIN(
332 HWAddressSanitizerLegacyPass, "hwasan",
333 "HWAddressSanitizer: detect memory bugs using tagged addressing.", false,
334 false)
335 INITIALIZE_PASS_END(
336 HWAddressSanitizerLegacyPass, "hwasan",
337 "HWAddressSanitizer: detect memory bugs using tagged addressing.", false,
338 false)
340 FunctionPass *llvm::createHWAddressSanitizerLegacyPassPass(bool CompileKernel,
341 bool Recover) {
342 assert(!CompileKernel || Recover);
343 return new HWAddressSanitizerLegacyPass(CompileKernel, Recover);
346 HWAddressSanitizerPass::HWAddressSanitizerPass(bool CompileKernel, bool Recover)
347 : CompileKernel(CompileKernel), Recover(Recover) {}
349 PreservedAnalyses HWAddressSanitizerPass::run(Module &M,
350 ModuleAnalysisManager &MAM) {
351 HWAddressSanitizer HWASan(M, CompileKernel, Recover);
352 bool Modified = false;
353 for (Function &F : M)
354 Modified |= HWASan.sanitizeFunction(F);
355 if (Modified)
356 return PreservedAnalyses::none();
357 return PreservedAnalyses::all();
360 /// Module-level initialization.
362 /// inserts a call to __hwasan_init to the module's constructor list.
363 void HWAddressSanitizer::initializeModule() {
364 LLVM_DEBUG(dbgs() << "Init " << M.getName() << "\n");
365 auto &DL = M.getDataLayout();
367 TargetTriple = Triple(M.getTargetTriple());
369 Mapping.init(TargetTriple);
371 C = &(M.getContext());
372 IRBuilder<> IRB(*C);
373 IntptrTy = IRB.getIntPtrTy(DL);
374 Int8PtrTy = IRB.getInt8PtrTy();
375 Int8Ty = IRB.getInt8Ty();
376 Int32Ty = IRB.getInt32Ty();
378 HwasanCtorFunction = nullptr;
380 // Older versions of Android do not have the required runtime support for
381 // short granules, global or personality function instrumentation. On other
382 // platforms we currently require using the latest version of the runtime.
383 bool NewRuntime =
384 !TargetTriple.isAndroid() || !TargetTriple.isAndroidVersionLT(30);
386 UseShortGranules =
387 ClUseShortGranules.getNumOccurrences() ? ClUseShortGranules : NewRuntime;
389 // If we don't have personality function support, fall back to landing pads.
390 InstrumentLandingPads = ClInstrumentLandingPads.getNumOccurrences()
391 ? ClInstrumentLandingPads
392 : !NewRuntime;
394 if (!CompileKernel) {
395 std::tie(HwasanCtorFunction, std::ignore) =
396 getOrCreateSanitizerCtorAndInitFunctions(
397 M, kHwasanModuleCtorName, kHwasanInitName,
398 /*InitArgTypes=*/{},
399 /*InitArgs=*/{},
400 // This callback is invoked when the functions are created the first
401 // time. Hook them into the global ctors list in that case:
402 [&](Function *Ctor, FunctionCallee) {
403 Comdat *CtorComdat = M.getOrInsertComdat(kHwasanModuleCtorName);
404 Ctor->setComdat(CtorComdat);
405 appendToGlobalCtors(M, Ctor, 0, Ctor);
408 bool InstrumentGlobals =
409 ClGlobals.getNumOccurrences() ? ClGlobals : NewRuntime;
410 if (InstrumentGlobals)
411 instrumentGlobals();
413 bool InstrumentPersonalityFunctions =
414 ClInstrumentPersonalityFunctions.getNumOccurrences()
415 ? ClInstrumentPersonalityFunctions
416 : NewRuntime;
417 if (InstrumentPersonalityFunctions)
418 instrumentPersonalityFunctions();
421 if (!TargetTriple.isAndroid()) {
422 Constant *C = M.getOrInsertGlobal("__hwasan_tls", IntptrTy, [&] {
423 auto *GV = new GlobalVariable(M, IntptrTy, /*isConstant=*/false,
424 GlobalValue::ExternalLinkage, nullptr,
425 "__hwasan_tls", nullptr,
426 GlobalVariable::InitialExecTLSModel);
427 appendToCompilerUsed(M, GV);
428 return GV;
430 ThreadPtrGlobal = cast<GlobalVariable>(C);
434 void HWAddressSanitizer::initializeCallbacks(Module &M) {
435 IRBuilder<> IRB(*C);
436 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
437 const std::string TypeStr = AccessIsWrite ? "store" : "load";
438 const std::string EndingStr = Recover ? "_noabort" : "";
440 HwasanMemoryAccessCallbackSized[AccessIsWrite] = M.getOrInsertFunction(
441 ClMemoryAccessCallbackPrefix + TypeStr + "N" + EndingStr,
442 FunctionType::get(IRB.getVoidTy(), {IntptrTy, IntptrTy}, false));
444 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
445 AccessSizeIndex++) {
446 HwasanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
447 M.getOrInsertFunction(
448 ClMemoryAccessCallbackPrefix + TypeStr +
449 itostr(1ULL << AccessSizeIndex) + EndingStr,
450 FunctionType::get(IRB.getVoidTy(), {IntptrTy}, false));
454 HwasanTagMemoryFunc = M.getOrInsertFunction(
455 "__hwasan_tag_memory", IRB.getVoidTy(), Int8PtrTy, Int8Ty, IntptrTy);
456 HwasanGenerateTagFunc =
457 M.getOrInsertFunction("__hwasan_generate_tag", Int8Ty);
459 ShadowGlobal = M.getOrInsertGlobal("__hwasan_shadow",
460 ArrayType::get(IRB.getInt8Ty(), 0));
462 const std::string MemIntrinCallbackPrefix =
463 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
464 HWAsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
465 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
466 IRB.getInt8PtrTy(), IntptrTy);
467 HWAsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
468 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
469 IRB.getInt8PtrTy(), IntptrTy);
470 HWAsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
471 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
472 IRB.getInt32Ty(), IntptrTy);
474 HWAsanHandleVfork =
475 M.getOrInsertFunction("__hwasan_handle_vfork", IRB.getVoidTy(), IntptrTy);
477 HwasanThreadEnterFunc =
478 M.getOrInsertFunction("__hwasan_thread_enter", IRB.getVoidTy());
481 Value *HWAddressSanitizer::getDynamicShadowIfunc(IRBuilder<> &IRB) {
482 // An empty inline asm with input reg == output reg.
483 // An opaque no-op cast, basically.
484 InlineAsm *Asm = InlineAsm::get(
485 FunctionType::get(Int8PtrTy, {ShadowGlobal->getType()}, false),
486 StringRef(""), StringRef("=r,0"),
487 /*hasSideEffects=*/false);
488 return IRB.CreateCall(Asm, {ShadowGlobal}, ".hwasan.shadow");
491 Value *HWAddressSanitizer::getDynamicShadowNonTls(IRBuilder<> &IRB) {
492 // Generate code only when dynamic addressing is needed.
493 if (Mapping.Offset != kDynamicShadowSentinel)
494 return nullptr;
496 if (Mapping.InGlobal) {
497 return getDynamicShadowIfunc(IRB);
498 } else {
499 Value *GlobalDynamicAddress =
500 IRB.GetInsertBlock()->getParent()->getParent()->getOrInsertGlobal(
501 kHwasanShadowMemoryDynamicAddress, Int8PtrTy);
502 return IRB.CreateLoad(Int8PtrTy, GlobalDynamicAddress);
506 Value *HWAddressSanitizer::isInterestingMemoryAccess(Instruction *I,
507 bool *IsWrite,
508 uint64_t *TypeSize,
509 unsigned *Alignment,
510 Value **MaybeMask) {
511 // Skip memory accesses inserted by another instrumentation.
512 if (I->hasMetadata("nosanitize")) return nullptr;
514 // Do not instrument the load fetching the dynamic shadow address.
515 if (LocalDynamicShadow == I)
516 return nullptr;
518 Value *PtrOperand = nullptr;
519 const DataLayout &DL = I->getModule()->getDataLayout();
520 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
521 if (!ClInstrumentReads) return nullptr;
522 *IsWrite = false;
523 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
524 *Alignment = LI->getAlignment();
525 PtrOperand = LI->getPointerOperand();
526 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
527 if (!ClInstrumentWrites) return nullptr;
528 *IsWrite = true;
529 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
530 *Alignment = SI->getAlignment();
531 PtrOperand = SI->getPointerOperand();
532 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
533 if (!ClInstrumentAtomics) return nullptr;
534 *IsWrite = true;
535 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
536 *Alignment = 0;
537 PtrOperand = RMW->getPointerOperand();
538 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
539 if (!ClInstrumentAtomics) return nullptr;
540 *IsWrite = true;
541 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
542 *Alignment = 0;
543 PtrOperand = XCHG->getPointerOperand();
546 if (PtrOperand) {
547 // Do not instrument accesses from different address spaces; we cannot deal
548 // with them.
549 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
550 if (PtrTy->getPointerAddressSpace() != 0)
551 return nullptr;
553 // Ignore swifterror addresses.
554 // swifterror memory addresses are mem2reg promoted by instruction
555 // selection. As such they cannot have regular uses like an instrumentation
556 // function and it makes no sense to track them as memory.
557 if (PtrOperand->isSwiftError())
558 return nullptr;
561 return PtrOperand;
564 static unsigned getPointerOperandIndex(Instruction *I) {
565 if (LoadInst *LI = dyn_cast<LoadInst>(I))
566 return LI->getPointerOperandIndex();
567 if (StoreInst *SI = dyn_cast<StoreInst>(I))
568 return SI->getPointerOperandIndex();
569 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I))
570 return RMW->getPointerOperandIndex();
571 if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I))
572 return XCHG->getPointerOperandIndex();
573 report_fatal_error("Unexpected instruction");
574 return -1;
577 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
578 size_t Res = countTrailingZeros(TypeSize / 8);
579 assert(Res < kNumberOfAccessSizes);
580 return Res;
583 void HWAddressSanitizer::untagPointerOperand(Instruction *I, Value *Addr) {
584 if (TargetTriple.isAArch64())
585 return;
587 IRBuilder<> IRB(I);
588 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
589 Value *UntaggedPtr =
590 IRB.CreateIntToPtr(untagPointer(IRB, AddrLong), Addr->getType());
591 I->setOperand(getPointerOperandIndex(I), UntaggedPtr);
594 Value *HWAddressSanitizer::shadowBase() {
595 if (LocalDynamicShadow)
596 return LocalDynamicShadow;
597 return ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, Mapping.Offset),
598 Int8PtrTy);
601 Value *HWAddressSanitizer::memToShadow(Value *Mem, IRBuilder<> &IRB) {
602 // Mem >> Scale
603 Value *Shadow = IRB.CreateLShr(Mem, Mapping.Scale);
604 if (Mapping.Offset == 0)
605 return IRB.CreateIntToPtr(Shadow, Int8PtrTy);
606 // (Mem >> Scale) + Offset
607 return IRB.CreateGEP(Int8Ty, shadowBase(), Shadow);
610 void HWAddressSanitizer::instrumentMemAccessInline(Value *Ptr, bool IsWrite,
611 unsigned AccessSizeIndex,
612 Instruction *InsertBefore) {
613 const int64_t AccessInfo = Recover * 0x20 + IsWrite * 0x10 + AccessSizeIndex;
614 IRBuilder<> IRB(InsertBefore);
616 if (!ClInlineAllChecks && TargetTriple.isAArch64() &&
617 TargetTriple.isOSBinFormatELF() && !Recover) {
618 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
619 Ptr = IRB.CreateBitCast(Ptr, Int8PtrTy);
620 IRB.CreateCall(Intrinsic::getDeclaration(
621 M, UseShortGranules
622 ? Intrinsic::hwasan_check_memaccess_shortgranules
623 : Intrinsic::hwasan_check_memaccess),
624 {shadowBase(), Ptr, ConstantInt::get(Int32Ty, AccessInfo)});
625 return;
628 Value *PtrLong = IRB.CreatePointerCast(Ptr, IntptrTy);
629 Value *PtrTag = IRB.CreateTrunc(IRB.CreateLShr(PtrLong, kPointerTagShift),
630 IRB.getInt8Ty());
631 Value *AddrLong = untagPointer(IRB, PtrLong);
632 Value *Shadow = memToShadow(AddrLong, IRB);
633 Value *MemTag = IRB.CreateLoad(Int8Ty, Shadow);
634 Value *TagMismatch = IRB.CreateICmpNE(PtrTag, MemTag);
636 int matchAllTag = ClMatchAllTag.getNumOccurrences() > 0 ?
637 ClMatchAllTag : (CompileKernel ? 0xFF : -1);
638 if (matchAllTag != -1) {
639 Value *TagNotIgnored = IRB.CreateICmpNE(PtrTag,
640 ConstantInt::get(PtrTag->getType(), matchAllTag));
641 TagMismatch = IRB.CreateAnd(TagMismatch, TagNotIgnored);
644 Instruction *CheckTerm =
645 SplitBlockAndInsertIfThen(TagMismatch, InsertBefore, false,
646 MDBuilder(*C).createBranchWeights(1, 100000));
648 IRB.SetInsertPoint(CheckTerm);
649 Value *OutOfShortGranuleTagRange =
650 IRB.CreateICmpUGT(MemTag, ConstantInt::get(Int8Ty, 15));
651 Instruction *CheckFailTerm =
652 SplitBlockAndInsertIfThen(OutOfShortGranuleTagRange, CheckTerm, !Recover,
653 MDBuilder(*C).createBranchWeights(1, 100000));
655 IRB.SetInsertPoint(CheckTerm);
656 Value *PtrLowBits = IRB.CreateTrunc(IRB.CreateAnd(PtrLong, 15), Int8Ty);
657 PtrLowBits = IRB.CreateAdd(
658 PtrLowBits, ConstantInt::get(Int8Ty, (1 << AccessSizeIndex) - 1));
659 Value *PtrLowBitsOOB = IRB.CreateICmpUGE(PtrLowBits, MemTag);
660 SplitBlockAndInsertIfThen(PtrLowBitsOOB, CheckTerm, false,
661 MDBuilder(*C).createBranchWeights(1, 100000),
662 nullptr, nullptr, CheckFailTerm->getParent());
664 IRB.SetInsertPoint(CheckTerm);
665 Value *InlineTagAddr = IRB.CreateOr(AddrLong, 15);
666 InlineTagAddr = IRB.CreateIntToPtr(InlineTagAddr, Int8PtrTy);
667 Value *InlineTag = IRB.CreateLoad(Int8Ty, InlineTagAddr);
668 Value *InlineTagMismatch = IRB.CreateICmpNE(PtrTag, InlineTag);
669 SplitBlockAndInsertIfThen(InlineTagMismatch, CheckTerm, false,
670 MDBuilder(*C).createBranchWeights(1, 100000),
671 nullptr, nullptr, CheckFailTerm->getParent());
673 IRB.SetInsertPoint(CheckFailTerm);
674 InlineAsm *Asm;
675 switch (TargetTriple.getArch()) {
676 case Triple::x86_64:
677 // The signal handler will find the data address in rdi.
678 Asm = InlineAsm::get(
679 FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
680 "int3\nnopl " + itostr(0x40 + AccessInfo) + "(%rax)",
681 "{rdi}",
682 /*hasSideEffects=*/true);
683 break;
684 case Triple::aarch64:
685 case Triple::aarch64_be:
686 // The signal handler will find the data address in x0.
687 Asm = InlineAsm::get(
688 FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
689 "brk #" + itostr(0x900 + AccessInfo),
690 "{x0}",
691 /*hasSideEffects=*/true);
692 break;
693 default:
694 report_fatal_error("unsupported architecture");
696 IRB.CreateCall(Asm, PtrLong);
697 if (Recover)
698 cast<BranchInst>(CheckFailTerm)->setSuccessor(0, CheckTerm->getParent());
701 void HWAddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
702 IRBuilder<> IRB(MI);
703 if (isa<MemTransferInst>(MI)) {
704 IRB.CreateCall(
705 isa<MemMoveInst>(MI) ? HWAsanMemmove : HWAsanMemcpy,
706 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
707 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
708 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
709 } else if (isa<MemSetInst>(MI)) {
710 IRB.CreateCall(
711 HWAsanMemset,
712 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
713 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
714 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
716 MI->eraseFromParent();
719 bool HWAddressSanitizer::instrumentMemAccess(Instruction *I) {
720 LLVM_DEBUG(dbgs() << "Instrumenting: " << *I << "\n");
721 bool IsWrite = false;
722 unsigned Alignment = 0;
723 uint64_t TypeSize = 0;
724 Value *MaybeMask = nullptr;
726 if (ClInstrumentMemIntrinsics && isa<MemIntrinsic>(I)) {
727 instrumentMemIntrinsic(cast<MemIntrinsic>(I));
728 return true;
731 Value *Addr =
732 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
734 if (!Addr)
735 return false;
737 if (MaybeMask)
738 return false; //FIXME
740 IRBuilder<> IRB(I);
741 if (isPowerOf2_64(TypeSize) &&
742 (TypeSize / 8 <= (1UL << (kNumberOfAccessSizes - 1))) &&
743 (Alignment >= (1UL << Mapping.Scale) || Alignment == 0 ||
744 Alignment >= TypeSize / 8)) {
745 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
746 if (ClInstrumentWithCalls) {
747 IRB.CreateCall(HwasanMemoryAccessCallback[IsWrite][AccessSizeIndex],
748 IRB.CreatePointerCast(Addr, IntptrTy));
749 } else {
750 instrumentMemAccessInline(Addr, IsWrite, AccessSizeIndex, I);
752 } else {
753 IRB.CreateCall(HwasanMemoryAccessCallbackSized[IsWrite],
754 {IRB.CreatePointerCast(Addr, IntptrTy),
755 ConstantInt::get(IntptrTy, TypeSize / 8)});
757 untagPointerOperand(I, Addr);
759 return true;
762 static uint64_t getAllocaSizeInBytes(const AllocaInst &AI) {
763 uint64_t ArraySize = 1;
764 if (AI.isArrayAllocation()) {
765 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
766 assert(CI && "non-constant array size");
767 ArraySize = CI->getZExtValue();
769 Type *Ty = AI.getAllocatedType();
770 uint64_t SizeInBytes = AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
771 return SizeInBytes * ArraySize;
774 bool HWAddressSanitizer::tagAlloca(IRBuilder<> &IRB, AllocaInst *AI,
775 Value *Tag, size_t Size) {
776 size_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment());
777 if (!UseShortGranules)
778 Size = AlignedSize;
780 Value *JustTag = IRB.CreateTrunc(Tag, IRB.getInt8Ty());
781 if (ClInstrumentWithCalls) {
782 IRB.CreateCall(HwasanTagMemoryFunc,
783 {IRB.CreatePointerCast(AI, Int8PtrTy), JustTag,
784 ConstantInt::get(IntptrTy, AlignedSize)});
785 } else {
786 size_t ShadowSize = Size >> Mapping.Scale;
787 Value *ShadowPtr = memToShadow(IRB.CreatePointerCast(AI, IntptrTy), IRB);
788 // If this memset is not inlined, it will be intercepted in the hwasan
789 // runtime library. That's OK, because the interceptor skips the checks if
790 // the address is in the shadow region.
791 // FIXME: the interceptor is not as fast as real memset. Consider lowering
792 // llvm.memset right here into either a sequence of stores, or a call to
793 // hwasan_tag_memory.
794 if (ShadowSize)
795 IRB.CreateMemSet(ShadowPtr, JustTag, ShadowSize, /*Align=*/1);
796 if (Size != AlignedSize) {
797 IRB.CreateStore(
798 ConstantInt::get(Int8Ty, Size % Mapping.getObjectAlignment()),
799 IRB.CreateConstGEP1_32(Int8Ty, ShadowPtr, ShadowSize));
800 IRB.CreateStore(JustTag, IRB.CreateConstGEP1_32(
801 Int8Ty, IRB.CreateBitCast(AI, Int8PtrTy),
802 AlignedSize - 1));
805 return true;
808 static unsigned RetagMask(unsigned AllocaNo) {
809 // A list of 8-bit numbers that have at most one run of non-zero bits.
810 // x = x ^ (mask << 56) can be encoded as a single armv8 instruction for these
811 // masks.
812 // The list does not include the value 255, which is used for UAR.
814 // Because we are more likely to use earlier elements of this list than later
815 // ones, it is sorted in increasing order of probability of collision with a
816 // mask allocated (temporally) nearby. The program that generated this list
817 // can be found at:
818 // https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/sort_masks.py
819 static unsigned FastMasks[] = {0, 128, 64, 192, 32, 96, 224, 112, 240,
820 48, 16, 120, 248, 56, 24, 8, 124, 252,
821 60, 28, 12, 4, 126, 254, 62, 30, 14,
822 6, 2, 127, 63, 31, 15, 7, 3, 1};
823 return FastMasks[AllocaNo % (sizeof(FastMasks) / sizeof(FastMasks[0]))];
826 Value *HWAddressSanitizer::getNextTagWithCall(IRBuilder<> &IRB) {
827 return IRB.CreateZExt(IRB.CreateCall(HwasanGenerateTagFunc), IntptrTy);
830 Value *HWAddressSanitizer::getStackBaseTag(IRBuilder<> &IRB) {
831 if (ClGenerateTagsWithCalls)
832 return getNextTagWithCall(IRB);
833 if (StackBaseTag)
834 return StackBaseTag;
835 // FIXME: use addressofreturnaddress (but implement it in aarch64 backend
836 // first).
837 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
838 auto GetStackPointerFn = Intrinsic::getDeclaration(
839 M, Intrinsic::frameaddress,
840 IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace()));
841 Value *StackPointer = IRB.CreateCall(
842 GetStackPointerFn, {Constant::getNullValue(IRB.getInt32Ty())});
844 // Extract some entropy from the stack pointer for the tags.
845 // Take bits 20..28 (ASLR entropy) and xor with bits 0..8 (these differ
846 // between functions).
847 Value *StackPointerLong = IRB.CreatePointerCast(StackPointer, IntptrTy);
848 Value *StackTag =
849 IRB.CreateXor(StackPointerLong, IRB.CreateLShr(StackPointerLong, 20),
850 "hwasan.stack.base.tag");
851 return StackTag;
854 Value *HWAddressSanitizer::getAllocaTag(IRBuilder<> &IRB, Value *StackTag,
855 AllocaInst *AI, unsigned AllocaNo) {
856 if (ClGenerateTagsWithCalls)
857 return getNextTagWithCall(IRB);
858 return IRB.CreateXor(StackTag,
859 ConstantInt::get(IntptrTy, RetagMask(AllocaNo)));
862 Value *HWAddressSanitizer::getUARTag(IRBuilder<> &IRB, Value *StackTag) {
863 if (ClUARRetagToZero)
864 return ConstantInt::get(IntptrTy, 0);
865 if (ClGenerateTagsWithCalls)
866 return getNextTagWithCall(IRB);
867 return IRB.CreateXor(StackTag, ConstantInt::get(IntptrTy, 0xFFU));
870 // Add a tag to an address.
871 Value *HWAddressSanitizer::tagPointer(IRBuilder<> &IRB, Type *Ty,
872 Value *PtrLong, Value *Tag) {
873 Value *TaggedPtrLong;
874 if (CompileKernel) {
875 // Kernel addresses have 0xFF in the most significant byte.
876 Value *ShiftedTag = IRB.CreateOr(
877 IRB.CreateShl(Tag, kPointerTagShift),
878 ConstantInt::get(IntptrTy, (1ULL << kPointerTagShift) - 1));
879 TaggedPtrLong = IRB.CreateAnd(PtrLong, ShiftedTag);
880 } else {
881 // Userspace can simply do OR (tag << 56);
882 Value *ShiftedTag = IRB.CreateShl(Tag, kPointerTagShift);
883 TaggedPtrLong = IRB.CreateOr(PtrLong, ShiftedTag);
885 return IRB.CreateIntToPtr(TaggedPtrLong, Ty);
888 // Remove tag from an address.
889 Value *HWAddressSanitizer::untagPointer(IRBuilder<> &IRB, Value *PtrLong) {
890 Value *UntaggedPtrLong;
891 if (CompileKernel) {
892 // Kernel addresses have 0xFF in the most significant byte.
893 UntaggedPtrLong = IRB.CreateOr(PtrLong,
894 ConstantInt::get(PtrLong->getType(), 0xFFULL << kPointerTagShift));
895 } else {
896 // Userspace addresses have 0x00.
897 UntaggedPtrLong = IRB.CreateAnd(PtrLong,
898 ConstantInt::get(PtrLong->getType(), ~(0xFFULL << kPointerTagShift)));
900 return UntaggedPtrLong;
903 Value *HWAddressSanitizer::getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty) {
904 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
905 if (TargetTriple.isAArch64() && TargetTriple.isAndroid()) {
906 // Android provides a fixed TLS slot for sanitizers. See TLS_SLOT_SANITIZER
907 // in Bionic's libc/private/bionic_tls.h.
908 Function *ThreadPointerFunc =
909 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
910 Value *SlotPtr = IRB.CreatePointerCast(
911 IRB.CreateConstGEP1_32(IRB.getInt8Ty(),
912 IRB.CreateCall(ThreadPointerFunc), 0x30),
913 Ty->getPointerTo(0));
914 return SlotPtr;
916 if (ThreadPtrGlobal)
917 return ThreadPtrGlobal;
920 return nullptr;
923 void HWAddressSanitizer::emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord) {
924 if (!Mapping.InTls) {
925 LocalDynamicShadow = getDynamicShadowNonTls(IRB);
926 return;
929 if (!WithFrameRecord && TargetTriple.isAndroid()) {
930 LocalDynamicShadow = getDynamicShadowIfunc(IRB);
931 return;
934 Value *SlotPtr = getHwasanThreadSlotPtr(IRB, IntptrTy);
935 assert(SlotPtr);
937 Instruction *ThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr);
939 Function *F = IRB.GetInsertBlock()->getParent();
940 if (F->getFnAttribute("hwasan-abi").getValueAsString() == "interceptor") {
941 Value *ThreadLongEqZero =
942 IRB.CreateICmpEQ(ThreadLong, ConstantInt::get(IntptrTy, 0));
943 auto *Br = cast<BranchInst>(SplitBlockAndInsertIfThen(
944 ThreadLongEqZero, cast<Instruction>(ThreadLongEqZero)->getNextNode(),
945 false, MDBuilder(*C).createBranchWeights(1, 100000)));
947 IRB.SetInsertPoint(Br);
948 // FIXME: This should call a new runtime function with a custom calling
949 // convention to avoid needing to spill all arguments here.
950 IRB.CreateCall(HwasanThreadEnterFunc);
951 LoadInst *ReloadThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr);
953 IRB.SetInsertPoint(&*Br->getSuccessor(0)->begin());
954 PHINode *ThreadLongPhi = IRB.CreatePHI(IntptrTy, 2);
955 ThreadLongPhi->addIncoming(ThreadLong, ThreadLong->getParent());
956 ThreadLongPhi->addIncoming(ReloadThreadLong, ReloadThreadLong->getParent());
957 ThreadLong = ThreadLongPhi;
960 // Extract the address field from ThreadLong. Unnecessary on AArch64 with TBI.
961 Value *ThreadLongMaybeUntagged =
962 TargetTriple.isAArch64() ? ThreadLong : untagPointer(IRB, ThreadLong);
964 if (WithFrameRecord) {
965 StackBaseTag = IRB.CreateAShr(ThreadLong, 3);
967 // Prepare ring buffer data.
968 Value *PC;
969 if (TargetTriple.getArch() == Triple::aarch64)
970 PC = readRegister(IRB, "pc");
971 else
972 PC = IRB.CreatePtrToInt(F, IntptrTy);
973 Module *M = F->getParent();
974 auto GetStackPointerFn = Intrinsic::getDeclaration(
975 M, Intrinsic::frameaddress,
976 IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace()));
977 Value *SP = IRB.CreatePtrToInt(
978 IRB.CreateCall(GetStackPointerFn,
979 {Constant::getNullValue(IRB.getInt32Ty())}),
980 IntptrTy);
981 // Mix SP and PC.
982 // Assumptions:
983 // PC is 0x0000PPPPPPPPPPPP (48 bits are meaningful, others are zero)
984 // SP is 0xsssssssssssSSSS0 (4 lower bits are zero)
985 // We only really need ~20 lower non-zero bits (SSSS), so we mix like this:
986 // 0xSSSSPPPPPPPPPPPP
987 SP = IRB.CreateShl(SP, 44);
989 // Store data to ring buffer.
990 Value *RecordPtr =
991 IRB.CreateIntToPtr(ThreadLongMaybeUntagged, IntptrTy->getPointerTo(0));
992 IRB.CreateStore(IRB.CreateOr(PC, SP), RecordPtr);
994 // Update the ring buffer. Top byte of ThreadLong defines the size of the
995 // buffer in pages, it must be a power of two, and the start of the buffer
996 // must be aligned by twice that much. Therefore wrap around of the ring
997 // buffer is simply Addr &= ~((ThreadLong >> 56) << 12).
998 // The use of AShr instead of LShr is due to
999 // https://bugs.llvm.org/show_bug.cgi?id=39030
1000 // Runtime library makes sure not to use the highest bit.
1001 Value *WrapMask = IRB.CreateXor(
1002 IRB.CreateShl(IRB.CreateAShr(ThreadLong, 56), 12, "", true, true),
1003 ConstantInt::get(IntptrTy, (uint64_t)-1));
1004 Value *ThreadLongNew = IRB.CreateAnd(
1005 IRB.CreateAdd(ThreadLong, ConstantInt::get(IntptrTy, 8)), WrapMask);
1006 IRB.CreateStore(ThreadLongNew, SlotPtr);
1009 // Get shadow base address by aligning RecordPtr up.
1010 // Note: this is not correct if the pointer is already aligned.
1011 // Runtime library will make sure this never happens.
1012 LocalDynamicShadow = IRB.CreateAdd(
1013 IRB.CreateOr(
1014 ThreadLongMaybeUntagged,
1015 ConstantInt::get(IntptrTy, (1ULL << kShadowBaseAlignment) - 1)),
1016 ConstantInt::get(IntptrTy, 1), "hwasan.shadow");
1017 LocalDynamicShadow = IRB.CreateIntToPtr(LocalDynamicShadow, Int8PtrTy);
1020 Value *HWAddressSanitizer::readRegister(IRBuilder<> &IRB, StringRef Name) {
1021 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1022 Function *ReadRegister =
1023 Intrinsic::getDeclaration(M, Intrinsic::read_register, IntptrTy);
1024 MDNode *MD = MDNode::get(*C, {MDString::get(*C, Name)});
1025 Value *Args[] = {MetadataAsValue::get(*C, MD)};
1026 return IRB.CreateCall(ReadRegister, Args);
1029 bool HWAddressSanitizer::instrumentLandingPads(
1030 SmallVectorImpl<Instruction *> &LandingPadVec) {
1031 for (auto *LP : LandingPadVec) {
1032 IRBuilder<> IRB(LP->getNextNode());
1033 IRB.CreateCall(
1034 HWAsanHandleVfork,
1035 {readRegister(IRB, (TargetTriple.getArch() == Triple::x86_64) ? "rsp"
1036 : "sp")});
1038 return true;
1041 bool HWAddressSanitizer::instrumentStack(
1042 SmallVectorImpl<AllocaInst *> &Allocas,
1043 DenseMap<AllocaInst *, std::vector<DbgDeclareInst *>> &AllocaDeclareMap,
1044 SmallVectorImpl<Instruction *> &RetVec, Value *StackTag) {
1045 // Ideally, we want to calculate tagged stack base pointer, and rewrite all
1046 // alloca addresses using that. Unfortunately, offsets are not known yet
1047 // (unless we use ASan-style mega-alloca). Instead we keep the base tag in a
1048 // temp, shift-OR it into each alloca address and xor with the retag mask.
1049 // This generates one extra instruction per alloca use.
1050 for (unsigned N = 0; N < Allocas.size(); ++N) {
1051 auto *AI = Allocas[N];
1052 IRBuilder<> IRB(AI->getNextNode());
1054 // Replace uses of the alloca with tagged address.
1055 Value *Tag = getAllocaTag(IRB, StackTag, AI, N);
1056 Value *AILong = IRB.CreatePointerCast(AI, IntptrTy);
1057 Value *Replacement = tagPointer(IRB, AI->getType(), AILong, Tag);
1058 std::string Name =
1059 AI->hasName() ? AI->getName().str() : "alloca." + itostr(N);
1060 Replacement->setName(Name + ".hwasan");
1062 AI->replaceUsesWithIf(Replacement,
1063 [AILong](Use &U) { return U.getUser() != AILong; });
1065 for (auto *DDI : AllocaDeclareMap.lookup(AI)) {
1066 DIExpression *OldExpr = DDI->getExpression();
1067 DIExpression *NewExpr = DIExpression::append(
1068 OldExpr, {dwarf::DW_OP_LLVM_tag_offset, RetagMask(N)});
1069 DDI->setArgOperand(2, MetadataAsValue::get(*C, NewExpr));
1072 size_t Size = getAllocaSizeInBytes(*AI);
1073 tagAlloca(IRB, AI, Tag, Size);
1075 for (auto RI : RetVec) {
1076 IRB.SetInsertPoint(RI);
1078 // Re-tag alloca memory with the special UAR tag.
1079 Value *Tag = getUARTag(IRB, StackTag);
1080 tagAlloca(IRB, AI, Tag, alignTo(Size, Mapping.getObjectAlignment()));
1084 return true;
1087 bool HWAddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1088 return (AI.getAllocatedType()->isSized() &&
1089 // FIXME: instrument dynamic allocas, too
1090 AI.isStaticAlloca() &&
1091 // alloca() may be called with 0 size, ignore it.
1092 getAllocaSizeInBytes(AI) > 0 &&
1093 // We are only interested in allocas not promotable to registers.
1094 // Promotable allocas are common under -O0.
1095 !isAllocaPromotable(&AI) &&
1096 // inalloca allocas are not treated as static, and we don't want
1097 // dynamic alloca instrumentation for them as well.
1098 !AI.isUsedWithInAlloca() &&
1099 // swifterror allocas are register promoted by ISel
1100 !AI.isSwiftError());
1103 bool HWAddressSanitizer::sanitizeFunction(Function &F) {
1104 if (&F == HwasanCtorFunction)
1105 return false;
1107 if (!F.hasFnAttribute(Attribute::SanitizeHWAddress))
1108 return false;
1110 LLVM_DEBUG(dbgs() << "Function: " << F.getName() << "\n");
1112 SmallVector<Instruction*, 16> ToInstrument;
1113 SmallVector<AllocaInst*, 8> AllocasToInstrument;
1114 SmallVector<Instruction*, 8> RetVec;
1115 SmallVector<Instruction*, 8> LandingPadVec;
1116 DenseMap<AllocaInst *, std::vector<DbgDeclareInst *>> AllocaDeclareMap;
1117 for (auto &BB : F) {
1118 for (auto &Inst : BB) {
1119 if (ClInstrumentStack)
1120 if (AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) {
1121 if (isInterestingAlloca(*AI))
1122 AllocasToInstrument.push_back(AI);
1123 continue;
1126 if (isa<ReturnInst>(Inst) || isa<ResumeInst>(Inst) ||
1127 isa<CleanupReturnInst>(Inst))
1128 RetVec.push_back(&Inst);
1130 if (auto *DDI = dyn_cast<DbgDeclareInst>(&Inst))
1131 if (auto *Alloca = dyn_cast_or_null<AllocaInst>(DDI->getAddress()))
1132 AllocaDeclareMap[Alloca].push_back(DDI);
1134 if (InstrumentLandingPads && isa<LandingPadInst>(Inst))
1135 LandingPadVec.push_back(&Inst);
1137 Value *MaybeMask = nullptr;
1138 bool IsWrite;
1139 unsigned Alignment;
1140 uint64_t TypeSize;
1141 Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
1142 &Alignment, &MaybeMask);
1143 if (Addr || isa<MemIntrinsic>(Inst))
1144 ToInstrument.push_back(&Inst);
1148 initializeCallbacks(*F.getParent());
1150 if (!LandingPadVec.empty())
1151 instrumentLandingPads(LandingPadVec);
1153 if (AllocasToInstrument.empty() && F.hasPersonalityFn() &&
1154 F.getPersonalityFn()->getName() == kHwasanPersonalityThunkName) {
1155 // __hwasan_personality_thunk is a no-op for functions without an
1156 // instrumented stack, so we can drop it.
1157 F.setPersonalityFn(nullptr);
1160 if (AllocasToInstrument.empty() && ToInstrument.empty())
1161 return false;
1163 assert(!LocalDynamicShadow);
1165 Instruction *InsertPt = &*F.getEntryBlock().begin();
1166 IRBuilder<> EntryIRB(InsertPt);
1167 emitPrologue(EntryIRB,
1168 /*WithFrameRecord*/ ClRecordStackHistory &&
1169 !AllocasToInstrument.empty());
1171 bool Changed = false;
1172 if (!AllocasToInstrument.empty()) {
1173 Value *StackTag =
1174 ClGenerateTagsWithCalls ? nullptr : getStackBaseTag(EntryIRB);
1175 Changed |= instrumentStack(AllocasToInstrument, AllocaDeclareMap, RetVec,
1176 StackTag);
1179 // Pad and align each of the allocas that we instrumented to stop small
1180 // uninteresting allocas from hiding in instrumented alloca's padding and so
1181 // that we have enough space to store real tags for short granules.
1182 DenseMap<AllocaInst *, AllocaInst *> AllocaToPaddedAllocaMap;
1183 for (AllocaInst *AI : AllocasToInstrument) {
1184 uint64_t Size = getAllocaSizeInBytes(*AI);
1185 uint64_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment());
1186 AI->setAlignment(
1187 MaybeAlign(std::max(AI->getAlignment(), Mapping.getObjectAlignment())));
1188 if (Size != AlignedSize) {
1189 Type *AllocatedType = AI->getAllocatedType();
1190 if (AI->isArrayAllocation()) {
1191 uint64_t ArraySize =
1192 cast<ConstantInt>(AI->getArraySize())->getZExtValue();
1193 AllocatedType = ArrayType::get(AllocatedType, ArraySize);
1195 Type *TypeWithPadding = StructType::get(
1196 AllocatedType, ArrayType::get(Int8Ty, AlignedSize - Size));
1197 auto *NewAI = new AllocaInst(
1198 TypeWithPadding, AI->getType()->getAddressSpace(), nullptr, "", AI);
1199 NewAI->takeName(AI);
1200 NewAI->setAlignment(MaybeAlign(AI->getAlignment()));
1201 NewAI->setUsedWithInAlloca(AI->isUsedWithInAlloca());
1202 NewAI->setSwiftError(AI->isSwiftError());
1203 NewAI->copyMetadata(*AI);
1204 auto *Bitcast = new BitCastInst(NewAI, AI->getType(), "", AI);
1205 AI->replaceAllUsesWith(Bitcast);
1206 AllocaToPaddedAllocaMap[AI] = NewAI;
1210 if (!AllocaToPaddedAllocaMap.empty()) {
1211 for (auto &BB : F)
1212 for (auto &Inst : BB)
1213 if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&Inst))
1214 if (auto *AI =
1215 dyn_cast_or_null<AllocaInst>(DVI->getVariableLocation()))
1216 if (auto *NewAI = AllocaToPaddedAllocaMap.lookup(AI))
1217 DVI->setArgOperand(
1218 0, MetadataAsValue::get(*C, LocalAsMetadata::get(NewAI)));
1219 for (auto &P : AllocaToPaddedAllocaMap)
1220 P.first->eraseFromParent();
1223 // If we split the entry block, move any allocas that were originally in the
1224 // entry block back into the entry block so that they aren't treated as
1225 // dynamic allocas.
1226 if (EntryIRB.GetInsertBlock() != &F.getEntryBlock()) {
1227 InsertPt = &*F.getEntryBlock().begin();
1228 for (auto II = EntryIRB.GetInsertBlock()->begin(),
1229 IE = EntryIRB.GetInsertBlock()->end();
1230 II != IE;) {
1231 Instruction *I = &*II++;
1232 if (auto *AI = dyn_cast<AllocaInst>(I))
1233 if (isa<ConstantInt>(AI->getArraySize()))
1234 I->moveBefore(InsertPt);
1238 for (auto Inst : ToInstrument)
1239 Changed |= instrumentMemAccess(Inst);
1241 LocalDynamicShadow = nullptr;
1242 StackBaseTag = nullptr;
1244 return Changed;
1247 void HWAddressSanitizer::instrumentGlobal(GlobalVariable *GV, uint8_t Tag) {
1248 Constant *Initializer = GV->getInitializer();
1249 uint64_t SizeInBytes =
1250 M.getDataLayout().getTypeAllocSize(Initializer->getType());
1251 uint64_t NewSize = alignTo(SizeInBytes, Mapping.getObjectAlignment());
1252 if (SizeInBytes != NewSize) {
1253 // Pad the initializer out to the next multiple of 16 bytes and add the
1254 // required short granule tag.
1255 std::vector<uint8_t> Init(NewSize - SizeInBytes, 0);
1256 Init.back() = Tag;
1257 Constant *Padding = ConstantDataArray::get(*C, Init);
1258 Initializer = ConstantStruct::getAnon({Initializer, Padding});
1261 auto *NewGV = new GlobalVariable(M, Initializer->getType(), GV->isConstant(),
1262 GlobalValue::ExternalLinkage, Initializer,
1263 GV->getName() + ".hwasan");
1264 NewGV->copyAttributesFrom(GV);
1265 NewGV->setLinkage(GlobalValue::PrivateLinkage);
1266 NewGV->copyMetadata(GV, 0);
1267 NewGV->setAlignment(
1268 MaybeAlign(std::max(GV->getAlignment(), Mapping.getObjectAlignment())));
1270 // It is invalid to ICF two globals that have different tags. In the case
1271 // where the size of the global is a multiple of the tag granularity the
1272 // contents of the globals may be the same but the tags (i.e. symbol values)
1273 // may be different, and the symbols are not considered during ICF. In the
1274 // case where the size is not a multiple of the granularity, the short granule
1275 // tags would discriminate two globals with different tags, but there would
1276 // otherwise be nothing stopping such a global from being incorrectly ICF'd
1277 // with an uninstrumented (i.e. tag 0) global that happened to have the short
1278 // granule tag in the last byte.
1279 NewGV->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
1281 // Descriptor format (assuming little-endian):
1282 // bytes 0-3: relative address of global
1283 // bytes 4-6: size of global (16MB ought to be enough for anyone, but in case
1284 // it isn't, we create multiple descriptors)
1285 // byte 7: tag
1286 auto *DescriptorTy = StructType::get(Int32Ty, Int32Ty);
1287 const uint64_t MaxDescriptorSize = 0xfffff0;
1288 for (uint64_t DescriptorPos = 0; DescriptorPos < SizeInBytes;
1289 DescriptorPos += MaxDescriptorSize) {
1290 auto *Descriptor =
1291 new GlobalVariable(M, DescriptorTy, true, GlobalValue::PrivateLinkage,
1292 nullptr, GV->getName() + ".hwasan.descriptor");
1293 auto *GVRelPtr = ConstantExpr::getTrunc(
1294 ConstantExpr::getAdd(
1295 ConstantExpr::getSub(
1296 ConstantExpr::getPtrToInt(NewGV, Int64Ty),
1297 ConstantExpr::getPtrToInt(Descriptor, Int64Ty)),
1298 ConstantInt::get(Int64Ty, DescriptorPos)),
1299 Int32Ty);
1300 uint32_t Size = std::min(SizeInBytes - DescriptorPos, MaxDescriptorSize);
1301 auto *SizeAndTag = ConstantInt::get(Int32Ty, Size | (uint32_t(Tag) << 24));
1302 Descriptor->setComdat(NewGV->getComdat());
1303 Descriptor->setInitializer(ConstantStruct::getAnon({GVRelPtr, SizeAndTag}));
1304 Descriptor->setSection("hwasan_globals");
1305 Descriptor->setMetadata(LLVMContext::MD_associated,
1306 MDNode::get(*C, ValueAsMetadata::get(NewGV)));
1307 appendToCompilerUsed(M, Descriptor);
1310 Constant *Aliasee = ConstantExpr::getIntToPtr(
1311 ConstantExpr::getAdd(
1312 ConstantExpr::getPtrToInt(NewGV, Int64Ty),
1313 ConstantInt::get(Int64Ty, uint64_t(Tag) << kPointerTagShift)),
1314 GV->getType());
1315 auto *Alias = GlobalAlias::create(GV->getValueType(), GV->getAddressSpace(),
1316 GV->getLinkage(), "", Aliasee, &M);
1317 Alias->setVisibility(GV->getVisibility());
1318 Alias->takeName(GV);
1319 GV->replaceAllUsesWith(Alias);
1320 GV->eraseFromParent();
1323 void HWAddressSanitizer::instrumentGlobals() {
1324 // Start by creating a note that contains pointers to the list of global
1325 // descriptors. Adding a note to the output file will cause the linker to
1326 // create a PT_NOTE program header pointing to the note that we can use to
1327 // find the descriptor list starting from the program headers. A function
1328 // provided by the runtime initializes the shadow memory for the globals by
1329 // accessing the descriptor list via the note. The dynamic loader needs to
1330 // call this function whenever a library is loaded.
1332 // The reason why we use a note for this instead of a more conventional
1333 // approach of having a global constructor pass a descriptor list pointer to
1334 // the runtime is because of an order of initialization problem. With
1335 // constructors we can encounter the following problematic scenario:
1337 // 1) library A depends on library B and also interposes one of B's symbols
1338 // 2) B's constructors are called before A's (as required for correctness)
1339 // 3) during construction, B accesses one of its "own" globals (actually
1340 // interposed by A) and triggers a HWASAN failure due to the initialization
1341 // for A not having happened yet
1343 // Even without interposition it is possible to run into similar situations in
1344 // cases where two libraries mutually depend on each other.
1346 // We only need one note per binary, so put everything for the note in a
1347 // comdat.
1348 Comdat *NoteComdat = M.getOrInsertComdat(kHwasanNoteName);
1350 Type *Int8Arr0Ty = ArrayType::get(Int8Ty, 0);
1351 auto Start =
1352 new GlobalVariable(M, Int8Arr0Ty, true, GlobalVariable::ExternalLinkage,
1353 nullptr, "__start_hwasan_globals");
1354 Start->setVisibility(GlobalValue::HiddenVisibility);
1355 Start->setDSOLocal(true);
1356 auto Stop =
1357 new GlobalVariable(M, Int8Arr0Ty, true, GlobalVariable::ExternalLinkage,
1358 nullptr, "__stop_hwasan_globals");
1359 Stop->setVisibility(GlobalValue::HiddenVisibility);
1360 Stop->setDSOLocal(true);
1362 // Null-terminated so actually 8 bytes, which are required in order to align
1363 // the note properly.
1364 auto *Name = ConstantDataArray::get(*C, "LLVM\0\0\0");
1366 auto *NoteTy = StructType::get(Int32Ty, Int32Ty, Int32Ty, Name->getType(),
1367 Int32Ty, Int32Ty);
1368 auto *Note =
1369 new GlobalVariable(M, NoteTy, /*isConstantGlobal=*/true,
1370 GlobalValue::PrivateLinkage, nullptr, kHwasanNoteName);
1371 Note->setSection(".note.hwasan.globals");
1372 Note->setComdat(NoteComdat);
1373 Note->setAlignment(Align(4));
1374 Note->setDSOLocal(true);
1376 // The pointers in the note need to be relative so that the note ends up being
1377 // placed in rodata, which is the standard location for notes.
1378 auto CreateRelPtr = [&](Constant *Ptr) {
1379 return ConstantExpr::getTrunc(
1380 ConstantExpr::getSub(ConstantExpr::getPtrToInt(Ptr, Int64Ty),
1381 ConstantExpr::getPtrToInt(Note, Int64Ty)),
1382 Int32Ty);
1384 Note->setInitializer(ConstantStruct::getAnon(
1385 {ConstantInt::get(Int32Ty, 8), // n_namesz
1386 ConstantInt::get(Int32Ty, 8), // n_descsz
1387 ConstantInt::get(Int32Ty, ELF::NT_LLVM_HWASAN_GLOBALS), // n_type
1388 Name, CreateRelPtr(Start), CreateRelPtr(Stop)}));
1389 appendToCompilerUsed(M, Note);
1391 // Create a zero-length global in hwasan_globals so that the linker will
1392 // always create start and stop symbols.
1393 auto Dummy = new GlobalVariable(
1394 M, Int8Arr0Ty, /*isConstantGlobal*/ true, GlobalVariable::PrivateLinkage,
1395 Constant::getNullValue(Int8Arr0Ty), "hwasan.dummy.global");
1396 Dummy->setSection("hwasan_globals");
1397 Dummy->setComdat(NoteComdat);
1398 Dummy->setMetadata(LLVMContext::MD_associated,
1399 MDNode::get(*C, ValueAsMetadata::get(Note)));
1400 appendToCompilerUsed(M, Dummy);
1402 std::vector<GlobalVariable *> Globals;
1403 for (GlobalVariable &GV : M.globals()) {
1404 if (GV.isDeclarationForLinker() || GV.getName().startswith("llvm.") ||
1405 GV.isThreadLocal())
1406 continue;
1408 // Common symbols can't have aliases point to them, so they can't be tagged.
1409 if (GV.hasCommonLinkage())
1410 continue;
1412 // Globals with custom sections may be used in __start_/__stop_ enumeration,
1413 // which would be broken both by adding tags and potentially by the extra
1414 // padding/alignment that we insert.
1415 if (GV.hasSection())
1416 continue;
1418 Globals.push_back(&GV);
1421 MD5 Hasher;
1422 Hasher.update(M.getSourceFileName());
1423 MD5::MD5Result Hash;
1424 Hasher.final(Hash);
1425 uint8_t Tag = Hash[0];
1427 for (GlobalVariable *GV : Globals) {
1428 // Skip tag 0 in order to avoid collisions with untagged memory.
1429 if (Tag == 0)
1430 Tag = 1;
1431 instrumentGlobal(GV, Tag++);
1435 void HWAddressSanitizer::instrumentPersonalityFunctions() {
1436 // We need to untag stack frames as we unwind past them. That is the job of
1437 // the personality function wrapper, which either wraps an existing
1438 // personality function or acts as a personality function on its own. Each
1439 // function that has a personality function or that can be unwound past has
1440 // its personality function changed to a thunk that calls the personality
1441 // function wrapper in the runtime.
1442 MapVector<Constant *, std::vector<Function *>> PersonalityFns;
1443 for (Function &F : M) {
1444 if (F.isDeclaration() || !F.hasFnAttribute(Attribute::SanitizeHWAddress))
1445 continue;
1447 if (F.hasPersonalityFn()) {
1448 PersonalityFns[F.getPersonalityFn()->stripPointerCasts()].push_back(&F);
1449 } else if (!F.hasFnAttribute(Attribute::NoUnwind)) {
1450 PersonalityFns[nullptr].push_back(&F);
1454 if (PersonalityFns.empty())
1455 return;
1457 FunctionCallee HwasanPersonalityWrapper = M.getOrInsertFunction(
1458 "__hwasan_personality_wrapper", Int32Ty, Int32Ty, Int32Ty, Int64Ty,
1459 Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy);
1460 FunctionCallee UnwindGetGR = M.getOrInsertFunction("_Unwind_GetGR", VoidTy);
1461 FunctionCallee UnwindGetCFA = M.getOrInsertFunction("_Unwind_GetCFA", VoidTy);
1463 for (auto &P : PersonalityFns) {
1464 std::string ThunkName = kHwasanPersonalityThunkName;
1465 if (P.first)
1466 ThunkName += ("." + P.first->getName()).str();
1467 FunctionType *ThunkFnTy = FunctionType::get(
1468 Int32Ty, {Int32Ty, Int32Ty, Int64Ty, Int8PtrTy, Int8PtrTy}, false);
1469 bool IsLocal = P.first && (!isa<GlobalValue>(P.first) ||
1470 cast<GlobalValue>(P.first)->hasLocalLinkage());
1471 auto *ThunkFn = Function::Create(ThunkFnTy,
1472 IsLocal ? GlobalValue::InternalLinkage
1473 : GlobalValue::LinkOnceODRLinkage,
1474 ThunkName, &M);
1475 if (!IsLocal) {
1476 ThunkFn->setVisibility(GlobalValue::HiddenVisibility);
1477 ThunkFn->setComdat(M.getOrInsertComdat(ThunkName));
1480 auto *BB = BasicBlock::Create(*C, "entry", ThunkFn);
1481 IRBuilder<> IRB(BB);
1482 CallInst *WrapperCall = IRB.CreateCall(
1483 HwasanPersonalityWrapper,
1484 {ThunkFn->getArg(0), ThunkFn->getArg(1), ThunkFn->getArg(2),
1485 ThunkFn->getArg(3), ThunkFn->getArg(4),
1486 P.first ? IRB.CreateBitCast(P.first, Int8PtrTy)
1487 : Constant::getNullValue(Int8PtrTy),
1488 IRB.CreateBitCast(UnwindGetGR.getCallee(), Int8PtrTy),
1489 IRB.CreateBitCast(UnwindGetCFA.getCallee(), Int8PtrTy)});
1490 WrapperCall->setTailCall();
1491 IRB.CreateRet(WrapperCall);
1493 for (Function *F : P.second)
1494 F->setPersonalityFn(ThunkFn);
1498 void HWAddressSanitizer::ShadowMapping::init(Triple &TargetTriple) {
1499 Scale = kDefaultShadowScale;
1500 if (ClMappingOffset.getNumOccurrences() > 0) {
1501 InGlobal = false;
1502 InTls = false;
1503 Offset = ClMappingOffset;
1504 } else if (ClEnableKhwasan || ClInstrumentWithCalls) {
1505 InGlobal = false;
1506 InTls = false;
1507 Offset = 0;
1508 } else if (ClWithIfunc) {
1509 InGlobal = true;
1510 InTls = false;
1511 Offset = kDynamicShadowSentinel;
1512 } else if (ClWithTls) {
1513 InGlobal = false;
1514 InTls = true;
1515 Offset = kDynamicShadowSentinel;
1516 } else {
1517 InGlobal = false;
1518 InTls = false;
1519 Offset = kDynamicShadowSentinel;